

Glycaemia and albumin glycation rates as fitness mediators in the wild: the case of a long-lived bird

Adrián Moreno-Borrallo^{1†}, Pierre Bize², Sarahi Jaramillo-Ortiz^{1,3}, Christine Schaeffer^{1,3}, Fabrice Bertile^{1,3*}, François Criscuolo^{1*}

¹University of Strasbourg, CNRS, Institut Pluridisciplinaire Hubert Curien, UMR 7178, 67000 Strasbourg, France

²Swiss Ornithological Institute, Sempach, Switzerland

³National Proteomics Infrastructure, ProFi, FR2048 Strasbourg, France

* These authors share senior authorship.

†Corresponding author: adrian.moreno-borrallo@iphc.cnrs.fr

Abstract

Glucose is a vital metabolic component in the functioning of organisms, but it can also bind to biomolecules through non-enzymatic glycation reactions that result in loss of functions. While the effects of glycation on health have been well demonstrated in biomedical research, little is known about the effects of glycation in wild animals. Here, we studied how plasma glucose levels and albumin glycation rates vary with age and are related to fitness in a relatively hyperglycaemic long-lived bird, the Alpine swift (*Tachymarptis melba*). We measured plasma glucose and albumin glycation levels before and after reproduction in adult females of known age (2-14 years), showing that, while glucose levels increased in parallel with body mass, albumin glycation rates decreased within this period. Albumin glycation, but not glucose, varies with age, peaking at 5 years, consistently with other age-related parameters previously reported in this species. Interestingly, higher plasma glucose levels before reproduction were related to increased fledging success up to a certain threshold. In addition, in terms of dynamics, females gaining more mass lowered more their glycation levels, while those gaining less mass and lowering the more their glycation levels laid more eggs. Finally, higher body mass and plasma glucose levels after reproduction predicted a higher survival probability to the next season, whereas higher albumin glycation predicted lower survival, although in an age-dependent manner. Our study highlights adult plasma glucose and glycated albumin levels as new potential markers of ageing and fitness that should be further explored in this species.

Keywords: Glucose, albumin glycation, ageing, swifts, glycaemia, fitness.

31 **Introduction**

32 Understanding why some individuals are more performant than others at passing genes to the
33 next generation is one of the main tenets of evolutionary biology. To answer this question, we
34 need not only to measure fitness *via* various indicators of individual survival and/or
35 reproduction, but also to understand the underlying physiological mechanisms regulating
36 organisms' morphology and performance, and in turn fitness. An interesting physiological
37 mechanism in this respect involves blood glucose and its metabolic by-products resulting from
38 the reaction of sugars with nitrogen compounds such as amino acids like lysine or arginine,
39 namely glycation (Maillard 1912). Although glucose plays an essential role in supplying energy
40 to tissues, its binding to proteins, lipids and nucleic acids through non-enzymatic reactions can
41 also result in a loss of function of the glycated molecules (see e.g. Bakala et al. 2012; Dinda et al.
42 2015; Suravajjala et al. 2013).

43 The role of glucose and glycation on the health and performance of organisms is well studied in
44 medical research on laboratory animals and humans. We know that high blood sugar levels are
45 linked to diabetes, a major human disease in developed countries today (Sun et al. 2022). The
46 morbidity related to diabetes is thought to be mediated by several mechanisms, including non-
47 enzymatic glycation (Brownlee 1994). This reaction occurs readily under physiological conditions
48 and can lead to the formation of advanced glycation end-products (AGEs) (Cerami, et al. 1986).
49 AGEs are toxic compounds whose accumulation rate in tissues depends on protein turnover
50 (Verzijl et al. 2000) and metabolic health (Uruska et al. 2019). AGEs accumulate in particular in
51 the case of several pathologies such as cardiovascular or neurodegenerative diseases (see e.g.
52 Poulsen et al. 2013; Chaudhuri et al. 2018; Twarda-clapa et al. 2022; Khalid, et al. 2022).
53 Furthermore, the relationship between glycaemia and fitness is supported by studies in captivity
54 showing that high blood glucose levels and poor glycaemia regulation are linked to mortality
55 rates in zebra finches (Montoya et al. 2018; 2022) and in certain primates, including humans
56 (Palliyaguru et al. 2021), while glucose supplementation can improve survival and immunity in
57 Drosophila (Galenza et al. 2016). In contrast, very little is known about the consequences of
58 glycaemia and glycation in natural populations.

59 The case of birds is of particular interest given that their glycaemia is the highest within
60 vertebrates, doubling that of mammals (Polakof et al. 2011). However, except from rare cases,
61 birds usually do not show the pathologies (i.e. diabetes) associated with so high glycaemic levels
62 that would be mostly fatal for mammals (partly reviewed in Van de Weyer and Tahas 2024).
63 Protein glycation might therefore constitute a good indicator of health status and a possible

64 fitness predictor. In birds, only three studies have previously investigated the link between
65 haemoglobin glycation and measures of fitness in the wild. They revealed links of haemoglobin
66 glycation with age and survival probability (Récapet et al. 2016) as well as with phenology and
67 fledgling production (Andersson and Gustafsson 1995) in the collared flycatcher (*Ficedula*
68 *albicoloris*) and with chick growth in American kestrels (*Falco sparverius*; Ardia 2006). However, as
69 these studies used mostly non-specific glycation detection methods, more research is needed
70 on the prevalence of glycation in birds and its general relevance as a proxy of fitness.

71 Unlike previous studies of glycation in wild birds (Miksik and Hodny 1992; Rosa 1993; Andersson
72 and Gustafsson 1995; Beuchat and Chong 1998; Ardia 2006; Récapet et al. 2016; Ling et al. 2020),
73 we assessed here plasma albumin glycation levels instead of glycated haemoglobin levels in
74 erythrocytes. Albumin is the most abundant plasma protein and its glycation levels can be
75 considered as an alternative marker for disease progression monitoring due to its relevance in
76 regulating processes such as blood pressure and oxidative status (Furusyo and Hayashi 2013;
77 Kohzuma et al. 2021). Albumin glycation levels are representative of short-term glycaemia levels
78 (few weeks instead of several months for haemoglobin in humans), so it provides a higher
79 resolution tool for glycaemic regulation (Inaba et al. 2007; Kim and Lee 2012). Importantly,
80 albumin is much more exposed than haemoglobin to blood circulating glucose. Haemoglobin is
81 indeed protected from glucose in erythrocytes given that the transport of glucose inside
82 erythrocytes in birds seems to be virtually non-existent and energy production within
83 erythrocytes depends very little on glycolysis (Johnstone et al. 1998). Accordingly, a previous
84 study shows that, in captive adult zebra finches, plasma albumin glycation levels are rather high
85 whereas no glycation was observed on haemoglobin (Brun et al. 2022).

86 In this study, we investigated age-related variations in glycaemia and albumin glycation levels in
87 a natural population of a relatively long-lived bird, the Alpine swift (*Tachymarptis melba*; median
88 and maximum lifespan of 7 and 26 years, respectively; Fransson et al. 2023). We also sought to
89 determine if glycaemia and albumin glycation levels are related to fitness, so they can be
90 subjected to natural selection. Finally, we investigated whether glycaemia and albumin glycation
91 could reflect the cost of reproduction, mediating a trade-off between reproductive success and
92 ageing. As this bird species is long-lived, adults are expected, in line with life history theory, to
93 favour maintenance and survival over current reproduction, therefore limiting current effort, as
94 it would be advantageous for maintaining future reproduction prospects (e.g. Sæther et al.
95 1993). Adult Alpine swifts weigh about 100 g (Dumas et al. 2024) and feed on aerial insects
96 caught exclusively in flight. Given their relatively small size and insect-based diet, their glycaemia
97 is expected to be high, even for birds. Indeed, in birds, blood glucose levels correlate negatively

98 with body mass (Kjeld and Ólafsson 2007; Braun and Sweazea 2008; Tomasek et al. 2019), and
99 animals with high protein intake have higher levels of hepatic gluconeogenesis, thus maintaining
100 sustained high glucose levels relatively independently of their feeding levels (Migliorini et al.
101 1973; Myers and Klasing 2018).

102 **Materials and methods**

103 **Species and study colonies**

104 The Alpine swift is a socially monogamous bird that breeds in colonies of a few to hundred pairs
105 in cliffs or in the roof spaces of tall buildings. For this project, data were collected in 2023-2024
106 in three urban colonies of Alpine swifts located under the roof of clock towers in the Swiss cities
107 of Biel (Stadtkirche; about 60 breeding pairs), Solothurn (Bieltor; about 40 breeding pairs) and
108 Luzern (Hofkirche; about 30 breeding pairs). There is an easy access to the nests in these colonies
109 (buildings), which have been monitored for over 70 years in Solothurn, 40 years in Biel and 10
110 years in Luzern. Each year, nests are monitored to record the number of eggs laid and hatched
111 as well as the number of chicks fledged (see e.g. Bize et al. 2006; 2008; 2014). Female Alpine
112 swifts produce a single clutch per year of 1 to 4 eggs (modal clutch size is 3). Both parents then
113 share breeding duties, incubating the eggs for 18 days and feeding their offspring until 50 to 70
114 days after hatching, at which point they fledge. Chicks are ringed at 15 days of age and, given
115 that many individuals are locally recruited (Bize et al. 2017), around 70% of the adult birds in
116 this population have been ringed as chicks and therefore have an exact known age. These long-
117 distant migrants arrive in Switzerland in mid-April, start laying eggs in May and leave in
118 September for their wintering grounds in West and Central Africa (Meier et al. 2020).

119 **Sample collection and analyses**

120 Alpine swifts were captured under the legal authorisation of the Swiss Federal Agency for
121 Environment, Forests and Landscapes (ringing permit #2235). Blood sampling was performed
122 under a licence of the Veterinary Services of the Cantons Berne, Solothurn and Luzern (National
123 license #34497).

124 As part of the adult monitoring, each year adults are captured after their arrival from spring
125 migration (late April to early May; i.e. pre-breeding period) and at the end of the reproductive
126 period (August) before they leave for their wintering grounds. All the adults in a given colony
127 are captured on the same day, after dusk, using trap doors that are manually closed after they
128 entered their colony (i.e. building) to roost for the night. After the traps are closed, all the birds
129 are immediately captured by hand and kept in bags until they are measured (for a description

130 of the different measures, see Moullec et al. 2023) and blood samples are taken from some of
131 them. Blood (ca. 150 μ l) is collected from a toe using heparinized Microvette®(Sarstedt). They
132 are kept on ice before being centrifuged (3500 rpm, 4°C, 10 min), and then the plasma is
133 aliquoted and frozen at -20°C. This processing of blood samples (i.e. centrifugation and -20°C
134 storage) is carried out within 4 hours of collection.

135 In 2023, the pre- and post-breeding captures of adults took place between May 1 and 4 and
136 between August 9 and 12, respectively, with thus a period of about 100 days separating the two
137 sessions of capture. Due to logistic limitations in the number of samples that could be analysed
138 in the laboratory for glycation levels, we selected samples from 36 females (12 from Biel, 19
139 from Solothurn, and 5 from Luzern). We restricted our sampling design to one sex to minimize
140 the variance associated with sex, and in turn increase the statistical power associated with
141 analyses on small sample sizes. We chose females because we aimed to study the links with
142 reproduction, and we expected stronger links in females than males (Bize et al 2008). To
143 investigate the links with age, we took care to have a widespread age range (mean \pm SE = 6.64 \pm
144 0.57 minimum-maximum = 2 – 14).

