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Abstract 

 
Single-cell transcriptomics (SCT) has revolutionized our understanding of cellular heterogeneity, 

yet the emergence of single-cell proteomics (SCP) promises a more functional view of cellular 

dynamics. A challenge is that not all mass spectrometry facilities can perform SCP, and not all labs 

have access to cell sorting equipment required for SCP, which together motivate an interest in 

sending bulk cell samples through the mail for sorting and SCP analysis. Shipping requires cell 

storage, which has an unknown impact on SCP results. This study investigates the impact of cell 

storage conditions on the proteomic landscape at the single-cell level utilizing a Data-Independent 

Acquisition (DIA) coupled with Parallel Accumulation Serial Fragmentation (diaPASEF). Three 

storage conditions were compared in 293T cells: (1) 37°C (control), (2) 4°C overnight, and (3) -

80°C storage followed by liquid nitrogen preservation. Either cold or frozen storage induced 

significant alterations in cell diameter, elongation, and proteome composition. By elucidating how 

cell storage conditions alter cellular morphology and proteome profiles, this study contributes 

foundational technical information about SCP sample preparation and data quality.  
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Introduction 
 

SCT is a powerful tool for investigating cellular heterogeneity. SCT has enabled the generation of 

tissue and organ atlases, such as the atlas of mouse organs (Tabula Muris1), in addition to human 

embryos2, and human skin3. While SCT effectively captures cell types and their change with 

pertrubations, transcript quantification is known to be highly biased and error-prone4,5, and 

transcripts are known to poorly correlate with proteins, which are the functional and structural 

units of cell systems. In contrast with the commoditization of SCT, SCP techniques are still being 

refined to achieve increased speed and sensitivity.  

 

In recent years, researchers have made significant strides in the development of fast and sensitive 

SCP techniques6–10. Notably, a method leveraging diaPASEF11,12 with the timsTOF-SCP has 

enabled the quantification of over 1,000 proteins within a 15-minute total analysis time for each 

individual cell13. SCP has facilitated the identification and quantification of proteins within single 

cells, mostly in laboratory-cultured cell lines. Notably, diaPASEF was employed in the analysis of 

single muscle fiber proteome, with an output of 744 unique proteins derived from 8,764 unique 

precursors14. 

 

Changes to the proteomic landscape due to sample processing is a key consideration in SCP. Prior  

to normal bulk proteomics analysis, it is common practice to freeze cells for extended storage 

durations. However, in SCP, cells must be sorted for sample preparation, and the impact of such 

storage conditions on cellular metabolism and identified proteins remains uncertain. Due to this 

requirement for cell sorting before SCP, and the lack of specialized sorting equipment at all 

institutions, we wondered how cold storage of bulk cells may influence data produced by SCP 

workflows. While it is established that cellular storage conditions exert influence on the 

proteome15,16, the extent to which these conditions affect the proteome at the single-cell level 

remains unexplored. 

 

In this study, we determine the effects of cell storage conditions on 293T single cell proteomes 

using a CellenONE sorting and dual trap single column diaPASEF timsTOF SCP workflow. To 

investigate the effects of storage conditions on cellular proteomes, we subjected cells to three 

distinct storage conditions prior to proteomic analysis: 37°C controls, 4°C overnight in 5% DMSO 

(hereafter referred to as “4°C” or “cold”), and -80°C overnight in 5% DMSO at followed by storage 

in liquid nitrogen (hereafter referred to as “-80°C” or “frozen”). Our findings reveal that storage 

conditions exert disparate effects on individual cells at the proteomic level, underscoring the 

importance of avoiding cell storage via cold shock to ensure a more accurate representation of the 

original proteome. Our results show that both storage conditions affect proteins important for 

translation and metabolism, with some protein changes specific to either storage condition.  

