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Abstract

With the rapid developments in sequencing technologies, individuals now have
unprecedented access to their genomic data. However, existing data management systems
or protocols are inadequate for protecting privacy, limiting individuals’ control over their
genomic information, hindering data sharing, and posing a challenge for biomedical
research. To fill the gap, an owner-governed system that fulfills owner authority, lifecycle
data encryption, and verifiability at the same time is prompted. In this paper, we realized
Governome, an owner-governed data management system designed to empower individuals
with absolute control over their genomic data during data sharing. Governome uses a
blockchain to manage all transactions and permissions, enabling data owners with dynamic
permission management and to be fully informed about every data usage. It uses
homomorphic encryption and zero-knowledge proofs to enable genomic data storage and
computation in an encrypted and verifiable form for its whole lifecycle. Governome supports
genomic analysis tasks, including individual variant query, cohort study, GWAS analysis, and
forensics. Query of a variant’s genotype distribution among 2,504 1kGP individuals in
Governome can be efficiently completed in under 18 hours on an ordinary server.
Governome is an open-source project available at https://github.com/HKU-BAL/Governome.

Introduction

The advent of affordable advanced sequencing technologies has empowered individuals to
explore their health condition through personal genomics, highlighting the critical role
genomics plays in modern healthcare '. With increased accessibility, data privacy and
security have become an emerging issue when managing personal genomic data. With
limitations in storage and analytical capabilities, many individuals opt for third-party services
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to host and analyze their genomic data. These services offer medical insights and analyses
related to ancestry and disease susceptibility, expanding the utility of genomic data beyond
the clinical setting.

Despite the benefits, relying on third-party services introduces inherent privacy risks. Users
often compromise control over their data by agreeing to terms with limited choices. This
leaves the data vulnerable to potential mishandling or misuse, particularly in unregulated
contexts. Instances have been documented in which commercial companies share genomic
data with pharmaceutical firms in exchange for financial incentives, underscoring the
importance of ethical practices related to data security 2. Such data mismanagement can
have immediate consequences. For example, individuals with high-risk genetic markers are
denied life insurance coverage due to undisclosed genomic data usage ®. Moreover, when
using third-party services, ensuring "The Right to be Forgotten" in the General Data
Protection Regulation (GDPR) *, specifically the revocation of data access, is challenging.
The revocation process typically relies on users submitting requests to third parties, who
must then comply with relevant regulations. This dependency on third-party compliance
makes it difficult to ensure that data access revocation can be executed without undue
delay, let alone achieve instant data access control.

The issue of genomic data privacy quickly caught the attention of the academic community,
resulting in the development of various methods to protect data. Existing human genomic
databases >’ host research-funded genomic data, and they achieve data privacy by
providing access only to successful applicants. Another approach is to provide a unified API
for cross-institution genomic data sharing, thereby enabling a centralized gateway with
security protocol. Beacon Service, by GA4GH 8, was an early attempt at federated data
sharing. It aims to achieve collaboration across databases through a distributed storage and
sharing network. Despite its intent to facilitate collaboration, the potential for reidentification °
through query analysis remains a critical privacy issue.

Cryptogenomics, which involves applying cryptographic methods to genomic data, is a
promising solution for genomic data privacy. Early efforts focused on privacy-preserving data
sharing and computation among institutions (also called data custodians). These methods
are typically designed for specific genomics analysis tasks, such as cross-institutional single-
gene disease diagnosis query '°, GWAS "2 and genetic imputation '*. These task-specific
protocols by different institutions vary in specializations and capabilities, while none offers
personal genome data owner timely and full control of their own data.

Blockchain technology ™ offers a new insight to the field of cryptogenomics. Blockchain is a
distributed ledger technology that enables multiple participants to engage in secure
transactions and information sharing transparently without a central authority, which naturally
aligns with the requirements of personal genome data owners retaining full authority over
their genomic data without intermediaries as data custodians 'S Therefore, starting in 2018,
a well-known genomics security contest named iDASH '® extended blockchain to one of its
security computing tracks for the task of recording patients’ data sharing consents. There
have been attempts '’ to store and share genomic data directly using blockchain. While it
ensures the security and immutability of transactions, the privacy of information stored on-
chain is lost since any participant with read-access to the system can directly access the raw
genomic data. Another attempt introduced a citizen-centered method '@ that involved both
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88  secure computation and a blockchain-based system. However, it supports only simple
89  genomics analysis tasks because only addition operation is supported in its secure
90 computation design, making it impractical for real-life genomics analysis tasks. It also lacks a
91 measurement to avoid data owners and computing parities from providing false information,
92  which is inevitable as the number of participants grows.
93
94  We consider that the full-fulfillment of owner-governance is the next step of cryptogenomics.
95  Owner-governance implies three properties throughout the entire lifecycle of genomic data:
96 1) the data owner retains full authority of her data, 2) the genomic data remains encrypted,
97  and 3) the integrity of both the genomic data and the computation results is algorithmically
98 guaranteed. Practical solutions are urged for a comprehensive owner-governed genomic
99 data management system that should at least include features including user anonymity,
100  dynamic data access control, record audibility, secure data analysis '°, and verifiable
101 analysis results. In existing human genomic databases *>"°, data access revocation is
102  difficult if not undoable once the data has been shared and kept another copy. Queries about
103  data usage logs and permission control are also entirely reliant on the credibility of the data
104  custodian. Thus, establishing a comprehensive system for owner-governed genomic data
105 management is imperative for addressing privacy concerns and empowering individuals in
106  the genomic data landscape.
107
108 In this paper, we explored the pathways to achieving the three properties of owner-
109  governance, namely Owner Authority, Lifecycle Data Encryption, and Verifiability. We
110 developed Governome, a realization of owner-governance that fulfills all three properties.
111 Governome utilizes a blockchain to manage all transactions and permissions, enabling data
112 owners with dynamic permission management and to be fully informed about all data usage.
113 It uses homomorphic encryption and zero-knowledge proofs to enable genomic data storage
114  and computation in an encrypted and verifiable form in its complete lifecycle. Data owners
115  can share or unshare their genome in the system instantly. Querying entities can conduct
116  analyses, including individual variant queries, cohort studies, GWAS analyses, and
117  forensics. We benchmarked Governome for different applications and found that querying
118 the population genotype distribution of a random SNP (Single Nucleotide Polymorphism)
119  over 2,504 1kGP ?° individuals can be efficiently completed in under 18 hours on an ordinary
120  server. Our experiments demonstrated that Governome can be applied to different genomic
121  data management scenarios at scale. Governome is open-source and available at
122  https://github.com/HKU-BAL/Governome. To our best knowledge, Governome is the first
123  realization of a secure, transparent, decentralized data management system that enables
124  owner-governed genomic data management. We hope that Governome can set a new
125  standard for privacy protection and data sharing in the personal genome era, and in turn
126  benefit personalized medicine and facilitate population genetics researcher at a larger scale.
127

