

1
2

3 **Hexokinase-I directly binds to a charged membrane-buried glutamate of 4 mitochondrial VDAC1 and VDAC2**

5

6 **Authors:** Sebastian Bieker^{1,2*}, Michael Timme^{1,2*}, Nils Woge^{1,2}, Dina G. Hassan^{1,2,3}, Chelsea M.
7 Brown⁴, Siewert J. Marrink⁴, Manuel N. Melo^{5#}, Joost C. M. Holthuis^{1,2#}

8

9 **Affiliations:**

10 ¹Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, 49076
11 Osnabrück, Germany

12 ²Center for Cellular Nanoanalytics, Osnabrück University, Artilleriestraße 77, 49076
13 Osnabrück, Germany

14 ³Department of Environmental Medical Sciences, Faculty of Graduate Studies and Environmental
15 Research, Ain Shams University, Cairo, Egypt

16 ⁴Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh
17 7, 9747 AG Groningen, The Netherlands

18 ⁵Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da
19 República, 2780-157 Oeiras, Portugal

20

21

22 *These authors contributed equally

23 #Corresponding authors: m.n.melo@itqb.unl.pt and holthuis@uos.de

24

25

26

27 **Abstract:** Binding of hexokinase HKI to mitochondrial voltage-dependent anion channels (VDACs)
28 has far-reaching physiological implications. However, the structural basis of this interaction is unclear.
29 Combining computer simulations with experiments in cells, we here show that complex assembly
30 relies on intimate contacts between the *N*-terminal α -helix of HKI and a charged membrane-buried
31 glutamate on the outer wall of VDAC1 and VDAC2. Protonation of this residue blocks complex
32 formation in silico while acidification of the cytosol causes a reversible release of HKI from
33 mitochondria. Membrane insertion of HKI occurs adjacent to the bilayer-facing glutamate where a pair
34 of polar channel residues mediates a marked thinning of the cytoplasmic leaflet. Disrupting the
35 membrane thinning capacity of VDAC1 dramatically impairs its ability to bind HKI in silico and in cells.
36 Our data reveal key topological and mechanistic insights into HKI-VDAC complex assembly that may
37 benefit the development of therapeutics to counter pathogenic imbalances in this process.

38 **INTRODUCTION**

39

40 Voltage-dependent anion channels (VDACs) are abundant β -barrel proteins in the outer membrane of
41 mitochondria (OMM) that serve as the main conduits for the large flux of ions, ATP/ADP, NAD+/NADH
42 and Krebs' cycle intermediates from and into mitochondria^{1,2}. In mammals, three isoforms exist
43 (VDAC1-3) with non-redundant functions³. VDAC1 and VDAC2 are the most abundantly expressed
44 isoforms in most tissues. Besides their central role in controlling the flow of metabolites across the
45 OMM, both isoforms act as scramblases that mediate phospholipid import into mitochondria⁴.
46 Additionally, VDAC1 and VDAC2 function as dynamic translocation platforms for a variety of proteins
47 that control the permeability of the OMM for cytochrome c to either promote or prevent mitochondrial
48 apoptosis. VDAC binding partners include the pro-apoptotic Bcl-2 proteins BAX and BAK⁵⁻⁷, which
49 mediate the decisive step in OMM permeabilization by which cytochrome c and other apoptogenic
50 factors are released into the cytosol to trigger the apoptotic cascade⁸. Moreover, ceramides, central
51 intermediates of sphingolipid metabolism, exert their pro-apoptotic activity, at least in part, by
52 interacting directly with VDAC2⁹.

53

54 VDAC1 and VDAC2 also function as the physiological receptors of hexokinases (HKs). These
55 enzymes phosphorylate glucose to generate glucose-6-phosphate (G-6-P), an ATP-dependent
56 reaction that serves as entry point for glucose into the glycolytic pathway for energy production or,
57 alternatively, into the pentose phosphate pathway to generate anabolic intermediates¹⁰. Elevated
58 levels of mitochondrially bound HK isoforms HKI and HKII lead to a high rate of glycolysis and lactate
59 production, a metabolic signature referred to as the Warburg effect¹¹. This metabolic switch from
60 oxidative to glycolytic metabolism is a central hallmark of tumor progression, allowing pre-malignant
61 lesions to maintain a high metabolic rate in oxygen-deprived avascular environments¹²⁻¹⁴. Moreover,
62 mitochondrially bound HKs protect cancer cells from drug-induced mitochondrial apoptosis by
63 diminishing the propensity of VDACs to interact with pro-apoptotic Bcl-2 proteins BAX and BAK¹⁵⁻¹⁷.
64 Conversely, in amyotrophic lateral sclerosis, a reduction in HKI concentration in the spinal cord is
65 thought to enhance binding of VDAC1 to mutSOD1, thereby promoting formation of toxic mutSOD1
66 aggregates, mitochondrial dysfunction and cell death in motor neurons^{18,19}.