145 Glycation levels were determined using a mass spectrometry-based method, as previously
146 described in Brun et al. 2022. Our measures of albumin glycation rate correspond to the
147 percentage of glycated albumin relative to total plasma albumin. Glucose levels were
148 determined by a Contour Plus (Ascensia® diabetes care) portable glucometer.

149 We estimated individual annual survival from 2023 to 2024 by looking the presence/absence of
150 the birds in their colony between May and July 2024 following capture sessions at night in spring
151 and during daytime during reproduction. Birds that are not re-seen in 2024 are supposed dead
152 since breeders show no breeding dispersal (Bize et al. 2017), and the probability to recapture a
153 bird that is still alive is virtually 1 in our colonies (Bize et al. 2006).

154 **Statistics**

155 First, we investigated sources of variation in blood glucose levels, albumin glycation levels and
156 body mass using general linear mixed models where, as fixed explanatory variables, we entered
157 the sampling period (2 factor levels: pre- versus post-breeding), body mass on the night of
158 capture (except for the model on mass itself), and chronological age. When analysing the
159 sources of variation in glucose levels, we also tested for stress effects by including the sampling
160 time in our model. When analysing the sources of variation in albumin glycation levels, we
161 included the measures of glucose levels as explanatory variable to test whether females with
162 higher glycaemia had higher albumin glycation levels.

163 Besides, we investigated whether pre-breeding glycaemia and glycation levels explained female
164 reproductive performance in the same year by performing a set of models testing the effects of
165 pre-breeding glucose and glycation levels, as well as pre-breeding body mass and chronological
166 age on a series of reproductive traits used as proxies of fitness. In this sense, we analysed, in
167 four different models, effects of the above explanatory variables on: (i) clutch size, (ii) brood size
168 at fledging, (iii) hatching success (proportion of eggs that hatched), (iii) and fledging success
169 (proportion of hatchlings that fledged). This approach allowed testing whether pre-breeding
170 physiological traits may constraint female reproductive performance (see e.g. Metcalfe and
171 Alonso-Álvarez 2010; Stier et al. 2012 for similar discussions with oxidative stress). To test for
172 possible costs of reproduction on the state of physiological traits after breeding (see e.g. Rose
173 and Bradley 1998; Harshman and Zera 2006), we then investigated how post-breeding measures
174 of glycemia and albumin glycation were affected by either clutch size or brood size at fledging
175 (tested in two separated models for each physiological variable, i.e. a total of four models) after
176 controlling for post-breeding mass , chronological age, pre-breeding values of the variable in
177 question (either glucose or glycation) and post-breeding glucose values in the model explaining
178 glycation.

179 Furthermore, we also investigated how changes in glucose or albumin glycation levels during
180 the breeding seasons (computed as the post-values minus the pre-values) are related to
181 reproductive effort (either clutch size or number of chicks fledged, in two separated models).
182 We also controlled for age and changes in body mass in these models, and for changes in glucose
183 levels in the model testing how changes in glycation levels affected reproduction.

184 In all the models, we entered the colony identity, as well as female identity (nested within
185 colony) in models with repeated measures from the same females, as random intercept to
186 control for pseudo-replication. To account for possible non-linear effects of age, body mass,
187 glucose levels and sampling time on the response variables, we included both linear and
188 quadratic effects in our starting models using raw polynomials. In models with significant
189 quadratic effects, segmented analyses were performed *a posteriori* to explore the possible
190 existence of a breakpoint (i.e. threshold) separating different linear relationships on either side
191 of this breakpoint. Afterwards, a model including a variable, called “pre_break”, with an
192 assigned value of 0 after the breakpoint and 1 before, and the interaction of such variable with
193 the variable for which the breakpoint was calculated, was fitted. This was repeated swapping
194 the values of the “pre_break” variable to 0 before and 1 after the breakpoint such that both
195 slopes could be estimated.–Finally, we performed generalized linear mixed models with a
196 binomial error structure and a logit link function testing the effects of both post-reproductive

197 (August) plasma glucose and albumin glycation, controlling for post-reproductive body mass and
198 age, and the dynamics over the reproductive period (differences between before and after
199 reproduction, i.e. May and August) on survival probability (as the recapture or not of the
200 individual in May 2024). For the models testing the dynamics, body mass differences were
201 included instead of post-reproductive body mass. All the variables included quadratic terms in
202 the initial full models.

203 In models where glycaemia, glycation or body mass values were entered as covariates, these
204 were centred in order to better interpret their intercepts (Schielzeth 2010). A stepwise
205 backwards procedure eliminating the quadratic components, the hour and/or the mass when
206 these were not significant was used to simplify the models, comparing the AICs and BICs with
207 the *anova* function of R, and selecting the ones with the lowest values. For two individuals
208 sampled in August, we were unable to detect any glycated form of albumin, making them
209 outliers. Therefore, these two measures were excluded from the final models on glycated
210 albumin. We used general linear mixed models with appropriate distribution for our response
211 variables: Gaussian for glucose and glycation levels, Poisson with a logit link for clutch size and
212 brood size at fledging, and binomial for the proportion of eggs that hatched (hatching success)
213 and the proportion of hatched chicks that fledged (fledging success). Models were ran using the
214 *lmer* function of the *lme4* R package, plus *lmerTest* for obtaining p-values (Bates et al. 2015;
215 Kuznetsova et al. 2017). P-values under 0.05 were reported as significant, and between 0.1 and
216 0.05 as trends.

217 **Results**

218 **Variation of glycaemia and albumin glycation levels before and after reproduction and with** 219 **age**

220 Glucose levels were significantly higher after reproduction than before reproduction (mean \pm SE
221 glucose levels in mg/dl before versus after reproduction: 328.8 ± 12.3 versus 374.8 ± 7.7 ; **Table**
222 **1; Figure 1A**). Glucose levels were not significantly related to body mass or chronological age
223 (**Table 1A**).

224 Albumin glycation levels were significantly higher before reproduction when compared to after
225 reproduction (mean \pm SE albumin glycation levels before versus after reproduction: $25.39\% \pm$
226 1.19% versus $24.48\% \pm 0.38\%$; **Table 1B; Figure 1B**). Albumin glycation levels linearly decreased
227 with increasing body mass (**Table 1B; Figure 2A**). Albumin glycation levels varied non-linearly
228 with age (**Table 1B; Figure ESM1** and **Figure 2B**). Follow-up analyses using a segmented

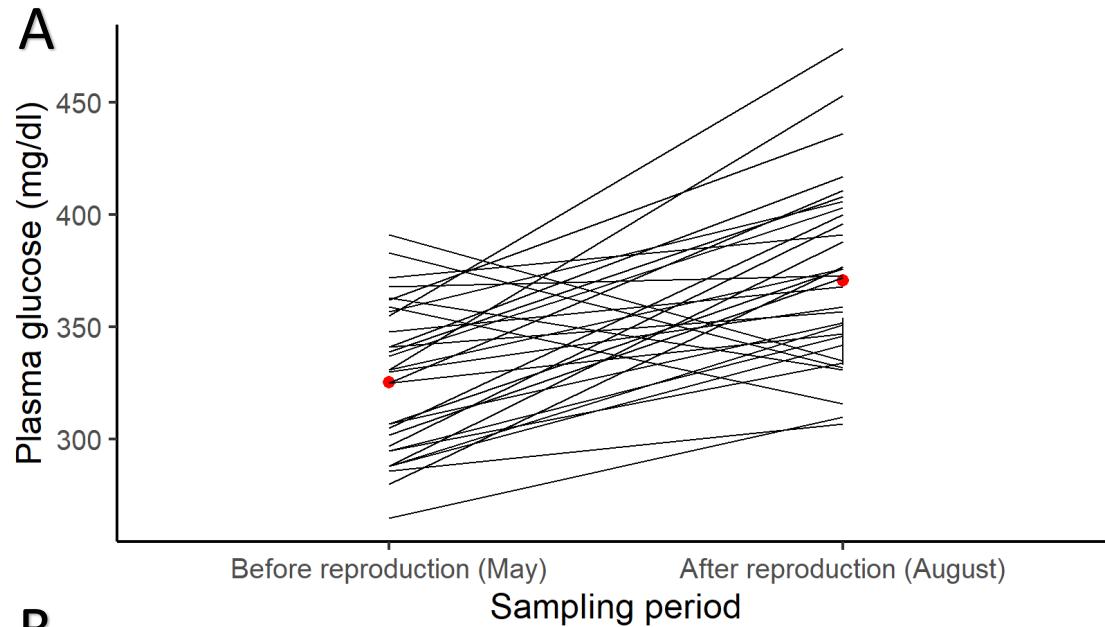
229 approach indicated a breakpoint between 5 and 6 years of age, with albumin glycation levels
230 being significantly lower between 2 and 5 years of age than between 6 and 14 (estimate \pm SE: 2-
231 5 years $25.22\% \pm 1.54\%$; 6-14 years: $28.89\% \pm 1.14\%$; $P = 0.024$). The albumin glycation levels
232 tended to decrease with age after the breakpoint (slope \pm SE: -0.156 ± 0.09 ; $P = 0.095$) and this
233 slope tended to be different to the one from before the breakpoint as showed by the outcome
234 of the interaction term (estimate \pm SE: 0.646 ± 0.318 ; $P = 0.051$), while no significant trend was
235 found for the slope calculated before the break point (slope \pm SE: 0.223 ± 0.14 ; $P = 0.123$).
236 Variation in glycation levels was not explained by variation in plasma glucose levels (**Table 1B**).
237 Finally, body mass increased after reproduction (estimate \pm SE: before = $100.6\text{ g} \pm 2.3$; after =
238 $105.41\text{ g} \pm 0.99$; $t = 4.87$, $P < 0.001$).

239 **Table 1.** Results of a general linear mixed model showing the effects on glucose (A) and albumin glycation (as a
240 percentage of total albumin) (B) of the sampling period (before and after reproduction), body mass, age (using a 2-
241 level polynomial approach), and plasma glucose in adult female Alpine swifts. Both glucose and mass are centred to
242 better interpret the intercept. The reference level of the sampling period is before reproduction. Significant predictors
243 are indicated in bold. Bird identity and sampling colony were entered as random effects.

