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Abstract 

The development of personality traits is often viewed as evolutionarily adaptive. Current neuroticism research, 

however, predominantly highlights its negative health impacts, neglecting its potential evolutionary advantages.  

We propose that neuroticism’s inter-individual variability can be structured into two distinct geometric 

dimensions. One, named the Emotional Reactivity-Instability/Distress Spectrum (ERIS), correlates strongly with 

longevity and is associated with chronic diseases and risk-averse lifestyle. This dimension is underpinned by 

evolutionarily conserved subcortical brain regions and genes. The other, resembling the overall neuroticism score, 

is primarily linked to mental and stress-related disorders, as well as life satisfaction. It involves higher-order 

emotional brain regions and is genetically enriched in human-accelerated regions. Collectively, these dimensions 

represent a dual-strategy personality framework that optimizes survival and well-being, with the former being 

evolutionarily conservative and the latter potentially a unique human adaptation. 
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Introduction 
Extensive empirical evidence has established neuroticism as a fundamental domain of human personality1,2. 

Neuroticism describes an individual’s general tendency towards experiencing negative emotions, such as worry, 

depression, irritability, feelings of helplessness, and mood instability3,4.  

 

Given that neurotic individuals have poor responses to environmental stress, studies over the past decades have 

highlighted its negative impact on public health5,6. High levels of neuroticism are associated with various negative 

outcomes, such as susceptibility to mental and physical disorders7,8 , diminished quality of life5,6,8, and increased 

mortality risk9,10. However, from an evolutionary standpoint, minimal reactions to threatening stimuli, akin to an 

extreme form of low neuroticism, are generally not advantageous for survival. This concept echoes the ancient 

Chinese adage, ‘Life springs from sorrow and calamity; death comes from ease and pleasure’, encapsulating a 

time-honored survival philosophy. To mitigate risks and ensure survival, both animals and human ancestors 

required automatic responses to immediate and potential future threats11,12. This necessity is manifested through 

adaptive emotions such as fear and its anticipatory form -- anxiety, which are supported by distributed brain 

regions, such as the hippocampus, amygdala, and medial prefrontal cortex12–14.  

 

Neuroticism presents a significant paradox in the field of personality psychology: epidemiologically, it is 

associated with detrimental health outcomes, including increased mortality rates, yet it may simultaneously confer 

evolutionary advantages in survival scenarios. While certain studies have acknowledged heterogeneity within 

neuroticism9,15–17, the complexity of this paradox remains largely unresolved. This obscurity impedes our 

understanding of the nature and origins of neuroticism and hampers the development of effective intervention 

strategies2. In this study, we propose that neuroticism has evolved distinct dimensions, potentially as 

adaptations to unique ecological and cultural changes, influencing lifestyle and health outcomes through 

diverse genetic and neural mechanisms. Beyond the psychometric approach, we developed an inter-subject 

network to comprehensively characterize individual differences in neuroticism and utilized a dimensionality 

reduction technique to delineate the major gradients of population structure. By analyzing neuroticism 

questionnaires, electronic health records, behavioral phenotypes, neuroimaging, and genetic information in the 

UK Biobank, we reveal the heterogeneous gradients of neuroticism across populations and demonstrate how these 

gradients differently correlate with health outcomes, disease susceptibility, and lifestyle factors, as well as 

neurobiological and genetic underpinnings. We posit that an enhanced understanding of these gradients of 

neuroticism could be invaluable in formulating more effective preventive health strategies and advancing public 

health initiatives. 
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Results 

Robust dual-dimensional structure of neuroticism across diverse populations  

To systematically examine the latent structure of neuroticism, we analyzed five independent datasets across 

different cohorts. Four of the datasets were based on the neuroticism subscale of the NEO Five-Factor Inventory 

(FFI-N)18(Fig. 1a, left): the Human Connectome Project19 (HCP, n=1198, adults, United States), the Human 

Connectome Project Development20 (HCP-D, n=229, adolescents and young adults, United States), the Chinese 

university student dataset (CN-U, n=612, adults, China), and the Chinese adolescent dataset (CN-A, n=531, 

adolescents, China). Additionally, one of the datasets utilized the neuroticism subscale of the Eysenck Personality 

Questionnaire-Revised Short Form (EPQ-N)21(Fig. 1a, right), specifically the UK Biobank22 (n=401,574 elder 

adults, United Kingdom). For better interpretation and visualization, we categorized each item into ‘emotional 

reactivity’ and ‘emotional instability/distress’ (see Methods) but refrained from any quantitative analysis based 

on this classification. As illustrated in Fig. 1b, instead of a focus solely on total scores, we constructed an inter-

subject similarity network based on neuroticism item-level scores and employed a diffusion map23 approach to 

derive individual low-dimensional embeddings (see Methods). Recently, such an embedding approach has also 

been applied to characterize the dominant axes of the inter-subject brain similarity network24. Utilizing this 

technique, we uncovered a topological structure of neuroticism spanning the continuous spectrum, leading to the 

identification of two interpretable neuroticism gradients across five datasets (see below). As described in 

Supplementary Note 1, Supplementary Table 1-5, exploratory factor analysis did not consistently yield uniform 

latent structures across different questionnaires and cohorts.  

 

The principal gradient statistically approximates the conventional total neuroticism score (HCP: r = 0.997, P < 

2.2×10-308; HCP-D: r = 0.998, P < 2.2×10-308; CN-U: r = 0.994, P < 2.2×10-308; CN-A: r = 0.990, P < 2.2×10-308; 

UK Biobank: r = 0.994, P < 2.2×10-308; age-and sex-adjusted Spearman’s correlations), suggesting that the largest 

variance across population network is a composite reflection of all neuroticism items (Fig. 1c). Intriguingly, the 

second gradient unveils a novel geometric dimension of neuroticism. This dimension bifurcates into positive 

emotional reactivity, exemplified by anxiety, worry, tension, and depressed mood, as well as negative emotional 

instability/distress, characterized by irritability, shame, and mood instability (Fig. 1d). These two embeddings of 

neuroticism exhibit no significant correlation across individuals (HCP: r = 0.04, P = 0.13; HCP-D: r = -0.007, P 

= 0.91; CN-U: r = -0.05, P = 0.23; CN-A: r = 0.02, P = 0.63; UK Biobank: r = -0.003, P = 0.08; age-and sex-

adjusted Spearman’s correlations). Within the datasets using FFI-N, the second gradient demonstrated remarkable 

consistency in items of item weightings (Fig. 1f), in contrast to the principal gradient, which showed limited item 

specificity (Fig. 1e). To quantify and compare item weightings between the two types of questionnaires, we 

utilized a sentence transformer model to vectorize the item’s sentences25, suggesting the existence of a shared 

second gradient across two different questionaries (Fig. 1g, r = 0.63, P = 1.22×10-4, see Methods).  
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Our results suggest that the neuroticism personality trait encompasses a multidimensional geometric structure 

(Fig. 1h), exhibiting stable patterns across diverse populations, age groups, and measurement methodologies. 

Specifically, we have identified a stable, secondary dimension of neuroticism that encompasses two distinct 

aspects based on scoring. Higher scores indicate an increase in anxiety, worry, tension, and depressed mood, 

which we refer to as emotional reactivity. At the same time, they also reflect a decrease in irritability, 

frustration, and mood instability, which we refer to as emotional instability or distress. For clarity, we have 

labeled this gradient the emotional reactivity-instability/distress spectrum (abbreviated as ERIS), and the 

principal gradient as ‘neuroticism’, analyzing the latter using the total neuroticism score in subsequent analyses. 

A comprehensive discussion is provided in Supplementary Note 2 to elaborate on the relationship between 

ERIS and previous studies on the structure of neuroticism. 
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Fig.1. Geometric structure of neuroticism. (a) The assessment of the neuroticism trait employs scales from both 
the Neuroticism subscale of the NEO Five-Factor Inventory (FFI-N) and the Neuroticism subscale of the Eysenck 
Personality Questionnaire-Revised Short Form (EPQ-N). Detailed questions from these subscales are categorized 
into ‘emotional reactivity’ and ‘emotional instability/distress’ (see Methods). To visually distinguish these categories, 
they are represented in lavender and ocher colors, respectively. (b) The schematic illustrates our pipeline for deriving 
geometric embeddings/gradients of neuroticism. This is achieved by constructing a between-subject similarity network 
based on the similarity of items, followed by employing diffusion maps to obtain individual-level gradient scores. As 
an example within this framework, it’s possible for individuals to have identical overall neuroticism scores, like subjects 
2 and 3, yet possess distinctly different scores on gradient 2. (c-d) The weights of items contributing to the principal 
and second neuroticism gradients are displayed across five varied datasets (from left to right: HCP, HCP-D, CN-U, 
CN-A, and UK Biobank). The vertical axis quantifies the weight of each item on the gradient 1(c) and gradient 2(d), 
reflecting the respective contribution of each item to the gradient (Spearman correlation coefficient between the 
original item and gradient scores across population). Concurrently, the horizontal axis lists the specific item questions 
as outlined in section a, with the color scheme directly corresponding to the categorizations established therein. (e-f) 
The cross-cohort analysis utilizes FFI-N across datasets to assess the stability of item weights for gradient 1 (e) and 
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gradient 2, marked by an asterisk for unadjusted P values below 0.05 (n=12, across the items). (g) Sentence 
transformer models indicate item-level concordance between the FFI-N and the EPQ-N, specifically for gradient 2 of 
neuroticism. (h) Drawing on the style of the earlier brain’s functional gradient schematic23, we depicted the geometric 
structure of neuroticism based on our findings. Importantly, we identified and characterized gradient 2 as emotional 
reactivity-instability/distress spectrum (ERIS), encapsulating a continuous spectrum dimensional phenotype ranging 
from emotional reactivity to instability/distress.  

 

The ERIS gradient exhibits a notable survival advantage. 

While abundant evidence suggests that high levels of neuroticism correlate with higher mortality rates1,2,26, 

recent neuroticism phenotype or genetic studies at the facet and item level have identified that in certain 

circumstances, high neuroticism may indicate lower mortality rates9,15–17. However, to date, no study has 

directly employed the neuroticism scale to identify a subgroup whose lifespan exceeds that of individuals 

traditionally considered the healthiest with the lowest levels of neuroticism. As illustrated in Fig.2a, we 

categorically segregated the UK biobank participants into four exclusive groups: high and low neuroticism, and 

high and low ERIS levels, respectively. This classification was rigorously applied within each gender and age 

category, as detailed in the Methods section. In our survival analysis over more than 15 years, it was observed 

that individuals in the high ERIS group exhibited significantly lower mortality rates compared to those in the 

lowest neuroticism group (Fig. 2b, P = 1.3×10-6). We conducted a comparative analysis using specific factors of 

neuroticism identified in previous studies, which also suggested a lower mortality rate among individuals in our 

defined high ERIS subgroup (see Supplementary Note 2, Supplementary Table 6, and Supplementary Fig. 1). 

