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Abstract

Birth-death models have long been employed to understand the interplay of genetic drift and
natural selection. While well-mixed populations remain unaffected by the choice of replacement
rules, the evolutionary outcomes in spatially structured populations are strongly impacted by this
choice. Moving parent individuals to vacant sites gives rise to new update rules, leading to new
fixation categories for spatial graphs. We discover a new category of graphs, amplifiers of fixation,
where a structure has a higher probability of fixation for mutants than the well-mixed population,
regardless of their fitness value. Under death-Birth updating with parents moving to vacant sites,
the star graph is an amplifier of fixation. For very large population sizes, the probability to fix
deleterious mutants on the star graph converges to a non-zero value, in contrast to the result from
well-mixed populations where the probability goes to zero. Additionally, most random graphs are
amplifiers of fixation for death-Birth updating, with parent individuals replacing dead individuals.
Conversely, most random graphs are suppressors of fixation— graphs with lower fixation probability
for mutants regardless of their fitnesses— for Birth-death updating with offspring replacing dead
individuals. When subjected to long-term evolution, amplifiers of fixation, despite being more
efficient at fixing beneficial mutants, attain lower fitness than the well-mixed population, whereas
suppressors attain higher fitness despite their inferior ability to fix beneficial mutants. These
surprising findings can be explained by their deleterious mutant regime. Therefore, the deleterious
mutant regime can be as crucial as the beneficial mutant regime for adaptive evolution.
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I. INTRODUCTION

Spatial structure can substantially impact the evolution of a population [IHI1]. Under-
standing the role of spatial structure in evolutionary biology is crucial and demands moving
beyond the commonly assumed well-mixed populations [I2]. Evolutionary graph theory
provides a platform where structured populations are modelled as graphs [I3], with each
node representing an asexually reproducing individual and the links defining its interaction
neighbourhood. In this framework, a complete graph represents a well-mixed population
where each node interacts with every other node with equal propensity.

Fixation probability and fixation time are two key observables in evolutionary graph
theory. The fixation probability of a mutant is the probability for the mutant to take
over a population of wild-types [I4HI§], while the (conditional) fixation time represents the
duration it takes for this process to complete [I9-22]. The fixation time of a mutant is a
random variable with a specific distribution, and the quantity of interest generally is the
average fixation time [23].

The fixation probability is an important quantity in evolutionary biology, because it
determines the rate of evolution [24-26]. During a fixation event, two evolutionary forces
are at play — natural selection and genetic drift — and spatial structure can modulate the
strength of these forces [27]. With the well-mixed population serving as the reference, graph
structures that amplify the strength of selection are termed amplifiers of selection (AoS),
while those that suppress it are referred to as suppressors of selection (SoS) [13,15]. An AoS
is a graph that has a higher probability of fixing beneficial mutants and a lower probability
of fixing deleterious mutants compared to the complete graph. On the other hand, a SoS
is a graph that has a lower probability of fixing beneficial mutants and a higher probability
of fixing deleterious mutants.

In general, graphs can be weighted and directed [28-30]. This means that an individual
may not interact with its neighbor as strongly as the neighbor interacts with the focal
individual. In this work, we focus on unweighted and undirected graphs. The precise form
of the interactions among individuals is determined by an update rule. The commonly
studied update rules in evolutionary graph theory are the Moran Birth-death (Bd) and the
Moran death-Birth (dB) updates [31H33]. The shorthand Bd implies that the birth event
precedes the death event. The uppercase B indicates that selection operates during the birth
event, while the lowercase d represents the neutral nature of the death event. This offers
various choices for the birth-death updates [34]. The fixation probability of a mutant on a
graph depends crucially on the update rule [35]. In [33] it was found that for Bd updating,
most small random graphs are AoS, whereas under dB updating, most of the random graphs

are SoS.

However, not only the update rule, but also the node where the mutant initially appears
substantially affects the fixation probability. Mutant initialisation schemes determine the
likelihood for a node to be initialised with the mutant. Two popular schemes are uniform
mutant initialisation and temperature mutant initialisation [36]. Under uniform mutant
initialisation, every node is equally likely to be initialised with the mutant. For temperature
initialisation, the initial mutant is more likely to appear on nodes with higher turnover rates,
that is, with a larger number of links. The star graph is an AoS under Moran Bd updating
with uniform mutant initialisation. However, for temperature initialisation, the star graph
is a suppressor of fixation (SoF)—a graph with lower probability of fixing a mutant than the
well-mixed population, regardless of the mutant’s fitness.
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Recently, some studies in evolutionary graph theory went beyond the fixation time scales
and explored the state of mutation-selection balance that emerges at long times [37-39].
When the uniformly initialised star graph (an AoS) was subjected to long-term mutation-
selection dynamics, it achieved a higher average steady-state fitness compared to the com-
plete graph [40]. This outcome was anticipated because an AoS is more efficient at fixing
beneficial mutants and preventing the fixation of deleterious mutants. Surprisingly, how-
ever, the temperature initialised star graph, despite being a SoF', not only attained a higher
fitness than the complete graph, but also equally high fitness as the uniform initialised star
graph. This result can be explained by the ability of the temperature initialised star graph to
efficiently reject deleterious mutants, compensating for its inability to fix beneficial mutants.

To our knowledge, this is the only known example so far where the deleterious mutant
regime has the potential to influence long-term evolution, and it raises a number of questions.
How common are SoF’ for temperature initialised Bd updating? Do all of SoF" attain higher
fitness than the complete graph, despite having lower probabilities of fixing advantageous
mutants? What about dB updating? Does the deleterious mutant regime play any significant
role for dB long-term dynamics as well? We address all of these questions here.

The structure of this paper is as follows. We begin by establishing a connection between
update rules and mutant initialisation schemes. We show that these schemes naturally arise
from the choice of individuals moving to vacant nodes — either the parent-type offspring or
the mutant offspring — and therefore do not need to be separately specified. Subsequently
we study the star graph and Erdos-Rényi random graphs at short-term fixation time scales,
considering various update rules. Notably, we observe that the star graph acts as an amplifier
of fixation (AoF) under temperature initialised dB updating with a higher probability of
fixing mutants compared to the complete graph, regardless of the fitness value. Similarly,
we find that most of the small random graphs are AoF under temperature initialised dB
updating and SoF under temperature initialised Bd updating. Additionally, we study the
star graph and random graphs under long-term mutation-selection dynamics. Surprisingly,
despite being SoF', most of the random graphs achieve higher fitness than the complete
graph for temperature initialised Bd updating, whereas most of the random graphs attain
lower fitness for temperature initialised dB updating despite being AoF'.

II. UPDATE MECHANISMS IN GRAPH STRUCTURED POPULATIONS

When working with structured populations, the update rule substantially affects the
dynamics. An evolutionary update rule determines not only the order of the birth and
death events and the choice of event(s) where selection operates, but also the process by
which new mutations appear in the population.

A mutant initialisation scheme Z denotes the probability distribution with which an
initial mutant appears on a node, p = (pg, p1, - - - py—1). For example, in the uniform mutant
initialisation scheme U, we have p; = 1/N for all nodes i, i.e., a mutant appears in every
node with the same probability. Similarly, for the temperature initialisation scheme 7T,
the probability for a node to receive an initial mutant is proportional to the temperature
(sum of incoming/outgoing weight) of the node. We assume that mutation is coupled to
reproduction.

As an example for temperature initialisation, let us focus on the Moran Birth-death (Bd)
update rule with the offspring moving to another site [36]. First an individual is selected
with probability proportional to its fitness to give birth to an offspring. Thus fitness is
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equivalent to the reproduction rate of an individual. After reproduction, the offspring either
resembles its parent with probability 1 — p or is a mutant with probability . Then the
offspring takes over the node of a random neighboring individual chosen to die. Therefore,
in a population where every individual has the same fitness, the first mutant is more likely
to appear on nodes with higher in-degree. To be specific, the probability p; that a mutant
appears in a node 7 is proportional to its in-temperature 7;™,

;= — = —Jm, 1
k

Here, a;,, is an element of the adjacency matrix A with value equal to 1 if there is link
directed from node [ to m and 0 otherwise. A is a symmetric matrix for undirected graphs.
For further examples for this update mechanism, see also Refs. [41], 42].

So far, we assumed that the offspring moves to a neighboring node while the parent
remains at its position, see Fig. |l| A. To denote this, we use the shorthand Bd® where the
superscript indicates that the offspring moves to a vacant site. With the same assumption,
for death-Birth updating dB?, the mutant initialisation is uniform: The probability that an
initial mutant appears in node ¢ under dB° updating is equal to 1/N.

