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Abstract1

Seed color is a complex phenotype linked to both the impact of grains on human health and consumer acceptance of new crop varieties. Today seed color
is often quantified via either qualitative human assessment or biochemical assays for specific colored metabolites. Imaging-based approaches have the
potential to be more quantitative than human scoring while lower cost than biochemical assays. We assessed the feasibility of employing image analysis
tools trained on rice (Oryza sativa) or wheat (Triticum aestivum) seeds to quantify seed color in sorghum (Sorghum bicolor ) using a dataset of > 1,500
images. Quantitative measurements of seed color from images were substantially more consistent across biological replicates than human assessment.
Genome-wide association studies conducted using color phenotypes for 682 sorghum genotypes identified more signals near known seed color genes in
sorghum with stronger support than manually scored seed color for the same experiment. Previously unreported genomic intervals linked to variation in
seed color in our study co-localized with a gene encoding an enzyme in the biosynthetic pathway leading to anthocyanins, tannins, and phlobaphenes –
colored metabolites in sorghum seeds – and with the sorghum ortholog of a transcription factor shown to regulate several enzymes in the same pathway in
rice. The cross-species transferability of image analysis tools, without the retraining, may aid efforts to develop higher value and health-promoting crop
varieties in sorghum and other specialty and orphan grain crops.
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1

Introduction 2

Sorghum (Sorghum bicolor) is a grain crop originally domesticated in Africa and now grown across the 3

globe (Fuller and Stevens 2018; Morris et al. 2013a). Sorghum plays a key role in meeting the dietary 4

needs of 500 million people, primarily in Africa, South Asia, and the Americas (Srinivasa Rao et al. 5

2014). Cultivated sorghum retains high levels of genetic and phenotypic diversity (Mace et al. 2013; 6

Boyles et al. 2019; Boatwright et al. 2022) including substantial variation in grain color (Supplemental 7

Figures S1, S2). Variation in sorghum grain color can indicate variation in the identity and abundance of 8
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2 Genetic control of seed related phenotypes in sorghum

multiple specialized metabolites present in grain (Wu et al. 2019; Yang et al. 2022).1

The colored metabolites present in sorghum grain include anthocyanins, tannins, carotenoids, and2

phlobaphenes (Davis et al. 2019). Condensed tannins, proanthocyanidins, are antioxidant brown3

pigments derived from flavan-3-ols (Dixon et al. 2005) and have been linked to multiple desirable4

human health outcomes, reduced loss of seed to birds (Xie et al. 2019). However, tannins in sorghum5

are also linked to reduced feed efficiency in livestock and astringent flavors of variable desirability for6

human food applications. A large proportion of the variation in tannin accumulation in sorghum seeds7

is explained by two cloned and characterized sorghum genes tan1 and tan2 with duplicate recessive8

interaction controlling the presence of tannins in a layer of cells within the sorghum seed layer called9

the testa (Wu et al. 2012, 2019). A third uncloned and unmapped gene spreader determines whether10

tannins diffuse into the pericarp (Blakely et al. 1979). In the absence of the spreader gene, sorghum seeds11

with high concentrations of tannin can appear white, yellow, or red, rather than brown. Whether a12

given sorghum variety will produce white, yellow, or red seeds is determined, at least in part, by two13

loci, Y and R (Kambal and Bate-Smith 1976; Zanta et al. 1994). The Y locus has been mapped to a gene,14

yellowseed1 which encodes a MYB transcription factor homologous to pericarp color1 (p1) in maize (Zea15

mays) (Chopra et al. 1999). Sorghum plants carrying a functional copy of Y accumulated significant16

quantities of the flavan-4-ol derived pigments luteolinidin (orange) and apigeninidin (yellow) (Boddu17

et al. 2005; Ibraheem et al. 2015). At least three closely related genes or pseudogenes encoding potentially18

complementary transcription factors are present at the Y locus (Nida et al. 2019). Sorghum carrying19

a dominant haplotype of Y and homozygous for recessive alleles at the R locus can produce yellow20

seeds, frequently converting to a tan or brown appearance with age (Dykes et al. 2009). In the absence21

of other pigment molecules, sorghum varieties homozygous for the recessive haplotype of Y will22

typically produce white seeds. Sorghum varieties carrying dominant alleles of both Y and R produce23

red phlobaphene pigments from the flavan-4-ols luteoforol and apiferol, the precursors of luteolinidin24

and apigeninidin respectively (Chopra et al. 1999; Ibraheem et al. 2015). Several reports suggest R may25

be located on the long arm of chromosome 3 (Mace and Jordan 2010). Yellow seed color in sorghum26

can also result from the accumulation of yellow carotenoid pigments (Fernandez et al. 2008) regulated27

by variation in several loci, likely including the phytoene synthase encoding gene psy3 (Fernandez28
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Shrestha et al. 3

et al. 2008; Cruet-Burgos and Rhodes 2023). Several genes without direct roles in metabolism are also 1

known to alter apparent seed color in sorghum. These include the action of the spreader locus controlling 2

the visibility but not the presence of tannin in sorghum seeds and Z, associated with variation in the 3

thickness of the mesocarp, the middle layer of the pericarp, resulting in visible seed phenotypes (Mace 4

and Jordan 2010). 5

Genetic investigation of the basis of variation in sorghum seed color largely employs data generated 6

via one or more of three approaches: human visual assessment, biochemical quantification, and com- 7

puter vision. Color data from visual classification was sufficient to identify broad genomic intervals 8

corresponding to tan1 and Y (Morris et al. 2013b) using data from the sorghum association panel, a 9

widely used diversity panel typically consisting of 350-400 sorghum genotypes (Casa et al. 2008). Direct 10

quantification of condensed tannins in the same sorghum association panel was able to localize the posi- 11

tion of tan1 more precisely (Rhodes et al. 2014). An analysis conducted with a much larger population 12

of 1,386 sorghum genotypes and human visual assessment of seed color identified two signals, one 13

corresponding to the Y locus and the other which may correspond to the Z locus as the same genomic 14

interval was associated with variation in both seed color and mesocarp thickness (Hu et al. 2019). In 15

a smaller population of approximately 250 Chinese sorghum genotypes where high-density marker 16

data was available from whole genome resequencing, a combination of visual assessment of seed color 17

phenotypes and biochemical quantification of tannin concentration was sufficient to identify Y and 18

tan1 (Zhang et al. 2023). Biochemical characterization of the abundance of multiple carotenoids in the 19

seed of the lines of the sorghum association panel identified several signals including one corresponding 20

to zeaxanthin epoxidase (Cruet-Burgos et al. 2023). Measurements of seed color made by extracting the 21