Notably, the low ERIS group displayed a marked inclination towards the highest mortality rates, ranking at the 

bottom among the four groups. This pattern of findings is visually consistent across different age and gender 

categories (Fig. 2c).  

 

After establishing lower future mortality rates in the high ERIS group compared to the low neuroticism group, 

we scrutinized their baseline self-reported health status. Notably, a higher percentage of individuals in the low 

neuroticism group self-assessed as being in excellent health and reported fewer long-standing illnesses, 

disabilities, or infirmities (Fig. 2d left). This observation might indicate either superior health in the low 

neuroticism group or their propensity for a more positive health perception. Conversely, the high ERIS group 

engaged in more frequent suspect disease check-ups and medical follow-up examinations than the low 

neuroticism group (Fig. 2d right), suggesting that diligent health self-monitoring in the high ERIS individuals 

could lead to proactive health management, potentially contributing to their longer lifespan. 

 

After evaluating the survival curves of different subgroups, our study next examined the associations between 

ERIS, neuroticism, and mortality in the top 5 high-fatality diseases (including ischemic heart disease, lung 
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cancer, cerebrovascular disease, and breast cancer) and COVID-19. Employing Cox proportional hazards 

models adjusted for age, sex, and age-sex interaction, we identified a significant impact of ERIS on overall 

mortality (HR = 0.88, 95% CI: 0.87-0.89), particularly notable in ischemic heart disease(HR = 0.83, 95% CI: 

0.79-0.86), lung cancer(HR = 0.79, 95% CI: 0.76-0.83), and COVID-19 (HR = 0.83, 95% CI: 0.77-0.89) (see 

Fig. 2e). In contrast, the neuroticism score exhibited a larger effect on the mortality associated with 

cerebrovascular disease compared to ERIS (see Fig. 2e). This pattern of associations was robust when using 

different confounds adjustments (such as body mass index, Townsend deprivation index, and qualification, refer 

to Supplementary Table 7). These findings indicate that the impacts of ERIS and neuroticism may vary across 

different causes of mortality. 

 
Fig.2 Longitudinal impact of neuroticism gradients on mortality rates. (a) Schematic for subgrouping by ERIS 
and neuroticism, categorizing participants into four distinct groups: low/high neuroticism and low/high ERIS. 
Duplicates were removed, and group sizes were balanced by adjusting larger groups to match the smallest group, 
ensuring strict age and gender control. The low neuroticism group comprised solely participants with zero scores on 
neuroticism. (see Methods).  (b) Kaplan-Meier survival curves illustrate the survival rates for four extreme groups 
(grouped according to the method in a), ranked from highest to lowest as follows: high ERIS, low neuroticism, high 
neuroticism, and low ERIS. For the two groups with higher survival rates, a log-rank test comparison revealed that the 
high ERIS group’s survival rate was significantly greater than that of the low neuroticism group. (c) Stratified death 
ratios were conducted for extreme ERIS and neuroticism groups, categorized by age and gender. Age intervals were 
established in five-year increments, with analyses performed both on the total sample and separately for each gender. 
Across different gender and age comparisons, the high ERIS group generally exhibited the lowest mortality rates. (d) 
Given the lower mortality rates observed in the high ERIS group compared to the low neuroticism group (as illustrated 
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in Fig. b-c), further investigation was conducted into the differences in health self-evaluation and medical care 
behaviors between individuals with high ERIS and those with low neuroticism. The bar chart indicates that individuals 
with high ERIS reported poorer self-assessed health and were more likely to undergo medical examinations. The 
deep green bars represent the high ERIS group, while the light pink bars represent the low neuroticism group. A chi-
squared test was used to evaluate the differences in self-reported health and medical examination rates between the 
two groups, with the p-values indicating statistical significance. General health metrics included self-reported medical 
conditions and evaluations of long-term illnesses, disabilities, or infirmities; medical examinations encompassed 
checks for suspected diseases and follow-up examinations after treatments.(e) Hazard ratios of Cox proportional 
hazards regression between ERIS/neuroticism and mortalities including all causes, ischemic heart disease, lung 
cancer, colorectal cancer, cerebrovascular disease, breast cancer. The corresponding death numbers are presented 
on top of the disease name. The asterisk denotes that ERIS exhibits a greater effect size than neuroticism, as shown 
in Supplementary Tab.7.  

 
Two geometric gradients of neuroticism are associated with distinct disease and lifestyle characteristics. 

We further investigated the correlations between the ERIS and neuroticism with various diseases, including 

those with the highest global burden (see Methods). These diseases were categorized into two main groups: 

physical and mental illnesses. As shown in Fig. 3a-b, binary logistic regression analyses indicated that elevated 

neuroticism levels generally correspond to an increased prevalence of these diseases, except for stomach cancer, 

where the association was not significant (P > 0.05, FDR corrected). Conversely, higher ERIS scores were 

associated with a reduced prevalence of these diseases, with schizophrenia as an exception, showing a negative 

correlation with ERIS. To illustrate the specific impact of ERIS and neuroticism on disease susceptibility, we 

computed the relative differences in log odds ratios (log(ORERIS) + log(ORneuroticism)) and displayed them as a 

gradient from left to right, showing a transition from ERIS’s protective effects to neuroticism’s increased 

susceptibility (Fig. 3a-b). Regarding physical illnesses, elevated ERIS levels are more specifically linked to 

road traffic injuries from motor vehicle (ORERIS = 0.85, 95% CI: 0.82-0.88), stomach cancer (ORERIS = 0.89, 

95% CI: 0.84-0.95), diabetes (ORERIS = 0.79, 95% CI: 0.78-0.80), lung cancer (ORERIS = 0.83, 95% CI: 0.81-

0.86), and COVID-19 (ORERIS = 0.83, 95% CI: 0.81-0.86), whereas neuroticism was more explanatory of 

headache disorders (ORneuroticism = 1.33, 95% CI: 1.30-1.37), diseases of the oesophagus, stomach and 

duodenum (OSDD, ORneuroticism = 1.29, 95% CI: 1.28-1.30), noninfective enteritis and colitis (ORneuroticism = 

1.24, 95% CI: 1.22-1.26), and gynaecological diseases (ORneuroticism = 1.14, 95% CI: 1.13-1.16) (Fig. 3a). In 

terms of mental disorders, ERIS is more specifically associated with reduced tobacco use (ORERIS = 0.73, 95% 

CI: 0.71-0.74) and is weakly associated with anxiety disorders (ORERIS = 0.97, 95% CI: 0.95-0.98); neuroticism, 

however, shows a positive correlation with all types of mental illnesses (ORsneuroticism range from 1.29 to 2.21, 

all Ps < 7.28×10-35) (Fig.3b), aligning with previous studies supporting neuroticism as a potential general factor 

in psychopathology1.  

 

Regarding lifestyle characteristics, individuals with high ERIS personality traits typically show marked risk-

averse tendencies, evidenced by a significant negative correlation with risk-taking behaviors (standardized β = -
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0.12, P < 2.23×10-308). Interestingly, ERIS and neuroticism exhibit the same directional effects in this dimension; 

that is, individuals with low neuroticism levels are more inclined to engage in risk-taking (standardized β = -0.02, 

P = 5.55×10-34). The pattern of risk aversion among individuals with high ERIS traits extends to various risk-

related behaviors, including speeding, engaging in certain sexual behaviors, and spending time outdoors during 

summer and winter (Fig. 3c). Notably, the variable ‘Age at first sexual intercourse’ shows that individuals within 

the lowest 5% of the ERIS range are approximately three times more likely to engage in early sexual activity 

(defined as age ≤15 years) compared to those in the highest 5%, for both male (7.66% for high ERIS vs. 22.02% 

for low ERIS) and female (5.28% for high ERIS vs. 15.19% for low ERIS). High ERIS are significantly linked 

with decreased substance use and more cessation behaviors. Remarkably, high ERIS and low neuroticism exhibit 

comparable effect sizes regarding the propensity to ‘Ever smoked’. However, ERIS shows significantly greater 

specificity for ‘Quit heavy smoking’ (Fig. 3c, ERIS: standardized β = 0.09, P = 5.74×10-193; neuroticism: 

standardized β = -0.03, P = 9.89×10-34). Interestingly, although high ERIS and low neuroticism similarly influence 

the overall ‘alcohol intake frequency’, individuals with high ERIS tend to consume less harmful alcohol types 

like spirits and more potentially beneficial types such as red wine (Fig. 3c). Additionally, individuals with high 

ERIS display significantly reduced ‘alcohol intake versus 10 years ago’, surpassing the effect size observed for 

neuroticism (Fig. 3c, ERIS: standardized β = -0.06, P = 3.69×10-277; neuroticism: standardized β = 0.01, P = 

2.80×10-6). These results suggest that high ERIS may be particularly effective in prompting the cessation of 

unhealthy habits due to health concerns. In terms of physical activity and sedentary behavior (Fig. 3c), individuals 

with high ERIS predominantly engage in moderate-intensity exercises (‘MET_moderategroup’ refers to ‘MET 

minutes per week for moderate activity’; ERIS: standardized β = 0.029, P = 2.22×10-63; neuroticism: standardized 

β = -0.014, P =1.35×10-14) and generally avoid both high and low-intensity exercises. Conversely, those with low 

neuroticism exhibit a preference for high-intensity activities (Fig. 3c). Furthermore, high ERIS is associated with 

less use of mobile devices, playing computer games, and mobile phone usage (Fig. 3c). Lifestyle traits specifically 

linked to lower neuroticism are intuitive and widely corroborated by earlier research, showing a link with 

improved well-being and quality of life across various domains27,28. These domains include better life satisfaction, 

improved sleep quality, fewer suicidal attempts, and reduced adverse reactions to stress (Fig. 3d).  

 

In addition, we examined the associations between different gradients of neuroticism with other domains. Notably, 

we found that individuals high in ERIS had similar positive associations with intelligence, educational attainment, 

socio-economic status and parental longevity as those low in neuroticism (see Supplementary Fig.2). In 

comparison to individuals with low neuroticism, those with high ERIS also demonstrated a dietary preference for 

cereals, cheese, and bread, while showing an aversion to unprocessed meats (see Supplementary Fig.2). 