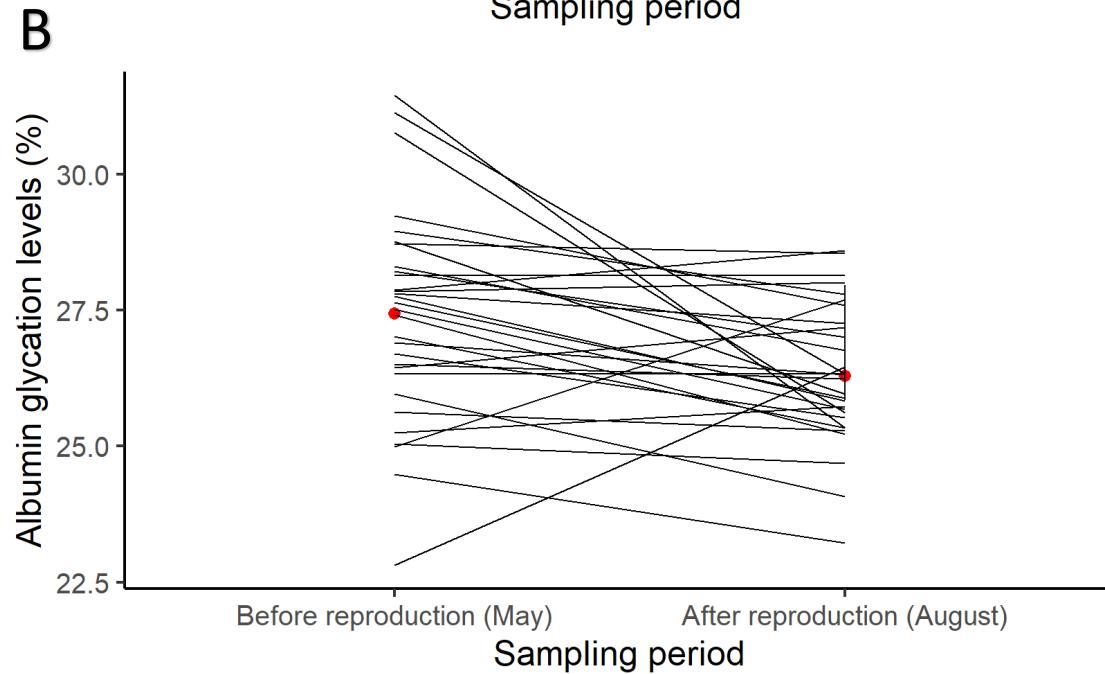
	Estimates	Standard errors	df	t-values	p-values
--	-----------	-----------------	----	----------	----------

(A) Glucose levels

Random effects: $V_{ID} = 313.85$ (35 individuals), $V_{colony} = 57.47$ (3 colonies), $V_{residuals} = 1008.6$ (69 observations)


Intercept	328.82	12.27	19.1	26.8	< 0.001
Sampling period (August)	45.97	7.69	35.5	5.98	<0.001
Age (years)	-0.32	1.44	33.26	-0.22	0.83

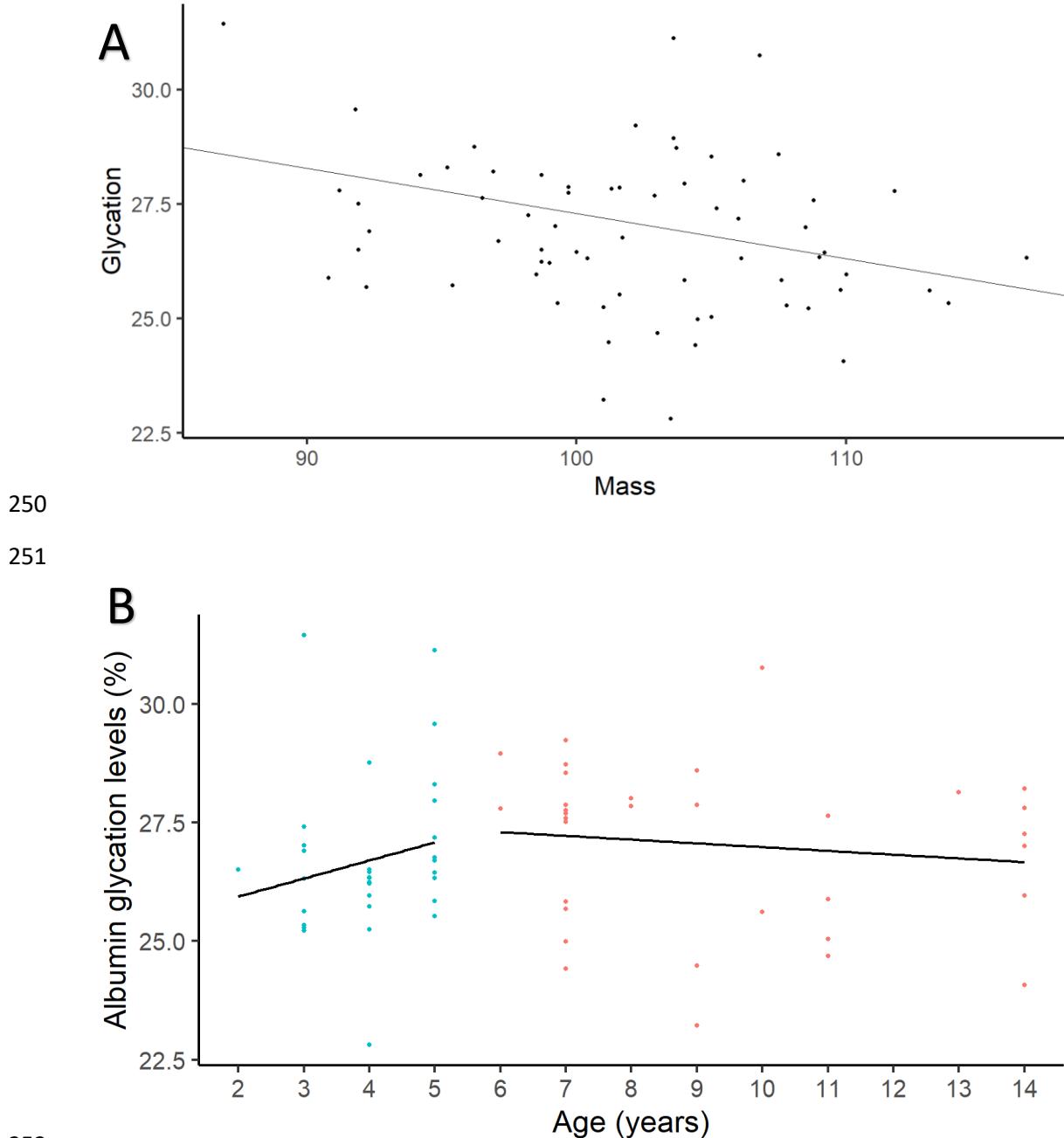
(B) Albumin glycation levels


Random effects: $V_{ID} = 0.24$ (35 individuals), $V_{colony} = 1.54$ (3 colonies), $V_{residuals} = 1.42$ (67 observations)

Intercept	25.39	1.19	10.8	21.42	< 0.001
Sampling period (August)	-0.94	0.38	46.9	-2.46	0.018
Body mass (grams)	-0.11	0.03	56.9	-3.21	0.002
Age (years)	0.58	0.26	31.2	2.19	0.036
Age (years)²	-0.04	0.02	30.6	-2.29	0.029
Plasma glucose (mg/dl)	0.01	0.00	59.1	1.46	0.150

244

245



246

247 **Figure 1.** Mean \pm SE (A) plasma glucose levels and (B) albumin glycation levels measured before (May) and after (August) reproduction in adult female Alpine swifts (in red). Lines are describing the individual changes between May and August.

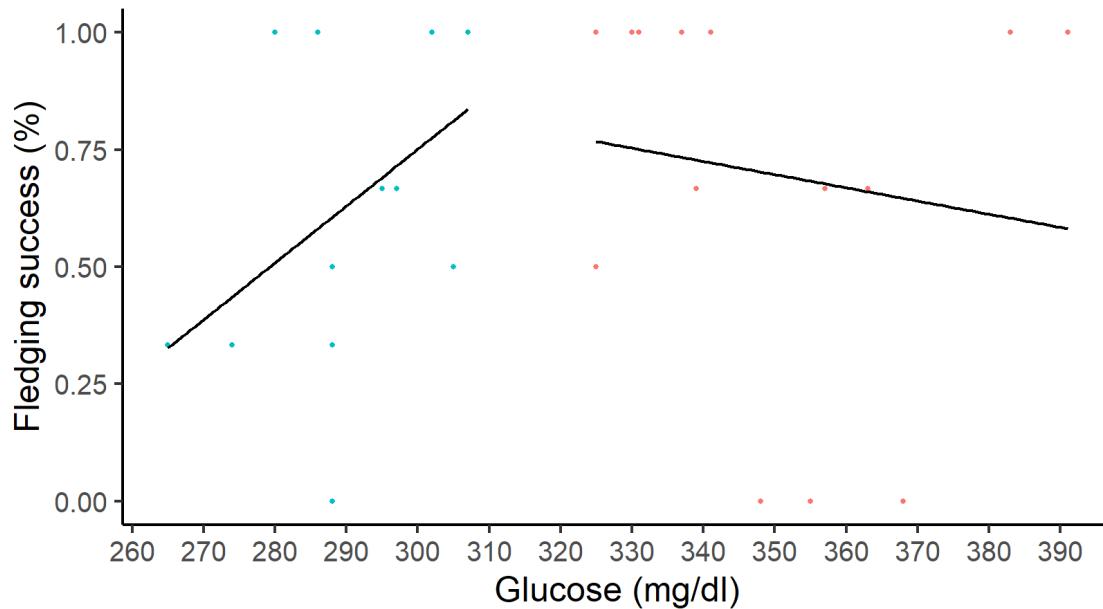
248

249

256 Plasma glucose and glycation levels measured before reproduction did not significantly explain
257 how many eggs females laid (**Table 2A**) nor how many chicks fledged (**Table 2B**). However,
258 glucose levels, but not albumin glycation, showed a negative trend on hatching success (**Table
2C**), and plasma glucose levels, but not albumin glycation rates, measured before reproduction
260 (May), significantly explained the proportion of chicks fledged from a brood, after controlling for
261 female age, following positive linear and negative quadratic effects (see **Table 2D** and **Figure 3**).

262 Segmented analyses showed a breakpoint at 307 mg/dl with fledging success showing a trend
263 to be lower below the breakpoint ($P = 0.095$). The fledging success tended to increase with
264 glucose before the breakpoint (estimate \pm SE: 0.017 ± 0.009 ; $P = 0.074$) and this slope tended to
265 be different from that observed after the breakpoint, as shown by the outcome of the
266 interaction term (estimate \pm SE: -0.017 ± 0.01 ; $P = 0.088$). No significant trend was found after
267 the breakpoint (slope \pm SE: -0.0008 ± 0.005 ; $P = 0.881$). Overall, this suggests that there is a limit
268 to plasma glucose levels beyond which fledging success no longer increases as plasma glucose
269 levels rise.

270 No effect of clutch or brood size at fledging (i.e., reproductive effort) was found on plasma
271 glucose or albumin glycation values measured at the end of the reproduction period (in August),
272 after controlling for glucose/glycation levels measured at the start of the season (in May) (see
273 **Table ESM1.1**).


274 **Table 2.** Results of a generalized linear mixed model with a logit link function on binomial data of **A** clutch size, **B**
275 brood size at fledging, **C** hatching success, i.e. proportion of eggs that hatched, and **D** fledging success, i.e. proportion
276 of hatchlings that fledged. Age, mass and plasma glucose in May (before reproduction) are included in the model with
277 quadratic effects, and albumin glycation in may only as a linear predictor. Albumin glycation is measured as a
278 proportion of glycated vs total albumin. Significant estimates are indicated in bold.