 

Experimental Section 
Materials 

 

HEK293T cells were a gift from the Van Eyk lab, heat inactivated Fetal Bovine Serum (FBS), 

high-glucose Dulbecco’s Modified Eagle’s Medium (DMEM), Antibiotic-Antimycotic, sterile 

Phosphate Buffered Saline (PBS) were purchased from Gibco/Life Technologies Corporation 

(Carlsbad, CA, USA). T75 cell culture flasks, 10% DDM, LC-MS grade DMSO were purchased 
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from Thermo Fisher Scientific (Waltham, Massachusetts, USA). Cellenion X1 instrument was 

used for cell sorting (Lyon, France). 384-well plates were purchased from Bio-Rad (Hercules, CA, 

USA). Ultimate 3000 (Thermo Fisher Scientific) and Bruker timsTOF SCP (Billerica, 

Massachusetts, USA) instruments were used for LC-MS analyses. TEAB, Acetonitrile with 0.1% 

formic acid, LC-MS grade water with 0.1% formic acid were purchased from Millipore Sigma 

(Burlington, Massachusetts, USA). Sequencing grade trypsin was purchased from Promega 

(Madison, Wisconsin, USA). Cartridge trapping columns with a 0.17 µL media bed (EXP2 from 

Optimize Technologies) packed with 10 µm diameter, 100 Å pore PLRP-S (Agilent Technologies, 

Santa Clara. CA. USA) beads, and a PepSep 15 cm x 75 µm analytical column packed with 1.9 

µm C18 solid phase (Bruker, Billerica, Massachusetts, USA) were used as the LC columns. 

 

Cell culture 

 

HEK293T cell lines of passage number 10-13 were cultured in high-glucose DMEM supplemented 

with 10% FBS, 100 units/mL of penicillin, 100 μg/mL of streptomycin, and 250 ng/mL of Gibco 

Amphotericin B. Cell were cultured on Nunc T75 flasks and harvested through trypsinization and 

separated into 3 groups. 

 

Storage conditions 

 

Approximately 106 HEK293T cells were promptly subjected to sorting using the Cellenone 

instrument. A second cohort of 106 HEK293T cells was suspended in fetal bovine serum (FBS) 

containing 5% dimethyl sulfoxide (DMSO) and stored at 4°C, while a third cohort underwent the 

same treatment but was subsequently stored at -80°C. Following overnight storage at -80°C, the 

cells were transferred to a liquid nitrogen storage system. 

 

Subsequently, the second and third cohorts of cells underwent two washes in phosphate-buffered 

saline (PBS) and were then resuspended in PBS for sorting using the Cellenone instrument. This 

procedure brought samples to room temperature through the addition of PBS stored at room 

temperature. 

 

Cell sorting 

 

The cellenONE system was utilized to dispense 200 nL of lysis buffer into each well of a Bio-Rad 

384-well PCR plate. The lysis buffer composition consisted of 50 mM TEAB buffer, 0.2% DDM, 

and 200 µg/mL sequencing-grade trypsin. Following this, cells were resuspended in phosphate-

buffered saline (PBS) to achieve a final concentration of approximately 3 × 10^5 cells/mL. 

SYTOX Green was added to the cell suspension at a final concentration of 25 µM, and the mixture 

was incubated in the dark for 5 minutes. Subsequently, cells were loaded into a piezoelectric 

dispensing capillary within the cellenONE X1 system for single-cell isolation. Cell viability was 

assessed using the green fluorescent channel of the system, with cells exhibiting SYTOX Green 

uptake being excluded from isolation. The 384-well plate holder was maintained at a temperature 

of 10°C using a water chiller throughout the sorting process. Following cell sorting, the plates were 

promptly transferred to a -80°C freezer for storage. Before subsequent analysis, 200nL of 40 

µg/mL trypsin in 50 mM TEAB buffer was added in the wells and the sealed plates were incubated 

overnight in an oven at 37°C. 
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LC-MS analysis 

 

diaPASEF method was employed as described before by Kreimer et al.13 Assessment of system 

performance over injections was monitored by HeLa quality control (QC). 