67

68 The importance of HKI-VDAC interactions in carcinogenesis and neurodegenerative disease has
69 prompted a search for small molecules and peptides capable of disrupting or stabilizing this protein-
70 protein complex²⁰⁻²². However, these efforts are hampered by a lack of structural insights into how
71 HKI and VDAC assemble into a complex. Like HKII, HKI contains a short N-terminal, 20-amino acid
72 hydrophobic α -helix that enables OMM binding, presumably through its interaction with VDACs²³⁻²⁵.
73 Two protein-protein docking studies reported models for complex formation based on a direct
74 plugging of the N-terminal helices of HKI/HKII into the pore of VDAC1^{26,27}. A significant shortcoming of
75 these models is that they fail to address a critical role of a membrane-buried glutamate at position 73
76 (E73) located on the outside wall of VDAC1 in HKI binding^{28,29}. Another modeling study postulated
77 that HKII initially binds the OMM through insertion of its hydrophobic N-terminus into the cytosolic

78 leaflet and then interacts with the outer wall of VDAC1 to form a binary complex³⁰. Whether the
79 interaction of HKI with VDACs follows a similar scenario remains to be established. At present, the
80 membrane topology or sidedness of VDAC channels has not been definitively assigned, with
81 complementary experimental approaches yielding divergent and contradicting results³¹⁻³³. Knowledge
82 of the actual topography of VDACs is a prerequisite for any comprehensive analysis of their role as
83 mitochondrial scaffolds for a broad variety of proteins.

84

85 Here, we combined molecular dynamics simulations with experimental studies in cells to define the
86 structural and topological determinants that govern HKI binding to VDAC1 and VDAC2. We find that
87 complex assembly critically relies on direct interactions between the *N*-terminal α -helix of HKI and a
88 membrane-buried, deprotonated glutamate on the outer wall of both channel isomers. Protonation of
89 this residue abolished complex assembly in simulations. Consistent with this result, we show that
90 VDAC-dependent mitochondrial translocation of a reporter carrying the *N*-terminal α -helix of HKI is
91 exquisitely sensitive to fluctuations in cytosolic pH. Moreover, we find that a pair of polar channel
92 residues flanking the membrane-buried glutamate causes a marked thinning of the cytoplasmic
93 leaflet, providing a low-energy passageway for HKI to facilitate complex assembly. Taken together,
94 our data offer fundamental mechanistic insights into HKI-VDAC complex formation and indicate that
95 the C-termini of VDAC channels must face the intermembrane space to provide functional binding
96 platforms for HKI.

97

98 RESULTS

99

100 **A membrane-buried Glu in VDACs is critical for stabilizing the mitochondrial pool of HKI**

101 The bulk of HKI normally resides on mitochondria, with VDACs serving as essential binding platforms.
102 While VDAC1 is widely viewed as principal HKI docking site, the role of VDAC2 is less well defined.
103 As expected, GFP-tagged HKI expressed in HeLa cells extensively co-localized with the OMM marker
104 Tom20 (Fig. 1a; Fig. S1a). While removal of either VDAC1 or VDAC2 did not significantly affect
105 mitochondrial localization of HKI-GFP, loss of both channels abolished mitochondrial residence of the
106 enzyme and caused its accumulation in the cytosol, even though a portion of the enzyme was found
107 associated with the ER and plasma membrane (Fig. 1a, b; Fig. S1a, b; Fig. S2a). In line with these
108 findings, subcellular fractionation experiments revealed that combinatorial loss of VDAC1 and VDAC2
109 wiped out the mitochondria-associated pool of endogenous HKI (Fig. S2c). Moreover, endogenous
110 HKI protein levels were significantly reduced in VDAC1/2 double KO cells (Fig. S2c, d). Reintroducing
111 VDAC1 or VDAC2 into VDAC1/2 double KO cells restored both mitochondrial localization and
112 expression of HKI (Fig. 1a, b; Fig. S2e). These data indicate that VDAC1 and VDAC2 each contribute
113 to stabilizing the mitochondrial pool of HKI.

114

115 Both VDAC1 and VDAC2 harbor a uniquely positioned glutamate (Glu) in the transmembrane region
116 of β -strand 4 – Glu73 in VDAC1 and Glu84 in VDAC2 – that faces the bilayer's hydrophobic core.
117 Prior work revealed that Glu73 in VDAC1 is required for HKI binding²⁹. Consistent with this,

118 substitution of Gln for Glu73 in VDAC1 abolished its ability to restore mitochondrial localization and
119 expression of HKI in VDAC1/2 double KO cells (Fig. 1a, b; Fig. S2e). Likewise, a VDAC2 mutant in
120 which Gln was substituted for Glu84 failed to stabilize the mitochondrial HKI pool. In contrast,
121 substitution of Asp for Glu73 in VDAC1 or Glu84 in VDAC2 yielded a channel that supported
122 mitochondrial recruitment of HKI to a level beyond that observed for its wild type counterpart (Fig. 1a,
123 b). Taken together, these results suggest that HKI binding to VDAC1 and VDAC2 critically relies on a
124 negatively-charged, membrane-buried Glu residue on the outer channel wall.