	Estimates	Standard Errors	t-values	p-values
(A) Clutch size				
Random effects: $V_{\text{colony}} = 0.007$ (3 colonies), $V_{\text{residuals}} = 0.201$ (33 observations)				
Intercept	0.99	0.085	11.61	<0.001
Glucose before reproduction (mg/dl)	-0.0006	0.0009	-0.655	0.512
Albumin glycation before reproduction (%)	-0.001	0.02	-0.064	0.949
(B) Brood size at fledging				
Random effects: $V_{\text{colony}} = 0$ (3 colonies), $V_{\text{residuals}} = 1.18$ (33 observations)				
Intercept	1.424	0.189	7.53	<0.001
Glucose before reproduction (mg/dl)	-0.0007	0.006	-0.126	0.9
Albumin glycation before reproduction (%)	0.074	0.103	0.716	0.479
(C) Hatching success				
Random effects: $V_{\text{colony}} = 2.185 \times 10^{-10}$ (3 colonies), $V_{\text{residuals}} = \text{NA}$ (33 observations)				
Intercept	373.55	236.87	1.58	0.115
Glucose before reproduction (mg/dl)	-0.041	0.023	-1.78	0.075
Albumin glycation before reproduction (%)	-0.249	0.385	-0.645	0.519
Mass (g)	-7.653	4.831	-1.584	0.113

Mass ² (g)	0.039	0.025	1.589	0.112
Age (years)	0.587	0.333	1.762	0.078
(D) Fledging success				
Random effects: V _{colony} = 0.00008 (3 colonies), V _{residuals} = NA (28 observations)				
Intercept	-49.90	15.42	-3.24	0.001
Glucose before reproduction (mg/dl)	0.19	0.02	10.91	<0.001
Glucose² before reproduction(mg/dl)	-0.00	0.00	-33.90	<0.001
Albumin glycation before reproduction (%)	0.46	0.31	1.50	0.133
Age (years)	-2.21	1.11	-2.00	0.046

279

280

281

282 **Figure 3.** Variation in fledging success measured as the proportion of hatchlings that fledged in function of plasma
283 glucose levels (in mg/dl) measured in May, before reproduction (following the predictions of a segmented model).

284 Changes in albumin glycation rates are related to those in body mass and to clutch size

285 Albumin glycation rate was found to decrease between the start (May) and end (August) of the
286 breeding season, while glucose and body mass increased in parallel over the same period in
287 adult female Alpine swifts (see above). Regarding the dynamics (i.e. differences in the
288 parameters between May and August), we found a significant negative effect of body mass
289 difference on glycation difference (Estimate \pm SE = -0.219 ± 0.055 ; $P < 0.001$, with brood size at
290 fledging as a covariate). In other words, females whose body mass increased the least during
291 the breeding season had a smaller decrease in glycation levels. A similar relationship was
292 obtained when using clutch size as a covariate (estimate \pm SE = -0.243 ± 0.061 ; $P = 0.0142$, see

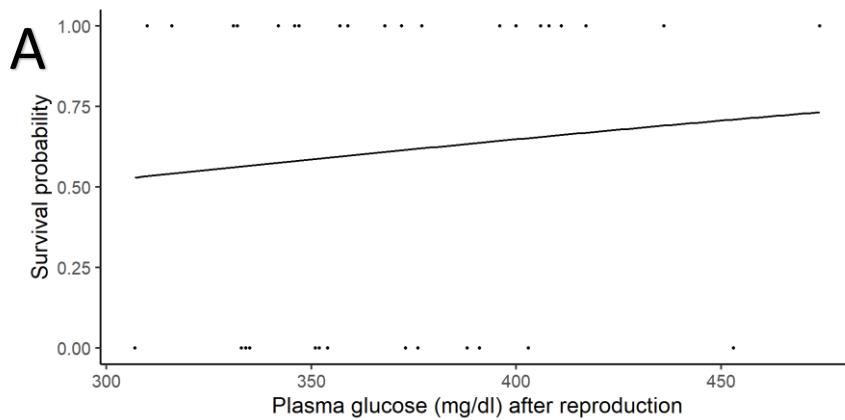
293 **Table ESM1.2).** When testing the influence of glycation dynamics on clutch size, we found a
294 significant negative effect of body mass and glycation difference on clutch size (**Table 3**). In other
295 words, females with the least reduction in glycation levels laid fewer eggs. Changes in plasma
296 glucose levels were not influenced by any of the breeding output variables (**Table ESM1.1**), nor
297 did they in turn influence them (**Table 3**).

298 **Table 3.** Results of generalized linear mixed models on (A) clutch size, (B) brood size at fledging, (C) hatching success,
299 i.e. proportion of eggs that hatched, and (D) fledging success, i.e. proportion of hatchlings that fledged. The fixed
300 predictors are the difference between before and after reproduction of plasma glucose in mg/dl, albumin glycation
301 as a percentage of total albumin and mass in grams. The model also includes age in years with a quadratic component.
302 Significant estimates are indicated in bold.

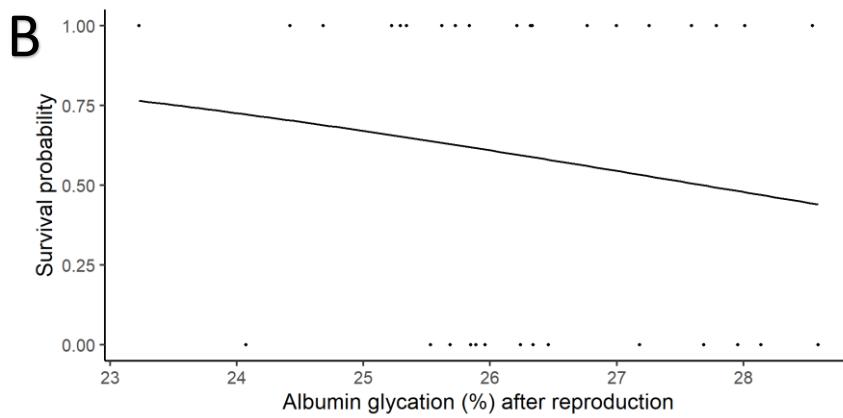
	Estimates	Standard Errors	t-values	p-values
(A) Clutch size				
Random effects: $V_{\text{colony}} = 0.013$ (3 colonies), $V_{\text{residuals}} = 0.156$ (31 observations)				
Intercept	1.17	0.18	6.58	<0.001
Glucose difference	0.0005	0.0006	0.97	0.334
Glycation difference	-0.04	0.02	-2.3	0.022
Mass difference	-0.03	0.01	-3.46	0.001
Age (years)	-0.06	0.04	-1.57	0.116
Age ² (years)	0.004	0.002	1.83	0.067
(B) Brood size at fledging				
Random effects: $V_{\text{colony}} = 0.511$ (3 colonies), $V_{\text{residuals}} = 1.04$ (31 observations)				
Intercept	1.66	0.51	3.25	0.065
Glucose difference	-0.001	0.004	-0.23	0.816
Glycation difference	-0.191	0.314	-0.44	0.542
Mass difference	-0.081	0.053	-1.53	0.139
(C) Hatching success				
Random effects: $V_{\text{colony}} = 1.652 \times 10^{-10}$ (3 colonies), $V_{\text{residuals}} = \text{NA}$ (31 observations)				
Intercept	-0.966	1.703	-0.57	0.571
Glucose difference	0.011	0.013	0.85	0.395
Glycation difference	0.039	0.422	0.092	0.927
Mass difference	0.005	0.155	0.034	0.973
Age (years)	0.447	0.317	1.41	0.158
(D) Fledging success				
Random effects: $V_{\text{colony}} = 1.652 \times 10^{-10}$ (3 colonies), $V_{\text{residuals}} = \text{NA}$ (31 observations)				
Glucose difference	-0.017	0.012	-1.34	0.179

Glycation difference	-0.191	0.314	-0.61	0.542
Mass difference	-0.084	0.123	-0.68	0.496
Age (years)	-1.725	0.929	-1.86	0.063
Age ² (years)	0.095	0.053	1.8	0.072

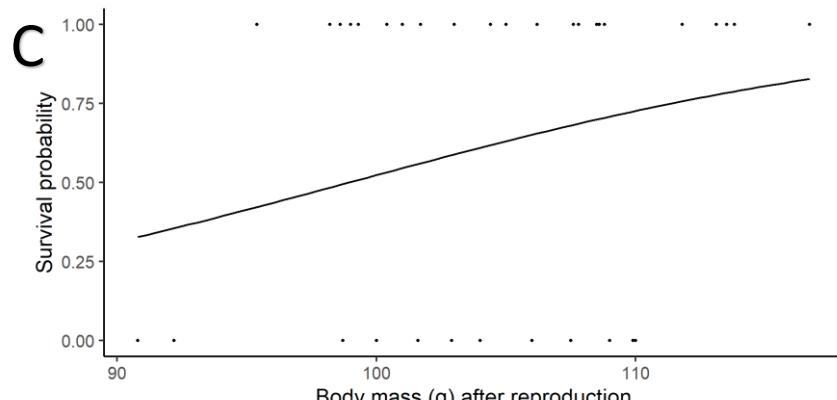
303


304 The effects on survival probability of plasma glucose, albumin glycation and body mass after
 305 reproduction (August), controlling for age, are shown in **Table 4**. While plasma glucose and body
 306 mass have linear and quadratic effects on survival (**Figure 4 A, B**) independently of age control,
 307 albumin glycation levels only have an effect on survival when age is controlled for (**Figure 4C**).

308 **Table 4.** Results of generalized linear mixed models on survival to the next season (August 2023 to May 2024)
 309 determined by recapture in the colony. Both the complete (A) and the best model by AIC and BIC (B) are shown, to
 310 discuss the mediation of age on albumin glycation effects. Significant estimates are indicated in bold.


	Estimate	Standard Error	z value	P-value
<i>(A) Complete model</i>				
Random effects: Vcolony = 1.336*10 ⁻¹⁷ (3 colonies), Vresiduals = NA (34 observations)				
Intercept	0.19	0.199	0.953	0.34063
Glucose after (mg/dl)	0.046	0.011	4.36	<0.001
Glucose² after (mg/dl)	-0.00005	0.000005	-9.177	<0.001
Albumin glycation (%)	-3.43	1.325	-2.592	0.00955
Albumin glycation² (%)	0.059	0.025	2.394	0.017
Mass (g)	0.313	0.073	4.316	<0.001
Mass² (g)	-0.001	0.0001	-8.587	<0.001
Age (years)	-0.276	0.614	-0.45	0.653
Age ² (years)	0.016	0.036	0.451	0.652
<i>(A) Best model</i>				
Random effects: Vcolony = 0 (3 colonies), Vresiduals = NA (34 observations)				
Intercept	-12.57	19.91	-0.631	0.528
Glucose after (mg/dl)	0.041	0.0102	4.03	<0.001
Glucose² after (mg/dl)	-0.00004	0.000005	-8.15	<0.001
Albumin glycation (%)	-1.54	1.325	-1.16	0.244
Albumin glycation ² (%)	0.022	0.025	0.912	0.362
Mass (g)	0.455	0.071	6.37	<0.001
Mass² (g)	-0.002	0.0001	-14.3	<0.001

311


312

313

314

315

316 **Figure 4.** Probability of survival from August 2023 to May 2024 depending on post-reproduction (August 2023) values
317 of (A) plasma glucose levels, (B) albumin glycation rate and (C) body mass.

318 There was no significant effect of changes in plasma glucose levels, albumin glycation and body
319 mass between pre- and post-breeding stage on the probability of survival (see **Table ESM1.3**).

