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Abstract 16 

With the rapid developments in sequencing technologies, individuals now have 17 
unprecedented access to their genomic data. However, existing data management systems 18 
or protocols are inadequate for protecting privacy, limiting individuals’ control over their 19 
genomic information, hindering data sharing, and posing a challenge for biomedical 20 
research. To fill the gap, an owner-governed system that fulfills owner authority, lifecycle 21 
data encryption, and verifiability at the same time is prompted. In this paper, we realized 22 
Governome, an owner-governed data management system designed to empower individuals 23 
with absolute control over their genomic data during data sharing. Governome uses a 24 
blockchain to manage all transactions and permissions, enabling data owners with dynamic 25 
permission management and to be fully informed about every data usage. It uses 26 
homomorphic encryption and zero-knowledge proofs to enable genomic data storage and 27 
computation in an encrypted and verifiable form for its whole lifecycle. Governome supports 28 
genomic analysis tasks, including individual variant query, cohort study, GWAS analysis, and 29 
forensics. Query of a variant’s genotype distribution among 2,504 1kGP individuals in 30 
Governome can be efficiently completed in under 18 hours on an ordinary server. 31 
Governome is an open-source project available at https://github.com/HKU-BAL/Governome. 32 
 33 

Introduction 34 

The advent of affordable advanced sequencing technologies has empowered individuals to 35 
explore their health condition through personal genomics, highlighting the critical role 36 
genomics plays in modern healthcare 1. With increased accessibility, data privacy and 37 
security have become an emerging issue when managing personal genomic data. With 38 
limitations in storage and analytical capabilities, many individuals opt for third-party services 39 
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to host and analyze their genomic data. These services offer medical insights and analyses 40 
related to ancestry and disease susceptibility, expanding the utility of genomic data beyond 41 
the clinical setting. 42 
 43 
Despite the benefits, relying on third-party services introduces inherent privacy risks. Users 44 
often compromise control over their data by agreeing to terms with limited choices. This 45 
leaves the data vulnerable to potential mishandling or misuse, particularly in unregulated 46 
contexts. Instances have been documented in which commercial companies share genomic 47 
data with pharmaceutical firms in exchange for financial incentives, underscoring the 48 
importance of ethical practices related to data security 2. Such data mismanagement can 49 
have immediate consequences. For example, individuals with high-risk genetic markers are 50 
denied life insurance coverage due to undisclosed genomic data usage 3. Moreover, when 51 
using third-party services, ensuring "The Right to be Forgotten" in the General Data 52 
Protection Regulation (GDPR) 4, specifically the revocation of data access, is challenging. 53 
The revocation process typically relies on users submitting requests to third parties, who 54 
must then comply with relevant regulations. This dependency on third-party compliance 55 
makes it difficult to ensure that data access revocation can be executed without undue 56 
delay, let alone achieve instant data access control. 57 
 58 
The issue of genomic data privacy quickly caught the attention of the academic community, 59 
resulting in the development of various methods to protect data. Existing human genomic 60 
databases 5-7 host research-funded genomic data, and they achieve data privacy by 61 
providing access only to successful applicants. Another approach is to provide a unified API 62 
for cross-institution genomic data sharing, thereby enabling a centralized gateway with 63 
security protocol. Beacon Service, by GA4GH 8, was an early attempt at federated data 64 
sharing. It aims to achieve collaboration across databases through a distributed storage and 65 
sharing network. Despite its intent to facilitate collaboration, the potential for reidentification 9 66 
through query analysis remains a critical privacy issue. 67 
 68 
Cryptogenomics, which involves applying cryptographic methods to genomic data, is a 69 
promising solution for genomic data privacy. Early efforts focused on privacy-preserving data 70 
sharing and computation among institutions (also called data custodians). These methods 71 
are typically designed for specific genomics analysis tasks, such as cross-institutional single-72 
gene disease diagnosis query 10, GWAS 11,12 and genetic imputation 13. These task-specific 73 
protocols by different institutions vary in specializations and capabilities, while none offers 74 
personal genome data owner timely and full control of their own data. 75 
 76 
Blockchain technology 14 offers a new insight to the field of cryptogenomics. Blockchain is a 77 
distributed ledger technology that enables multiple participants to engage in secure 78 
transactions and information sharing transparently without a central authority, which naturally 79 
aligns with the requirements of personal genome data owners retaining full authority over 80 
their genomic data without intermediaries as data custodians 15. Therefore, starting in 2018, 81 
a well-known genomics security contest named iDASH 16 extended blockchain to one of its 82 
security computing tracks for the task of recording patients’ data sharing consents. There 83 
have been attempts 17 to store and share genomic data directly using blockchain. While it 84 
ensures the security and immutability of transactions, the privacy of information stored on-85 
chain is lost since any participant with read-access to the system can directly access the raw 86 
genomic data. Another attempt introduced a citizen-centered method 18 that involved both 87 
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secure computation and a blockchain-based system. However, it supports only simple 88 
genomics analysis tasks because only addition operation is supported in its secure 89 
computation design, making it impractical for real-life genomics analysis tasks. It also lacks a 90 
measurement to avoid data owners and computing parities from providing false information, 91 
which is inevitable as the number of participants grows. 92 
 93 
We consider that the full-fulfillment of owner-governance is the next step of cryptogenomics. 94 
Owner-governance implies three properties throughout the entire lifecycle of genomic data: 95 
1) the data owner retains full authority of her data, 2) the genomic data remains encrypted, 96 
and 3) the integrity of both the genomic data and the computation results is algorithmically 97 
guaranteed. Practical solutions are urged for a comprehensive owner-governed genomic 98 
data management system that should at least include features including user anonymity, 99 
dynamic data access control, record audibility, secure data analysis 19, and verifiable 100 
analysis results. In existing human genomic databases 5-7,9, data access revocation is 101 
difficult if not undoable once the data has been shared and kept another copy. Queries about 102 
data usage logs and permission control are also entirely reliant on the credibility of the data 103 
custodian. Thus, establishing a comprehensive system for owner-governed genomic data 104 
management is imperative for addressing privacy concerns and empowering individuals in 105 
the genomic data landscape. 106 
 107 
In this paper, we explored the pathways to achieving the three properties of owner-108 
governance, namely Owner Authority, Lifecycle Data Encryption, and Verifiability. We 109 
developed Governome, a realization of owner-governance that fulfills all three properties. 110 
Governome utilizes a blockchain to manage all transactions and permissions, enabling data 111 
owners with dynamic permission management and to be fully informed about all data usage. 112 
It uses homomorphic encryption and zero-knowledge proofs to enable genomic data storage 113 
and computation in an encrypted and verifiable form in its complete lifecycle. Data owners 114 
can share or unshare their genome in the system instantly. Querying entities can conduct 115 
analyses, including individual variant queries, cohort studies, GWAS analyses, and 116 
forensics. We benchmarked Governome for different applications and found that querying 117 
the population genotype distribution of a random SNP (Single Nucleotide Polymorphism) 118 
over 2,504 1kGP 20 individuals can be efficiently completed in under 18 hours on an ordinary 119 
server. Our experiments demonstrated that Governome can be applied to different genomic 120 
data management scenarios at scale. Governome is open-source and available at 121 
https://github.com/HKU-BAL/Governome. To our best knowledge, Governome is the first 122 
realization of a secure, transparent, decentralized data management system that enables 123 
owner-governed genomic data management. We hope that Governome can set a new 124 
standard for privacy protection and data sharing in the personal genome era, and in turn 125 
benefit personalized medicine and facilitate population genetics researcher at a larger scale. 126 
 127 