To explore other possibilities, we consider the case where the parent moves to the neigh-
boring node and the offspring stays at the original node, see Fig. [1] B. These update rules
will be denoted by the superscript p. There are biological scenarios that can inspire such
a parent moving rule: For example, most lizards and snakes abandon their eggs after lay-
ing [43] at specific sites [44-46]. Thus, the rules where the parent moves can be inspired
by lizard /snake populations with a fixed number of sites. Movement and reproduction get
coupled in birth-death models because there are generally no free spots in a tightly packed
populations of fixed size, and new spots open up only after the death events. However, par-
ent moving rules rules are probably more relevant for microbial and somatic cell populations,
where parent and offspring cannot necessarily be distinguished, see Fig. [l In such cases,
there is no a priori reason why e.g. a new daughter cell is leaving the mother cell’s site and
not vice-versa. There are numerous studies in the mathematical oncology literature that
investigate mutation-selection dynamics on regular graphs [47, 48]. In all of these studies,
the mutant daughter cell moves to the vacant site, but there is no reason why the daughter
cell identical to the mother cell cannot move instead. On regular graphs, the initial place-
ment of the mutant is independent of the choice of the individual moving to vacant site —
parent (daughter cell resembling the mother) or offspring (mutant daughter cell). This is
not true for non-regular graphs, where the initial placement of the mutant is determined by
the choice of individual moving to vacant sites (Fig. .

The probability that the initial mutant under dB” update arises in node 7 is

1 Q5 1
; = — _:_7;out. 2
p sz Say N (2)
%

Thus, the mutants for dB” updating with parent-type offspring moving to a vacant node
are out-temperature initialised. In other words, highly connected nodes are more likely to
receive an initial mutant. For unweighted and undirected graphs 7™ = 7°%. For weighted
graphs, in the definitions of 7 and 7°%, all elements of the adjacency matrix must be
replaced with the elements of the weight matrix, W. Note that for the complete graph the
choice of individual moving to vacant node is irrelevant due to the symmetry of the graph.
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FIG. 1. Type of individual moving to vacant sites and mutant initialisation schemes.
The mutant initialisation scheme, the likelihood that the initial mutant appears on a given node
in a homogenous fitness background, is fully determined by the evolutionary update rule, provided
mutations are coupled to reproduction and the choice of individual that moves to the vacant node
is specified. This is shown in panels A and B, where wild-type individuals are shown in blue and
the mutant in yellow. The individual chosen for birth is marked by a thick solid circle while the one
chosen for death is marked by a dashed circle. In case of mutation, one of the daughter cells is a
mutant (yellow type) and the other one resembles the mother (blue type). In panel A, the mutant
offspring moves to the vacant site. Throughout the paper, this is referred to as the offspring moving
rule. For Bd updating, the corresponding initialisation scheme Bd? is temperature initialised, and
for dB updating, dB®, it is uniformly initialised. Similarly, in panel B the parent-type offspring
moves to the vacant node while the mutant offspring stays at the birth site. We call this the parent
moving rule. The corresponding Bd update rule Bd? leads to uniform initialisation, whereas dB”
implies temperature initialisation. Table C lists the combinations of update rules and the choices
of the individual moving to the vacant site. In the rest of the paper, the following color-coding has
been used for the update rules: pink for Bd’, red for dB°, green for Bd” and orange for dBP.

In the literature, it has been suggested that for dB updating temperature initialisation
does not exist [49, 50]. This is true when the offspring individual moves to a neighbour-
ing node. But when we instead assume that the parent moves, we obtain the temperature
initialised dB update. Moreover, Bd” updating with the parent moving to the vacant node
recovers the uniform mutant initialisation. Table [l C lists the combination of update rules
and the choice of individual moving to the vacant site leading to different mutant initialisa-
tion schemes.

III. SHORT TIME SCALES: FIXATION DYNAMICS

In evolutionary graph theory, the focus is typically on the fixation probability of a mutant.
For a given graph, this probability may depend on the node where the mutant first appears.
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To make this explicit, we denote by ¢¢;(f’, f) the fixation probability of a mutant with
fitness [’ in a wild-type population of fitness f on a graph G starting from node i. As
discussed above, the mutant usually does not arise in every node with the same probability.
For a general mutant initialisation scheme Z, the average fixation probability on graph G is

N-1

OG(f' f) = Zpi ~9ci(f's f). (3)

In the following, we study average fixation probabilities on the star graph and on random
graphs for different update rules.

A. The star graph

The star graph has been extensively studied in evolutionary graph theory, as it is highly
inhomogeneous but still analytically tractable [51]. The Moran Bd process on the star graph
was studied in [I3]. Since then, the star graph has become the prime example of an AoS
for uniform mutant initialisation, which can be solved exactly [52], 53] for various update
rules, including some that have not been discussed here like bD and Db [54]. However,
the star graph fails to amplify selection if the initial mutant is initialised according to the
temperature initialisation scheme, where the central node is more likely to receive the initial
mutant [36]. Under temperature initialised Bd updating, the star graph is instead a SoF
[40], see Fig. 2] A and a SoS for uniform initialised dB updating [49], see Fig. [2[ B.

So far, the star graph was not studied for the temperature initialised dB updating, because
this requires the assumption that the parent moves instead of the offspring. For the dB
update rule, the fixation probability for a mutant with fitness f’ in the background fitness
f on the complete graph is [15], 33]

N -1 -

e(f' f) = Qelf' f) = (4)

In the limit of large N this becomes equal to the Bd fixation probability [15]. Also, because
of the symmetry of the complete graph, the fixation probability is independent of the mutant
initialisation scheme Z. This is true for other regular graphs as well. Using the approach of
recursive relations [54], in Appendiz A we derive the fixation probability of a mutant under
dB updating on the star graph. When the mutant is initially placed on the center node, its
fixation probability is

N -1
¢ZiB,*(f/7 f) = : (5>
N (1 + —A=2 f,)
1+(N—-1) 4

f

Here the star symbol denotes the star graph, and the filled circle in the superscript of ¢%
indicates that the initial mutant is at the center node. Similarly, the fixation probability for
a mutant initially placed on a leaf node is

r
; : (6)
I _ N-2

(N—2+2f> <1+ H(N_l)f,)

Sapx (' f) =

f
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From Eq. [f] and [6, we can compute the temperature initialised fixation probability of a
mutant on the star graph under dB updating (equivalent to dB”) as

N — 1o /7 ) /7
‘I)dTB,*(f,af) _ ( )%B,*(f]\f) + ¢ap x (f f)' (1)

From Eq. [7, we find that for dB? updating, the probability to fix advantageous mutants
on the star graph is higher than in the well-mixed population, see Fig. [2| B. But the fixa-
tion probability for deleterious mutants is also higher than the fixation probability on the
complete graph, contrary to the original definition of AoSs where the probability to fix dele-
terious mutant is lower [I3]. Therefore, it represents a new category of graphs which we call
amplifier of fixation (AoF'), where the probability to fix a mutant is higher than that of the
complete graph, regardless of the mutant fitness value.

The star graph under temperature initialised dB updating dB? is a piecewise AoF for
finite N, see Fig. [A.1], and only in the limit N — oo, it is a universal AoF, see Fig.
B. Intuitively, in a very large population, the initial mutant will most likely appear at the
central node. Assuming the mutant does appear at the central node, in the next step an
individual is selected with uniform probability to die. Most likely this is a leaf node. In
this case, the mutant at the central node replaces the dead individual. This way, the initial
mutant can survive in the population with higher probability, regardless of its fitness. Taking
the N — oo limit of the fixation probability profile we find,

f/
f+1
Thus the probability to fix a deleterious mutant (f’ < f) remains non-zero even in the
limit of N — oo, which contradicts the conventional intuition that deleterious mutants are
efficiently purged from large populations. A similar phenomenon was observed in [0, [55] in
an explicitly spatial setup. Before we proceed, it is important to note that the choice of
individual type moving to vacant sites — parent or offspring — only affects the initial mutant

placement on the structure. In the absence of mutations, these two choices are equivalent
as both the offsprings resemble the parent type.

]\}gréo q’IB,*(fl7 f) = ]\}5%0 Papa ([ f) = for f* > 0. (8)

B. Numerical classification of graphs

In the previous section we have analysed the star graph under 4 different updating
schemes, Bd’?, dB°, Bd” and dB”. Depending in the update scheme, the star graph can
be a SoF, a SoS, an AoS, or an AoF. The classification carries over to other graphs and we

implement it as follows: we numerically compute the fixation probability for a mutant with
fitness values f' = 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25 and 2.5, see Appendiz B for more
details. With wild-type individual fitness f = 1, we classify a given connected graph G as

o A0S, i BL(f, f) < De(f, f) for f/ = 0.5, 0.75 and DL(f', f) > Be(f', f) for f/ > 1.25.
o S80S, if BL(f, ) > ([, f) for f' = 0.5, 0.75 and PL(f', f) < de(f', f) for f/ > 1.25.
o SoF, if ®L(f, ) < (S, f) for all f'.
o AoF,if ®L(f, ) > Dc(f', f) for all f".