128 Results

129 Qverview

130  We defined three properties that lead to the full-fulfillment of owner-governance in a genomic
131  data management system: Owner Authority, Lifecycle Data Encryption, and Verifiability. We
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132  developed Governome that fulfilled owner-governance. Governome enables data owners to
133  have 24/7 instantaneous control of their genomic data with full transparency. No plaintext
134 information is stored or generated in the system to eradicate any sort of data leakage. Data
135 integrity and computation result authenticity are algorithmically ensured. Governome

136  supports different genomic tasks, including variant query, cohort study, GWAS analysis, and
137  forensics. We demonstrated Governome’s performance with all variants of the 2,504 1kGP
138 samples, suggesting its robustness when managing large-scale human genome projects and
139 its potential to be scaled-up to managing millions of samples.

140

141 The three properties of owner-governance

142  We consider a genomic data management system is capable of owner-governance if it
143  simultaneously has the following three properties:

144

145 1) Owner Authority (OA): Owners have absolute and instantaneous control over
146 their owned genomic data. At any given time, data owners should be able to
147 modify the access permissions of their genomic data in the system, including
148 revoking data access entirely for any usage. OA also includes data owners’

149 access to complete data usage logs that are guaranteed to be authentic.

150

151 2) Lifecycle Data Encryption (LDE): Data must remain encrypted throughout its
152 lifecycle in the system, ensuring that it is never decrypted or accessed in raw
153 form to protect data security. Encryption should be comprehensively applied to
154 users’ raw data or intermediate computation results in the stage of storage,

155 exchange, and computation. No party, including the data owner, should have
156 direct access to raw information except for the final result provided by the system.
157

158 3) Verifiability (VER): Verifiability includes data integrity verifiability and

159 computation process verifiability. Data integrity verifiability refers to the querying
160 entities who initiate a query analysis in the system are able to verify whether the
161 genomic data is free from tampering. Computation process verifiability requires
162 the system to be able to provide evidence for the correctness of the results of any
163 computing process.

164

165 Necessity of the three properties

166  OA is the core principle of owner-governance, which implies around-the-clock intermediary-
167  free revocation and traceability. Intermediary-free revocation means that the data owners
168 can break away from their previous commitments freely and at any time without any

169 intermediary - they can be the ultimate decision-maker regarding data access or their own
170  data. Traceability means data owners are fully informed, addressing information asymmetry
171  challenges and enhancing control. The combination of decision-making and the right to be
172  informed forms the basis of data owner’s authority over their own data.

173

174  LDE is an inevitable requirement for ensuring data security in an owner-governed system.
175  Unless proven otherwise, any disclosure of raw data, even to data owners, will result in
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176  potential risks such as information theft and storage device loss, which can have an

177  irreversible impact on data privacy. On the other hand, any party that acquires access to any
178  raw data or intermediate results in plaintext means a deviation from OA since the party can
179  maintain a copy with or without permission, which undermines data owner’s right to decision-
180  making.

181

182  VER ensures that the querying entities can always achieve the correct result, which is the
183  foundation of usability. It prevents malicious participants from providing false information that
184  could fake an identity or void research. The use of a blockchain implies crowdsourced data
185  storage and computing. Hence, without a proper mechanism, a dishonest data provider or
186  computing provider might act maliciously and cause permanent damage to the usability of
187  the system. The principle of enabling VER is to trust no one and use mathematical and

188  cryptographic tools to enforce data and computation integrity.

189

190  Without OA, data owners would effectively lose control over their genomic data. Without

191 LDE, the genomic data within the system would face inevitable privacy risks when being

192  used. Without VER, the system would loss its trustworthiness, and usability in the end.

193  Therefore, as the next step of cryptogenomics, the three properties OA, LDE, and VER are
194  integral.

195

196 Governome realizes owner-governance

197  We developed Governome that fulfills the three properties simultaneously. To our best

198  knowledge, it is the first realization of an owner-governance genomic data management

199 system. As shown in Figure 1, Governome includes three layers: 1) a consensus layer to
200 manage agreements among users; 2) a computing layer to manage the different forms of
201  genomic data at various stages, including data storage, exchange, and analysis; and 3) an
202 application layer as an interface for users to interact with the consensus layer and computing
203 layer. The functionality of Governome is built upon the synergy of the three layers. Details
204  about the techniques and design focuses at the three layers are shown in the ‘Feasible

205 approaches to fulfill the three properties of owner-governance’ subsection in Methods.

206
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208 Figure 1. An overview of owner-governance and its realization, Governome. Owner-governance

209  requires three properties, 1) Owner Authority - owners must have absolute and instantaneous control
210  over their owned genomic data; 2) Lifecycle Data Encryption - data must remain encrypted throughout
211 its lifecycle in the system; 3) Verifiability - includes data integrity verifiability and computation process
212 verifiability. Our realization Governome includes three layers that work synergistically, including (1) a
213 consensus layer to manage user agreements; (2) a computing layer for secure computation, and (3)
214  an application layer for genomic applications.

