
A dynamical analysis of the alignment mechanism between two

interacting cells

Vivienne Leech1, Mohit P. Dalwadi1,2,*, and Angelika Manhart1,3,*

1Department of Mathematics, University College London, London, UK

2Mathematical Institute, University of Oxford, Oxford, UK

3Faculty of Mathematics, University of Vienna, Vienna, Austria

*Co-corresponding authors

Abstract

In this work we analytically investigate the alignment mechanism of self-propelled ellipse-shaped cells

in two spatial dimensions interacting via overlap avoidance. By considering a two-cell system and impos-

ing certain symmetries, we obtain an analytically tractable dynamical system, which we mathematically

analyse in detail. We find that for elongated cells there is a half-stable steady state corresponding to per-

fect alignment between the cells. Whether cells move towards this state (i.e. become perfectly aligned)

or not is determined by where in state space the initial condition lies. We find that a separatrix splits

the state space into two regions, which characterise these two different outcomes. We find that some

self-propulsion is necessary to achieve perfect alignment, however too much self-propulsion hinders align-

ment. Analysing the effect of small amounts of self-propulsion offers an insight into the timescales at play

when a trajectory is moving towards the point of perfect alignment. We find that the two cells initially

move apart to avoid overlap over a fast timescale, and then the presence of self-propulsion causes them

to move towards a configuration of perfect alignment over a much slower timescale. Overall, our analysis

highlights how the interaction between self-propulsion and overlap avoidance is sufficient to generate

alignment.

1 Introduction

Alignment in biology. Alignment of particles in a system is a phenomenon that can be observed in many

contexts. In biology, this ranges from the large scale e.g. schools of fish (Herbert-Read et al., 2011), down

to the microscopic scale e.g. cells and bacteria (Balagam and Igoshin, 2015; Dartsch and Betz, 1989; Kenny

et al., 2023). This alignment of particles, especially when it occurs collectively, can play key roles in their

migration e.g. hydrodynamic benefits as a result of collective alignment can aid migration in schools of fish
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(Lopez et al., 2012) and alignment of fibroblasts can affect key mechanical properties of the tissue in which

they are found (Erdogan et al., 2017).

Motivation and context of this work. Many collective alignment models (Peruani et al., 2006; Baskaran

and Marchetti, 2008; Kraikivski et al., 2006) include self-propulsion and some kind of overlap avoidance

or volume exclusion as model ingredients, suggesting that these are key components needed for collective

alignment between particles to occur. This can be understood intuitively, since overlap avoidance provides

a way for cells to change their orientation in reaction to other cells while self-propulsion ensures that cells

continue to interact with each other, allowing for alignment to propagate through the population. Motivated

by experiments on the alignment of fibroblasts in Kenny et al. (2023), an agent-based model was recently

developed in Leech et al. (2024) to investigate the mechanism behind the collective alignment of self-propelled

interacting particles. The model is set in two spatial dimensions and describes a collective of ellipse-shaped

cells with fixed area. These cells move in the direction of their orientation and change their position,

orientation and shape in order to avoid overlap. In Leech et al. (2024) and also in this work, we use the

term overlap avoidance rather than volume exclusion to emphasis that overlap is allowed in principle, but

punished by a tunable potential. Cell overlap then corresponds to cells being positioned partly on top of each

other, an observed phenomena for cells crawling on surfaces (see a 3D interpretation in Fig. 1B). Through

computational analysis of the model, it is found that these model components lead to collective alignment,

with the amount and spatial scale of the alignment depending on model parameters.

Limitations of this work. There are several limitations of this work. Firstly, it does not capture collective

effects, however by comparing to Leech et al. (2024) we can learn which phenomena are likely consequences

of the underlying alignment mechanisms and which are driven by collectivity. Secondly, the symmertry

condition imposed in this work limits alignment to “velocity alignment” (where cells move in the same

direction) and cannot capture “nematic alignment” (where cells might also move in opposite directions).

Also, not all model ingredients of Leech et al. (2024) are included in this analysis, most notably we omitted

cell-cell adhesions and any cytoskeletal forces transmitted through them (see also the discussion at the end of

this work). Finally, the model of Leech et al. (2024) itself already omits various biological mechanisms that

have been shown to affect alignment, at least in some situations. Examples are feedback with the substrate

(Wang et al. (2018)), the effect of a surrounding fluid (Ng and Swartz (2003)) or more complicated cell

signalling.

The challenge of analysing agent-based models. The most common approach for the analysis of agent-

based models tends to be computational (as was the case in Leech et al. (2024)), since there are fewer analytic

tools for analysing agent-based models. For an overview of different approaches to modelling and analysing

pattern formation, see e.g. Deutsch and Dormann (2005). One method is to take the mean-field limit to

obtain an equivalent continuum model, where the positions and orientations of cells are translated into cell
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density and mean orientation across continuous space (Albi and Pareschi, 2013; Degond and Motsch, 2008;

Großmann et al., 2016). This has been done for the Vicsek model (Bolley et al., 2012), but is mathematically

challenging and poses challenges for discontinuous coefficients, such as those that arise in Leech et al. (2024).

Instead of considering the large-cell-number limit, in this work we look in the other direction and consider two

interacting cells, with the goal of making analytic progress. Since the agent-based model in Leech et al. (2024)

requires computing the points of intersection between the boundaries of overlapping ellipses, it is helpful to

impose some symmetry in relative ellipse orientation and position to facilitate analysis. Specifically, this

allows us to analytically determine the overlap points of the two overlapping ellipses, which allows us to

write down explicit governing equations. We are able to make significant analytic progress in understanding

the non-trivial dynamic interaction between two interacting cells, and how the different aspects of the model

contribute to alignment between two cells.

Structure of this work. In this work, we will mathematically analyse the model derived in Leech et al.

(2024) by considering two interacting cells with some symmetry imposed. We begin by introducing the

full model, and then derive the analytical framework which leads to a coupled dynamical system for three

time-dependent scalar quantities: distance between the cells, relative cell orientation and cell aspect ratio

(Sec. 2). Analysis of this three dimensional (in variable space) dynamical system is done in Sec. 3. We then

reduce the system to two dimensions (in variable space) by taking the limit of rigid-cell-shapes (i.e. fixed

aspect ratio), which allows us to fully understand the effect of the self-propulsion speed on alignment, as

well as to quantify the dependence of alignment strength on various model parameters (Sec. 4).

2 Model derivation

2.1 Full model summary

In Leech et al. (2024), an energy minimisation approach was used to derive a system of governing equations

that describe the behaviour of a collective of self-propelled ellipse-shaped cells, moving in two spatial di-

mensions, that strive to avoid cell overlap upon interacting with one another. Full details of the derivation

and equations for cell collectives can be found in Leech et al. (2024). Here we only summarise the most

important aspects and provide equations for the interaction of two cells.

Description of the cells. In the following all quantities are non-dimensionalised with respect to a reference

length
√
A/π and reference time Aη/σ, where A is the cell area, η is the strength of friction that a cell

experiences with the substrate, and σ is the strength of overlap avoidance. A cell is then characterised by

its (non-dimensional) position X ∈ R2, its orientation α, and its aspect ratio r, see Fig. 1A. Each material

point inside the elliptic cell is described by the parameters s ∈ [0, 1] and θ ∈ [0, 2π) by

z(s, θ) = X + sR(α)k(r, θ), (1)
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where the rotation matrix R and the shape vector k are given by

R(α) =

cosα − sinα

sinα cosα

 , k(r, θ) =

√r cos θ

1√
r

sin θ

 . (2)

Note that this parametrisation leads to an area element s d(s, θ), which is independent of θ and r. This

implies that changes in aspect ratio do not affect the (assumed) homogeneous density of material points

inside the cell.

Model equations. To obtain equations that describe how cells change their position, orientation and

aspect ratio (while keeping their area constant), we assume their movement minimises a potential, which

models friction, overlap avoidance, relaxation to a preferred aspect ratio r̄ and self-propulsion. The governing

equations for two interacting cells then are

dX

dt
= −

K∑
k=1

(P2k−1 −P2k)⊥ + νe(α), (3a)

dα

dt
=

2r

r2 + 1

K∑
k=1

(|X−P2k|2 − |X−P2k−1|2), (3b)

dr

dt
=

4r2

r2 + 1

K∑
k=1

(sin(2θ2k−1)− sin(2θ2k)) +
16

γ

r̄r3 + 1

r2 + 1

(
1− r

r̄

)
, (3c)

where e(α) = (cosα, sinα)T , ⊥ denotes the left-turned normal vector and

ν =
vη

σ

√
πA, γ =

Aσ

πg
. (4)

Figure 1: A: (Non-dimensional) cell geometry. B: Naming of intersection points. C, D: Equations and

schematic for interaction of two cells for changes in position & orientation (C) and aspect ratio (D).
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The non-dimensional quantities ν and γ defined in (4) depend on the self-propulsion speed v, the cell area

A, the strength of overlap avoidance σ, the strength of friction with the substrate η, and the strength of

relaxation to the preferred aspect ratio g. The quantity ν can be interpreted as the ratio of the self-propulsion

speed to the strength of overlap avoidance in the presence of friction. A larger value of ν means a faster

self-propulsion, or a smaller overlap avoidance strength. The quantity γ can be interpreted as the ratio

between the strength of overlap avoidance and the strength of shape restoration. A larger value of γ means

that the strength of relaxation to the preferred aspect ratio g is smaller and hence cell aspect ratios away

from r̄ will be punished less. The pairs of points where the boundaries of the two cells intersect are given by

(P2k−1,P2k), with k = 1, . . .K. K = 0, 1 or 2 indicates the number of intersection point pairs (the case of

one or three intersection points can be reduced to the case of zero and two intersection points respectively).

The ordering of intersection points is shown in Fig. 1B. The angles θj in (3c) correspond to the θ values that

parameterise the intersection points Pj , i.e. Pj = z(1, θj) in (1).

Interpretation. For ease of interpretation we refer to the case of only one pair of intersection points, i.e.