7


https://doi.org/10.1101/2024.07.23.604724
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.23.604724; this version posted July 23, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A B
1.0 —~ L
S . e V=100 Q10 N=100
So08{ W oW = 0.8 i
U Al
l\,'e? AV TN Complete Ta LComplete
0.6 Bde star} 2 0.6 dBe star
3 BdP star T_g
3041 - F Q 0.4
o o
a / o
c 0.2 i S 0.2
) 0.8 09 1.0 1.1.1.2 8 08 09 10 1.1 12
-ES' ‘2 .i;”_;:—fa
i 0.0 T 0.0] ——A——d—treds 2
101 100 , 10! 101 10° , 10!
Mutant’s fitness, f Mutant’s fitness, f
C
Mutant
Update rule initialisation Category
Bd° Temperature (in) | Suppressor of Fixation (SoF)
dBe Uniform Suppressor of Selection (SoS)
Bdr Uniform Amplifier of Selection (AoS)
Temperature (out)

FIG. 2. Fixation probability for the star graph under different update rules. A) Under
temperature initialised Bd updating (Bd?), the star graph is a suppressor of fixation whereas, under
uniformly initialised Bd updating (Bd”) the star is an amplifier of selection. B) The uniformly
initialised star graph under dB updating (dB?) is a suppressor of selection. A new category of
graphs, amplifiers of fixation, is introduced here. An amplifier of fixation has higher fixation
probability for a mutant, regardless of its fitness, than on the complete graph. Under temperature
initialised dB updating (dBP) the star graph is an amplifier of fixation. Specifically, for finite N
the star graph is a piecewise amplifier of fixation, and only in the limit of infinite population size,
it becomes an universal amplifier of fixation. Symbols correspond to dB simulations with 2000
independent runs for each graph (with each run conditioned on fixation). C) Summary of how the
choice of update rule affects the fixation dynamics for the star graph.

o Pieccewise AoF, if ®L(f' f) > Pc(f, f) for f/ < f* and ®L(f', f) < Pc(f’, f) for
f'> f*, where f* > 1.

e Isothermal graph if ®L(f, f) = ®c(f', f) for all pairs of f’, f, and every node has the
same degree. However, the isothermal graphs have the same fixation probabilities as
the complete graph only for Bd updating [35] (see Appendiz C for further discussion).

For weighted graphs, all isothermal graphs (graphs where every node has equal in-temperature)
have the same fixation probabilities under Bd updating as the complete graph. Note that
these definitions assume that at neutrality (f’ = f) all the graphs have the fixation proba-
bility 1/N, as the complete graph which is chosen as the basis for comparison. However, this
is true only under uniform mutant initialisation. Under temperature mutant initialisation,
the fixation probabilities for graphs at neutrality need not be 1/N [56]. Piecewise amplifiers
and suppressors are sometimes referred to as transient in the literature [49, [57].

8
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C. Random graphs

Based on this, we study the fixation probability profiles for random graphs of size 8
for the same update rules, to see to what extent the observations made for the star graph
in Sec. [[ITA] extend to random graphs. For this purpose, we randomly generated Erdés
Rényi graphs [58] for different probabilities of link connection, p. Setting p = 0 generates
fully disconnected graphs whereas p = 1 generates the complete graph. As the fixation
probability is defined only if the graph is connected, we condition on connected graphs
[59, 60]. From Fig. |3l A, we find that, just as the star graph, most random graphs are SoF
under the temperature initialised Bd process (equivalent to Bd®). Similarly, most of the
random graphs under temperature initialised dB (equivalent to dB”) are (piecewise) AoF,
see Fig. |3 B. Therefore, AoF and SoF are ubiquitous. Under the uniformly initialised Bd
process (equivalent to Bd”) and dB process (equivalent to dB?), most of the random graphs
are AoS and SoS respectively, see Figs. [3] C,D. The ubiquity of these categories has been
shown earlier in [33].

IV. LONG TIME SCALES: MUTATION-SELECTION BALANCE

After studying short-term fixation dynamics in graph-structured populations, we now
move our focus to long-term mutation-selection dynamics. We assume that the state space
is a bounded fitness interval [fiin, fmax]- During a birth event, with probability 1 — p the
offspring resembles its parent and has the same fitness, and otherwise it mutates to a new
fitness sampled from a mutational fitness distribution p(f’, f) [61]. Here p(f’, f) denotes the
probability density of the mutant offspring fitness f’ given the parental fitness f, which is
also known as the neighbour fitness distribution [62].

We work in the regime of low mutation rates, y < 1 where the population is monomorphic
almost all the time, except during a fixation event. All individuals have the same fitness
value, which can be used to label the entire population. Specifically, the average time
between two successive mutations is large enough so that the initial mutant reaches fixation
or goes extinct before the next mutation appears [63]. Any change in the state of the
population requires the fixation of a new mutation. Thus, the fixation probability and the
mutant initialisation (depending on the details of the update rule) ®% fully determine the
long-term mutation-selection dynamics. These dynamics are known by multiple names, e.g.,
sequential dynamics, periodic selection [25] 64] or origin-fixation dynamics [65].

The origin-fixation dynamics on a population structure G is a continuous time Markov
chain on the fitness state space governed by the master equation

aPG(f? t) _
-

= [ s ®(L. £)ol. ) Pl 1)

T 9)
_/df’ G Pplf', i Pa(f.1),

-

Tf/

—f

where Pg(f,1) is the probability density function for the structure G to be in between fitness
state f and f + df at time ¢.
At long times a steady-state fitness distribution Pg(f) is attained. Pj(f) satisfies the
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FIG. 3. Suppressors and amplifiers of fixation are ubiquitous. We generated Erdds Rényi
graphs of size N = 8 for several values of the probability of link connection, p. Fixation probability
profiles for connected graphs are numerically obtained for temperature/uniform initialised Bd and
dB updating. Refer to Sec. for details on the fitness discretisation. A) Most of the graphs
are suppressors of fixation under temperature initialised Bd updating, i.e., most of the graphs have
lower fixation probability for a mutant regardless of its fitness than the complete graph, whereas,
B) most of the connected random graphs are piecewise amplifiers of fixation under temperature
initialised dB updating. These graphs have higher fixation probability than the complete graph
for mutants with fitness f/ < f*, and lower fixation probability for f/ > f* with f* > 1. In
other words, within our chosen resolution of the fitness scale, the fixation of deleterious mutations
is amplified and the fixation of beneficial mutations is suppressed. Similarly, C) most of the
connected graphs are amplifiers of selection under uniformly initialised Bd updating, whereas, D)
most of the connected random graphs are suppressor of fixation under uniformly initialised dB
updating. In Fig. the fixation probabilities of random graphs with p = 0.5 are shown for
different update schemes.

stationarity condition
[ar Tepraie) = [af Toe e, (10
where Ty, s is the transition probability from the fitness state f’ to f and Ty s is the

transition probability from the fitness state f to f’ as defined in the Eq. [0} This condition
simplifies considerably if the Markov chain is reversible, which implies the detailed balance

10


https://doi.org/10.1101/2024.07.23.604724
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.23.604724; this version posted July 23, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

relation [66] [67]

Tpep PE(f) =Ty g PE(f),  forall f', f. (11)

Normalising Pg(f’), the steady-state solution takes the form,

r [y T [ (S S) Pl )
Ty g OL(f, ) p(fi f) (12)
1
Jorvia 85

Here, we have introduced the ratio of fixation probabilities W5 (f’, f). In [68] it has been
shown that the origin-fixation dynamics is reversible if and only if WZ(f, f) is a power-law,
ie.,

/ v
VE(f, f) = (7> , (13)
where v is constant. For most graphs this condition is not satisfied exactly, but it may hold
approximately in a range of fitness values and/or for large population sizes, see Appendiz D
for more details. Eq. can then be used as an approximation to the steady state fitness
distribution [40)].

A. Complete and regular graphs

For the complete graph under dB updating, WL (f’, f) takes the form

VEP ) = Vel ) = 35 = (fT) - (14)

Thus, the Moran dB origin-fixation dynamics on the complete graph is reversible with
v = N — 2. The steady-state fitness distribution is therefore given by

Pe(f) = v = :

max f min max f min

(15)

where we assume that the mutant’s fitness is sampled from a uniform distribution, i.e.,
p(f', f) = fmax—ifmn This choice is similar to the House of Cards model [69]. Similarly,
for the Moran Bd origin-fixation dynamics, in [68, [70] reversibility is shown to hold for the
complete graph with v = N — 1. From now onwards, we use the notation Fg for Pf.

The steady-state average fitness for the Moran dB origin-fixation dynamics on the com-

plete graph is

N-—-1 fN — fN
(e = [ af Per) ===t (16)
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In the limit N — oo,

— L if

) (17)
0 otherwise.

Thus, under this dynamics, an infinitely sized well-mixed population can only move forward
on the fitness space with long-term fitness converging to fun.c. This can also be seen by
performing the N — oo on the average steady-state fitness in Eq.[16] The same result holds
for the Moran origin-fixation Bd dynamics.

The steady-state fitness distribution in Eq. [15]takes the form of an exponential, Boltzmann-
like distribution for —log f. This suggests an analogy between statistical mechanics and
evolutionary theory that has been pointed out in numerous former studies [70H74]. Under
this analogy, a physical system’s energy is equivalent to the negative logarithm of fitness,
and the inverse physical temperature is equivalent to the effective population size. Just like
high physical temperatures result in strong thermal fluctuations, low effective population
sizes lead to highly stochastic population dynamics.