RGB values of pixels corresponding to five seeds per genotype in photos of seeds from the sorghum as- 22

sociation panel also identified signals from Y and tan1 (Zhang et al. 2015). A more automated computer 23

vision-based approach using the GRABSEEDS software package implemented within JCVI (Tang et al. 24

2024) was also able to identify several QTL peaks, including peaks corresponding to tan1 and Y, when 25

employed to quantify the seed colors of a set of several hundred BC1F2 families (Nabukalu et al. 2021). 26

Computer vision-based phenotyping of seed color has the potential to be more quantitative than hu- 27

man visual assessments while being lower cost and higher throughput than biochemical characterization- 28
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4 Genetic control of seed related phenotypes in sorghum

based methods. However, many manual or semi-automated approaches to quantifying seed color from1

images are labor-intensive at the image acquisition and/or image annotation stage. In addition, it is2

unclear how the accuracy and utility of human visual assessment color data, which tends to be qualita-3

tive in nature, compares with computer vision-based measures of color which have the potential to be4

quantitative in nature. Here we assess the feasibility of using pre-trained published seed phenotyping5

models from other grain crops (Toda et al. 2020) in sorghum without retraining. These models make it6

possible to identify seeds and extract seed phenotype data from scans generated by spreading sorghum7

seeds on a flatbed scanner without any need for either ensuring seeds do not touch or manual annotation8

after image acquisition. We utilize the high throughput quantitative assessments to phenotype seed9

color across many seeds per entry and conduct genome-wide association studies on a large sorghum10

diversity panel, to demonstrate that quantitative assessments of seed color from computer vision-based11

approaches recover more and more strongly supported genetic loci than do qualitative assessments of12

seed color from human visual assessment. In addition to signals likely corresponding to y1, tan1 and13

tan2, we identify several additional sorghum genomic intervals strongly associated with variation in14

seed color.15

Core Ideas16

• Pre-trained computer vision models can transfer across grass species without retraining.17

• Seed color phenotypes quantified from images were more consistent than human assessments of18

color.19

• GWAS conducted using seed color phenotypes from images outperformed GWAS conducted20

human-scored colors.21

• We identified multiple previously unreported GWAS signals near plausible candidate genes for22

seed color.23
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Materials and methods 1

Plant Material and Experimental Design 2

A set of 915 sorghum genotypes drawn from the Sorghum Diversity Panel (Griebel et al. 2021) and 3

Sorghum Association Panel (Casa et al. 2008) were grown at the University of Nebraska-Lincoln’s 4

Havelock Farm in the summer of 2021 in a field with corn planted the previous year. The field employed 5

was located at N◦40.858, W◦96.596. The experiment was laid out in a randomized complete block design 6

with two blocks of 966 plots each resulting in a total of 1,932 plots. Each block included one entry 7

of each genotype as well extra replicates of the line BTx623 and Tx430 as repeated checks. Each plot 8

within the field consisted of a single 5-foot (1.5 meters) row with 30-inch (0.76 meters) spacing between 9

parallel rows and 30-inch (0.76 meters) spacing between sequential ranges. Within rows, sorghum seeds 10

were planted at a target spacing of 3 inches (7.62 centimeters) for a target plant density of 21 sorghum 11

plants per row. Before planting, the field received nitrogen fertilizer with a target application rate of 80 12

pounds of nitrogen per acre (approximately 89 kilograms/hectare) and a pre-emergent application of 13

the herbicide atrazine within 24 hours of planting. Planting occurred on May 25, 2021. 14

Seed Image Acquisition and Preprocessing 15

All grain-bearing panicles from two plants per plot were harvested on October 18th, 2021. Edge plants 16

were avoided when possible. Thirty-four plots did not flower and for an additional 92 plots, a flowering 17

date was recorded during the growing season but no mature seeds were collected. Seeds were removed 18

from panicles using a mechanical thresher and cleaned of chaff and other debris. A qualitative assessment 19

of the color of sorghum seed was recorded. The individuals recording qualitative seed colors were 20

provided with a set of representative seeds of sorghum representing eight color classes (white, grey, 21

yellow, mustard, orange, red, brown, and black) as a standardized reference (Supplemental Figure S2). 22

For each of the 1,647 plots, a variable number of seeds were loaded onto a flatbed scanner (Epson 23

Perfection V600 Photo with black background) and imaged at a resolution of 300 pixels per inch/dots per 24

inch. Labels with plot and genotype information were included in the area of each scan to reduce the risk 25

of errors. After scanning, a portion of each scan with dimensions of 1,170 × 1,150 pixels (9.9 centimeters 26

× 9.7 centimeters), which contained sorghum seeds but excluding the scanned label, was extracted. 27
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6 Genetic control of seed related phenotypes in sorghum

Sorghum seed scans were preprocessed as previously described (Toda et al. 2020) implementing a1

pipeline using the OpenCV library (Bradski 2000). A Gaussian blur with an empirically derived 5 × 52

window size was applied to each scan to reduce background noise. Blurred color images were converted3

to eight-bit (0-255) grayscale images using a weighted average value of all three color channels (default4