Results 128 

Overview 129 

We defined three properties that lead to the full-fulfillment of owner-governance in a genomic 130 
data management system: Owner Authority, Lifecycle Data Encryption, and Verifiability. We 131 
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developed Governome that fulfilled owner-governance. Governome enables data owners to 132 
have 24/7 instantaneous control of their genomic data with full transparency. No plaintext 133 
information is stored or generated in the system to eradicate any sort of data leakage. Data 134 
integrity and computation result authenticity are algorithmically ensured. Governome 135 
supports different genomic tasks, including variant query, cohort study, GWAS analysis, and 136 
forensics. We demonstrated Governome’s performance with all variants of the 2,504 1kGP 137 
samples, suggesting its robustness when managing large-scale human genome projects and 138 
its potential to be scaled-up to managing millions of samples. 139 
 140 

The three properties of owner-governance 141 

We consider a genomic data management system is capable of owner-governance if it 142 
simultaneously has the following three properties: 143 

 144 
1) Owner Authority (OA): Owners have absolute and instantaneous control over 145 

their owned genomic data. At any given time, data owners should be able to 146 
modify the access permissions of their genomic data in the system, including 147 
revoking data access entirely for any usage. OA also includes data owners’ 148 
access to complete data usage logs that are guaranteed to be authentic. 149 

 150 
2) Lifecycle Data Encryption (LDE): Data must remain encrypted throughout its 151 

lifecycle in the system, ensuring that it is never decrypted or accessed in raw 152 
form to protect data security. Encryption should be comprehensively applied to 153 
users’ raw data or intermediate computation results in the stage of storage, 154 
exchange, and computation. No party, including the data owner, should have 155 
direct access to raw information except for the final result provided by the system. 156 

 157 
3) Verifiability (VER): Verifiability includes data integrity verifiability and 158 

computation process verifiability. Data integrity verifiability refers to the querying 159 
entities who initiate a query analysis in the system are able to verify whether the 160 
genomic data is free from tampering. Computation process verifiability requires 161 
the system to be able to provide evidence for the correctness of the results of any 162 
computing process. 163 

 164 

Necessity of the three properties 165 

OA is the core principle of owner-governance, which implies around-the-clock intermediary-166 
free revocation and traceability. Intermediary-free revocation means that the data owners 167 
can break away from their previous commitments freely and at any time without any 168 
intermediary - they can be the ultimate decision-maker regarding data access or their own 169 
data. Traceability means data owners are fully informed, addressing information asymmetry 170 
challenges and enhancing control. The combination of decision-making and the right to be 171 
informed forms the basis of data owner’s authority over their own data. 172 
 173 
LDE is an inevitable requirement for ensuring data security in an owner-governed system. 174 
Unless proven otherwise, any disclosure of raw data, even to data owners, will result in 175 
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potential risks such as information theft and storage device loss, which can have an 176 
irreversible impact on data privacy. On the other hand, any party that acquires access to any 177 
raw data or intermediate results in plaintext means a deviation from OA since the party can 178 
maintain a copy with or without permission, which undermines data owner’s right to decision-179 
making. 180 
 181 
VER ensures that the querying entities can always achieve the correct result, which is the 182 
foundation of usability. It prevents malicious participants from providing false information that 183 
could fake an identity or void research. The use of a blockchain implies crowdsourced data 184 
storage and computing. Hence, without a proper mechanism, a dishonest data provider or 185 
computing provider might act maliciously and cause permanent damage to the usability of 186 
the system. The principle of enabling VER is to trust no one and use mathematical and 187 
cryptographic tools to enforce data and computation integrity. 188 
 189 
Without OA, data owners would effectively lose control over their genomic data. Without 190 
LDE, the genomic data within the system would face inevitable privacy risks when being 191 
used. Without VER, the system would loss its trustworthiness, and usability in the end. 192 
Therefore, as the next step of cryptogenomics, the three properties OA, LDE, and VER are 193 
integral. 194 
 195 

Governome realizes owner-governance 196 

We developed Governome that fulfills the three properties simultaneously. To our best 197 
knowledge, it is the first realization of an owner-governance genomic data management 198 
system. As shown in Figure 1, Governome includes three layers: 1) a consensus layer to 199 
manage agreements among users; 2) a computing layer to manage the different forms of 200 
genomic data at various stages, including data storage, exchange, and analysis; and 3) an 201 
application layer as an interface for users to interact with the consensus layer and computing 202 
layer. The functionality of Governome is built upon the synergy of the three layers. Details 203 
about the techniques and design focuses at the three layers are shown in the ‘Feasible 204 
approaches to fulfill the three properties of owner-governance’ subsection in Methods. 205 
 206 

