

Chemokines Kill Bacteria by Binding Anionic Phospholipids without Triggering Antimicrobial Resistance

Sergio M. Pontejo^{1#}, Sophia Martinez¹, Allison Zhao¹, Kevin Barnes², Jaime de Anda^{3,4,5,6}, Haleh Alimohamadi^{3,4,5,6}, Ernest Y. Lee^{3,4,5,6}, Acacia F. Dishman⁷, Brian F. Volkman⁷, Gerard C.L. Wong^{3,4,5,6}, David N. Garboczi², Angela Ballesteros⁸ and Philip M. Murphy¹

¹Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.

²Structural Biology Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.

³Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA.

⁴Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA.

⁵Department of Microbiology, Immunology & Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA.

⁶California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA.

⁷Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.

⁸Section of Sensory Physiology and Biophysics, National Institute of Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA.

#Corresponding author: jesussergio.martinpontejo@nih.gov

Keywords: Antimicrobial peptides, multidrug-resistant microorganisms, antibiotics, phospholipids, phosphatidylglycerol, cardiolipin.

27 **ABSTRACT**

28 Classically, chemokines coordinate leukocyte trafficking during immune responses; however, many
29 chemokines have also been reported to possess direct antibacterial activity in vitro. Yet, the bacterial
30 killing mechanism of chemokines and the biochemical properties that define which members of the
31 chemokine superfamily are antimicrobial remain poorly understood. Here we report that the
32 antimicrobial activity of chemokines is defined by their ability to bind phosphatidylglycerol and
33 cardiolipin, two anionic phospholipids commonly found in the bacterial plasma membrane. We show
34 that only chemokines able to bind these two phospholipids kill *Escherichia coli* and *Staphylococcus aureus*
35 and that they exert rapid bacteriostatic and bactericidal effects against *E. coli* with a higher potency than
36 the antimicrobial peptide beta-defensin 3. Furthermore, our data support that bacterial membrane
37 cardiolipin facilitates the antimicrobial action of chemokines. Both biochemical and genetic interference
38 with the chemokine-cardiolipin interaction impaired microbial growth arrest, bacterial killing, and
39 membrane disruption by chemokines. Moreover, unlike conventional antibiotics, *E. coli* failed to develop
40 resistance when placed under increasing antimicrobial chemokine pressure in vitro. Thus, we have
41 identified cardiolipin and phosphatidylglycerol as novel binding partners for chemokines responsible for
42 chemokine antimicrobial action. Our results provide proof of principle for developing chemokines as
43 novel antibiotics resistant to bacterial antimicrobial resistance mechanisms.

44

45 **INTRODUCTION**

46 The emergence of antimicrobial resistant bacteria, driven by widespread use of antibiotics and a decline
47 in antibiotic innovation, is a major challenge to public health worldwide. Infections with antibiotic-
48 resistant bacteria typically require prolonged hospital stays and cause higher morbidity and mortality^{1,2}.
49 A recent analysis of data from 204 countries concluded that multidrug resistant microorganisms were
50 directly responsible for 1.27 million deaths in 2019, led by resistant strains of *Escherichia coli* (*E. coli*) and
51 *Staphylococcus aureus* (*S. aureus*)³. Despite this urgent medical need, the discovery and development of
52 new classes of antimicrobials has been relatively stagnant.

53

54 Antimicrobial peptides (AMPs) constitute a potential alternative to conventional antibiotics. AMPs are
55 small (10-100 amino acids) and often amphipathic host-derived proteins consisting of positively charged
56 residues that intersperse with solvent-exposed hydrophobic amino acids^{4,5}. Although, like conventional
57 antibiotics, some AMPs may disable intracellular targets, cationic AMPs are thought to kill bacteria
58 primarily by interacting with bacterial anionic membranes⁶⁻⁸. The binding of AMPs to bacterial
59 membranes causes membrane disorganization, increased membrane permeability, content leakage and
60 ultimately, bacterial death⁶. Importantly, since they target non-protein structural elements fundamental
61 for bacterial fitness and kill faster compared to conventional antibiotics, AMPs are thought to be less
62 susceptible to bacterial resistance development^{9,10}; however, the empiric evidence to support this remains
63 limited.

64

65 AMPs constitute an important component of innate immunity and include the cathelicidin, histatin, lectin
66 and defensin families in humans^{11,12}. They promote defense against pathogenic bacteria and may also
67 help shape the microbiome¹³⁻¹⁵. In addition to these professional AMPs, many members of the chemokine
68 superfamily of chemotactic cytokines have been known for decades to have direct antimicrobial activity
69 in vitro¹⁶⁻¹⁸. Chemokines possess many of the biochemical features of AMPs; they are small proteins (7-12
70 kDa), cationic, and their family-defining structure contains a C-terminal amphipathic α -helix that
71 resembles the structure of many known AMPs¹⁹. Of the approximately 50 different mammalian
72 chemokines, over 20 have been shown to kill bacteria, but their antimicrobial mechanisms remain poorly
73 understood^{18,20,21}.

74

75 We recently discovered that a subset of chemokines binds with high affinity to specific anionic membrane
76 phospholipids, including phosphatidylserine (PS) and cardiolipin (CL)²². PS is typically found in the

77 inner leaflet of mammalian plasma membranes and becomes externalized during apoptosis²³⁻²⁵. CL, while
78 present in the inner mitochondrial membrane, is absent in eukaryotic plasma membranes, but it is a
79 common component of the plasma membrane of Gram-negative and Gram-positive prokaryotes^{26,27}. We
80 have previously demonstrated that chemokine-PS interactions may play important roles in the regulation
81 of phagocyte recruitment for apoptotic cell clearance²². Here, we investigated the role of chemokine-CL
82 interactions in bacterial killing.

83

84 RESULTS

85

86 The antimicrobial activity of chemokines correlates with their ability to bind phosphatidylglycerol 87 and cardiolipin.

88

89 Chemokines share many of the biochemical features of cationic AMPs and can have as potent bactericidal
90 activity as classic AMPs^{28,29}. Consistent with this, we found that human CXCL9 and CCL20 killed *E. coli*
91 more potently than the classic AMP human beta-defensin 3 (hBD3) (Fig. 1a). This result supports that
92 microbial killing is a bona fide activity of some chemokines, and yet the molecular properties that
93 determine which chemokines are antimicrobial remain unknown.

94

95 To interrogate whether the mechanism involved chemokine binding to anionic phospholipids, we first
96 tested in a survey of 10 chemokines whether the two activities were correlated, using *E. coli* and *S. aureus*
97 as target organisms. As shown in Figure 1b, six chemokines –CCL11, CCL19, CCL20, CCL21, CXCL9
98 and CXCL11— showed clear antimicrobial activity whereas four chemokines –CCL22, CCL23, CXCL5
99 and CXCL8—were unable to kill either organism within the tested concentration range (1.25-20 µg/ml).
100 Of note, while CXCL9 and CXCL11 displayed similar efficacy against both organisms, CCL11, CCL19,
101 CCL20 and CCL21 killed > 1-log colony forming units (cfu) of *E. coli* at 5-10 µg/ml but required 20 µg/ml
102 to kill > 1-log cfu of *S. aureus* (Fig. 1b).

103

104 Next, we used biolayer interferometry (BLI) to analyze binding of the same 10 chemokines to the four
105 main phospholipid classes found in bacterial plasma membranes: the anionic phospholipids CL and
106 phosphatidylglycerol (PG), the cationic lysyl-PG (lysPG), and the zwitterionic phosphatidylethanolamine
107 (PE). We tested chemokine binding to these lipids incorporated individually in liposomes of
108 phosphatidylcholine (PC), a zwitterionic phospholipid that does not bind chemokines²², or combined in

109 liposomes replicating the phospholipid composition of the plasma membrane of *E. coli* (lpEC) or *S. aureus*
110 (lpSA), which consists of PE/PG/CL and PG/lysPG/CL, respectively, at an approximate 75/20/5 ratio in
111 both cases^{30,31}. As shown in the top row of Figure 1c, the antimicrobial chemokines CCL11, CCL19,
112 CCL20, CCL21, CXCL9 and CXCL11 bound to both lpEC and lpSA liposomes. Furthermore, these six
113 chemokines bound CL and PG but not PE or lysPG (Fig. 1c, bottom row). In contrast, the non-
114 antimicrobial chemokines CCL22, CCL23, CXCL5 and CXCL8 did not bind any liposome tested (Fig. 1c).
115 These results confirmed CL as a chemokine binding partner, identified PG as a novel lipid binding ligand
116 for chemokines, and demonstrated a strong correlation between chemokine phospholipid-binding and
117 antimicrobial activity, in which only chemokines that bound PG and CL were antimicrobial.

118

119 **Antimicrobial chemokines interact with *E. coli* through common bacterial binding sites and localize to**
120 **anionic phospholipid-rich domains of the bacterial plasma membrane.**

121

122 We next tested whether bacterial membrane PG or CL could act as common binding sites for fluorophore-
123 labeled antimicrobial chemokines. As shown in Figure 2a, the antimicrobial chemokines CXCL9, CXCL11
124 and CCL20, but not the non-antimicrobial CXCL8 and CCL3, were able to bind to *E. coli*^{18,32}. Consistent
125 with our hypothesis and the results in Figure 1, we found by BLI that CCL3 does not bind PG or CL (Fig.
126 S1). Therefore, we concluded that in this survey only PG/CL-binding chemokines are able to bind the
127 target bacteria. Furthermore, we found that the binding of a given antimicrobial chemokine to bacteria
128 could be competed by a second antimicrobial chemokine. As shown in the representative images of
129 Figure 2b and the quantification of the bacteria-bound CXCL11-AZ647 fluorescence intensity in Figure 2c,
130 while the binding of CXCL11-AZ647 to *E. coli* was not affected by CXCL5 (non-antimicrobial), it was
131 nearly neutralized when the bacteria were preincubated with the unlabeled antimicrobial chemokines
132 CXCL11, CCL11, or CCL20. These results are consistent with a potential role of membrane CL and PG as
133 common binding sites for antimicrobial chemokines in *E. coli*.

134

135 CL and PG are known to concentrate at the bacterial cell poles in the plasma membrane of *E. coli*³³. This
136 polar localization of CL and PG has been classically investigated by nonyl acridine orange (NAO)
137 staining. NAO is a green fluorophore (NAO-524 [λ_{em} , max. 524 nm]) that inserts into lipid bilayers but
138 when it binds to CL, PG or other anionic phospholipids its fluorescence emission maximum wavelength
139 shifts to red (NAO-630, [λ_{em} , max. 630 nm])³³. Using Airyscan confocal laser scanning microscopy and
140 CXCL9-AZ647 as an example of a fluorescent antimicrobial chemokine, we investigated the localization

141 of bacteria-bound chemokine in *E. coli* co-stained with NAO. As shown in Figure 2d, bacteria-bound
142 CXCL9 concentrated and colocalized with NAO-630 at the bacterial poles. Altogether, these data indicate
143 that antimicrobial chemokines bind to common binding sites localized at PG/CL-rich domains of the
144 bacterial plasma membrane.

145

146 **Liposomal cardiolipin and phosphatidylglycerol protect bacteria from binding and killing by**
147 **antimicrobial chemokines.**

148

149 To investigate the specificity of a possible CL/PG-dependent antimicrobial mechanism by chemokines,
150 we next studied the effect of liposomes of different phospholipid compositions on the ability of
151 chemokines to bind and kill bacteria. For this, we first tested the binding of CCL20-AZ647 to bacteria in
152 the presence of 100 μ M PC liposomes containing PE, PG or CL. As shown in the representative images in
153 Figure 3a and the quantification of the fluorescence intensity of CCL20-AZ647 in Figure 3b, PG- and CL-
154 containing liposomes significantly reduced or blocked, respectively, CCL20-AZ647 binding to *E. coli*
155 whereas PE-containing liposomes had no effect. Similar results were obtained with AZ647-labelled
156 CXCL11. Although PE reduced the binding of CXCL11-AZ647 to *E. coli* compared to the buffer treatment
157 control, CL and PG completely blocked the binding of CXCL11 to the bacterial surface (Fig. S2).

158 Importantly, we found that liposomes containing CL or PG, but not PE liposomes, protected *E. coli* from
159 the antimicrobial activity of CXCL11 and CCL20 in a dose dependent manner (Fig. 3c). In particular, 100
160 μ M of CL or PG liposomes, corresponding in these experiments to a 1:160 chemokine:lipid molar ratio,
161 sufficed to completely inhibit the killing activity of these two antimicrobial chemokines (Fig. 3c).

162 Furthermore, CL and PG liposomes also neutralized the killing of *S. aureus* by the antimicrobial
163 chemokines CXCL9 and CXCL11 (Fig. 3d). These results confirmed that antimicrobial chemokines bind
164 CL and PG and support that binding to these anionic phospholipids is required for the killing of Gram-
165 negative and Gram-positive microorganisms by chemokines.

166

167 **Cardiolipin-deficient bacteria are more resistant to antimicrobial chemokines.**

168

169 In order to further assess whether bacterial membrane phospholipids regulate chemokine antimicrobial
170 activity, we next tested the activity of antimicrobial chemokines on the CL-deficient *E. coli* strain BKT12
171 compared to the wild-type parental strain W3110³⁴.

172

173 Using thin layer chromatography (TLC), we first confirmed the altered phospholipid composition in the
174 BKT12 strain. As shown in Figure 4a, BKT12 lacked CL and presented increased levels of PG compared to
175 the parental W3110 strain. This heightened ratio of PG in BKT12 has been previously described and
176 attributed to the deletion in this strain of the three CL synthases –ClsA, ClsB and ClsC – that consume
177 PG to generate CL in *E. coli*³⁴. However, using FACS, we found that AZ647-labeled antimicrobial CXCL9,
178 CXCL11 and CCL21 were not only capable of binding to BKT12 bacteria but they displayed a stronger
179 binding to BKT12 than to W3110 (Fig. 4b and 4c). Importantly, non-antimicrobial CXCL8, which does not
180 bind CL or PG, failed to bind to either *E. coli* strain (Fig. 4b and 4c). Therefore, despite the absence of CL
181 in BKT12, antimicrobial chemokines bind W3110 and BKT12 bacteria, which is consistent with the ability
182 of these chemokines to bind both CL and PG phospholipids.

183
184 To this point, we had performed all antimicrobial assays in a low-salt buffer commonly used in the field
185 to assess AMP activity. However, we observed that CL-deficient BKT12 bacteria displayed significant
186 levels of spontaneous death in low salt, which is consistent with the role attributed to CL in the bacterial
187 response to osmotic stress³⁵. Thus, to avoid any interfering microbial killing by osmotic shock, hereafter,
188 all assays were performed in a 85 mM NaCl buffer, which is isosmotic to the bacterial growth media. Of
189 note, antimicrobial chemokines are known to be sensitive to high salt³²; however, we found that this was
190 also applicable to the bona fide antimicrobial peptide hBD3, and that CCL20 and CXCL9 were able to kill
191 >50% cfu in 85 mM NaCl (Fig. S3a). Importantly, CCL20 was still as potently antimicrobial as hBD3 at
192 this higher salt concentration, although 1.2 μ M of CCL20 was required for a significant antimicrobial
193 effect (Fig. S3b). Using these conditions, we found that 1.2 μ M CXCL9 and CCL20 reduced wild type
194 W3110 *E. coli* cfu by > 50% 2 h after treatment, whereas they killed only < 25% of the CL-deficient BKT12
195 strain (Fig. 4d). Furthermore, when both strains were incubated simultaneously in a 1:1 W3110:BKT12 cfu
196 mix with chemokines or buffer alone, CXCL9 selectively killed W3110 without affecting the number of
197 BKT12 cfu (Fig. 4E). As expected, the non-antimicrobial chemokine CXCL8 did not reduce the cfu count
198 of either bacterial strain (Fig. 4E). We conclude that, although membrane CL is not required for the
199 binding of antimicrobial chemokines to bacteria, chemokines are more effective antimicrobials against the
200 parental W3110 than the CL-deficient BKT12 strain, which supports the role of bacterial membrane CL as
201 a key molecular target for the action of antimicrobial chemokines.