R channel weight: 0.299, G channel weight: 0.587, B channel weight: 0.114) in COLOR_BGR2GRAY5

function in OpenCV. An empirically derived threshold of 45 was used to generate binary image masks6

from the blurred grayscale images. The OpenCV bitwise_AND operation between the Gaussian blurred7

color images and binary images was employed to create the final images for downstream analysis.8

Cropped, blurred, and thresholded images were segmented using two previously published instant ce9

segmentation neural networks trained on rice and wheat seeds (Toda et al. 2020). Inference of sorghum10

seed scans via pre-trained models was performed with Tensorflow v.2.10.0 (Abadi et al. 2015) and python11

using codes available in https://github.com/NikeeShrestha/SorghumSeedSegmentation.12

Model Evaluation and Comparison13

Model performance was assessed by comparison to manual segmentation results for approximately 1,60014

sorghum seeds across ten images annotated using the Make Sense online annotation platform (Skalski15

2019). Recall, (true positives/(true positives + false negatives) was calculated on a per image basis16

using the compute_recall function provided by Mask_RCN (He et al. 2017) with a threshold of 0.517

intersection/union. An additional set of seeds was drawn from research stocks for 30 sorghum genotypes18

scanned and processed as described above, and hundred seed weight was determined by counting and19

weighing 100 seeds to enable comparisons of scanner-derived seed area measurements and conventional20

measurements of kernel mass.21

Quantification of Sorghum Seed phenotypes22

After segmentation via pre-trained models, three seed shape phenotypes: length, width, and area,23

were quantified using the skimage.measure.regionprops_table function implemented in the scikit-image24

package (Van der Walt et al. 2014) and three color phenotypes: red, green, and blue intensity were25

quantified using a custom Python script. Seed area was defined as the number of pixels that belong to a26

given seed instance mask; seed length was defined as the longest distance between pixels included in27

the seed instance mask along the major axis, and the width was defined as the longest distance between28
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Shrestha et al. 7

pixels included in the seed instance mask along the minor axis. The red intensity was defined as the 1

average value (between 0 and 255) for the red channel across all pixels included within an individual 2

seed mask. Green and blue intensities were defined equivalently for the respective color channels. 3

For each of these six phenotypes (seed length, seed width, seed area, red intensity, green intensity, and 4

blue intensity), the average individual values for all seeds in a given image were calculated and assigned 5

to the corresponding sorghum plot. Data from 23 plots were dropped when manual examination of 6

extreme values identified aggregation of many seeds into a single large mask. Scans for 21 plots were 7

removed when visual examinations prompted by large reported differences in seed color between 8

multiple scans of the same sorghum genotype determined the seeds scanned could not have come from 9

the same genotype. A total of 1,603 sorghum seed scans remained after all image-level quality control 10

steps which included one or more seed scans from 881 unique genotypes (Supplemental Data Set S1). 11

After image-level quality control, three principal components (PC1, PC2, and PC3) of variation for seed 12

color phenotypes were calculated from the average red, green, and blue intensity phenotypes described 13

above using the built-in princomp function in R v.4.2.0 (R Core Team 2020). Visual examination of 14

phenotype distributions on a per-plot basis was used to identify and remove extreme values for each 15

phenotype (Supplemental Figure S3A). This step resulted in the removal of seed length data for one plot, 16

average blue intensity for 11 plots, average green intensity for 7 plots, and PC1, PC2, and PC3 scores for 17

9, 20, and 12 plots respectively. 18

Genetic Marker Information 19

Genetic markers used in this study were generated using RNA-seq data from mature leaf tissue of plants 20

grown in the same 2021 field experiment employed for phenotyping. RNA sequencing libraries were 21

sequenced on an Illumina NovaSeq6000 with a target read depth of 20 million total sequenced fragments 22

and 2 x 150 base pairs of sequencing per fragment. Raw reads were trimmed using Trimmomatic v0.33 23

with the following parameters ILLUMINACLIP:TruSeq3-PE-2.fa:2:30:10 LEADING:3 TRAILING:3 SLID- 24

INGWINDOW:4:15 MINLEN:35 (Bolger et al. 2014). Trimmed reads were then mapped to the sorghum 25

BTx623 reference genome V5 (Institute 2023) using STAR v2.7.9a (Dobin et al. 2013) with parameter 26

settings of outFilterMismatchNmax 30, outFilterScoreMinOverLread 0.1, outFilterMatchNminOverLread 27

0.1 and seedSearchStartLmax 20. Initial SNPs were called using Haplotype Caller in GATK4 v4.1 with the 28
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8 Genetic control of seed related phenotypes in sorghum

following parameters; "QD < 2.0", "QUAL < 30.0", "SOR > 3.0", "FS > 60.0", "MQ < 40.0", "MQRankSum1

< -12.5" and "ReadPosRankSum < -8.0" (Poplin et al. 2017). These initial SNP markers were filtered to2

retain SNPs with a minor allele frequency >0.01 and frequency of heterozygous genotypes call <0.13

using VCFtools v.0.1 (Danecek et al. 2011) and bcftools v.1.17 (Danecek et al. 2021). Missing genotype4

calls in the SNP set were imputed using Beagle v5.2 (Browning et al. 2018). For GWAS, the imputed5

SNP set was subsampled to retain only SNPs with a minor allele frequency of > 0.05 and frequency of6

heterozygous genotypes calls < 0.05 among the common 682 genotypes between population phenotyped7

and genotyped in the study. These criteria resulted in a set of 169,600 SNPs being retained.8

Quantitative Genetic Analyses9

Repeatability for individual seed phenotypes was estimated using phenotype data for 629 genotypes10

for which phenotype data was collected from both replicated blocks of this study. Repeatability was11

calculated using the equation:12

H2 =
σ2

G

σ2
G + σ2

e
r

Where σ2
G is the total amount of variance explained by genotype and σ2

e
r is the total residual variance13

divided by the number of replications of each genotype. A mixed linear model of the form yi =14