 207 
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Figure 1. An overview of owner-governance and its realization, Governome. Owner-governance 208 
requires three properties, 1) Owner Authority - owners must have absolute and instantaneous control 209 
over their owned genomic data; 2) Lifecycle Data Encryption - data must remain encrypted throughout 210 
its lifecycle in the system; 3) Verifiability - includes data integrity verifiability and computation process 211 
verifiability. Our realization Governome includes three layers that work synergistically, including (1) a 212 
consensus layer to manage user agreements; (2) a computing layer for secure computation, and (3) 213 
an application layer for genomic applications. 214 
 215 
The consensus layer is a blockchain that establishes the ownership of genomic data (see 216 
‘Techniques used at the Consensus Layer’ subsection in Methods). The blockchain stores 1) 217 
user permissions settings, 2) metadata and hashes for each query, 3) the source code of 218 
supported genomic analysis tasks. Specifically, one’s ownership of her genomic data should 219 
be universally recognized, and her modifications to the permissions of her genomic data 220 
should not have different versions across different nodes in the blockchain. For each query, 221 
(i) the encrypted result, (ii) the individuals involved in serving the query, and (iii) metadata 222 
are stored on the blockchain. Owners can achieve auditability by either (a) checking 223 
requests that she replied with the access token, or (b) reconstructing the entire logs from the 224 
access requests. Moreover, with the support of metadata, hashes and source code, the 225 
workflows in Governome are transparent and reproducible by anyone, thus resolving 226 
disputes. 227 
 228 
The computing layer is for aggregating the storage and computation resources of multiple 229 
parties with algorithms (see ‘Techniques used at the Computing Layer’ subsection in 230 
Methods). The design of the computing layer focuses on 1) how genomic data is accessed, 231 
2) how the genomic analysis tasks are performed, 3) how multiple parties cooperate to 232 
participate in a task. The input of the computing layer is some encrypted data, while the 233 
output is fixed-form results of some genomic analysis tasks. Apart from the final output, all 234 
intermediate information is computable but cannot be decrypted. The computing layer is 235 
responsible for outputting reliable results for tasks, with the computing process being 236 
verifiable. 237 
 238 
The application layer works as an interface for users who want to use the functions in 239 
Governome (see ‘Design focuses at the Application Layer’ subsection in Methods). 240 
Considering the steep learning curve of cryptography and secure computation, a user-241 
friendly interface is needed in Governome, while all modules related to privacy and security 242 
should be encapsulated within the consensus layer and computing layer. The design of the 243 
application layer, on the other hand, focuses on determining who can use Governome and 244 
how different users can utilize Governome, where users can simply ask questions 245 
predefined by the interface and receive responses. Moreover, as is requested by VER, when 246 
users question the reliability of computational results, they should be allowed to request 247 
evidence from the interface provided by the application layer and designate someone to 248 
verify the data integrity or computation integrity. 249 
 250 

The Workflow of Governome 251 

 252 
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 253 
Figure 2. The workflow of Governome. A query entity can ask the application layer a fixed-form question. 254 
The application layer will then ask the consensus layer for qualifying data owners. The blockchain 255 
managed at the consensus layer will send requests to qualifying data owners, and receive access 256 
tokens (See ‘How to encrypt genomic data’ subsection in Methods) from consenting data owners for 257 
the downstream homomorphic encryption-based computation. Next, the computing layers will pull the 258 
relevant encrypted data blocks of the consenting data owners from storage nodes and perform 259 
homomorphic encryption-based computation with the access tokens provided by the consensus layer. 260 
No data is decrypted during the computation, except for that the final computation result will be 261 
decrypted by the computing layer, and be returned to the query entity with a fixed-form answer. 262 
 263 
The workflow of Governome is shown in Figure 2, and the necessary participants in the 264 
workflow can be found in the ‘Necessary supporting parties in Governome’ subsection in 265 
Methods. To use Governome, a query entity can submit fixed-form queries to the application 266 
layer. For example, one can ask, “What’s the genotype distribution of rs6053810 for 267 
congenital heart disease patients?”. After checking data owners’ on-chain consent, the 268 
consensus layer will send a request to the data owners for an access token (details shown in 269 
the ‘How to encrypt genomic data’ subsection in Methods), which can make part of their 270 
genomic data accessible to computing layer. After the access tokens for all data owners 271 
involved have been collected, the computing layer will pull data from the storage nodes, 272 
perform secure computation and return an answer to the query entity through the interface of 273 
application layer (details shown in the ‘How computing layer works’ subsection in Methods). 274 
Noteworthy, both access tokens and genomic data are utilized in encrypted form. Apart from 275 
the fixed-form computation results, no other information is decrypted, thus fulfilling the 276 
principle of LDE. 277 
 278 
In general, a data owner is required to be actively responding to requests (specifically, 279 
sending access token) from the blockchain, otherwise her data cannot be accessed and 280 
would be excluded from analysis. However, it is impractical to require all the data owners to 281 
be online and responsive around the clock. Therefore, in Governome, an option is given to 282 
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data owners to register a precomputed access token so that Governome will skip the data 283 
owner and proceed with the token for computing. With this option, a data owner does not 284 
need to be active for her data to be used. The registered access token does not need to be 285 
recomputed until the next refresh of the computing layer. Details about the precomputed 286 
access token can be found in the ‘Precomputed access token’ subsection in Methods. 287 
 288 