K = 1. This is the situation depicted in Fig. 1C-D. From equation (3a), we see that the centre of the cell,

X, is being pushed perpendicular to the vector connecting the points of overlap P1 and P2. We can see from

(3b) that the cell is rotated by an amount proportional to the difference in the square of the lengths of the

lines connecting the cell centre and the intersection points, thus turning the cell in the direction from the

shorter to the longer line, Fig. 1C. The first term in (3c) (compare Fig. 1D) leads to cells shortening if the

cell overlap is near the ends of the cells and lengthening if the overlap is along the sides. This will happen

at a faster rate for larger values of r. The final term on the right-hand side of (3c) acts to restore the cell’s

aspect ratio to the preferred aspect ratio r̄. In this work we mostly focus on “long” cells (r̄ > 1), but will

also consider “wide” cells (r̄ < 1) in the stability analysis of Sec. 3.

2.2 Symmetric cells - the analytical framework

To further analyse and understand system (3), we impose a symmetry condition on the two interacting cells.

This allows us to obtain explicit expressions for the points of intersection, and therefore analytically tractable

equations. We consider cell 1 with centre (x(t), y(t)), orientation α(t) and aspect ratio r(t) interacting with

cell 2 with centre (x(t),−y(t)), orientation −α(t), and aspect ratio r(t) as shown in Fig. 2C. Both cells have

equal self-propulsion parameters ν. The points belonging to the two cells are then parameterised as in (1)

by

z1(s, θ; t) =

x(t)

y(t)

+ sR(α(t))k(r(t), θ), s ∈ [0, 1], θ ∈ [0, 2π), (5a)

z2(s, θ; t) =

 x(t)

−y(t)

+ sR(−α(t))k(r(t), θ), s ∈ [0, 1], θ ∈ [0, 2π). (5b)
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By considering where the cell boundaries θ 7→ z1(1, θ; t) and θ 7→ z2(1, θ; t) intersect (neglecting borderline

cases), the two cells can have zero, two or four points of intersection. We obtain the following points of

intersection (in Cartesian coordinates, relative to the cells’ x-position), see Fig. 2C:

P±B =
1

γ2
1

(
−y (r2 − 1) sinα cosα

r
±
√
γ2

1 − y2, 0

)
, (6a)

P±C =
r

(r2 − 1) sinα cosα

−yγ2
2 ,±

√(
r2 − 1

r

sinα cosα

γ2

)2

− y2

 , (6b)

where we have defined

γ2
1 = r sin2 α+

1

r
cos2 α, γ2

2 =
1

r
sin2 α+ r cos2 α. (7)

Given the square roots in (6a) and (6b), these points of intersection only exist in certain regions of (α, y, r)-

space. We denote these regions by A,B and C, see Fig. 2A,B: In region A there are no points of intersection,

in region B there are two points of intersection, P±B , and in region C there are four points of intersection, P±B

and P±C . The boundaries between these regions occur when the square root terms in (6a) and (6b) vanish,

which allows us to write these boundaries using the curves

ΓAB(α) = γ1(α), ΓBC(α) =
(r2 − 1) sinα cosα

rγ2(α)
. (8)

We can now formally define the regions via

A =
{

(α, y, r) | Γ2
AB(α) < y2

}
, (9a)

B =
{

(α, y, r) | Γ2
BC(α) < y2 < Γ2

AB(α)
}
, (9b)

C =
{

(α, y, r) | y2 < Γ2
BC(α)

}
. (9c)

With (9) we can substitute the points of overlap in (6a) and (6b) into the two-cell versions of the full

governing equations (3) to formulate the explicit two-cell governing equations for (α, y, r) ∈ R×R×R+ with

given initial conditions (α(0), y(0), r(0)) = (α0, y0, r0).

ẋ = ν cosα, for (α, y, r) ∈ A,B, C (10a)

ẏ = ν sinα+


0, for (α, y, r) ∈ A

2

√
γ2
1−y2
γ2
1

sign(y), for (α, y, r) ∈ B

2 r
γ2
1 |(r2−1) sinα cosα|y, for (α, y, r) ∈ C

(10b)

α̇ =


0, for (α, y, r) ∈ A

−8 r
2−1
r2+1 sinα cosα

√
γ2
1−y2
γ4
1
|y|, for (α, y, r) ∈ B

4rsign((r−1) sinα cosα)
r2+1

[
y2
((

r2−1
r

)2 (sinα cosα)2

γ4
1

−
(

r
r2−1

)2 (γ4
2−1)

(sinα cosα)2 −
1
γ4
1

)
+

γ2
2−γ

2
1

γ2
1γ

2
2

]
, for (α, y, r) ∈ C

(10c)
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ṙ = − 1

γ

16(1 + r̄r3)

r̄(r2 + 1)
(r − r̄) +


0, for (α, y, r) ∈ A

16r
r2+1 (cos2 α− r2 sin2 α)

√
γ2
1−y2
γ4
1
|y|, for (α, y, r) ∈ B

4r sinα cosαα̇+ 8r2y(ẏ−ν sinα)
1+r2 (sin2 α− cos2 α), for (α, y, r) ∈ C

(10d)

x

Cell 1

Cell 2

x x

Region

Region

1 2 3

4

*

Region

5

A

B

C

No intersection points

Two intersection points

Four intersection points

Figure 2: A: The (α, y)-plane for r = 2 with rotational and reflexive symmetries marked. Numbers 1-5 show

example cell configurations on region boundaries. Regions A, B and C are coloured in purple, green and

yellow respectively. B: Zoom into α ∈ [0, π/2] with regions A, B and C marked and typical cell configurations

depicted. C: Notation for cell centres, orientation and intersection points.

This is a rather complicated system of coupled non-linear differential equations, however the following

sections will show that we can make significant (analytical) progress in understanding its behaviour. We

start by discussing the general behaviour of the system (10) to gain initial insight, before presenting several

analytical results in Secs. 3 and 4. We note that the system is invariant to the transformation (α, y) →

(−α,−y), i.e. there is rotational symmetry about the line α = y = 0. We also note that the system has

reflectional symmetry about α = π/2 and α = −π/2, see Fig. 2A. We can consequently restrict our analysis

to the region α ∈ [0, π/2], see Fig. 2B, since the results can be extended to the full α-range via symmetry
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arguments. To aid interpretation of the dynamical system, we indicate various physical configurations of the

cells in (α, y)-space in Fig. 2.

Interpretation of equations. With a better understanding of the phase space, and how this corresponds

to cell configuration, we now discuss the equations in (10). Equation (10a) is decoupled from (10b), (10c)

and (10d), hence it suffices to analyse the (α, y, r)-system. The first terms in (10a) and (10b) represent

self-propulsion that leads to movement in the direction of (cosα, sinα). This is proportional to the non-

dimensional parameter ν that has been defined in (4). Inspecting (10b) further, we note that if cell 1 is

lower than cell 2 (y < 0), then the second term in (10b) is negative and cell 1 will move downwards, and

vice versa for y > 0. This is a result of overlap avoidance pushing the cells apart. Equation (10c) describes

how the cell orientation changes over time. If we consider r > 1, α ∈ (0, π/2), we see that α̇ < 0 in region

B. This means that overlap avoidance in region B causes a clockwise rotation and drives the system towards

α = 0, i.e. towards velocity alignment. Conversely, for r < 1, α̇ > 0 in region B and the cells become less

aligned. We will revisit this dependence of the behaviour on r when inspecting the stability of steady states,

see also Fig. 5. In region C, both signs of α̇ are possible. The first term of (10d) describes how the cells will

relax back to their preferred aspect ratio r̄, with ṙ > 0 if r < r̄ and ṙ < 0 if r > r̄. We see that in regions B

and C, overlap avoidance causes the aspect ratio r to change. If cos2 α− r2 sin2 α > 0 then ṙ > 0. This will

happen for example when the cells are side-by-side (α ≈ 0) and hence strive to increase their aspect ratio

(for r > 1 this would mean elongation) to avoid overlap. If cos2 α − r2 sin2 α < 0 then ṙ < 0, which would

for example occur when cells are head-to-head (α ≈ π/2). In this case the cells will decrease their aspect

ratio (for r > 1 this would correspond to shortening) to avoid overlap. The behaviour in region C is more

complex in general.

3 Deformable cells: γ > 0

We first explore the full shape-change model (10) where γ > 0 and ν = O(1). This involves explicitly

accounting for the restoration time of the aspect ratio r to its preferred value r̄, where γ can be thought of

as the timescale of shape restoration. The full model is a 3D (in variable space) dynamical system where y,

α and r vary in time in response to cell overlap, self-propulsion and shape restoration. Ignoring movement

in the x-direction, system (10) has steady states at the points (α, y, r) = (0,±1/
√
r̄, r̄). This corresponds

to the cells having their preferred aspect ratio r̄ and being positioned side-by-side, with their orientations

parallel and their boundaries just touching, illustrated in Fig. 2A, examples 1 and 2. We note that there

are additional steady states, but only consider the two listed above in the subsequent analysis since these

correspond to cell alignment, which is the focus of this work. To determine the stability of these steady

states, we perturb the system around the points (α, y, r) = (0,±1/
√
r̄, r̄). Importantly, a standard linear

stability analysis would not be sufficient to determine their stability. In fact, such an analysis would be
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degenerate, and determining the stability of these states is non-trivial, as we will see below.

3.1 Stability analysis

We consider the steady point (α, y, r) = (0,−1/
√
r̄, r̄) (Fig. 2A, example 1), noting that the analysis of

the steady point (α, y, r) = (0, 1/
√
r̄, r̄) will follow via the rotational symmetry of the system. In order to

perform the stability analysis, we perturb the steady point (α, y, r) = (0,−1/
√
r̄, r̄) by a small amount (to

be defined below) and calculate the subsequent dynamics of the system. This steady point is degenerate, so

the scalings of our perturbation and its subsequent dynamics are non-standard.