For general (reversible) origin-fixation dynamics, the role of N —2 or N —1 for the Moran
model on the complete graph is taken over by the exponent v in Eq. [13] This suggests to
define v as a measure of the effective population size of a general graph (see [12, [75, [76] for
definitions of effective population sizes in other contexts). While this definition is strictly
applicable only if the long-term origin fixation dynamics is reversible, it is useful also when
reversibility holds approximately or asymptotically. We will see below that the definition is
consistent with intuition, in the sense that graphs with larger (smaller) effective population
sizes display smaller (larger) fluctuations in the evolutionary dynamics. We also studied
the long-term dB mutation-selection dynamics for other regular graphs, see Appendiz C for
details. The one-dimensional cycle graph, a SoF under dB updating [33], 57], has a lower
probability of fixing mutants regardless of the fitness of the mutant compared to the well-
mixed population. The cycle graph is worse at fixing beneficial mutations but it is better
at preventing the fixation of deleterious mutants. The ratio of the fixation probabilities ¥,
is exactly the same as that for the complete graph, i.e.,

To(F ) = Vol f f) = (7)N (18)

see Eq. In the long run, the lower probability of fixing beneficial mutants for the cycle
graph gets compensated by the higher probability of rejecting deleterious mutants. As a
result, under Moran dB origin-fixation dynamics, the steady-state statistics for the cycle
graph is the same as for the complete graph. Similarly, the two-dimensional grid with
periodic boundary conditions, although having a different fixation probability profile [35],
approximately attains the same steady-state statistics for the long-term mutation-selection
dynamics as the complete graph, see Appendiz C for more details. Therefore, for long-term
dB dynamics we expect other (large) regular graphs to have the same steady-state as the
complete graph. For Moran Bd updating, the complete graph, the cycle graph and the two-
dimensional lattice (with periodic boundary conditions) have the same fixation probabilities
[13], therefore they all have the same steady-state statistics for the Moran Bd origin-fixation
dynamics.

12


https://doi.org/10.1101/2024.07.23.604724
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.23.604724; this version posted July 23, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

B. Star graph

We now study long-term mutation-selection dynamics on the star graph under Moran
Bd?, Bd°, dB” and dB° updating. In the long-term Moran dB° origin-fixation dynamics, the
complete graph leads to a higher average fitness than the star graph, see Fig. [d] B. This is
expected, as the star graph under dB° updating is a SoS.

For the Moran dB” origin-fixation dynamics, the star has a higher probability to fix mu-
tants than the complete graph. However, in the long-term dynamics the complete graph
leads to a higher average fitness than the star graph. Moreover, the star graph with dB°
updating attains higher fitness than the star graph subjected to dB? updating. This hap-
pens because the star graph under dB” updating has a higher probability to fix deleterious
mutants. As the population gets closer to the fitness peak (here fy.y), the probability for
the mutations to have deleterious fitness effects also increases. Consequently, the fate of
deleterious mutants has a strong influence on the steady-state fitness of the population.

To understand this further, we study the large N behaviour of the steady-state for the
various Moran origin-fixation dynamics on the star graph. In the limit of large N for Moran
dB? updating, we find from Eq. [§| that

/

Uape x(f'; f) = 7

From Eq. [19, we find that the effective population size in the large N limit for the star
graph under dB” updating is ¥ = 1. The corresponding steady-state fitness distribution in
the large N limit is

(19)

2f
Faprx(f) = 3 — (20)
and the steady-state average fitness is
2 f3 —f3 2
va — [ df fPiae — ZJmax ™ Jmin o, 2 21
(f)ame % / [ fPapr x(f) 572 2 3/ (21)

for foax > fumin- Similarly, the large N limit for the star graph under dB° updating gives
(see Appendiz A for details)

Baweal ') % (22)
and therefore
M\
Uape % (f', f) ~ (7> ,
32 (23)
Pape % (f) = JEE A

In the limit of large IV, the effective population of the star graph subjected to dB° dynamics
is twice that obtained for dB” dynamics. As a consequence, the dB® star graph attains
higher average fitness in the steady-state,

3 r%lax — riin 3
= 3 S = S — fmax (24)

(flapox = /dfdeB",*(f> “up —p Y
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FIG. 4. Moran origin-fixation dynamics on the star graph. The figure shows the average
and standard deviation of the steady state fitness distribution as a function of population size.
Circles represent results obtained from Monte Carlo simulations of the origin-fixation Markov
chain, and lines were computed from the approximate expression Eq. [12|for the steady state fitness
distribution. A) For Moran Bd origin-fixation dynamics, the star graph, despite being a suppressor
of fixation, attains not only higher average fitness than the complete graph, but identical fitness
as the star graph under Bd? dynamics, where it is an amplifier of selection. This happens because
the Bd® star compensates for its inability to fix beneficial mutants by rejecting deleterious mutants
efficiently. B) For dB? dynamics, the star graph, being an amplifier of fixation, not only attains
lower steady-state average fitness than the well-mixed population, but also lower than the star
graph subjected to dB° update, where it is a suppressor of selection. This happens because the
dB? star is worse in rejecting deleterious mutations than the dB® star. Therefore, being good at
fixing beneficial mutants is not sufficient to attain higher fitness in the long-term evolution. C)
The star graph under Bd long-term dynamics not only attains higher average fitness but also lower
fluctuations in the steady-state than the well-mixed population. This can be understood by the
higher effective population size of the star graph. D) Compared to the average fitness order under
dB dynamics in panel B, the order for the standard deviation in fitness is reversed: dBP-star,
Bd’-star and the complete graph. Moreover, the standard deviation for the star graphs under dB
long-term dynamics saturates to finite values for large N, as their effective population sizes are
independent of N. Parameters: foin = 1, fmax = 10 and the number of independent runs for
Monte Carlo simulations is 2000.
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for fmax > fmin‘ Although th—)oo CI)dBO’*(f/,f) = (0 and limN—mo (I)dBp,*(f/,f) 7£ O, we
find (f)ape x > (f)aprx (but note that, because of the lower fixation probability, the higher
steady state fitness of the dB? star is attained after a longer time).
Performing a similar analysis for Birth-death updating, we find that the star graph under
Bd? and Bd’ updating satisfies
Fr\ N2
V(£ )~ (5) % Varad s ). (25)
The first approximation follows from [52] and the second approximation follows from [40].
What this means is that, although under Moran Bd” and Bd° updating the star has quite
different fixation probability profiles, see Fig.[2] A, in the long term to a good approximation
they display identical steady-state statistics, because in both cases the star graph has the
same effective population size of 2/N. This also means that the star graph under long-term
Moran Bd dynamics attains higher average fitness in the steady-state than the well-mixed
population. Specifically, the steady-state fitness distribution is
2N —1
Poar () = Poa () = o= /™"

max min 26
2N -1 (2N—-2)log f ( )
OIN—1 __ fQN—l6

max min

and the average steady-state fitness is

IN —1 2N _ 2N

(Pl = o = =55 iy — v (27)
with
(f)Bax — (flc =~ fmax' (28)
' 2N

The star graph under Bd” updating, an AoS (Fig. [2| A), expectedly attains higher fitness
than the well-mixed population because it is better in fixing beneficial mutations and pre-
venting the fixation of deleterious mutations. However, the star graph under Bd® updating,
a SoF, also attains a higher steady-state average fitness than the complete graph (identical
to the one under Bd” updating) because it is much better at rejecting deleterious mutants,
which compensates for its lower probability to fix beneficial mutations [40].

The effective population size also affects the fluctuations in the steady-state. Because
the effective population size of the star graph under dB updating is independent of N, the
standard deviation in fitness does not change at large N. The AoF star experiences higher
fluctuations than the SoF star because of its lower effective population size, see Fig. [ D.
Under Bd updating, the effective population size of the star graph is twice the effective
population size of the complete graph. Therefore, the star experiences lower fluctuations
than the complete graph and the standard deviation decreases with increasing IV, see Fig.
C. For more details, see Appendiz E.

C. Random graphs

For long-term evolution on the star graph, the deleterious mutant regime can substantially
affect the fate of the dynamics. Does this effect extend to other graphs? Can we expect
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the SoF that we found in Fig. [3] A to have higher long-term fitness than the well-mixed
population? The answer in not obvious. Similarly, what can we say about the long-term
fitness fate of the AoF found in Fig. [3| B? Do all of them attain lower steady-state average
fitness than the complete graph, just like the star graph under dB? updating? We explore
these questions next. We move forward by discretising the fitness space and study the Moran
Bd?, Bd°, dB? and dB° origin-fixation dynamics for several random graphs. Steady-state
statistics of these graphs are obtained by solving the respective Markov chains numerically,
see Appendiz F for details.

Computing the steady-state average fitness for all connected random graphs, in Fig. |5 A
we find that for long-term Bd® dynamics, almost all SoF" attain higher steady-state average
fitness than the complete graph, whereas in Fig. |5 B for long-term dB” dynamics, all the
piecewise AoF attain lower steady-state average fitness. Interestingly, for the case of Bd”
dynamics where most of the connected graphs are AoS, the graphs attain quite similar
average fitness as they do when subjected to the Bd® dynamics, see Fig. 5| C. In Fig. 4] A,
we have seen that the star graph attains the same fitness for the two kinds of Bd long-term
dynamics. Now we confirm this for all other graphs. Expectedly, for the long-term dB’
dynamics where most of the random connected graphs are SoS, the majority of random
graphs attain lower average fitness, see Fig. 5| D.

It is difficult to find general conditions under which a structured population has higher
average steady state fitness than the complete graph. In Appendix G, we derive a sufficient
condition for this. We use this condition to determine the ordering of the average steady
state fitnesses for the structures reported in Fig. 4| B and show that they are consistent with
the numerical results.