Supported genomic analysis tasks in Governome 289 

The application layer has defined a list of genomic analysis tasks, including individual variant 290 
query, cohort study, GWAS analysis, and forensics. This section shows the functionalities of 291 
the genomic analysis tasks and who can use the functionalities. 292 
 293 
Individual variant query allows data owners to explore their own genomic information. 294 
Interesting examples including, if someone is interested in whether she suffers alcohol flush 295 
reaction after consumption, she can check-up variant rs671 21 that causes aldehyde 296 
dehydrogenase 2 deficiency. If a male individual wants to know if he needs to prepare for 297 
early-onset hair loss, he can check-up variant rs6152 22 that increases risk of baldness. In 298 
Governome, one can input an rsID 23 and get the result of her own genotype. 299 
 300 
Cohort study allows users to examine the genotype distribution of interested rsIDs relevant 301 
to one or more demographics or phenotypes. GWAS analysis allows users to compare a 302 
disease cohort against a normal cohort at the interested rsIDs, with p-values returned as 303 
results. Cohort study in Governome should obey k-anonymity constraints 24. That is, a cohort 304 
requires a minimum of k individuals to avoid the risk of being re-identified. The k in 305 
Governome is configurable, and Governome returns an error if an analysis forms a cohort 306 
with below k individuals. Detailed descriptions of the algorithms used for GWAS are in the 307 
‘HE-based GWAS analysis’ subsection in Supplementary Methods. 308 
 309 
Forensics analysis fulfills public security and legal purposes, such as anti-human-trafficking. 310 
Given a set of genotypes, Governome can return a list of matching individuals registered in 311 
the system. Such an application can bring high social value and is considered to be one of 312 
the most important applications of a huge-scale owner-governed genomics database, in 313 
addition to research and discovery. However, it is also dangerous, and it compromises 314 
personal identity if being misused. Therefore, forensics analysis is exclusive to governmental 315 
authorities, and in Governome, we allow a data owner to exclude herself from all forensics 316 
analysis, observing our promise to give data owners ultimate control of their data. Forensics 317 
analysis can be conducted among all participating individuals in the system, or a smaller 318 
group shortlisted by hospitals according to some known demographic characteristics and 319 
phenotypes. 320 
 321 
Based on the supported genomics analysis tasks available in Governome, we generally 322 
distinguished three types of users that demand different analysis permissions (Table 1). The 323 
three types are data owners, authorities, and research entities. The ability to perform an 324 
individual variant query is exclusively granted to data owners. Using blockchain, data 325 
ownership is immediately confirmed, and an individual variant query is processed instantly. 326 
In contrast, forensics analysis is exclusive to authorities due to its risk of reidentification. All 327 
types of users are allowed to conduct cohort studies in Governome. For a cohort study, if 328 
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there is a sample list meeting the k-anonymity constraint, the query is processed without 329 
further authentication or qualification reviews. The types of users are expandable, and the 330 
allowed tasks are configurable in Governome. 331 
 332 
Table 1. Genomics analysis tasks allowed for different user groups. 333 

 Idv. variant query Cohort study Forensics 
Data owners √ √ × 
Authorities × √ √ 

Research entities × √ × 
 334 
Noteworthy, although Governome has only implemented a few common genomics analysis 335 
tasks, it has no limit of having more tasks as long as they can be implemented at the 336 
application layer. However, any new tasks need to be sufficiently analyzed and discussed 337 
before introducing them into Governome to avoid unintended privacy risks. 338 
 339 

Computational performance of Governome 340 

We evaluated Governome’s computational performance of 1) Generating proofs for an 341 
access token, and 2) Homomorphic encryption based computation. These are the two most 342 
computationally demanding procedures in Governome. Governome is implemented with 343 
programming language Go version 1.21, and all benchmarks were done using the same 344 
programming language and version. 345 

Generating proof for access token 346 

As mentioned in the workflow of Governome, a data owner should respond to the blockchain 347 
and return an access token if consenting the data access request. An access token is the 348 
encryption form of an 80-bit key 25 kept by a data owner. Apart from the access token, she 349 
needs to provide some evidence to show that her 80-bit key is not tampered. Here we have 350 
chosen ZK-SNARK (zero-knowledge Succinct Non-interactive Argument of Knowledge) 26 as 351 
the solution to provide evidence. ZK-SNARK enables a data owner to prove that, without 352 
revealing any part of the 80-bit key, 1) she holds the valid 80-bit key according to a hash 353 
saved on-chain, and 2) she submitted an access token generated from the valid 80-bit key. 354 
More details about why we have chosen ZK-SNARK is given in the ‘Techniques used at the 355 
Computing Layer’ subsection in Methods.  356 
 357 
The time and memory consumptions are shown in Figure 3. We used a laptop with an Apple 358 
M1 CPU and 16GB of RAM, mimicking an average setting of a data owner. The time 359 
consumption shows how long it takes to generate a proof and it implies the minimum time a 360 
data owner can respond to a data request. The memory consumption shows the peak 361 
memory used to generate a proof and it implies how much memory is needed in a data 362 
owner’s device in order to respond to a data request. The 80 bits in a key can be used 363 
together to generate a proof, or be divided into smaller blocks to generate multiple proofs 364 
before merging into a single proof (details given in the ‘Zero-knowledge proof for access 365 
token generation’ subsection in Supplementary Methods). The memory consumption 366 
increases linear to the block size, but time consumption may vary. 367 
 368 
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 369 

 370 
Figure 3. Performance of using ZK-SNARK to generate a proof for an 80-bit key using configurable 371 
block sizes ranging from 1 to 80. The memory consumption of block size 40 and 80 exceeded the 372 
available memory in our testing device (16GB), and was using memory swap. The exact numbers 373 
shown in the figure are given in Supplementary Table 1. 374 
 375 
Our benchmark showed that the memory consumption increased from 1.1GB at blocks size 376 
1 to over 16GB at block size 40 or higher. The time consumption varied between block sizes, 377 
and had an average of 57 seconds. Since a data owner’s computational capacity is 378 
commonly limited to a cell phone or a laptop, a low memory consumption is preferred. We 379 
have chosen block size 1 as the default of Governome as it has minimal memory 380 
consumption with a moderate time consumption. As a result, a data owner can generate all 381 
the necessary information to respond to a data request with a memory consumption of 382 
approximately 1GB and time consumption of about a minute, which are completely 383 
acceptable. 384 