 

The chromatographic separation employed 0.1% formic acid in water as mobile phase A and 0.1% 

formic acid in acetonitrile as mobile phase B. The gradient profile was as follows: initially, 9% B 

at a flow rate of 500 nL/min; linear increase to 22% B over 8 minutes; further linear increase to 

37% B over 4.7 minutes; followed by an increase to 1000 nL/min flow rate and 98% B over 0.2 

minutes; maintaining 98% B for 1 minute; subsequent drop to 9% B at 1000 nL/min over 0.1 

minutes; holding at 9% B at 1000 nL/min for 0.9 minutes; and finally returning to a flow rate of 

500 nL/min in 0.1 minutes (totaling 15 minutes). The loading pump delivered 0.1% formic acid in 

water at a rate of 20 μL/min for the initial 6 minutes during trapping column cleaning, followed 

by a reduction to 10 μL/min from 6.5 to 15 minutes to load and desalt the subsequent sample. The 

valves and trapping columns were maintained at 55°C in the Ultimate 3000 column oven 

compartment, while the analytical column was kept at 60°C using the Bruker "Toaster" oven. 

 

The autosampler was programmed to commence data acquisition immediately and to inject 

acetonitrile with 0.1% formic acid into the 20 μL sample loop, which was then passed through the 

trapping column using the loading pump flow. Following a second acetonitrile flush, the loop and 

needle assembly were rinsed with 25 μL of 0.1% formic acid in water. Subsequently, the 

autosampler aspirated 20 μL of 2% acetonitrile in water with 0.1% formic acid, which was 

dispensed and aspirated into the sample well three times to resuspend the sample, after which the 

sample was injected, and the needle assembly rinsed. 

 

The dual trap single column (DTSC) configuration was adapted for single-cell analysis using 

cartridge trapping columns with a 0.17 µL media bed (EXP2 from Optimize Technologies) packed 

with 10 µm diameter, 100 Å pore PLRP-S beads (Agilent, Santa Clara, CA, US) and a PepSep 15 

cm x 75 µm analytical column packed with 1.9 µm C18 solid phase (Bruker, Billerica, MA, US). 

The analytical column was directly linked to a 20 μm ZDV emitter (Bruker) integrated into the 

Bruker captive source. The capillary voltage was adjusted to 1700 V, with the dry gas flow set at 

3.0 L/min and maintained at a temperature of 200 °C. Data acquisition was performed using DIA-

PASEF. Ion accumulation and trapped ion mobility ramp was set to 166 ms. DIA scans were 

conducted with 90 m/z windows covering the range of 300–1200 m/z and 0.6–1.43 1/K0. A cycle 

time of 0.86 s was achieved, involving one full MS1 scan followed by 4 trapped ion mobility 

ramps. 

 

Proteomic data analysis 

 

All Bruker .dia data were analyzed using DIA-NN 1.8.117, using an in-house HEK293T library 

developed using a sequence of DDA data collected from FAIMS CV steps. DIA-NN settings were 

as follows: precursor m/z range: 300-1800, fragment ion m/z range: 200-1800, mass accuracy 10.0, 

MS1 accuracy 20.0, protease: Trypsin/P, missed cleavages: 1, protein inference: genes, neural 

network classifier: double-pass mode, quantification strategy: robust LC (high precision), crossrun 

normalization: global, library generation: smart profiling, and speed and ram usage: optimum 
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results. The MaxLFQ18 calculated protein intensities from DIA-NN were used for this study. 

Missing values were replaced with zero. Scanpy version 1.9.119 was used to perform single cell 

analysis on the resultant 1806 proteins and 189 cells across the three storage conditions, 37°C, 4°C 

and -80°C. Proteins that were detected in less than 10 cells were removed and cells with at least 

200 proteins were retained, resulting in 1,269 proteins and 149 cells. Total count normalization 

was applied to make the sum of all protein intensities in a cell equal 10,000, followed by natural 

logarithm transformation of all intensities, regressing out unwanted variation on total counts, 

scaling quantities across proteins to have zero mean and standard deviation (SD) of 1, and 

repeating this same scaling method across all cells. All analysis was performed in Python version 

3.9.12. Data was visualized using Matplotlib version 3.5.220 and Seaborn version 0.12.221.  

 

Statistical analyses 

 

 

Single cell elongation and circularity values were exported from the cellenONE software. The 

normality of the data distributions was assessed using the Shapiro-Wilk test (Shapiro parameter) 

from the Scipy.stats module. The Kruskal-Wallis H test (Kruskal parameter) was employed to 

determine the statistical significance of differences between groups. 