Defining the perturbations. To capture the richest dynamics, we consider the distinguished asymptotic

limit in which as many mechanisms as possible balance at the same time. If we define the (small) perturbation

in α to be of O(ε), where ε� 1, then with the benefit of hindsight and justified a posteriori, distinguished

asymptotic limits occur when γ = O(ε) and when γ = O(1/ε). The former is the physically relevant

case, since γ = O(1/ε) would allow for larger deformations to the aspect ratio r, which are not observed

biologically. We henceforth focus on the distinguished limit γ = O(ε) and therefore scale γ = εΓ, where

Γ = O(1). In this case, the appropriate asymptotic scalings for the perturbations (justified a posteriori) are

α(t) = εA(t), y(t) = − 1√
r̄

+ ε2B(t), r(t) = r̄ + ε2C(t), (11)

where A, B, and C are perturbations in their respective variables, and are functions of time that we will

calculate. Understanding their dynamical behaviours will determine the stability of the steady point. To get

an idea of the asymptotic structure of the solution before we go into the details, it is helpful to note that

there are two distinguished timescales of interest in the system: the ‘early time’ where t = O(ε) and the ‘late

time’ where t = O(1/ε). Over the early timescale, we will show below that A(t) remains unchanged, B(t) is

driven by overlap avoidance and C(t) is driven by overlap avoidance and restoration to aspect ratio r̄. Using

the early time results, we will then show that over the late timescale, A(t) is affected by overlap avoidance

and, along with B(t) and C(t), decays to zero algebraically, demonstrating that the system is stable.

The dynamics of the perturbations. We now substitute (11) into (10) and note that since the steady

state lies at the boundary of region A and region B, the perturbations could push the system in either of

those two regions. We obtain

dA

dt
= −ε8 r̄

2 − 1

r̄2 + 1
r̄A
√
D · ID>0 +O(ε3), A(0) = a, (12a)

ε
dB

dt
= νA− 2

√
r̄
√
D · ID>0 +O(ε2), B(0) = b, (12b)

ε
dC

dt
= − 1

Γ

16(1 + r̄4)

r̄(1 + r̄2)
C +

16r̄2

1 + r̄2

√
D · ID>0 +O(ε2), C(0) = c. (12c)

where ID>0 = 1 for D > 0 and zero otherwise, and D defined as

D(t) := (r̄2 − 1)A2 + 2
√
r̄B − C

r̄
.
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Figure 3: Early time dynamics: Phase portrait for the (D̂, Ĉ)-system (14c), (15) for a > 0 (A) and a < 0 (B).

Nullclines are marked in dashed-blue (dD̂
dτ = 0) and dotted-red (dĈ

dτ = 0). An example solution trajectory is

shown in solid-black. r̄ = 2, ν = 1.5.

The sign of D determines whether we are in region A or region B and hence whether overlap avoidance takes

effect. We now analyse the system (12), starting with the early time.

3.1.1 Early time.

We start our analysis under the early timescale τ = O(1), defined via t = ετ . We indicate the early timescale

variables with overhats, and therefore write

A(t) = Â(τ), B(t) = B̂(τ), C(t) = Ĉ(τ), t = ετ. (13)

On substituting (13) into our governing equations (10) and taking the limit ε→ 0, we obtain the following

leading-order equations.

dÂ

dτ
= 0, Â(0) = a, (14a)

dB̂

dτ
= νÂ− 2

√
r̄
√
D̂ · ID̂>0, B̂(0) = b, (14b)

dĈ

dτ
= − 1

Γ

16(1 + r̄4)

r̄(1 + r̄2)
Ĉ +

16r̄2

1 + r̄2

√
D̂ · ID̂>0, Ĉ(0) = c. (14c)

where D̂(τ) = D(t). It is straightforward to use (14a) to determine that Â(τ) = a over the early time,

and hence to deduce that the orientation is not affected over this timescale. The remaining system (14b)–

(14c) governs the dynamics of B̂(τ) and Ĉ(τ), and can be solved computationally. The first term on the

right-hand side of (14b) indicates that self-propulsion causes a change in B̂ over the early time depending

on the sign of a. This will be an increase if a > 0 since this means that the cell is inclined slightly upwards.
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The second term on the right-hand side of (14b) represents overlap avoidance, suggesting that cells will

move apart to avoid overlap, consequently causing a decrease in B̂. The relative size of these two terms will

determine whether dB̂
dτ is initially positive or negative. The first term on the right-hand side of (14c) leads to

a decrease in magnitude of Ĉ, essentially restoring r to r̄. The second term on the right-hand side of (14c)

is positive, corresponding to an increase in aspect ratio to avoid overlap. This forcing occurs because the

cells are close to a side-by-side configuration near the steady state, and therefore increasing the aspect ratio

reduces overlap. We also note that the non-trivial dynamics over this early timescale justify the ε scalings

we initially imposed in (11).

Early-time overlap dynamics. To determine in which region, A or B the early time solution lies, it is

useful to inspect the change in time of D̂, since its sign determines whether there is overlap (D̂ > 0) or not

(D̂ ≤ 0). We obtain

dD̂

dτ
= 2
√
r̄νa− 1

r̄

1

Γ

16(1 + r̄4)

r̄(1 + r̄2)
Ĉ − 4r̄

5 + r̄2

1 + r̄2

√
D̂ · ID̂>0, (15)

which, together with (14c) forms a nonlinear system of two autonomous ODEs. Phase plane analysis reveals

that there is a qualitative difference for a > 0 and a < 0, see Fig. 3. We see that for a > 0, i.e. a slightly

upward inclined cell 1, the dynamics will lead to D̂ > 0, i.e. we end up in region B and the two cells will

eventually interact, even if they initially did not. Interestingly it is possible that cells initially interact, then

stop interacting for a short time, and then interact again. Such intermediate short non-interaction periods

can be caused by the relaxation to the preferred aspect ratio, see example trajectory in Fig. 3A. If on the

other hand a < 0, then D̂ will eventually become negative and cells will stop interacting, irrespective of

whether they did so initially. We additionally note that for a < 0 it is possible that cells that did not

interact initially, then interact for a short amount of time due to shape relaxation, before ceasing to interact

again, see example trajectory in Fig. 3B.

Early-time limiting behaviour. For a < 0, cells will eventually stop to interact and move apart, hence

the steady state is unstable for such perturbations, compare Fig. 5B, example 2. If a > 0, system (14)

becomes independent of early time τ in the large-τ limit. We can calculate the specific constants to which

the solutions tend by setting the left-hand sides of (14b)–(14c) to zero and solving the resulting algebraic

equations. This procedure yields the following τ →∞ results

Â(τ) = a, B̂(τ)→ ν2a2

8r̄3/2
− (r̄2 − 1)a2

2
√
r̄

+
Γνar̄

4(1 + r̄4)
, Ĉ(τ)→ Γνar̄5/2

2(1 + r̄4)
. (16)

The early time ‘far-field’ conditions (16) will be required to asymptotically match into the late-time dynamics

we consider next. Note that for these limiting values, the cells are still in region B.
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3.1.2 Late time.

Since we have already shown instability for a < 0, we only consider a > 0 here. Further, based on the

discussion above we can assume that solutions are in overlap region B. System (12) behaves as the early

time far-field (16) until t = O(1/ε), when we have a new distinguished timescale that we refer to as the

‘late time’. By inspecting (12), we note that this is the timescale over which the dynamics of A become

relevant. Formally, the late timescale is defined by the new variable T = O(1), where t = T/ε. We retain

the perturbation scalings (11), but now use tildes to denote late-time variables, defining

A(t) = Ã(T ), B(t) = B̃(T ), C(t) = C̃(T ), t =
T

ε
. (17)

Over this timescale, in the limit ε→ 0, our governing equations (12) become

dÃ

dT
= −8

r̄2 − 1

r̄2 + 1
r̄Ã
√
D̃, (18a)

0 = νÃ− 2
√
r̄
√
D̃, (18b)

0 = − 16(1 + r̄4)

Γr̄(1 + r̄2)
C̃ +

16r̄2

1 + r̄2

√
D̃, (18c)

where

D̃ := (r̄2 − 1)Ã2 + 2
√
r̄B̃ − C̃

r̄
.

The ‘initial’ conditions are obtained by matching with the early-time far-field conditions (16),

lim
T→0+

Ã(T ) = a (19a)

lim
T→0+

B̃(T ) =
ν2a2

8r̄3/2
− (r̄2 − 1)a2

2
√
r̄

+
Γνar̄

4(1 + r̄4)
(19b)

lim
T→0+

C̃(T ) =
Γνar̄5/2

2(1 + r̄4)
(19c)

Although the differential-algebraic system (18)–(19) is nonlinear, we can simplify the nonlinearity in the

differential equation (18a) using the algebraic equation (18b). This procedure reduces (18a) to the following

nonlinear but separable differential equation in Ã

dÃ

dT
= −4ν

√
r̄
r̄2 − 1

r̄2 + 1
Ã2. (20)

Solving (20), and substituting into the remaining algebraic equations (18b)–(18c), we obtain the late-time

solutions:

Ã(T ) =
a

4aν
√
r̄ r̄

2−1
r̄2+1T + 1

, (21a)

B̃(T ) =

(
ν2 + 4r̄(1− r̄2)

8r̄3/2

)
Ã2(T ) +

Γνr̄

4(r̄4 + 1)
Ã(T ), (21b)

C̃(T ) =
Γνr̄5/2

2(r̄4 + 1)
Ã(T ). (21c)

For r̄ > 1, (21) shows that Ã(T ), B̃(T ) and C̃(T ) all decay to zero algebraically as T → ∞, compare

Fig. 5A,B, example 1. The factor in front of T in (21a) is an increasing function of r̄ (for r̄ > 1), suggesting
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A

B

Figure 4: A, B: Plots of the exact solution of system (10) and the approximate solution given in (22) against

time until t = 100 (A) and until t = 6 in a log-log plot (B), for ε = 0.1, γ = 0.01, 0.1, 1. Legend applies to

all plots. Other parameters: r̄ = 2, ν = 2, a = b = c = 1.

that larger preferred aspect ratios will lead to faster decay and hence faster alignment. If on the other hand

r̄ < 1, Ã will blow up in finite time, indicating an unstable situation, compare Fig. 5C,D.

3.1.3 Composite solution.

Combining the solutions (14) and (21) in both timescales, we can obtain a uniformly regular (additive)

composite asymptotic solution (Van Dyke, 1975) for y, α and r in terms of t.