µ + Genotypei + errori was used to estimate the total variance explained by genotype and the total15

residual variance for each phenotype, where, yi is the mean phenotype of interest in the genotype, µ is16

the overall mean of the population, Genotypei is random effect of genotype i, and errori is the residual17

error. The model was implemented using the lme4 package (Bates et al. 2015) in R v.4.2.0 (R Core Team18

2020).19

Genome-wide associations were conducted using phenotype average values for 682 sorghum geno-20

types which were scored in at least one of the two replicated blocks and for which genetic marker data21

was also available. Manual examination of the distributions of genotype-level averages (Supplemen-22

tal Figure S3B) led to the removal of genotype level data for seed area (3 genotypes), seed width (723

genotypes), average red intensity (29 genotypes), average green intensity (20 genotypes), average blue24

intensity (7 genotypes), and data for 5, 17, and 7 genotypes for PC1, PC2, and PC3 of color intensity25

respectively.26
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Shrestha et al. 9

GWAS was conducted using the FarmCPU GWAS algorithm implemented in the rMVP software 1

package (Liu et al. 2016; Yin et al. 2021). The first three principal components of variance calculated 2

from the genetic marker data were included as covariates, and the genomic relationship matrix was 3

included to account for population structure. This GWAS analysis was implemented with resample 4

model inclusion probability (RMIP) (Valdar et al. 2009). One hundred iterations of FarmCPU GWAS 5

analysis were conducted for each phenotype and in each iteration, a random 10% of sorghum genotypes 6

were masked, and a separate FarmCPU GWAS analysis was conducted. In each iteration, the threshold 7

for an SNP to be considered significantly associated was p–value less than 9.70×10−7. This threshold 8

was calculated using a Bonferroni corrected 0.05 p-value cutoff considering the estimate of 51,509 9

independent genetic marker numbers in the genetic marker dataset employed in this study obtained 10

from GEC v.0.2 (Li et al. 2012). SNPs identified in at least 10 of the 100 resampling GWAS analyses (RMIP 11

≥ 0.1) were considered significant associations in the final analysis. 12

Results 13

Two models pre-trained on seeds from other grain crops (rice or wheat) (Toda et al. 2020)) both success- 14

fully identified the majority of sorghum seeds present in ten manually annotated images generated by 15

scanning seed samples from ten different sorghum genotypes (Figure 1A). While the performance of 16

both models was imperfect, the performance issues presented by the two models were different. The 17

model trained on rice seeds generated masks that often excluded portions of individual seeds visible in 18

the image (Figure1B). The model trained on wheat seeds generated more complete masks for seeds it 19

identified, but more frequently failed to identify a significant percentage of the sorghum seeds present in 20

images (Figure1C). At the single seed level, the area of seeds as estimated from automated masks was 21

highly correlated with the area of seeds as estimated from manually annotated seed masks (rice model: 22

R2=0.93, wheat model R2=0.94) (Figure 1D&E). 23

The issue with the model trained on wheat seeds failing to identify some sorghum seeds appeared to be 24

either image or genotype-specific with >94% of manually annotated sorghum seeds correctly identified 25

in 7/10 images, but only 80% of manually annotated sorghum seeds correctly identified in the remaining 26

three images (Figure 1F). Seed area estimated from both models exhibited an equal correlation (R2) of 0.77 27
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10 Genetic control of seed related phenotypes in sorghum

with ground truth measurements of 100-grain mass for a separate set of 30 sorghum genotypes selected1

to represent the full range of seed sizes observed in the sorghum diversity population (Supplemental2

Figure S4A, B). Given the consistent performance of the two models in estimating variation in seed area3

and the relatively poorer performance of the wheat-trained model in estimating total seed counts and4

low average recall, the outputs of the rice-trained model were employed for subsequent analyses.5

Three seed-shape phenotypes (seed area, length, and width), three seed color phenotypes (average6

red, green, and blue intensities), and three principal components of variation in seed color (PCs) were7

extracted from each image using the masks generated using the model trained on rice seeds. Substantial8

variation was observed for each seed shape and color phenotype as well as for the three principal9

components derived from three color channels (Supplemental Table S1). The first principal component10

explained the highest proportion of total variance, 96.74%, the second principal component explained11

2.78% of the total variance and the third principal component explained 0.46% of the total variance. The12

genetic repeatability (H2) for six seed-related phenotypes extracted after seed segmentation ranged from13

0.91 to 0.94 with average blue intensity having the highest H2 of 0.94 and seed area and length having14

the lowest H2 of 0.91.15

The seeds assigned to the qualitative color categories brown, orange, yellow, gray, and white by human16

scorers exhibited different but overlapping distributions across the first two principal components17

of variation in seed color (Figure 2). A number of individual sorghum seed samples whose manual18

categorical color classification and PC phenotype values were inconsistent with each other were manually19

rechecked and visual inspection of scans found seed colors that were consistent with PC scores rather20

than manual color category assignment (Supplemental Figure S5). Discordance between manual and21

imaging-based seed phenotyping tended to occur in samples with either staining or mold on the seed22

surface or with scattered brown/red dots across the seeds (Supplemental Figure S5). Notably, when23

asked to classify sorghum seeds into one of eight color categories, replicates of the same sorghum24

genotype grown in different parts of the field were assigned different color categories 40% of the time,25

although this declined to 8.5% when the manual color annotation was reduced to a two category system;26

light (including the original categories "white", "grey", "mustard", and "yellow") and dark ("orange",27

"red", "brown" and "black") system (Figure 3).28
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We employed a set of genetic markers scored for 682 of the 881 sorghum genotypes phenotyped above 1

to conduct genome-wide association studies for seed shape and color phenotypes. Resampling-based 2

analysis of FarmCPU GWAS identified 19 significant marker-trait associations representing 15 unique 3

markers associated with seed area (7 significant associations), seed length (4 significant associations), 4

and/or seed width (8 significant associations) above a resampling model inclusion probability (RMIP) 5

threshold of ≥ 0.1 (Figure 4, Supplemental Data Set 2A). One of the 15 unique genetic markers was 6

associated with both seed area and length, and one was associated with seed length, seed area, and 7

width. Two of the 15 unique genetic markers identified in GWAS for seed shape phenotypes overlapped 8

and one genetic marker was identified 11 kb downstream of previously reported associations from a 9

sorghum NAM population and/or sorghum association population and on (Tao et al. 2020). Four of the 10