 

The principal component analysis (PCA) representation of the data was used to compute the 

neighborhood graph of cells, which was then clustered using Leiden22 and then embedded in a two 

dimensional space using Uniform Manifold Approximation and Projection (UMAP)23. Default 

Scanpy parameters were used except for changing Leiden resolution to 0.1.  

 

Differential protein expression was tested using t-tests between each pair of conditions with 37°C 

(4°C and 37°C; -80°C and 37°C) using only non-zero protein quantities. A p-value was calculated 

only when there were at least three non-zero protein quantities per group for a protein. Benjamini-

Hochberg(B-H) false discovery rate correction was applied to calculated p-values due to multiple 

testing. Log2 fold changes (FC) were calculated by subtracting the mean logged protein intensity 

between each pair of conditions for each protein. Only differentially expressed proteins (DEPs), 

or those with a B-H corrected p-value less than 0.01 and absolute value of log2(FC) greater than 

1, were carried forward to pathway enrichment analysis. Statistical analysis was performed using 

SciPy version 1.11.424. 

 

Pathway enrichment analysis was performed on DEPs between 37°C and 4°C and 37°C and -80°C 

using GSEApy version 1.1.225 in Python. The following human gene sets were used: GO 

Biological Process 2023, GO Molecular Function 2023, KEGG 2021 Human, Molecular 

Signatures Database (MSigDB) Hallmark 2020, and Reactome 2022. Enriched terms with an 

adjusted p-value less than 0.05 were selected and the -log10(adjusted p-value) of the top five terms 

was visualized in bar plots. Quantities of DEPs involved in two pathway, oxidative 

phosphorylation and translation, were visualized78. 

 

Data availability 

 

All raw mass spectrometry data has been added to MassIVE database: 

ftp://MSV000095162@massive.ucsd.edu Password: hgu89!hgb 
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The spectral library from DDA is available from Zenodo: 

https://zenodo.org/doi/10.5281/zenodo.12802608 

 

Code and analysis availability 

 

JupyterLab notebooks can be found at https://github.com/xomicsdatascience/Single-Cell-Storage  

. 

The full processed data and analysis workflow to generate the clustering can be found at 

https://pscs.xods.org/p/wEx5D   
 

 

 

 

Results and Discussion 
 

To understand how storage conditions apply to SCP and the heterogeneity of cells, we stored the 

cells under two conditions in addition to control freshly harvested cells. The standard procedure 

for the long-term storage of mammalian cell lines is to store the cells in fetal bovine serum (FBS) 

or growth media, with 5-10% DMSO in liquid nitrogen. We also tested 4°C as wet ice may be a 

more tractable alternative to frozen shipping. After cell storage, the CellenONE was used to sort 

single cells into 384-well cell PCR plates containing standard SCP lysis buffer (Figure 1A). The 

CellenONE has a standard camera to measure cell diameter, elongation and circularity, while a 

fluorescent camera prevents sorting cells positive for SYTOX Green, which only stains dead or 

unhealthy cells.  

 

We observed different cell population morphology across the three groups. The minimum cell 

diameter for selection was 10 m, and the distribution of diameters was statistically different 

between groups (Figure 1B, Kruskal-Wallis Test p-value = 0.001). The cell elongation was also 

statistically different between the three groups (Supplementary Figure 1, Kruskal-Wallis Test p-

value = 0.001), whereas the circularity was not different (Supplementary Figure 2, Kruskal-