α(t) ∼ εÃ(εt), (22a)

y(t) +
1√
r̄
∼ ε2B̂

(
t

ε

)
+ ε2B̃(εt)− ε2

(
ν2 + 4r̄ − 4r̄3

8r̄3/2

)
a2 − ε γνr̄a

4(r̄4 + 1)
, (22b)

r(t)− r̄ ∼ ε2Ĉ

(
t

ε

)
+ ε2C̃(εt)− ε γνr̄

5/2a

2(r̄4 + 1)
, (22c)

where the hatted (early-time) variables are defined in (14) and the tilded (late-time) variables are defined

in (21). In Fig. 4 we verify that the quantities A,B and C all decay to zero as t→∞ for a > 0 and r̄ > 1,

demonstrating that the point (α, y, r) = (0,− 1√
r̄
, r̄) is stable in this case. On comparing our analytical

solution for the stability analysis with the computational full solution, solved using ode15s in MATLAB,
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A
B

C
D

time"long" cells

"wide" cells

1

2

3

Figure 5: A, C: Typical phase portrait (omitting the r-direction) in (α, y)-space for long cells, r̄ > 1, (A)

and wide cells, r̄ < 1, (B) with the analysed steady state marked with a blue star. Example trajectories

(omitting the r-component) are shown in blue, numbers correspond to plots in B and D. B,D: Cell shapes at

various time points corresponding to the trajectories marked in A and C. Other parameters: ν = 2, γ = 1,

r̄ = 2 (A,B) and r̄ = 0.5 (C,D).

we see that we have a good agreement between the two for ε = 0.1 and for γ = 0.01, 0.1, 1. The fact that

the approximation remains good also for larger values of γ is expected from our analysis since γ = O(ε)

is a distinguished limit of the system. Hence we expect our analysis to hold in its sublimits until a new

distinguished limit is reached. Specifically for this problem, our above analysis allows us to straightforwardly

understand the subcases γ � ε and ε � γ � 1/ε as regular sublimits of our analysis. We also note that

the solution for A(t) is unaffected by γ, suggesting that having shape change in the model does not affect

the change in orientation that two cells will experience in response to overlap avoidance. Since a change in

orientation is needed for cells to align with each other, this suggests that varying the non-dimensional shape

change parameter γ, at least if γ = O(ε) and ν = O(1), has little effect on cell alignment.

3.1.4 Summary and discussion of stability results.

Together we have shown that the steady state (0,−1/
√
r̄, r̄) is half-stable for r̄ > 1: If the point is perturbed

in the positive α-direction, then the perturbation will decay. If it is perturbed in the negative α-direction, per-

turbations will grow and cells will eventually stop interacting and move away from each other, see Fig. 5A,B.

We also emphasize that the solutions (21) yield an algebraic decay for a > 0, rather than an exponential

decay that might arise from a standard linear stability analysis. This a posteriori justifies our claim that a
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non-standard stability analysis is required to determine the system stability. For r̄ < 1 the point is always

unstable: For a < 0 cells again eventually stop interacting and move away from each other. For a > 0,

we can see that the orientation α moves away from away from α = 0 and increases. While we cannot use

our approximate solutions to determine the limiting behaviour in this case, numerical results suggest that

the solution converges to (α, y, r) =

(
π/2,−

√
r̂ − ν2r̂2

4 , r̂

)
for some r̂, such that the limit is another steady

state of (10b)-(10c). In this situation the cells face each other and self-propulsion, overlap avoidance and

shape relaxation balance such that their distance stays constant, see Fig. 5C,D. Since this steady state is

less biologically relevant, we do not systematically investigate its stability, but we expect it to be stable for

r̄ < 1. Using the rotational symmetry of our phase space, we obtain that the other steady state (0, 1/
√
r̄, r̄)

is also half stable for r̄ > 1 and unstable for r̄ < 1.

3.2 Asymptotic sublimits.

From the above stability analysis, we can understand why γ = O(ε) is a distinguished asymptotic limit of the

system (i.e. a ‘least degenerate’ limit where as many processes as possible occur over the same timescale).

Specifically, the natural overlap avoidance timescale is t = O(ε), and the aspect ratio restoration timescale

is t = O(γ). The distinguished limit therefore arises because the timescales of these different processes

coincide when γ = O(ε). Since there is an additional natural timescale in the system of orientation response

when t = O(1/ε) (the ‘late’ time in our analysis above), we can deduce that there is a different (additional)

distinguished limit when γ = O(1/ε). This additional distinguished limit would correspond to extremely

“squishy” cells where shape change is punished very little, generating cells with aspect ratios far away from

the natural shape r̄ as a result of overlap avoidance. As this is less biologically relevant, we do not consider

this case further.

Since distinguished limits correspond to maximal interaction of the natural processes, our asymptotic

results for γ = O(ε) above will also hold for γ � ε and γ � ε (i.e. ‘sublimits’ of the distinguished

asymptotic limit), until new distinguished limits of γ are reached. It is instructive to briefly summarize what

happens in the sublimits of the distinguished limit γ = O(ε) we analysed above.

Sublimit ε � γ � 1/ε. In the sublimit of ε � γ � 1/ε, equivalently 1 � Γ � 1/ε2 (the upper limits

of which correspond to the different distinguished limit noted above), the different balancing mechanisms

over the early timescale diverge into two separate timescales: t = O(ε) and t = O(γ). Over the standard

early timescale t = O(ε), only overlap avoidance affects C. Over this timescale, B and C grow without a

restoring force. The timescale over which this restoring force becomes important is then a new intermediate

timescale t = O(γ), which kicks in when C gets large enough for the overlap avoidance term to balance the

aspect-ratio-restoring term. Over this intermediate timescale, B and C reach the equivalent steady states

to those in the full behaviour we determined above. Finally, the late timescale t = O(1/ε) is essentially

unchanged from the full analysis in this sublimit; it is this timescale over which A(t) varies. The full analysis
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for γ = O(1) is outlined in Appendix A.1.

Sublimit γ � ε. The opposite sublimit of γ � ε (equivalently Γ � 1), corresponds to cells that restore

their natural aspect ratio very quickly (over a timescale of t = O(γ)), and then behave as non-deformable

cells with distinct early (t = O(ε)) and late (t = O(1/ε)) time behaviours. This sublimit is tractable for a

more general dynamic analysis, not just near the steady points, and is of biological interest. Therefore, we

examine this case in more detail in Sec. 4.

3.3 Lessons for (collective) cell alignment.

Alignment stability of “long” cells. The points (0,±1/
√
r̄, r̄) represent perfect alignment of two cells.

For r̄ > 1 (“long” cells), the fact that these points are half-stable shows that alignment is sensitive to some

perturbations, and suggests that overlap avoidance drives alignment, but that perfect alignment is fleeting

in practice. In the many-cell version of the model in Leech et al. (2024), interactions with a third cell could

perturb the perfect alignment between two cells in the unstable direction, i.e. such that they point away

from each other (corresponding to a < 0 in the above analysis), in which case they would cease to interact

and alignment would be broken. This could also occur if cell orientation is subject to noise, as would be the

case in many realistic biological systems. This could explain why we see pockets of alignment, but no global

alignment in the simulations in Leech et al. (2024).

The role of the aspect ratio and deformability. We found that for r̄ > 1 the decay to perfect

alignment is faster for larger r̄, indicating that larger preferred aspect ratios lead to faster alignment. We

will revisit the question of how the strength of alignment depends on the aspect ratio in Sec. 4. The stability

analysis also showed that, near the steady state, the change in orientation is independent of the shape

change parameter, suggesting that deformability does not aid alignment. The latter result is in contrast to

the collective dynamics results of Leech et al. (2024), where deformability lead to more collective alignment.

This indicates that the increased collective alignment due to deformability might be a consequence of the

many-cell system, not of the alignment mechanism itself. The case r̄ < 1 describes “wide” cells that move

orthogonal to their long axis, such as keratocytes (fish fibroblasts). Here the perfect-alignment steady state is

always unstable. This could indicate that we do not expect to see velocity alignment in such cells. However,

it is also possible that the imposed symmetry condition in this work is not appropriate in this case.

4 Non-deformable cells, γ = 0, r > 1

In this section, we consider the rigid-cell-shape limit, taking γ → 0. Further, based on the findings in Sec. 3

we focus on “long” cells and hence assume r̄ > 1 throughout this section. As noted in the previous section,

there is a very fast timescale of t = O(γ) over which the cells restore and then maintain their preferred
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aspect ratio of r = r̄. We will proceed by taking γ = 0 and r ≡ r̄, essentially analysing (10) after the

very fast t = O(γ) timescale. This reduces (10) to a 2D (in variable space) dynamical system in α and y,

(10b),(10c). This reduction is both biologically relevant and more straightforward to analyse and interpret.

In the rest of this section, we will denote r̄ by r for notational convenience, where r no longer has a time

dependence. The (α, y) state space is split into regions A,B and C, see Fig. 2B. We start our investigation by

confirming that we obtain the same stability result from Sec. 3 before exploring the resulting 2D dynamical

system computationally. Then, to gain deeper insight into the precise effect of self-propulsion, which has

dimensionless strength ν, we consider the case of ν = 0 before using asymptotic methods to understand the

case where ν � 1, noting that the limit ν → 0 is singular.

4.1 General behaviour.

Stability analysis. For ν > 0, ν = O(1), the stability of (α, y) = (0,− 1√
r
) is inherited directly as a

sublimit Γ → 0 of the full system stability analysis we conducted for deformable cells in Sec. 3 above. We

assume the initial conditions are such that we stay in region B (see discussion in Sec. 3). Specifically for a > 0,

and if we take γ → 0 in (10d), or equivalently Γ → 0 in (14c), we find that C(t) → 0 over t = O(γ), which

is much quicker compared to the other two timescales of O(ε) and O(1/ε). Then, over the fast timescale

t = O(ε), (14) reduces to

Â(τ) = a,
dB̂

dτ
= νa− 2

√
r

√
(r2 − 1)a2 + 2

√
rB, (23)

and over the slow timescale t = O(1/ε), (18) becomes

Ã(T ) =
a(r2 + 1)

4aν
√
r(r2 − 1)T + r2 + 1

, B̃(T ) =

(
ν2 + 4r − 4r3

8r̄3/2

)
Ã2(T ). (24)

We can see that since r > 1, Ā, B̄ → 0 algebraically as T → ∞. Since perturbations with a < 0 will not

decay, we therefore showed that, as for the system for deformable cells, the point (0,− 1√
r
) is half-stable.