Additionally, there was an increased preference for red wine (see below). This dietary pattern, characterized by a 

preference for cereals, fruit, fish, and a daily consumption of red wine, aligns closely with the traditional 
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Mediterranean diet, renowned for its substantial health benefits29. Collectively, these results suggest that 

individuals with high ERIS exhibit more risk-averse and healthier lifestyle choices, potentially explaining their 

lower incidence of traffic accidents, COVID-19 conditions, and lifestyle-related chronic diseases, ultimately 

contributing to increased longevity.  

 
Fig.3. Correlation between neuroticism gradients and diseases/lifestyles. (a-b) Relationship between 
ERIS/neuroticism and the diagnosis of diseases classified according to ICD-10 (a) physical disorders; (b)mental 
disorders). The horizontal axis represents the 30 diseases selected for the study (as detailed in the Methods section). 
The lower part of the vertical axis shows the association coefficients between ERIS/neuroticism and these diseases, 
while the upper half of the vertical axis shows the difference in disease-related absolute log (odd ratio) values between 
ERIS and neuroticism. The associations of ERIS and neuroticism with different diseases are markedly distinct by log 
(odd ratio). (c-d) Relationships between ERIS/Neuroticism and the six lifestyle categories. The vertical axis shows the 
name of different lifestyles (see Methods), and the horizontal axis shows the standardized beta values of ERIS (green) 
and neuroticism (red) associated with the different lifestyles. Abbreviations: GBPD., disorders of gallbladder, biliary 
tract, and pancreas; COPD., chronic obstructive pulmonary disease; VIID., diseases of veins, lymphatic vessels and 
lymph nodes, not elsewhere classified; OSDD., diseases of oesophagus, stomach and duodenum. NS, not significant 
(P > 0.05 after FDR correction). 
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The neurostructural signatures of the geometric gradients of neuroticism. 

We next aimed to investigate the neuroanatomical basis of neuroticism gradients. Previous meta-analyses have 

failed to establish a consistent link between neuroticism and brain structures, such as gray matter volume30,31. 

Therefore, we aim to establish a stable relationship between neuroticism gradients and brain structures in a large 

sample, which will help provide deeper biological insights into the neuroanatomical basis of neuroticism.  

 

Through a large-sample voxel-based morphometry (VBM) analysis of neuroticism in the UK Biobank (n=38,987), 

we identified distinct gradients of neuroticism attributable to mostly unique variations in gray matter volume 

across the entire brain. Fig. 4a illustrates voxels significantly associated with ERIS and overall neuroticism scores 

(Fig. 4a, voxel-level threshold P < 1×10-3 for ERIS and P < 0.05 for neuroticism, FDR corrected, cluster size > 

100). We found a generally negative association of neuroticism with higher-order emotional brain regions, 

including the anterior cingulate cortex (ACC), medial prefrontal cortex, orbitofrontal cortex, anterior insula, and 

retrosplenial cortex, alongside a significant positive correlation with the left caudate. In contrast, inter-individual 

differences in ERIS demonstrated larger effects in associations with brain structure (Fig. 4b, with 15% of grey 

matter voxels showing absolute z-score values greater than 4, as opposed to only 1.5% for neuroticism), 

predominantly positive associations with the largest effect sizes observed in the cerebellum, medial thalamus, 

amygdala, hippocampus, parahippocampal gyrus, bed nucleus of the stria terminalis (BNST), and cortical areas 

such as the orbitofrontal cortex and insula. To enhance interpretability, we also used multiple brain atlases to 

perform ROI-based analyses (see Methods, Supplementary Table 8). Notably, these brain areas significantly 

overlap with established key nodes within the anxiety and fear circuits identified in animal models32. We next 

integrated the significant top 10% voxels related to ERIS and neuroticism into a Neurosynth functional 

annotation33 analysis (excluding the caudate due to its directionally inconsistent association). The results 

suggested that neuroticism is primarily linked to higher-order cognitive functions such as decision-making, 

strategy formulation, and monitoring (Fig. 4c), whereas ERIS aligns more closely with fundamental emotional 

functions like fear, anxiety, and risk assessment (Fig. 4d). 

 

In summary, ERIS and neuroticism are linked to a distributed network of emotional circuits within the brain. 

Neuroticism primarily engages regions associated with higher-order emotion processing, indicating an 

involvement of top-down regulation mechanisms. Conversely, the neural correlates of ERIS are anchored in 

more anatomically conserved structures (see Fig. 4e, top 15 items are shown). These observations suggest a 

functional divergence between neuroticism, which may rely on cognitive modulation of emotions, and ERIS, 

which appears to depend on more fundamental, instinctual emotion responses. 
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Fig.4. The neuroanatomical signatures of neuroticism gradients. (a-b) Voxel-wise regions significantly 
correlated with neuroticism (a) and ERIS (b) from VBM analysis. Neuroticism is primarily associated with grey 
matter volumes in higher-order brain regions, in particular the medial prefrontal cortex and the anterior cingulate 
cortex. Conversely, ERIS shows significant correlations with grey matter volume in more conserved areas, including 
the cerebellum, amygdala, hippocampus and thalamus. (c-d) Word cloud visualization of top 15 Neurosynth items 
related to neuroticism (c) and ERIS (d), with font linearly corresponding to loading weights (see Methods). 
Neuroticism (red) is primarily associated with high-order cognitive functions such as decision-making, strategic 
formulation, and monitoring. ERIS (green) shows a specific association with the basic emotional responses, 
including fear, anxiety, and risk processing. (e) A schematic regarding the neurostructural signatures of 
neuroticism/ERIS is represented. Regions (red) linked to neuroticism are more specific in top-down cognitive 
modulation, whereas regions (green) related to ERIS are conservate, and more likely involved in the bottom-up 
process. The overlapped regions are shown in grey. Abbreviations: ACC., anterior cingulate cortex; dmpFC., 
dorsomedial prefrontal cortex; vmPFC., ventromedial prefrontal cortex; mOFC., medial orbitofrontal cortex; Crus I., 
Crus I cerebellum; Crus II., Crus II cerebellum; VIIIa, VIIIa cerebellum; VIIb ., VIIb cerebellum; PCC., posterior 
cingulate cortex; BNST., bed nucleus of the stria terminalis; Phg.,  parahippocampal gyrus. 

 

Genome-wide association studies (GWAS) of the geometric gradients 

We conducted GWAS on geometric gradients in a cohort of 267,262 individuals from the UK Biobank. For the 

newly characterized phenotype ERIS, we identified 12 significant genomic risk loci (see Methods, 

Supplementary Table 9). The Manhattan plot for ERIS exhibited a P value association pattern distinctly 

different from that of neuroticism (Fig. 5a, top: ERIS; bottom: neuroticism). A review of the GWAS catalog34 

revealed that 2 of the 12 loci were not associated with any neuroticism-related trait or psychiatric disorder (see 

Supplementary Table 9, chr7:10,990,005-11,136,052, chr16:7,215,912-7,237,717). Similar to phenotypic 

correlations, these loci were associated with risk-taking (9 loci), smoking (8 loci), and sex-related behaviors (13 

loci), as detailed in supplementary data. The large sample size resulted in expected genomic inflation (ERIS: 

λGC = 1.29; Neuroticism: λGC= 1.48) and linkage disequilibrium score regression35 (LDSC) intercepts close to 1 
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(ERIS: intercept = 1.023, SE= 0.0086; Neuroticism: intercept = 1.027, SE = 0.012), indicating that the signals 

are primarily attributable to true polygenicity rather than confounding biases. The LDSC SNP-based heritability 

(h2) for ERIS was estimated at 0.069 (SE = 0.0033) and for neuroticism at 0.116 (SE = 0.0060). 

 

Several studies have elucidated genetic heterogeneity within the structure of neuroticism15,36. Nagel et al.15 

explored genetic correlations between 12 neuroticism items and 33 external traits using GWAS summary 

statistics independent of the UK Biobank. This exploration revealed that many items exhibited opposing effects. 

Building the result of Nagel et al, we investigated the association between the weights of ERIS (as depicted in 

Fig. 1d) and the heterogeneous genetic correlations across the 12 neuroticism items with external traits, aiming 

to pinpoint traits demonstrating genetic specificity with ERIS. Among the 33 external traits, the ERIS gradient 

showed significant positive correlations with smoking cessation, longevity, and educational attainment. 

Conversely, negative correlations were observed with ever smoking, attention deficit hyperactivity disorder, 

waist-hip ratio, daily cigarette consumption, and number of children. Remarkably, this analysis also confirmed a 

positive association between the ERIS and longevity (r = 0.86, P < 0.05, across 12 items) from a genomic 

perspective, independent of the death records from the UK Biobank cohort (see Fig. 5b). Subsequently, we 

calculated the polygenic risk scores (PRS) for ERIS and neuroticism and explored their associations with 

mortality. Utilizing Cox regression analysis (see Fig. 5c), we determined that a higher PRS for ERIS 

significantly predicts a reduced mortality rate across various PRS thresholds. While the PRS for neuroticism 

also predicts mortality, it does so with a lesser effect and without consistent impacts across different thresholds. 

 

Inspired by our VBM results, we hypothesize that ERIS and neuroticism may exhibit varying degrees of 

evolutionary conservation, with neuroticism likely being more significantly expanded in recent human brain 

evolution. Consequently, we conducted an enrichment analysis that integrates GWAS results with genes 

associated with the human accelerated regions37,38 (HARs) (see Fig. 5d), previously identified to be highly 

expressed in the default mode network, such as the medial prefrontal cortex38, which showed associations with 

neuroticism. Using multi-marker analysis of genomic annotation (MAGMA) analysis39, facilitated by FUMA40, 

we identified 247 genes specifically associated with ERIS and 787 genes specifically associated with 

neuroticism, as well as 63 genes associated with both (P < 0.05, FDR corrected; see Supplementary Data). 

Permutation tests revealed that genes related to neuroticism, as opposed to ERIS, are significantly enriched in 

the HARs (neuroticism overlap: 127/787 genes, P < 1×10-5; ERIS overlap: 29/247 genes, P > 0.05). Results of 

gene-set analyses using MAGMA are presented in supplementary data. Selecting the top 100, 200, and 300 

genes of ERIS and neuroticism yielded similar results (see Fig. 5e, the overlapped genes were removed). 

Alternatively, selecting genes based on positional mapping in FUMA revealed that the results are robust 
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(neuroticism overlap: 68/524 genes, P < 1×10-5; ERIS overlap: 12/149 genes, P > 0.05). These findings suggest 

that neuroticism, compared to ERIS, tend to have a higher rate of genetic evolutionary acceleration. 