125

126 **Mitochondrial recruitment of HKI is mediated by its *N*-terminal α -helix**

127 HKI contains an *N*-terminal α -helix of 20-amino acids (HKI-*N*) that enables binding to the OMM²³,
128 presumably by interacting directly with VDACs. As expected, a truncated HKI variant lacking this
129 region (HKI Δ 2-14) failed to localize to mitochondria and displayed a cytosolic distribution (Fig. 1c). To
130 confirm that HKI-*N* alone is sufficient for mitochondrial localization, we fused the 17 *N*-terminal amino
131 acids of HKI to a HaLo-Tag and expressed the construct in HeLa cells. In wild type cells, HKI-*N*
132 extensively co-localized with OMM marker Tom20. In contrast, when expressed in VDAC1/2 double
133 KO cells, HKI-*N* failed to target mitochondria and localized to the cytosol (Fig. 1d). This indicates that
134 HKI binds VDACs primarily via its *N*-terminal helix, possibly involving direct contact with the bilayer-
135 facing Glu (Fig. 1e).

136

137 The *N*-terminal helix of HKI has been shown to bind membranes even in the absence of VDACs,
138 presumably owing to its partially hydrophobic nature³⁴. This implies that mitochondrial recruitment of
139 HKI involves two consecutive steps, namely insertion of its *N*-terminal helix in the cytosolic leaflet of
140 the OMM followed by VDAC binding to form a binary complex. HeliQuest analysis revealed that HKI-*N*
141 forms an α -helix with an apolar face composed mostly of non-polar and hydrophobic residues and a
142 polar face primarily containing hydrophilic and charged residues (Fig. 2a, b). The amphipathic nature
143 of HKI-*N* predicts a membrane binding mode whereby its apolar face engages with the hydrophobic
144 membrane core and the polar face with the lipid head groups (Fig. 2c).

145

146 To investigate the membrane binding affinity of the HKI-*N*, we performed coarse-grain molecular
147 dynamics (CG-MD) simulations using the Martini3 forcefield^{35,36}. A bilayer mimicking the OMM was
148 constructed³⁷ and an α -helical peptide comprising HKI-*N* with an additional Gln at its C-terminus
149 (corresponding to Gln18 in HKI) was restrained onto the cytoplasmic membrane surface. After lifting
150 the restraints, the desorption of the peptide into the aqueous phase was monitored over time³⁸. The
151 HKI-*N* peptide remained membrane-bound, with its apolar face buried into the hydrophobic
152 membrane core and with residence times of >5000 ns. Substitution of Gln for Leu7 shortened the
153 HKI-*N* membrane residence time to ~350 ns (Fig. 2d), supporting a critical role of the apolar face in
154 membrane binding. Moreover, substitution of Gln for Leu7 in GFP-HKI abolished its mitochondrial
155 localization in HeLa cells (Fig. 2e, f). Together, these data suggest that membrane insertion of its *N*-
156 terminal α -helix is a prerequisite for HKI binding to VDAC in the OMM.

157

158 **HKI-N binding to VDACs is directly controlled by protonation of the membrane-buried Glu**
159 To elucidate the structural basis of HKI-VDAC complex formation, we next performed CG-MD
160 simulations of HKI-N binding to VDAC1 and VDAC2. As the foregoing experiments suggested that
161 HKI-VDAC complex assembly requires a negatively-charged, membrane-buried Glu residue on the
162 outer channel wall (Fig. 1a, b), we first set out to estimate the pKa values of the corresponding Glu
163 residues in VDAC1 and VDAC2 using titratable Martini simulations³⁹. This revealed that the pKa value
164 of Glu73 in VDAC1 is shifted compared to a free glutamate in solution⁴⁰ but by less than one unit, i.e.
165 from 4.3 to ~4.8 (Fig. 3b, c). For Glu84 of VDAC2, the estimated pKa value is ~5.1 (Fig S3a, b). This
166 indicates that at neutral pH, both Glu73 in VDAC1 and Glu84 in VDAC2 are in their deprotonated,
167 negatively charged state even when residing in the hydrophobic membrane interior. Consequently, we
168 performed CG-MD simulations of HKI-N binding to VDAC1 and VDAC2 with the bilayer-facing Glu in
169 the deprotonated (charged) state. CG-MD-simulations of channels with protonated (neutral) Glu
170 residues served as control to verify the importance of having Glu in its negatively charged form for
171 HKI-N binding. As the membrane topology of VDACs is not known, each channel was also simulated
172 in two orientations, namely with its C-terminus facing the cytosol — where HKI-N was present — or
173 the inter-membrane space (IMS). Main simulations were performed in an OMM-mimicking bilayer with
174 an aggregate time of 1.41 ms (Table S1) – only attainable using CG-MD.