15 genetic markers significantly associated with sorghum seed size or shape phenotypes were located 11

within 400 kilobases of the sorghum orthologs rice or maize genes previously linked to variation in seed 12

size or shape (Figure 4). 13

A genome-wide association study for manually classified sorghum seed color phenotypes – two 14

color categories – identified a total of ten significant marker-trait associations including two that likely 15

correspond to the known sorghum color genes y1 (Sobic.001G398100) and tan1 (Sobic.004G280800) 16

(Figure 5A, Supplemental Data Set 2B). Both genes were associated with the only two markers associated 17

with manually scored color data with RMIP ≥ 0.5. Genome-wide association studies conducted for six 18

different quantitative color phenotypes extracted from scanned and segmented seed images identified 19

a total of 70 marker-trait associations consisting of 43 unique genetic markers significantly associated 20

with one or more quantitative color phenotypes (Figure 5B, Supplemental Data Set 2C). Out of the 11 21

genetic markers associated with multiple color phenotypes, 6 genetic markers were associated with 22

three color channels and the first principal component, 3 signals were identified to be associated with 23

average blue and green intensities, and the first principal component, one signal was associated with 24

average red and blue intensities and the first principal component and one signal were associated with 25

average red intensity and the first principal component. The signals identified in the analysis using color 26

phenotypes from scanned sorghum seeds included marker-trait associations corresponding to three 27

known color genes, including signals corresponding to the locations of y1 (Figure 6A) and tan1 with 28
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higher resampling model inclusion probabilities than in the manual color classification based analysis1

and an additional signal in the general vicinity of tan2 (Sobic.002G076600).2

Excluding signals in the vicinity of three cloned and characterized color genes y1, tan1 and tan2,3

three additional genetic markers were identified significantly associated with variation in all three color4

channels as well as the first principal component of variation: Chr02:59,121,0101 (highest RMIP = 0.23),5

Chr03:75,096,302 (highest RMIP = 0.5), and Chr10:5,473,493 (highest RMIP = 0.29). The signal on chromo-6

some 2 was in the rough vicinity of a signal previously identified in a GWAS for manually assigned seed7

color in a much larger sorghum population and 300 kilobases away from Sobic.002G190500 (Figure 6B,8

Supplemental Data Set S3A), a gene encoding an α amylase identified in that study as a potential9

candidate for the causal gene underlying the Z locus (Hu et al. 2019). The signal on chromosome 3 was10

supported in the categorical human-scored seed color GWAS (RMIP = 0.2) (Figure 5A) in addition to the11

image-based seed color GWAS. Genetic markers in a genomic interval of 440 kilobases around the chro-12

mosome 3 hit exhibited moderate to strong linkage disequilibrium (R2 ≥ 0.25) with the GWAS-tagged13

marker. This interval contained a total of 38 annotated gene models (Figure 6C, Supplemental Data Set14

S3B). One of these genes, SbMYB50/Sobic.003G373000, is the ortholog of a MYB transcription factor15

(LOC_Os01g65370) in rice that has been shown to repress the expression of flavonoid-3-hydroxylase and16

a chalcone flavonone isomerase (Figure 7) based on evidence from overexpression lines (Grotewold17

et al. 1994; Sun et al. 2023). The classical, but as yet uncloned, color gene R is also believed to be located18

on chromosome 3 (Mace and Jordan 2010). However, while Y is known to be epistatic to R (Kambal19

and Bate-Smith 1976), the interaction between the effects of the Y locus-linked marker and the effects20

of the chromosome 3 color-linked marker was not significantly different from additive (Supplemental21

Figure S6C-E). The signal for seed color variation on chromosome 10 is approximately 40 kilobases22

away from Sobic.010G068200, the sorghum ortholog of a rice gene (LOC_Os10g40880) annotated as23

either a putative flavonol synthase or flavanone 3-hydroxylase (Figure 6D, Supplemental Data Set S3C).24

Either of these enzymatic activities would place this gene in the biosynthetic pathway responsible for25

the synthesis of the majority of known colored metabolites present in sorghum seeds (Figure 7).26
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Discussion 1

When grains are consumed directly, seed color plays a key role in consumer acceptance of new crop 2

varieties. Seed color can also be a marker for bioactive compounds with the potential to improve or 3

impair human health (Yang et al. 2022). However, seed color is frequently still assessed in an ad hoc 4

fashion via human classifiers who seek to divide quantitatively varying colors into discrete categories. 5

We found that these human-assigned qualitative color scores had a high rate of discordance (Figure 3, 6

while quantitative color phenotypes extracted from scans of sorghum seeds were highly repeatable 7

(H2>0.9) across multiple plots of the same sorghum genotypes. This included the identification of 8

marker-trait associations corresponding to three characterized sorghum genes known to influence seed 9

color (y1, tan1, and tan2) (Zanta et al. 1994; Wu et al. 2012, 2019) along with one locus corresponding 10

to the likely location of the classical Z locus, and two other loci near genes with plausible links to 11

anthocyanins, tannins, and/or phlobaphene metabolism (Figure 7). 12

In GWAS analysis using quantitative seed color phenotypes derived from seed scans, the two marker- 13

trait associations were found in chromosome 1, 91 kb away from each other (Figure 6A). The one 14

association (Chr01:72,465,237, highest RMIP = 1) linked to all three color intensities phenotypes and 15

the first principal component was approximately 71 kb upstream from cloned y1 gene and another 16

association (Chr01:72,556,673, highest RMIP = 0.46) linked to green and blue color intensity and first 17

principal component was approximately 18 kb downstream of y1 gene. FarmCPU controls for the 18

effect of previously identified marker-trait associations when evaluating the significance of subsequent 19

markers (Liu et al. 2016) and these two markers also exhibit very low linkage disequilibrium (LD <0.01) 20

suggesting they correspond to different functional variants rather than providing redundant information 21

on the same causal locus. This would be consistent with the previously reported complex architecture 22

of Y locus which has multiple copies of R2R3 MYB genes (yellowseed3, y1 and additional pseudogenes) 23

within the same vicinity with both genes complimentary linked to grain color in sorghum (Nida et al. 24