Fig. 5 Genetic associations of neuroticism gradients. (a) Manhattan plot illustrating gene variants associated 
with ERIS and neuroticism. The genome-wide significance threshold (P < 5 × 10-8) is represented by a red line. The 
upper part of the plot highlights genomic loci associated with ERIS, while the lower part shows loci associated with 
neuroticism. (b) Bar chart showing the association between ERIS item weights and the item-level genetic 
correlations for 33 behavioral phenotypes derived from Nagel’s study15. Statistically significant correlations are 
marked with asterisks. The bars are ordered according to the size of the correlation coefficients. (c) Bar graph 
showing the relationship between different polygenic risk score (PRS) thresholds for ERIS/neuroticism and all-cause 
mortality. The x-axis represents different thresholds of the ERIS/Neuroticism PRS, while the y-axis represents 
hazard ratios from Cox proportional hazards regression models. (d) Schematic illustrating the analysis of genes 
associated with HARs, which represent genomic loci with accelerated divergence during human evolution. (e) 
Comparative analysis of gene expression levels within HARs for ERIS and neuroticism. The distribution plot on the 
left shows the distribution of HARs in randomly selected gene sets of 100, 200 and 300 genes. The vertical dashed 
lines indicate the number of genes significantly associated with ERIS (green) and Neuroticism (red). The Venn 
diagram on the right shows the frequency of occurrence of HARs in gene sets randomly associated with ERIS 
(green) or with Neuroticism (red).  
 

Discussion 

Our study establishes a multidisciplinary framework for personality research, utilizing a data-centric 

methodology to decipher latent population structures and their links to health outcomes, disease susceptibility, 

lifestyle factors, as well as neurobiological and genetic underpinnings. For neuroticism, which assesses an 

individual’s propensity for negative affect in response to adverse events, we identified two intrinsic gradients: 

1) a general tendency toward response intensity, as indicated by the neuroticism total score; 2) the ERIS, 

delineating individuals’ inclination towards either adaptive response (such as worry or tension) or maladaptive 
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response (such as irritability or mood instability) in moderately intense situations. We found that both a lower 

neuroticism score and a higher ERIS can predict longer lifespan, albeit through different mechanisms. 

Individuals with lower neuroticism likely benefit from improved well-being, better sleep, and reduced stress, 

decreasing their risk of mental and certain physical illnesses, especially gut and immune-related. In contrast, 

those with higher ERIS may achieve longevity through adaptive vigilance and risk avoidance, leading to fewer 

risky behaviors and substance abuse, better compliance with health screenings, and reduced susceptibility to 

chronic diseases like diabetes and cancer. Intriguingly, our study reveals that the ERIS dimension, compared to 

classic neuroticism, exhibits greater evolutionary conservation in anatomical and genetic aspects and has a 

stronger prediction power for future mortality. 

Fig. 6: Evolutionary hypothesis of neuroticism’s geometric structure. This figure illustrates an evolutionary 
hypothesis model for the geometric structure of neuroticism, which outlines two dominant strategies inferred from 
the results of this study. The model argues that the geometric gradient of neuroticism encompasses two primary 
continuous spectra, within which high ERIS and low neuroticism emerge as two extreme groups, each endowed with 
distinct adaptive advantages. Individuals with high ERIS scores generally exhibit risk-averse behaviors that correlate 
with increased longevity. ERIS is not associated with HARs, but aligns with evolutionarily conserved brain regions 
primarily involved in primitive anxiety and fear circuits. In contrast, our analysis links neuroticism to HARs and 
higher-order brain regions, suggesting that neuroticism is a personality trait that evolved later, primarily to cope with 
stress and modulate stress responses. Individuals with lower levels of neuroticism often adopt a ‘pursuit of a better 
life’ strategy, which is associated with improved sleep, reduced stress responses, and increased well-being, 
reflecting a uniquely human strategy for achieving a fulfilling life.  
 

Based on our findings, we propose an evolutionary hypothesis model of neuroticism, as illustrated in Fig. 6. 

Current human neuroticism encompasses two distinct dominant dimensions: high ERIS and low overall 
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neuroticism, which are associated with optimal longevity and well-being, respectively. The former, likely an 

ancient trait, appears to be an inheritance from the shy-bold continuum41, observed across various species from 

fish to humans. This trait is linked to more conservative emotional circuits processing the fear and anxiety 

related to threats. In contrast, the latter dimension is a human-specific behavioral variation that has emerged 

more recently in response to ecological and cultural changes. This trait is characterized by higher-order 

emotional control circuits that refine strategies to manage and regulate stress responses, thereby enhancing 

happiness and overall life quality. Due to resource constraints, our ancestors and animals often engaged in 

trade-offs among various demands, such as those between survival and reproduction, or between starvation and 

predation. Across many species, the shy-bold (reactive-proactive) continuum41–43 has been consistently 

identified as a fundamental ‘animal personality’, wherein bolder individuals exhibit a higher propensity for risk-

taking in reproduction and predation rather than prioritizing their survival and self-maintenance (bold 

individuals tend to reproduce more but survive less than shy ones). The ERIS dimension is likely intertwined 

with the shy-bold continuum. The positive extreme of the ERIS axis, which is typified by heightened emotional 

reactivity (e.g., anxiety), may encourage risk-averse behaviors44. Conversely, the negative extreme, 

characterized by emotional instability or distress, could amplify impulsiveness44,45. Our research underscores a 

pronounced association between ERIS and risk-taking behaviors, which surpasses that observed in overall 

neuroticism. This trend is strikingly apparent in the sexual domain, particularly the ‘age first had sexual 

intercourse’, where individuals in the lowest 5% ERIS bracket are approximately three times more likely to 

engage in early sexual activity compared to those in the highest 5%. Furthermore, we have found that the item-

level specificity of ERIS is genetically linked to traits like ‘longevity’ (positive) and ‘number of children’ 

(negative), as evidenced in Fig. 5b. Therefore, we postulate that individuals with high ERIS scores, who 

typically adopt a cautious modern lifestyle, may embody an evolutionary adaptation of the shy personality 

(driven by an intrinsic survival instinct and a fear of mortality). In contrast, within the dimension of 

neuroticism, we postulate that lower levels of neuroticism have evolved into a predominant personality trait. 

This evolution facilitates the fulfilment of higher-order emotional needs (such as well-being), transcending the 

mere survival-related trade-offs as humanity has advanced. Modern humans are primarily faced with stressors 

related to daily life, such as academic pressure, social interactions, and workplace challenges, rather than threats 

to survival like predators. Individuals who are less affected by these modern stressors exhibit reduced stress 

responses, higher levels of happiness, life satisfaction, and sleep quality, all of which contribute to their overall 

physical and mental health. When considering longevity and well-being as integrated readouts, our findings 

suggest both high ERIS and low neuroticism as two different dominant strategies. 
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Individuals with high neuroticism, when confronted with negative external stimuli, are often perceived as less 

effective in regulating negative emotions. Contemporary research46,47 frames emotion regulation as a dynamic 

interplay between cortical cognitive control systems, which orchestrate ‘top-down’ modulation, and subcortical 

systems, facilitating ‘bottom-up’ emotional generation. Our findings align with this perspective, indicating that 

the two geometric gradients of neuroticism correspond to distinct neuroanatomical bases along this hierarchy of 

emotional processing, as corroborated by Neurosynth results.  

 

Specifically, individuals with high overall neuroticism tend to exhibit reduced grey matter volume in key 

cortical regions involved in the downregulation of negative emotions. These areas include the dorsomedial 

prefrontal cortex (dmPFC), ventromedial prefrontal cortex, ACC, anterior insula, and retrosplenial cortex. 

Particularly, the dmPFC plays a crucial role in cognitive processing like cognitive reappraisal, selective 

attention, and rumination, exerting top-down control over downstream emotional expression48–50. Similarly, the 

anterior insula51,52, rather than the posterior, is involved in emotion awareness, aligning with our results that link 

the anterior insula more with neuroticism, while ERIS does not show this specificity. Furthermore, the second 

gradient in the population, ERIS, exhibits distinct associations with evolutionarily conserved brain regions, 

including the cerebellum and limbic structures such as the thalamus, hippocampus, amygdala, and BNST. 

Echoing cues from Neurosynth and previous animal studies, these brain areas are integral nodes in anxiety and 

fear circuits. Recent research also increasingly acknowledges the significant role of the cerebellum13,53–55 in 

emotion processing. Genetically, neuroticism-associated genes are significantly enriched in human-accelerated 

genes, which are more expressed in higher-order cognitive networks. Considering above, we speculate that the 

individual differences in the overall neuroticism trait predominantly depend on higher-order capacity of ‘top-

down’ regulation, while the ERIS trait is closely related to more conserved ‘bottom-up’ emotional reactivity. 

 

Neuroticism is recognized as a fundamental domain of personality with substantial public health significance. 

Understanding its structure and origins may improve strategies for screening high risk population and providing 

effective prevention methods. Beyond the classic neuroticism score, we show distinct neuroticism geometric 

gradients correlate with differing susceptibilities to diseases and mortality rates, allowing for the stratification of 

populations into various risk categories, such as those with high neuroticism or low ERIS. Previous studies46 

indicate that cognitive reappraisal is more effective in regulating top-down than bottom-up generated emotions. 

Considering the distinct neuroanatomical correlates of overall neuroticism and ERIS, our findings imply the 

potential for varied intervention strategies. For example, it warrants investigation whether individuals with low 

ERIS would be more responsive to bottom-up approaches47 such as experiential emotion regulation or physical 

exercise, while those with elevated neuroticism levels may benefit more from cognitive behavioral therapy. 
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In our work, we developed a subject-level similarity network based on neuroticism item scores and employed 

diffusion map embedding to identify key neuroticism gradients. This concept and approach, contrasting with 

classic psychometrics reliant on closely positive item correlations, is designed to uncover the main dimensions 

of neuroticism’s population structure with minimal assumptions about weight directionality. For instance, ERIS 

is characterized by both positive and negative weightings, a concept not typically endorsed in factor analysis. 

Our findings suggest that such a personality trait with mixed weights has significant implications and 

strengthens correlations with behavioral and biological phenotypes. Furthermore, these geometric gradients of 

neuroticism are consistently observable across five independent cohorts.  

 

Several previous studies have suggested the heterogeneity within the neuroticism domain. Nagel et al.15 

illuminated the genetic correlations between item-level neuroticism and 33 distinct psychological traits, a result 

used in our work to address the genetic specificity of ERIS. Gale et al. employed a bifactor model to identify 

two specific neuroticism factors9: anxiety/tension and worry/vulnerability, which mirror the positive part in 

ERIS (see Supplementary Fig.3). This study, along with several subsequent work16, found positive correlations 

of these factors with affluence, intelligence, health, and longevity from genetic or phenotypic standpoints. In 

our supplementary notes, we discuss the relationship between ERIS and the findings from previous studies. 