215

216  The consensus layer is a blockchain that establishes the ownership of genomic data (see
217  ‘Techniques used at the Consensus Layer’ subsection in Methods). The blockchain stores 1)
218  user permissions settings, 2) metadata and hashes for each query, 3) the source code of
219  supported genomic analysis tasks. Specifically, one’s ownership of her genomic data should
220  be universally recognized, and her modifications to the permissions of her genomic data
221  should not have different versions across different nodes in the blockchain. For each query,
222 (i) the encrypted result, (ii) the individuals involved in serving the query, and (iii) metadata
223  are stored on the blockchain. Owners can achieve auditability by either (a) checking

224  requests that she replied with the access token, or (b) reconstructing the entire logs from the
225  access requests. Moreover, with the support of metadata, hashes and source code, the

226  workflows in Governome are transparent and reproducible by anyone, thus resolving

227  disputes.

228

229  The computing layer is for aggregating the storage and computation resources of multiple
230 parties with algorithms (see ‘Techniques used at the Computing Layer’ subsection in

231 Methods). The design of the computing layer focuses on 1) how genomic data is accessed,
232  2) how the genomic analysis tasks are performed, 3) how multiple parties cooperate to

233  participate in a task. The input of the computing layer is some encrypted data, while the

234  output is fixed-form results of some genomic analysis tasks. Apart from the final output, all
235 intermediate information is computable but cannot be decrypted. The computing layer is
236  responsible for outputting reliable results for tasks, with the computing process being

237  verifiable.

238

239 The application layer works as an interface for users who want to use the functions in

240 Governome (see ‘Design focuses at the Application Layer’ subsection in Methods).

241  Considering the steep learning curve of cryptography and secure computation, a user-

242  friendly interface is needed in Governome, while all modules related to privacy and security
243  should be encapsulated within the consensus layer and computing layer. The design of the
244  application layer, on the other hand, focuses on determining who can use Governome and
245  how different users can utilize Governome, where users can simply ask questions

246  predefined by the interface and receive responses. Moreover, as is requested by VER, when
247  users question the reliability of computational results, they should be allowed to request
248  evidence from the interface provided by the application layer and designate someone to
249  verify the data integrity or computation integrity.

250

251 The Workflow of Governome
252
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254 Figure 2. The workflow of Governome. A query entity can ask the application layer a fixed-form question.

255  The application layer will then ask the consensus layer for qualifying data owners. The blockchain
256  managed at the consensus layer will send requests to qualifying data owners, and receive access
257  tokens (See ‘How to encrypt genomic data’ subsection in Methods) from consenting data owners for
258 the downstream homomorphic encryption-based computation. Next, the computing layers will pull the
259 relevant encrypted data blocks of the consenting data owners from storage nodes and perform
260 homomorphic encryption-based computation with the access tokens provided by the consensus layer.
261 No data is decrypted during the computation, except for that the final computation result will be
262  decrypted by the computing layer, and be returned to the query entity with a fixed-form answer.

263

264  The workflow of Governome is shown in Figure 2, and the necessary participants in the

265  workflow can be found in the ‘Necessary supporting parties in Governome’ subsection in
266  Methods. To use Governome, a query entity can submit fixed-form queries to the application
267 layer. For example, one can ask, “What’s the genotype distribution of rs6053810 for

268 congenital heart disease patients?”. After checking data owners’ on-chain consent, the

269 consensus layer will send a request to the data owners for an access token (details shown in
270 the ‘How to encrypt genomic data’ subsection in Methods), which can make part of their

271  genomic data accessible to computing layer. After the access tokens for all data owners

272  involved have been collected, the computing layer will pull data from the storage nodes,

273  perform secure computation and return an answer to the query entity through the interface of
274  application layer (details shown in the ‘How computing layer works’ subsection in Methods).
275  Noteworthy, both access tokens and genomic data are utilized in encrypted form. Apart from
276  the fixed-form computation results, no other information is decrypted, thus fulfilling the

277  principle of LDE.

278

279 In general, a data owner is required to be actively responding to requests (specifically,

280 sending access token) from the blockchain, otherwise her data cannot be accessed and

281  would be excluded from analysis. However, it is impractical to require all the data owners to
282  be online and responsive around the clock. Therefore, in Governome, an option is given to
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283  data owners to register a precomputed access token so that Governome will skip the data
284  owner and proceed with the token for computing. With this option, a data owner does not
285 need to be active for her data to be used. The registered access token does not need to be
286  recomputed until the next refresh of the computing layer. Details about the precomputed
287  access token can be found in the ‘Precomputed access token’ subsection in Methods.

288

289 Supported genomic analysis tasks in Governome

290 The application layer has defined a list of genomic analysis tasks, including individual variant
291  query, cohort study, GWAS analysis, and forensics. This section shows the functionalities of
292  the genomic analysis tasks and who can use the functionalities.

293

294  Individual variant query allows data owners to explore their own genomic information.

295 Interesting examples including, if someone is interested in whether she suffers alcohol flush
296  reaction after consumption, she can check-up variant rs671 2! that causes aldehyde

297 dehydrogenase 2 deficiency. If a male individual wants to know if he needs to prepare for
298 early-onset hair loss, he can check-up variant rs6152 22 that increases risk of baldness. In
299  Governome, one can input an rsID % and get the result of her own genotype.

300

301  Cohort study allows users to examine the genotype distribution of interested rsIDs relevant
302 to one or more demographics or phenotypes. GWAS analysis allows users to compare a
303 disease cohort against a normal cohort at the interested rsIDs, with p-values returned as
304 results. Cohort study in Governome should obey k-anonymity constraints ?*. That is, a cohort
305 requires a minimum of k individuals to avoid the risk of being re-identified. The k in

306  Governome is configurable, and Governome returns an error if an analysis forms a cohort
307  with below k individuals. Detailed descriptions of the algorithms used for GWAS are in the
308 ‘HE-based GWAS analysis’ subsection in Supplementary Methods.