175
176 Strikingly, HKI-N formed stable contacts with both VDAC1 and VDAC2 provided that the channel's C-
177 terminus faced the IMS and the membrane-buried Glu was deprotonated (Fig. 3d-f; Fig. S3c, d).
178 When these conditions were met, the N-terminal half of HKI-N was observed to insert vertically into
179 the cytosolic membrane leaflet along one side of the channel wall and bind directly to Glu73⁻ in
180 VDAC1 and Glu84⁻ in VDAC2 (Movies S1 and S2). HKI-N residues most frequently in direct contact
181 with the deprotonated Glu were Met1, Ala4 and Gln5, all situated on the same side along the axis of
182 the α -helix (Fig. 3g; Fig. S3f). These binding events were often observed multiple times per simulation
183 and typically lasted several hundred ns each (Fig. 3e; Fig. S3d). Protonation of the membrane-buried
184 Glu or flipping the membrane orientation of the channel in each case abolished complex formation.
185 Under these conditions, HKI-N failed to insert into the cytosolic leaflet and no interaction with the
186 bilayer-facing Glu occurred. Instead, contacts with VDAC1 and VDAC2 became random and short-
187 lived (<10 ns), involving channel residues facing the cytosol (Fig. 3f, g; Fig. S3e, f).

188
189 Consistent with the localization studies of GFP-tagged HKI in HeLa cells (Fig. 1a, b), VDAC channels
190 with a Glu-to-Gln substitution lacked affinity for HKI-N in simulations, regardless of their transbilayer
191 orientation. On the other hand, VDAC channels with a Glu-to-Asp substitution retained the ability to
192 bind HKI-N, provided that the Asp was deprotonated and the channel's C-terminus faced the IMS
193 (Fig. S4). Collectively, these results indicate that HKI-VDAC binding critically relies on both the
194 membrane topology of VDACs and the protonation state of the bilayer-facing Glu.

195
196 **Acidification of cytosolic pH triggers dissociation of HKI-N from mitochondria**

197 To challenge the idea that HKI-VDAC complex formation is controlled by the protonation state of the
198 bilayer-facing Glu, we next investigated the impact of cytosolic acidification on the subcellular
199 distribution of Halo-tagged HKI-N in HeLa cells. Cytosolic pH was adjusted by incubating cells in a
200 buffer with the desired pH in the presence of H⁺/K⁺ ionophore nigericin (Fig. 4a; Fig. S5a).
201 Equilibration of cytosolic pH with the pH of the external buffer was quantitatively assessed with the
202 intracellular pH indicator pHrodoTM Red AM (Fig. S5b). To monitor a drop in cytosolic pH in real time,
203 we took advantage of the fact that the fluorophore of EGFP is more sensitive to acidic pH when
204 compared to mCherry⁴¹ and HaloTag Ligand JF646. Thus, in cells expressing Tom20-EGFP, JF646-
205 labeled Tom20-Halo and mCherry fused to the OMM anchor of AKAP1 (OMM-mCherry), a shift in
206 cytosolic pH from 7.4 to 6.0 strongly reduced EGFP fluorescence without affecting the other two
207 fluorophores (Fig. 4b, c; Fig. S5c, d). Strikingly, acidification of the cytosol readily triggered the
208 translocation of JF646-labeled HKI-N-Halo from mitochondria into the cytosol. Dissociation of HKI-N-
209 Halo from mitochondria was already measurable when lowering the cytosolic pH to 6.8 and gradually
210 progressed with increased acidification so that at pH 6.0 the bulk of HKI-N-Halo resided in the cytosol
211 (Fig. 4b, d; Fig. S5c, d). Raising the cytosolic pH from 6.0 back to 7.4 restored the mitochondrial
212 localization of HKI-N-Halo (Fig. 4b). Consistent with the CG-MD simulations, these results support the
213 notion that HKI-VDAC binding is controlled by the protonation state of the bilayer-facing Glu even
214 though we cannot exclude that protonation of additional acidic residues also play a role.
215

216 **HKI-VDAC binding critically relies on an asymmetric positioning of the membrane-buried Glu**
217 The foregoing CG-MD simulations revealed that the transbilayer orientation of VDACs is a critical
218 determinant of HKI binding (Fig. 3f, g; Fig. S3e, f). Interestingly, we noticed that the membrane-buried
219 Glu in VDACs is asymmetrically positioned a few Å away from the bilayer center and resides in the
220 cytosolic leaflet when the channel's C-terminus faces the IMS, the orientation compatible with HKI
221 binding (Fig. 5a). We therefore hypothesized that channels with the opposite topology may fail to bind
222 HKI because the membrane-buried Glu in that orientation lies too deep in the lipid bilayer for the
223 enzyme's N-terminal α -helix to make stable contacts. To verify this idea, we substituted Phe for Glu73
224 and Glu for Phe71 in VDAC1, effectively creating a channel in which the asymmetric position of the
225 membrane-buried Glu is flipped across the bilayer center (Fig. 5a). Next, we performed CG-MD
226 simulations to probe HKI-N binding to the VDAC1^{E73F/F71E} mutant channel in both membrane
227 orientations and with a deprotonated Glu. Unlike VDAC1, the VDAC1^{E73F/F71E} variant was unable to
228 form stable contacts with HKI-N irrespective of its transbilayer orientation (Fig. 5b). Moreover, unlike
229 VDAC1, the VDAC1^{E73F/F71E} variant completely failed to restore mitochondrial localization of GFP-HKI
230 in VDAC1/2-double KO cells (Fig. 5c). These results indicate that bilayer depth of the charged Glu on
231 the outer channel wall, although critical, is not the sole determinant of HKI binding and that other
232 unique features on the membrane-facing surface of VDACs also play a role.
233