Extending to existing studies, our study strives to provide an integrated framework for elucidating the inherent 

structure of neuroticism, incorporating insights from psychology, data science, epidemiology, neuroscience, 

genetics, and evolution.  

 

Several limitations in our study are noteworthy. The UK National Statistics Office reports that from 2018 to 

2020, the average death age was 82.3 years for men and 85.8 years for women, whereas UK Biobank 

participants with death certificates had average death ages of 71.1 and 70.8 years, respectively. This 

discrepancy suggests limitations in our study due to the duration of longitudinal tracking. Future research with 

extended follow-up periods could yield deeper insights into neuroticism’s link with all-cause and specific 

disease mortalities. Our study used two different scales to examine neuroticism’s geometric structure across 

diverse, multi-centered cohorts. Notably, unlike the EPQ-N, the FFI-N does not measure mood instability 

directly. Future research should include ERIS items and investigate more specific neuroticism measurement 

scales. While our study focused on mortality, future studies should broaden the scope to include diverse health 

outcomes and employ multi-wave cohort designs to clarify neuroticism’s relationship with disease. It would 

also be beneficial to investigate interventions, such as lifestyle modifications, that could influence these 

associations. 
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Method 
Neuroticism measurements 

Neuroticism is defined as a relatively stable trait, marked by an inclination to experience a range of negative 

emotions. This spectrum includes, but is not limited to anxiety, depression, irritability, and emotional 

instability2. Although the concept of neuroticism is widely acknowledged, there are various versions of 

measurement questionnaires available. Among them, the FFI-N and the EPQ-N are widely recognized and 

utilized internationally for evaluating neuroticism56,57. Overall, the FFI-N and the EPQ-N cover similar 

domains. However, the EPQ-N offers a more direct measurement of mood swings, an aspect not explicitly 

addressed in the FFI-N. A recent study highlights the pivotal role of negative emotions in the construct of 

neuroticism, an aspect where the objectives of both questionnaires converge58.  

 

FFI-N (HCP, HCP-D, CN-U, and CN-A datasets). The FFI-N, developed by Paul T. Costa and Robert R. 

McCrae, consists of 12 items designed to assess neuroticism on a Likert 5-point scale, with higher scores 

indicating greater levels of neuroticism59. Extensive past research has validated the high reliability and validity 

of the English version, establishing it as a trustworthy tool for neuroticism assessment60,61. This version is used 

in the HCP and HCP-D datasets, with specific questionnaire items detailed below. For the Chinese version, we 

calculated the Cronbach’s alpha coefficient to verify its reliability, as elaborated in the supplementary notes. 

The Chinese version was administered in the CN-A and CN-U samples, with details of the questionnaire items 

available in the supplementary notes. To provide a comprehensive overview of the scale’s application across 

these datasets, Supplementary Fig.4-7 respectively display the frequency of each neuroticism item within the 

four datasets. 

 

 The English version utilized in the HCP and HCP-D datasets is:  

1. I am not a worrier (abbreviated as Worried) 

2. I often feel inferior to others (abbreviated as Inferior) 

3. When I’m under a great deal of stress, sometimes I feel like I’m going to pieces (abbreviated as Stress) 

4. I rarely feel lonely or blue (abbreviated as Blue) 

5. I often feel tense and jittery (abbreviated as Tense) 

6. Sometimes I feel completely worthless (abbreviated as Worthless) 

7. I rarely feel fearful or anxious (abbreviated as Anxious) 

8. I often get angry at the way people treat me (abbreviated as Irritability) 

9. Too often, when things go wrong, I get discouraged and feel like giving up (abbreviated as Discourage) 

10. I am seldom sad or depressed (abbreviated as Depressed) 
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11. I often feel helpless and want someone else to solve my problems (abbreviated as Helpless) 

12. At times I have been so ashamed, I just wanted to hide (abbreviated as Ashamed) 

 

EPQ-N (UK Biobank dataset). The EPQ-N, conceived by British psychologist Hans Eysenck, encompasses 12 

questions with response choices of ‘Yes’, ‘No’, ‘Don’t know’, and ‘Prefer not to answer’21. In our study, 

responses marked as ‘Don’t know’ and ‘Prefer not to answer’ were treated as missing data. This scale has been 

validated for its reliability and applicability across different cultural contexts. We visualized the item score 

frequencies of EPQ-N among UK Biobank participants in Supplementary Fig.8. 

 

The specific questions of the EPQ-N are:  

1. Does your mood often go up and down? (abbreviated as Moodswing, Field ID:1920) 

2. Do you ever feel ‘just miserable’ for no reason? (abbreviated as Miserable, Field ID:1930) 

3. Are you an irritable person? (abbreviated as Irritability, Field ID:1940) 

4. Are your feelings easily hurt? (abbreviated as Sensitivity, Field ID:1950) 

5. Do you often feel ‘fed-up’? (abbreviated as Fed up, Field ID:1960) 

6. Would you call yourself a nervous person? (abbreviated as Nervous, Field ID:1970) 

7. Are you a worrier? (abbreviated as Worrier, Field ID 1980) 

8. Would you call yourself tense or ‘highly strung’? (abbreviated as Tense, Field ID:1990) 

9. Do you worry too long after an embarrassing experience? (abbreviated as Worry, Field ID:2000) 

10. Do you suffer from ‘nerves’? (abbreviated as Nerves, Field ID:2010) 

11. Do you often feel lonely? (abbreviated as Loneliness, Field ID:2020) 

12. Are you often troubled by feelings of guilt? (abbreviated as Guilty, Field ID:2030) 

 
The subjective categorization of the neuroticism items. 

Neuroticism is defined as a trait characterized by a predisposition towards negative emotional reactions, 

particularly in response to external stressors62. To improve clarity and enhance interpretation, we have 

subjectively divided the questionnaire items of the Five-Factor Inventory-Neuroticism (FFI-N) and Eysenck 

Personality Questionnaire-Neuroticism (EPQ-N) into two distinct domains: emotional reactivity and emotional 

instability/distress. 

 

In our classification, Emotional Reactivity encompasses relatively common and basic negative affectivity that is 

typically triggered by adverse situations and stress, such as worry, anxiety, tension, and feelings of 

depression63–65. In contrast, Emotional Instability/Distress includes emotional variability and perceptible 

internal distress and turmoil, often linked with social contexts and involving more complex cognitive or 
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emotional responses, such as feelings of shame and inferiority66,67. It is important to emphasize that this 

categorization, while subjective, is specifically designed to facilitate the interpretation and visualization of data 

(as illustrated in Fig. 1a) and does not influence the statistical outcomes of our analysis, since it was not 

incorporated into the data processing stage. 

 

Specifically, we categorized the following items under the Emotional Reactivity domain due to their 

measurement of fundamental emotional reactions: from FFI-N, ‘Worried’, ‘Anxious’, ‘Depressed’, ‘Blue’, 

‘Tense’, and ‘Stress’; and from EPQ-N, ‘Worrier’, ‘Worry’, ‘Sensitivity’, ‘Nervous’, and ‘Nerves’. Conversely, 

items that reflect a greater degree of social attributes and internal distress were assigned to the Emotional 

Instability/Distress domain: from FFI-N, ‘Inferior’, ‘Irritability’, ‘Discourage’, ‘Worthless’, ‘Helpless’, and 

‘Ashamed’; and from EPQ-N, ‘Loneliness’, ‘Guilty’, ‘Irritability’, ‘Fed Up’, and ‘Miserable’. The 

‘Moodswing’ item from EPQ-N, which directly assesses emotional variability, is also categorized under this 

domain. 

 

Ambiguously, both the FFI-N item ‘I rarely feel lonely or blue’ and the EPQ-N item ‘Do you often feel lonely?’ 

include the concept of loneliness. We consider loneliness to be a form of emotional distress stemming from 

unmet social needs. However, the inclusion of ‘blue’ in the FFI-N item, closely related to the concept of being 

depressed, leads to its classification under emotional reactivity. On the other hand, ‘fed up’ and ‘miserable’, 

although not necessarily related to social attributes, are considered forms of distress and are thus included under 

emotional instability/distress. 

 

Participants  

UK Biobank. In our research, we harnessed the extensive data resources of the UK Biobank, registered under 

application number 8513968. This comprehensive database includes a wide range of data, encompassing 

phenotypic, imaging, and genetic information69,70. Our study primarily focused on data from the initial 

registration phase (2006-2010) and the third visit phase (2014-2020), offering a wealth of individual participant 

information. 

 

During the recruitment period (2006–2010), the UK Biobank conducted a thorough integration of diagnostic 

and evaluative methodologies. This approach involved detailed demographic surveys, evaluations of 

neuroticism, mental health, lifestyle questionnaires71. Additionally, blood samples were gathered for genome-

wide genotyping, enabling in-depth biochemical analyses. To assess neuroticism, the UK Biobank used the 12-

item EPQ-N and included 401,574 individuals (215,585 females, age: 56.41 ± 8.07 years old). 
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In the third visit phase (2014–2020) of the UK Biobank, neuroticism follow-up assessments were conducted for 

35291 participants (17717 females, age: 54.92 ± 8.07 years old)68. Concurrently, structural brain imaging was 

carried out at imaging centers in Manchester, Reading, and Newcastle68,70. The neuroticism data from this phase 

were mainly used to perform VBM analysis.  

 

Beyond these primary data collection periods, our study also incorporated additional longitudinal data, 

including National Health Service (NHS) medical records, which covered ICD-10 classifications and COVID-

19 disease and mortality records72,73. This supplementary data facilitated our exploration of the relationships 

between neuroticism gradients, disease, and life expectancy. 

 

The UK Biobank rigorously adhered to ethical standards and received approval from the North West Multi-

centre Research Ethics Committee. Consistent with established research ethics practices, comprehensive 

informed consent was meticulously obtained from all participants. This protocol guaranteed the integrity and 

ethical compliance of our research, maintaining the highest standards of research ethics and safeguarding 

participant privacy. 

 

HCP.  Our study incorporated personality data from the HCP S1200 young adult subjects (n=1198; 650 

females, age: 28.84 ± 3.68 years old)74. The HCP implemented the NEO Five-Factor Inventory (FFI), a 

comprehensive 60-item questionnaire tailored to evaluate the five-factor model of personality59. This instrument 

encompassed five dimensions: neuroticism, agreeableness, openness, conscientiousness, and extraversion60. 