202
203 **Cardiolipin mediates rapid bacteriostatic action and bacterial plasma membrane permeabilization by**
204 **antimicrobial chemokines.**

205

206 In order to gain further insight into the chemokine antimicrobial mechanism, we next performed a FACS-
207 based time-to-kill assay. For this, W3110 and BKT12 bacteria were treated with 1.2 μ M of different
208 chemokines and live and dead bacteria were quantified at 20, 60, 120 and 180 min after treatment by
209 nucleic acid staining with SYTOX and SYTO24. SYTOX only permeates and stains dead bacteria with
210 compromised plasma membrane integrity, whereas SYTO24 detects both live and dead bacteria. For
211 reference, the antimicrobial peptide hBD3 was included in these experiments. Using this assay to quantify
212 the number of live bacteria (SYTO24⁺ SYTOX⁻) at each time point, we found that W3110 and BKT12
213 treated with buffer alone grew at similar rates during the 3 h experiment, and that treatment with the
214 non-antimicrobial chemokine CXCL8 had no effect on the growth rate of either strain (Fig. 5a). By the end
215 of the experiment, the number of live bacteria in all samples treated with CXCL8 or buffer alone had
216 multiplied by nearly 20-fold relative to the initial bacterial input (Fig. 5a). In contrast, all tested
217 antimicrobial chemokines – CXCL9, CXCL11, CCL20 and CCL21 – and hBD3 stopped or significantly
218 slowed bacterial growth (Fig. 5a). This differed from the pronounced drop in the number of live bacteria
219 observed after incubation with 1.2 μ M of the bactericidal peptide protamine (Fig. S4). Importantly, all
220 antimicrobial chemokines stalled the growth of the parental W3110 strain to a larger extent and at earlier
221 times than that of the CL-deficient BKT12 strain (Fig. 5a). For instance, CXCL9 and CCL20 significantly
222 decelerated the replication of W3110 bacteria within 20 min or 1 h after treatment, respectively, whereas
223 BKT12 bacteria treated with these chemokines grew at a rate comparable to buffer-treated BKT12 for
224 almost 2 h (Fig. 5a). This was consistent with the different susceptibility of these two strains to CXCL9
225 and CCL20 after 2 h treatment shown in Figure 4d. Similarly, both CCL21 and CXCL11 inhibited W3110
226 replication to a greater degree than replication of the CL-deficient strain BKT12 (Fig. 5a). It is important to
227 note that the BKT12 strain was not completely resistant to antimicrobial chemokines or hBD3. In fact, by 3
228 h after treatment all antimicrobial proteins were capable of effectively controlling the growth of this CL-
229 deficient strain (Fig. 5a), possibly via their interaction with PG on the membrane of BKT12 or some other
230 mechanism. However, these data support that membrane CL facilitates prompt control of bacterial
231 replication by antimicrobial chemokines. Furthermore, perhaps with the exception of CXCL9 and CCL21,
232 chemokine- and hBD3-treated bacteria seemed to overcome the initial growth retardation at later times.
233 This highlights the importance of these time-course experiments versus the static observation obtained at
234 one time point by cfu analysis. On the other hand, although chemokines appeared to be mainly
235 bacteriostatic at this dose (1.2 μ M), when we analyzed the presence of dead bacteria (SYTO24⁺ SYTOX⁺) at
236 each time point, we found that W3110 was significantly more susceptible than BKT12 to direct plasma

237 membrane permeabilization by all antimicrobial chemokines and hBD3 (Fig. 5b). As expected, dead
238 bacteria were not found when either bacterial strain was treated with the non-antimicrobial chemokine
239 CXCL8 (Fig. 5b). Taken together, these data indicate that chemokines can exert bacteriostatic and
240 bactericidal effects and that both mechanisms are promoted by bacterial membrane CL.

241

242 One caveat to our interpretation of the time-to-kill data is that in these experiments the bacteriostatic and
243 bactericidal activities may influence each other. For instance, the bactericidal effect may reduce the total
244 number of live bacteria and as a result decelerate the growth of the overall population. Although the fact
245 that the most potent bacteriostatic chemokine (CCL21) was not also the most potent bactericidal
246 chemokine (CCL20 was) suggested that this bacteriostatic-bactericidal interrelation might not have a
247 significant impact in our experiments, we next attempted to uncouple these two mechanisms to clearly
248 resolve the role of membrane CL in the antimicrobial activity of chemokines. For this, we first performed
249 time-to-kill assays with decreasing amounts of chemokine aiming to detect bacteriostatic effects at low
250 non-bactericidal doses of chemokine. As shown in Figure 5c, and consistent with the data in Figure 5b,
251 high doses of CXCL11 and CCL21 ($> 0.6 \mu\text{M}$) displayed detectable and significant levels (up to 14%
252 SYTOX⁺ cells) of direct killing activity (orange lines) against W3110 but only marginal bactericidal activity
253 ($< 2\% \text{ SYTOX}^+$ cells) against the CL-deficient BKT12 strain at 1 and 2 h post treatment (hpt). Interestingly,
254 subthreshold concentrations for bacterial killing ($0.3 \mu\text{M}$) of CXCL11 and CCL21 reduced the number of
255 live W3110 bacteria (gray lines) to 50% and 70%, respectively, relative to the buffer-treated group 1 hpt
256 whereas they did not impair the growth of the BKT12 strain at this early time point (Fig. 5c, top panels).
257 Of note, although the bacteriostatic effect against BKT12 of both chemokines at all doses became apparent
258 2 hpt, the growth of W3110 was still more severely reduced at this later time (Fig. 5c, bottom panels).
259 Therefore, while not categorically required for antimicrobial chemokines to control the growth of *E. coli*
260 eventually, we concluded that bacterial membrane CL facilitates rapid onset of chemokine-mediated
261 bacteriostatic effects.

262

263 On the other hand, to confirm the role of CL in bacterial killing by chemokines without interference of
264 their bacteriostatic effects, we next analyzed the number of dead W3110 and BKT12 bacteria shortly after
265 treatment with a high dose of antimicrobial chemokines. For this, bacteria were incubated with $4.8 \mu\text{M}$ of
266 CXCL9, CCL21, CXCL8 or the bactericidal peptide protamine, and the % of SYTOX⁺ cells were analyzed
267 20 min after treatment by FACS. As shown in Figure 5d, CXCL9 killed approximately 30% of W3110
268 bacteria but only 6% of BKT12, whereas CCL21 killed 8% and 1%, respectively. In contrast, protamine

269 was equally effective against both strains and killed about 85% of W3110 and BKT12 bacteria (Fig. 5d),
270 proving that the BKT12 strain was not inherently more resistant to membrane permeabilization by AMPs.
271 As expected, CXCL8 did not kill either bacterial strain. At this early time, CXCL9 killed considerably
272 more W3110 bacteria than CCL21; however, it is important to note that, as shown in Figure 5B, these two
273 chemokines appear to kill with different kinetics (peak killing at ~20 min or 2 h after treatment,
274 respectively). Accordingly, when we analyzed the % of SYTOX⁺ bacteria 90 min after treatment, the ratio
275 of W3110 bacteria directly killed by CCL21 increased to 14% whereas it killed only 3% of BKT12 (Fig. S5).
276 These results demonstrate that the CL-deficient BKT12 strain is more resistant to plasma membrane
277 permeabilization by antimicrobial chemokines.

278

279 **Antimicrobial chemokines induce a class of membrane curvature necessary for pore formation and**
280 **lyse bilayer membranes containing anionic phospholipids in a cardiolipin-promoted manner.**

281

282 To confirm the direct membrane lytic activity of chemokines in a simpler and more direct system, we next
283 performed liposome calcein leakage assays. In these assays, the fluorescent dye calcein is self-quenched
284 when trapped at high concentrations inside liposomes, but it fluoresces when released and diluted into
285 the extra-liposomal media after a membrane active peptide ruptures the liposomal membrane. Consistent
286 with their bactericidal activity, we found that CCL19, CCL21, CXCL9 and CXCL11 as well as protamine
287 were able to lyse liposomes that replicated the phospholipid composition of W3110 bacteria (PE/PG/CL,
288 75/20/5 mass ratio) (Fig. 6a). In contrast, the non-antimicrobial chemokines CXCL8 and CCL5 had no
289 effect on the permeability of these liposomes (Fig. 6a). We have previously demonstrated that CCL5 does
290 not bind CL or PG²², and consistent with our previous data, unlike CCL19, CCL5 is innocuous to bacteria
291 (Fig. S6a).

292

293 To assess the ability of antimicrobial chemokines to disrupt membranes in a manner analogous to pore
294 formation processes employed by membrane active cationic AMPs^{36,37}, we performed high resolution
295 synchrotron small X-ray scattering (SAXS) experiments to characterize the membrane remodeling of the
296 chemokines on bilayer membranes. In agreement with their antimicrobial activity, we found that CCL19
297 and CXCL11 remodeled spherical PG-containing liposomes into negative gaussian curvature (NGC) rich
298 cubic phases (Fig. 6b and 6c). Such membrane remodeling geometry is necessary for the restructuring of
299 the membrane surface during pore formation, characteristic of cationic amphipathic AMPs^{36,37}.

300 Furthermore, consistent with its stronger liposomal membrane lytic activity (Fig. 6a), CXCL11 induced

301 stronger NGC curvatures than CCL19, up to 4.26×10^{-2} nm⁻² (Fig. 6c). In contrast, CCL5, a non-
302 antimicrobial chemokine, did not induce NGC surface remodeling (Fig. 6b). Using estimates based on
303 membrane mechanical elasticity for a typical membrane (charge density = -0.05 As/m², Debye length = 1
304 nm, and line tension = 10 pN), we can infer from the SAXS measurements that the negative Gaussian
305 curvature induced by CXCL11 and CCL19 corresponds to the formation of a transmembrane pore with a
306 diameter of 2.4 - 2.9 nm and 2.4 - 2.5 nm, respectively³⁸.

307

308 To understand the importance of each bacterial phospholipid for the membrane disrupting action of
309 antimicrobial chemokines, we next performed liposome calcein leakage assays with PE/PG/CL liposomes
310 (75/20/5, mass ratio), CL-lacking PE/PG liposomes (75/25, mass ratio), which mimic the phospholipid
311 composition of the plasma membrane of the BKT12 *E. coli* strain, and PE/PC (75/25, mass ratio) liposomes
312 lacking all anionic phospholipids. As shown in Figure 6d, 1.2 μ M of CCL19, CCL21 and CXCL9 released
313 only minimum levels of calcein from PE/PC liposomes and permeabilized PE/PG/CL liposomes more
314 effectively than PE/PG liposomes. In contrast, protamine was equally effective at releasing calcein from
315 PE/PG/CL and PE/PG liposomes (Fig. 6d). Similar results were obtained with a much lower dose (0.15
316 μ M) of antimicrobial protein (Fig. S6b). We confirmed these observations in dose-response calcein
317 leakage assays using the three different types of liposomes. Increasing doses of CXCL9 and CCL21 failed
318 to permeabilize PE/PC liposomes and released significantly lower levels of calcein from PE/PG than from
319 PE/PG/CL liposomes, whereas protamine leaked comparable levels of calcein from PE/PG and PE/PG/CL
320 liposomes at all doses (Fig. 6e). Hence, the presence of CL in the liposomes was irrelevant for the
321 membrane lytic activity of protamine whereas it facilitated membrane disruption by chemokines. These
322 results aligned with our findings that W3110 and BKT12 are equally susceptible to membrane
323 permeabilization by protamine, but the CL-deficient strain is more resistant to plasma membrane
324 disruption by antimicrobial chemokines (Fig. 5d). We conclude that the membrane lytic activity of
325 chemokines requires the presence of anionic phospholipids, particularly CL.

326

327 **Bacteria fail to develop resistance against antimicrobial chemokines.**

328

329 It is thought that AMPs are less susceptible to antimicrobial resistance due to their rapid action and
330 membrane-attacking mechanism¹⁰. However, this has been experimentally demonstrated for very few
331 peptides and not for chemokines. Since our data support that antimicrobial chemokines act quickly and

332 target bacterial membranes, we next investigated whether bacteria develop resistance to antimicrobial
333 chemokines.

334

335 For this, we purified a C-terminally His-tagged form of CCL20 (CCL20-His), which was refolded from
336 insoluble and unfolded protein obtained by expression in bacteria (Fig. 7a). We first characterized the
337 lipid-binding properties of CCL20-His by BLI and confirmed that this chemokine killed bacteria. As
338 shown in Figure 7b, like untagged CCL20 (Fig. 1c), CCL20-His bound PG and CL but not PE. Then, we
339 calculated the minimum inhibitory concentration (MIC) of CCL20-His against the wild-type *E. coli* strain
340 W3110 by the microdilution method. Bacteria were incubated with increasing concentrations of CCL20-
341 His in Mueller-Hinton broth (MHB), and bacterial viability was assessed the next day by luminometric
342 determination of the ATP content in each sample. We found that the MIC of CCL20-His was 20 μ M (Fig.
343 7c), which is in line with the MIC of other AMPs and chemokine-derived peptides³⁹⁻⁴¹. These results
344 confirmed that CCL20-His was an active antimicrobial chemokine.

345

346 To study whether *E. coli* develops resistance to CCL20-His, we maintained W3110 bacteria in MHB in the
347 presence of a CCL20-His concentration equivalent to 0.5 x MIC for 2 weeks. For comparison, the
348 conventional antibiotics ampicillin (Amp) and tetracycline (Tet) were also included in this experiment,
349 whose initial MICs, calculated as in Figure 7c, were 5 and 0.5 μ g/ml (or 14.3 and 1.1 μ M), respectively. On
350 selected days, the MICs of all three compounds were recalculated to assess the evolution of the MIC and
351 to readjust the treatment if necessary to the new MIC. Two separate cultures were initiated and
352 maintained for each antimicrobial compound and analyzed independently. On day 7, the Amp MIC in
353 both cultures treated with Amp increased by > 4-fold and surged to 228 μ M (16-fold change) by the end
354 of the experiment (Fig. 7d), indicating that bacteria had become significantly resistant to Amp. Although
355 at a slower rate, the Tet MIC also increased and reached 8.8 and 4.4 μ M, an 8- and 4-fold increase, for the
356 two separate Tet-treated cultures, respectively, on day 14. In striking contrast, the CCL20-His MIC
357 remained steady at 20 μ M throughout the duration of the experiment (Fig. 7d), indicating that *E. coli*
358 failed to develop resistance against this chemokine. The resulting bacterial cultures after the 14-day
359 conditioning with Amp, Tet, or CCL20-His, were collected, named W3110-Amp, W3110-Tet and W3110-
360 CCL20-His, respectively, and then challenged with a 1 x MIC dose of these 3 compounds. As shown in
361 Figure 7e, consistent with the acquired resistance, Amp and Tet killed the parental W3110 and the W3110-
362 CCL20-His strains but were inactive on W3110-Amp or W3110-Tet, respectively. Of note, the W3110-Tet
363 strain was also resistant to Amp, which is consistent with reports of cross-resistance observed in Tet-

364 resistant bacterial strains⁴². Importantly, CCL20-His killed the parental and all three W3110 conditioned
365 strains (Fig. 7e), which indicates that this chemokine can circumvent Amp and Tet resistance mechanisms
366 to kill bacteria. Furthermore, we found that other antimicrobial chemokines were also able to kill
367 antibiotic-resistant strains effectively. For instance, we found that W3110 and W3110-Amp strains were
368 equally susceptible to CXCL9 (Fig. S7). These results prove that antimicrobial chemokines kill bacteria
369 without triggering microbial resistance and that they inactivate antibiotic resistant microorganisms.

370

371 DISCUSSION

372

373 In this study, we demonstrate that chemokine antibacterial activity requires chemokine binding to
374 anionic membrane phospholipids. We show that PG/CL-binding activity is required for microbial killing
375 by chemokines and that all chemokines tested that failed to bind to these membrane anionic
376 phospholipids lacked antimicrobial activity, whereas all those tested that possessed PG/CL-binding
377 activity were antimicrobial. Furthermore, we prove that bacterial membrane CL mediates rapid onset of
378 chemokine bacteriostatic and bactericidal effects. We show that CL-deficient bacteria are more resistant to
379 growth arrest and membrane permeabilization by chemokines, and that antimicrobial chemokines
380 selectively target CL-containing bacteria when these are mixed with CL-deficient bacteria. Importantly,
381 we discovered that bacteria failed to develop resistance against antimicrobial chemokines in our
382 experiments. Since CL is an essential anionic phospholipid in the membranes of most Gram-negative and
383 Gram-positive bacteria, our study provides proof of principle for the development of chemokines as
384 broad-spectrum antimicrobials resistant to antimicrobial resistant mechanisms.