320

321

322 **Discussion**

323 **Body mass, glycaemia and albumin glycation: related signs of body condition?**

324 Female Alpine swifts had lower levels of plasma glucose and higher levels of glycated albumin
325 before reproduction (May) than after reproduction (August). Alpine swifts are trans-Saharan
326 migratory birds that arrive in Switzerland in April, reproduce between May and August, and then
327 leave in September to return to their wintering grounds in Western Africa (Meier et al. 2020).
328 Hence, blood parameters measured in May could partially mirror a cost of migration, although
329 measures before the migratory event should be performed to discriminate such an effect. Blood
330 glucose levels have been found to positively correlate with residual body mass (adjusted for
331 structural size) in American house finches, *Haemorhous mexicanus*, (Mcgraw et al. 2020),
332 breeding pale-bellied Tyrant-Manakins, *Neopelma pallescens* (Azeredo et al. 2016) and with
333 body mass in garden warblers (*Sylvia borin*) (Jenni-Eiermann and Jenni 1994) and barn swallows
334 (Bendová 2020, but see Lill (2011) and Remage-Healey and Romero (2000) for contrasted
335 results). Although plasma glucose and body mass were not correlated in our study, they both
336 increased over the course of the reproductive season. This is in contrast with the decrease in
337 mass along the season found by Dumas et al. (2024) in the same Alpine swift population;
338 however, that study focused on body mass measurements during the breeding season,
339 excluding the pre- and post-breeding measurements reported in the present analysis. An
340 increase in feeding frequency of the chicks from the pre-laying to the fledging phase could
341 explain the higher glucose levels (Jackson et al. 2023). However, it remains unclear if the
342 observed increase in body mass across the breeding season depends more on muscle size
343 (proteins), as it would be expected when activity levels are increased (Marsh 1984 and
344 discussion in Jackson et al. 2023), or on fat deposition, potentially derived from sugars.
345 Measures of changes in body composition during breeding, apart from merely body mass, would
346 also be fruitful for understanding how dynamics of fuel usage and sparing affect the value of
347 plasma metabolites such as glucose.

348 The concomitant increase in body mass and glucose and reduction in glycation between May
349 and August may indicate that glycated albumin plasma levels may be a proxy of individual quality
350 (see Wilson and Nussey 2010) in breeding female swifts. This new individual quality marker
351 would therefore add to the various blood metabolites already described to date as markers of
352 quality in birds (Jenni-eiermann and Jenni 1994; Minias and Kaczmarek 2013; Azeredo et al.
353 2016; Jackson et al. 2023). Individuals of higher quality may therefore be better protected
354 against glycation, either by avoiding it or by being more efficient in quickly clearing glycated

355 proteins from the body. Therefore, restoring an adult physiological status promoting survival
356 would also limit the deleterious effects of glycation over time, and could therefore promote
357 longevity. Interestingly, albumin glycation and, more generally, fructosamine levels (a marker of
358 general plasma protein glycation) are negatively related to BMI (Body Mass Index) in humans
359 (Selvin et al. 2018). A similar result was found here in swifts, i.e. a negative relationship between
360 albumin glycation levels and body mass. Beyond a simple covariation of body mass and
361 glycation, how body mass may relate to glycation levels is not yet well-known, but it is
362 hypothesized to be related with an increase in protein turnover associated to the
363 proinflammatory state induced by an augmented adiposity (see e.g. Chagnac et al. 2003; Koga
364 et al. 2007).

365 To our knowledge, few studies described glycation status in wild breeding birds. The only
366 publication in this regard found no significant variation in the levels of circulating glucose and
367 fructosamine after breeding in common eiders (*Somateria mollissima*), despite a decrease in
368 body mass (Ma et al. 2020). This discrepancy may have several explanations. Common eiders
369 are capital breeders and they rely mostly on internal lipid stores while fasting during breeding
370 (Parker and Holm 1990). The relationship between plasma glucose, glycation levels and
371 reproduction may therefore not be as straightforward as in income breeders like swifts.

372 With regard to body mass change in the incubating sex during breeding, we can observe clear
373 differences between bird species, depending mainly on their reproductive strategy (Moreno
374 1989), with capital breeders losing weight during incubation while income breeders maintain or
375 even increase their body mass, and undergo the main weight loss shortly after hatching. Cox and
376 Cresswell (2014) found that species whose body mass increases the most during breeding also
377 have higher survival rates. They proposed that the lower food predictability under less
378 pronounced seasonality triggers greater adult investment in survival than in reproduction during
379 the breeding season. Swifts forage exclusively on flying insects, whose availability depends on
380 weather conditions (Grüebler et al. 2008), with rainy days severely limiting adult food intake and
381 affecting their body mass (Dumas et al. 2024). Swifts are relatively long-lived birds, and should
382 therefore invest more in their survival (maintaining body mass and body condition) during the
383 breeding season than in current reproduction (see e.g. Charlesworth 1980; Saether 1988),
384 although it would also depend on certain variables, including their pre-breeding condition,
385 which can modulate their resolution of such trade-off (Erikstad et al. 1998). Indeed, Martins and
386 Wright (1993) showed that common swifts (*Apus apus*) rapidly restore their body mass at the
387 end of the nestling phase, when the chicks' feeding requirements are reduced, thus limiting the
388 cost of reproduction. In our study, we found that body mass increased from laying initiation to

389 fledging stages, which supports the idea of prioritizing investment in adult self-maintenance for
390 breeding individuals.

391 **Age-related variation of glycated albumin**

392 Albumin glycation in female swifts increases in early life up to the age of 5, before decreasing
393 slightly with age. This typical bell-shape pattern (see e.g. Forslund and Pärt 1995; Saraux and
394 Chiaradia 2022) of albumin glycation levels in relation to age is similar to what has been
395 described before in this species for morphometric and breeding traits (Moullec et al. 2023), as
396 well as for physiological traits such as females' erythrocyte membrane resistance to oxidative
397 stress (Bize et al. 2008). Moreover, albumin glycation, together with other glycation markers,
398 has been reported to increase with age in humans, although linearly instead of following a bell-
399 shaped pattern (Selvin et al. 2018). Glucose levels, however, did not vary with age, in contrast
400 to what is known from biomedical research in humans and other model species, where we can
401 see for example an increase with age in primates and a bell-shaped pattern in laboratory mice
402 (Palliyaguru et al. 2021). Our data shows also a higher survival of individuals with higher glucose
403 levels, which together with an increased fledging success, suggests our population of swifts is
404 being selected for higher glucose levels, being potentially quite resistant to its pervasive effects.
405 Still, this could also generate an antagonistic pleiotropy affecting ageing (Williams 1957), given
406 the effects of glycation on survival (see below).

407 Our results on age-related variation of glycated albumin are derived from a cross-sectional study
408 where individuals of different ages are sampled once rather than from a longitudinal study
409 where the same individuals are sampled multiple times at various ages. Findings from cross-
410 sectional studies are therefore incorporating both effects taking place at the individual level
411 (improvement/maturation early in life and senescence late in life) and demographic effects such
412 as the selective appearance and disappearance of phenotypes in the population (Forslund and
413 Pärt 1995; van de Pol and Verhulst 2006). Hence, the increase in glycation levels before the age
414 of 5 could be explained either by an increase in glycation rates at individual level with age or by
415 the late recruitment into the breeding population of individuals with higher glycation rates (i.e.
416 selective appearance: a later age at reproduction in females with a higher glycation level early
417 in life). Female Alpine swifts usually start breeding for the first time between 2 and 5 years of
418 age (Tettamanti et al. 2012). Similarly, a decrease in older age may occur either at an individual
419 level or as a result of the selective disappearance from the population of individuals with higher
420 glycation rates. An intra-individual decrease in glycation levels with age towards the end of life
421 would indicate 'improved health', which contrasts sharply with the results of biomedical

422 research in humans, which show an intra-individual increase in glycation levels with age,
423 indicating 'senescence' (Selvin et al. 2018). There is considerable support for the hypothesis of
424 selective disappearance in other species. Indeed, glycation of albumin and haemoglobin has
425 been linked to mortality in humans (Wu et al. 2021; Rooney et al. 2022), whereas adult collared
426 flycatchers with higher haemoglobin glycation levels (measured using a human blood kit) were
427 more likely to disappear from the wild (Récapet et al. 2016). Furthermore, our data showed
428 interesting effects of albumin glycation levels on survival to the next season, which seems to
429 indicate that individuals with lower glycation levels have a higher probability of survival, but only
430 when accounting for age, even when age itself does not predict survival. This can be so because
431 the effects of age on mortality rates (potentially senescence) are mediated by factors such as
432 glycation rates or body mass, for which our data seem to show selection in favour of higher body
433 masses. This is in partial disagreement with what Dumas et al. 2024 found, i.e. that such an
434 effect only occurs for non-breeders, whereas we report it for breeders. Nevertheless, they
435 showed this effect for both sexes together, whereas we do it for females alone. This may be
436 relevant as Dumas et al. (2024) also showed different kinds of selection pressures (although
437 through fledging success, not through survival as in our case) between sexes (i.e. stabilizing
438 selection for females and disruptive selection for males) for breeding body mass (i.e. measured
439 in June).

440 As a conclusion, to finally determine whether glucose and glycated albumin can be reliably used
441 as markers of senescence in swifts, and potentially in other birds, longer longitudinal studies are
442 still needed to determine if the effects are sustained across different years, potentially with
443 contrasting environmental conditions modulating the selective pressures.

444 **Pre-reproduction plasma glucose levels and albumin glycation dynamics affect female**
445 **reproductive performance**

446 We found that plasma glucose levels before the start of reproduction were the only factor that
447 significantly predicted fledging success. Hence, body condition of the parents (here evaluated
448 as body mass) did not positively modulate fledging success in swifts, contrary to what has been
449 highlighted before in this species (Dumas et al. 2024) and in other birds (with body mass
450 residuals on size, e.g. Chastel et al. 1995; Moe et al. 2002). This discrepancy in our results may
451 be due to our small sample size, which makes it difficult to establish significant relationships if
452 the effect is subtle. The relationship between pre-reproduction glucose levels and fledging
453 success was quadratic, and a further segmented analysis suggested that starting breeding with
454 low glycaemia is not optimal for reproduction, and a glucose level over a point (estimated to be

455 307 mg/dl in our model) does not improve reproductive success anymore. Low glycaemia may
456 indicate poor female condition, with deleterious consequences such as impaired adult foraging
457 performance and seldom chick provisioning, two important determinants of fledging success
458 (e.g. Jenni-Eiermann and Jenni 1994, Saraux and Chiaradia 2022). Although this is not an obvious
459 effect according to our data, which seem to indicate a plateau for fledging success after a
460 threshold in plasma glucose (i.e. 307 mg/dl), high glycaemia could also impair the ability of
461 females to rear chicks successfully. This could involve the glycation process for example,
462 although our data did not suggest that albumin glycation levels directly influence reproduction.
463 In contrast, Borger (2024) found that glycated haemoglobin in female zebra finches was
464 positively related with clutch size and offspring production, but as they only measured it after
465 reproduction, costs cannot be separated from constraints. It may thus be concluded that their
466 results indicate that higher egg production and perhaps clutch care induce higher levels of
467 protein glycation, costs we did not find. However, direct comparison between our results and
468 those of Borger (2024) is difficult, as discrepancies may be explained by physiological differences
469 between species studied (Bize, et al. 2014), the context (captive versus wild individuals), the
470 nature of the targeted glycated proteins, and even the analytical method used (non-specific kits
471 versus accurate mass-spectrometry). A more detailed study of glycaemia dynamics during the
472 successive phases of the breeding season (mating, laying, incubation, brooding, fledging) in our
473 species, as previously conducted in others (Remage-Healey and Romero 2000, Gayathri, et al.
474 2004, Azeredo, et al. 2016, Bendová 2020), would help to better understand how fledging
475 success is affected by circulating glucose levels in the parents.