Participants provided their responses on a 5-point Likert scale, varying from strongly disagree to strongly 

agree75. The FFI has been extensively validated in the United States and several other countries, confirming its 

reliability and applicability across diverse populations76. We explored the relationships between different 

gradients of neuroticism and FFI traits (see Supplement Fig. 10-11). Adjusted for age and sex, the first 

neuroticism gradient predominantly exhibited high correlations with neuroticism (partial r = 0.99, P < 2.2×10-

308), and significant correlations with conscientiousness (partial r = -0.41, P = 1.06×10-48), extraversion(partial r 

= -0.34, P = 3.01×10-34) and agreeableness(partial r = -0.32, P = 5.25×10-30), while the ERIS showed positive 

correlations with conscientiousness (partial r = 0.20, P = 9.08×10-12), agreeableness (partial r = 0.14, P = 9.75×

10-7) and extraversion (partial r = 0.09, P = 1.14×10-3).  

 

The data for this study, accessible via the HCP website (www.humanconnectome.org), complied with all 

pertinent guidelines and regulations and received approval from the Washington University Institutional Review 

Board. Accessing these data required adherence to the specific data use terms set by the HCP, which include 
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protocols for managing both open access and restricted data. The latter category involves sensitive information 

such as exact age. This research was conducted in compliance with the HCP restricted data use terms, as per 

point 6 of the HCP data use document, this institution does not require a separate or individual ethics committee 

submission and/or approval. 

 

HCP-D. We analyzed the Human Connectome Project Development (HCP-D) 2.0 release data20. This resource 

encompasses a developmental spectrum, focusing on individuals from 5 to 21 years of age, and is hosted across 

four distinguished U.S. sites: Harvard University, University of California, Los Angeles, University of 

Minnesota, and Washington University in St. Louis. For our study, we included personality questionnaire data 

from 229 participants (125 females; age: 19.00 ± 1.83 years). For the assessment of personality traits, the HCP-

D adopted the same methodology as the HCP, utilizing the FFI questionnaire59. Within this framework, our 

analysis was narrowed down to data from 229 participants, comprising 104 males and 125 females. The age 

range of these participants was 16-21 years, as the personality assessment was conducted only on individuals 

over the age of 16. Similar to the HCP, the associations between different gradients of neuroticism and FFI 

personality dimensions were examined (see Supplementary Fig.9-10). Adjusted for age and sex, the first 

gradient of neuroticism was mainly characterized by correlations with traits such as neuroticism (partial r = 

0.99, P = 5.48×10-263), openness(partial r = 0.17, P = 0.00975), agreeableness (partial r = -0.27, P = 3.80×10-5), 

conscientiousness (partial r = -0.38, P = 2.30×10-9) and extraversion (partial r = -0.38, P = 2.09×10-9). In 

contrast, the ERIS was positively associated with agreeableness (partial r = 0.25, P = 2.00×10-4) and 

conscientiousness (partial r = 0.33, P = 4.60×10-7). 

 

The study was meticulously aligned with all relevant ethical guidelines and regulations. Informed consent was 

obtained from all participants, and the study received approvals from the Institutional Review Board at each 

participating site. This approach ensured the integrity and ethical compliance of the research process, reflecting 

a commitment to upholding the highest standards of research ethics and methodology. 

 

CN-U and CN-A. We included two independent cohorts from mainland China: a group of CN-U and a group of 

CN-A. The university student cohort (CN-U) included 612 young adults (318 females, age: 20.12 ± 1.08 years 

old) from Central South University, Hunan, China. The adolescent cohort (CN-A) comprised 532 teenagers 

(253 females, age: 16.35 ± 0.92 years old) from a public middle school in Hunan, China. For the measurement 

of neuroticism in these two mainland Chinese cohorts, the FFI-N was utilized. It is noteworthy that for these 

participants, the focus was solely on the neuroticism dimension of the five-factor model of personality, without 

assessments of the other personality traits.  
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In both groups, the process of obtaining informed consent was conducted with adherence to ethical standards. 

Consent was directly acquired from participants or, for minors, from their guardians. The entire research 

protocol, encompassing the procedures for consent and data collection, was reviewed, and approved by the 

Ethics Committee of the School of Psychology at Capital Normal University.  

 

Low-dimensional Embeddings of Neuroticism  

To quantitatively evaluate the heterogeneous subdimensions of neuroticism in individuals, we computed the 

primary and secondary embedding scores based on a between-subject similarity network. The definition of 

network similarity hinges on the levels of neuroticism sub-scales across different individuals. Two individuals 

can have identical overall neuroticism scores yet exhibit minimal similarity due to differing sub-scale profiles. 

Specifically, for n subjects, we first constructed a between-subject distance network G (n×n). In the context of a 

multi-item neuroticism questionnaire, the element Gij located in the ith row and jth column of matrix G quantifies 

the Euclidean distance between the item score vectors of subjects i and j. Subsequently, we identified the 

maximum value in G, denoted as Gmax. For each element Gij, the between-subject similarity network was 

derived by calculating (Gmax – Gij) / Gmax, yielding values ranging from 1 (maximum similarity) to 0 (minimum 

similarity). We employed diffusion map embedding77, a non-linear dimensionality reduction algorithm, to 

extract low-dimensional gradients of neuroticism, utilizing the BrainSpace toolbox78 (version 0.1.10). This 

method, known for its robustness against noise perturbations compared to algorithms like principal component 

analyses, is adept at identifying low-dimensional manifolds. The diffusion map embedding algorithm operates 

based on two key hyperparameters: α and t. The α parameter modulates the impact of the density of data points 

on the manifold (with α = 0 indicating maximum influence and α = 1 signifying no influence), while t 

determines the scale of the eigenvalues of the diffusion operator. In our analysis, we adhered to previously 

established values, setting α at 0.5 and t at 0. This configuration is chosen to preserve the global relationships 

among data points in the embedded space.  

 

For the HCP, HCP-D, CN-U, CN-A, and UK Biobank datasets (including 0.0 and 2.0 time points), we 

computed individual gradient scores following the above pipeline. In the case of the UK Biobank (0.0 time 

point) dataset, due to its large size, we adopted a strategy to reduce computational memory requirements. 

Specifically, we randomly selected 50,000 participants for the calculation of the gradient scores. To extrapolate 

these scores to the entire cohort, we constructed regression models based on k-nearest neighbors (K = 50) using 

the gradient scores of these 50,000 individuals for different neuroticism gradients. This model was then applied 

to all participants. This process was repeated 100 times, yielding highly stable gradient scores across 

individuals. We determined the item-level weight contributions by correlating each individual’s gradient scores 
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with their respective original item scores. Our study unveils the ERIS gradient as a stable phenotype with item-

specificity. In the case of the FFI-N, item-level weights were compared across four independent datasets: HCP, 

HCP-D, CN-U, and CN-A. For the EPQ-N, item-level weights were compared across two different time points 

of the UK Biobank dataset, revealing remarkable consistency. 

 

We next examined whether there was a significant correlation between the ERIS gradients derived from the 

FFI-N and the EPQ-N. Acknowledging the inherent differences between these scales, we employed a hybrid 

approach of quantitative and qualitative methods for item matching, aligning FFI-N items with those from the 

EPQ-N. Quantitatively, we utilized the ‘all-MiniLM-L6-v2’ model from the SentenceTransformers Python 

package25 to convert questionnaire items into embeddings. This facilitated the calculation of similarity indices 

between items from different questionnaires using cosine similarity. Based on the degree of similarity, pairs of 

items from the two scales were identified. These proposed pairs underwent two experts review for validation, 

resulting in the confirmation of eight matched pairs (see Supplementary Table 10). Following this, we 

transformed the FFI-N item weights from the HCP, HCP-D, CN-U, and CN-A datasets to align with those of 

the EPQ-N. This transformation facilitated a comparison of the item weights in FFI-N datasets and the EPQ-N 

UK Biobank dataset (as shown in Fig. 1g).  

 

Mortality Prediction and Cox Analysis 

In the UK Biobank dataset, participants’ death certificates were sourced from the archives of the UK’s NHS. 

The precise date of death of participants was provided by the UK’s National Death Registry. This registry 

integrates data from NHS Digital, overseeing England and Wales, and the NHS Central Register, responsible 

for Scotland79. All records adhere strictly to the International Classification of Diseases, Tenth Revision (ICD-

10), a WHO-developed system for consistent global disease classification80. Our study encompassed 36,366 

death cases recorded between July 7, 2007, and November 12, 2021.  

 

We examined the relationship between varying gradients of neuroticism and mortality risk, with a particular 

interest in comparing subgroups exhibiting minimal neuroticism levels. Within the UK Biobank cohort, we 

categorized the population into four distinct, non-overlapping subgroups based on gender and age: low 

neuroticism, high neuroticism, low ERIS, and high ERIS. Initially, we set the sample count for each subgroup 

starting with a neuroticism score of zero. Subsequently, we ranked the participants to categorize them into low 

neuroticism (with a sum score of zero), high neuroticism, low ERIS, and high ERIS groups. We then eliminated 

duplicates across these groups and equalized the group sizes by randomly downsizing the three larger groups to 

match the size of the smallest group, maintaining stringent control over age and gender variables, which are 

known to be closely associated with mortality outcomes (each group n=44,399). We then performed Kaplan-
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Meier survival analysis to produce survival curves for each subgroup over an approximate duration of 180 

months, as depicted in Fig. 2b81. This analysis facilitated the assessment of cumulative survival probabilities at 

various intervals. For cases with missing data or unrecorded deaths, November 12, 2021, was used as a cutoff 

date. We applied the log-rank test to compare survival distributions across different subgroups82. Considering 

that random factors in population stratification could slightly influence the outcomes, we created 101 different 

grouping scenarios and reported a median effect size between the high ERIS and low neuroticism groups; 

furthermore, gender-specific log-rank tests were conducted to demonstrate significant differences between these 

groups among both males and females. 

 

We subsequently focused on specific causes of death within the UK Biobank records, adhering to the ICD-10 

system and classified under code 40000 and 40001. Due to participant number constraints, our analysis 

concentrated on the five leading causes of death and COVID-19 (see Supplementary Table 11). To evaluate 

time-dependent risks throughout the study, we employed the Cox proportional hazards regression model, a well-

established semi-parametric method in survival analysis83. This model calculates the hazard ratio to quantify the 

change in death risk associated with each unit increase in the neuroticism gradient. Survival times were 

determined in months from the date each participant joined the study at the evaluation center until their death or 

the cut-off in November 2021. In our analyses, age and gender served as primary covariates, with additional 

strategic covariates included to broaden the robustness and scope of our study (detailed in the Supplementary 

Table 7). 