385

386 It has been known that bacterial plasma membrane components, and anionic phospholipids in particular,
387 are interaction partners for many classic AMPs^{6,8}. However, despite existing evidence of direct bacterial
388 membrane disruption by chemokines^{43,44}, this has sometimes been diminished as a secondary or non-
389 specific killing mechanism²¹. Furthermore, the contribution of bacterial membrane anionic phospholipids
390 to this chemokine activity has been overlooked. The first chemokine reported to bind to an anionic
391 phospholipid was CXCL16 with specificity for PS⁴⁵. More recently, in an effort to understand how the
392 highly cationic chemokine MCK-2 encoded by mouse cytomegalovirus mediates cell entry by the virus,
393 we screened an immobilized lipid array and discovered high affinity MCK-2 binding to PS and CL
394 (unpublished data). A subsequent screen with multiple human chemokines revealed that PS and CL
395 binding was common to many but not all chemokines, but that all that bound PS also bound CL²². The

396 biological importance of PS to apoptotic cells and apoptotic bodies and the selective localization of CL to
397 bacterial plasma membranes motivated hypotheses for the biological significance of chemokine binding
398 to these phospholipids. In this regard, we have previously reported that chemokine binding to PS may be
399 a 'find-me' signal for apoptotic cell clearance by macrophages^{22,46}. Our present work provides evidence
400 that binding of chemokines to anionic CL and PG is intrinsic to their mechanism of antimicrobial activity.
401 In addition, our work supports a significant degree of molecular specificity for chemokine-phospholipid
402 binding. For example, we previously reported that chemokines selectively bind CL and PS over other
403 more highly anionic phospholipids, and that some highly cationic chemokines fail to interact with either
404 anionic phospholipid²². Thus, chemokine-phospholipid interactions are not solely driven by charge. This
405 agrees with previously published studies that excluded the isoelectric point of chemokines as a reliable
406 predictor of antimicrobial activity^{18,19}. Similarly, classic AMPs are generally cationic and amphiphilic but
407 are not limited to these physicochemical properties^{4,37}. Here, we demonstrate that the property that may
408 define which chemokines are antimicrobial and which are not is their ability to bind CL- and PG-
409 containing membranes. The precise molecular and chemical properties that allow some chemokines to
410 interact with these anionic phospholipids, and in turn kill bacteria, will require further investigation.
411

412 Our findings do not exclude the possibility that, as reported for other AMPs⁷, chemokines may use more
413 than one antimicrobial mechanism, including targeting bacterial proteins or DNA to kill bacteria. In this
414 regard, the transmembrane ATP-binding cassette transporter permease FtsX, the pyruvate
415 dehydrogenase complex (PDHc), and the ABC transport system Opp have been reported to facilitate the
416 killing of *Bacillus anthracis*, *E. coli*, and *Streptococcus pneumoniae*, respectively, by CXCL9, CXCL10 and
417 CXCL11⁴⁷⁻⁴⁹. Yet, direct interaction of these chemokines with FtsX, PDHc or Opp has not been
418 demonstrated. A 27-amino acid region in an external loop of FtsX was initially proposed as a putative
419 binding site in *B. anthracis* for CXCL9, CXCL10 and CXCL11 due to its similarity with the N-terminal
420 chemokine-binding domain of CXCR3, the human cellular receptor for these three chemokines⁴⁷.
421 However, this short region of FtsX shares only 22% amino acid identity with the equivalent region on the
422 N-terminus of CXCR3 and it has been shown that FtsX is dispensable for the killing of *B. subtilis* and *S.*
423 *pneumoniae* by CXCL10⁴⁹. Moreover, it has been reported that functional FtsX and PDHc rather than their
424 presence are required for CXCL10-mediated killing of *B. anthracis* and *E. coli*, respectively^{48,50,51}. FtsX,
425 PDHc and Opp regulate cell division and peptidoglycan synthesis, the conversion of pyruvate to acetyl
426 coenzyme A, and the uptake of oligopeptides involved in nutrition and cell-to-cell communication,
427 respectively, all essential processes for the overall energetic and metabolic state of bacteria⁵²⁻⁵⁶. Therefore,

428 it may be reasonable to propose that, rather than acting as direct chemokine targets, FtsX, PDHc and Opp
429 may indirectly control bacterial permeability and membrane homeostasis, which ultimately may impair
430 membrane binding and membrane disruption by chemokines or other AMPs. Consistent with this, Opp-
431 and FtsX-deficient bacteria have been shown to be also partially resistant to other membrane active
432 peptides such as nisin and LL-37⁴⁹. Furthermore, it is important to remember that > 20 different
433 chemokines are known to be antimicrobial and that chemokines kill a wide range of bacterial species
434 including *E. coli*, *Klebsiella pneumoniae*, *Pseudomonas aeruginosa*, *S. aureus*, *S. pyogenes*, *S. pneumoniae* and
435 others^{18,21}. Therefore, a binding site common to all antimicrobial chemokines and conserved across Gram-
436 negative and Gram-positive bacteria, such as CL or PG, may be more likely than the existence of a
437 species-specific bacterial protein ligand for each chemokine. Here, we provide several lines of evidence
438 that support that binding to PG and particularly CL, constitute an intrinsic component of the
439 antimicrobial mechanism of chemokines: i) All antimicrobial chemokines tested in our study (6 out of 6)
440 bind PG and CL whereas all non-antimicrobial chemokines included here (6 out of 6) failed to bind these
441 anionic phospholipids; ii) the binding of CXCL11 to *E. coli* can be blocked by other antimicrobial
442 chemokines, regardless of their different cellular receptors and other biochemical differences, supporting
443 that different antimicrobial chemokines interact with the same bacterial binding sites; iii) bacteria-bound
444 antimicrobial chemokines localize to the poles of the bacterial cell, a region of the *E. coli* plasma
445 membrane where PG and CL phospholipids are known to concentrate³³; iv) CL-deficient *E. coli* are more
446 resistant to growth arrest and membrane permeabilization by antimicrobial chemokines; and v) the
447 presence of PG or CL is required for bilayer membrane disruption by antimicrobial chemokines, with CL
448 playing a bigger role than PG in membrane lysis by chemokines but not by other AMPs such as
449 protamine. Although multifunctional molecules like chemokines can be expected to be able to exert
450 different killing mechanisms in different contexts, and it has been reported that some chemokines can act
451 as bifunctional antimicrobial agents⁵¹, we propose that CL/PG-binding activity of antimicrobial
452 chemokines and derived variants should be tested before establishing membrane-independent bacterial
453 killing mechanisms.

454

455 We show here that antimicrobial chemokines can exert bactericidal and bacteriostatic effects and that
456 both antimicrobial effects are promoted by bacterial membrane CL. We found that the absence of CL
457 significantly impaired the ability of antimicrobial chemokines to disrupt phospholipid liposomes and the
458 bacterial plasma membrane and it delayed chemokine-induced bacterial growth arrest. We show that
459 antimicrobial chemokines, but not non-antimicrobial chemokines, are able to lyse liposomes containing a

460 phospholipid composition similar to that of the plasma membrane of *E. coli* (PE/PG/CL) but failed to
461 disrupt liposomes lacking PG and CL. Furthermore, SAXS measurements demonstrated the ability of
462 antimicrobial chemokines to remodel PG-containing liposomal membranes into negative gaussian
463 curvature rich surfaces, a geometry necessary for membrane permeabilization and pore formation^{36,37}. On
464 the other hand, understanding the molecular mechanisms by which phospholipid-binding chemokines
465 halt bacterial growth will require further investigation. Anionic phospholipids, and particularly CL, are
466 known to play major roles in bacterial replication by acting as anionic scaffolds in the bacterial plasma
467 membrane for proteins, protein complexes and DNA during cell division^{26,57,58}. It is possible that CL-
468 binding chemokines may interfere with the recruitment of these essential elements of the bacterial
469 replication machinery to membrane CL microdomains, ultimately stalling bacterial replication. Another
470 possibility is that similar to the bacteriostatic mechanism of other AMPs such as buforin II or
471 indolicidin⁵⁹⁻⁶¹, antimicrobial chemokines may permeate the bacterial plasma membrane to interact with
472 and destabilize the bacterial genome. Consistent with this hypothesis, some chemokines are known to
473 bind DNA directly^{43,62}. In addition, more experimentation will be needed to understand why CL-deficient
474 PG-containing bacteria grow normally early after chemokine challenge but succumb later. In this regard,
475 it would be interesting to investigate the effect of antimicrobial chemokines on PG-deficient bacteria.
476 However, *E. coli* strains lacking PG are not viable unless the major outer membrane lipoprotein Lpp is
477 also deleted^{30,63}, which may add uncontrollable effects on fitness and on the mechanical properties of the
478 bacterial membranes⁶⁴, potentially impacting the sensitivity of these strains to membrane active AMPs
479 and making comparisons with PG-containing bacteria problematic.

480
481 The results presented here have implications for understanding the role of endogenous AMPs in innate
482 immunity and for the potential development of antimicrobial chemokines as a novel class of antibiotic. To
483 date, of the more than 3,000 discovered AMPs, only nine (daptomycin, colistin, vancomycin, telavancin,
484 teicoplanin, bacitracin, dalbavancin, oritavancin, and gramicidin) have been FDA-approved for clinical
485 use^{65,66}. In part, the difficulty in testing an in vivo role for any AMP, including chemokines, relates to the
486 large number of known AMPs and the potential for redundant action⁶⁷. Nevertheless, some existing data
487 support that chemokines may exert antimicrobial effects in vivo. For instance, some chemokines are
488 expressed at high levels in certain barrier tissues without causing inflammation, such as CCL28 or
489 CXCL17 in saliva, and CCL20 in skin and Peyer's patches⁶⁸⁻⁷¹. CXCL9-depleted mice have been shown to
490 be more susceptible to *Citrobacter rodentium* and *B. anthracis* in a manner that is independent of its
491 receptor CXCR3^{44,72}. Although our data show that chemokines need a fairly high concentration to exert

492 bactericidal effects ($> 1.2 \mu\text{M}$) or reach their MIC ($20 \mu\text{M}$ for CCL20-His), which may be difficult to
493 achieve *in vivo*, it is possible that endogenous antimicrobial chemokines may act in concert with other
494 AMPs, such as cathelicidins or defensins, or through their bacteriostatic activity, which we show here can
495 be effective at submicromolar concentrations ($< 0.3 \mu\text{M}$), especially if the target bacteria contain CL. On
496 the other hand, while this concentration-related issue might be easy to overcome in a therapeutic
497 application, a significant challenge for the use of all AMPs in the clinic is their sensitivity to salt
498 concentrations⁷³. Although not all tissues and secretions have the same salt content³², and a
499 comprehensive analysis of the salt sensitivity of the > 20 different antimicrobial chemokines is lacking, it
500 would be desirable to engineer salt-insensitive chemokine variants. In this regard, certain residue
501 modifications have been known to improve the salt resistance of AMPs^{74,75}. Our data support that if these
502 alterations were to be carried out on chemokine sequences, these chemokine variants should preserve
503 their PG- and CL-binding activity. Another limitation of the clinical application of AMPs is their
504 immunogenicity and low stability *in vivo*⁷⁶. In contrast, recombinant chemokines, as host proteins, can be
505 expected to be non-immunogenic. However, many have a short half-life in blood, potentially driven by
506 serum protease action as well as by scavenging by the erythrocyte chemokine binding protein ACKR1,
507 cognate leukocyte chemokine receptors and glycosaminoglycans^{77,78}. Therefore, precise mapping of the
508 CL/PG-binding sites in chemokines may guide generation of antimicrobial chemokine variants with
509 improved bioavailability that could serve as a novel therapeutic approach to treat bacterial infections
510 while preventing the generation of antibiotic-resistant bacteria.

511
512 In summary, we have provided evidence that supports specific anionic phospholipid-binding as an
513 important component of the microbial killing mechanism that defines which chemokines are
514 antimicrobial and which are not. We have recently characterized the importance of chemokine
515 interactions with another anionic phospholipid, PS, for phagocyte recruitment in the context of
516 apoptosis²². Here, we show that binding to PG and particularly CL is important for microbial killing by
517 chemokines. Together, the present and our previous study demonstrate the potential physiological
518 relevance of these novel chemokine-phospholipid interactions.

519

520 MATERIALS AND METHODS

521

522 Reagents and bacteria strains

523 Unlabeled recombinant chemokines and hBD3 were purchased from Peprotech (Rocky Hill, NJ) and R&D
524 Systems (Minneapolis, MN), respectively. AZ647-labeled chemokines were acquired from Protein
525 Foundry (Milwaukee, WI).

526

527 *S. aureus* strain Wichita (ATCC 29213) was purchased from ATCC (Manassas, VA). *E. coli* strains W3110
528 and BKT12 were acquired from the Coli Genetic Stock Center at Yale University (New Haven, CT).
529 BKT12 is a CL-deficient mutant of the parental W3110 strain generated by Tan BK *et al*³⁴.

530

531 **Antimicrobial Assays**

532

533 *S. aureus* and *E. coli* were grown overnight in tryptic soy broth (TSB) at 37°C. The CL-deficient strain
534 BKT12 was grown in the presence of 50 µg/ml kanamycin. Both, TSB and kanamycin were purchased
535 from KD Medical (Columbia, MD). Stationary cultures were diluted 1:100 in TSB and grown to mid-early
536 log phase (OD₆₀₀ = 0.4 - 0.6). Bacteria were collected by centrifugation (2,500 x g, 5 min) and washed once
537 with antimicrobial assay buffer (AAB, [10 mM Tris-HCl pH 7.4, 1% TSB]). Where indicated AAB was
538 supplemented with 85 mM NaCl (AAB-85). Chemokines and other antimicrobial peptides were
539 incubated with 1 x 10⁵ cfu of bacteria in 100 µl of AAB for 2 h at 37°C. Bacterial viability was then tested
540 by cfu determination. For this, serial 10-fold dilutions were plated on agar plates in triplicate. Plates were
541 incubated at 37°C overnight and visible cfu were counted manually.

542

543 **Liposomes**

544

545 Phospholipid liposomes were prepared by the extrusion method. All phospholipids used in this study —
546 1,2-dioleoyl-sn-glycero-3-phosphocholine (PC), 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (PG),
547 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (PE), 1',3'-bis[1,2-dioleoyl-sn-glycero-3-phospho]-
548 glycerol (CL), 1,2-dioleoyl-sn-glycero-3-[phospho-rac-(3-lysyl(1-glycerol))] (lysPG) and 1,2-distearoyl-sn-
549 glycero-3-phosphoethanolamine-N-[biotinyl(polyethylene glycol)-2000] (DSPE-PEGbiot) — were
550 purchased from Avanti Polar Lipids (Alabaster, AL). When used for BLI experiments, “PE”, “PG”,
551 “lysPG” and “CL” liposomes contained 30% of the corresponding phospholipid, 65% PC and 5% DSPE-
552 PEGbiot (weight %), and “lpSA” and “lpEC” liposomes consisted of PG/lysPG/CL/DSPE-PEGbiot and
553 PE/PG/CL/DSPE-PEGbiot, respectively, at a 70/20/5/5 ratio (weight %). DSPE-PEGbiot allowed for biotin-
554 mediated immobilization of liposomes onto streptavidin-coated biosensors (SA sensors). When used for

555 competition of chemokine binding or killing of bacteria, “PE”, “PG”, and “CL” liposomes consisted of
556 70% PC and 30% of the corresponding phospholipids. Phospholipids stored in chloroform were
557 combined at the indicated ratios (for a total of 1 mg) and the solvent was evaporated using a SpeedVac
558 Concentrator (Thermo Fisher Scientific, Atlanta, GA). Dried lipid films were rehydrated for 1 h at room
559 temperature in 0.5 ml of PBS and large unilamellar liposomes were generated by extrusion (>11 passes)
560 through a 0.1 μ m pore-sized membrane using the Avanti Polar Lipids mini-extruder. Liposomes were
561 used immediately and prepared fresh for every experiment.

562

563 For calcein leakage assays, PE/PG/CL, PE/PG and PE/PC liposomes were generated by extrusion as above
564 by combining the indicated lipids at 70/25/5, 70/30 and 70/30 ratios (weight %), respectively. Dried lipid
565 films were rehydrated for 1 h at room temperature in 0.5 ml of 10 mM Tris-HCl pH 7.4 containing 70 mM
566 calcein (Sigma-Aldrich, St. Louis, MO). Before extrusion, rehydrated phospholipids were subjected to 5
567 freeze-and-thaw cycles to ensure proper encapsulation of calcein. After extrusion, liposome-encapsulated
568 calcein was purified and separated from any remaining free calcein by size exclusion using Sephadex 50
569 columns (Sigma) and calcein assay buffer (CAB, [10 mM Tris-HCl pH 7.4, 85 mM NaCl]) as elution buffer.
570 Encapsulated calcein runs fast through the column forming an orange/yellow band whereas free calcein
571 lags as a bright green band. Fractions (0.5 ml) were collected, and all orange fractions were pooled, stored
572 at 4°C, and used within 4 days.

573

574 **Biolayer Interferometry**

575

576 Chemokine binding to liposomes was analyzed by BLI using the Octet RED384 system (Pall ForteBio,
577 Fremont, CA) as previously described ²². Before every run, SA biosensors (Pall ForteBio) were hydrated in
578 PBS for 10 min. Then, sensors were equilibrated in PBS for 1 min and liposomes containing DSPE-
579 PEGbiot were immobilized to a final 1-3 nm response. Subsequently, sensors were washed in PBS for 1
580 min followed by a 5-min incubation in PBS containing 0.05% BSA. Baseline was stabilized in PBS for 5
581 min, then recombinant chemokine (500 nM in PBS) association was recorded for 500 s, and finally,
582 chemokine dissociation was monitored for 500 s by incubating the sensors with PBS alone. All steps were
583 performed at 1000 rpm and 30°C. In all experiments, background chemokine binding to SA biosensors
584 coated with PC liposomes consisting of PC/ DSPE-PEGbiot (95:5 ratio) was analyzed in parallel and used
585 as reference. Binding to these PC liposomes was subtracted from the binding recorded for every other
586 liposome for each chemokine. Data were analyzed using the Octet Data Analysis software (Pall ForteBio).