476 Interestingly, the decrease in glycated albumin levels during the breeding season was positively
477 related to clutch size in our study, without being reflected in fledging success, suggesting
478 explanations not related to breeding performance but rather to more basic metabolic processes.
479 For instance, our results can reflect a general increase in anabolism during the reproductive
480 period. Reduced glycation levels may be attributed to faster protein (albumin) turnover rates,
481 thereby reducing damage levels (Wada, et al. 2016). This is consistent with the negative
482 relationship between variation in body mass and variation in albumin glycation levels that we
483 recorded during the course of the breeding season: the greater the increase in body mass after
484 reproduction, the greater the reduction in glycation levels. The negative relationship between
485 the number of eggs produced and the increase in body mass probably reflects a trade-off
486 between somatic and reproductive investments (see Williams 2005 for a review of the costs
487 associated with egg laying), while the positive relationship between glycation reduction rate and
488 clutch size might indicate a closer relationship between albumin turnover and egg production.

489 In fact, albumin production should be increased during egg-laying due to its transfer to the eggs
490 (Patterson et al. 1962).

491 **Conclusions and perspectives**

492 We show here that glucose and glycated albumin levels increase and decrease respectively
493 during reproduction in Alpine swifts, which is paralleled by an increase in body mass. We did not
494 find any costs related to reproductive effort, evaluated using clutch or brood size. Our results
495 on survival show that glycation levels may represent a more important constraint for other
496 phases of the annual cycle, such as the long-distance migration swifts perform. Future studies
497 should explore if changes in glycation levels such as those detected (around 1%) are paralleled
498 by a significant change in other parameters better known to reflect changes in health or fitness.
499 This would help to better understand the underlying mechanisms mediating glycation and
500 fitness. In addition, we established that albumin glycation levels vary with age in a similar way
501 as other age-related parameters in this species, with a peak at 5.5 years, suggesting that
502 glycation may be part of the physiological mechanisms underlying the senescence process.
503 Nevertheless, this is a cross-sectional study, so longitudinal data would be needed to determine
504 if this variation is really linked to ageing per se and not to other demographical phenomena like
505 selective appearance or disappearance, as our results on survival suggest. Finally, glucose levels
506 before reproduction showed a positive effect on fledging success up to a certain threshold, after
507 which a plateau is reached. A negative trend on hatching success was also found, while glycated
508 albumin levels are negatively linked to body mass, and its dynamics to changes in body mass and
509 clutch size, suggesting that they could influence female reproductive fitness. Although the exact
510 mechanisms underlying our results remain unclear, we hypothesize that albumin glycation
511 dynamics may be mainly influenced by protein turnover rate and may thus be representing the
512 general rate of anabolism, and that glucose is likely to be an indicator of parents' nutritional
513 state, acting positively on chicks' survival to fledging. To prove these hypotheses, more precise
514 measures of energy metabolites and their dynamics on both parents and offspring, together
515 with body condition and body composition changes during rearing should be determined, to see
516 which nutrients are the most important to determine breeding success and how the costs and
517 benefits of differential allocation between parents and chick survival are shaped.

518

519

520

521 **Acknowledgements**

522 This research was performed under the funding of an ANR (AGEs – ANR21-CE02-0009). We thank
523 the numerous researchers and fieldworkers who helped at collecting the long-term data and
524 samples used in this publication.

525 **Authors contributions**

526 FC and FB conceived the original collaboration, set up the project, contributed to the
527 development of the idea and participated in the discussion of the results. AMB contributed to
528 the development of the idea, participated in the field work and sample collection with PB, and
529 made the statistical analyses. CS and SJO performed the glycation measurements by mass
530 spectrometry. PB provided data from the long-term monitoring of the animals, contributed to
531 the sample collection and participated in the discussion of the results. AMB wrote the original
532 draft, later edited by FC, FB and PB. All the authors approved the final draft.

533 **Statements and Declarations**

534 Authors declare having no competing interests affecting the content of this publication. Data
535 will be made publicly available on Figshare after manuscript acceptance.

536 **ORCID**

537 **AMB: 0000-0002-2924-1153**

538 **SAJ: 0000-0002-9153-4205**

539 **CS: 0000-0003-0672-1979**

540 **PB: 0000-0002-6759-4371**

541 **FB: 0000-0001-5510-4868**

542 **FC: 0000-0001-8997-8184**

543 **Bibliography**

544 Andersson, M. S. and L. Gustafsson. 1995. Glycosylated haemoglobin: a new measure of
545 condition in birds. *Proceedings of the Royal Society B: Biological Sciences*, 260 (1359): 299–
546 303. <https://doi.org/10.1098/rspb.1995.0095>.

547 Ardia, Daniel R. 2006. Glycated hemoglobin and albumin reflect nestling growth and condition
548 in american kestrels. *Comparative Biochemistry and Physiology - A Molecular and*
549 *Integrative Physiology*, 143, 1: 62–66. <https://doi.org/10.1016/j.cbpa.2005.10.024>.

550 Azeredo, Luane M. M., Talita C. Oliveira and Luiz C. S. Lopez. 2016. Blood metabolites as
551 predictors to evaluate the body condition of *Neopelma pallescens* (Passeriformes:
552 Pipridae) in northeastern Brazil, *Zoologia*, 33, 6: 1–9. <https://doi.org/10.1590/S1984-4689zool-20160043>.

554 Bakala, Hilaire, Maud Hamelin, Jean Mary, Caroline Borot-Laloi and Bertrand Friguet. 2012.
555 Catalase, a target of glycation damage in rat liver mitochondria with aging. *Biochimica et*
556 *Biophysica Acta*, 1822, 10: 1527–34. <https://doi.org/10.1016/j.bbadi.2012.05.016>.

557 Bakala, Hilaire, Romain Ladouce, Martin A. Baraibar and Bertrand Friguet. 2013. Differential
558 expression and glycative damage affect specific mitochondrial proteins with aging in rat
559 liver. *Biochimica et Biophysica Acta*, 1832, 12: 2057–67.
560 <https://doi.org/10.1016/j.bbadi.2013.07.015>.

561 Bendová, Kamila. 2020. Blood glucose concentration in barn swallow (*Hirundo rustica*): sources
562 of variability and association with fitness. Master thesis. University of South Bohemia in
563 České Budějovice. <https://dspace.jcu.cz/handle/20.500.14390/44876>

564 Bernt-Erik, S., Reidar Andersen and Hans Christian Pedersen. 1993. Regulation of parental effort
565 in a long-lived seabird: an experimental manipulation of the cost of reproduction in the
566 antarctic petrel, *Thalassoica antarctica*. *Behavioral Ecology and Sociobiology*, 113: 147–50.
567 <https://doi.org/10.1007/BF00216594>

568 Beuchat, Carol A., and Curtis R. Chong. 1998. Hyperglycemia in hummingbirds and its
569 consequences for hemoglobin glycation. *Comparative Biochemistry and Physiology - A*
570 *Molecular and Integrative Physiology*, 120, 3: 409–16. [https://doi.org/10.1016/S1095-6433\(98\)10039-9](https://doi.org/10.1016/S1095-6433(98)10039-9).

572 Bize, Pierre, François Criscuolo, Neil B. Metcalfe, Lubna Nasir and Pat Monaghan. 2014.
573 Telomere dynamics rather than age predict life expectancy in the wild. *Proceedings of the*
574 *Royal Society B: Biological Sciences*, 276, 1662: 1679–83.
575 <https://doi.org/10.1098/rspb.2008.1817>.

576 Bize, Pierre, Godefroy Devevey, Patricia Monaghan, Blandine Doligez, and Philippe Christe. 2008.
577 Fecundity and survival in relation to resistance to oxidative stress in a free-living bird.
578 *Ecology*, 89, 8: 2584–93. <https://doi.org/10.1890/07-1135.1>

579 Bize, Pierre, Grégory Daniel, Vincent A. Viblanc, Julien G. A. Martin and Blandine Doligez. 2017.
580 Negative phenotypic and genetic correlation between natal dispersal propensity and nest-

581 defence behaviour in a wild bird. *Biology Letters*, 13:7–10.
582 <https://doi.org/10.1098/rsbl.2017.0236>

583 Bize, Pierre, Julien Gasparini, Aurélie Klopfenstein, Res Altwegg, and Alexandre Roulin. 2006.
584 Melanin-based coloration is a nondirectionally selected sex-specific signal of offspring
585 development in the alpine swift. *Evolution*, 60, 11: 2370–80.
586 <https://doi.org/10.1111/j.0014-3820.2006.tb01871.x>

587 Bize, Pierre, Sophie Cotting, Godefroy Devevey, Juan van Rooyen, Fabrice Lalubin, Olivier Glaizot,
588 Philippe Christe. 2014. Senescence in cell oxidative status in two bird species with
589 contrasting life expectancy. *Oecologia*, 174: 1097–1105. DOI: 10.1007/s00442-013-2840-3

590 Borger, Mirjam Judith. 2024. How to prime your offspring putting behavioural ecology to the
591 test. PhD thesis. University of Groningen. <https://doi.org/10.33612/diss.849300689>.

592 Braun, Eldon J., and Karen L. Sweazea. 2008. Glucose regulation in birds. *Comparative
593 Biochemistry and Physiology - B Biochemistry and Molecular Biology*, 151, 1: 1–9.
594 <https://doi.org/10.1016/j.cbpb.2008.05.007>.

595 Brownlee, Michael. 1994. Glycation and diabetic complications. *Diabetes*, 43, June: 836–841.

596 Brun, Charlotte, Oscar Hernández-Alba, Agnès Hovasse, François Criscuolo, Christine Schaeffer-
597 Reiss and Fabrice Bertile. 2022. Resistance to glycation in the zebra finch: mass
598 spectrometry-based analysis and its perspectives for evolutionary studies of aging.
599 *Experimental Gerontology*, 164, March: 1–13.
600 <https://doi.org/10.1016/j.exger.2022.111811>.

601 Cerami, Anthony, Helen Vlassara and Michael Brownlee. 1986. Role of nonenzymatic
602 glycosylation in atherogenesis. *Journal of Cellular Biochemistry*, 30: 111–120.
603 <https://doi.org/10.1002/jcb.240300203>

604 Chagnac, Avry, Tali Weinstein, Michal Herman and Judith Hirsh. 2003. The effects of weight loss
605 on renal function in patients with severe obesity. *Journal of the American Society of
606 Nephrology*, 14: 1480–86. <https://doi.org/10.1097/01.ASN.0000068462.38661.89>.

607 Charlesworth, B. 1980. The evolution in age-structured populations. Cambridge University Press,
608 Cambridge, UK.

609 Chastel, Olivier, Henri Weimerskirch and Pierre Jouventin. 1995. Influence of body condition on
610 reproductive decision and reproductive success in the blue petrel. *The Auk*, 112, 4: 964–
611 72. <https://doi.org/10.2307/4089027>

612 Chaudhuri, Jyotiska, Yasmin Bains, Sanjib Guha, Arnold Kahn, David Hall, Neelanjan Bose,
613 Alejandro Gugliucci and Pankaj Kapahi. 2018. The role of advanced glycation end products
614 in aging and metabolic diseases: bridging association and causality. *Cell Metabolism*, 28, 3:
615 337–52. <https://doi.org/10.1016/j.cmet.2018.08.014>.

616 Cox, Daniel T. C. and Will Cresswell. 2014. Mass Gained during breeding positively correlates
617 with adult survival because both reflect life history adaptation to seasonal food availability.
618 *Oecologia*, 1197–1204. <https://doi.org/10.1007/s00442-013-2859-5>.