V. DISCUSSION

Most of the initial research in evolutionary graph theory has focused on the Moran Birth-
death (Bd) update with uniform initialisation [I3, 26, 52]. The uniform initialisation is
typically justified by considering spontaneous mutations during an individual’s lifetime [77].
However, when mutations occur during reproduction instead [36], justifying the use of uni-
form initialised Bd updating becomes more challenging. In that scenario, temperature ini-
tialisation is a more natural choice. Our findings demonstrate that the uniform initialisation
in the Bd update naturally arises when parent-type offspring move to vacant nodes (Bd”)
rather than mutant offspring individuals (Bd?). Furthermore, by necessitating parent-type
individuals to move instead of mutant offspring individuals, we have uncovered the existence
of temperature-initialised dB updating (dB”), an update scheme previously considered non-
existent. In conclusion, we emphasise that a mutant initialisation scheme is an outcome
of an update rule and the mode of mutations, and need not be specified on top of it. An
update rule should be sufficient to generate the fixation dynamics on a graph.

Moran dB? updating introduces a new category of graphs known as AoF' (amplifiers of
fixation), where the fixation probability is higher regardless of the fitness values compared
to the complete graph. The star graph under dB” updating is an AoF with non-zero prob-
ability to fix deleterious mutants, even in the limit of infinite population size. For all other
previously known graphs, such as AoS, SoS, SoF, the complete graph, the probability of
fixing any deleterious mutant goes to zero for large population sizes. Consequently, the dele-
terious mutant regime has not been extensively explored in the literature. The discovery of
AoF underscores the need to consider the deleterious mutant regime in graph classification,
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FIG. 5. Suppressors of fixation attain higher long-term fitness whereas amplifiers of
fixation attain lower fitness. Numerical solutions of the Markov chain on the fitness space
for several random graphs of size 8 are presented. The same fitness discretisation is chosen as in
Fig. [3] The magenta horizontal lines represent the steady-state fitness obtained on the star graph
relative to the complete graph (blue horizontal line) under different dynamics. A) Most of the
random graphs are suppressors of fixation under dB° updating, yet they attain higher fitness than
the well-mixed population. B) Similarly, most of the random graphs are (piecewise) amplifiers of
fixation under dB? updating, yet they attain lower steady-state average fitness. C), D) Expectedly,
amplifiers of selection attain higher fitness for Bd® dynamics and suppressors of selection attain
lower fitness for dB? dynamics. Thus, the deleterious mutant regime is important for generic graph
structures when subjected to long-term dynamics.

and its importance in the computation of fixation probabilities and time.

The results derived from the analysis of the star graph for different update rules also
extends to Erdds-Rényi random graphs. Specifically, we observe that the majority of small
random graphs are SoF under Bd° updating, and piecewise AoF under dB” updating. This
finding closely resembles the result of Ref. [33], where most random graphs were identified
as AoS under Bd” updating and SoS under dB? updating. Consequently, it is not only the
order of birth and death events, but also the choice of the individual moving to vacant sites
significantly impacts the results at the short-term fixation time scale. Earlier work in evolu-
tionary graph theory has focused on designing strong amplifiers of selection — structures with
a high probability of fixing beneficial mutants [I3] 29, [78] [79]. Our work offers new research
directions where structures can be designed to obtain desirable fixation profiles, both for the
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beneficial and deleterious mutant regime. Different update rules allow to manipulate the
fixation probabilities of beneficial and deleterious mutations independently.

The choice of moving individuals also affects the long-term Moran origin-fixation dynam-
ics. The star graph, a SoF under Bd’ updating, despite having lower probability to fix
advantageous mutants attains higher fitness in the long-term dynamics than the well-mixed
population. Similarly under dB” updating, the star graph despite being an AoF" with higher
probability of fixing beneficial mutants attains lower fitness. In the former case, the star
graph is better in rejecting deleterious mutants, compensating for its lower probability to
fix beneficial mutations. In the later scenario, the star graph is not good is preventing the
fixation of disadvantageous mutants despite being better at fixing beneficial mutations.

More concretely, the effective population sizes of the star graph for different updating
explain the corresponding steady-states and the contribution coming from the deleterious
mutant regime. The SoF star graph has a higher effective population size than the AoF' star
graph. Additionally, the results obtained for the long-term evolution on the star graph also
extend to random graphs. Under Bd’ updating, most of the random graphs, despite being
SoF, attain higher fitness than the isothermal graphs. Whereas, under dB? updating, most
of the random graphs despite being piecewise AoF' attain lower fitness than the isothermal
graphs.

To summarise, care should be taken before speculating about the fate of long-term evo-
lution on spatial structures based on the short-term fixation dynamics. For a population
adapting on a fitness landscape, the outcome depends on two factors. First, how effective
the population is in stepping forward, and second, how good it is in not falling backward.
The effect of deleterious mutant regime can also be seen in the transient phase of evolution-
ary dynamics [61]. The likelihood for the average fitness trajectory to be non-monotonic
increases with the probability to accept deleterious mutations, see Appendiz H for more
details. Overall, the deleterious mutant regime is important when it comes to long-term
evolution on spatial structures, something that is often ignored in adaptive evolution theo-
ries with well-mixed populations. As the present work has focused on long-term evolution in
the regime of low mutation rates and origin-fixation dynamics, the role of deleterious muta-
tions for structured populations subject to a large supply of mutations should be addressed
in future research.

Experiments with microbial populations have begun to systematically compare evolution
in well-mixed and structured environments [10] 11}, [80], and the weakened selection against
deleterious mutations predicted by theory has been confirmed experimentally [§]. Very
recently, the first evolution experiments designed to test predictions of evolutionary graph
theory have been performed [R1], and it is only a matter of time before further studies
are conducted along these lines [82]. The quantitative description of such experiments
necessitates the extension of evolutionary graph theory to the structured metapopulation
level [34, 83-87]. While our work focuses on the setting of one-node-one-individual, it is
expected that the results obtained here should be transferable to metapopulations. Indeed,
the analysis in this paper can be adapted for the study metapopulations, and we have
identified amplifiers and suppressors of fixation among the metastar structures presented in
[86], see Appendiz 1 for more details. In this way, the results presented in this paper gain
empirical relevance and can be tested in experimental settings [82]. Examining the role of
the deleterious mutant regime for structured metapopulations is clearly an important future
direction.
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Appendix A: Exact formula for the fixation probability of a mutant on the star
graph under dB and Bd updating

The state of the population can be described by (e/o,i) where the first index indicates
if the central node is occupied by a mutant (e) or not (o) and the second index gives the
number of mutants in the leaf nodes. Let us denote ¢f as the fixation probability of the
mutant type when started with ¢ mutant individuals in the leaf nodes and a mutant at
the central node. Similarly, ¢; is the fixation probability of the mutant type when started
with ¢ mutant individuals in the leaf nodes with the central node occupied by a wild-type
individual. With n number of leaves, ¢ and ¢ satisfy the following recursion relations [52],

O = o0t + T000 + (L= T, — T)e], 0<i<n—1,

. (A1)
o7 =T 051 + 1707 + (1 T’zozo+1 - 177, 1<i<n,
where
— T77,, is the probability to transition from the state (e,i) to the state (e, +1).
— T3¢ is the probability to transition from the state (e,4) to the state (o, ).
— T77_, is the probability to transition from the state (o,7) to the state (o,i —1).
— T} is the probability to transition from the state (o,i) to the state (e, 7).
On rearranging the recursion relations we get,
¢;—7T::+1 it 7¢, 0<i<mn, (A2)

Qb(; zz l(bz 1_‘_71.10:(?” 1§Z<n7
where,

— mty, is the conditional probability to transition from the state (e,i) to the state
(e,7+ 1) given that the number of mutants changes.

0

— 735 is the conditional probability to transition from the state (e,7) to the state (o,)

given that the number of mutants changes.

[e]e]

— m5_, is the conditional probability to transition from the state (o,i) to the state

(0,47 — 1) given that the number of mutants changes.

O.

— m;s is the conditional probability to transition from the state (o,i) to the state (e, 1)

given that the number of mutants changes.
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The conditional probabilities are given by,

oo
oo . 1,i+1 -1 °0
7T’L'7’L'+1 - T.. + T.o - - Tri,i?
7,041 0,0 (A?))
00
0o 4,1—1 oe
Tii1 ™ Foo | rroe 1- T
T + 155

For the Moran dB updating the transition probabilities are,

. 1 .
Ty = and T = (A1)

’ n+1 ’ n+1lir+n—1

. 1 .

T, =—— and Tf=——— (A5)

’ n+1 ’ n+lwr+n—1

Consequently the conditional probabilities are,

oo n—1v+ar and 1° . — w+n-—1 (A6)

"1:+ ii—1 — - B .
it n—i+iair+1 b wr+n—1i+r

From the ref. [54], we know that the probability of fixation of a mutant appearing at the
center node is

o ' _ Toa
qde,*(f?f) - A(l,n) (A7)
where,
R S
Alm) =1+ w0 ][ === (AS8)
=l k=l Trk,k+1

After substituting for the conditional probabilities, we get

N -1 1
SinaI ) =~ (A9)

1+(N—1)f7/

Similarly, we find

oe

° / 11
¢dB,*(faf) = A(l n) =

(A10)
(N p 2%)

|

__ N
1+ 1+(N—1)J}'>

bip.x and ¢gp 4 are used to compute uniform and temperature initialised dB fixation prob-
abilities for the star graph.