Wallis Test p-value = 0.1177). The maximum elongation and circularity value ranges were 

observed in the -80C group, showing freezing conditions may influence cell shape more 

drastically. Cold temperatures are known to induce dehydration and cell shrinkage26,27. While 

sorting the cells, cells reach room temperature, thus the temperature of the surrounding PBS buffer 

may contribute to the cell size getting back to normal. DMSO also reduces the formation of water 

crystals, thus lowers the effects of dehydration.  
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The number of proteins quantified per cell was assessed in each of the three conditions as well 

when cells from all conditions were combined (Figure 1C). Only proteins quantified in at least 10 

cells and cells with at least 200 proteins and were retained for downstream analysis. The mean 

number of proteins quantified per cell was significantly different among conditions by ANOVA 

(4C: 722.6 proteins/cell, 37C: 664.1 proteins/cell, -80C: 633.4 proteins/cell; p=0.02). The 

distribution of proteins quantified per cell had a SD of 179.4 in the 4C group, 160.3 in the -80C 

group, and 145.5 in the 37C group. After pre-processing (detailed in Methods), the distribution 

of all proteins per cell across technical batches are comparable with mean intensity per cell 

centered at zero (Figure 1D). Distribution of protein intensities per cell across conditions after 

only log2 transformation are shown in Supplementary Figure 3.  

Figure 1. (A) Workflow overview diagram. (B) Histograms demonstrating cell diameters. Vertical dotted 

line denotes the average diameter while the solid blue line shows the KDE value. (C) Histograms of 

number of quantified proteins per cell in each of three conditions and when all cells are combined. Vertical 

dotted line indicates the minimum number of proteins per cell cut-off. (D) Boxplots demonstrating 

normalized protein intensity per cell analyzed across the three storage conditions. LN stands for ‘liquid 

nitrogen storage’. 
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Using our 15 minute per 

cell dual trap-single 

column diaPASEF 

workflow13, we quantified 

1,269 protein groups in 

149 single cells across all 

experimental conditions. 

The clusters were colored 

by Leiden22, sample 

groups, and number of 

proteins quantified per cell 

after pre-processing in 

dimension reduced space 

by UMAP (Fig 2A). Plots 

of proteome profiles in 

dimension reduced space 

(UMAP) revealed that the 

Leiden clustering 

method[19] suggests two 

groups, with the 37°C 

group separate from the 

other two groups. The 

Euclidean distances of the 

clusters in non-dimension 

reduced space were 

notably larger between the 

37°C group and each the other two groups compared to -80°C vs 4°C (19.5 between 37°C and 

4°C, 22.0 between 37°C and -80°C, and 13.7 between -80°C and 4°C). The protein counts for each 

group were randomly distributed within clusters. These findings suggest that storage conditions 

exert an influence on the proteomic composition of viable cells. In addition, we see a larger 

standard deviation of protein counts in the 4°C and -80°C groups, supporting that generally the 

storage conditions alter SCP data.  

 

The proteome composition of each cold storage condition was compared statistically to the control 

using multiple t-tests and Benjamini-Hochberg correction by considering each single cell as a 

replicate measure. Volcano plots were used to visualize statistical differences and magnitude of 

change between 4°C and 37°C (Figure 2B, Suppl. Table 1) and -80°C and 37°C (Figure 2C, 

Suppl. Table 2), showing several proteins met cutoffs for adjusted p-value less than 0.01 and at 

least log2(FC) more than 1 or less than negative 1. In assessing the presence of technical bias that 

may cause quantities in one group to be consistently higher or lower than the other, we found the 

number of proteins with positive and negative log2(FC)s be balanced after using our data 

processing pipeline. We observed 64 upregulated and 33 downregulated proteins that met our 

cutoff described above in the 4°C group compared to the 37°C group. We observed 74 upregulated 

and 47 downregulated proteins in the -80°C group compared to the 37°C group. 