309

310  Forensics analysis fulfills public security and legal purposes, such as anti-human-trafficking.
311 Given a set of genotypes, Governome can return a list of matching individuals registered in
312 the system. Such an application can bring high social value and is considered to be one of
313  the most important applications of a huge-scale owner-governed genomics database, in

314  addition to research and discovery. However, it is also dangerous, and it compromises

315  personal identity if being misused. Therefore, forensics analysis is exclusive to governmental
316  authorities, and in Governome, we allow a data owner to exclude herself from all forensics
317  analysis, observing our promise to give data owners ultimate control of their data. Forensics
318  analysis can be conducted among all participating individuals in the system, or a smaller
319  group shortlisted by hospitals according to some known demographic characteristics and
320 phenotypes.

321

322  Based on the supported genomics analysis tasks available in Governome, we generally

323  distinguished three types of users that demand different analysis permissions (Table 1). The
324  three types are data owners, authorities, and research entities. The ability to perform an
325 individual variant query is exclusively granted to data owners. Using blockchain, data

326  ownership is immediately confirmed, and an individual variant query is processed instantly.
327 In contrast, forensics analysis is exclusive to authorities due to its risk of reidentification. All
328 types of users are allowed to conduct cohort studies in Governome. For a cohort study, if
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329 thereis a sample list meeting the k-anonymity constraint, the query is processed without
330 further authentication or qualification reviews. The types of users are expandable, and the
331  allowed tasks are configurable in Governome.

332
333  Table 1. Genomics analysis tasks allowed for different user groups.
Idv. variant query Cohort study Forensics
Data owners N, N, X
Authorities X N, N,
Research entities X J X
334

335  Noteworthy, although Governome has only implemented a few common genomics analysis
336  tasks, it has no limit of having more tasks as long as they can be implemented at the

337  application layer. However, any new tasks need to be sufficiently analyzed and discussed
338  before introducing them into Governome to avoid unintended privacy risks.

339

340 Computational performance of Governome

341  We evaluated Governome’s computational performance of 1) Generating proofs for an

342  access token, and 2) Homomorphic encryption based computation. These are the two most
343  computationally demanding procedures in Governome. Governome is implemented with
344  programming language Go version 1.21, and all benchmarks were done using the same
345  programming language and version.

346  Generating proof for access token

347  As mentioned in the workflow of Governome, a data owner should respond to the blockchain
348  and return an access token if consenting the data access request. An access token is the
349  encryption form of an 80-bit key ° kept by a data owner. Apart from the access token, she
350 needs to provide some evidence to show that her 80-bit key is not tampered. Here we have
351  chosen ZK-SNARK (zero-knowledge Succinct Non-interactive Argument of Knowledge) %° as
352  the solution to provide evidence. ZK-SNARK enables a data owner to prove that, without
353 revealing any part of the 80-bit key, 1) she holds the valid 80-bit key according to a hash
354  saved on-chain, and 2) she submitted an access token generated from the valid 80-bit key.
355  More details about why we have chosen ZK-SNARK is given in the ‘Techniques used at the
356  Computing Layer’ subsection in Methods.

357

358  The time and memory consumptions are shown in Figure 3. We used a laptop with an Apple
359 M1 CPU and 16GB of RAM, mimicking an average setting of a data owner. The time

360 consumption shows how long it takes to generate a proof and it implies the minimum time a
361  data owner can respond to a data request. The memory consumption shows the peak

362 memory used to generate a proof and it implies how much memory is needed in a data

363  owner’s device in order to respond to a data request. The 80 bits in a key can be used

364  together to generate a proof, or be divided into smaller blocks to generate multiple proofs
365  before merging into a single proof (details given in the ‘Zero-knowledge proof for access
366  token generation’ subsection in Supplementary Methods). The memory consumption

367  increases linear to the block size, but time consumption may vary.

368


https://doi.org/10.1101/2024.07.23.604393
http://creativecommons.org/licenses/by-nd/4.0/

369

370
371

372
373
374
375
376
377
378
379
380
381
382
383
384

385

386
387
388
389
390
391
392
393
394
395
396
397
398
399

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.23.604393; this version posted July 24, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

1

T
N

100 16
B Time consumption (s) L 14
80 Memory consumption (G)
_ 112G
3 22
bt &
% 60- -10'..§-
€ S
2 '8 B
g 8
O 404
e © © 5
= 5
-4 =
20
0
1 2 4 5 8 10 16 20 40 80

Block size

Figure 3. Performance of using ZK-SNARK to generate a proof for an 80-bit key using configurable
block sizes ranging from 1 to 80. The memory consumption of block size 40 and 80 exceeded the
available memory in our testing device (16GB), and was using memory swap. The exact numbers
shown in the figure are given in Supplementary Table 1.

Our benchmark showed that the memory consumption increased from 1.1GB at blocks size
1 to over 16GB at block size 40 or higher. The time consumption varied between block sizes,
and had an average of 57 seconds. Since a data owner’s computational capacity is
commonly limited to a cell phone or a laptop, a low memory consumption is preferred. We
have chosen block size 1 as the default of Governome as it has minimal memory
consumption with a moderate time consumption. As a result, a data owner can generate all
the necessary information to respond to a data request with a memory consumption of
approximately 1GB and time consumption of about a minute, which are completely
acceptable.