The uniform (when offspring move to vacant node) and temperature (when parent move
to vacant node) initialised fixation probability under Moran dB updating are,

° /7 N - 1 o /,
(I)Z(i’B,*(f/, f) — (I)dBO,*<f/7 f) _ ¢dB,*(f f) + ( ¥ )(de,*(f f)’
(N = 1)dip 5 (f's f) + i % ([, )

N )

(Al1)

Olpw(f' f) = Paprx(f', f) =
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From Fig. 2B (main text), the uniform initialised star graph is a suppressor of selection

[49, 57) whereas the temperature initialised star graph is an amplifier of fixation.
Similarly, for Bd updating,

¢.Bd,*(f/’ f) =

N—-1
sl (128 (v 1L _ N-wh
: f(N 1+f) ((N 1)f+1)< f,)

v (5) +F

and the fixation probability for a mutant initially placed on a leaf node is,

(N—1)((f7’)2—1) (N—1+f7')

((N—1)§+1) %(N—l+§)+((N—1)§+1)<(N71—Tff2>N_1
(A13)

Eqgs. [A12] are used to compute uniform and temperature initialised fixation proba-
bilities for the star graph under Bd updating.

Ppax (' f) =

. — - .
1.0} = e °
oo N =10 10 N =50
= =2 TR
508t "5 o} 1
% = Complete
£06 = ool
3 g
< 3
Q
90.4- Complete 1 O 04 0.88,
& a
C o 0.84
002 L o2}
=]
g g I A I
ook - i ook
Ll_ .
8 10 00

0 2

4 6
Mutant’s fitness, f’ Mutant’s fitness, f’

FIG. A.1. The star graph, a piecewise amplifier of fixation for finite N. The star graph
under dBP updating is a piecewise amplifier of fixation for finite population size N. That is for
finite IV, the probability of fixation of a mutant with fitness f’ on the star graph is higher than
the complete graph for f/ < f* and lower for f’ > f*. In the figure we can see that the value

of threshold fitness f* increases on increasing the population size. Only in the limit of infinite
population size, the star graph becomes a true amplifier of fixation for dB? updating.

Appendix B: Matrix approach to compute fixation probability on a random graph

The matrix method solves the Markov chain for the fixation dynamics on a graph. This
method is generally used to compute the fixation probability for an arbitrary connected graph

21


https://doi.org/10.1101/2024.07.23.604724
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.23.604724; this version posted July 23, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

[88]. The primary reference for this section is [89]. With states being the configurations of
mutant and wild-type, the transition matrix M, is defined as

Msxs — (tht Rtxa) ’ (Bl)

0a><t Ia><a

where s denotes the total number of states and is equal to ¢ + a, with ¢ being the number of
transient states and a being the number of absorbing states. Q is the transition probability
matrix corresponding to the transitions among the transient states, while R represents
transitions from the transient to the absorbing states. Since by definition there is no jump
possible from an absorbing to the transient sector, the lower left matrix is a zero matrix.
By similar reasoning, the lower right matrix is an identity matrix.

oo

We denote the fundamental matrix as F. It is equal to Y. Q" = (I— Q)~!. The fixation
n=0

probability to the absorbing state j when started in a transient state ¢ is given by the

relation,
¢ij = (F-R)i;. (B2)

Notice that the indices i, j etc., do not represent the number of mutants but the configu-
rations themselves. The second index of the subscript can represent two absorbing states,
every individual being the wild-type or the mutant type. It represents the position of the
node where the initial mutant appears.

The fixation probability of a mutant to state j on a graph G with mutant initialisation
7 is equal to,

N-1
1=0

The index ¢ in the equation above corresponds to the states where the initial mutant appears
at different positions on the graph.

a. Transition matrixz for the Bd process

For a network of size N, we have the transition matrices of dimensions 2V x 2. One can
decrease the size of these matrices by considering the symmetries of the graph. This has been
done in [90] where all the undirected connected networks of size four were considered. After
considering the symmetries, the size of the transition matrices for the complete, diamond,
and ring graph were reduced from 16 (2%) to 5, 9, and 5, respectively. It is not straightforward
to account for these symmetries for larger networks; thus, we work with maximum-size
transition matrices. We compute the transition matrix for the Moran Bd dynamics with a
focus on undirected graphs and unweighted having symmetric adjacency matrices, A. We
work only with connected graphs as the fundamental matrix F becomes singular for the
disconnected graphs.

The matrix element M;; with ¢ # j, the probability of going from state 7 to state j with
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1 £ j is given as,

)
1 o ) . ) )
TN zk:&km rngnd + (1 —ni)(1—nl)|, if ZS: |nt —nl| =1
M;; = and n,, # nj,, (B4)
0, otherwise.

where every node of the configuration ¢ can either take a value 0 (for wild-type) or 1 (for

N-1
mutant). The number of mutants in state ¢ is given by n* = > n.. Here, we have also
k=0
a
introduced a,, = M The diagonal elements M;; are equal to 1 — > M,;.
Z 7] j#i

l

b. Transition matriz for dB process

Like the Bd process, here we write down the transition matrix for the dB process. The
matrix element M;; with ¢ # j is given as :

. A |04+ (1 — 0l ) (1 —nd)

— . : if ‘' —nJ| =1landn! J
M;; = N; Y Qi+ > ap (1 —nl) ' gms il and iy, 7 ni, (B5)
I I
0

, otherwise.

Appendix C: Long-term evolution on regular graphs

Under the Moran dB updating, regular graphs have different fixation probability profiles
compared to the complete graph [35]. It is in contrast to the Moran Birth-death (Bd) rule,
where according to the isothermal theorem [I3] I5] all the regular graphs have the same
fixation probability profiles as the well-mixed population. For example, under Moran dB
updating, the cycle graph has the fixation probability [33],

A Gt
q>o(f,f)—3_%+<1_3%) <%>N_2.

Under the Moran dB updating, the cycle graph is a suppressor of fixation [33], because
O, (f', f) < ®c(f', f) for all pairs of f” and f (ignoring the neutral point f' = f, where
O (f', f) = ®c(f', f) = + ), see Fig. B. The ratio of fixation probabilities entering the

(C1)
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FIG. B.1. Fixation probability profiles of random graphs. The relative fitness values of
the mutant are chosen to be, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25 and 2.5 with wild-type fitness
being 1. The fixation probability profiles under different update rules for connected random graphs
with the probability of link connection, p = 0.5 are shown. The fixation profiles for the complete
graph (in blue) and the star graph (in magenta) in both numerical (square markers) and analytical
(solid lines) form are also shown. A) Most of the random graphs are suppressors of fixation under
temperature initialised Bd updating. B) Most graphs are piecewise amplifiers of fixation under
dBP updating i.e. the graphs have higher fixation probability for a mutant with fitness below a
certain value, f*, and lower fixation probability beyond f*. We observe that beyond f’ ~ 1.5, the
fixation probabilities become lower than the fixation probability on the well-mixed population. C)
Most of the graphs are amplifiers of selection under (Bd”) uniform initialised Bd updating, and D)
suppressors of selection under (dB°) uniform initialised dB updating.
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steady-state detailed balance solution, however, is the same as complete graph,

Wo<f’,f)=%7
= 2( _%> .3—f7/+(1_3f7/><f?,>N2
_%+<1—3%>(%)N2 2<1_§> |

(C2)

r=sser-n(s)
sp—f+ (=30 (£)

()"

Because W, (f', f) is a power law, the Moran dB origin-fixation dynamics on the cycle graph
is reversible. Moreover,

E(f) = Fe(f). (C3)

Consequently, (f)5 = (f)¢-
What did we just learn? We learnt that the cycle graph despite being a suppressor of

fixation, attains the same average fitness in the mutation-selection balance as the complete
graph, see Fig. D. In the limit of N — oo,

2<f7/71> : /
A}im O (f', f) =14 sk—1” S >
e 0 otherwise.

(C4)

x\\\

2§ 1)

the cycle graph is less likely to fix beneficial mutants than the complete graph, see Fig. [C
A. Yet the cycle and the complete graph attain the same steady-state average fitness for
all population sizes. It happens because the cycle graph is better at rejecting deleterious
mutants than the complete graph. The ability of the cycle graph to prevent the fixation of
disadvantageous mutants compensates for its lower probability to fix beneficial mutants in
a way that WU, (f’, f) becomes equal to W (f', f).

We also explore the steady-state statistics of the long-term dB mutation-selection dy-
namics on the two dimensional lattice with periodic boundary conditions. With each node
having k neighbors, the fixation probability of a mutant to fix on the 2d lattice is [35],

Now,

< 1—4 for all f' > f, therefore, in the limit of very large population sizes,

w
&a\\

: k(1= #)
oa(f', f) = ; N . (C5)
k(1—7>+ (1— <f—> ) <1+(k—1)7)
We focus on the case of k = 4. The ratio of fixation probabilities takes the form,
N—2
ANN—25_ L (L 3L 41
) ~ (L) F-(5)  (F+1) (C6)

) \f 3+§+(§)N_2(1—5§).