234 **VDAC channels cause thinning of the lipid monolayer proximal to the membrane-buried Glu**
235 Previous MD simulations of VDAC1 indicated membrane thinning and water defects near the
236 outward-facing Glu^{4,42}. By extending these studies to VDAC1 in its HKI binding-competent orientation

237 (with the channel's C-terminus facing the IMS), we found that the membrane thinning and water
238 defects are mainly confined to the cytosolic leaflet adjacent to the negatively charged Glu (E73⁻; Fig.
239 6a, b). In this region, the cytosolic leaflet was much thinner, reaching just over 0.8 nm, and exhibited a
240 large degree of water penetration. Simulations of VDAC2 revealed a similar thinning of the cytosolic
241 leaflet along with water defects near the charged Glu (E84⁻; Fig. 6a, b). When mapping the
242 occupancy of the lipid phosphates, we observed that the area of membrane thinning did not perfectly
243 overlap with the position of the charged Glu (Fig. 6c). This suggested that membrane thinning may
244 not rely on a charged Glu but rather on outward-facing polar residues in its vicinity. Indeed,
245 protonation of the bilayer-facing Glu or its substitution by Gln in VDAC1 or VDAC2 greatly diminished
246 the water defects in either case, but had little impact on the membrane thinning capacity of the
247 channels (Fig. 6d; Fig. S6). When the bilayer-facing Glu was replaced by a deprotonated Asp, water
248 defects were retained (D73⁻; Fig. 6d; Fig. S6). Hence, while the negatively charged Glu creates
249 conditions that facilitate the penetration of water, it appears that the membrane thinning capacity of
250 VDACs is mediated by other residues on the outer channel wall.

251

252 **Polar residues proximal to the membrane-buried Glu provide a gateway for HKI-VDAC binding**

253 We considered that thinning of the cytoplasmic leaflet near the membrane-buried Glu of VDACs may
254 provide a low-energy passageway for the *N*-terminal α -helix of HKI to facilitate HKI-VDAC binding. A
255 close inspection of the outer wall of VDAC1 in areas exhibiting the highest degree of membrane
256 thinning revealed two polar residues, Thr77 and Ser101, which are positioned within close range of
257 the membrane-buried Glu (Fig. 7a). Substitution of Leu for Thr77 or Ser101 in each case led to a
258 discrete but marked reduction in the membrane thinning capacity of VDAC1 carrying a charged Glu
259 (Fig. 7a, b). When the two substitutions were combined, membrane thinning in the region proximal to
260 the charged Glu was essentially abolished. This was accompanied by a substantial reduction in water
261 defects. These results indicate that Thr77 and Ser101 each contribute to a local distortion of the
262 cytosolic membrane leaflet, possibly facilitating access of HKI to the charged, membrane-buried Glu.
263 Consistent with this idea, CG-MD simulations revealed that substitution of Leu for Thr77 or Ser101 in
264 VDAC1 diminished contacts between HKI-N and the charged Glu (Fig. 7c, d). Combining these
265 substitutions further reduced HKI-N binding. Importantly, the diminished capacity of the mutant
266 channels to bind HKI-N in silico strongly correlated with an impaired ability of these channels to
267 restore mitochondrial recruitment of HKI in VDAC1/2-double KO cells (Fig. 7e, f). Collectively, these
268 results indicate that Thr77 and Ser101 are core components of a membrane thinning pathway by
269 which the *N*-terminal α -helix of HKI gains access to the membrane-buried Glu of VDACs, thereby
270 providing a gateway for HKI-VDAC binding.