Figure 2. (A) Scatterplots of single cell proteomes reduced to 2D space 

with PCA followed by UMAP overlaid with Leiden clustering, storage 

condition group and number of proteins quantified per cell across the 

three experimental conditions. (B) Volcano plot depicting differential 

expression between the 4°C and 37°C groups, with Log2(FC) cutoffs 

set at -1 and 1, and -Log10 cutoff at 2. (C) Volcano plot illustrating 

differential expression between the -80°C and 37°C groups with the 

same cutoffs. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 24, 2024. ; https://doi.org/10.1101/2024.07.23.604834doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.23.604834
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Enriched pathways summarize how storage conditions influence the proteome 

 

The GSEApy interface to enrichr was used to determine statistically enriched pathways from: GO 

Biological Process, GO Molecular Function, KEGG, Molecular Signatures Database (MSigDB) 

Hallmark, and Reactome. The -log10(adjusted p-value) of the top five terms was visualized in bar 

plots for the total 97 proteins differentially expressed between 37°C and 4°C (Figure 3A) and 121 

proteins differentially expressed between 37°C and -80°C (Figure 3B). Network maps were 

plotted to display the proteins associated with each pathway between 37°C and 4°C (Figure 3C) 

and 37°C and -80°C (Figure 3D). 

 

Differentially expressed proteins (DEPs) involved in each of the top 5 enriched pathways from 

each gene set are found in Suppl. Table 3 (37°C vs 4°C) and Suppl. Table 4 (37°C vs -80°C). 

Pathways enriched using only the proteins differentially upregulated in cells stored in 4°C 

compared to control are shown in Suppl. Figure 4A with DEPs significantly different between 

groups in each of the top 5 pathways per database listed in Suppl. Table 5; notable pathways 

included cellular responses to stress and cellular responses to stimuli. Pathways enriched using 

only the proteins differentially upregulated in cells stored in -80°C compared to control are shown 

in Suppl. Figure 4B with DEPs listed in Suppl. Table 6. This shows that the cells undergo stress 

due to DMSO or lower temperatures and this is reflected upon the proteome. Similar altered 

pathways were observed in the work of Verheijen et al. where the effects of DMSO on cellular 

processes was assessed.28 Even though <10% of DMSO in cryopreservation of human cell lines is 

considered to be non-toxic, studies showed that DMSO can alter crucial metabolic pathways, 

proven by proteomics, transcriptomics, and methylation analyses on human microtissues, and 

bacteria29. DMSO may be responsible for some proteomic alterations between the cold and frozen 

conditions relative to control cells.  

 

Altered pathways include mTORC1 signaling, oxidative phosphorylation (OXPHOS), unfolded 

protein response, G2-M checkpoint, MYC targets V1, signaling by ROBO receptors, and 

translation.  For both cold and freezing conditions, we have observed a decrease in the expression 

levels of PSMA3 and PSMB5 proteins, which are integral components of the 20S proteasome 

complex (Figure 3C, 3D)30. The observed downregulation of the proteasome complex suggests a 

potential disruption in protein degradation pathways, particularly affecting the clearance of 

misfolded proteins. This disruption is known to elicit endoplasmic reticulum (ER) stress, a cellular 

response associated with the induction of apoptosis31,32. ER stress is often followed by unfolded 

protein response (UPR), one of the pathways enriched in our proteome comparison of 4°C to 37°C. 

UPR maintains the protein folding homeostasis in the ER, maintaining the capacity of ER to 

correctly fold proteins33. mTORC1 pathway, ER stress and oxidative stress are three pathways that 

regulate each other, and may reflect hypoxia34. Furthermore, we observed downregulation in 

translational machinery proteins TARS2 and SSR1. SSR1 protein, part of the Signal Sequence 

Receptor (SSR) complex located in the ER membrane, plays a role in protein translocation, and 

can function as a down regulator of translational machinery35. Finally, we observed 

downregulation of ribosomal proteins (RPSs and RPLs)36.  

 

The altered quantities of translation and OXPHOS proteins in either cold storage condition 

compared to control is shown in Figure 4. The mean of all non-zero protein quantities for each 
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protein in the translation (Figure 4A) and OXPHOS (Figure 4C) pathways demonstrate the 

differential alteration of proteins with cold shock within the same pathway compared to control. 