2019, 2021). An additional independent signal (Chr01:67,840,021, highest RMIP = 0.39) approximately 25

4 MB upstream of a signal at Chr01:72,465,237 was identified linked to blue intensity phenotype and 26

the first principal component (Figure 4B) and is approximately 262 kb upstream of previously reported 27

candidate gene (Sobic.001G349900) for variation in exocarp color in Chinese sorghum germplasm (Zhang 28
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et al. 2023). Identification of multiple marker-trait associations on chromosome 1 in this and previous1

studies suggest numerous other loci on chromosome 1 in addition y1 may contribute to seed color2

pigmentation in sorghum.3

A strong and repeated signal on chromosome 3 was identified in both the analysis of sorghum seed4

color based on seed scans (highest RMIP = 0.5) and human color assessment (highest RMIP = 0.2). The5

signal we identified on chromosome 3, is also distinct from a repeatedly reported signal from previous6

GWAS and QTL mapping studies located at approximately 64 MB (Kimani et al. 2020; Nida et al. 2021;7

Kumar et al. 2023), 11 MB from the signal we identify on the same chromosome at position 75.09 MB.8

The large interval ( 400 kb) defined by linkage disequilibrium around this hit includes Sobic.003G373000.9

Sobic.003G373000 is the ortholog of LOC_Os01g65370, which interacts with TOPLESS and HDAC1 to10

form a transcriptional repressor complex, which inhibits the expression of two flavonoid-3‘-hydroxylase11

(F3‘H) and a chalcone flavonone isomerase (CHI) gene in the metabolic pathway leading to production12

of different pigments in plants (Sun et al. 2023). F3‘H and CHI catalyze reactions at metabolic junctions13

which can lead to different pigmentation in plants (Grotewold et al. 1994; Falcone Ferreyra et al. 2012).14

The position of this chromosome 3 GWAS signal and associated candidate gene is somewhat consistent15

with the reported approximate localization of the uncloned sorghum locus R which acts downstream of16

y1 (Mace and Jordan 2010; Rhodes et al. 2014). However, in the absence of strong statistical evidence17

supporting an epistatic interaction between this marker-trait association on chromosome 3 and y1 for18

seed color, as well as inconsistent location of signal with previously reported associations, the location19

does not yet represent strong evidence for having identified the location of R.20

Sorghum produces a wide range of bioactive compounds in grain such as tannins, phenols, antho-21

cyanins, and carotenoids which are shown to alter the composition of the gut microbiome, including22

in ways linked to improved outcomes for obesity, diabetes, oxidative stress, cancer, and hyperten-23

sion (de Morais Cardoso et al. 2017; Yang et al. 2022). Previous efforts with smaller sorghum populations24

have demonstrated that, in some cases, sorghum loci associated with changes in the abundance of multi-25

ple beneficial bacterial taxa in the human gut microbiome colocalize with loci associated with variation26

in seed color (Yang et al. 2022; Korth et al. 2024). Here we have demonstrated that a combination of27

quantitative measurements of color enabled by computer-vision-based approaches to seed phenotyping28
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with analysis of a substantially larger sorghum population can lead to the identification of new candidate 1

genes SbMYB50 (Sobic.003G373000) and the putative flavonol synthase or flavanone 3-hydroxylase 2

Sobic.010G068200 that may play roles in determining the abundance and identity of bioactive molecules 3

with the potential for beneficial or detrimental impacts on human gut microbiome (Petitot et al. 2017; 4

Korth et al. 2024). These results could serve either as the basis for future efforts to fine map, clone, 5

and characterize the specific genes involved in regulating variation in seed color in sorghum and/or 6

as the basis for marker-assisted selection efforts to develop new sorghum varieties with specific suites 7

of bioactive pigment molecules as a tool to impact human and/or animal health via the human gut 8

microbiome. 9

This study also tests and validates the potential to deploy pre-trained AI models for image analysis 10

across species within the grasses. Both models trained with rice data or trained with wheat data exhibited 11

acceptable performance on sorghum. This result is consistent with the previous observation that machine 12

learning models trained to semantically segment sorghum plant organs in hyperspectral images also 13

achieved good performance in semantically segmenting maize organs (Miao et al. 2020). Cross-species 14

transferability efforts devoted to developing artificial intelligence models for image analysis in the 15

three-grain crops that provide the majority of the global calorie needs today – rice, wheat, and maize 16

– may also benefit and accelerate crop improvement efforts in many of the other grain crops which 17

currently play smaller roles in the global food supply but exhibit greater resilience and resource use 18

efficiency, including pearl millet (Cenchrus americanus syn. Pennisetum glaucum) and proso millet (Panicum 19

miliaceum) in addition to sorghum (Shrestha et al. 2023; Wimalasiri et al. 2023). 20

Data Availability 21

Values for seed shape and seed color phenotypes calculated from scans of seeds from each individual 22

plot are provided in Supplemental Data Set S1 with this publication. Python notebooks with code used 23

to generate ground truth data, conduct inference, and calculate model performance are provided at a 24

GitHub repository associated with the study https://github.com/NikeeShrestha/SorghumSeedSegmentation. 25

Cropped seed scans for each image generated as part of the project, including images rejected after QC, 26

are provided as part of the GitHub repository associated with this paper. 27
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Supplemental Data 1