587

588 **Chemokine binding to bacteria**

589

590 The binding of AZ647-labeled chemokines was tested by FACS or confocal microscopy. For this, bacteria
591 were grown in TSB to mid-early log phase ($OD_{600} = 0.4 - 0.6$) and washed once in AAB-85. Then, bacteria
592 ($1 \times 10^{+6}$ cfu) were incubated with 0.3 μ M of fluorescent chemokine in 100 μ l of AAB-85 at 37°C for 20
593 min. Where indicated, before the addition of the fluorescent chemokine, bacteria were preincubated with
594 0.3 μ M of unlabeled chemokines in 100 μ l of AAB-85 at 37°C for 5 min. In addition, to test the effect of
595 different lipids on the chemokine binding to bacteria, in some experiments, AZ647-labeled chemokines
596 were preincubated with 100 μ M of PC liposomes containing 30% of PE, PG or CL in 50 μ l of AAB-85 at
597 room temperature for 5 min. Then, $1 \times 10^{+6}$ cfu of bacteria in 50 μ l of AAB-85 were added to the liposome-
598 chemokine mix and incubated at 37°C for 20 min. All bacterial samples were incubated with AZ647-
599 labeled chemokines in microcentrifuge tubes. Then, samples were washed twice with 400 μ l/sample of
600 AAB-85 and bacteria were collected by centrifugation (9,000 \times g, 3 min).

601

602 For FACS analysis, washed bacteria were co-stained with 10 nM SYTO24 (Thermo Fisher Scientific) in 400
603 μ l of AAB-85 in FACS tubes to distinguish the bacterial cells (SYTO24 $^+$) from debris (SYTO24 $^-$). Samples
604 were analyzed in an LSR Fortessa cytometer (BD Biosciences, Chicago, IL) by acquiring 30,000 events at
605 12 μ l/min. Chemokine binding to SYTO24 $^+$ events was analyzed using FlowJo (BD Biosciences).

606

607 For confocal microscopy analysis, washed bacteria were fixed with 2% PFA, immobilized on #1.5
608 coverslips of 0.17 ± 0.02 mm thickness (Warner Instruments, Hamden, CT) previously coated with 0.1
609 mg/ml poly-D-lysine (Thermo Fisher Scientific) following the manufacturer's recommendations, and
610 mounted using Prolong Diamond Antifade mountant with DAPI (Thermo Fisher Scientific) on superfrost
611 plus microscope slides (Fisherbrand, Pittsburgh, PA). Samples were imaged with a confocal laser
612 scanning microscope Zeiss LSM 880 or LSM980 (Carl Zeiss AG, Oberkochen, Germany). We used oil
613 immersion alpha Plan-Apochromat 63X/1.4 Oil Corr M27 objective (Carl Zeiss) and Immersol 518F
614 immersion media ($ne=1.518$ (30°C), Carl Zeiss). A z-stack of images was collected across the entire cell.
615 Identical image acquisition settings, and optimal parameters for x, y, and z resolution were used in all
616 samples from each independent experiment, and representative images for each condition in each
617 experiment are shown with the same display range. Microscopy data processing, analysis, and
618 quantification were done in ImageJ. To quantify bacterial binding, we measured the AZ647 fluorescence

619 intensity of each bacterium at the z-plane containing the highest signal, by generating a region of interest
620 (ROI) around the cell using the oval tool. An equivalent ROI was generated at a region outside the
621 bacterium, considered as background and subtracted from the cell fluorescence intensity. The data were
622 further analyzed and normalized against the control mean using GraphPad Prism 9.

623

624 **NAO and chemokine co-staining of *E. coli***

625

626 Localization of bacteria-bound CXCL9 was analyzed by Airyscan confocal microscopy in W3110 *E. coli*
627 bacteria co-stained with NAO (Thermo Fisher Scientific). For this, bacterial cultures grown overnight
628 were diluted 1:30 in TSB in the presence of 2 μ M NAO and cultured in a lab shaker at 37°C and 220 rpm
629 until $OD_{600} \geq 0.55$. Then, bacteria were washed once with AAB-85 and 40×10^6 cfu were incubated with
630 0.3 μ M CXCL9-AZ647 in 100 μ l of AAB-85 at 37°C for 15 min. Bacteria were washed, fixed, immobilized
631 onto poly-D-lysine coated coverslips and mounted on microscope slides, as explained above. A z-stack of
632 images was collected across the entire cell on a LSM980 confocal microscope equipped with Airyscan 2
633 detector (Carl Zeiss) using the super resolution settings in frame mode and optimal parameters for x, y,
634 and z resolution. NAO-524 was imaged with a 488 nm, an MBS 488/561 and SBS SP 550 while a 561 nm
635 argon laser, an MBS 488/561 and a SBS LP 525 was used to image NAO-630. CXCL9-AZ647 was imaged
636 with a 639 nm laser, an MBS 488/561/639 and a SBS LP 640. Airyscan postprocessing was performed using
637 the standard parameters. A line was created along a bacterium and the fluoresce profiles for each channel
638 was generated using ImageJ and further normalized for the minimum and maximum fluorescence
639 intensity of each independent channel.

640

641 **Thin layer chromatography**

642

643 Phospholipid composition of *E. coli* W3110 and BKT12 was analyzed by TLC as previously described³⁴.
644 Total lipids were extracted from 100 ml of log-phase cultures by the acidic Blight Dyer method. For this,
645 bacterial pellets were resuspended in 2 ml of 0.1 N HCl and mixed with 5 ml of methanol and 2.5 ml of
646 chloroform to generate a single-phase solution. After a 30 min-incubation at room temperature, two
647 phase solutions were created by adding 2.5 ml 0.1 N HCl and 2.5 ml of chloroform. Phases were
648 separated by centrifugation (3,000 $\times g$, 25 min) and the organic lower phase was collected and evaporated
649 using a SpeedVac concentrator (Thermo Fisher Scientific). The dried lipid film was resuspended by
650 sonication in 100 μ l of chloroform using a Bioruptor Pico (Diagenode, Denville, NJ). For TLC, samples

651 were spotted on TLC Silica gel 60 plates (Millipore, Bedford, MA) with capillary tubes, and lipids were
652 separated in a TLC developing chamber using a solution of chloroform/methanol/acetic acid (65:25:5,
653 vol/vol) as mobile phase. Lipids were visualized by exposing the plates to iodine vapor by adding a few
654 iodine crystals inside the chamber.

655

656 **Time-to-kill assays**

657

658 The kinetics of chemokine effects on bacterial growth and bacterial killing were analyzed by FACS. For
659 this, 125 μ l/well of a bacterial suspension at 10^{+6} cfu/ml in AAB-85 were added in a U-bottom 96-well
660 plate in the presence of buffer alone or the indicated concentrations of chemokine, hBD3, or protamine.
661 Then, plates were incubated at 37°C for 3 h and 25 μ l aliquots of each sample were collected at 20, 60, 120
662 and 180 min for analysis. Aliquots of the inputs before incubation were also collected for determination of
663 the initial number of bacteria (time 0). These 25 μ l-aliquots were stained in 400 μ l of AAB-85 containing
664 10 nM SYTO24 and 1.25 μ M SYTOX-Orange (both from Thermo Fisher Scientific) in FACS tubes. SYTOX-
665 Orange only permeates dead bacteria with compromised plasma membrane integrity, whereas SYTO24
666 stains both live and dead bacteria, allowing us to also distinguish bacteria (SYTO24 $^{+}$) from debris
667 (SYTO24 $^{-}$) during analysis. Tubes were incubated 5 min at RT and events were acquired for 30 s at 12
668 μ l/min in a LSR Fortessa cytometer (BD Biosciences). Data were analyzed using FlowJo (BD Biosciences).

669

670 **Calcein leakage assay**

671

672 The ability of chemokines and other antimicrobial peptides to lyse phospholipid membranes was studied
673 by liposome calcein leakage assays. The fluorescent dye calcein is self-quenched at high concentrations
674 inside liposomes but upon lysis of the liposome and release into the extra-liposomal buffer, calcein
675 regains its fluorescence properties. PE/PG/CL, PE/PG, and PE/PC liposomes encapsulating calcein were
676 prepared and purified in CAB buffer as detailed above (See “Liposomes”). To determine the appropriate
677 volume of liposomes for these assays, calcein release in 10-fold serial dilutions of liposome samples after
678 incubation with CAB containing 0.5% Triton X-100 was first titrated using a FlexStation 3 microplate
679 reader (Molecular Devices, San Jose, CA). Liposome sample volumes causing a 5 to 10-fold increase in the
680 calcein fluorescent signal (ex = 485 nm, em = 515 nm) over baseline were selected for each liposome
681 preparation. Liposomes were first diluted in CAB and 50 μ l/well were added in clear bottom black 96-
682 well plates (Greiner, Monroe, NC). Baseline fluorescence was read for 5-10 min in the kinetic mode of the

683 FlexStation 3 reader taking reads every 15-20 s. Then, the read was interrupted, the plate was taken back
684 to the bench and 25 μ l/well of buffer alone, chemokine, or protamine prepared in CAB at 3-times the
685 desired final concentration were added. The plate was returned to the microplate reader and the read
686 resumed appending the new read points to the baseline reads. Finally, approximately 30 min later, the
687 read was interrupted again to add 25 μ l/well of CAB containing 0.5% Triton X-100 and the fluorescence
688 signal was recorded for additional 5 min to obtain a measurement of the maximum calcein release for
689 each sample. Fluorescence signals were normalized to baseline and the % of calcein release for each
690 sample was calculated as the % fluorescence relative to the maximum fluorescence signal obtained after
691 Triton X-100 addition. The % of released calcein observed for each type of liposome after treatment with
692 buffer alone was subtracted from the corresponding liposome samples treated with the different
693 chemokines or protamine.

694

695 **Small angle X-ray scattering experiments with model membranes**

696

697 Methods used for SAXS experiments and data fitting were based around those that have been previously
698 described^{37,79,80}. Liposomes were prepared for SAXS experiments as previously described^{37,81}. In brief,
699 lyophilized phospholipids DOPG (1,2-dioleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)]) and DOPE (1,2-
700 dioleoyl-sn-glycero-3-phosphoethanolamine) purchased from Avanti Polar Lipids were dissolved in
701 chloroform stocks at 20 mg/mL. Model membrane lipid compositions were prepared from the lipid stock
702 solutions at a PG:PE 20:80 molar ratio. The lipid composition was evaporated under nitrogen and then
703 desiccated overnight under vacuum to form a dry lipid film, which was resuspended in aqueous 140 mM
704 NaCl, 10 mM HEPES (pH 7.4) to a concentration of 20 mg/mL. Lipid suspensions were incubated
705 overnight at 37°C, sonicated until clear, and then extruded through a 0.2 μ m pore size Anopore
706 membrane filter (Whatman) to form small unilamellar vesicles (SUVs). Lyophilized CCL5, CCL19 and
707 CXCL11 powder were solubilized in aqueous 140 mM NaCl, 10 mM HEPES (pH 7.4) and incubated with
708 SUVs at peptide-to-lipid (P/L) charge ratios of 1/6, 1/4, 1/2, 1/1 or 3/2. Samples were hermetically sealed
709 into quartz capillaries (Hilgenberg GmbH, Mark-tubes) for measurements taken at the Stanford
710 Synchrotron Radiation Lightsource (SSRL, beamline 4-2) using monochromatic X-rays with an energy of
711 9 keV.

712

713 The scattered radiation was collected using a DECTRIS PILATUS3 X 1M detector (pixel size, 172 μ m), and
714 the resulting 2D SAXS powder patterns were integrated using the Nika 1.50⁸² package for Igor Pro 6.31 and

715 FIT2D⁸³. Using Origin Lab software, the integrated scattering intensity $I(q)$ was plotted against q . Ratios of
716 the measured peak positions were compared with those of permitted reflections for different crystal phases
717 to identify the phase(s) present in each sample. A linear regression through points corresponding to the
718 peaks was used to calculate the lattice parameter, a , of each identified cubic phase. For a cubic phase, each
719 peak is represented by a point with coordinates of the assigned reflection (in terms of Miller indices h, k, l)
720 and q . For a cubic phase, $q = (2\pi/a)\sqrt{h^2 + k^2 + l^2}$. Therefore, the slope of the regression ($m = 2\pi/a$) of q vs
721 $\sqrt{h^2 + k^2 + l^2}$ can be used to estimate a . The mean negative gaussian curvature (NGC) was estimated as: $\langle k \rangle$
722 $= \frac{2\pi\chi}{A_0a^2}$, where A_0 and χ are the dimensionless surface area per unit cell and Euler-Poincaré characteristic,
723 respectively, for each cubic phase. *Pm3m*: $A_0 = 1.919$ and $\chi = -2$, *Im3m*: $A_0 = 2.345$ and $\chi = -4$, and *Ia3d*: $A_0 =$
724 3.091 and $\chi = -8$. For spectra with co-existing *Pm3m* and *Im3m* cubic phases, the ratio of their lattice
725 parameters was noted to satisfy the Bonnet ratio of 1.279.

726

727 Expression and purification of recombinant CCL20-His

728

729 Recombinant CCL20-His was expressed and purified using a protocol adapted from previously
730 published methods⁸⁴. pNAN plasmids containing the human *CCL20* coding sequence in frame with a C-
731 terminal short linker (SGGS) and a 6xHis tag, and an ampicillin resistance gene, were purchased from
732 GenScript (Piscataway, NJ). Plasmid (25ng) was transformed into 50 μ L of competent RosettaTM
733 BL21(DE3) pLysS cells via the heat shock method. Cells were streaked onto 150 μ g/mL ampicillin agar
734 plates and incubated at 37°C overnight. A single colony was selected for inoculation and grown
735 overnight in 2x Yeast extract Tryptone broth (2xYT) with 150 μ g/mL ampicillin. For each liter of 2xYT
736 broth with 150 μ g/mL ampicillin, 20 mL of inoculum was added and grown to $OD_{600} = 0.6$ at 37°C and
737 induced with 0.5 mM IPTG for 6 h before harvesting at 4,000 $\times g$ and storing overnight at -20°C. For each
738 liter of broth, cells were resuspended in 40 mL of lysis buffer (50 mM Tris HCl pH 8.0, 300 mM NaCl, 0.1
739 mg/mL benzonase, 10 mM MgCl₂, and 1 tablet of cOmplete protease inhibitor cocktail [Millipore,
740 Bedford, MA]) and lysed on ice using a Branson 102-C sonifier at 70% power for 3 min (5 s on, 25 s off).
741 After centrifuging at 12,000 $\times g$ to clarify, the maroon-colored inclusion body pellet was resuspended in
742 10 mL of Buffer AD (6 M Guanidine HCl, 50 mM Tris, 1 mM tris(2-carboxyethyl) phosphine, pH 8.0) and
743 heated for 30 minutes in a 60°C water bath while passing the suspension through 16- and 20-gauge
744 needles to break up the pellet and dissolve the inclusion bodies. This solution was centrifuged at 24°C for
745 30 min at 12,000 $\times g$ to pellet any further insoluble membranes and cellular contents. If centrifugation was

746 insufficient to clarify supernatant, then the solution was filtered at 0.45 μ m to achieve an optically clear
747 solution.

748

749 For each liter of broth used, 3 mL of Ni SepharoseTM EXCEL resin was used. Resin was washed with 5
750 column volumes (CV) of milli-Q water, then equilibrated with 5 CV of Buffer AD. The solubilized
751 inclusion body solution was added to resin and allowed to drip by gravity flow, followed by a 10 CV
752 wash with Buffer AD. CCL20-His bound to the column was eluted using 2 CV Buffer BD, (6M Guanidine
753 HCl, 100 mM NaOAc, pH 4.5) twice. Before progressing, the protein was diluted to 1 mg/mL in Buffer
754 BD, quantitated by estimation via its absorbance at 280 nm, and diluted dropwise into 2x volume of
755 cystine/cysteine refolding solution (6.5 mM cysteine, 0.65 mM cystine, 300 mM NaHCO₃, pH 7.4) and
756 allowed to stir overnight at room temperature. To finalize refolding, the protein solution was dialyzed
757 against 600x volumes of PBS overnight at 4°C, to bring the final guanidine HCl concentration to sub-
758 millimolar concentrations. Refolded CCL20-His was clarified by centrifugation at 12,000 xg for 45 min,
759 followed by 0.22 μ m filtration. Sample was concentrated using 10 kDa Amicon ULTRA concentrators
760 (Millipore) until an appropriate concentration was reached. Residual guanidine was removed by
761 concentrating and diluting three times with 5x volumes of PBS.