Homomorphic encryption based computation 385 

Homomorphic Encryption (HE) 27 is a cryptographic technique that enables computation on 386 
encrypted data. In Governome, all data analyses are strictly HE-based computation 387 
conducted at the computing layer. Computing nodes at the computing layer are usually 388 
powerful servers with many CPU cores and much RAM. For the benchmarks in this section, 389 
we used a server with two 32-core Intel Xeon Platinum 8369C 2.9GHz processors and 390 
512GB of RAM. For any genomic analysis tasks, the two computational intensive steps are 391 
benchmarked, including: 1) data conversion from stream ciphertext (smaller in size for 392 
storage but cannot be used for HE-based computing) to HE ciphertext (larger in size for HE-393 
based computing (details given in the ‘Computation setup in Governome’ subsection in 394 
Methods), and 2) data analysis that uses HE-based computation. For samples, we used the 395 
1000 Genomes Project (1kGP) dataset 20 comprising the whole genome variants of 2,504 396 
individuals. The mock-up phenotypes of the 2,504 individuals were provided by the Hail 397 
library and are available from its tutorial 28. The extracted phenotypes were already 398 
normalized as either binary or categorical variables. We divided the samples into five cohorts 399 
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for our benchmarks according to the five superpopulations: Africans (AFR), Admixed 400 
Americans (AMR), East Asians (EAS), Europeans (EUR), and South Asians (SAS) defined 401 
in 1kGP. 402 

Individual variant query and cohort study 403 
Individual variant query is the simplest task in Governome. Our benchmark showed that 404 
using a single CPU core, querying any random variant in an individual used at most 15 405 
minutes to return a result. Cohort study, in comparison, demands much more computations, 406 
especially when the cohort size is large, and when GWAS analysis is needed. In cohort 407 
study, Governome allows inputting rsIDs to specify the variant of interests, and demographic 408 
characteristics and phenotypes for choosing samples. If a cohort study query generates no 409 
error, Governome will return the number of chosen samples, and the genotypes ratio of the 410 
chosen samples at each rsID. The performance of querying a variant in five cohorts and all 411 
2,504 1kGP samples is shown in Figure 4. Generally, the time consumption of both data 412 
conversion and data analysis increased linearly against the number of samples in a cohort. 413 
Querying a variant in all 2,504 samples was finished in about 18 hours (13h16m for data 414 
conversion and 4h37m for data analysis). More CPU cores can be used for parallel 415 
computing when querying more than a variant. The results show that Governome can 416 
support any population scale because the linear increase in computation matches the 417 
expected linear increase in computing nodes when more individuals are introduced to the 418 
system. 419 
 420 

 421 
Figure 4. Performance of cohort study, including 1) querying a variant, and 2) GWAS analysis of 422 
CaffeineConsumption. The exact numbers shown in the figure are given in Supplementary Table 2 423 
and 3.  424 
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 425 
For GWAS analysis, a p-value is calculated between the case samples and control samples 426 
at each rsID. We have chosen the phenotype ‘CaffeineConsumption’ to divide the samples 427 
in each cohort into case (CaffeineConsumption > 4) and control (CaffeineConsumption ≤ 4) 428 
samples. The performance of GWAS analysis on rs6053810 is shown in Figure 4. The 429 
results have shown that, while the number of samples of each cohort remains the same, 430 
data conversion took a similar amount of time, while data analysis took longer due to the 431 
algorithmically more complicated p-value computation. Governome allows multiple data 432 
analysis tasks to be combined, so data conversion needs to be done just once. 433 

Forensics 434 
Forensic genetics relies heavily on analyzing short tandem repeat (STR) loci 29. In our 435 
benchmark, we have chosen 13 STR loci 30 commonly used in forensics for analysis. One 436 
can carry out forensics analysis in Governome using cohort analysis at the interested STR 437 
loci with all samples in the system included in the cohort. However, the analysis will take 438 
excessively long if not impossible to finish when millions of samples are stored in the 439 
system. Therefore, we have added an auxiliary data block that stores only the genotype of 440 
the 13 STR loci for each individual (see the ‘Auxiliary data block’ subsection in 441 
Supplementary Methods). The auxiliary data block is small and specific for forensics 442 
analysis. Thus, data conversion can be massively sped up when only forensics analysis is 443 
needed. Noteworthy, auxiliary data block can include any number of variants for a specific 444 
analysis task in Governome not limited to forensics. 445 
 446 
When conducting a forensics analysis, an authority needs to input a list of STR loci with the 447 
genotype it is searching for. Additionally, demographic characteristics and phenotypes can 448 
be used to reduce the number of samples to be inspected. For each sample, Governome will 449 
output a Boolean vector showing a match or mismatch of genotype at each STR loci. As 450 
explained in the ‘Necessary supporting parties in Governome’ subsection in Methods, 451 
sample IDs in Governome are de-identified. Thus, outside Governome, in order to know the 452 
real identity of a matching individual, an authority needs to undergo legal procedures to get a 453 
warrant and further work with hospitals. 454 
 455 
We tested the performance of the above design on 2,504 1kGP samples. Data conversion 456 
took 5 minutes and 51 seconds, while data analysis took 4 minutes. The performance is 457 
acceptable if the number of candidates for forensics analysis can be effectively narrowed 458 
down by known demographic characteristics and phenotypes. 459 
 460 