271

272 **DISCUSSION**

273

274 While binding of HKI to mitochondrial VDACs is crucial for cell growth and survival, the structural
275 basis of HKI-VDAC complex assembly is not known. Using a CG-MD simulations approach
276 complemented with functional studies in cells, we identified core structural and physicochemical

277 features that govern binding of HKI to VDAC1 and VDAC2. As schematically outlined in Fig. 8, our
278 results indicate that a bilayer-facing negatively charged Glu on the outer channel wall plays a crucial
279 role in HKI binding by promoting stable contacts between the channel and the enzyme's amphipathic
280 *N*-terminal α -helix (HKI-*N*). Protonation of the Glu residue abolishes HKI-*N* binding in simulations
281 while transient acidification of the cytosol causes a reversible release of HKI-*N* from mitochondria.
282 Membrane insertion of HKI occurs adjacent to the charged Glu where a pair of polar channel residues
283 causes a marked thinning of the cytoplasmic membrane leaflet, creating a funnel that likely serves as
284 low-energy passageway for the enzyme's *N*-terminal α -helix to facilitate complex assembly.
285 Consistent with this model, we found that disrupting the membrane thinning capacity of VDAC1
286 significantly impaired its ability to bind HKI both in silico and in cells.
287
288 In line with previous work⁴³, we demonstrate that HKI-*N* is essential and sufficient for VDAC binding.
289 However, HKI-*N* can also bind membranes independently of VDACs³⁴. Breaking the apolar face of
290 HKI-*N* by a single point mutation significantly weakened membrane binding in silico and abolished
291 mitochondrial localization of HKI in VDAC1/2-expressing cells. From this we infer that membrane
292 partitioning of HKI-*N* is a prerequisite for VDAC binding. Our findings are hard to reconcile with a
293 previous model of HKI-VDAC complex formation that is based on direct plugging of HKI-*N* into the
294 channel's central pore²⁶. Instead, our data indicate that HKI-VDAC complex assembly is a multistep
295 process whereby HKI initially binds the OMM through membrane adsorption involving the apolar
296 interface of HKI-*N*. We envision that thinning of the cytosolic membrane leaflet by a pair of polar
297 channel residues, Thr77 and Ser101 in VDAC1, creates a funnel that serves as thermodynamic trap
298 for HKI binding by enabling the enzyme's *N*-terminal α -helix to tilt and insert at the VDAC/membrane
299 interface to become aligned for stable interactions with the charged Glu on the outer channel wall.
300
301 Additionally, our data provide important clues regarding the transbilayer orientation of VDAC channels
302 in the OMM. The sidedness of these β -barrel proteins has been probed with various approaches
303 without reaching general consensus. For instance, studies on human VDAC1 carrying a cleavage site
304 for cytosolic caspases indicate that the channel's C-terminus faces the IMS³². In contrast, a split-
305 NeonGreen complementation study suggests that the C-terminus of human VDAC2 faces the
306 cytosol³³. Based on packing analysis of murine VDAC1 crystals in a lipidic environment, Ujwal et al.⁴⁴
307 proposed that VDACs are dual topology membrane proteins that may achieve anti-parallel
308 arrangements in the OMM. However, our MD simulations clearly indicate that HKI-VDAC complex
309 formation is only possible with channels in one orientation, namely whereby their C-termini face the
310 IMS. It is only in this orientation that the polar channel residues critical for membrane-thinning are
311 positioned accurately to establish a passageway for cytosolic HKI to reach the bilayer-facing Glu and
312 form a stable complex. While our findings do not rule out the possibility of a dual topology of VDAC
313 channels, they clearly indicate that only one of the two possible transbilayer orientations provides a
314 functional binding platform for HKI.
315

316 Titratable MD simulations of VDAC1 and VDAC2 revealed that at neutral pH, the bilayer-facing Glu is
317 predominantly in its deprotonated, fully negatively-charged state. Although it is energetically
318 unfavorable for a charged residue to be exposed to the hydrophobic membrane interior, membrane
319 thinning imposed by polar residues in close proximity of the bilayer-facing Glu may explain why its
320 pKa value is shifted by less than one unit in comparison to a free Glu. Converging lines of evidence
321 indicate that the protonation status of the bilayer-facing Glu is a key determinant of HKI binding. To
322 begin with, protonation of this Glu in VDAC1 and VDAC2 in each case proved sufficient to abrogate
323 HKI-N binding in simulations. Replacing Glu with the non-titratable Gln abolished HKI-N binding to
324 VDAC channels in simulations and disrupted VDAC-dependent mitochondrial localization of HKI in
325 cells. Conversely, replacing Glu for titratable Asp promoted complex formation both in silico and in
326 cells. Mild acidification of the cytosol from pH 7.4 to 6.0 instantly dissociated HKI-N from mitochondria
327 in cells whereas raising the pH back to 7.4 readily restored its mitochondrial localization. While the
328 ability of cellular pH to modulate HKI binding to mitochondria via VDACs has been reported
329 previously⁴⁵, our present findings indicate that pH-dependent protonation of the bilayer-facing Glu in
330 VDACs plays a direct and decisive role. By facilitating an unhindered exchange of protons between
331 the cytosol and the bilayer-facing Glu, it appears likely that the polar channel residues critical for
332 membrane-thinning contribute to the exquisite and physiologically relevant sensitivity of HKI-VDAC
333 complexes to fluctuations in cytosolic pH.