Phase portrait. Next we explore the system more generally by computationally generating a phase por-

trait with some example trajectories in Fig. 6. Nullclines corresponding to ẏ = 0 (pink) and α̇ = 0 (green)

are shown as dotted lines. We see that in region A (purple) the arrows all point vertically upwards. This

is because this is the region of no overlap and hence the cells will only change their position (as a result

of self-propulsion) and not their orientation. The arrows are pointed upwards since α ∈ (0, π/2) and hence

this leads to an increase in y since the cell is inclined upwards. If we focus our attention on the point

(α, y) = (0,−1/
√
r), we see that all arrows in the surrounding area are directed towards this point, illus-

trating that this point is an attractor from the side where α > 0. Example trajectories are shown in blue

and these indicate that there are two outcomes depending on the initial conditions: (1) the trajectory moves

towards the half-stable point (α, y) = (0,− 1√
r
), or (2) the trajectory crosses region C and ends up leaving

the overlap region with y > 0. This is a situation where cells crawl over each other, then stop interacting and
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A B

time

top view

side view

Figure 6: A: Phase portrait for ν = 2, r = 2 showing nullclines (dotted pink and green), boundaries between

regions (red), the separatrix (solid-blue) and example trajectories (dashed-blue). B: Cell shape snapshots of

the system over time for two example trajectories labelled (1) and (2) in A with a 3D side view included

for (2). Note that which cell is above and which is below is arbitrary. The cell in blue corresponds to the

trajectory in blue.

continue to move away from each other. The line separating these two outcomes is a non-trivial separatrix,

indicated by the solid blue line in Fig. 6B. We can calculate this separatrix computationally, by starting near

the separatrix and solving the system (10) backwards in time (Fay and Joubert, 2010).

Quantification of alignment. Next, we want to quantify how favourable different sets of model param-

eters are for alignment. To do this we test initial conditions with −
√
r < y0 < 0 and 0 < α0 < π/2 (i.e.

cell 1 underneath cell 2 and cells moving towards each other) and record the resulting post-interaction angle

αfinal(α0, y0). This will either be the angle obtained once the interaction has ended after finite time, or the

limiting angle for t → ∞, in the case of infinitely long interactions. Since αfinal(α0, y0) will lie between 0

and π/2, and 0 corresponds to perfect velocity alignment, we define the interaction strength for a particular

parameter set by

Salign =
1

π/2
√
r

∫ 0

−
√
r

∫ π/2

0

π/2− αfinal(α0, y0)

π/2
dα0dy0. (25)

The alignment strength will be between 0 and 1, with Salign = 1 corresponding to perfect alignment for all

used initial conditions. We determined Salign computationally by discretising the integral. Fig. 7A shows

a non-monotonous dependence of alignment strength on the self-propulsion speed ν: For non-zero speeds,

larger speeds lead to less alignment. Fig. 7E,F suggest this is because for larger ν fewer initial conditions

lead to cells getting trapped in the region underneath the separatrix, where the interaction leads to perfect

alignment. This is because larger speeds will more often allow cells to leave the y < 0 region, where they
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Figure 7: A-B: Alignment strength as defined in (25) as functions of ν (A) and r (B). C-F: Examples of

interaction outcomes for different values of ν and r. Colour shows angle α after interaction has ended for

the initial conditions at that position. Region boundaries are shown in red, the separatrix in white.

will stop interacting in finite time. However ν = 0 is not favourable for alignment. We will discuss this case

in Sec. 4.2. The dependence of alignment strength on the aspect ratio r is also non-monotonic. The general

picture is that both too round and too elongated cells shapes lead to less alignment. This can be understood

by comparing Figs. 7C,F. On the one hand, larger aspect ratios lead to fewer initial conditions being in

the perfect-alignment region underneath the separatrix. On the other hand, larger aspect ratios cause more

post-interaction alignment (smaller values of αfinal(α0, y0)) for cells outside the perfect-alignment region.

4.2 No self-propulsion, ν = 0

To investigate the effect of propulsion on (10) with γ = 0, we now analyse the singular change in the system

in the limit of small ν. Specifically, we are interested in the strong difference in system behaviour for zero

self-propulsion (ν = 0) and small self-propulsion (0 < ν � 1) suggested by Fig. 7A,D. We start by considering

zero self-propulsion, ν = 0. The governing equations (10) with ν = 0 are

ẏ =


0, for (α, y) ∈ A

2

√
γ2
1−y2
γ2
1

sign(y), for (α, y) ∈ B

2 r
γ2
1 |(r2−1) sinα cosα|y, for (α, y) ∈ C

(26a)
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α̇ =


0, for (α, y) ∈ A

−8 r
2−1
r2+1 sinα cosα

√
γ2
1−y2
γ4
1
|y|, for (α, y) ∈ B

4rsign((r−1) sinα cosα)
r2+1

[
y2
((

r2−1
r

)2 (sinα cosα)2

γ4
1

−
(

r
r2−1

)2 (γ4
2−1)

(sinα cosα)2 −
1
γ4
1

)
+

γ2
2−γ

2
1

γ2
1γ

2
2

]
, for (α, y) ∈ C

(26b)

Summary of system behaviour. System (26) is symmetric around y = 0. Together with the symmetry

considerations for α, it therefore suffices to consider y ≤ 0, α ∈ [0, π/2]. We inspect the corresponding phase

portrait in Fig. 8. We find that (α̇, ẏ) ≡ (0, 0) in region A, since in the absence of self-propulsion and shape

relaxation, overlap avoidance is the only driver of change/movement. Throughout region B and C ẏ < 0,

indicating cells move apart as long as they interact. Further the boundary between region A and B, given by

y = −ΓAB = −γ1 is now a line of stationary points. Together, this suggests the following solution behaviour,

which we will prove in the next paragraph. If we let (α(0), y(0)) = (α0, y0) be the initial conditions and

assume that y0 < 0, 0 < α0 < π/2, we find that:

(i) If (α0, y0) lies in region A (no interaction), the solution will remain at (α0, y0) for all time.

(ii) If (α0, y0) lies in region C (four intersection points), it will move into region B in finite time and remain

in region B.

(iii) If (α0, y0) lies in region B (two intersection points) it will converge to a point (αT , yT ) on the A-B

boundary in finite time, see trajectory in Fig. 8A,B.

Proof of system behaviour. Part (i) follows trivially from the dynamical system (26). Part (ii): From

(26a) we see that ẏ < 0 when y < 0 within region C and on the boundary of region C. We also have that

A

B

time T

1

1

Figure 8: A: Phase portrait in (α, y)-space for ν = 0, r = 2. Example trajectories shown in blue. Boundaries

between regions shown in red. Nullclines shown in green. B: Snapshots of the cell configurations over time

corresponding to the trajectory in A marked with (1) at initial conditions (α0, y0).
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|ẏ| ≥ 4|y|/(r2 − 1) which shows that |ẏ| is bounded away from zero (note that r > 1). Hence, we can

conclude that if (α0, y0) ∈ C then there exists a finite time, at which the trajectory (α(t), y(t)) will cross the

B-C boundary and cross into region B. Next we claim that region B is invariant, i.e. that once a trajectory

is in region B, it remains in region B. To show that this is the case, we characterise the solution curves in

region B. We consider the case where (α0, y0) and (α, y) are in B and derive an equation for y(α). Dividing

(26b) by (26a) we obtain

dy

dα
= − 1

4r

r2 + 1

r2 − 1

r2 sin2 α+ cos2 α

r sinα cosα

1

y
. (27)

Equation (27) can be solved explicitly to yield

y(α) = −

√
|y0|2 +

1

2r

r2 + 1

r2 − 1
log

(
(cosα)r2

sinα

sinα0

(cosα0)r2

)
. (28)

To show that region B is invariant, we will show that once the trajectory moves from region C into region

B, it is not possible for the trajectory to move back into region C again. To do this, we will show that if we

start on the boundary of region B and C, given by y2 = Γ2
BC as defined in (8), we will enter region B and

will not intersect the line y2 = Γ2
BC again, showing that it is not possible for the trajectory to cross this line

a second time and enter back into region C. We substitute our initial conditions y2
0 = Γ2

BC(α0) into (28) and

want to solve y2 = Γ2
BC to see whether the trajectory y could intersect the boundary ΓBC again. If there are

no additional solutions to this equation, then the trajectory does not cross the boundary between regions B

and C again and hence does not re-enter region C. From this procedure we obtain

Γ2
BC(α) = Γ2

BC(α0) +
1

2r

r2 + 1

r2 − 1
log

(
(cosα)r

2

sinα

sinα0

(cosα0)r2

)
, (29)

where ΓBC is defined in (8). Rearranging (29) and defining s = sinα, we obtain

s

(1− s2)r2/2
exp

[
2(r2 − 1)3s2(1− s2)

(r2 + 1)(s2 + r2(1− s2))

]
=

sinα0

(cosα0)r2
exp

[
2(r2 − 1)3 sin2 α0 cos2 α0

(r2 + 1)(sin2 α0 + r2 cos2 α0)

]
. (30)

We define the left-hand side of (30) as s 7→ f(s) with domain [0, 1). Differentiating f with respect to s

shows that f is a strictly monotonically increasing function of s with f(0) = 0 and f(s) → ∞ for s → 1−.

Since the right-hand side is always positive, there exists a unique solution ssol ∈ [0, 1) for each (α0, y0) and

consequently a solution αsol = arcsin ssol ∈ [0, π/2] such that y(αsol) = −ΓBC(αsol). However, since we

know that the initial condition satisfies these requirements, the unique solution is the initial condition i.e.

αsol = α0. Therefore, after intersecting the curve y2 = Γ2
BC and moving into region B, the trajectory will

not intersect this boundary curve again. Hence, once the trajectory is in region B it will remain in region B.