Comparing Governome to previous solutions 461 

In this section, we compared Governome against existing genomic data management 462 
systems on the three properties of owner-governance. For OA, we extended it into two 463 
evaluable dimensions including Permission Control and Auditability. Similarly, LDE was 464 
extended into Storage Encryption and Computation Encryption, VER was extended into 465 
Data Integrity Verifiability and Computation Process Verifiability. For each system being 466 
compared, we assigned either “fulfilled", "partially fulfilled" or "not fulfilled" for each of the six 467 
dimensions, the results are shown in Figure 5. 468 
 469 
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Existing human genomic databases are primarily government-funded centralized databases, 470 
such as dbGaP 5, UK Biobank 6, and AllofUS 7, which typically directly avail the data to 471 
successful applicants. Some other databases are distributed, but they are still centrally 472 
managed and are more like an aggregation of government-funded centralized databases, 473 
such as GA4GH beacon 9. These databases are centralized and have no capacity of owner-474 
governance, but these are among the most important human genome databases that have 475 
promoted the development of genomics in the past decade. 476 
 477 
Unlike the traditional human genome databases, Governome is decentralized and owner-478 
governed. There have been similar endeavors that have pushed the field forward, but they 479 
are short in one or more dimensions that owner-governance requires.  480 
 481 
Grishin et al. 18 used a permissioned blockchain that restricts the set of entities that have 482 
write-access to the chain, and hence they have achieved full Permission Control and 483 
Auditability. They used HE in both computation and storage. But while HE ciphertext is many 484 
times larger than the original text in size, they have chosen to only store the HE ciphertext of 485 
those who shared their data. This still allows an instantaneously revocation of data access, 486 
but resharing data requires uploading the HE ciphertext from the data owner again, which is 487 
disincentive to data sharing and an active control of the data permission. The requirement 488 
that data owners always need to hold an unencrypted full copy of their data is also what we 489 
have avoided in Governome. Thus, we consider Grishin et al. has only partially fulfilled 490 
Storage Encryption. In terms of Computation Encryption, we also consider Grishin et al. as 491 
partially fulfilled because they used a HE scheme that supports only addition operation, 492 
which limited the type and scale of genomic analysis tasks they can support. Grishin et al. 493 
has no mechanism to ensure that 1) data owners would not fake their data while uploading, 494 
and 2) computing parities would not fake the computing results. 495 
 496 
Gürsoy et al. 17 used a private blockchain to store BAM (sequencing raw data and 497 
alignments) and VCF data without encryption. They achieved Auditability with the use of a 498 
blockchain, but since anyone can see everyone’s data on the chain, it puts any sort of 499 
Permission Control in vain. They obviously also lack Computation Encryption and Storage 500 
Encryption. However, they fulfilled both Data Integrity Verifiability and Computation Process 501 
Verifiability because the genomic data is permanently stored on-chain, and any computation 502 
can be repeated and verified by others because data is not encrypted. 503 
 504 
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 505 
Figure 5. Comparing Governome against existing genomic data management systems on six 506 
dimensions including Permission Control, Auditability, Storage Encryption, Computation Encryption, 507 
Data Integrity Verifiability, and Computation Process Verifiability. Each dimension was assigned 508 
evaluation of either “fulfilled" (✓), "partially fulfilled" (P), or "not fulfilled" (x). 509 
 510 

Discussion 511 

In this paper, we reviewed the limitations of existing genomic data management systems. 512 
We defined the three properties that lead to the full-fulfillment of owner-governance, which is 513 
the next step of cryptogenomics. We developed Governome, the first realization of a secure, 514 
transparent, decentralized data management system that enables owner-governed genomic 515 
data management. With Governome, we demonstrated that the three properties required by 516 
owner-governance, including 1) Owner Authority, 2) Lifecycle Data Encryption, and 3) 517 
Verifiability, can be fulfilled simultaneously. Governome can do a series of genome data 518 
analysis tasks that support the routines of different user groups, including 1) data owners, 2) 519 
authorities, and 3) research entities. We benchmarked the performance of Governome and 520 
showed its potential to manage large population-scale genomic data. 521 
 522 
At the computing layer, Governome uses Torus 31, a third-generation homomorphic 523 
encryption technique, for homomorphic encryption based computation. To our best 524 
knowledge, Governome is the first to use third-generation homomorphic encryption 525 
technique for decentralized genomic data management and computing. The second-526 
generation homomorphic encryption techniques used in previous solutions, such as 527 
TrustGWAS 12, suffer from significant performance degradation when the computing 528 
becomes more complicated. This is because the efficiency of second-generation 529 
homomorphic encryption relies heavily on single-instruction multiple-data optimization 32, 530 
which becomes difficult if not impossible when computation becomes complicated and 531 
contains excessive branches. Third-generation homomorphic encryption technique has no 532 
such limitation, and has enabled Governome to support more complicated genomic data 533 
analysis tasks and future expansion. 534 
 535 
There are several aspects that could be improved in Governome as future works. First, the 536 
current implementation supports only rsID as the variant index. rsID is reference genome 537 
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agnostic and is verified to be effective and sufficient for personal genome at the stage by 538 
public personal genome sequencing services, including 23andMe and Ancestry. However, 539 
rsID is incapable of representing every single variant locus of a genome. While more and 540 
more personal genomes are now whole-genome sequenced, Governome should support the 541 
storage of VCF (Variant Call Format). In fact, Governome can be configured to use VCF to 542 
store variants easily. However, the effectiveness of storing the whole genome in personal 543 
genomics remains to be debated by the community, especially as we provision that 544 
resequencing a genome will get cheaper than storing them permanently. 545 
 546 
Governome stores only genomic data and relies on hospitals or institutions that are eligible 547 
to host demographic and phenotypic data to shortlist qualifying samples for analysis. It is a 548 
practical design considering how most electronic health records are collected and organized. 549 
However, technically, Governome can also store and manage demographic and phenotypic 550 
data. 551 
 552 
Genomic data in Governome is intended to be permanently stored. However, considering 553 
the significant advancements in quantum computing, Governome’s security in post-quantum 554 
era will become a new challenge. Currently, Governome is not quantum-resistant. In the next 555 
step, we will explore optimizing cryptographic methods and privacy protocols to achieve 556 
post-quantum reliability. 557 
 558 

Methods 559 

Feasible approaches to fulfill the three properties of owner-560 

governance 561 

In this section, we discuss the techniques used in Governome and how they serve to fulfill 562 
the three properties of owner-governance. As shown in Figure 1, Governome comprises 563 
three layers: a consensus layer for authority management, a computing layer for secure 564 
computation, and an application layer to make use of the other two layers for genomic 565 
applications. At the consensus layer, Blockchain is used to enable dynamic permission 566 
control, and Zero-knowledge Proof is used to enforce data integrity. At the computing layer, 567 
cryptographic techniques, including Homomorphic Encryption, stream cipher, and Secure 568 
Multi-party Computation, are used to fulfill secure computation. At the application layer, 569 
several design focuses are introduced to establish the fundamental guidelines for building an 570 
efficient owner-governed genomic data management system. 571 
 572 