334

335 Binding of HKI to mitochondrial VDACs has important physiological consequences, from modulating
336 inflammatory responses to promoting cell growth and survival in highly glycolytic tumors. Multiple
337 studies revealed that binding of HKI to VDACs protect tumor cells from permeabilization of the OMM
338 and cytosolic release of cytochrome c, an event that marks a point of no return in mitochondrial
339 apoptosis^{16,17,46}. Binding of HKI to mitochondrial VDACs also determines whether the product of the
340 enzyme (G6P) is catabolized through glycolysis or shunted through the anabolic pentose phosphate
341 pathway (PPP). While dissociation of VDAC-HKI complexes shifts the glucose flux to the PPP,
342 leading to increased inflammation and decreased cell survival¹⁰, mild alkalization of cytosolic pH
343 pushes glucose metabolism toward glycolytic flux by augmenting VDAC-HKI binding⁴⁵. Cellular
344 alkalinity is a hallmark of malignancy⁴⁷ and its stabilizing effect on VDAC-HKI complexes would
345 provide rapidly growing tumor cells with important metabolic and survival benefits. In this context, the
346 oncogenic potential of a somatic missense mutation p.E73D in VDAC1 identified in a colon
347 adenocarcinoma (COSV54738458; cancer.sanger.ac.uk/cosmic) merits further investigation given our
348 present finding that it promotes HKI binding. Moreover, we previously identified a role of VDAC2 as
349 direct effector in ceramide-induced mitochondrial apoptosis and found that this function critically relies
350 on the channel's charged membrane-buried Glu (E84), which mediates direct contacts with the
351 ceramide head group^{9,48}. Our finding that HKI and ceramides share a common binding site on VDACs
352 points at a potential mechanism by which ceramides exert their widely acclaimed tumor suppressor
353 activities^{48–50}. Future studies should reveal whether ceramides compete directly with HKI for binding
354 to the charged Glu on the VDAC channel wall and whether their anti-neoplastic activity is linked to a
355 displacement of HKI from mitochondria.

356

357 Given the importance of the HKI-VDAC liaison for neoplastic cell growth and survival, disruption of
358 this binary protein complex has been identified as potentially effective therapeutic anti-cancer
359 strategy^{20,51}. Additionally, a reduced HKI interaction with VDACs has been recognized as causal
360 factor in demyelinating peripheral neuropathies^{52,53}. This has spurred the development of HKI-
361 mimicking peptides as tools for studying the demyelination process and as therapeutics for treating
362 neurodegenerative diseases^{19,22,54}. Our present findings provide a molecular framework for the
363 development of novel therapeutic compounds to target pathogenic imbalances in HKI-VDAC complex
364 assembly.

365

366 **METHODS**

367

368 **Antibodies**

369 Antibodies used were mouse monoclonal anti-Tom20 (Millipore, MABT166, clone 2F8.1, IF 1:200),
370 mouse monoclonal anti-mitochondrial surface protein p60 (Millipore, MAB1273, IB 1:1,000), rabbit
371 polyclonal anti-HA (Invitrogen, 71-5500; clone SG77, IF 1:100), rabbit polyclonal anti-HKI (Cell
372 Signaling, 2024-s, IB 1:1000), anti-HKII (Cell Signaling, 2867-s, IB 1:1,000), rabbit monoclonal anti-
373 VDAC1 (Cell Signaling, 4661-s, IB 1:1,000), goat polyclonal anti-VDAC2 (Abcam, ab37985, IB
374 1:4,000) and mouse monoclonal anti-β-actin (Sigma, A1978, IB 1:50,000). CyTM-dye-conjugated
375 donkey anti-mouse (715-225-150, 715-162-150, and 715-175-150; IF 1:200 each) and donkey anti-
376 rabbit (711-225-152, 711-175-150 and 711-165-150; IF 1:200 each) were from Jackson
377 ImmunoResearch Europe Ltd.

378

379 **DNA constructs**

380 pEGFP-HKI encoding rat HKI tagged with EGFP at its C-terminus was described in⁵⁵. pSEMS-HKI-N-
381 Halo encoding the first 17 residues of rat HKI fused to a HaloTag was created by fusion PCR using
382 NEBuilder HiFi DNA assembly kit (New England Biolabs, E5520) and the amplified DNA fragment
383 inserted via *Eco*RI and *Xhol* sites into expression vector pSEMS-Halo (Covalys Biosciences).
384 Expression constructs pSEMS-OMM(Akap1)-mCherry, pSEMS-Tom20-Halo and pSEMS-Tom20-
385 EGFP were described in^{56,57}. Human VDAC1 and VDAC2 carrying a C-terminal HA tag
386 (YPYDVPDYA) were PCR amplified from corresponding cDNAs using Phusion high-fidelity DNA
387 polymerase (Thermo Fischer Scientific) and inserted via *Nhel* and *Xbal* sites into mammalian
388 expression vector pcDNA3.1 (+). For retroviral transduction of cells, DNA fragments encoding HA-
389 tagged VDAC1 and VDAC2 were created by PCR and inserted via *Not*1 and *Xhol* sites into lentiviral
390 expression vector pLNCX2 (Takara Bio, USA). Single amino acid substitutions were introduced using
391 NEB's site-directed mutagenesis kit (New England Biolabs, E0552S). Primers used for cloning and
392 site-directed mutagenesis are listed in Table S2. All expression constructs were verified by DNA
393 sequencing.