\IJQd(flvf) (I)Qd(‘b];

v
Doa(f, f
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From Fig. A and C, it is clear that the fixation probability profile of the 2d lattice is
different from the well-mixed population, but the graph category to which the 2d lattice
belongs is not clear. This could be due to the approximation made in Ref. [35] to compute
Eq. As a result, for small NV, the 2d lattice attains different (lower) steady-state average
fitness in the mutation-selection balance than the complete and cycle graph. However, with
an increase in population size, the steady-state average fitness attained by the 2d lattice
asymptotes to the one attained by the well-mixed population, see Fig. D. This can be
understood by performing the large N expansion on Wou(f’, f) yielding,

N\N23L 41
(i) T i ps

f 55 -1
qj?d(f/a f) ~ f, N—2 5 f_ I (C7>
(7) —j:,, otherwise.
3+ L
A\ N-2
For large population sizes, Wyq ~ (%) . P3,(f) and therefore, (f);, take the same limit

as the complete graph. In the argument made, we have assumed reversibility to hold. In
the subsequent section, we justify the assumption.

From the above two case studies, we have learnt that although the complete graph, the
cycle graph, and the 2d lattice behave differently at fixation time scales under dB updating
[35], their steady-state statistics for the long-term Moran dB origin-fixation dynamics are
identical.

Appendix D: Reversibility

The primary reference for this section is [68]. Using the Kolmogorov criterion [91], the
neutral Moran origin-fixation dynamics turns out to be reversible. With this, the origin-
fixation dynamics under selection is reversible if WZ(r) is a power law,

WL (r) =", (D1)
where 7 is used as a shorthand for fTI, and v is given by the relation,
D7
V= 2@27(“7”) _ (D2)

In general, UE(r) need not be a power law. Therefore, to check the scope for reversibility
a logarithmic expansion is performed on W&(r),

. C2j+1 2j+1
log We(r) = > == —(logr)*",
= (27 + 1)!

= logr
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FIG. C.1. Regular graph: dB fixation probability and long-term evolution. A) Fixation
probability for regular graphs — the cycle graph, the 2d lattice with periodic boundaries and the
complete graph — under dB updating are shown. Thick lines correspond to population size N = 10.
Thin lines represents limy_,oo ®c(f’, f). At fixation time scales, regular graphs behave differently.
B) The cycle graph is a suppressor of fixation under dB updating. C) For small N (N=10 here),
the 2d lattice behaves like a suppressor of selection. & — ®94 is negative for mutant fitnesses to the
left of the dashed line, and positive otherwise. D) The cycle graph being a suppressor of fixation,
attains the same steady-state average fitness in the mutation selection balance as the complete
graph. For large N, 2d lattice attains the same fitness as the other graphs. At longer time scales,
regular graphs have identical steady-state statistics contrary to their differences at shorter fixation

time scales. Parameters: mutant fitness distribution, p(f’, f) = ﬁ with fiin = 0.1 and
frnax = 10.
where,
d' log UZ
o= 087C (D4)
d(logr)?
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and ¢; = v. This can be seen as following,

dlog UE
C1 =
dlogr »
(I)I
_ d log G(?) :
dlogr = ®%(3) »

o g(q%(r)) (D5)
T BL(r) Z(1 ’

:( rodeg 1 dcbg)

The series contains only odd terms because, by definition, W& (1/r) = W& (r)~'. The
second term of the series gives us the conservative estimate of the range of fitness values
for which the origin-fixation dynamics is reversible, (r;', 7o) and 7 is found by setting a
tolerance ¢,

|c3)

—(logro)? = ¢. D6

2L (log ro) (D6)

For the complete and the cycle graph, W is a strict power-law with c3 = 0, which is why

ro — oo for these structures. However, for the 2d lattice lesl gaturates to a finite value at

? 6v
larger N, see Fig.[D.1] as both ¢3 and v scales as N at large population sizes.

(N —2)%(4N? — 9N +6) N
16(N —1)3 T

5 1

2 TN -y

This makes ry finite with a value approximately equal to 3 for ¢ = 0.05 and the range of

fitness values where the Moran dB origin-fixation dynamics is reversible is r € (0.33,3).

Above, we have used the relation,

d? log W%
3= —— 2
> d(logr)3 »

_ o d/ d /[ dlog 73
N Tdr 7“dr " dr
les|

Similarly, 22 ~ & for the temperature initialised star graph under dB (dB?) dynamics. As
a result 7o — oo in the limit N — oco. The same result holds for the star graph under dB°
dynamics.

C3
(D7)
v=N —

(D8)

r=1
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FIG. D.1. Reversible Moran dB origin-fixation dynamics on the 2d lattice. Coefficient
les|

6, of the second term of Eq. saturates to finite value for large N, which results in the range
of fitness values where the origin-fixation dynamics is reversible to be r € (0.33, 3).

Appendix E: Standard deviation in the steady-state fitness distribution

In this section, we derive the expressions for the standard deviation in fitness in the
steady-state. For the complete graph we know that,

N -1 — N -1 n]Yax _ nJYin
PC(f) - N_1_ ¢N-1 fN 2 and <f>C - N N_1_ fN-1° <E1>
and
N 1 N+ _ N+
2 max min

The variance turns out to be

Varg = (3¢ — (<f>o)2 )

(fmax>N+1_1 2 <fmax)N_1 ?
. ) N_l fmin N_1 fmin
= i N+1(@)N11_( N ) (fmax>N‘1_1 ’
Smin Jmin (E3)

e [(N-1 (N-1\?
Nfﬂ’l&X(N_'_l_( N ))7

2
z—]n\}zx

The above approximation holds for large population sizes. Therefore, the standard deviation
in fitness for the complete scales as ~ 1/N. For the star graph under dB° dynamics, in the
limit of large N

312 3 F4 4
Pape e (f) = % and  (f)apex = 1—?:?“ _—j}éfn, (E4)

f3
max min
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and
3 foax — fi
2 o _ Y Jmax mln‘ E5
<f >dB * 5 fr%ax - fl’?lin ( )
For the variance, we have
Varage x = (f2)apex — ((f)asex)”
3 (E6)

The standard deviation for the dB® star graph is independent of N and asymptotes to a
finite value. Similarly, for the dB? star graph, for NV > 1 we have

Vargpr x = (f2aprx — ((f)ase %)
1, (E7)
18 max’

which is again independent of N. Note that for large N, Vargpr 4 > Vargge 5 > Varc. The
order of fluctuations can be understood from the large N limit effective population size of
the three structures— N for the complete graph, 2 for the dB? star graph and 1 for the dB”
star graph.

Under Bd updating, we have seen that Wy is same for both the Bd® (Bd temperature
initialisation) and Bd” (Bd uniform initialisation) star graph. Consequently, the Bd® and
Bd? have the same steady-state statistics and thus, variance in the steady-state,

Val"Bd07* = VaI‘qu*,
= (/")Barx — ((f)Barx)”
ON — 1 f2N+1 _ f2N+1 <2N—1 ON _ 2N )2]

max min max min
2N + 1 f2N-1 _ f2N-1 2N f2N-1 _ fN-1
max min max min

(E8)

2
meax

2N -1 (2N -1 2
N + 1 IN ’
2

max

~ _4N2 .

The above approximation holds for large N. Therefore, the standard deviation for the star

1
graph under Moran origin-fixation Bd updating scales as ~ oN

Appendix F: Long-term evolution on discrete fitness space

To study Bd and dB long-term dynamics on random graphs we define a Markov chain.
To proceed we first discretise the fitness space. The states are labelled with integer values
from 0,1,---,2z. For 1 <i < z — 1, the fitness of state i is equal to f; = fiin +7-96. The
boundaries fitness are fo = fuin and f, = fuax. The long-term dynamics on a graph G is a
Markov chain obeying the equation,

Pi(t+1) = Pg(t) - Te, (F1)

30


https://doi.org/10.1101/2024.07.23.604724
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.23.604724; this version posted July 23, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

where Pg(t) = (Pgo(t), Paa(t), -+, Pe.(t)) with Pg,(t) being the probability for the pop-
ulation to be in fitness state f; at time step ¢. The transition matrix T on the fitness space
is given as,

386(fi+1, 3), il =j+land0 < j <z,

TG, = %(I)é(fj—b fi), ifi=j—Tand0 <j <z, (F2)
1 — Z TG,kia le == j
k#i

Matrix T is a positive and an irreducible matrix, therefore we can find the steady-state
distribution P, using the Perron-Frobenius theorem [92]. P is the left eigenvector of the
matrix T corresponding to eigenvalue 1,

P; -Tg=1-P¢. (F3)
The steady-state average fitness is then,
(Fi = f - P, (F4)

where f = (fuin, f1, f2, "+, fmax) 1S the fitness vector.

Appendix G: Criterion for a graph to have higher steady-state fitness than the
complete graph

Just by looking at the ®%(f’, f), it is not easy to predict if the graph G will attain
higher long-term average fitness than the complete graph in the mutation-selection balance
of the Moran origin-fixation dynamics. The useful quantity for that purpose is the ratio of
fixation probabilities, WL (f’, f) as defined in Eq. 12 (main text), which allows us to obtain
a sufficient condition. Let us consider two graphs, G; and G5, and denote the respective
steady-state probability density functions for the Moran origin-fixation dynamics on these

structures by Pg, (f) and Pg, (f).