Techniques used at the Consensus Layer 573 

Why use Blockchain? Owner Authority strictly requires decentralization, as centralization 574 
would technically inevitably jeopardize owners’ control of their data despite how many non-575 
technical promises have been made. Blockchain, as a proven decentralized solution that can 576 
achieve consensus, is considered a natural choice for an owner-governed genomic data 577 
management system. Blockchain can be configured to ensure that no party can exercise 578 
power on others’ data except for their own. Due to the transparent and traceable nature of 579 
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blockchain, data owner can access their consent and data usage logs at any time, thus 580 
ensure auditability. Blockchain can also be used to enforce consensus on computation 581 
results so fraud by minorities can be avoided. Both public blockchain and private blockchain 582 
are applicable to Governome. While renowned public blockchains are trusted for their 583 
decentralization and diversification of users, hence more suitable for publicly or 584 
internationally initiated genome hosting, a private blockchain is more flexible and cost-585 
effective for locally initiated genome hosting, in which decentralization is less of a concern. 586 
 587 
Why use Zero-knowledge Proof? Lifecycle Data Encryption requires genomic data to 588 
remain encrypted throughout its lifecycle in the system. Ciphertext at both storage and 589 
computation makes it hard if not impossible to avoid tampering or fraud through traditional 590 
means, such as revealing the data or computation results for public scrutiny. In order to 591 
ensure the genomic data and computation results are not tampered with or frauded, we use 592 
zero-knowledge proof. Zero-knowledge proof 26 allows a prover to generate a proof for a 593 
proposition without revealing any of its input. In Governome, any data loaded and stored is 594 
encrypted with stream cipher, meanwhile a stream cipher key (SCK) is generated and held 595 
by the data owner. When a data owner needs to prove she is providing untampered data, 596 
Governome uses Zero-knowledge proof to prove that she is providing an encryption of the 597 
right SCK to make genomic data accessible without revealing any part of the SCK. 598 
Tempered SCK will lead to a different hash that mismatches what has been saved on-chain, 599 
thus failing the proof. 600 

Techniques used at the Computing Layer 601 

Why use Homomorphic Encryption? The only way to ensure no data leakage is either no 602 
data to leak or leakage doesn’t matter. In Governome, LDE mandates that no plaintext exists 603 
in the system. Thus, a solution that supports verifiable computation with ciphertext only is 604 
needed. Homomorphic Encryption (HE) 27 is such a solution that produces deterministic 605 
computation results verifiable by all users in the system, using only encrypted data and 606 
requiring zero decryption. In contrast, hardware-based solutions, like Intel SGX (Software 607 
Guard Extensions) and AMD Memory Encryption Technology, cannot fulfill LDE because 608 
they require data to be decrypted when exiting the hardware that supports the same 609 
solution. They also cannot fulfill VER because their computational results cannot be easily 610 
verified by users who lack the same hardware solution. The details about the HE schemes 611 
used in Governome can be found in the ‘Homomorphic Encryption Scheme’ subsection in 612 
Supplementary Methods. 613 
 614 
Why use a stream cipher? We use HE to fulfill LDE in Governome. However, conversion 615 
from plaintext to HE ciphertext (ciphertext capable of HE-based computations) expands the 616 
data size by over three orders of magnitude 31, making it inefficient if not impossible to store 617 
HE ciphertext. In Governome we solve the problem by encrypting plaintext with a cipher that 618 
1) does not significantly increase the size of ciphertext so the ciphertext can be stored 619 
efficiently, and 2) can convert from ciphertext to HE ciphertext on-the-fly and without 620 
decryption for analysis. Stream cipher 33 fulfills these requirements. In Governome, with the 621 
use of stream cipher, stream cipher ciphertexts are stored, and will be converted to 622 
temporary HE ciphertexts when analysis needs them. More details about how genomic data 623 
is encrypted and saved, along with how the stream ciphertext is transferred into HE 624 
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ciphertext are available in the ‘Storage and computation setup in Governome’ subsection in 625 
Methods. 626 
 627 
Why require multiple parties for the generation of HE key? Genomic data that are 628 
converted into HE ciphertext can be used for analysis, and as the nature of HE, the 629 
computation results are also in HE ciphertext. Inevitably, the results are required to be 630 
decrypted to become readable before leaving the system. The decryption requires the key 631 
that was used to encrypt HE ciphertext. However, that implies that anyone who holds the 632 
complete key can decrypt the HE ciphertext to obtain the original genomic data or 633 
computation results. In Governome, we 1) required a collaborative generation of a complete 634 
key, and 2) avoided any single parties having a copy of the complete key. Our solution uses 635 
Threshold Fully Homomorphic Encryption 34 (ThFHE), which is a type of Secure Multi-party 636 
Computation 35 (SMPC). SMPC enables multiple parties to collaborate to generate a key 637 
without disclosing the input of any parties, and it ensures the honesty of all parties. 638 
Furthermore, SMPC can be used not only for key generation but also for HE ciphertext 639 
decryption. So, without revealing the complete key to any party, SMPC then uses the key 640 
and the multiple parties who generated the key to decrypt the computation results. The 641 
correctness of computation results is ensured by the SMPC protocol 36-38. If not using SMPC, 642 
one might think of isolation measurements such as limiting the interactions between 643 
computing parties (that do compute but are not eligible to see the results) and a HE key 644 
holder (that are eligible to see the results), so the computing parties cannot see any 645 
intermediate results without the key. However, compliance with such measurements is not 646 
algorithmically guaranteed, which is against VER in Governome. 647 

Design focuses at the Application Layer 648 

The consensus layer and computing layer together enable owners to have around-the-clock 649 
full governance and security of their data. Application layer, on the other hand, is about how 650 
to make use of genomic data. An application layer should 1) provide necessary but minimal 651 
functions to accomplish different genomic analysis tasks, 2) interface well with the 652 
consensus and computing layers, and 3) operate efficiently even with encrypted data. The 653 
design of the application layer of Governome has the following major focuses. 654 
 655 
The application layer defines what the users can do. The application layer defines what 656 
could be done with the genomic data stored in the system by providing a set of functions. 657 
This set of functions should be meticulously designed to remain necessary but minimal so as 658 
to fulfill data management and analysis tasks. The functions are immutable once introduced 659 
into the layer so everyone can verify and trust these functions. Availing a function to only a 660 
specific set of users enables users to have different roles in the system. 661 
 662 
The application layer shall do nothing more than the consensus layer and computing 663 
layer allow. The application layer uses only the interface the consensus layer and 664 
computing layer offered. This allows the applications to have better flexibility, while critical 665 
functions such as permission control and result verification are enforced by the consensus 666 
and computing layers. For example, data access permission changes received at the 667 
application layer will be handled by the consensus layer immediately without a possible 668 
delay at the application layer. 669 
 670 
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The application layer needs to work efficiently. Data analysis in Governome works solely 671 
with HE ciphertext. A function that works with HE ciphertext needs to be compiled into the 672 
combination of single operations like addition over small integer field, the performance of 673 
which is expected to be significantly different from, if not much slower than, what the function 674 
is supposed to be working with plaintext. Thus, the efficiency of the functions that deal with 675 
massive amounts of data at the application layer needs to be carefully examined. 676 
 677 