Homomorphic encryption based computation

Homomorphic Encryption (HE) ?” is a cryptographic technique that enables computation on
encrypted data. In Governome, all data analyses are strictly HE-based computation
conducted at the computing layer. Computing nodes at the computing layer are usually
powerful servers with many CPU cores and much RAM. For the benchmarks in this section,
we used a server with two 32-core Intel Xeon Platinum 8369C 2.9GHz processors and
512GB of RAM. For any genomic analysis tasks, the two computational intensive steps are
benchmarked, including: 1) data conversion from stream ciphertext (smaller in size for
storage but cannot be used for HE-based computing) to HE ciphertext (larger in size for HE-
based computing (details given in the ‘Computation setup in Governome’ subsection in
Methods), and 2) data analysis that uses HE-based computation. For samples, we used the
1000 Genomes Project (1kGP) dataset 2° comprising the whole genome variants of 2,504
individuals. The mock-up phenotypes of the 2,504 individuals were provided by the Hail
library and are available from its tutorial 8. The extracted phenotypes were already
normalized as either binary or categorical variables. We divided the samples into five cohorts
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400 for our benchmarks according to the five superpopulations: Africans (AFR), Admixed
401  Americans (AMR), East Asians (EAS), Europeans (EUR), and South Asians (SAS) defined
402 in 1kGP.

403 Individual variant query and cohort study

404 Individual variant query is the simplest task in Governome. Our benchmark showed that
405 using a single CPU core, querying any random variant in an individual used at most 15

406  minutes to return a result. Cohort study, in comparison, demands much more computations,
407  especially when the cohort size is large, and when GWAS analysis is needed. In cohort
408  study, Governome allows inputting rsIDs to specify the variant of interests, and demographic
409 characteristics and phenotypes for choosing samples. If a cohort study query generates no
410  error, Governome will return the number of chosen samples, and the genotypes ratio of the
411  chosen samples at each rsID. The performance of querying a variant in five cohorts and all
412 2,504 1kGP samples is shown in Figure 4. Generally, the time consumption of both data
413  conversion and data analysis increased linearly against the number of samples in a cohort.
414  Querying a variant in all 2,504 samples was finished in about 18 hours (13h16m for data
415  conversion and 4h37m for data analysis). More CPU cores can be used for parallel

416  computing when querying more than a variant. The results show that Governome can

417  support any population scale because the linear increase in computation matches the

418  expected linear increase in computing nodes when more individuals are introduced to the
419  system.

420

Performance of querying a variant in cohorts
of different sizes

Data conversion
SAS v
i Dot vl
EAS
Samples distribution by cohort T
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422  Figure 4. Performance of cohort study, including 1) querying a variant, and 2) GWAS analysis of
423  CaffeineConsumption. The exact numbers shown in the figure are given in Supplementary Table 2
424  and 3.
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425

426  For GWAS analysis, a p-value is calculated between the case samples and control samples
427  ateach rsID. We have chosen the phenotype ‘CaffeineConsumption’ to divide the samples
428 in each cohort into case (CaffeineConsumption > 4) and control (CaffeineConsumption < 4)
429  samples. The performance of GWAS analysis on rs6053810 is shown in Figure 4. The

430 results have shown that, while the number of samples of each cohort remains the same,
431  data conversion took a similar amount of time, while data analysis took longer due to the
432  algorithmically more complicated p-value computation. Governome allows multiple data
433  analysis tasks to be combined, so data conversion needs to be done just once.

434 Forensics

435  Forensic genetics relies heavily on analyzing short tandem repeat (STR) loci %. In our

436  benchmark, we have chosen 13 STR loci * commonly used in forensics for analysis. One
437  can carry out forensics analysis in Governome using cohort analysis at the interested STR
438 loci with all samples in the system included in the cohort. However, the analysis will take
439  excessively long if not impossible to finish when millions of samples are stored in the

440 system. Therefore, we have added an auxiliary data block that stores only the genotype of
441  the 13 STR loci for each individual (see the ‘Auxiliary data block’ subsection in

442  Supplementary Methods). The auxiliary data block is small and specific for forensics

443  analysis. Thus, data conversion can be massively sped up when only forensics analysis is
444  needed. Noteworthy, auxiliary data block can include any number of variants for a specific
445  analysis task in Governome not limited to forensics.

446

447  When conducting a forensics analysis, an authority needs to input a list of STR loci with the
448  genotype it is searching for. Additionally, demographic characteristics and phenotypes can
449  be used to reduce the number of samples to be inspected. For each sample, Governome will
450 output a Boolean vector showing a match or mismatch of genotype at each STR loci. As
451 explained in the ‘Necessary supporting parties in Governome’ subsection in Methods,

452  sample IDs in Governome are de-identified. Thus, outside Governome, in order to know the
453 real identity of a matching individual, an authority needs to undergo legal procedures to get a
454  warrant and further work with hospitals.

455

456  We tested the performance of the above design on 2,504 1kGP samples. Data conversion
457  took 5 minutes and 51 seconds, while data analysis took 4 minutes. The performance is
458  acceptable if the number of candidates for forensics analysis can be effectively narrowed
459  down by known demographic characteristics and phenotypes.

460

461 Comparing Governome to previous solutions

462 In this section, we compared Governome against existing genomic data management

463  systems on the three properties of owner-governance. For OA, we extended it into two

464  evaluable dimensions including Permission Control and Auditability. Similarly, LDE was

465  extended into Storage Encryption and Computation Encryption, VER was extended into
466  Data Integrity Verifiability and Computation Process Verifiability. For each system being
467 compared, we assigned either “fulfilled", "partially fulfilled" or "not fulfilled" for each of the six
468 dimensions, the results are shown in Figure 5.

469
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470  Existing human genomic databases are primarily government-funded centralized databases,
471  such as dbGaP °, UK Biobank °, and AllofUS 7, which typically directly avail the data to

472  successful applicants. Some other databases are distributed, but they are still centrally

473 managed and are more like an aggregation of government-funded centralized databases,
474  such as GA4GH beacon °. These databases are centralized and have no capacity of owner-
475  governance, but these are among the most important human genome databases that have
476  promoted the development of genomics in the past decade.

477

478  Unlike the traditional human genome databases, Governome is decentralized and owner-
479 governed. There have been similar endeavors that have pushed the field forward, but they
480  are short in one or more dimensions that owner-governance requires.