 

Given our finding of a higher survival rate among individuals with high ERIS compared to those low in 

neuroticism, we further explored possible explanations by examining self-rated health, suspected medical 

examination, and post-treatment follow-up examination in two groups defined by high ERIS and low 

neuroticism (see Supplementary Table 12). The self-report health condition of the participants involved two 

questions: i) ‘In general, how would you rate your overall health?’ with responses categorized as ‘Poor’, ‘Fair’, 

‘Good’, or ‘Excellent’ (Field ID: 2178); ii) ‘Do you have any long-standing illness, disability, or infirmity?’ 

with binary response options of ‘Yes’ or ‘No’ (Field ID: 2188). Furthermore, we examined all medical 

observations and evaluation for suspected diseases and conditions (ICD-10 code: Z03). For patients with 

hospitalization records, we examined all instances of post-treatment follow-up (ICD-10 code: Z08 and Z09). 

We employed the Chi-squared test to assess differences between groups characterized by high ERIS scores and 

low neuroticism scores84.  
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Disease  

Participants’ medical and diagnostic histories were extracted from the comprehensive medical archives of the 

NHS. Given the disparity in data coverage within the UK Biobank cohort, where primary care clinical records 

cover approximately 45% of the cohort compared to the more comprehensive 83% coverage by hospital 

inpatient records, our study primarily utilized the latter source85. This choice was made to ensure the robustness 

and completeness of the data analyzed, enhancing the reliability of our findings. These inpatient records were 

meticulously categorized using the ICD-10, focusing on diagnoses requiring hospital admission (as denoted by 

ID 41270 in the UK Biobank database). 

 

Our investigation aimed to elucidate the relationship between different levels of neuroticism and specific 

disease risks, with a particular focus on the top 33 diseases contributing to the highest global burden of disease 

in adults aged 25-74 in 201986. Maternal conditions were excluded from our analysis due to the scope of the 

study. A detailed process of adjustment and merging was applied to these conditions, tailored to the 

characteristics of our UK Biobank dataset, resulting in a refined list of 30 disease clusters. For example, 

conditions reported in The Lancet paper as ‘low back pain’, ‘neck pain’ and ‘other musculoskeletal’ were 

merged into ‘dorsopathies’, ‘hypertensive heart disease’ was subsumed under ‘hypertensive diseases’, and ‘road 

traffic injuries’ were classified as ‘motor vehicle road traffic injuries’. Tobacco use was also included in the 

analysis. In addition, conditions with fewer than 1,000 reported cases in the UK Biobank were excluded from 

the study. Conditions were divided into mental and physical disorders, with physical disorders including ‘motor 

vehicle road traffic injuries’ (V20-V79), ‘diabetes’ (E10-E14), ‘headache disorders’ (G43-G44), ‘diseases of 

oesophagus, stomach and duodenum’ (abbreviation as OSDD, K20-K31), ‘lung cancer’ (C34), ‘stomach cancer’ 

(C16) and others. Mental disorders included ‘depressive disorders’ (F32-F33), ‘schizophrenia’ (F20), ‘anxiety 

disorders’ (F40-F41), ‘alcohol use disorders’ (F10), ‘tobacco use’ (F17) and others. A comprehensive list of the 

selected disorders and the associated ICD codes can be found in the Supplementary table 13. 

 

We applied a generalized linear model (GLM) to assess the relationship between neuroticism gradients and 

disease occurrence83. In this analysis, the dependent variable was the presence of disease (binary: Yes or No), 

while the independent variables included phenotype of interest (such as ERIS or neuroticism), sex, age, and the 

interaction between sex and age. The GLM analysis was conducted using the Python package statsmodels87. 

 

Lifestyle 

Lifestyle choices, as manifestations of underlying psychological and behavioral predispositions, offer valuable 

insights into health outcomes associated with neuroticism gradients2,88,89. In this study, leveraging the expansive 
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dataset from the UK Biobank, we focused on six lifestyle domains indicative of these choices: risk-taking 

behaviors, smoking habits, physical exercise, life satisfaction, sleep patterns, and responses to suicide/stress. 

Additionally, our supplementary results include an examination of dietary habits, the Townsend deprivation 

index, and other personal information (see Supplementary Fig.4). Data pertaining to lifestyle were primarily 

obtained using Category 100050 from the UK Biobank, with specific behaviors pinpointed through diverse 

Field IDs (see Supplementary Table 14). Responses classified as ‘Don’t know’ or ‘Prefer not to answer’ were 

systematically excluded. 

Risk-taking behaviors. Neuroticism, characterized by an enhanced sensitivity to uncertainty and risk, displays 

an inconsistent relationship with risk-taking behaviors, as demonstrated by previous studies90,91. In our study, 

we included a set of risk-taking indicators: including self-reported ‘Risk taking’ (Field ID: 2040), ‘Drive faster 

than motorway speed limit’ (Field ID: 1100), and propensity for sexual behavior (‘Age first had sexual 

intercourse’, Field ID: 2139; ‘Lifetime number of sexual partners’, Field ID: 2149). Furthermore, we indirectly 

assessed risk-taking behaviors by incorporating ‘Time spent outdoors in winter/summer’ (Field IDs: 1060 and 

1050), which reflects the potential risks linked to outdoor activities. 

Substance use. We incorporated data on various smoking and drinking behaviors, alongside cessation 

experiences, to investigate the impact of neuroticism gradients on these habits. For smoking behaviors, we 

included ‘Ever smoked’ (Field ID: 20160, binary data) and ‘Current tobacco smoking’ (Field ID: 1239, 

categorized as ‘Yes, on most or all days’ = 1, ‘Only occasionally’ = 0.5, ‘No’ = 0). Given the adverse effects of 

smoking, promoting cessation among frequent smokers is a critical health strategy. However, the available data 

on cessation experiences, such as ‘Smoking compared to 10 years previous’ or ‘Ever stopped smoking for 6+ 

months’, exhibit significant bias. These data were collected exclusively from participants who reported past 

frequent smoking (26.4% of the sample). Additionally, this past smoking status was not collected from those 

who currently smoke daily (92.3% of daily smokers). To address this issue, we introduced a ‘quit heavy 

smoking’ metric, categorizing current heavy smokers as 1 (those who responded ‘Yes, on most or all days’ to 

‘Current tobacco smoking’) and past heavy smokers as 0 (those who responded ‘Only occasionally’/’No’ to 

‘Current tobacco smoking’ and ‘Yes, on most or all days’ to ‘Past tobacco smoking’). For drinking behaviors, 

we included variables ‘Alcohol intake frequency’ (Field ID: 1558), ‘Average weekly red wine intake’ (Field ID: 

1568), and ‘Average monthly spirits intake’ (Field ID: 4440). The variable ‘Alcohol intake versus 10 years 

previously’ (Field ID: 1628) was utilized as a proxy for changes in drinking behaviors over time.  

Physical activity. Existing literature consistently demonstrates that individuals with high levels of neuroticism 

are less likely to engage in physical activity92,93. We categorised the intensity of physical activity into three 

different levels: low, moderate and high, based on the ‘Summed MET minutes per week for all activity’ (Field 
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ID: 22040). Specifically, total physical activity was classified as low (less than 600 MET minutes per week), 

moderate (600 to 3000 MET minutes per week), and high (more than 3000 MET minutes per week) in 

accordance with the established literature on the classification of total physical activity levels. In addition, our 

analysis included examination of sedentary behaviors commonly observed in adults. These included ‘Time 

spent watching television’ (Field ID: 1070) and ‘Weekly usage of mobile phone in last 3 months’ (Field ID: 

1120).  

Life satisfaction. Individuals with high levels of neuroticism typically exhibit lower levels of well-being94,95. 

We examined a range of aspects including ‘Happiness’ (Field ID: 4526), ‘Health satisfaction’ (Field ID: 4548), 

‘Friendship satisfaction’ (Field ID: 4570), ‘Work/job satisfaction’ (Field ID: 4537), ‘Family relationship 

satisfaction’ (Field ID: 4559) and ‘Financial situation satisfaction’ (Field ID: 4581). 

Sleep. To provide a nuanced assessment of sleep quality, we integrated four critical sleep factors: optimal sleep 

duration, insomnia, snoring and excessive daytime sleepiness, which were used together to calculate a 

comprehensive healthy sleep score. To assess optimal ‘Sleep duration’, individuals reporting 7-8 hours of sleep 

were assigned a score of 1, while all other durations were assigned a score of 0 (Field ID:1160). Insomnia was 

assessed by responses to ‘Sleeplessness/insomnia’ (Field ID: 1200), with ‘Sometimes’ and ‘Usually’ indicating 

the presence of insomnia and ‘Never/rarely’ indicating its absence. ‘Snoring’ was assessed directly from 

participants’ responses (Field ID: 1210), and for ‘Daytime dozing / sleeping’, individuals who reported dozing 

off or falling asleep during the daytime unintentionally and responded ‘All of the time’ or ‘Often’ to the 

relevant question (Field ID: 1220) were identified as having narcolepsy, while all others were classified as not 

having narcolepsy. 

Reactions to suicide/stress. For suicidal thinking, we included indicators of suicidal behavior such as ‘Ever 

attempted suicide’ (Field ID: 20483), ‘Recent thoughts of suicide or self-harm’ (Field ID: 20513), and 

‘Attempted suicide in past year’ (Field ID: 20484). For stress reactions, we assessed distress in the past month 

due to stressful events through three specific sensations: ‘Avoided activities or situations because of previous 

stressful experience in past month’ (field ID: 20495), ‘Repeated disturbing thoughts of stressful experience in 

past month’ (Field ID: 20497), and ‘Felt very upset when reminded of stressful experience in past month’ (Field 

ID: 20498). 

We also investigated the associations between the neuroticism gradients and dietary habits, socio-economic 

status, and other variables of interest, including parental age at death, household income, qualification, and 

intelligence. The methodologies and outcomes have been documented in the supplementary materials (refer to 

Supplementary Table 14, Supplementary Notes and Supplementary Fig. 4). To conduct statistical analyses on 
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the relationship between the neuroticism gradients and lifestyle factors, we used GLM through Python package 

StatsModels. Control variables of age, gender, and the interaction between age and gender were included in the 

analysis. 

Structural MRI Data Acquisition and Analysis 

The high-resolution T1-weighted images were acquired using a Siemens Skyra 3T system (Siemens Healthcare, 

Erlangen, Germany), equipped with a standard 32-channel head coil. The acquisition process employed a 

magnetization-prepared rapid gradient-echo (MPRAGE) sequence, with the following parameters: repetition 

time set to 2000 ms; echo time at 2.01 ms; the capturing of 208 sagittal slices; a flip angle of 8°; a field of view 

(FOV) of 256 mm; a matrix size of 256×256; and a slice thickness of 1.0 mm, resulting in a voxel size of 1×1×1 

mm. Detailed information regarding this imaging protocol is available at 

http://www.fmrib.ox.ac.uk/ukbiobank/protocol/V4_23092014.pdf.  