762

763 **Minimum inhibitory concentration assay**

764

765 MICs for chemokines and antibiotics were determined in MHB (Sigma Aldrich). For this, 2-fold serial
766 dilutions (90 μ l/well) of CCL20-His, tetracycline and ampicillin were prepared in U-bottom 96-well
767 plates. *E. coli* W3110 strain was grown to mid-early log phase (OD₆₀₀ = 0.4-0.6), and 50,000 cfu of bacteria
768 in 10 μ l of MHB were added to each well (final volume = 100 μ l/well; final bacteria concentration = 5 x
769 10⁵ cfu/ml). Plates were incubated at 37°C for 18 h and MIC was determined as the lower concentration
770 of chemokine/antibiotic showing no evidence of bacterial growth analyzed by luminometry using the
771 BacTiter-Glo Microbial Cell Viability Assay (Promega, Madison, WI).

772

773 **Microbial resistance induction assay**

774

775 To determine the ability of bacteria to develop resistance against antimicrobial chemokines, we
776 monitored over the course of 14 days the change in MIC caused by the exposure of bacteria to a sublethal
777 dose of each antimicrobial agent. For this, *E. coli* W3110 strain was grown in MHB in the presence of

778 CCL20-His, Amp or Tet at a concentration equivalent to 0.5 x MIC. The initial MIC (CCL20, 20 μ M; Amp,
779 14.3 μ M; Tet, 1.1 μ M) was determined in duplicate by MIC assay. The first day, 50,000 cfu/well of bacteria
780 were cultured in 100 μ l of MHB supplemented with the corresponding dose of chemokine/antibiotic in a
781 U-bottom 96-well plate. Two independent bacterial cultures were initiated per treatment and analyzed
782 individually. Bacteria were subcultured every 18 h in 100 μ l/well of MHB containing a fresh dose of
783 chemokine/antibiotic. On selected days, MIC was determined for each treatment as explained above, and
784 chemokine/antibiotic dose was adjusted to the new 0.5 x MIC.

785

786 **Statistical analysis**

787

788 Data were analyzed using GraphPad Prism 9. Statistical tests applied for the analysis of each data set are
789 detailed in the corresponding figure legend.

790

791 **ACKNOWLEDGEMENTS**

792

793 S.M.P, S.M, A.Z, K.B, D.G, and P.M.M were supported by the Division of Intramural Research of the
794 National Institute of Allergy and Infectious Diseases (NIAID, NIH). A.B was supported by the Division of
795 Intramural Research of the National Institute of Deafness and Other Communication Disorders (NIDCD,
796 DIR DC000096). J.d.A. was supported by the National Science Foundation (NSF) Graduate Research
797 Fellowship under Grant No. DGE-1650604 and the Ford Foundation. G.C.L.W was supported by NSF
798 DMR2325840. H.A, E.Y.L and G.C.L.W are also supported by the American Heart Association Grant
799 966662. A.F.D and B.F.V were supported by NIH grant R37AI058072 (B.F.V.).

800

801 **CONFLICT OF INTEREST**

802 B.F.V has ownership interests in Protein Foundry, LLC and XLock Biosciences, Inc. All other authors
803 declare no competing interests.

804

805

806

807

808

809

810

811

812

813 REFERENCES

814 1. Naylor, N. R. *et al.* Estimating the burden of antimicrobial resistance: a systematic literature
815 review. *Antimicrob. Resist. Infect. Control* **7**, 58 (2018).

816 2. Cassini, A. *et al.* Attributable deaths and disability-adjusted life-years caused by infections with
817 antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level
818 modelling analysis. *Lancet Infect. Dis.* **19**, 56–66 (2019).

819 3. Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019:
820 a systematic analysis. *Lancet* **399**, 629–655 (2022).

821 4. Huan, Y., Kong, Q., Mou, H. & Yi, H. Antimicrobial peptides: classification, design, application
822 and research progress in multiple fields. *Front. Microbiol.* **11**, 582779 (2020).

823 5. Lei, J. *et al.* The antimicrobial peptides and their potential clinical applications. *Am. J. Transl. Res.*
824 **11**, 3919–3931 (2019).

825 6. Zhang, Q.-Y. *et al.* Antimicrobial peptides: mechanism of action, activity and clinical potential. *Mil.*
826 *Med. Res.* **8**, 48 (2021).

827 7. Le, C.-F., Fang, C.-M. & Sekaran, S. D. Intracellular targeting mechanisms by antimicrobial
828 peptides. *Antimicrob. Agents Chemother.* **61**, (2017).

829 8. Li, J. *et al.* Membrane active antimicrobial peptides: translating mechanistic insights to design.
830 *Front. Neurosci.* **11**, 73 (2017).

831 9. El Shazely, B., Yu, G., Johnston, P. R. & Rolff, J. Resistance Evolution Against Antimicrobial
832 Peptides in *Staphylococcus aureus* Alters Pharmacodynamics Beyond the MIC. *Front. Microbiol.* **11**,
833 103 (2020).

834 10. Yu, G., Baeder, D. Y., Regoes, R. R. & Rolff, J. Predicting drug resistance evolution: insights from
835 antimicrobial peptides and antibiotics. *Proc. Biol. Sci.* **285**, (2018).

836 11. Wang, G. Human antimicrobial peptides and proteins. *Pharmaceuticals (Basel)* **7**, 545–594 (2014).

837 12. Pasupuleti, M., Schmidtchen, A. & Malmsten, M. Antimicrobial peptides: key components of the
838 innate immune system. *Crit. Rev. Biotechnol.* **32**, 143–171 (2012).

839 13. Diamond, G., Beckloff, N., Weinberg, A. & Kisich, K. O. The roles of antimicrobial peptides in
840 innate host defense. *Curr. Pharm. Des.* **15**, 2377–2392 (2009).

841 14. Ostaff, M. J., Stange, E. F. & Wehkamp, J. Antimicrobial peptides and gut microbiota in
842 homeostasis and pathology. *EMBO Mol. Med.* **5**, 1465–1483 (2013).

843 15. Zong, X., Fu, J., Xu, B., Wang, Y. & Jin, M. Interplay between gut microbiota and antimicrobial
844 peptides. *Anim. Nutr.* **6**, 389–396 (2020).

845 16. Krijgsveld, J. *et al.* Thrombocidins, microbicidal proteins from human blood platelets, are C-
846 terminal deletion products of CXC chemokines. *J. Biol. Chem.* **275**, 20374–20381 (2000).

847 17. Cole, A. M. *et al.* Cutting edge: IFN-inducible ELR- CXC chemokines display defensin-like
848 antimicrobial activity. *J. Immunol.* **167**, 623–627 (2001).

849 18. Yang, D. *et al.* Many chemokines including CCL20/MIP-3alpha display antimicrobial activity. *J.*
850 *Leukoc. Biol.* **74**, 448–455 (2003).

851 19. Nguyen, L. T. & Vogel, H. J. Structural perspectives on antimicrobial chemokines. *Front. Immunol.*
852 **3**, 384 (2012).

853 20. Wolf, M. & Moser, B. Antimicrobial activities of chemokines: not just a side-effect? *Front. Immunol.*
854 **3**, 213 (2012).

855 21. Crawford, M. A., Margulieux, K. R., Singh, A., Nakamoto, R. K. & Hughes, M. A. Mechanistic
856 insights and therapeutic opportunities of antimicrobial chemokines. *Semin. Cell Dev. Biol.* **88**, 119–
857 128 (2019).

858 22. Pontejo, S. M. & Murphy, P. M. Chemokines act as phosphatidylserine-bound “find-me” signals in
859 apoptotic cell clearance. *PLoS Biol.* **19**, e3001259 (2021).

860 23. Leventis, P. A. & Grinstein, S. The distribution and function of phosphatidylserine in cellular
861 membranes. *Annu. Rev. Biophys.* **39**, 407–427 (2010).

862 24. Fadok, V. A., de Cathelineau A, Daleke, D. L., Henson, P. M. & Bratton, D. L. Loss of phospholipid
863 asymmetry and surface exposure of phosphatidylserine is required for phagocytosis of apoptotic
864 cells by macrophages and fibroblasts. *J. Biol. Chem.* **276**, 1071–1077 (2001).

865 25. Segawa, K. & Nagata, S. An apoptotic “eat me” signal: phosphatidylserine exposure. *Trends Cell
866 Biol.* **25**, 639–650 (2015).

867 26. Mileykovskaya, E. & Dowhan, W. Cardiolipin membrane domains in prokaryotes and eukaryotes.
868 *Biochim. Biophys. Acta* **1788**, 2084–2091 (2009).

869 27. Filgueiras, M. H. & Op den Kamp, J. A. Cardiolipin, a major phospholipid of Gram-positive
870 bacteria that is not readily extractable. *Biochim. Biophys. Acta* **620**, 332–337 (1980).

871 28. Hoover, D. M. *et al.* The structure of human macrophage inflammatory protein-3alpha /CCL20.
872 Linking antimicrobial and CC chemokine receptor-6-binding activities with human beta-defensins.
873 *J. Biol. Chem.* **277**, 37647–37654 (2002).

874 29. Maerki, C. *et al.* Potent and broad-spectrum antimicrobial activity of CXCL14 suggests an
875 immediate role in skin infections. *J. Immunol.* **182**, 507–514 (2009).

876 30. Rowlett, V. W. *et al.* Impact of Membrane Phospholipid Alterations in *Escherichia coli* on Cellular
877 Function and Bacterial Stress Adaptation. *J. Bacteriol.* **199**, (2017).

878 31. Short, S. A. & White, D. C. Metabolism of phosphatidylglycerol, lysylphosphatidylglycerol, and
879 cardiolipin of *Staphylococcus aureus*. *J. Bacteriol.* **108**, 219–226 (1971).

880 32. Yung, S. C. & Murphy, P. M. Antimicrobial chemokines. *Front. Immunol.* **3**, 276 (2012).

881 33. Oliver, P. M. *et al.* Localization of anionic phospholipids in *Escherichia coli* cells. *J. Bacteriol.* **196**,
882 3386–3398 (2014).

883 34. Tan, B. K. *et al.* Discovery of a cardiolipin synthase utilizing phosphatidylethanolamine and
884 phosphatidylglycerol as substrates. *Proc Natl Acad Sci USA* **109**, 16504–16509 (2012).

885 35. Romantsov, T., Guan, Z. & Wood, J. M. Cardiolipin and the osmotic stress responses of bacteria.
886 *Biochim. Biophys. Acta* **1788**, 2092–2100 (2009).

887 36. Schmidt, N. W. & Wong, G. C. L. Antimicrobial peptides and induced membrane curvature:
888 geometry, coordination chemistry, and molecular engineering. *Curr. Opin. Solid State Mater. Sci.* **17**,
889 151–163 (2013).

890 37. Schmidt, N. W. *et al.* Criterion for amino acid composition of defensins and antimicrobial peptides
891 based on geometry of membrane destabilization. *J. Am. Chem. Soc.* **133**, 6720–6727 (2011).

892 38. Alimohamadi, H. *et al.* How Cell-Penetrating Peptides Behave Differently from Pore-Forming
893 Peptides: Structure and Stability of Induced Transmembrane Pores. *J. Am. Chem. Soc.* **145**, 26095–
894 26105 (2023).

895 39. Rajasekaran, G. *et al.* Antimicrobial and anti-inflammatory activities of chemokine CXCL14-
896 derived antimicrobial peptide and its analogs. *Biochim. Biophys. Acta Biomembr.* **1861**, 256–267
897 (2019).

898 40. Su, J. *et al.* LcCCL28-25, Derived from Piscine Chemokine, Exhibits Antimicrobial Activity against
899 Gram-Negative and Gram-Positive Bacteria In Vitro and In Vivo. *Microbiol. Spectr.* **10**, e0251521
900 (2022).

901 41. Ebbengaard, A. *et al.* Comparative Evaluation of the Antimicrobial Activity of Different
902 Antimicrobial Peptides against a Range of Pathogenic Bacteria. *PLoS ONE* **10**, e0144611 (2015).

903 42. Zeng, W. *et al.* In vitro antimicrobial activity and resistance mechanisms of the new generation
904 tetracycline agents, eravacycline, omadacycline, and tigecycline against clinical *Staphylococcus*
905 *aureus* isolates. *Front. Microbiol.* **13**, 1043736 (2022).

906 43. Dai, C. *et al.* CXCL14 Displays Antimicrobial Activity against Respiratory Tract Bacteria and
907 Contributes to Clearance of *Streptococcus pneumoniae* Pulmonary Infection. *J. Immunol.* **194**, 5980–
908 5989 (2015).

909 44. Reid-Yu, S. A., Tuinema, B. R., Small, C. N., Xing, L. & Coombes, B. K. CXCL9 contributes to
910 antimicrobial protection of the gut during *citrobacter rodentium* infection independent of
911 chemokine-receptor signaling. *PLoS Pathog.* **11**, e1004648 (2015).

912 45. Fukumoto, N. *et al.* Critical roles of CXC chemokine ligand 16/scavenger receptor that binds
913 phosphatidylserine and oxidized lipoprotein in the pathogenesis of both acute and adoptive
914 transfer experimental autoimmune encephalomyelitis. *J. Immunol.* **173**, 1620–1627 (2004).

915 46. Pontejo, S. M. & Murphy, P. M. Chemokines and phosphatidylserine: New binding partners for
916 apoptotic cell clearance. *Front. Cell Dev. Biol.* **10**, 943590 (2022).

917 47. Crawford, M. A. *et al.* Identification of the bacterial protein FtsX as a unique target of chemokine-
918 mediated antimicrobial activity against *Bacillus anthracis*. *Proc Natl Acad Sci USA* **108**, 17159–17164
919 (2011).

920 48. Schutte, K. M. *et al.* *Escherichia coli* Pyruvate Dehydrogenase Complex Is an Important
921 Component of CXCL10-Mediated Antimicrobial Activity. *Infect. Immun.* **84**, 320–328 (2016).

922 49. Bruce, K. E., Rued, B. E., Tsui, H.-C. T. & Winkler, M. E. The Opp (AmiACDEF) Oligopeptide
923 Transporter Mediates Resistance of Serotype 2 *Streptococcus pneumoniae* D39 to Killing by
924 Chemokine CXCL10 and Other Antimicrobial Peptides. *J. Bacteriol.* **200**, (2018).

925 50. Margulieux, K. R. *et al.* *Bacillus anthracis* Peptidoglycan Integrity Is Disrupted by the Chemokine
926 CXCL10 through the FtsE/X Complex. *Front. Microbiol.* **8**, 740 (2017).

927 51. Margulieux, K. R., Fox, J. W., Nakamoto, R. K. & Hughes, M. A. CXCL10 Acts as a Bifunctional
928 Antimicrobial Molecule against *Bacillus anthracis*. *MBio* **7**, (2016).

929 52. Pichoff, S., Du, S. & Lutkenhaus, J. Roles of FtsEX in cell division. *Res. Microbiol.* **170**, 374–380
930 (2019).

931 53. Du, S., Pichoff, S. & Lutkenhaus, J. Roles of ATP Hydrolysis by FtsEX and Interaction with FtsA in
932 Regulation of Septal Peptidoglycan Synthesis and Hydrolysis. *MBio* **11**, (2020).

933 54. de Kok, A., Hengeveld, A. F., Martin, A. & Westphal, A. H. The pyruvate dehydrogenase multi-
934 enzyme complex from Gram-negative bacteria. *Biochim. Biophys. Acta* **1385**, 353–366 (1998).

935 55. Slamti, L. & Lereclus, D. The oligopeptide ABC-importers are essential communication channels in
936 Gram-positive bacteria. *Res. Microbiol.* **170**, 338–344 (2019).

937 56. Jones, M. M. *et al.* Role of the oligopeptide permease ABC Transporter of *Moraxella catarrhalis* in
938 nutrient acquisition and persistence in the respiratory tract. *Infect. Immun.* **82**, 4758–4766 (2014).

939 57. Lin, T.-Y. & Weibel, D. B. Organization and function of anionic phospholipids in bacteria. *Appl.*
940 *Microbiol. Biotechnol.* **100**, 4255–4267 (2016).

941 58. Labajová, N. *et al.* Cardiolipin-Containing Lipid Membranes Attract the Bacterial Cell Division
942 Protein DivIVA. *Int. J. Mol. Sci.* **22**, (2021).

943 59. Park, C. B., Kim, H. S. & Kim, S. C. Mechanism of action of the antimicrobial peptide buforin II:
944 buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions.
945 *Biochem. Biophys. Res. Commun.* **244**, 253–257 (1998).

946 60. Marchand, C. *et al.* Covalent binding of the natural antimicrobial peptide indolicidin to DNA
947 abasic sites. *Nucleic Acids Res.* **34**, 5157–5165 (2006).