481

482  Grishin et al. ' used a permissioned blockchain that restricts the set of entities that have
483  write-access to the chain, and hence they have achieved full Permission Control and

484  Auditability. They used HE in both computation and storage. But while HE ciphertext is many
485 times larger than the original text in size, they have chosen to only store the HE ciphertext of
486 those who shared their data. This still allows an instantaneously revocation of data access,
487  but resharing data requires uploading the HE ciphertext from the data owner again, which is
488  disincentive to data sharing and an active control of the data permission. The requirement
489 that data owners always need to hold an unencrypted full copy of their data is also what we
490 have avoided in Governome. Thus, we consider Grishin et al. has only partially fulfilled

491  Storage Encryption. In terms of Computation Encryption, we also consider Grishin et al. as
492  partially fulfilled because they used a HE scheme that supports only addition operation,

493  which limited the type and scale of genomic analysis tasks they can support. Grishin et al.
494  has no mechanism to ensure that 1) data owners would not fake their data while uploading,
495 and 2) computing parities would not fake the computing results.

496

497  Glrsoy et al. ' used a private blockchain to store BAM (sequencing raw data and

498 alignments) and VCF data without encryption. They achieved Auditability with the use of a
499  blockchain, but since anyone can see everyone’s data on the chain, it puts any sort of

500 Permission Control in vain. They obviously also lack Computation Encryption and Storage
501  Encryption. However, they fulfilled both Data Integrity Verifiability and Computation Process
502  Verifiability because the genomic data is permanently stored on-chain, and any computation
503 can be repeated and verified by others because data is not encrypted.

504
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Figure 5. Comparing Governome against existing genomic data management systems on six
dimensions including Permission Control, Auditability, Storage Encryption, Computation Encryption,
Data Integrity Verifiability, and Computation Process Verifiability. Each dimension was assigned
evaluation of either “fulfilled" (v), "partially fulfilled" (P), or "not fulfilled" (x).

Discussion

In this paper, we reviewed the limitations of existing genomic data management systems.
We defined the three properties that lead to the full-fulfilment of owner-governance, which is
the next step of cryptogenomics. We developed Governome, the first realization of a secure,
transparent, decentralized data management system that enables owner-governed genomic
data management. With Governome, we demonstrated that the three properties required by
owner-governance, including 1) Owner Authority, 2) Lifecycle Data Encryption, and 3)
Verifiability, can be fulfilled simultaneously. Governome can do a series of genome data
analysis tasks that support the routines of different user groups, including 1) data owners, 2)
authorities, and 3) research entities. We benchmarked the performance of Governome and
showed its potential to manage large population-scale genomic data.

At the computing layer, Governome uses Torus *', a third-generation homomorphic
encryption technique, for homomorphic encryption based computation. To our best
knowledge, Governome is the first to use third-generation homomorphic encryption
technique for decentralized genomic data management and computing. The second-
generation homomorphic encryption techniques used in previous solutions, such as
TrustGWAS 2, suffer from significant performance degradation when the computing
becomes more complicated. This is because the efficiency of second-generation
homomorphic encryption relies heavily on single-instruction multiple-data optimization *2,
which becomes difficult if not impossible when computation becomes complicated and
contains excessive branches. Third-generation homomorphic encryption technique has no
such limitation, and has enabled Governome to support more complicated genomic data
analysis tasks and future expansion.

There are several aspects that could be improved in Governome as future works. First, the
current implementation supports only rsID as the variant index. rsID is reference genome
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538  agnostic and is verified to be effective and sufficient for personal genome at the stage by
539  public personal genome sequencing services, including 23andMe and Ancestry. However,
540 rsID is incapable of representing every single variant locus of a genome. While more and
541 more personal genomes are now whole-genome sequenced, Governome should support the
542  storage of VCF (Variant Call Format). In fact, Governome can be configured to use VCF to
543  store variants easily. However, the effectiveness of storing the whole genome in personal
544  genomics remains to be debated by the community, especially as we provision that

545  resequencing a genome will get cheaper than storing them permanently.

546

547  Governome stores only genomic data and relies on hospitals or institutions that are eligible
548  to host demographic and phenotypic data to shortlist qualifying samples for analysis. It is a
549  practical design considering how most electronic health records are collected and organized.
550 However, technically, Governome can also store and manage demographic and phenotypic
551  data.

552

553  Genomic data in Governome is intended to be permanently stored. However, considering
554  the significant advancements in quantum computing, Governome’s security in post-quantum
555  era will become a new challenge. Currently, Governome is not quantum-resistant. In the next
556  step, we will explore optimizing cryptographic methods and privacy protocols to achieve

557  post-quantum reliability.

558

s50  Methods

560 Feasible approaches to fulfill the three properties of owner-
561 governance

562 In this section, we discuss the techniques used in Governome and how they serve to fulfill
563 the three properties of owner-governance. As shown in Figure 1, Governome comprises
564 three layers: a consensus layer for authority management, a computing layer for secure
565 computation, and an application layer to make use of the other two layers for genomic

566  applications. At the consensus layer, Blockchain is used to enable dynamic permission
567  control, and Zero-knowledge Proof is used to enforce data integrity. At the computing layer,
568 cryptographic techniques, including Homomorphic Encryption, stream cipher, and Secure
569  Multi-party Computation, are used to fulfill secure computation. At the application layer,
570  several design focuses are introduced to establish the fundamental guidelines for building an
571  efficient owner-governed genomic data management system.