619 Dinda, Amit Kumar, Debi Ranjan Tripathy and Swagata Dasgupta. 2015. Glycation of
620 ribonuclease A affects its enzymatic activity and DNA binding ability. *Biochimie*, 118: 162–
621 72. <https://doi.org/10.1016/j.biochi.2015.09.014>.

622 Douglas Bates, M. M., Bolker, B., & Walker, S. 2015. Fitting linear mixed-effects models using
623 *lme4*. *Journal of Statistical Software*, 67, 1: 1-48. DOI:10.18637/jss.v067.i01

624 Dumas, Michela N., Sophia St, Lawrence Giulia, Pierre Bize and Julien G. A. Martin. 2024. Adult
625 body mass is heritable, positively genetically correlated and under selection of differing
626 shapes between the sexes in a bird with little apparent sexual dimorphism. *Journal of*
627 *Animal Ecology*, 93: 567–82. <https://doi.org/10.1111/1365-2656.14064>.

628 Erikstad, Kjell Einar, Per Fauchald, Torkild Tveraa and Harald Steen. 1998. On the cost of
629 reproduction in long-lived birds: the influence of environmental variability. *Ecology*, 79 5:
630 1781–88. [https://doi.org/10.1890/0012-9658\(1998\)079\[1781:OTCOP\]2.0.CO;2](https://doi.org/10.1890/0012-9658(1998)079[1781:OTCOP]2.0.CO;2)

631 Forslund, Pär and Tomas Pärt. 1995. Age and reproduction in birds - hypotheses and tests.
632 *Trends in Ecology and Evolution*, 10, 9: 374-378. DOI:[https://doi.org/10.1016/S0169-5347\(00\)89141-7](https://doi.org/10.1016/S0169-5347(00)89141-7)

634 Furusyo, Norihiro and Jun Hayashi. 2013. Glycated albumin and diabetes mellitus. *Biochimica et*
635 *Biophysica Acta - General Subjects*, 1830, 12: 5509–14.
636 <https://doi.org/10.1016/j.bbagen.2013.05.010>.

637 Galenza, Anthony, Jaclyn Hutchinson, Shelagh D. Campbell, Bart Hazes and Edan Foley. 2016.
638 Glucose modulates drosophila longevity and immunity independent of the microbiota.
639 *Biology Open*, 5: 165–73. <https://doi.org/10.1242/bio.015016>.

640 Gayathri, K. L., K. B. Shenoy and S. N. Hegde. 2004. Blood profile of pigeons (*Columba livia*) during
641 growth and breeding. *Comparative Biochemistry and Physiology, Part A*, 138: 187–92.
642 <https://doi.org/10.1016/j.cbpb.2004.03.013>.

643 Grüebler, Martin U., Muriel Morand and Beat Naef-Daenzer. 2008. A predictive model of the
644 density of airborne insects in agricultural environments. *Agriculture, Ecosystems and*
645 *Environment*, 123: 75–80. <https://doi.org/10.1016/j.agee.2007.05.001>.

646 Harshman, Lawrence G. and Anthony J. Zera. 2006. The cost of reproduction: the devil in the
647 details. *Trends in Ecology and Evolution*, 22, 2: 80-86.
648 <https://doi.org/10.1016/j.tree.2006.10.008>.

649 Inaba, Masaaki, Senji Okuno, Yasuro Kumeda, Shinsuke Yamada and Yasuo Imanishi. 2007.
650 Glycated albumin is a better glycemic indicator than glycated hemoglobin values in
651 hemodialysis patients with diabetes: effect of anemia and erythropoietin injection. *Journal*
652 *of the American Society of Nephrology*, 18: 896–903.
653 <https://doi.org/10.1681/ASN.2006070772>.

654 Jackson, Lauren M., Shannon Whelan, Alexandre Turmaine, Scott A. Hatch, David Grémillet and
655 Kyle H. Elliott. 2023. Beyond body condition: experimental evidence that plasma
656 metabolites improve nutritional state measurements in a free-living seabird. *Comparative*
657 *Biochemistry and Physiology, Part A*, 285, August: 1-11.
658 <https://doi.org/10.1016/j.cbpa.2023.111504>.

659 Jenni-Eiermann, Susanne and Lukas Jenni. 1994. Plasma metabolite levels predict individual
660 body-mass changes in a small long-distance migrant, the garden warbler. *The Auk*, 111, 4:
661 888–99. <https://doi.org/10.2307/4088821>

662 Johnstone, Rose M., Anu Mathew, Milka S. Setchenska, Mira Grdisa and Martyn K. White. 1998.
663 Loss of glucose transport in developing avian red cells. *European Journal of Cell Biology*,
664 75, 1: 66–77. [https://doi.org/10.1016/S0171-9335\(98\)80048-4](https://doi.org/10.1016/S0171-9335(98)80048-4).

665 Khalid, Mariyam, Georg Petroianu and Abdu Adem. 2022. Advanced Glycation End Products and
666 diabetes mellitus: mechanisms and perspectives. *Biomolecules*, 12, 542. <https://doi.org/10.3390/biom12040542>

668 Kim, Kwang Joon and Byung-Wan Lee. 2012. The roles of glycated albumin as intermediate
669 glycation index and pathogenic protein. *Diabetes & Metabolism Journal*, 36 98–107. DOI:
670 <https://doi.org/10.4093/dmj.2012.36.2.98>

671 Kjeld, M. and Ö. Ólafsson. 2007. Allometry (scaling) of blood components in mammals:
672 connection with economy of energy? *Canadian Journal of Zoology*, 86: 890–99.
673 <https://doi.org/10.1139/Z08-061>.

674 Koga, Masafumi, Michio Otsuki, Sueko Matsumoto, Hiroshi Saito, Mikio Mukai and Soji
675 Kasayama. 2007. Negative association of obesity and its related chronic inflammation with
676 serum glycated albumin but not glycated hemoglobin levels. *Clinica Chimica Acta*, 378: 48–
677 52. <https://doi.org/10.1016/j.cca.2006.10.013>.

678 Kohzuma, Takuji, Xinran Tao and Masafumi Koga. 2021. Glycated albumin as biomarker:
679 evidence and its outcomes. *Journal of Diabetes and Its Complications*, 35, 11: 108040.
680 <https://doi.org/10.1016/j.jdiacomp.2021.108040>.

681 Kuznetsova, Alexandra, Per B. Brockhoff and Rune Haubo Bojesen Christensen. 2017. LmerTest
682 package: tests in linear mixed effects. *Journal of Statistical Software*, 82, 13: 1-26.
683 <https://doi.org/10.18637/jss.v082.i13>.

684 Lill, Alan. 2011. Sources of variation in blood glucose concentrations of free-living birds. *Avian
685 Biology Research*, 4, 2: 78–86. <https://doi.org/10.3184/175815511X13073729328092>.

686 Maillard, L. C. 1912. Action des acides amines sur les sucres; formation des melanoides par voie
687 methodique. *CR. Acad. Sci.*, 154, 66-68. <https://cir.nii.ac.jp/crid/1570009750045524736>.

688 Ma, Nyuk Ling, Martin Hansen, Ole Roland Therkildsen, Thomas Kjær Christensen, Rune Skjold
689 Tjørnløv, Svend-Erik Garbuse, Peter Lyngs, Wanxi Penga, Su Shiung Lamg, Anne Kirstine
690 Havnsøe Krogh, Emilie Andersen-Ranberg, Jens Søndergaard, Frank F. Rigét, Rune Dietz,
691 Christian Sonne, 2020. Body mass, mercury exposure, biochemistry and untargeted
692 metabolomics of incubating common eiders (*Somateria mollissima*) in three baltic
693 colonies. *Environment International*, 142, January: 105866.
694 <https://doi.org/10.1016/j.envint.2020.105866>.

695 Marsh, Richard L. 1984. Adaptations of the gray catbird *Dumetella carolinensis* to long-distance
696 migration: flight muscle hypertrophy associated with elevated body mass. *Physiological
697 Zoology*, 57, 1: 105–17. doi/abs/10.1086/physzool.57.1.30155973

698 Martins, Thais L. F. and Jonathan Wright. 1993. Cost of reproduction and allocation of food
699 between parent and young in the swift (*Apus apus*). *Behavioural Ecology*, 4, 3: 213–23.
700 <https://doi.org/10.1093/beheco/4.3.213>

701 McGraw, Kevin J., Katherine Chou, Annika Bridge, Hannah C. McGraw, Peyton R. McGraw and
702 Richard K. Simpson. 2020. Body condition and poxvirus infection predict circulating glucose
703 levels in a colorful songbird that inhabits urban and rural environments. *Journal of
704 Experimental Zoology*, 333: 561–68. <https://doi.org/10.1002/jez.2391>.

705 Meier, Christoph M., Hakan Karaardıç, Raül Aymí, Strahil G. Peev, Willem Witvliet and Felix
706 Liechti. 2020. Population-specific adjustment of the annual cycle in a super-swift trans-
707 saharan migrant. *Journal of Avian Biology*, e02515, 1–11.
708 <https://doi.org/10.1111/jav.02515>.

709 Metcalfe, Neil B. and Carlos Alonso-Álvarez. 2010. Oxidative stress as a life-history constraint:
710 the role of reactive oxygen species in shaping phenotypes from conception to death.
711 *Functional Ecology*, 24: 984–96. <https://doi.org/10.1111/j.1365-2435.2010.01750.x>.

712 Migliorini, R. H., J. C. Linder, L. Moura and J. A. S. Veiga. 1973. Gluconeogenesis in a carnivorous
713 bird (black vulture). *American Journal of Physiology*, 225, 6: 1389–92.
714 <https://doi.org/10.1152/ajplegacy.1973.225.6.1389>

715 Miksik, I. and Z. Hodny. 1992. Glycated hemoglobin in mute swan (*Cygnus olor*) and rook (*Corvus
716 frugilegus*). *Comparative Biochemistry and Physiology*, 103, 3: 553–55.
717 [https://doi.org/10.1016/0305-0491\(92\)90369-3](https://doi.org/10.1016/0305-0491(92)90369-3)

718 Minias, Piotr and Krzysztof Kaczmarek. 2013. Concentrations of plasma metabolites as
719 predictors of nestling condition in the great cormorant (*Phalacrocorax carbo sinensis*).
720 *Ornis Fennica*, 90: 142–50. DOI: <https://doi.org/10.51812/of.133830>

721 Moe, Borge, Ingveig Langseth, Marianne Fyhn, Geir Wing Gabrielsen and Claus Bech. 2002.
722 Changes in body condition in breeding kittiwakes rissa tridactyla. *Journal of Avian Biology*,
723 33, 3: 225–34. <https://doi.org/10.1034/j.1600-048X.2002.330304.x>

724 Montoya, Bibiana, Michael Briga, Blanca Jimeno, Sander Moonen and Simon Verhulst. 2018.
725 Baseline glucose level is an individual trait that is negatively associated with lifespan and
726 increases due to adverse environmental conditions during development and adulthood.
727 *Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental
728 Physiology*, 188, 3: 517–26. <https://doi.org/10.1007/s00360-017-1143-0>.

729 Montoya, Bibiana, Michael Briga, Blanca Jimeno and Simon Verhulst. 2022. Glucose tolerance
730 predicts survival in old zebra finches. *Journal of Experimental Biology*, 225, 11.
731 <https://doi.org/10.1242/jeb.243205>.