For part (iii), we start by noting that the curve y = −ΓAB describes a line of stationary points (where

ẏ = α̇ = 0). Showing that y(α) always intersects −ΓAB(α) is equivalent to showing that y2(α) = Γ2
AB(α)

has a solution. Using y(α) as defined in (28) and ΓAB as defined in (8) this can be written as

y2
0 +

1

2

r2 + 1

r2 − 1
log

(
(cosα)r

2

sinα

sinα0

(cosα0)r2

)
= r2 sinα2 + cosα2. (31)
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We need to show that (31) has a solution α ∈ [0, π/2]. We define s = sinα and use this to rewrite (31) as

s

(1− s2)r2/2
exp

[
2

(r2 − 1)2

r2 + 1
s2

]
=

sinα0

cosα0
r2

exp

[
2
r2 − 1

r2 + 1
(y2

0 − 1)

]
. (32)

We define the left-hand side as s 7→ h(s) with domain [0, 1). Differentiating h(s) we find that h′(s) > 0

and can therefore conclude that h is a strictly monotonically increasing function of s with h(0) = 0 and

h(s) → ∞ for s → 1−, i.e. its range is [0,∞). Since the right-hand side is always positive, there exists

a unique solution sT ∈ [0, 1) for each (α0, y0) and consequently a solution αT = arcsin sT ∈ [0, π/2] such

that y(αT ) = −ΓAB(αT ). Finally, we need to show that (αT , yT ) is reached in finite time, where we define

yT := y(αT ). To show this, we substitute (28) into (26b), the governing equation for α̇, separate variables

and integrate over time from 0 to t, obtaining

8t
r2 − 1

r2 + 1
=

∫ α(t)

α0

γ4
1(α)

y(α) sinα cosα
√
γ2

1(α)− y2(α)
dα =: I(α(t)). (33)

Our final task is to show that limα→α+
T
I(α) =: I(αT ) < ∞, which will imply that (αT , yT ) is reached in

finite time T = I(αT ) r
2+1
r2−1

1
8r
√
r
. We use the substitution s = sinα in (33) and obtain

I(αT ) = lim
st→s+T

∫ st

s0

γ4
1(s)

y(s)s(1− s2)
√
γ2

1(s)− y2(s)
ds. (34)

To understand whether (34) converges, we need to understand the nature of the singularity at s = sT where

γ2
1(sT )− y2(sT ) = 0. Taylor expanding this term around s = sT gives

γ2
1(s)− y2(s) = (s− sT )

[
2sT

r2 − 1

r
+

(r2 + 1)(s2
T (r2 − 1) + 1)

2r(r2 − 1)sT (1− s2
T )

]
+O(s− sT )2. (35)

Since the coefficient of the linear s − sT term in (35) does not vanish, the singularity in the integrand is

an inverse square root, and therefore is integrable. That is, I(αT ) < ∞ and hence (α(t), y(t)) = (αT , yT )

for t = T < ∞. This explains the computational results shown in Fig. 7A,D, i.e. that for ν = 0 perfect

alignment is typically not achieved.

4.3 Slow-moving cells, 0 < ν � 1

General effect of small ν. The case of a small but finite ν is a singular pertubation of the ν = 0 system.

We can investigate its behaviour using asymptotic methods in the small-ν limit. To briefly summarise before

going into details, the main differences between the small- and the zero-ν cases is that small-ν dynamics do

not vanish in region A, nor do they terminate at the point at which they first hit the region A-B boundary.

Instead, in the small-ν case the trajectories travel within region A and along the region A-B boundary over

slow timescales of O(1/ν). So, in the small-ν case a trajectory starting in region C will follow the zero-ν

trajectory determined in Sec. 4.2 with an O(ν) correction, and move into region B and then to the region

A-B boundary in finite time. A trajectory starting in region A will also move into region B over a slower

time of O(1/ν). Given this, we focus our analysis on understanding what happens in region B.
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Asymptotic expansion. To understand the system behaviour in the limit of small ν, we first write both

y and α as asymptotic series in powers of ν. That is y(t) ∼ y0(t) + νy1(t) and α(t) ∼ α0(t) + να1(t).

Substituting these into the governing equations (10) and considering the leading-order equations, we obtain

exactly the case ν = 0 that we analysed in Sec. 4.2. In this case, we know that y0(t) → ȳ and α0(t) → ᾱ

in some finite time T , where γ2
1(ᾱ) = ȳ2. In the case where ν = 0, the analysis ends here. However, in the

singular case of small but finite ν, there is an additional slow timescale after this finite time. To analyse

this slow timescale behaviour, we transform into the slow timescale regime defined by t = T + τ/ν, where

τ = O(1), and now expand y(t) = Y (τ) ∼ Y0(τ)+νY1(τ) and α(t) = A(τ) ∼ A0(τ)+νA1(τ). On substituting

the slow timescale and these new expansions into the governing equations (10), we obtain

ν
dY

dτ
= ν sinA− f(Y,A), (36a)

ν
dA

dτ
= g(Y,A)f(Y,A), (36b)

where we introduce the following shorthand functions

f(Y,A) = 2

√
γ2

1(A)− Y 2

γ2
1(A)

, (37a)

g(Y,A) = 4
r2 − 1

r2 + 1

Y sinA cosA

γ2
1(A)

. (37b)

The O(1) terms in equations (36) generate a duplication of information, with both giving f(Y0, A0) = 0,

or equivalently

γ2
1(A0(τ)) = Y 2

0 (τ). (38)

This tells us that the leading-order slow-time dynamics are confined to the line γ2
1(α) = y2, the boundary

between regions A and B. The remaining goal of our analysis is to determine the precise dynamics of this

A exact solution

�=0 solution

� small approximation
exact solution

�=0 solution

� small approximationB C

Figure 9: A, B: Comparison of α(t) (A) and y(t) (B) for solutions of the full system (solid-back), solutions

for ν = 0 (dashed-red) and the small-ν approximation (43) (dotted-pink). Insets show dynamic for t small.

C: Zoomed in region of phase portrait showing corresponding trajectory for A and B. Parameters ν = 0.1,

r = 2.
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slow motion. There are several ways to proceed at this point. One method involves continuing to the next

asymptotic order and deriving an appropriate solvability condition. Another way involves combining the full

equations (36) in a way that removes the duplication of information, then taking the limit ν → 0 to obtain

an independent evolution equation. We proceed via the latter, since this involves significantly less algebra.

By substituting (36a) into (36b) and dividing through by ν, we obtain

dA

dτ
= g(Y,A)

(
sinA− dY

dτ

)
. (39)

The equation (39) has leading-order form

dA0

dτ
= 4

r2 − 1

r2 + 1

Y0 sinA0 cosA0

γ2
1(A0)

(
sinA0 −

dY0

dτ

)
. (40)

The equations (38) and (40) represent enough information to determine the slow evolution along the region

A-B boundary. It is more straightforward to see this if we use the direct time derivative of γ2
1(A0) = Y 2

0 ,

which is

sinA0 cosA0(r2 − 1)
dA0

dτ
= rY0

dY0

dτ
. (41)

Combining this with (40) we can deduce that(
4

(r2 − 1)2

r2 + 1
sin2A0 cos2A0 + rY 2

0

)
dA0

dτ
= 4r

(r2 − 1)

r2 + 1
Y0 sin2A0 cosA0, (42a)

(
4

(r2 − 1)2

r2 + 1
sin2A0 cos2A0 + rY 2

0

)
dY0

dτ
= 4

(r2 − 1)2

r2 + 1
sin3A0 cos2A0. (42b)

Then, since we are considering α ∈ [0, π/2] and therefore A0 ∈ [0, π/2], we define s0(τ) = sin(A0(τ)), where

s0 ∈ [0, 1]. Under this substitution, (42) can be rewritten as

ds0

dτ
=

4r(r2 − 1)Y0s
2
0(1− s2

0)

4(r2 − 1)2s2
0(1− s2

0) + r(r2 + 1)Y 2
0

, (43a)

dY0

dτ
=

4(r2 − 1)2s3
0(1− s2

0)

4(r2 − 1)2s2
0(1− s2

0) + r(r2 + 1)Y 2
0

. (43b)

Solving (43) numerically, we can compare our numerical solution of the reduced problem to a numerical

solution of the full problem. In Fig. 9, we see that the asymptotic solution gives good agreement with

the full numerical solution for ν = 0.1, solved using ode15s in MATLAB. We also see that for all initial

conditions, the trajectory will move to the point (α, y) = (0,− 1√
r
), corresponding to perfect alignment.

If we substitute the solution of the algebraic constraint (38), Y0 = − 1√
r

√
(r2 − 1)s2

0 + 1 into (43a) we

can reduce the dynamics to a single ODE

ds0

dτ
= − 4

√
r(r2 − 1)

√
(r2 − 1)s2

0 + 1s2
0(1− s2

0)

4(r2 − 1)2s2
0(1− s2

0) + (r2 + 1)(r2 − 1)s2
0 + r2 + 1

. (44)

On separating variables and integrating, we find that

4
√
r(r2 − 1)τ =

∫ s0(τ)

s0(0)

4(r2 − 1)2s2
0(1− s2

0) + (r2 + 1)(r2 − 1)s2
0 + r2 + 1

s2
0(1− s2

0)
√

(r2 − 1)s2
0 + 1

ds0 =: I(s0(τ)). (45)
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We note that we have shown in Sec. 4 that the point (α, y) = (0,− 1√
r
) is a stable steady state for α > 0. We

also know that all trajectories solving (43) move towards this point. To understand this long-term behaviour

in more detail, we must understand what happens as α → 0+ or equivalently lims0→0+ I(s0(τ)). If this

integral converges, then perfect alignment in reached in finite time. However, if this integral diverges, then

it takes infinite time to reach perfect alignment where (s0(τ), Y0(τ)) = (0,− 1√
r
). As s0 → 0, the integrand

in (45) behaves like r2+1
s20

and hence the integral I(s0(τ)) diverges. Therefore, the point (α, y) = (0,− 1√
r
) of

perfect alignment is only reached in infinite time.

4.4 Lessons for (collective) cell alignment.

The role of ν. The analysis of this section allows us to obtain a full understanding of the effect of ν

on the alignment mechanism between two cells. As a reminder, ν was defined in (4) as ν = vη
σ

√
πA and

can be interpreted as the ratio of self-propulsion and overlap avoidance strength in the presence of friction.