572

573 Techniques used at the Consensus Layer

574  Why use Blockchain? Owner Authority strictly requires decentralization, as centralization
575  would technically inevitably jeopardize owners’ control of their data despite how many non-
576  technical promises have been made. Blockchain, as a proven decentralized solution that can
577  achieve consensus, is considered a natural choice for an owner-governed genomic data

578 management system. Blockchain can be configured to ensure that no party can exercise
579  power on others’ data except for their own. Due to the transparent and traceable nature of
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580  blockchain, data owner can access their consent and data usage logs at any time, thus

581  ensure auditability. Blockchain can also be used to enforce consensus on computation

582  results so fraud by minorities can be avoided. Both public blockchain and private blockchain
583  are applicable to Governome. While renowned public blockchains are trusted for their

584  decentralization and diversification of users, hence more suitable for publicly or

585 internationally initiated genome hosting, a private blockchain is more flexible and cost-

586 effective for locally initiated genome hosting, in which decentralization is less of a concern.
587

588 Why use Zero-knowledge Proof? Lifecycle Data Encryption requires genomic data to

589 remain encrypted throughout its lifecycle in the system. Ciphertext at both storage and

590 computation makes it hard if not impossible to avoid tampering or fraud through traditional
591 means, such as revealing the data or computation results for public scrutiny. In order to
592  ensure the genomic data and computation results are not tampered with or frauded, we use
593  zero-knowledge proof. Zero-knowledge proof %° allows a prover to generate a proof for a
594  proposition without revealing any of its input. In Governome, any data loaded and stored is
595 encrypted with stream cipher, meanwhile a stream cipher key (SCK) is generated and held
596 by the data owner. When a data owner needs to prove she is providing untampered data,
597  Governome uses Zero-knowledge proof to prove that she is providing an encryption of the
598 right SCK to make genomic data accessible without revealing any part of the SCK.

599 Tempered SCK will lead to a different hash that mismatches what has been saved on-chain,
600 thus failing the proof.

601  Techniques used at the Computing Layer

602 Why use Homomorphic Encryption? The only way to ensure no data leakage is either no
603 data to leak or leakage doesn’t matter. In Governome, LDE mandates that no plaintext exists
604 in the system. Thus, a solution that supports verifiable computation with ciphertext only is
605 needed. Homomorphic Encryption (HE) ?” is such a solution that produces deterministic
606  computation results verifiable by all users in the system, using only encrypted data and

607  requiring zero decryption. In contrast, hardware-based solutions, like Intel SGX (Software
608 Guard Extensions) and AMD Memory Encryption Technology, cannot fulfill LDE because
609 they require data to be decrypted when exiting the hardware that supports the same

610  solution. They also cannot fulfill VER because their computational results cannot be easily
611  verified by users who lack the same hardware solution. The details about the HE schemes
612  used in Governome can be found in the ‘Homomorphic Encryption Scheme’ subsection in
613  Supplementary Methods.

614

615 Why use a stream cipher? We use HE to fulfill LDE in Governome. However, conversion
616  from plaintext to HE ciphertext (ciphertext capable of HE-based computations) expands the
617  data size by over three orders of magnitude *', making it inefficient if not impossible to store
618  HE ciphertext. In Governome we solve the problem by encrypting plaintext with a cipher that
619 1) does not significantly increase the size of ciphertext so the ciphertext can be stored

620 efficiently, and 2) can convert from ciphertext to HE ciphertext on-the-fly and without

621  decryption for analysis. Stream cipher *® fulfills these requirements. In Governome, with the
622  use of stream cipher, stream cipher ciphertexts are stored, and will be converted to

623 temporary HE ciphertexts when analysis needs them. More details about how genomic data
624 is encrypted and saved, along with how the stream ciphertext is transferred into HE
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625 ciphertext are available in the ‘Storage and computation setup in Governome’ subsection in
626  Methods.

627

628 Why require multiple parties for the generation of HE key? Genomic data that are

629 converted into HE ciphertext can be used for analysis, and as the nature of HE, the

630 computation results are also in HE ciphertext. Inevitably, the results are required to be

631  decrypted to become readable before leaving the system. The decryption requires the key
632 that was used to encrypt HE ciphertext. However, that implies that anyone who holds the
633 complete key can decrypt the HE ciphertext to obtain the original genomic data or

634  computation results. In Governome, we 1) required a collaborative generation of a complete
635 key, and 2) avoided any single parties having a copy of the complete key. Our solution uses
636  Threshold Fully Homomorphic Encryption ** (ThFHE), which is a type of Secure Multi-party
637  Computation * (SMPC). SMPC enables multiple parties to collaborate to generate a key
638  without disclosing the input of any parties, and it ensures the honesty of all parties.

639  Furthermore, SMPC can be used not only for key generation but also for HE ciphertext

640  decryption. So, without revealing the complete key to any party, SMPC then uses the key
641  and the multiple parties who generated the key to decrypt the computation results. The

642  correctness of computation results is ensured by the SMPC protocol *8, If not using SMPC,
643  one might think of isolation measurements such as limiting the interactions between

644  computing parties (that do compute but are not eligible to see the results) and a HE key
645  holder (that are eligible to see the results), so the computing parties cannot see any

646 intermediate results without the key. However, compliance with such measurements is not
647  algorithmically guaranteed, which is against VER in Governome.

648 Design focuses at the Application Layer

649 The consensus layer and computing layer together enable owners to have around-the-clock
650 full governance and security of their data. Application layer, on the other hand, is about how
651  to make use of genomic data. An application layer should 1) provide necessary but minimal
652 functions to accomplish different genomic analysis tasks, 2) interface well with the

653 consensus and computing layers, and 3) operate efficiently even with encrypted data. The
654  design of the application layer of Governome has the following major focuses.

655

656 The application layer defines what the users can do. The application layer defines what
657  could be done with the genomic data stored in the system by providing a set of functions.
658  This set of functions should be meticulously designed to remain necessary but minimal so as
659 to fulfill data management and analysis tasks. The functions are immutable once introduced
660 into the layer so everyone can verify and trust these functions. Availing a function to only a
661  specific set of users enables users to have different roles in the system.