948 61. Hsu, C.-H. *et al.* Structural and DNA-binding studies on the bovine antimicrobial peptide,
949 indolicidin: evidence for multiple conformations involved in binding to membranes and DNA.
950 *Nucleic Acids Res.* **33**, 4053–4064 (2005).

951 62. Du, Y. *et al.* Chemokines form nanoparticles with DNA and can superinduce TLR-driven immune
952 inflammation. *J. Exp. Med.* **219**, (2022).

953 63. Asai, Y., Katayose, Y., Hikita, C., Ohta, A. & Shibuya, I. Suppression of the lethal effect of acidic-
954 phospholipid deficiency by defective formation of the major outer membrane lipoprotein in
955 *Escherichia coli*. *J. Bacteriol.* **171**, 6867–6869 (1989).

956 64. Mathelié-Guinlet, M., Asmar, A. T., Collet, J.-F. & Dufrêne, Y. F. Lipoprotein Lpp regulates the
957 mechanical properties of the *E. coli* cell envelope. *Nat. Commun.* **11**, 1789 (2020).

958 65. Chen, C. H. & Lu, T. K. Development and challenges of antimicrobial peptides for therapeutic
959 applications. *Antibiotics (Basel)* **9**, (2020).

960 66. Asif, F., Zaman, S. U., Arnab, Md. K. H., Hasan, M. & Islam, Md. M. Antimicrobial peptides as
961 therapeutics: Confronting delivery challenges to optimize efficacy. *The Microbe* **2**, 100051 (2024).

962 67. Lazzaro, B. P., Zasloff, M. & Rolff, J. Antimicrobial peptides: Application informed by evolution.
963 *Science* **368**, (2020).

964 68. Mohan, T., Deng, L. & Wang, B.-Z. CCL28 chemokine: An anchoring point bridging innate and
965 adaptive immunity. *Int. Immunopharmacol.* **51**, 165–170 (2017).

966 69. Burkhardt, A. M. *et al.* CXCL17 is a mucosal chemokine elevated in idiopathic pulmonary fibrosis
967 that exhibits broad antimicrobial activity. *J. Immunol.* **188**, 6399–6406 (2012).

968 70. Furue, K., Ito, T., Tsuji, G., Nakahara, T. & Furue, M. The CCL20 and CCR6 axis in psoriasis. *Scand.*
969 *J. Immunol.* **91**, e12846 (2020).

970 71. Guesdon, W. *et al.* CCL20 Displays Antimicrobial Activity Against *Cryptosporidium parvum*, but
971 Its Expression Is Reduced During Infection in the Intestine of Neonatal Mice. *J. Infect. Dis.* **212**,
972 1332–1340 (2015).

973 72. Crawford, M. A. *et al.* Interferon-inducible CXC chemokines directly contribute to host defense
974 against inhalational anthrax in a murine model of infection. *PLoS Pathog.* **6**, e1001199 (2010).

975 73. Mahlapuu, M., Håkansson, J., Ringstad, L. & Björn, C. Antimicrobial peptides: an emerging
976 category of therapeutic agents. *Front. Cell. Infect. Microbiol.* **6**, 194 (2016).

977 74. Yu, H.-Y. *et al.* Easy strategy to increase salt resistance of antimicrobial peptides. *Antimicrob. Agents
978 Chemother.* **55**, 4918–4921 (2011).

979 75. Chu, H.-L. *et al.* Boosting salt resistance of short antimicrobial peptides. *Antimicrob. Agents
980 Chemother.* **57**, 4050–4052 (2013).

981 76. Xuan, J. *et al.* Antimicrobial peptides for combating drug-resistant bacterial infections. *Drug Resist.
982 Updat.* **68**, 100954 (2023).

983 77. Bonecchi, R. & Graham, G. J. Atypical chemokine receptors and their roles in the resolution of the
984 inflammatory response. *Front. Immunol.* **7**, 224 (2016).

985 78. Monneau, Y., Arenzana-Seisdedos, F. & Lortat-Jacob, H. The sweet spot: how GAGs help
986 chemokines guide migrating cells. *J. Leukoc. Biol.* **99**, 935–953 (2016).

987 79. Dishman, A. F. *et al.* Switchable membrane remodeling and antifungal defense by metamorphic
988 chemokine XCL1. *ACS Infect. Dis.* **6**, 1204–1213 (2020).

989 80. He, J. *et al.* Chemokine CCL28 is a potent therapeutic agent for oropharyngeal candidiasis.
990 *Antimicrob. Agents Chemother.* **64**, (2020).

991 81. Lee, M. W. *et al.* Interactions between Membranes and “Metaphilic” Polypeptide Architectures
992 with Diverse Side-Chain Populations. *ACS Nano* **11**, 2858–2871 (2017).

993 82. Ilavsky, J. *Nika* : software for two-dimensional data reduction. *J. Appl. Crystallogr.* **45**, 324–328
994 (2012).

995 83. ESRF97HA02T FIT2D: An Introduction and Overview.
996 https://www.esrf.fr/computing/scientific/FIT2D/FIT2D_INTRO/fit2d.html.

997 84. Veldkamp, C. T. *et al.* Production of recombinant chemokines and validation of refolding. *Meth.
998 Enzymol.* **570**, 539–565 (2016).

999 **FIGURE LEGENDS**

1000

1001 **Figure 1. Antimicrobial chemokines bind CL and PG phospholipids. a)** Chemokines are more potent
1002 antimicrobials than classic antimicrobial peptides. Increasing doses (x-axis) of hBD3 (blue) and the
1003 antimicrobial chemokines CCL20 (magenta) and CXCL9 (orange) were incubated with 1×10^{15} cfu of *E.
1004 coli* for 2 h at 37°C. The non-antimicrobial chemokine CXCL8 (black) was used as a negative control.
1005 Samples were plated on agar plates and incubated overnight at 37°C. Data points represent the mean \pm
1006 SEM cfu of 3 independent experiments analyzed in triplicate. Color-coded asterisks indicate statistically
1007 significant differences between each chemokine and hBD3 analyzed by two-way ANOVA with Dunnett’s
1008 multiple comparison test (**, p<0.01; ***, p<0.001). **b)** Antimicrobial assays. Increasing doses (x axis) of the
1009 human chemokines indicated above each graph were incubated with *E. coli* (magenta) or *S. aureus* (blue)
1010 as in panel a. Data points represent mean \pm SD of the cfu counted from triplicates for each chemokine
1011 concentration. **c)** Chemokine binding to liposomes analyzed by biolayer interferometry (BLI). *Top row*,
1012 chemokine binding to liposomes replicating the phospholipid composition of *E. coli* (lpEC, magenta) or *S.
1013 aureus* (lpSA, blue). *Bottom row*, chemokine binding to phosphatidylcholine liposomes containing 30% of
1014 the phospholipids indicated on the inset of the left graph. Liposomes immobilized on BLI biosensors
1015 were incubated with 500 nM of the human chemokines indicated above each graph column. After 500 s,
1016 chemokine dissociation was recorded by incubating the biosensor with buffer alone. Lines represent the
1017 binding response in nm (y axis) over time (x axis). Data in b and c are from one experiment representative
1018 of 3 independent experiments. hBD3, human beta-defensin 3; cfu, colony formy units; CL, cardiolipin;
1019 PG, phosphatidylglycerol; lysPG, lysyl-phosphatidylglycerol; PE, phosphatidylethanolamine.

1020

1021 **Figure 2. Antimicrobial chemokines share common bacterial binding sites and localize to the bacterial**
1022 **cell poles. a)** Antimicrobial chemokines bind directly to bacteria. Representative images of the binding of
1023 0.3 μ M of the AZ-647-labeled antimicrobial chemokines CCL20, CCL21, CXCL9 and CXCL11 or the non-
1024 antimicrobial chemokines CCL3 and CXCL8, as indicated above each image, to *E. coli* (W3110 strain). **b**
1025 and **c**) Binding of antimicrobial chemokines to bacteria can be competed with other antimicrobial
1026 chemokines. In b, Representative images of CXCL11-AZ647 (0.3 μ M) bound (magenta) to *E. coli* (W3110
1027 strain) bacteria preincubated with buffer or the unlabeled chemokines indicated above each image
1028 column. In a and b, the top and bottom image rows show the staining for chemokine alone (magenta) or
1029 merged with DAPI (green), respectively. A white scale bar (20 μ m) is inserted in the bottom left image. In
1030 c, quantification of the fluorescence intensity of CXCL11-AZ647 staining in bacteria preincubated with
1031 buffer alone or unlabeled chemokines as indicated on the x axis. Each dot corresponds to one bacterium
1032 ($n \approx 100$). Data are from one experiment representative of 2 independent experiments. Statistical
1033 differences between each chemokine group and the “buffer” treatment group were analyzed by ANOVA
1034 with Tukey’s test for multiple comparisons (ns, not significant; ****, $p < 0.0001$). **d)** Antimicrobial
1035 chemokines bind to the PG/CL-rich membrane domains at the bacterial cell poles. Representative
1036 Airyscan confocal images of CXCL9-AZ647 binding to *E. coli* (W3110 strain) co-stained with NAO. Graph
1037 on the right side shows the normalized fluorescence intensity profile along a bacterium, as indicated by
1038 the dashed line in the “merge” panel, of NAO-524 (green), NAO-630 (orange) and CXCL9-AZ647
1039 (magenta). DAPI, 4',6-diamidino-2-phenylindole; NAO, nonyl acridine orange.

1040

1041 **Figure 3. Liposomes containing CL or PG neutralize microbial binding and killing by chemokines. a**
1042 **and b)** Liposomal PG and CL block chemokine binding to bacteria. In a, *E. coli* (W3110 strain) bacteria
1043 were incubated with CCL20-AZ647 in the presence of PC liposomes (100 μ M) containing 30% PE, PG or
1044 CL or buffer alone as indicated above each column. Top and bottom micrograph rows show the staining
1045 for the chemokine alone or merged with DAPI, respectively. A white scale bar (20 μ m) is inserted in the
1046 bottom left image. In b, quantification of the fluorescence intensity of CCL20-AZ647 bound to *E. coli* in
1047 the presence of buffer alone or liposomes containing PE, PG or CL as indicated on the x axis. Each dot
1048 corresponds to one bacterium ($n \approx 100$). All liposome-treated groups were compared to “Buffer” by
1049 ANOVA with Tukey’s test for multiple comparisons (ns, not significant; ****, $p < 0.0001$). **c and d)** PG and
1050 CL-containing liposomes protect bacteria from antimicrobial chemokines. The chemokines (5 μ g/ml)
1051 indicated above each graph were incubated for 2 h with *E. coli* (c) or *S. aureus* (d) in the presence of

1052 increasing doses (x axis) of liposomes containing 30% PE, PG or CL. Samples were plated on agar plates
1053 and cfu were counted after 18 h at 37°C. Lines represent the mean \pm SD cfu from triplicates of one
1054 experiment representative of 3 independent experiments. The top and bottom horizontal dashed lines
1055 indicate the number of cfu counted when bacteria were incubated with buffer alone or with chemokine in
1056 the absence of liposome, respectively. DAPI, 4',6-diamidino-2-phenylindole; cfu, colony forming units;
1057 CL, cardiolipin; PG, phosphatidylglycerol; PE, phosphatidylethanolamine.

1058

1059 **Figure 4. Cardiolipin-deficient bacteria are more resistant to antimicrobial chemokines.** **a)** *E. coli* strain
1060 BKT12 lacks CL. TLC plate showing the phospholipid composition of *E. coli* strains W3110 and BKT12
1061 grown to exponential phase. **b and c)** Antimicrobial chemokines bind *E. coli* W3110 and BKT12 strains.
1062 Bacteria (1×10^{10} cfu) were incubated with buffer alone or AZ647-labeled chemokines (0.3 μ M) and
1063 stained with SYTO24 to distinguish bacteria from debris in the flow cytometer. In b, color-coded
1064 histograms showing the binding of the chemokines indicated in the inset to W3110 and BKT12 bacteria
1065 (SYTO24 $^+$ events). The background signal recorded in cells incubated with buffer alone ("Buffer") is
1066 shown with a solid gray histogram. In c, quantification of the median fluorescence intensity (MFI) of the
1067 binding of the chemokines indicated on the x-axis to W3110 and BKT12 bacteria. Data are the mean \pm SD
1068 of triplicates from one experiment and are representative of 3 independent experiments. **d)** CL-deficient
1069 bacteria are more resistant to CXCL9 and CCL20. W3110 and BKT12 bacteria (1×10^{10} cfu) were incubated
1070 for 2 h at 37°C with buffer or 1.2 μ M of CXCL9 or CCL20 and then plated on agar plates. Surviving cfu
1071 were counted the next day and are plotted as the % relative to the number of cfu in samples incubated
1072 with buffer alone for each strain. Bars represent the mean \pm SEM of data combined from 2 independent
1073 experiments. Three biological replicates were analyzed in triplicate in each experiment. Each dot
1074 corresponds to the average % cfu of one biological replicate. Data were analyzed by unpaired t test (***, p
1075 < 0.001). **e)** CXCL9 selectively kills W3110 bacteria. W3110 and BKT12 cfu were mixed 1:1 for a total of $1 \times$
1076 10^{10} cfu and incubated for 2 h at 37°C with buffer alone or 1.2 μ M of CXCL8 or CXCL9. Samples were
1077 then plated in agar plates with or without kanamycin for cfu counting of total bacteria or BKT12 bacteria
1078 (kanamycin resistant), respectively. W3110 cfu were calculated as the difference between the cfu counted
1079 in agar (total bacteria) and agar-kanamycin (BKT12 bacteria) plates for each sample. Bars represent mean
1080 \pm SD of 3 biological replicates analyzed in triplicate for each strain (inset) and treatment (x-axis). Data are
1081 from one experiment representative of 3 independent experiments. Differences between the buffer and
1082 the chemokine groups within each bacterial strain were analyzed by 2-way ANOVA with Bonferroni test

1083 for multiple comparisons. Statistical analysis results are color-coded and indicated above the
1084 corresponding bars (ns, not significant; **, p < 0.01). cfu, colony forming units.

1085

1086 **Figure 5. Cardiolipin promotes rapid bacteriostatic and bactericidal action by antimicrobial**
1087 **chemokines. a and b)** CL is required for early bacteriostatic and bactericidal action by chemokines.
1088 FACS-based time-to-kill assays of the effect of chemokines and hBD3 on the growth (a) and killing (b) of
1089 parental W3110 and the CL-deficient *E. coli* strain BKT12. Bacteria (1×10^{15} cfu) were incubated at 37°C
1090 with 1.2 μ M of the protein indicated above each graph, and live (a) and dead (b) bacteria were quantified
1091 at the indicated time points (x axis) by FACS after co-staining with SYTO24 (stains live and dead bacteria)
1092 and SYTOX-Orange (stains only dead bacteria). In a, the growth ratio was represented as the ratio
1093 between the number of live bacteria (SYTO24 $^+$ SYTOX $^-$) detected at each time point and the initial number
1094 of live bacteria recorded immediately before the start of the incubation (time 0 min) with buffer alone or
1095 the corresponding protein (as indicated in the inset of the “CXCL8” graph). In b, the % of dead bacteria
1096 (SYTO24 $^+$ SYTOX $^+$) relative to the number of total bacteria (SYTO24 $^+$) for each strain (as indicated in the
1097 inset of the “CXCL8” graph) and at each time point is shown. In a and b, data are summarized as the
1098 mean \pm SEM of 3 independent experiments combined with 3 biological replicates performed in each
1099 experiment. Data were analyzed by two-way ANOVA with Bonferroni test for multiple comparisons (ns,
1100 not significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001). Results of statistical analyses for the comparison of
1101 buffer vs chemokine/hBD3 for each bacterial strain are color-coded and indicated above each graph.
1102 Results of statistical analyses for the comparison of W3110 vs BKT12 for each protein treatment are
1103 indicated above each x axis in black in panel a and above each graph in panel b. **c)** CL facilitates rapid
1104 bacteriostatic effects by low doses of antimicrobial chemokines. W3110 and BKT12 bacteria (as indicated
1105 in the inset of the bottom right graph) were incubated with decreasing doses (x axis) of CXCL11 and
1106 CCL21 and the number of live and dead bacteria were analyzed 1 or 2 h post treatment (hpt) (as indicated
1107 on the left of each graph row) by FACS, as in a and b. The number of live bacteria (left y-axis, black lines)
1108 detected at different chemokine concentrations is represented as % relative to the number of live bacteria
1109 recorded in the buffer-treated group for each strain and time point. The % of dead bacteria (right y-axis,
1110 blue lines) for each chemokine concentration and bacterial strain was calculated as in panel b. Data are
1111 shown as mean \pm SD of three biological replicates from one experiment representative of 3 independent
1112 experiments. Data were analyzed by 2-way ANOVA with Bonferroni test for multiple comparisons.
1113 Results of the statistical analysis of the bacteriostatic (black lines) and killing activity (blue lines) for the
1114 W3110 vs BKT12 comparison are color-coded and indicated above each graph (ns, not significant; *, p <