Proposition: If the continuous density functions Py (f) and Py, (f) intersect exactly once,
then

\Ijgl(flafmax) < \IjéQ(flafmaX)a for all fla (Gl)
is a sufficient condition for (f)&, > (f)&,-
Proof: From the condition (G1)) and Eq. [12| of the main text, it follows that

P2, () > By (fona)- (G2)

Using this fact, and denoting f as the unique point at which the the functions intersect,

Pg,(f) +e=(f) it f< [, withe<(f) <0

%*ﬁz{%xﬂ+fu>meMawmw%ﬁ>o
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Then, from the normalization of the probability density functions, it follows that

f fmax
— [ dfes= [ dfe”. (G3)
Jree]
Now, note that
f Fmax
o= Wi+ [ afs=s [ arse (G4)
fmin f
fmax
Gz—l—f/dfa —i—f/dfe (Gb)
Smin
= <f>G2a (G6)

where the inequality follows straightforwardly from the signs of the integrands and the limits
of the integrals, and the last equality follows from . This completes the proof. [J

The criterion WE(f') fmax) < Yo (f', fmax) for all f/) is naturally satisfied by amplifiers of
selection: It follows directly from the definition of amplifiers of selection, which are better at
preventing the fixation of deleterious mutations and fixing advantageous mutants. Therefore,
for an amplifier of selection,

AoS(f/ fmax) < (I)C(f/7 fmax)
(I)IAos(fmaxa f/)J ?C(fmaxa f/)J

qjios(f/7frxxax) \IIC(flnfmax)

for all f’. (GT)

Subscript AoS' denotes an amplifier of selection. Similarly, for a suppressor of selection,

SoS(f/ fmax) > (I)C'<f/ fmax)
N SoS(fmaxaf)j ?C’(fmax,fl

qjgos(f,afmax) qjC(f/7fmax)

for all f'. (G8)

Subscript SoS denotes a suppressor of selection.

For suppressors of fixation, it is not obvious if they satisfy the criterion to attain higher
average steady-state fitness in the mutation-selection balance. Suppressors of fixation
have a lower probability of fixing beneficial mutations. As a result, [®Z ;- (fmax, f/)] 7!
[P (fmax, f/)] 7! (here SoF denotes a suppressor of fixation). However, they are also good in
preventing the fixation of deleterious mutants, ®% o (f', fimax) < Pc(f’, fmax). This means
that a suppressor of fixation can satisfy the criterion [GI| by compensating for its lower prob-
ability of fixation of beneficial mutants by rejecting deleterious mutants more efficiently. An
example is presented in ref. [40]. Note that the criterion holds for any update rule.

Let us apply the derived sufficient condition to the complete graph, dB° and dB” star
graph. From Fig. [G.I] we see that the steady-state probability density functions for any two
graphs intersect at only one point, and thus we can use our criteria here. From Eqs. 14, 19,
and 23, we have

\Ilg(f', fmaX) < \PdB",*(f/, fmaX) < \deBp,*(f/a fmaX)a (GQ)
therefore, ()& > (f)igew > (f)inr -
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0.3} 0.001 re
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FIG. G.1. A pair of probability density functions intersect at one fitness point. The
steady-state probability density functions (PDFs) for the complete graph, the dB’ and the dB?
star graph are shown. Firstly, the PDFs are monotonically increasing w.r.t fitness. Secondly, any
pair of PDF's intersects at one point. Thus the sufficient condition gives the ordering of average
fitnesses. Parameters: N = 100, fumin = 0.1, fmax = 10, p(f', f) = !

o fmax_fmin :

Appendix H: Effects of deleterious mutants on the initial phase of the long-term
dynamics

So far we have studied the effect of preventing/fixing deleterious mutants on the steady-
state fitness statistics of graph. In this section, we explore the role of deleterious mutant
regime on the initial phase of the mutation-selection dynamics, particularly the average
selection coefficient of the first substitution given that the initial fitness is f,

A /
=L~ [ar Lt porn ()

This quantity is also equal to the instantaneous rate of evolution [20], [25]. From Fig. A,
we see that the mean selection coefficient decreases as the population is started with initial
population fitness closer to the average steady-state fitness. The mean selection coefficient
is anticipated to be positive if the initial fitness is below the average steady-state fitness and
negative if started with higher fitness values. However, in Ref. [61], for the complete graph
it has been shown that the mean selection coefficient of the first substitution is negative
even if the population is initialised with fitness below the average steady-state fitness. We
observe this effect to be more pronounced for the case of dB” star graph. We investigate
further by working out the large N case.

In the limit of N — oo, for the dB? star graph under Moran dB? updating and uniform
mutational fitness distribution, we have

AdB"’*f 1 /f/_f f/
* af L —7
f frnax_fmin/ f f f+f/ (H2)
:fmax+fmin_4f_ 1 2f10g (fmax+f)
2f fmax - fmin fmin + f .

The value of f for which the mean selection coefficient (right hand side of the above equa-
tion) goes to zero is obtained numerically. The difference of the obtained fitness value and
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the average steady-state fitness for the dB” graph, §f is shown in Fig. B. For the pa-
rameters we use throughout the manuscript, the 0 f for the dB? star graph is finite, even
in the limit of N — oo. This means that if the long-term mutation-selection dynamics is
initiated with fitness value in between (f)igs 4 — 0f and (f)igs 4, the first mutation to fix
on average is deleterious. Therefore, the corresponding average fitness trajectories does not
have monotonically increasing fitnesses. For the complete graph, in the limit of N — oo,

Acf 1 S =fF =
Ry e -
o ]' I%laX 3f 1 fmax
= o (2t e Y i )

The r.h.s in the above equation goes to 0 for f = f.x. Therefore, while § f is non-zero for
finite population sizes, in the limit of N — oo, d f = 0 for the complete graph.

A _ B
= . . .
@ 0.5}
G 05 N =100
E 0.4f Complete 0.4} Complete
(@] o
c 0.3 4 03
= 0.2f o
% 01 [ 02'
® 00
S MM
%“0'1 0.0k ]
3 4 5 6 7 8 9 10 ' 100 150 200 250 300
Initial population fitness Population size

FIG. H.1. Mean selection coefficient of the first substitution. The black grid line in A)
corresponds to the average steady-state fitness of the dB” star graph. The mean selection coefficient
is negative even if the population’s initial fitness is below the steady-state average fitness, thus
leading to non-monotonic average fitness trajectories. B) Denoting df as the region of fitness
values below the steady-state average fitness for which the mean selection coefficient is negative,
in the limit of large N §f asymptotes to 0.5 for the dBP star graph, whereas the gap decays to 0

for the complete graph. Parameters: N = 100, fuin = 0.1, fmax = 10, p(f', f) = ﬁ

Appendix I: Amplifier of fixation and suppressor of fixation in a metapopulation
model

The amplifiers and suppressors of fixation are not solely restricted to one node one indi-
vidual models, but can also be found in the network structured metapopulations [86]. The
model in ref. [86] assumes time scale separation. The model has been analysed in the low
migration rate regime where each node/deme is mainly in a monomorphic state. That is,
when an individual migrates to a neighboring patch with a different type, either the migrat-
ing individual fixes or goes extinct before the next migration event occurs. The wild-type
and the mutant type are assumed to have non-zero death rates, as a consequence of which

34


https://doi.org/10.1101/2024.07.23.604724
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.23.604724; this version posted July 23, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

the population sizes of fully mutant and wild-type demes are different. Here we assume that
for both the individual types, the death rate is incorporated with the birth rate to give an
effective growth rate. In this way, the population size for the mutant and wild-type deme
is the same. The number of leaf demes is denoted by d. The probability that an individual
from a given leaf deme migrates to the center deme is my, whereas the probability that an
individual from the central deme migrates to leaf deme is mo. The parameter a = my/mo
quantifies the migration asymmetry. The probability that the mutant type with relative
fitness r takes over the entire star network-structured metapopulation given that the pop-
ulation is initialised with central deme being the mutant deme and leaf demes being the
wild-type demes is given by,

. 1—+°
Py = P (I1)
1+ay—vyla+7) (Waﬂ7 )
where
my O
o "= T (12)
with
1-2 1—r
(I)QM = 1_ LN and (I)C,W = m (13>

Assuming that the central deme is initialised as the mutant deme, we find that for smaller
values of «, the star metapopulation acts as an amplifier of fixation. Conversely, for larger
values of «, it functions as a suppressor of fixation, see Fig. [[.1]
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FIG. I.1. Amplifier and suppressor of fixation in meta-star. The probability that a mutant
fixates in a star-structured metapopulation is shown given that the population is initialised with
the central deme being the mutant deme. The probability that an individual from the central
migrates to a leaf deme is mp, and the probability of migration for an individual migrating from a
leaf node to the central node is my. Parameter o = mj/mo quantifies the migration asymmetry.
According to the generalized circulation theorem in ref. [86], for « = 1, the meta-star’s fixation
probability is the same as in the well-mixed population when started with N mutant individuals.
Changing « from 1 gives two different fixation probability profiles: the amplifier of fixation (for
lower o) and the suppressor of fixation (for higher ). We have encountered these profiles is the
main text for one node one individual star under Bd® and dBP. Parameters: size of each deme,
N = 80 and the total number of demes D =d + 1 =5.
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