732 Moreno, J. 1989. Strategies of mass change in breeding birds. *Biological Journal of the Linnean
733 Society*, 37: 297–310. <https://doi.org/10.1111/j.1095-8312.1989.tb01907.x>

734 Moullec, Héloïse, Sophie Reichert and Pierre Bize. 2023. Aging trajectories are trait- and sex-
735 specific in the long-lived Alpine swift. *Frontiers in Ecology and Evolution*, 11:983266: 1–12.

736 <https://doi.org/10.3389/fevo.2023.983266>.

737 Myers, Merrick R. and Kirk C. Klasing. 1999. Low glucokinase activity and high rates of
738 gluconeogenesis contribute to hyperglycemia in barn owls (*tyto alba*) after a glucose
739 challenge. *Nutrients metabolism*, August: 1896–1904.
740 <https://doi.org/10.1093/jn/129.10.1896>

741 Palliyaguru, Dushani L., Eric J. Shiroma, John K. Nam, Eleonora Duregon, Camila Vieira Ligo
742 Teixeira, Nathan L. Price, Michel Bernier, Simonetta Camandola, Kelli L. Vaughan, Ricki J.
743 Colman, Andrew Deighan, Ron Korstanje, Luanne L. Peters, Stephanie L. Dickinson, Keisuke
744 Ejima, Eleanor M. Simonsick, Lenore J. Launer, Chee W. Chia, Josephine Egan, David B.
745 Allison, Gary A. Churchill, Rozalyn M. Anderson, Luigi Ferrucci, Julie A. Mattison and Rafael
746 de Cabo. 2021. Fasting blood glucose as a predictor of mortality: lost in translation. *Cell
747 Metabolism*, 33, 11: 2189–2200.e3. <https://doi.org/10.1016/j.cmet.2021.08.013>.

748 Parker, Howard and Halvor Holm. 1990. Patterns of nutrient and energy expenditure in female
749 common eiders nesting in the high arctic. *The Auk*, 107, October: 660–68.
750 <https://doi.org/10.2307/4087996>

751 Patterson, R., J. S. Youngner, W. O. Weigle and F. J. Dixon. 1962. The metabolism of serum
752 proteins in the hen and chick and secretion of serum proteins by the ovary of the hen. *The
753 Journal of General Physiology*, 45: 501–513. <https://doi.org/10.1085/jgp.45.3.501>

754 Pinheiro, José C. and Douglas M. Bates. 1995. lme and nlme: mixed-effects methods and classes
755 for S and S-Plus. URL: <Http://Www. Citeseer. Ist. Psu. Edu/Article/Pinheiro95lme. Html>.
756 <https://citeseerx. ist. psu. edu/document>.

757 Pol, Martijn van de and S Verhulst. 2006. Age-dependent traits a new statistical model to
758 separate within- and between-individual effects. *The American Naturalist*, 167, 5: 766–73.
759 <https://doi.org/10.1086/503331>.

760 Polakof, Sergio, Thomas P. Mommsen and José L. Soengas. 2011. Glucosensing and glucose
761 homeostasis: from fish to mammals. *Comparative Biochemistry and Physiology, Part B*, 160
762 4: 123–49. <https://doi.org/10.1016/j.cbpb.2011.07.006>.

763 Poulsen, Malene W., Rikke V. Hedegaard, Jeanette M. Andersen, Barbora de Courten, Susanne
764 Bügel, John Nielsen, Leif H. Skibsted and Lars O. Dragsted. 2013. Advanced glycation
765 endproducts in food and their effects on health. *Food and Chemical Toxicology*, 60: 10–37.
766 <https://doi.org/10.1016/j.fct.2013.06.052>.

767 R Core Team. 2022. R: A language and environment for statistical computing (Vienna Austria: R
768 Found. Stat. Comput). Available at: <https://www.r-project.org/>.

769 Récapet, Charlotte, Adélaïde Sibeaux, Laure Cauchard, Blandine Doligez and Pierre Bize. 2016.
770 Selective disappearance of individuals with high levels of glycated haemoglobin in a free-
771 living bird. *Biology Letters*, 12, 8. <https://doi.org/10.1098/rsbl.2016.0243>.

772 Remage-Healey, Luke and L. Michael Romero. 2000. Daily and seasonal variation in response to
773 stress in captive starlings (*Sturnus vulgaris*): glucose. *General and Comparative
774 Endocrinology*, 119: 60–68. <https://doi.org/10.1006/gcen.2000.7492>.

775 Rooney, Mary R., Natalie Daya, Olive Tang, John William McEvoy, Josef Coresh, Robert H.
776 Christenson and Elizabeth Selvin. 2022. Glycated albumin and risk of mortality in the US
777 adult population. *Clinical Chemistry*, 68, 3: 422-430.
778 <https://doi.org/10.1093/clinchem/hvab232>

779 Rosa, Claudete Deguirmendjian, Rubens Rosa, Edson Rodrigues and Metry Bacila. 1993. Blood
780 constituents and electrophoretic patterns in Antarctic birds: penguins and skuas.
781 *Comparative Biochemistry and Physiology*, 104, 1: 117-123. [https://doi.org/10.1016/0300-9629\(93\)90018-Y](https://doi.org/10.1016/0300-9629(93)90018-Y)

783 Rose, Michael R. and Timothy J. Bradley. 1998. Evolutionary physiology of the cost of
784 reproduction evolutionary physiology of the cost of reproduction. *Oikos*, 83, 3: 443–51.
785 <https://doi.org/10.2307/3546672>

786 Saether, Bernt-Erik. 1988. Pattern of covariation between life-history traits of european birds.
787 *Nature*, 331: 8–9. <https://doi.org/10.1038/331616a0>

788 Sariaux, Claire and André Chiaradia. 2022. Age-Related breeding success in little penguins: a
789 result of selection and ontogenetic changes in foraging and phenology. *Ecological
790 Monographs*, 92, 1: e01495. <https://doi.org/10.1002/ecm.1495>

791 Schielzeth, Holger. 2010. Simple means to improve the interpretability of regression coefficients.
792 *Methods in Ecology and Evolution*, 1: 103–13. <https://doi.org/10.1111/j.2041-210X.2010.00012.x>.

794 Selvin, Elizabeth, Bethany Warren, Xintong He, David B Sacks and Amy K. Saenger. 2018.
795 Establishment of community-based reference intervals for fructosamine, glycated
796 albumin, and 1,5-anhydroglucitol. *Clinical Chemistry*, 64, 5: 843–50.
797 <https://doi.org/10.1373/clinchem.2017.285742>.

798 Stier, Antoine, Sophie Reichert, Sylvie Massemuin, Pierre Bize and François Criscuolo. 2012.
799 Constraint and cost of oxidative stress on reproduction: correlative evidence in laboratory
800 mice and review of the literature. *Frontiers in Zoology*, 9, 37. DOI
801 <https://doi.org/10.1186/1742-9994-9-37>

802 Sun, Hong, Pouya Saeedi, Sivi Karuranga, Moritz Pinkepank, Katherine Ogurtsova, Bruce B.
803 Duncan, Caroline Stein, Abdul Basit, Juliana C.N. Chan, Jean Claude Mbanya, Meda E.
804 Pavkov, Ambady Ramachandaran, Sarah H. Wild, Steven James, William H. Herman, Ping
805 Zhang, Christian Bommerm, Shihchen Kuo, Edward J. Boyko, Dianna J. Magliano. 2022. IDF
806 Diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021
807 and projections for 2045. *Diabetes Research and Clinical Practice*, 183: 109119.
808 <https://doi.org/10.1016/j.diabres.2021.109119>.

809 Suravajjala, Sreekanth, Menashi Cohenford, Leslie R. Frost, Praveen K. Pampati and Joel A. Dain.
810 2013. Glycation of human erythrocyte glutathione peroxidase: effect on the physical and
811 kinetic properties. *Clinica Chimica Acta*, 421: 170–76.
812 <https://doi.org/10.1016/j.cca.2013.02.032>.

813 Tettamanti, Federico, Willem Witvliet and Pierre Bize. 2012. Selection on age at first and at last
814 reproduction in the long-lived Alpine swift *Apus melba*. *Ibis*, 154: 338–344.
815 <https://doi.org/10.1111/j.1474-919X.2012.01215.x>.

816 Tomasek, Oldrich, Lukas Bobek, Tereza Kralova, Marie Adamkova and Tomas Albrecht. 2019.
817 Fuel for the pace of life: baseline blood glucose concentration co-evolves with life-history
818 traits in songbirds. *Functional Ecology*, 33, 2: 239–49. <https://doi.org/10.1111/1365-2435.13238>.

820 Twarda-Clapa, Aleksandra, Aleksandra Olczak, Aneta M. Bialkowska and Maria Koziołkiewicz.
821 2022. Advanced Glycation End-Products (AGEs): formation, chemistry, classification,
822 receptors, and diseases related to AGEs. *Cells*, 11, 1312. <https://doi.org/10.3390/cells11081312>

824 Uruska, A., A. Gandecka, A. Araszkiewicz and D. Zozulinska-Ziolkiewicz. 2019. Accumulation of
825 Advanced Glycation End Products in the skin is accelerated in relation to insulin resistance
826 in people with type 1 diabetes mellitus. *Diabetic Medicine*, 36, 5: 620-625.
827 <https://doi.org/10.1111/dme.13921>.

828 Van de Weyer, Yannick and Stamatios Alan Tahas. 2024. Avian diabetes mellitus: a review.
829 *Journal of Avian Medicine and Surgery*, 38, 1: 21-33. <https://doi.org/10.1647/AVIANMS-D-22-00057>

831 Verzijl, Nicole, Jeroen Degroot, Suzanne R. Thorpe, Ruud A. Bank, J. Nikki Shaw, Timothy J. Lyons,
832 Johannes W. J. Bijlsma, Floris P. J. G. Lafeber, John W. Baynes and Johan M. Tekoppele.
833 2000. Effect of collagen turnover on the accumulation of Advanced Glycation End Products.
834 *Journal of Biological Chemistry*, 275, 50: 39027-31.
835 <https://doi.org/10.1074/jbc.M006700200>.

836 Wada, Yasuaki, Yoshiyasu Sato and Keisuke Miyazaki. 2016. The reduced/oxidized state of
837 plasma albumin is modulated by dietary protein intake partly via albumin synthesis rate in
838 rats. *Nutrition Research*, 37: 46-57. <https://doi.org/10.1016/j.nutres.2016.12.003>.

839 Williams, George C. 1957. Pleiotropy, natural selection, and the evolution of senescence.
840 *Evolution*, 11, 4: 398-411. DOI: 10.1126/sageke.2001.1.cp13

841 Williams, Tony D. 2005. Mechanisms underlying the costs of egg production. *BioScience*, 55, 1:
842 39-48. [https://doi.org/10.1641/0006-3568\(2005\)055\[0039:MUTCOE\]2.0.CO;2](https://doi.org/10.1641/0006-3568(2005)055[0039:MUTCOE]2.0.CO;2)

843 Wilson, Alastair J. and Daniel H. Nussey. 2009. What is individual quality? An evolutionary
844 perspective. *Trends in Ecology & Evolution*, 25, 4: 207-214.
845 <https://doi.org/10.1016/j.tree.2009.10.002>.

846 Wu J., Liang D., Xie Y., Chen M., Chen H., Sun D. 2021. Association between hemoglobin
847 glycation index and risk of cardiovascular disease and all cause mortality in type 2
848 diabetic patients: a meta-analysis. *Frontiers in Cardiovascular Medicine*, 8, 690689: 1-8.
849 doi: 10.3389/fcvm.2021.690689