1115 0.05; **, $p < 0.01$; ***, $p < 0.001$; ****, $p < 0.0001$). **d)** CL is required for direct killing by antimicrobial
1116 chemokines. W3110 and CL-deficient BKT12 bacteria were incubated with buffer alone or 4.8 μM of
1117 CXCL9, CCL21 or protamine (Protam), and dead bacteria (SYTOX⁺) were analyzed 20 min after treatment
1118 by FACS, as in panel b. On top, representative contour plots showing the % of SYTOX⁺ cells detected after
1119 treatment of W3110 or BKT12 bacteria (as indicated above each plot column) with CXCL9 or protamine
1120 (as indicated on the right of each plot row). At the bottom, bar graph showing the quantification of the %
1121 of SYTOX⁺ W3110 or BKT12 bacteria (as indicated in the inset) in each treatment group. Bars show the
1122 mean \pm SD of triplicates from one experiment representative of 3 independent experiments. Data were
1123 analyzed by two-way ANOVA with Bonferroni test for multiple comparisons (ns, not significant; **, $p <$
1124 0.01; ***, $p < 0.001$). hBD3, human beta-defensin 3; hpt, hours post treatment; Protam, protamine.
1125

1126 **Figure 6. Antimicrobial chemokines lyse phospholipid bilayers in an anionic phospholipid-dependent**
1127 **manner. a)** Antimicrobial chemokines disrupt liposomal membranes that mimic the phospholipid
1128 composition of the *E. coli* plasma membrane. Calcein-leakage assay showing the release of calcein from
1129 PE/PG/CL liposomes upon injection (arrowhead) of 1.2 μM of the indicated chemokines or protamine.
1130 Curves represent the % of calcein released over time (x axis) by each protein relative to the maximum
1131 calcein release observed after incubation of the liposomes with 0.1% Triton X-100. Solid lines represent
1132 the mean of 3 biological replicates. Colored shaded area around the lines represents the SD. Data are from
1133 one experiment representative of 3 independent experiments. **b)** Radially integrated SAXS spectra of
1134 chemokines CCL5, CCL19 and CXCL11 interacting with 20:80 PG:PE liposomes at neutral pH. A peptide-
1135 to-lipid (P/L) charge ratio scan from 1/6 to 3/2 was performed as indicated for each chemokine. Bragg
1136 structure peaks were indexed for the observed phases. CCL19 and CXCL11 formed cubic phases (Q)
1137 (arrowed indices). All spectra showed a lamellar phase (L), and CCL5 displayed inverted hexagonal
1138 phases (H). To facilitate visualization, spectra have been manually offset in the vertical direction by
1139 scaling each trace by a multiplicative factor. **c)** Linear fits of the peak position indexations for the cubic
1140 phases indexed in b. *Pn3m*, *Im3m* and *Ia3d* cubic phases were observed; illustration of geometric surfaces
1141 next to symbol key. Estimation of mean NGC, $\langle k \rangle$, from linear fits is displayed next to each plot. Each
1142 color represents a P/L ratio as noted in b. **d)** Anionic phospholipids are required for the membrane lytic
1143 activity of antimicrobial chemokines. Calcein-leakage assays showing the release of calcein from 3
1144 different types of liposomes, PE/PG/CL, PE/PG, and PEPC, as indicated in the inset of the CCL19 panel,
1145 upon injection of 1.2 μM of the proteins indicated in the inset of each graph. Data were analyzed and
1146 graphed as in a and correspond to 3 biological replicates from one experiment representative of 3

1147 independent experiments. **e)** CL facilitates membrane disruption by antimicrobial chemokines. Calcein
1148 release from 3 different types of liposomes (as indicated in the inset of the CXCL9 graph) at 20 min after
1149 addition of increasing doses (x axis) of the proteins indicated above each graph. Calcein leakage assays
1150 were performed as in d and the % of released calcein at 20 min after protein injection was recorded. Data
1151 are represented as mean \pm SD of 3 biological replicates from one experiment representative of 3
1152 independent experiments. Data were analyzed by two-way ANOVA with Tukey's test for multiple
1153 comparisons. Statistical differences between the PE/PG/CL and the PE/PG liposome groups are indicated
1154 above each concentration point (ns, not significant; *, p < 0.05). CL, cardiolipin; PG, phosphatidylglycerol;
1155 PE, phosphatidylethanolamine; PC, phosphatidylcholine; NGC, negative gaussian curvature.
1156

1157 **Figure 7. CCL20 kills wild type and antibiotic-resistant *E. coli* without triggering chemokine
1158 resistance. a)** Coomassie Blue-stained gel (4-12% Bis-Tris) showing the SDS-PAGE analysis of
1159 commercially available CCL20 (Peprotech) and in-house produced CCL20-His. **b)** The His-tag of
1160 recombinant CCL20-His does not interfere with chemokine binding to PG and CL. BLI assays showing
1161 the binding of 0.5 μ M CCL20-His to PC liposomes containing 30% of the phospholipids indicated in the
1162 inset. **c)** Microbroth dilution method for the determination of the MIC of CCL20-His. W3110 bacteria (5 x
1163 10⁵ cfu/ml) were incubated with increasing doses of CCL20-His in MHB and the % viable bacteria after
1164 18 h incubation at 37°C was calculated using the BacTiter-Glo Kit. Graph shows mean \pm SEM % of the
1165 bacterial viability at each chemokine concentration relative to bacteria treated with buffer alone. Data are
1166 combined from 3 independent experiments. **d)** Bacteria develop resistance against conventional
1167 antibiotics but not against CCL20-His. W3110 bacterial cultures (5 x 10⁵ cfu/ml) were maintained in MHB
1168 for 2 weeks in the presence of a sublethal dose (0.5 x MIC) of three different antimicrobial compounds:
1169 tetracycline (Tet), ampicillin (Amp) or CCL20-His, as indicated on the inset. On selected dates, MICs for
1170 each antimicrobial agent on the corresponding culture was recalculated and bacteria were subcultured
1171 adjusting the compound concentration to 0.5 x MIC. Graph shows the MIC fold change compared to the
1172 initially calculated MIC of two independent bacterial cultures, represented by circle and triangle symbols,
1173 for each agent. **e)** CCL20-His kills Tet- and Amp-resistant bacterial strains. Parental W3110 bacteria or the
1174 three new bacterial strains generated in d, W3110-Amp, W3110-Tet or W3110-CCL20His, were incubated
1175 in MHB with Amp, Tet or CCL20-His at a concentration equivalent to the MIC of each compound on
1176 parental W3110. Bacteria (5 x 10⁵ cfu/ml) were incubated at 37°C for 18 h and then bacterial viability in
1177 each sample was calculated as in b. Bars represent mean \pm SEM % survival data combined from three
1178 independent experiments. kDa, kilodalton; MIC, minimum inhibitory concentration.

1179

1180 **Figure S1. CCL3 does not bind phosphatidylglycerol or cardiolipin.**

1181 The binding of CCL3 (500 nM) to phosphatidylcholine liposomes containing 30% PG or CL, as indicated
1182 on the top right corner of each graph, was analyzed by BLI. CXCL11 was used as positive control. PG,
1183 phosphatidylglycerol; CL, cardiolipin.

1184

1185 **Figure S2. Liposomes containing PG or CL block CXCL11 binding to bacteria. a)** Representative images
1186 of the binding of fluorescent CXCL11-AZ647 to bacteria in the presence of buffer or PC liposomes (100
1187 μ M) containing 30% of PE, PG, or CL, as indicated above each micrograph column. Top row, images for
1188 the staining of CXCL11-AZ647 alone; Bottom row, merge of CXCL11-AZ647 staining with DAPI. A white
1189 scale bar (20 μ m) is inserted in the bottom left image. **b)** Quantification of the fluorescence intensity of the
1190 binding of CXCL11-AZ647 per bacterium in each treatment group. Each dot represents one bacterium (n
1191 ≈ 100). Data are shown as mean \pm SD from one experiment representative of 2 independent experiments
1192 and were compared to the buffer-treated group using one-way ANOVA with Tukey test for multiple
1193 comparisons (****, $p < 0.0001$). DAPI, 4',6-diamidino-2-phenylindole; CL, cardiolipin; PG,
1194 phosphatidylglycerol; PE, phosphatidylethanolamine.

1195

1196

1197 **Figure S3. Chemokines and defensins exert reduced but significant antimicrobial activity at 85 mM**
1198 **NaCl. a)** High salt concentrations reduce antimicrobial activity by chemokines. Dot-plot showing a direct
1199 comparison of the antimicrobial effect of CCL20, CXCL9 and hBD3 in buffers containing 0.85 mM (open
1200 dots) or 85 mM (filled dots) NaCl. Bacteria were incubated with the indicated proteins (1.2 μ M) and
1201 bacterial viability was analyzed as in a. Each dot corresponds to the mean of one independent experiment
1202 analyzed in triplicates. Gray bars indicate the mean \pm SEM. **b)** Chemokines are as potent antimicrobials as
1203 hBD3 in the presence of 85 mM NaCl. *E. coli* (1×10^{15} cfu) survival after incubation with increased doses
1204 of CCL20, hBD3 or CXCL8 (non-antimicrobial control) as indicated in the inset. Lines indicate the % of
1205 cfu counted for each sample relative to the cfu counted after treatment of bacteria with buffer alone. Data
1206 are summarized as the mean \pm SEM of 3 independent experiments analyzed in triplicates. Statistical
1207 differences with the CXCL8 control group were analyzed by two-way ANOVA. Results of this statistical
1208 analysis (ns, not significant; *, $p < 0.05$; ****, $p < 0.0001$) are color-coded and indicated above each
1209 concentration data point. hBD3, human beta-defensin 3; cfu, colony forming units; NaCl, sodium
1210 chloride.

1211

1212 **Figure S4. Protamine is a potent bactericidal peptide.** Time-to-kill assay showing the number of live
1213 W3110 or BKT12 bacteria over time relative to the initial number of live bacteria (time 0) after incubation
1214 with buffer alone or 1.2 μ M of protamine (as indicated in the legend). Live bacteria were quantified at
1215 different time points by co-staining with SYTO24 (stains dead and live bacteria) and SYTOX (stains only
1216 dead bacteria) using FACS. Horizontal dotted line indicates the ratio = 1 (no growth). Data are
1217 summarized as the mean \pm SEM of 3 independent experiments, each performed with 3 biological
1218 replicates. Data were analyzed by two-way ANOVA with Bonferroni test for multiple comparisons (ns,
1219 not significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001). Results of statistical analyses for the
1220 comparison of buffer vs protamine for each bacterial strain are color-coded and indicated above each
1221 graph. Results of statistical analyses for the comparison of protamine-treated W3110 vs BKT12 are
1222 indicated above the x axis.

1223

1224 **Figure S5. CL-deficient bacteria are resistant to direct killing by antimicrobial chemokines.**

1225 Quantification of the % of dead W3110 and CL-deficient BKT12 bacteria (as indicated in the inset) 90 min
1226 after treatment with buffer alone or 4.8 μ M of CXCL9, CCL21 or protamine. Dead bacteria were
1227 quantified by FACS as the % of SYTOX⁺ cells relative to the total number of SYTO24⁺ bacteria. Data are
1228 the mean \pm SD of 3 biological replicates from one experiment representative of 3 independent
1229 experiments. Statistical differences (W3110 vs BKT12) were analyzed by two-way ANOVA with
1230 Bonferroni test for multiple comparisons (ns, not significant; **, p < 0.01). Protam, protamine.

1231

1232 **Figure S6. CCL5 is not antimicrobial and CL promotes liposomal membrane disruption by low doses**
1233 **of antimicrobial chemokines. a)** *E. coli* (1 \times 10⁵ cfu) survival after 2 h incubation with buffer alone or 1.2
1234 μ M of CCL5 or CCL19 as indicated on the x-axis. Bars represent the mean \pm SD of cfu counted for each
1235 treatment on TSB-agar plates. **b)** Calcein-leakage assays showing the % of calcein released by 0.15 μ M of
1236 CCL21, CXCL9 or protamine (as indicated above each graph) from PE/PG/CL, PE/PG or PE/PC liposomes
1237 (CCL21 graph inset) relative to the maximum calcein release observed when liposomes were incubated
1238 with TritonX-100. Solid lines represent the mean of 3 biological replicates. Colored shaded area around
1239 the lines represents the SD. Data are from one experiment representative of 3 independent experiments.
1240 cfu, colony forming units; CL, cardiolipin; PG, phosphatidylglycerol; PE, phosphatidylethanolamine; PC,
1241 phosphatidylcholine.

1242

1243 **Figure S7. CXCL9 kills ampicillin-resistant *E. coli*.**

1244 Parental W3110 and ampicillin-resistant strain W3110-Amp (as indicated in the legend) were incubated
1245 with buffer, 1.2 μ M of CXCL8 (non-antimicrobial) or CXCL9 (antimicrobial), or 10 μ g/ml of ampicillin
1246 (Amp) for 2h at 37°C. Bacterial viability was determined by cfu assays. Bars represent the mean \pm SEM %
1247 of surviving bacteria relative to the “Buffer” group for each bacterial strain. Data are summarized from 3
1248 independent experiments performed in triplicate and were analyzed by two-way ANOVA with Tukey’s
1249 test for multiple comparisons (ns, not significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001). cfu, colony forming
1250 units.