We find that for ν = 0 trajectories do not move towards the point (α, y) = (0,−1/
√
r), and hence perfect

alignment is not achieved when there is no self-propulsion. This highlights the importance of self-propulsion

in the alignment mechanism and shows that both overlap avoidance and self-propulsion are needed for full

alignment. The analysis of 0 < ν � 1 represents a singular perturbation of the ν = 0 case. We find

that there is a set of initial conditions that lead to perfect alignment (for small, but positive ν), however,

achieving perfect alignment takes infinite time. Quantifying computationally how favourable different model

parameters are to alignment, we find a surprisingly good qualitative agreement with the results for large

collective of cells found in Leech et al. (2024): ν = 0 leads to very little alignment, however, for larger

values of ν alignment strength decreases as ν increases. The fact that the analysis for a symmetric two-cell

situation recapitulates the results for large cell collectives indicates that it is a property of the alignment

mechanism itself, not a result of the many-cell situation. Based on our analysis we can conclude that, while

it is the overlap avoidance that causes interacting cells to align, (smaller amounts of) self-propulsion ensure

that these interactions do not stop too quickly. However, if self-propulsion is too strong (compared to overlap

avoidance), cells can “escape” the interaction by being pushed past each other.

The role of the aspect ratio r. For the dependence of alignment strength on the aspect ratio r, we found

that for the symmetric two-cell system, there is an optimal aspect ratio for alignment: Interactions between

close to circular cells will not lead to much velocity alignment. On the other hand, interactions between very

elongated cells can more easily lead to cells moving past each other at which point the interaction stops.

Note that this is different to the results for collectives found in Leech et al. (2024): There larger aspect

ratios lead to more collective alignment. This could be, because in a collective, cell movement past each

other might be hindered by other cells. Another possible reason could be, that alignment in Leech et al.

(2024) referred to “nematic alignment”, which also captures situations where cells are side-by-side, but move

in opposite directions. This is not something we can describe well with the symmetry condition imposed
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in this work, where alignment only describes velocity alignment, i.e. cells move in the same directions. A

different framework would be necessary for further analytical investigations.

5 Discussion

5.1 Summary of the results

Model summary. In this work, we have presented a number of results to help us understand the alignment

mechanism between two interacting cells in the model presented in Leech et al. (2024). These results have led

to a more in-depth understanding of how model ingredients lead to alignment. Specifically we investigated

the interplay between self-propulsion and overlap avoidance and the role of the aspect ratio of the cell.

The analysed model describes self-propulsion and overlap avoidance, in reaction to which cells change their

position, orientation and aspect ratio. We derived an analytical framework which led to a dynamical system,

for which there are many mathematical tools available.

Deformable cells. In the full 3D (in variable space) system, which allows for shape deformations, a classic

linear stability analysis is degenerate. Performing a dynamical asymptotic analysis, we find that the situation

where both cells have their preferred shape and are perfectly aligned side-by-side, is a half-stable steady state

of the system for elongated cells, and an unstable steady state for wide cells, indicating the fleeting nature

of perfect alignment. This stability analysis also gives us insight into the timescales at play during the cell

interactions. We find that the relative sizes of the two non-dimensional parameters determines the ordering

of the change in aspect ratio and position, and that the change in orientation always occurs last, over a

much slower timescale. We find that this change in orientation is unaffected by the shape change parameter,

suggesting that deformability is not essential for alignment to occur. In the computational analysis done in

Leech et al. (2024), it is found that allowing for changes in aspect ratio leads to greater alignment. The fact

that we do not see this in the two-cell analysis, suggests that this result is due to the collective behaviour

of the system, as opposed to the underlying alignment mechanism. We also find that if the non-dimensional

shape change parameter is small, cells will quickly restore their preferred aspect ratio, after which the system

behaves as though cell shape is rigid. This is reflected in the computational results in Leech et al. (2024) by

noting that a strong shape-restoring force leads to little change in behaviour from the rigid cell case.

Non-deformable cells. We then consider a 2D (in variable space) limit of the full system in more detail,

specifically, the limit in which the cells are rigid and keep their preferred aspect ratio. We computationally

quantify the effect of model parameters on the overall alignment properties of the system. We find that both

no self-propulsion ν = 0 and too much self-propulsion lead to less alignment, in striking qualitative agreement

with the computation results in Leech et al. (2024) for cell collectives. This underlines the difference between

active matter, that self-propels, and passive matter, which doesn’t. We are also able to make a significant
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amount of analytic progress in understanding the singular nature of the small self-propulsion limit. We find

that cells are quickly pushed to a single point of overlap over a fast timescale, before the small self-propulsion

causes cells to align while maintaining a single point of overlap over a much slower timescale. Together with

the quantification of alignment, this leads to a greater understanding of how overlap avoidance combined

with self-propulsion leads to alignment, see the discussion in Sec. 4.4. Hence, even though many of the

complex details of the collective behaviour in Leech et al. (2024) are not captured in the analysis for two

cells here, our analysis gives a plausible explanations for the observed behaviour. When analysing how

alignment properties depend on the aspect ratio, we find that for our symmetric two-cell system there is an

optimal aspect ratio for alignment. This is in contrast to the collective results in Leech et al. (2024), where

larger aspect ratios lead to more alignment. This difference could be due to limitations of this work due to

the imposed symmetry condition, which limit the notion of alignment to “velocity alignment”.

5.2 Further work.

The modelling framework presented in Leech et al. (2024) is not specific to ellipse-shaped cells and could be

applied to a number of different cell shapes. Provided the points of intersection could be found analytically,

a similar approach to analyse and understand the system in greater depth could be taken. It would be

interesting to apply the same analytical framework to different cell shapes to see how the results differ. This

would be of particular interest if we wanted to apply the modelling framework to bacteria, for example,

which are often modelled as spherocylinders instead of ellipses (Volfson et al., 2008; You et al., 2021). In this

work we did not deeply analyse the behaviour of the system for wide cells with r̄ < 1, such as keratocytes.

In this case a different symmetry condition might be appropriate to capture alignment: The two cells could

be assumed to move one behind the other. In Leech et al. (2024) we also considered cell-cell adhesions. The

analysis presented here could be extended to include such cell-cell contacts. In a first approximation, one

could assume such contacts are permanent to then minimise a combined 2-cell energy. This will be subject

of future work. Our approach could also be used to understand the dynamics of more than two cells, e.g.

three cells placed in such a way that their centres of mass form a triangle. Finally, looking to other methods

of mathematically analysing agent-based models, it would be beneficial to see whether any progress could be

made on coarse-graining the model to obtain an equivalent continuum model such that further results on the

collective behaviour of the system for many cells could be obtained. In the recent work of Merino-Aceituno

et al. (2024) this is done for a similar model, which uses a smooth overlap potential.
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A Appendix

A.1 Full stability analysis for γ = O(1)

Here we go through the full stability analysis of the steady state (α, y, r) = (0− 1/
√
r̄, r̄) for γ = O(1). This

is outlined briefly in the main text. We begin by perturbing the point (α, y, r) = (0,−1/
√
r̄, r̄) by a small

amount, defined by

α(t) = εA(t), y(t) = − 1√
r̄

+ ε2B(t), r(t) = r̄ + ε2C(t) (46)

Understanding how A(t), B(t) and C(t) change over time will determine whether the point is stable or

unstable. Under the conditions ε � γ � 1/ε with ν = O(1), that are three distinguished timescales of

interest in the system: early time (t = O(ε)); intermediate time (t = O(γ)); and late time (t = O(1/ε)).

Over the early timescale, A(t) remains unchanged, and B(t) and C(t) are driven by overlap avoidance. Over

the intermediate timescale, A(t) still remains unchanged, B(t) and C(t) are still driven by overlap avoidance,

and a restorative force restoring the aspect ratio to r̄ comes into the equation for C. Over the late timescale,

the dynamics of A(t) become important and are driven by overlap avoidance. We see that the perturbations

decay to 0 over the late timescale, proving that the steady state is stable. On substituting (46) into (10) we

obtain

dA

dt
= −ε8 r̄

2 − 1

r̄2 + 1
r̄A
√
D · ID>0 +O(ε3), A(0) = a, (47a)

ε
dB

dt
= νA− 2

√
r̄
√
D · ID>0 +O(ε2), B(0) = b, (47b)

ε
dC

dt
= − ε

γ

16(1 + r̄4)

r̄(1 + r̄2)
C +

16r̄2

1 + r̄2

√
D · ID>0 +O(ε2), C(0) = c. (47c)

where ID>0 = 1 for D > 0 and zero otherwise, and D defined as

D(t) := (r̄2 − 1)A2 + 2
√
r̄B − C

r̄
.

The sign of D determines whether we are in region A or region B and and hence whether overlap avoidance

takes effect. We now analyse the system (47), starting with the early time.

A.1.1 Early time

We start our analysis over the early time, defined via t = ετ for τ = O(1). We indicate the early timescale

variables with hats and write

A(t) = Â(τ), B(t) = B̂(τ), C(t) = Ĉ(τ), t = ετ. (48)

We obtain the following leading order equations by substituting (48) into (10).
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dÂ

dτ
= 0, Â(0) = a, (49a)

dB̂

dτ
= νÂ− 2

√
r̄
√
D̂ · ID̂>0, B̂(0) = b, (49b)

dĈ

dτ
=

16r̄2

1 + r̄2

√
D̂ · ID̂>0, Ĉ(0) = c. (49c)

where D̂(τ) = D(t). As in Sec. 3 (49a) shows that Â(τ) = a over the early time, and hence that the

orientation remains constant over this timescale. Deriving an equation for D̂ yields

dD̂

dτ
= 2
√
r̄νa− 4r̄

5 + r̄2

1 + r̄2

√
D̂ · ID̂>0.