Necessary supporting parties in Governome 678 

In Governome, besides data owners, multiple parties with different roles are involved to form 679 
a robust genomic data analysis system. Their duties and importance are explained as 680 
follows. 681 

1. Hospitals or institutions that are eligible to host demographic and phenotypic data: In 682 
Governome’s design, it hosts only genotypic data and does not host phenotypic data. 683 
This is an effective measurement to 1) isolate different types of critical data, and 2) 684 
avoid a single party getting over-powerful. The participating hospitals and institutions 685 
connect to the blockchain. Their communications are encrypted and algorithmically 686 
verifiable. If a query is asking for a specific cohort with demographic or phenotypic 687 
constraints, Governome will ask each participating hospital or institution to provide a 688 
list of qualified and anonymous sample IDs. Hospitals and institutions are allowed to 689 
return an incomplete (or even empty) list of qualifying samples because they also 690 
have the power that equals the Governome to refuse individual data usage. The 691 
sample IDs are anonymous by using data owners’ blockchain address.  692 

2. Super users that will never withdraw from the system: Both the consensus layer and 693 
computing layer of Governome require multiple active users to maintain functioning. 694 
While data owners are granted full governance of their data in Governome, few of 695 
them might be active users that can host the blockchain and support the computing 696 
in Governome. Super users are a group of users that run servers and can provide 697 
storage (i.e., storage nodes) and computing resources (i.e., computing nodes) to 698 
keep a Governome system running. Within the data usage lifecycle of genomic data 699 
in Governome, super users are responsible for checking hashes and proofs to 700 
ensure correctness, pulling data from the storage nodes, converting data into HE 701 
ciphertext, and performing the actual computations. The computation results are 702 
ultimately decrypted collaboratively by the super users and returned to the query 703 
entities through the interface of the application layer. Super users are usually 704 
academic institutions, governmental authorities, hospitals, and pharmaceutical 705 
companies - the major stakeholders in the system who will mostly benefit from a 706 
stable and growing Governome system. In Governome, we require two or more 707 
super users to be involved in security-critical procedures, including SMPC, HE key 708 
generation, and computation results decryption. While super users have a higher 709 
responsibility to keep a Governome system operational, they have data usage 710 
privileges identical to all data owners. 711 

3. Temporary computing nodes that temporarily provide additional computing power. 712 
Large-scale cohort studies and GWAS analyses are usually conducted by 713 
institutional users who are willing to contribute temporary computing nodes in return 714 
for some speed up in obtaining a result. 715 

 716 
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Storage and computation setup in Governome 717 

How to encrypt genomic data  718 

In Governome, raw genomic data is encrypted with stream ciphers and stored in distributed 719 
storage nodes that are organized by a blockchain. As data owners have around-the-clock full 720 
governance of their data, they are supposed to hold the SCK and are being asked for it 721 
every time their data is being used for computing. However, a practical concern is that data 722 
owners might leak their SCK due to incidents such as device loss or data theft. The risk is 723 
accumulative and gets more significant when the sample size increases. To address the 724 
issue, Governome uses hospitals as an additional SCK holder. Instead of holding a complete 725 
SCK, data owner and hospital each holds only a part of the key. Governome collects the two 726 
partial access tokens (HE ciphertext form of the two partial keys) from the data owner and 727 
hospital, and recovers full access token (HE ciphertext form of the complete SCK) with 728 
secure computation supported by HE (see Supplementary Figure 1). Details about how 729 
genomic data is segmented and stored are described in the ‘Data Segmentation’ subsection 730 
in Supplementary Methods, and the discussion of security concerns can be found in the 731 
‘Security of the data blocks’ subsection in Supplementary Methods. This design reduces the 732 
risk of leaking the complete SCK. Noteworthy, although hospital also holds part of data 733 
owner’s SCK, it has no right over data owner’s genomic data because in Governome, data 734 
ownership is ascertained through consensus on the blockchain rather than through the 735 
possession of SCK. 736 

Precomputed access token 737 

When a data owner’s data is asked to be included for analysis, she is requested to submit an 738 
access token generated from her SCK and a Governome-given HE key not only for her data 739 
to be used for HE-based computing, but also as a gesture of granting access. However, this 740 
behavior requires data owners to respond actively; otherwise, their data would not be 741 
included for analysis. This requirement might be too demanding for some data owners who 742 
are always willing to be involved in analyses as long as their privacy is protected. 743 
Precomputed access token is such a mechanism in Governome to allow a sharing data 744 
owner to register a precomputed access token for accessing all her data blocks (see ‘Data 745 
Segmentation’ subsection in Supplementary Methods) so that she does not need to respond 746 
to Governome for their data to be used. 747 

How computing layer works 748 

The computing layer in Governome involves multiple parties for managing and using stream 749 
ciphertext and HE ciphertext, as shown in Supplementary Figure 2. The stream ciphertext 750 
from storage nodes will be converted to computable HE ciphertext, using the two partial 751 
access tokens collected from the data owner and hospital. The computing layer can carry 752 
out different genomic analysis tasks according to the query. The generation of HE key uses 753 
SMPC, and therefore no single computing node has the complete copy of it, eliminating the 754 
chance that a single computing party could peek or tamper with the HE key. The analysis 755 
results are in encrypted form and will be decrypted using SMPC before returning to a query 756 
entity. 757 
 758 
  759 
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Code availability 760 

Governome is available open-source at https://github.com/HKU-BAL/Governome under the 761 
BSD 3-Clause license. 762 
 763 

Data availability 764 

The authors declare that all data supporting the findings, including source data and analysis 765 
results of this study are available at http://www.bio8.cs.hku.hk/governome/. 766 
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