The following materials are available in the online version of this article. 2

• Supplemental Table S1: Summary statistics of three seed-shape phenotypes, three seed-color 3

phenotypes, and three seed-color-derived principal components extracted from scans of seeds 4

from individual plots. 5

6

• Supplemental Figure S1: Geographical distribution of a subset of the Sorghum Diversity Panel 7

(n=328). 8

• Supplemental Figure S2: Photo of the sorghum seeds used as color references during manual 9

sorghum seed phe- notyping. 10

• Supplemental Figure S3: Distribution of plot-level and genotype-level phenotype measurements 11

for each seed- related phenotype used in the resampling-based GWAS analysis. 12

• Supplemental Figure S4: Comparison between pre-trained models on rice and wheat seeds. 13

• Supplemental Figure S5: Examples of sorghum genotypes where manual qualitative and auto- 14

mated quantitative color measurements disagree. 15

• Supplemental Figure S6: Interaction between genetic marker (Chr01:72,465,237) linked to Y locus 16

and genetic marker identified on chromosome 3 (Chr03:75,096,302) to affect three color channels 17

derived first principal component. 18

19

• Supplemental Data Set S1: Plot-level seed-related phenotypes extracted from 1,603 individual 20

plot-level seed scans after removal of the plot level outlier values. 21

• Supplemental Data Set S2: Marker trait associations identified in GWAS conducted automatically 22

measured seed shape phenotypes (A), and seed color phenotypes (B), and manually scored seed 23

color classes in sorghum (C). 24

• Supplemental Data Set S3: Sets of sorghum gene models within mapping intervals for the three 25

marker-trait associations for seed color shown in Figure 5B-D. 26
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Figure 1 Comparison of the performance of models trained on rice and wheat seeds at the task
of identifying and segmenting sorghum seeds. A) Example of the manually annotated seed posi-
tions used as ground truth in this study. B) Example of seed positions and shapes identified by the
model trained on rice seeds. C) Example of seed positions and shapes identified by the model trained
on wheat seeds. D) Relationship between manually annotated seed area and automated seed area
measurements obtained from the rice-trained model. Each point indicates a single seed which was
identified via both manual and automated annotation. Different colors represent different seed scans.
E) Relationship between manually annotated seed area and automated seed area measurements ob-
tained from the wheat-trained model. Different colors represent different seed scans. F) The average
recall with 0.5 Intersection/Union in each of the ten images which were identified via masks gener-
ated using either the pre-trained rice model or the pre-trained wheat model.
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Figure 2 Relationship between qualitative ground truth color classification and quantitative mea-
surements of sorghum seed color. Distribution of scores for the first two principal components of
variation in color phenotypes (average red, blue, and green intensity) for scans of 1,449 sorghum plots
grown and harvested as part of this experiment. The colors of individual points indicate the categori-
cal color phenotype assigned to each plot during manual seed color phenotyping.
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Figure 3 Disagreements in color classification between independent replicates of the same
sorghum lines grown in the same field experiments. Data shown are for 680 sorghum genotypes
for which qualitative color scores were recorded in from two independently replicated plots in 2021.
Numbers in colored boxes indicate exact color category matches in the eight-color system (N=404).
Numbers in light blue boxes indicate disagreements between replicates in color category assignments
in the eight-color system which still match in the two-color category system (light = white, gray, mus-
tard yellow, dark = orange, red, brown, black) (N=217). Numbers in white boxes indicate disagree-
ments between replicates under both the eight-color system and the two-color system (N=59).
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Figure 4 Genetic markers associated with variation in seed shape phenotypes. Results of a
resampling-based GWAS analysis conducted for three seed shape phenotypes: seed area, seed length,
and seed width. Each point indicates the position of an individual genetic marker (x-axis) and the pro-
portion of 100 FarmCPU GWAS iterations in which that marker was significantly linked to variation
in the phenotype of interest (Resampling Model Inclusion Probability, RMIP). The horizontal dashed
blast line indicates a threshold of RMIP ≥ 0.1. Yellow triangles indicate the positions of previously
described QTL for seed shape or size in the sorghum NAM population and/or sorghum associa-
tion population (Tao et al. 2020). The QTLs, qGS2.12 and qGS4.5, overlap with the significant genetic
markers and qGS6.4 is 11 kb upstream of the genetic marker. Black triangles indicate the positions
of sorghum orthologs of rice or maize genes linked to seed shape or size located within 400 kilobases
of a marker associated with seed shape phenotypes. Sorghum gene; Sobic.002G367300; ortholog of
GW7 in rice (Wang et al. 2015), Sobic.006G114600; ortholog of d11 in rice and maize (Sun et al. 2021),
Sobic.007G032400; ortholog of OsFIE2 in rice (Folsom et al. 2014), Sobic.009G227201; ortholog of Os-
pup7 in rice (Ji et al. 2019).
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Figure 5 Genetic markers associated with variation in sorghum seed color. A) Results of a
resampling-based GWAS analysis conducted by collapsing the eight manually described color cat-
egories into two categories as described in Figure 3. B) Results of resampling-based GWAS analysis
conducted for three quantitative color phenotypes: average red, blue, and green intensity for seed pix-
els, calculated directly from segmented seed images and the three principal components of variation
calculated from those three initial phenotypes. Analysis was conducted using data for 682 sorghum
genotypes. Black triangles indicate the positions of previously characterized genes known to play a
role in determining variation in seed color in sorghum.
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Figure 6 Genomic intervals and phenotypic effects associated with color GWAS hits on chromo-
somes 1 and 3. A) Linkage disequilibrium and annotated gene models within the genomic interval
surrounding the genetic marker (Chr01:72,465,237) associated with variation in both manually scored
qualitative sorghum seed color and automatically scored quantitative sorghum seed color. Each point
indicates the physical position (x-axis) and linkage disequilibrium with the trait-associated SNP (y-
axis) of an SNP within the genomic interval. Black arrows indicate the positions of annotated genes,
green boxes the position of protein-coding exons, and blue boxes the positions of untranslated exons.
Genes with red exons are yellowseed1 (y1) and yellowseed3 (y3). The positions of two SNPs that were
independently associated with seed color (Chr01:72,465,237 and Chr01:72,556,673) are indicated with
asterisks. B). Linkage disequilibrium and annotated gene models within the genomic interval sur-
rounding the genetic marker (Chr03:75,096,302). The position of a candidate gene, the ortholog of a
rice MYB transcription factor that regulates flavonoid metabolism is marked in red. C) Linkage dise-
quilibrium and annotated gene models within the genomic interval surrounding the genetic marker
(Chr02:59,121,010). The position of an α amylase encoding gene previously reported as a potential
candidate gene for the classical Z locus and associated with variation in both seed color and mesocarp
thickness in sorghum is marked in red. D) Linkage disequilibrium and annotated gene models within
the genomic interval surrounding the genetic marker (Chr10:5,473,493). The position of a candidate
gene, the sorghum ortholog of a rice flavonol synthase/flavanone-3-hydroxylase is marked in red.
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Figure 7 Schematic of a section of phenylpropanoid pathway leading to the synthesis of multiple
colored metabolites found in sorghum seeds. Enzyme abbreviations: CHI, chalcone isomerase; F3H,
flavanone 3-hydroxylase; DFR, dihydroflavonol 4-reductase; F3H, flavanoid 3-hydroxylase; F3‘H,
anthocyanidin synthase; ANS. Multiple arrows represent multiple synthesis steps. Names shown
in blue SbMYB50 (Sobic.003G37300), and F3H (Sobic.010G068200) were identified in the vicinity of
genetic markers significantly associated with multiple seed color phenotypes. Background colors for
pigments indicate known/reported colors from the literature.
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Table S1 Summary statistics of three seed-shape phenotypes, three seed-color phenotypes, and three
seed-color-derived principal components extracted from scans of seeds from individual plots.