It is easy to see that if a < 0, D̂ will become negative in finite time. Hence, even if cells interact initially,

they will eventually stop interacting and move apart. In this case the steady state is not stable. If on the

other hand a > 0, D̂ will become positive in finite time (even if it was negative initially) and convergence to a

positive limiting value. In the following we will therefore focus on a > 0 and assume that cells interact. The

first term in equation (49b) shows that self-propulsion will lead B̂ to increase over time. The second term in

(49b) represents overlap avoidance, suggesting that cells will move apart to avoid overlap and consequently

B̂ will decrease. The size of these two terms will determine whether dB̂
dτ is positive or negative. dĈ

dτ > 0 in

(49c) means that the cells elongate over this timescale. This is because the orientation is near zero, so the

cells are side-by-side and consequently elongate to avoid overlap.

Early time limiting behaviour. From (49) we can solve (49a) directly, and then combine (49b) and

(49c) and integrate to obtain

Â(τ) = a, (50a)

B̂(τ) +
1 + r̄2

8r̄3/2
Ĉ(τ) = νaτ + b+

1 + r̄2

8r̄3/2
c. (50b)

Equation (50b) shows that B̂ and Ĉ both grow linearly in time. We also find that, while B̂ and Ĉ grow in

time, the quantity

2
√
r̄B − C

r̄
∼ ν2(1 + r̄2)2

4r̄(5 + r̄2)2
a2 − (r̄2 − 1)a2 as τ →∞. (51)

Specifically, this means that 2
√
r̄B̂ − Ĉ

r̄ tends to a constant as τ grows. Combining (51), with the algebraic

constraint for B̂ and Ĉ in (50b) we are able to solve for B̂ and Ĉ (as τ →∞) and deduce that

Â(τ) = a, (52a)

B̂(τ) ∼ 4νa

5 + r̄2
τ as τ →∞, (52b)

Ĉ(τ) ∼ 8r̄3/2νa

5 + r̄2
τ as τ →∞, (52c)

The fact that B̂ and Ĉ grow in time indicates the scaling for the next time region
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A.1.2 Intermediate time.

We now consider the intermediate timescale defined via t = γt̄, where t̄ = O(1), recalling that ε� γ � 1/ε.

We also redefine our scalings for B and C as

α(t) = εĀ(t̄), y(t) = − 1√
r̄

+ γεB̄(t̄), r(t) = r̄ + γεC̄(t̄), t = γt̄, (53)

motivated by the large-τ results (52) in the early time in Sec. A.1.1. Substituting (53) into the governing

equations (10) we obtain

dĀ

dt̄
= −γ8

r̄2 − 1

r̄2 + 1
r̄Ā

√
ε2(r̄2 − 1)Ā+ γε2

√
r̄B̄ − γεC̄

r̄
, (54a)

dB̄

dt̄
= νĀ− 2

√
r̄

ε

√
ε2(r̄2 − 1)Ā+ γε2

√
r̄B̄ − γεC̄

r̄
, (54b)

dC̄

dt̄
= −16(1 + r̄4)

r̄(1 + r̄2)
C̄ +

16r̄2

ε(1 + r̄2)

√
ε2(r̄2 − 1)Ā+ γε2

√
r̄B̄ − γεC̄

r̄
. (54c)

To leading order we obtain

0 = −γ8
r̄2 − 1

r̄2 + 1
r̄Ā

√
γε2
√
r̄B̄ − γεC̄

r̄
, (55a)

0 = 2
√
r̄

√
γε2
√
r̄B̄ − γεC̄

r̄
, (55b)

0 =
16r̄2

1 + r̄2

√
γε2
√
r̄B̄ − γεC̄

r̄
. (55c)

Solving (55) we see that we only obtain one piece of information:

2
√
r̄B̄(t̄) =

C̄(t̄)

r̄
. (56)

To obtain the additional information required, a formal analysis would involve expanding B̄ and C̄ in higher

powers of ε, and deriving appropriate solvability conditions. However, we can circumvent this laborious

calculation by instead combining the equations in (54) to remove the duplication of information at leading

order (essentially the square root term in each equation), and generate a system of distinct ODEs for Ā, B̄

and C̄. We can eliminate the square root term in (54a), (54b) and (54c) to obtain

dĀ

dt̄
= εγ4

√
r̄
r̄2 − 1

r̄2 + 1
Ā

(
dB̄

dt̄
− νĀ

)
, (57a)

dB̄

dt̄
= νĀ− 1 + r̄2

8r̄3/2

(
dC̄

dt̄
+

16(1 + r̄4)

r̄(1 + r̄2)
C̄

)
, (57b)

dC̄

dt̄
= −16(1 + r̄4)

r̄(1 + r̄2)
C̄ − 8r̄3/2

1 + r̄2

(
dB̄

dt̄
− νĀ

)
. (57c)

We can then decouple (57b) and (57c) using (56). On doing this, to leading order we obtain

dĀ

dt̄
= 0, lim

t̂→0+
Ā(t̄) = a, (58a)

dB̄

dt̄
= νĀ− 1 + r̄2

4

(
dB̄

dt̄
+

16(1 + r̄4)

r̄(1 + r̄2)
B̄

)
, lim

t̂→0+
B(t̄) = 0 (58b)

dC̄

dt̄
= 2r̄3/2νĀ− 1 + r̄2

4

(
dC̄

dt̄
+

16(1 + r̄4)

r̄(1 + r̄2)
C̄

)
, lim

t̂→0+
C(t̄) = 0. (58c)
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The initial conditions are matching conditions from the previously solved early timescale τ . Solving (58) we

obtain

Ā(t̄) = a, (59a)

B̄(t̄) =
νar̄

4(1 + r̄4)

(
1− exp

(
−16(1 + r̄4)

r̄(5 + r̄2)
t̄

))
, (59b)

C̄(t̄) =
νar̄5/2

2(1 + r̄4)

(
1− exp

(
−16(1 + r̄4)

r̄(5 + r̄2)
t̄

))
. (59c)

From (59) we see that, again, Ā remains constant over the intermediate time, and that B̄ and C̄ decay

exponentially in time, reaching constant values given by

Ā(t̄) = a, B̄(t̄)→ νar̄

4(1 + r̄4)
, C̄(t̄)→ νar̄5/2

2(1 + r̄4)
, (60)

as t̄→∞. These will be used as matching conditions for the next timescale.

A.1.3 Late time.

Finally, we consider the late timescale defined via t = t̃/ε, where t̃ = O(1). Given the large-t̄ results (60),

we retain the scalings from the intermediate time region in (53).

α(t) = εÃ(t̃), y(t) = − 1√
r̄

+ γεB̃(t̃), r(t) = r̄ + γεC̃(t̃), t = t̃/ε, (61)

This is the timescale over which the dynamics of A become important. Over this timescale equations (10)

become

dÃ

dt̃
= −8

ε

r̄2 − 1

r̄2 + 1
r̄Ã

√
ε2(r̄2 − 1)Ã+ γε2

√
r̄B̃ − γεC̃

r̄
, (62a)

dB̃

dt̃
=

1

ε
νÃ− 2

ε2

√
r̄

√
ε2(r̄2 − 1)Ã+ γε2

√
r̄B̃ − γεC̃

r̄
, (62b)

dC̃

dt̃
= −1

ε

16(1 + r̄4)

r̄(1 + r̄2)
C̃ +

1

ε2

16r̄2

1 + r̄2

√
ε2(r̄2 − 1)Ã+ γε2

√
r̄B̃ − γεC̃

r̄
. (62c)

To leading order we obtain

0 = −8
r̄2 − 1

r̄2 + 1
r̄Ã

√
γ2
√
r̄B̃ − γ C̃

r̄
, (63a)

0 = −2
√
r̄

√
γ2
√
r̄B̃ − γ C̃

r̄
, (63b)

0 =
16r̄2

1 + r̄2

√
γ2
√
r̄B̃ − γ C̃

r̄
. (63c)

Again, we obtain only one piece of information:

2
√
r̄B̃(t̃) =

C̃(t̃)

r̄
(64)

Since this information is duplicated in all three equations, we would have to expand B̃ and C̃ in higher orders

of ε to obtain solvability conditions. Alternatively, as in the intermediate time region, we can rearrange the
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equations to eliminate the square root terms and generate a system of ODEs for Ã, B̃ and C̃. On doing so

we obtain

dÃ

dt̃
= −4ν

√
r̄
r̄2 − 1

r̄2 + 1
Ã2 + ε4

√
r̄
r̄2 − 1

r̄2 + 1
Ã

dB̃

dt̃
, (65a)

dB̃

dt̃
=

1

ε
νÃ− 1 + r̄2

8r̄3/2

dC̃

dt̃
− 1

ε

2(1 + r̄4)

r̄5/2
C̃, (65b)

dC̃

dt̃
= −1

ε

16(1 + r̄2)

r̄(1 + r̄2)
C̃ +

1

ε

8r̄3/2

1 + r̄2
νÃ− 8r̄3/2

1 + r̄2

dB̃

dt̃
. (65c)

To leading order we have

dÃ

dt̃
= −4ν

√
r̄
r̄2 − 1

r̄2 + 1
Ã2, lim

t̃→0+
Ã(t̃) = a (66a)

0 = νÃ− 2(1 + r̄4)

r̄5/2
C̃, lim

t̃→0+
B̃(t̃) =

νar̄

4(1 + r̄4)
(66b)

0 = −16(1 + r̄4)

r̄(1 + r̄2)
C +

8r̄3/2

1 + r̄2
, lim

t̃→0+
C̃(t̃) =

νar̄5/2

2(1 + r̄4)
, (66c)

where the matching conditions come from the long time behaviour (60) in the previous timescale. Solving

(66) using (64) we find that

Ã(t̃) =
a(1 + r̄2)

4νa
√
r̄(r̄2 − 1)t̃+ r̄2 + 1

, (67a)

B̃(t̃) =
νr̄

4(1 + r̄4)
Ã(t̃), (67b)

C̃(t̃) =
νr̄5/2

2(1 + r̄4)
Ã(t̃). (67c)

For r̄ < 1, Ã will blow up in finite time and hence the steady state is unstable. For r̄ > 1 (and a > 0) on

the other hand, we can see that Ã(t̃), B̃(t̃) and C̃(t̃) all decay to zero algebraically as t̃ → ∞. This shows

that the point we are interested in is half-stable for r̄ > 1. We note that this analysis for γ = O(1) is just a

splitting of the early timescale in the analysis done in the main text.
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