1251

Figure 1

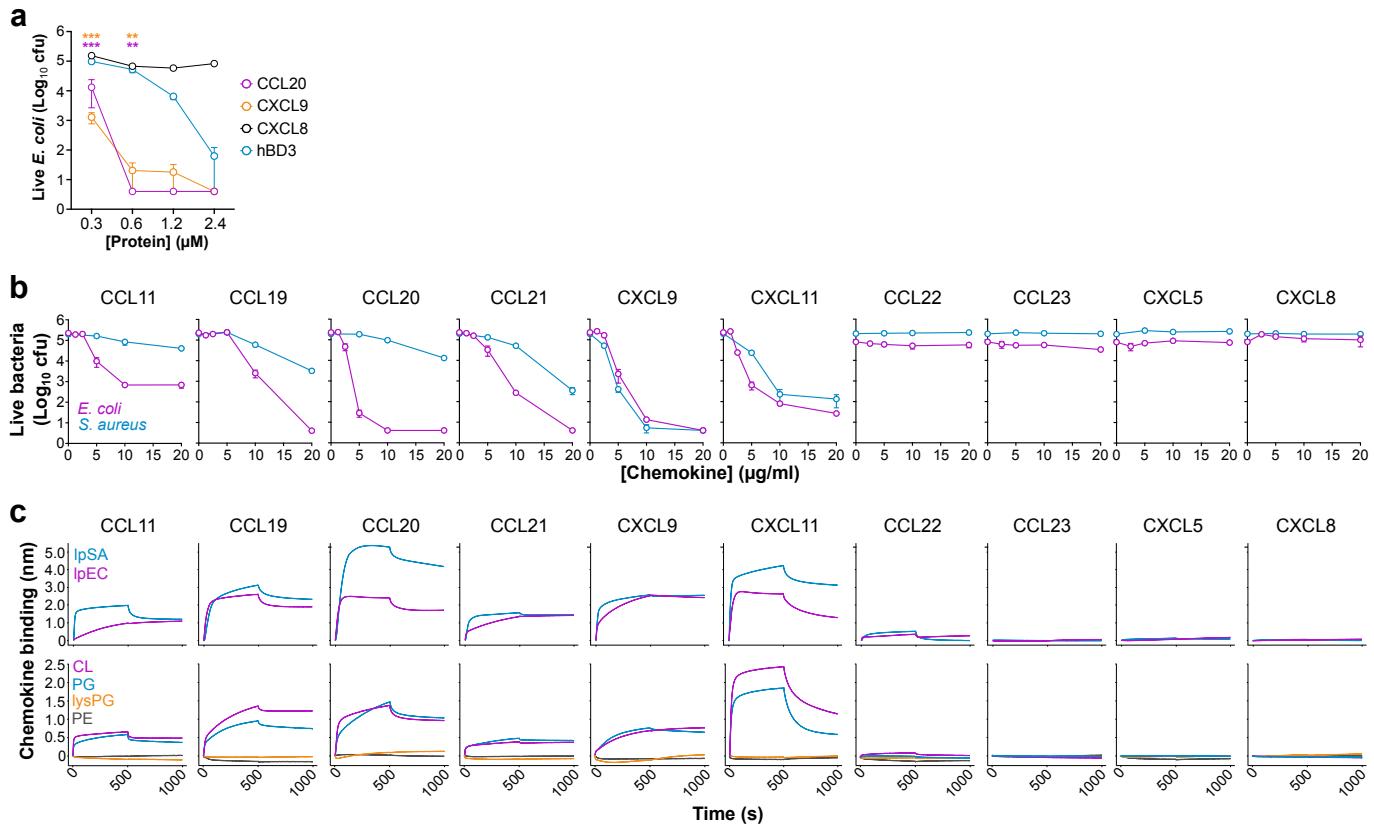


Figure 2

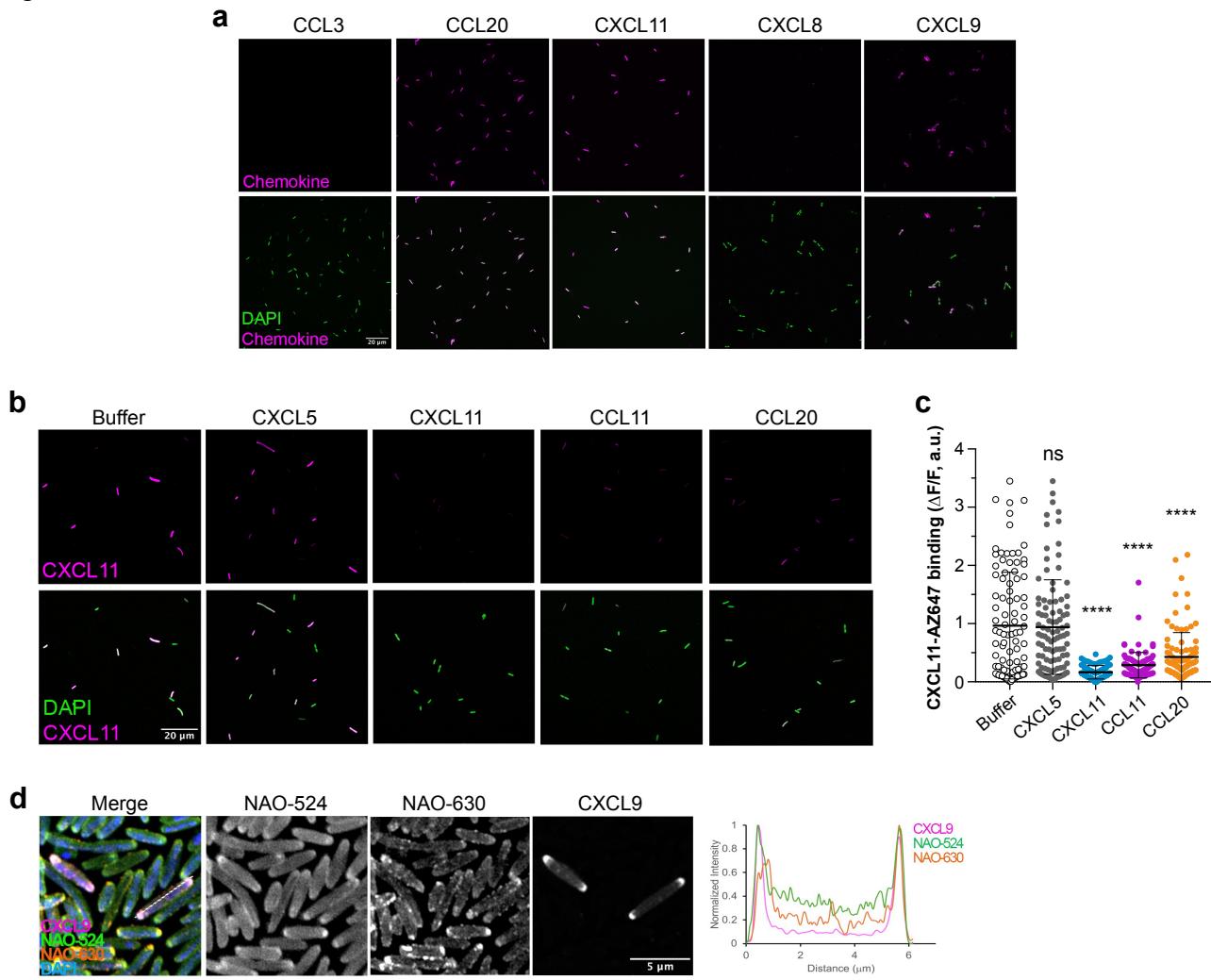


Figure 3

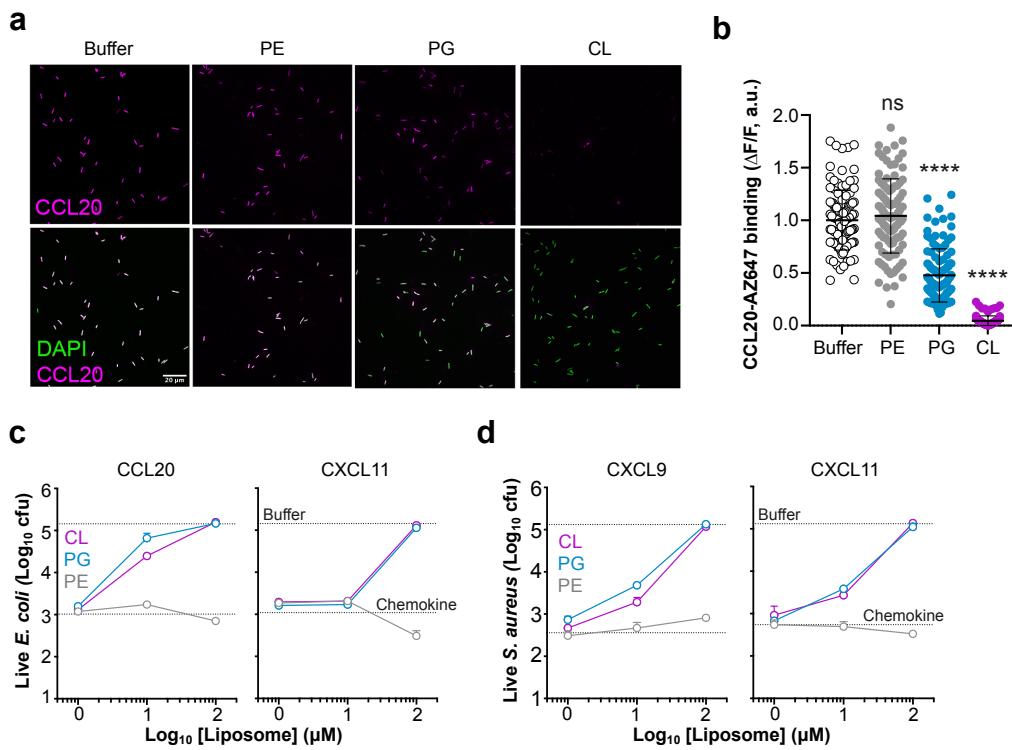


Figure 4

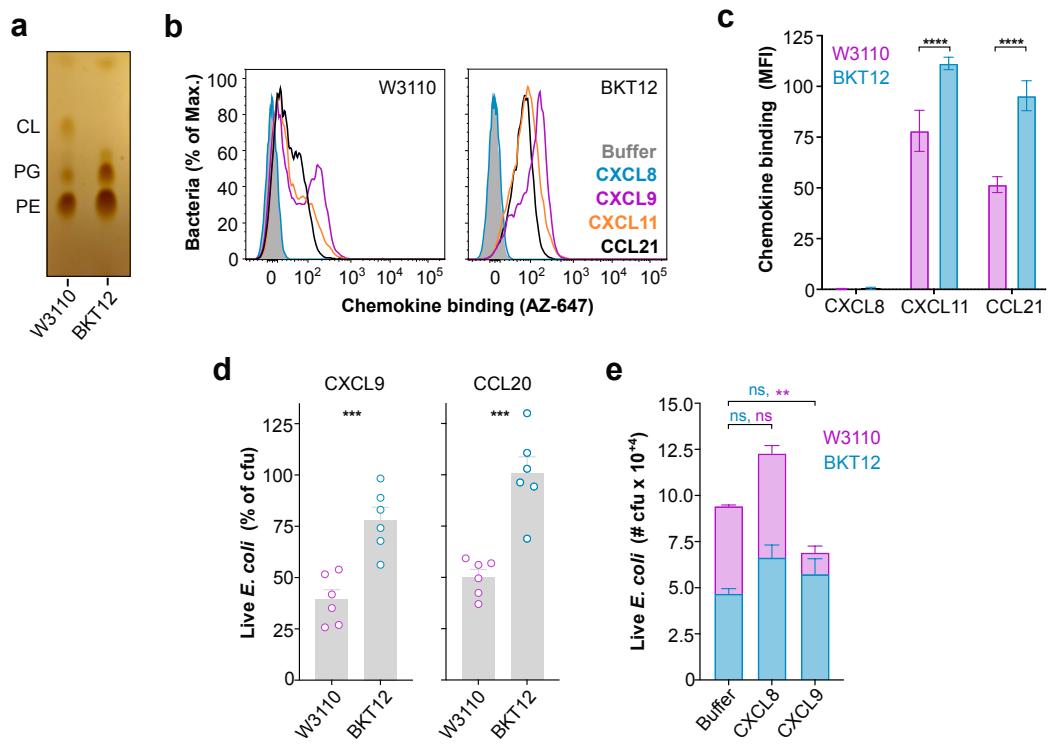


Figure 5

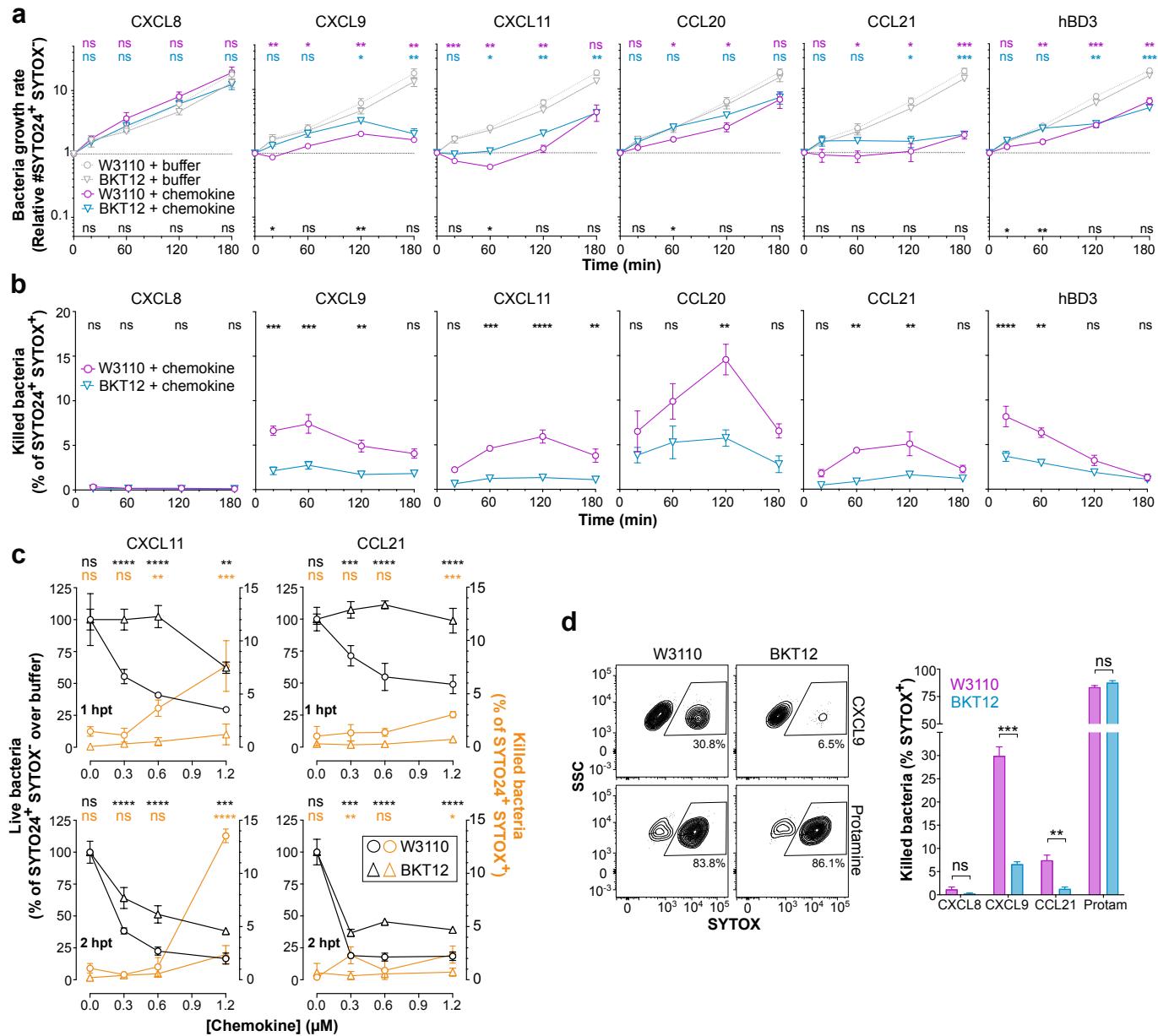


Figure 6

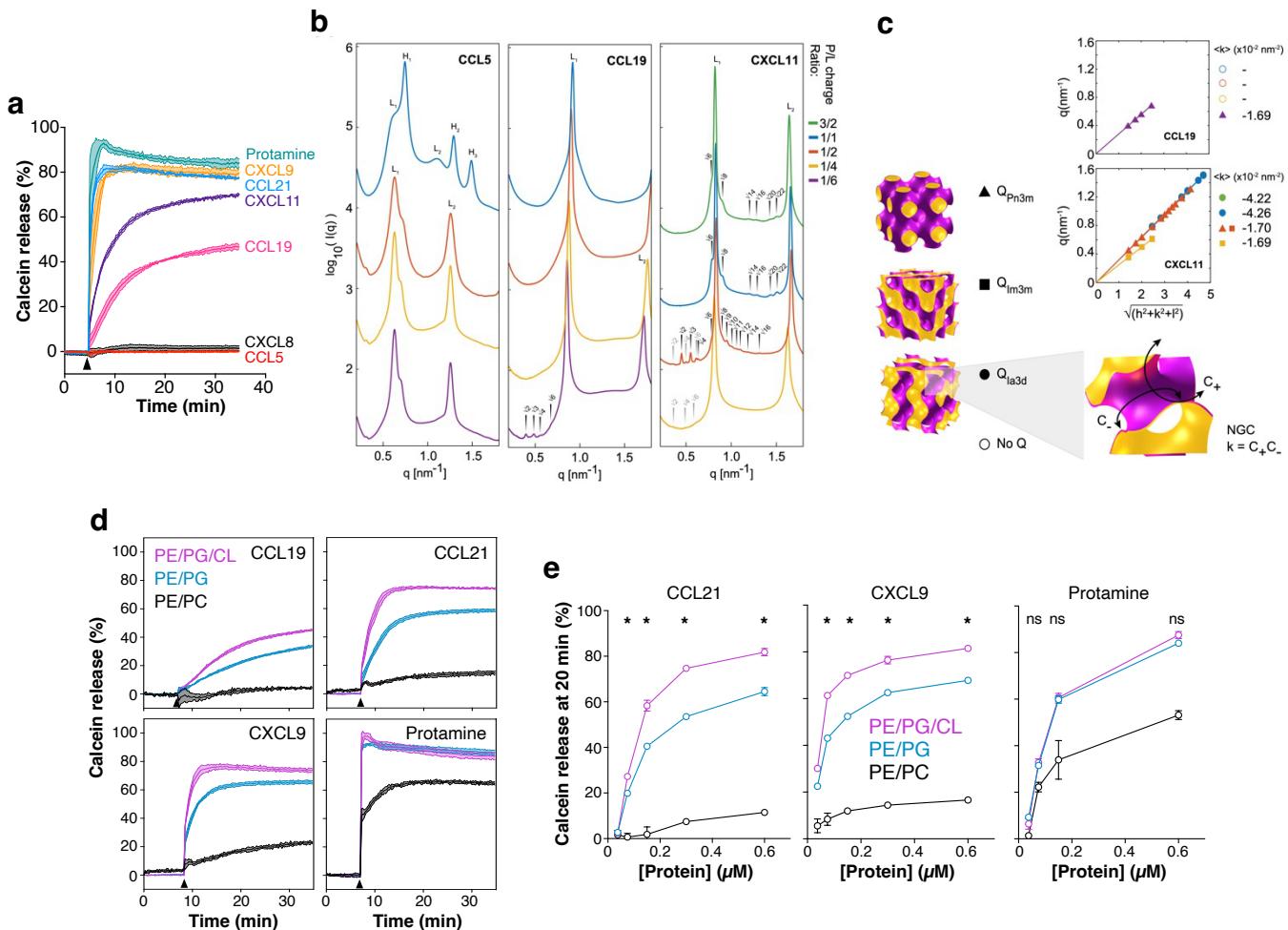



Figure 7