 

To reveal voxel-wise regional gray matter volume linked to neuroticism phenotypes, our study adopted 

VBM91,96 analysis. This approach was implemented using the Computational Anatomy Toolbox 12 (CAT1297), 

devised by the structural brain mapping group at the University of Jena Hospital and incorporated into the 

SPM12 framework at the Institute of Neurology, London. Based on CAT12, we processed the T1-weighted 

images to correct for field inhomogeneity and segmented them into gray matter, white matter, and cerebrospinal 

fluid. This segmentation was further refined through an adaptive maximum a posteriori segmentation 

approach98 and enhanced by partial volume estimation99. Spatial normalization of these images was conducted 

using the ‘Diffeomorphic Anatomical Registration using Exponentiated Lie algebra’ (DARTEL) algorithm100. 

Modulated grey matter images were spatially smoothed with a 4 mm full width half maximum (FWHM) 

Gaussian kernel. After a thorough review of the preprocessed scans for any artifacts and ensuring the 

availability of neuroticism questionnaires at the 2.0-time point, a cohort of 30,221 individuals was remained for 

the VBM analysis. The VBM maps of these individuals were averaged, with a threshold of 0.1 established to 

define gray matter regions. Analyses were then focused on these specified areas. 

 

In addition to voxel-based analysis, we also performed a ROI-based analysis for a better explanation 

(Supplementary Table 8). The human Brainnetome Atlas101 (https://atlas.brainnetome.org/bnatlas.html) was 

employed to provide extensive parcellation information, spanning a multitude of brain areas including the 

cerebral cortex, thalamus, basal ganglia, amygdala, and hippocampus, amounting to a total of 123 regions per 

hemisphere. The Human Brainnetome Atlas is a fine-grained, cross-validated atlas, constructed based on in vivo 

connectivity architecture. In complementing this, for cortical regions, we also applied the classical Brodmann 

parcellation102 based on cytoarchitecture information. Given the growing emphasis on the cerebellum in 
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emotion processing and psychiatric disorders, we utilized a probabilistic atlas103 for cerebellar lobules and 

nuclei, delineating 17 subregions per hemisphere.  

 

We employed a GLM model to elucidate the relationship between neuroticism gradients and regional gray 

matter volume. The model was formulated as 𝑌	 = 	𝛽! 	+ 	𝛽" 	× 	𝑋	 + 	𝑐	 × 	𝑍	 + 	𝜀, where Y denotes the 

regional gray matter volume (voxel or ROI level), X denotes the gradients of neuroticism, and Z represents a set 

of covariates, including sex, age, the interaction of age and sex, head size scaling, imaging center, and scanner 

table position. To concisely display the significant voxels in the voxel-wise analysis presented in Fig. 4a, we 

applied FDR correction at P < 0.001 for ERIS, acknowledging its stronger effect, and P < 0.05 for neuroticism, 

both with a cluster size threshold exceeding 100. For ROI-based analysis, the FDR-adjusted P values are 

provided. Considering the potential association between neuroticism and the second gradient with emotional 

circuits, we expanded our analysis to encompass the bilateral habenula (based on a recent thalamic atlas104; for 

neuroticism: right habenula, standardized β = -0.006, P = 0.26; left habenula, standardized β = -0.014, P = 

0.015; for ERIS: right habenula, standardized β = 0.027, P = 9.9×10-7; left habenula, standardized β = 0.033, P 

= 6.1×10-9), basal forebrain (based on Julich-Brain cytoarchitectonic atlas105; for neuroticism: right Ch 4, 

standardized β = 0.001, P = 0.83; left Ch 4, standardized β = 0.004, P = 0.42; for ERIS: right Ch 4, standardized 

β = 0.018, P = 5.7×10-5; left Ch 4, standardized β = 0.026, P = 1.7×10-8), and BNST (based on Neudorfer et 

al106; for neuroticism: right BNST, standardized β = 0.006, P = 0.24; left BNST, standardized β = -0.003, P = 

0.60; for ERIS: right BNST, standardized β = 0.025, P = 3.6×10-6; left BNST, standardized β = 0.020, P = 

0.00019). 

 
Functional annotation analysis 

To enhance the functional interpretation of our VBM findings, we employed Neurosynth 

(https://neurosynth.org/), a meta-analytical platform that facilitates the automatic synthesis of statistical maps 

from over 14,000 function magnetic resonance imaging studies. This process is achieved through the extraction 

of high-frequency keywords. Considering the extensive array of term maps provided by Neurosynth, we 

narrowed our focus to cognitive and behavioral terms, adhering to methodologies established in a prior study. 

The selected terms represent a confluence of those listed in Neurosynth and the Cognitive Atlas – an open-

access ontology in cognitive science, featuring an extensive compilation of neurocognitive terms. Our selection 

included terms directly related to neuroticism, such as ‘anxiety’, ‘stress’, and ‘emotion regulation’, as well as a 

diverse range of others including ‘selective attention’, ‘facial expression’, and ‘navigation’. The complete list of 

these terms is presented in supplementary table 15. For each term, we downloaded the corresponding 

association map in Montreal Neurological Institute (MNI) 152 space, thresholded at P < 0.01, FDR corrected. 

These maps provide a probabilistic value at each voxel, indicating the likelihood of observing significant 
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activation associated with a given search term, compared to studies not utilizing that term. We next proceeded 

to extract the top 10% of voxels with the largest effect sizes from both the ERIS and neuroticism statistical 

maps. The absolute values of these selected VBM voxels were then subjected to a weighted summation with the 

term-based statistical maps from Neurosynth. Due to the variance in intensity across terms, normalization of the 

weighted sums was achieved by dividing them by the total value of the respective term map. In the analysis of 

ERIS, only positively correlated voxels were incorporated; for neuroticism, we focused exclusively on 

negatively correlated voxels, a decision informed by the predominant trend of negative associations, leading to 

the exclusion of the caudate. This method of spatial correlation analysis was instrumental in identifying terms 

with substantial spatial concurrence with our VBM results. To visually articulate the results, we employed a 

word cloud to depict the foremost 15 terms associated with ERIS and neuroticism, respectively. 

  

Genetic Analysis   

Genome-wide genotyping was conducted on participants of the UK Biobank using two purpose-designed 

arrays: the UK BiLEVE Axiom Array for approximately 50,000 individuals and the UK Biobank Axiom Array 

for approximately 450,000 participants. Direct genotyping was followed by imputation using the Haplotype 

Reference Consortium and UK10K reference panels, expanding the dataset to include approximately 96 million 

variants. Our GWAS analysis was employed based on this imputed genetic dataset from the UK Biobank July 

2017 release. Quality control was then implemented using the PLINK GWAS software package107, version 

2.0.0. Variants were excluded if the minor allele frequency was below 0.1%, the imputation quality score was 

less than 0.8, or there were deviations from Hardy-Weinberg equilibrium (P < 1.00×10-7), resulting in 

10,056,631 SNPs being retained for further analysis (excluding the X chromosome). Participants with more 

than 10% missing genotypes, those who had undergone imaging procedures, and individuals of non-European 

ancestry (either self-reported or inferred genetically) were excluded from the study. Finally, we identified 

267,311 nominally unrelated individuals using methods similar to those previously described. Association 

analyses of the ERIS and classic neuroticism score were adjusted for demographic and technical variables, 

including age, sex, genotyping batch, and array, as well as 40 principal components to account for population 

stratification. 

  

Utilizing reference linkage disequilibrium (LD) scores for individuals of European ancestry from the 1000 

Genomes Project, we employed LDSC35 software version 2.0.0 to estimate Single nucleotide polymorphism 

(SNP) based heritability, genomic inflation factor, and the LD score regression intercept. To identify 

independent genomic risk loci and significant SNPs, we used the functional mapping and annotation of GWAS 

(FUMA40, version 1.5.2). FUMA discerns independently significant SNPs (P < 5.00 × 10−8 and LD r² < 0.60), 

among which those independent at LD r² ≥0.10 are classified as lead SNPs. Candidate SNPs exhibiting LD r² 
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≥0.60 with a lead SNP delineated the boundaries of a genomic locus. Loci separated by less than 250 kb were 

merged. For ERIS, we identified 13 lead SNPs and 12 genomic risk loci; for neuroticism, 50 lead SNPs and 41 

genomic risk loci were identified. Our analysis did not aim to test the prediction power of PRS for the 

respective phenotypes but rather to examine their association with mortality rates. Consequently, we generated 

personalized PRS scores for individuals included in our GWAS analysis using the ‘score’ function from PLINK 

(version 1.07), based on our pre-calculated GWAS summary statistics and applying various common P-value 

thresholds: 0.1, 0.05, 0.01, 0.005, 0.001, 0.0001, 0.00001. 

  

HARs-associated genes  

HARs are genomic loci that are conserved across species yet exhibit elevated divergence in humans compared 

to other species. In our study, we utilized a dataset of 2,737 HARs, as referenced from a prior study that 

integrated findings from multiple publications37. We then computed gene-based p-values for GWAS summary 

statistics related to ERIS and neuroticism using the FUMA, identifying 310 and 850 associated genes, 

respectively, after FDR correction. Subsequent overlap with the GWAS gene set yielded 1,610 genes associated 

with HARs included in our analysis. To assess whether genes implicated in ERIS and neuroticism through 

GWAS were significantly enriched within the HARs-associated gene set, we conducted a nonparametric 

permutation analysis. The MAGMA39, implemented within FUMA, was utilized to calculate gene P-values 

from the summary statistics. We applied FDR correction to select significant gene sets for ERIS and 

neuroticism (P < 0.05). Specifically, for the first 100, 200, and 300 genes as well as all significant gene sets for 

ERIS (310 genes) and neuroticism (850 genes), permutation tests were performed after excluding overlapping 

genes. Subsequently, we randomly selected corresponding numbers of genes from all GWAS genes, repeating 

this process 10,000 times to calculate the frequency of overlap with HARs-associated genes, thus constructing a 

null model. We then evaluated whether the observed overlap of MAGMA-derived genes with HARs-associated 

genes exceeded that predicted by the null model. The statistical significance was ascertained by comparing the 

actual overlap percentage against that from 10,000 random iterations, resulting in a nonparametric P value. 

Additionally, we utilized positional mapping genes from the FUMA to repeat this process. Based on their 

physical positions in the genome, we identified 149 and 524 non-overlapping genes for ERIS and neuroticism, 

respectively. 
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