phenotype Mean Median SDa SEb Minimum Maximum

Seed Area 909.8 908.4 193.1 4.83 447.6 1488.6

Seed Length 48.44 48.66 5.08 0.17 34.42 62.19

Seed Width 30.55 30.77 3.92 0.09 18.54 41

Average Blue Intensity 100.9 105.2 24.33 0.60 57.28 171.3

Average Green Intensity 131.3 135.4 27.35 0.68 69.89 192.5

Average Red Intensity 160.4 162.3 21.31 0.53 94.5 207.9

Principal Component 1 0 4.66 41.67 1.04 -88.9 101.9

Principal Component 2 0 0.24 7.07 0.17 -25.2 27.21

Principal Component 3 0 0.09 2.89 0.07 -11.7 11.18
a Standard Deviation
b Standard Error
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Figure S1 Geographical distribution of a subset of the Sorghum Diversity Panel (n=328). Sorghum
genotypes predominantly originated from African countries with diverse seed colors spread across
the world. The size of the pie chart varies with the number of genotypes originating from the place
where if the number of genotypes ≥ 10, it was assigned the same size. Color mapped to each piechart
is based on visual color classification as shown in Figure 2 legend key.
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Figure S2 Photo of the sorghum seeds used as color references during manual sorghum seed phe-
notyping. Seeds were initially scored as belonging to one of eight color classes: white, gray, yellow,
mustard, orange, red, brown, and black. These classes were later collapsed into two broader cate-
gories: light (white, gray, yellow, mustard) and dark (orange, red, brown, black) for genome-wide
association study.
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Figure S3 Distribution of plot-level and genotype-level phenotype measurements for each seed-
related phenotype used in the resampling-based GWAS analysis. A) Distribution of observed plot
level measurements (n = 1,603) for three seed shape phenotypes and six seed color phenotypes. The
presence of vertical black lines indicates a cutoff that was applied to a given phenotype to remove
extreme values before the calculation of genotype-level values. B) Distribution of observed genotype-
level average values for 682 sorghum genotypes for which both phenotype and genetic marker data
were available. The presence of vertical black lines indicates a cutoff that was applied to a given phe-
notype to remove extreme values before GWAS analysis.
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Figure S4 Comparison between pre-trained models on rice and wheat seeds. A) Correlation be-
tween area extracted from analyzed new scans of new samples of seed using the rice model (x-axis)
and manually measured average seed mass (y-axis) from 30 sorghum genotypes selected to represent
the full range of observed seed area distribution observed across scans of all sorghum genotypes in-
cluded in this study. B) Correlation between area extracted from analyzed new scans of new samples
of seed using the wheat model (x-axis) and manually measured average seed mass (y-axis) from 30
sorghum genotypes selected to represent the full range of observed seed area distribution observed
across scans of all sorghum genotypes included in this study.
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Figure S5 Examples of sorghum genotypes where manual qualitative and automated quantitative
color measurements disagree. Sorghum seeds shown above come from two genotypes; SC0499 (left)
and BTx623 (right) recorded as "black" and "brown" in manual color classification but not placed
in areas of the color space that would correspond to these dark colors based on quantitative color
phenotypes (e.g. (Figure 2)).
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Figure S6 Interaction between genetic marker (Chr01:72,465,237) linked to Y locus and genetic
marker identified on chromosome 3 (Chr03:75,096,302) to affect three color channels derived
first principal component. A) Difference in scores for the first principal component of variation for
sorghum genotypes carrying either the reference or alternative alleles of the most consistently Y locus
associated GWAS hit (Chr01:72,465,237). For this and subsequent panels sorghum genotypes that car-
ried the alleles of tan1 and tan2 adjacent GWAS hits associated with higher tannin concentration were
excluded. Box plot colors indicate the median red, green, and blue values for individuals carrying the
respective allele. B) Difference in scores for the first principal component of variation for sorghum
genotypes carrying either the reference or alternative alleles of the sorghum seed color GWAS hit on
chromosome 3.C) Difference in scores for the first principal component of variation for sorghum lines
carrying all four possible combinations of homozygous genotypes for the two genetic markers show
in panels A and B.
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