662

663 The application layer shall do nothing more than the consensus layer and computing
664 layer allow. The application layer uses only the interface the consensus layer and

665 computing layer offered. This allows the applications to have better flexibility, while critical
666 functions such as permission control and result verification are enforced by the consensus
667 and computing layers. For example, data access permission changes received at the

668  application layer will be handled by the consensus layer immediately without a possible

669 delay at the application layer.

670
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The application layer needs to work efficiently. Data analysis in Governome works solely
with HE ciphertext. A function that works with HE ciphertext needs to be compiled into the
combination of single operations like addition over small integer field, the performance of
which is expected to be significantly different from, if not much slower than, what the function
is supposed to be working with plaintext. Thus, the efficiency of the functions that deal with
massive amounts of data at the application layer needs to be carefully examined.

Necessary supporting parties in Governome

In Governome, besides data owners, multiple parties with different roles are involved to form
a robust genomic data analysis system. Their duties and importance are explained as
follows.

1.

Hospitals or institutions that are eligible to host demographic and phenotypic data: In
Governome’s design, it hosts only genotypic data and does not host phenotypic data.
This is an effective measurement to 1) isolate different types of critical data, and 2)
avoid a single party getting over-powerful. The participating hospitals and institutions
connect to the blockchain. Their communications are encrypted and algorithmically
verifiable. If a query is asking for a specific cohort with demographic or phenotypic
constraints, Governome will ask each participating hospital or institution to provide a
list of qualified and anonymous sample IDs. Hospitals and institutions are allowed to
return an incomplete (or even empty) list of qualifying samples because they also
have the power that equals the Governome to refuse individual data usage. The
sample IDs are anonymous by using data owners’ blockchain address.

Super users that will never withdraw from the system: Both the consensus layer and
computing layer of Governome require multiple active users to maintain functioning.
While data owners are granted full governance of their data in Governome, few of
them might be active users that can host the blockchain and support the computing
in Governome. Super users are a group of users that run servers and can provide
storage (i.e., storage nodes) and computing resources (i.e., computing nodes) to
keep a Governome system running. Within the data usage lifecycle of genomic data
in Governome, super users are responsible for checking hashes and proofs to
ensure correctness, pulling data from the storage nodes, converting data into HE
ciphertext, and performing the actual computations. The computation results are
ultimately decrypted collaboratively by the super users and returned to the query
entities through the interface of the application layer. Super users are usually
academic institutions, governmental authorities, hospitals, and pharmaceutical
companies - the major stakeholders in the system who will mostly benefit from a
stable and growing Governome system. In Governome, we require two or more
super users to be involved in security-critical procedures, including SMPC, HE key
generation, and computation results decryption. While super users have a higher
responsibility to keep a Governome system operational, they have data usage
privileges identical to all data owners.

Temporary computing nodes that temporarily provide additional computing power.
Large-scale cohort studies and GWAS analyses are usually conducted by
institutional users who are willing to contribute temporary computing nodes in return
for some speed up in obtaining a result.
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717 Storage and computation setup in Governome

718 How to encrypt genomic data

719  In Governome, raw genomic data is encrypted with stream ciphers and stored in distributed
720  storage nodes that are organized by a blockchain. As data owners have around-the-clock full
721 governance of their data, they are supposed to hold the SCK and are being asked for it

722  every time their data is being used for computing. However, a practical concern is that data
723  owners might leak their SCK due to incidents such as device loss or data theft. The risk is
724  accumulative and gets more significant when the sample size increases. To address the

725  issue, Governome uses hospitals as an additional SCK holder. Instead of holding a complete
726  SCK, data owner and hospital each holds only a part of the key. Governome collects the two
727  partial access tokens (HE ciphertext form of the two partial keys) from the data owner and
728  hospital, and recovers full access token (HE ciphertext form of the complete SCK) with

729  secure computation supported by HE (see Supplementary Figure 1). Details about how

730  genomic data is segmented and stored are described in the ‘Data Segmentation’ subsection
731 in Supplementary Methods, and the discussion of security concerns can be found in the

732  ‘Security of the data blocks’ subsection in Supplementary Methods. This design reduces the
733  risk of leaking the complete SCK. Noteworthy, although hospital also holds part of data

734 owner’s SCK, it has no right over data owner’s genomic data because in Governome, data
735  ownership is ascertained through consensus on the blockchain rather than through the

736  possession of SCK.

737 Precomputed access token

738  When a data owner’s data is asked to be included for analysis, she is requested to submit an
739  access token generated from her SCK and a Governome-given HE key not only for her data
740  to be used for HE-based computing, but also as a gesture of granting access. However, this
741 behavior requires data owners to respond actively; otherwise, their data would not be

742  included for analysis. This requirement might be too demanding for some data owners who
743  are always willing to be involved in analyses as long as their privacy is protected.

744  Precomputed access token is such a mechanism in Governome to allow a sharing data

745  owner to register a precomputed access token for accessing all her data blocks (see ‘Data
746  Segmentation’ subsection in Supplementary Methods) so that she does not need to respond
747  to Governome for their data to be used.

748 How computing layer works

749  The computing layer in Governome involves multiple parties for managing and using stream
750 ciphertext and HE ciphertext, as shown in Supplementary Figure 2. The stream ciphertext
751  from storage nodes will be converted to computable HE ciphertext, using the two partial
752  access tokens collected from the data owner and hospital. The computing layer can carry
753  out different genomic analysis tasks according to the query. The generation of HE key uses
754  SMPC, and therefore no single computing node has the complete copy of it, eliminating the
755  chance that a single computing party could peek or tamper with the HE key. The analysis
756  results are in encrypted form and will be decrypted using SMPC before returning to a query
757  entity.

758

759
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760 Code availability

761 Governome is available open-source at https://github.com/HKU-BAL/Governome under the
762  BSD 3-Clause license.
763

764 Data availability

765  The authors declare that all data supporting the findings, including source data and analysis
766  results of this study are available at http://www.bio8.cs.hku.hk/governome/.
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