Figure 3. (A) Pathway mapping across 5 databases (GO Biological Process, GO Molecular Function, 

KEGG, MSigDB Hallmark, and Reactome) using differentially expressed proteins between 4°C group 

compared to the 37°C group. (B) Pathway mapping using differentially expressed proteins between -

80°C group compared to the 37°C group. (C) Cytoscape network map of differentially expressed 

proteins connected to enriched pathways between 4°C group compared to the 37°C group (D) and -

80°C group compared to the 37°C group. Green circle nodes display proteins that were upregulated in 

37°C group, while pink were downregulated. The pathway boxes are colored according to the color 

scale for p-value significance. Only selected pathways that were discussed were included in network 

maps. 
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Interestingly, this differential alteration of proteins in the translation and OXPHOS pathways due 

to cold shock may influence other cellular processes, such as the G2-M checkpoint, which is a 

critical regulatory point where the cell assesses DNA integrity and determines whether to proceed 

with mitosis37. Even though our data do not display proteins that are directly involved in DNA 

integrity checkpoint, we observe an enrichment in this GO network in 4°C and -80°C groups, 

compared to the standard conditions. Even though the mechanism is not clear, short-term and long-

term exposure of mammalian cells to hypothermia (4-10°C) are known to prevent cells from 

progressing beyond the G2-M checkpoint38, which could explain the enrichment in this GO 

pathway. 

 

 

This suggests that the cellular response to cold shock may not only affect immediate protein 

pathways but also have broader implications on cell cycle regulation. Such interconnected 

influences highlight the complexity of cellular stress responses, particularly in relation to critical 

checkpoints like G2-M. 

 

The proto-oncogene transcription factor MYC influences a wide array of genes that regulate 

various cellular functions, such as metabolism, proliferation, and morphology39. MYC interactome 

is known to comprise of at least 336 high-confidence proximity interactors, making this protein 

regulate a broad range of pathways in the cell40. MYC targets are linked to oxidative 

phosphorylation and the mTORC pathway in metabolic reprogramming41, suggesting that cold 

stress may modulate the metabolism of HEK293T cells. These insights into MYC's role in 

regulating metabolic pathways further emphasize the multifaceted impact of cold stress on cellular 

function.  

Figure 4. (A) Heatmap of average protein quantity for the DEPs in either cold condition vs 37°C 

involved in translation pathway. (B) Distribution of quantities from individual cells for DEPs 

involved in translation pathway across three conditions. (C) Heatmap of average quantity for DEPs 

in either cold condition vs 37°C involved in OXPHOS pathway. (D) Distribution of quantities from 

individual cells of DEPs involved in translation pathway across three conditions. 
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As we delve deeper into the specific pathways affected, such as the Slit/Robo pathway, it becomes 

evident how intricate and widespread the cellular response to cold stress can be. Our GO 

enrichment analysis revealed a significant enrichment in the Slit/Robo pathway, which plays a 

crucial role in regulating cell-cell and cell-matrix interactions42. It is plausible that cold stress alters 

these interactions, thereby inducing regulation of the Slit/Robo pathway. Given the pathway's 

involvement in kidney morphogenesis, its enrichment in our study is understandable. Cells under 

cold stress are prone to apoptosis, and apoptotic cells may become hypercontractile, affecting cell-

cell junctional stress, which could activate this pathway43. The results are highly heterogeneous, 

as displayed in the strip plot showing all log-transformed quantities of proteins (Figure 4B, 4D), 

indicating a diverse response among cells to the toxic effects of DMSO and hypoxic and cold 

stress, even though these cells were cultured immortal cells, showing lower diversity than cells 

isolated from tissues. 

 

  

Conclusion 

 
In summary, we describe how cold or frozen cell storage before single cell sorting impacts SCP 

data. Our findings unveil notable alterations in cell diameter and elongation accompanied by 

significant proteome changes. Pathway enrichment analysis underscores cellular stress pathways 

induced by cold temperatures, with these effects persisting even during subsequent cell sorting 

procedures. Collectively, our results advocate for the preferential sorting of individual cells 

without subjecting them to prior storage conditions, particularly when aiming to preserve the 

native proteomic landscape of the cells for analysis. The main limitation of this study is that we 

cannot know from this data whether these changes are artifacts of the sample preparation or 

reflections of the true biological changes. Regardless, our data suggests that our view of single cell 

proteomes change with cell storage.  
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