394

395 **Cell culture and transfection**

396 Human cervical carcinoma HeLa cells (ATCC CCL-2) were cultured in Dulbecco's modified Eagle's
397 medium (DMEM, PAN-Biotech, P04-04510) supplemented with 4.5 g/l glucose, 2 mM L-glutamine
398 and 10% FBS. Human colon carcinoma HCT116 cells (ATCC CCL-247) were cultured in McCoy's
399 medium supplemented with 10% FBS. Human embryonic kidney HEK293T cells (ATCC CRL-3216)
400 were cultured in DMEM supplemented with 10% FBS. Cells were transfected with DNA constructs
401 using polyethylenimine (PEI, Polysciences, Inc., 24765-100). In brief, 3 µg of DNA was dissolved in
402 200 µl of 150 mM NaCl, mixed with PEI reagent (2 µl/µg DNA), incubated for 15 min at RT, and then
403 added dropwise to cells seeded in a well of a 6-well plate (Sarstedt AG & Co. KG, 83.3920). After 4 h
404 of incubation, cells were washed with PBS, cultured overnight and then processed for fluorescence
405 microscopy.

406

407 **Generation of HKI-KO and VDAC-DKO cell lines**

408 To knock out HKI in HeLa cells, we obtained a mix of three different CRISPR/Cas9 plasmids for the
409 corresponding gene from Santa Cruz Biotechnology (sc-401753-KO-2). The HKI-specific gRNA
410 sequences were: A/sense, 5'-CAGAGCTTACCGATTCTCGC-3'; B/sense, 5'-
411 AGATGTTGCCAACATTCGTA-3'; C/sense, 5'-GCAGATCTGCCAGCGAGAAT-3'. HeLa cells were
412 transfected with the plasmid mix and after 24 h, single GFP-expressing cells were sorted via
413 fluorescence activated cell sorting (FACS, SH800S, Sony) and grown in 96-well plates. Individual
414 clones were expanded and analyzed for HKI expression by immunoblot analysis. To knock out
415 VDAC1 and VDAC2 in HeLa cells, we obtained a mix of three different CRISPR/Cas9 plasmids per
416 gene and the corresponding HDR plasmids from Santa Cruz (sc-418200, sc-416966). The VDAC1-
417 specific gRNA sequences were: A/sense, 5'-TTGAAGGAATTACAAGCTC-3'; B/sense, 5'-
418 CGAATCCATGTCGCAGCCC-3'; C/sense, 5'-CTTACACATTAGTGTGAAGC-3'. The VDAC2-specific
419 gRNA sequences were: A/sense, 5'-AGAAATCGCAATTGAAGACC-3'; B/sense, 5'-
420 GCCCTTAAGCAGCACAGCAT-3'; C/sense, 5'-TAATGTGACTCTCAAGTCCT-3'. HeLa cells were
421 transfected with both plasmid mixes and grown for 48 h without selection. Next, cells were grown for 2
422 weeks under selective pressure with 2 µg/ml puromycin. Individual drug-resistant clones were picked
423 and analyzed for VDAC1 and VDAC2 expression by immunoblot analysis. A VDAC1/2 double KO cell
424 line was generated from ΔVDAC1 cells as described above following ejection of the puromycin
425 selectable marker using Cre vector (Santa Cruz, sc-418923) according to the manufacturer's
426 instructions. HCT116 VDAC1-KO, VDAC2-KO and VDAC1/2-double KO cells were previously
427 described⁹.

428

429 **Retroviral transduction**

430 VDAC1/2 double KO cells stably expressing HA-tagged VDAC1, VDAC1^{E73Q}, VDAC2 or VDAC2^{E84Q}
431 were created by retroviral transduction. To this end, HEK293T cells were co-transfected with pLNX2-
432 VDAC-HA expression constructs and packaging vectors (Clontech) using Lipofectamine 3000
433 (Invitrogen) according to manufacturer's instructions. The culture medium was changed 6 h post
434 transfection. After 48 h, the retrovirus-containing medium was harvested, filtered through a 0.45 µm
435 filter, mixed 1:1 (v/v) with McCoy's growth medium, supplemented with 8 µg/ml polybrene and used to

436 transduce the VDAC1/2 double KO cells. Hygromycin (300 µg/ml) was added 6 h post-infection and
437 selective medium was exchanged daily. After 3-5 days, positively transduced cells were selected and
438 analyzed for expression of HA-tagged VDACs by immunoblot analysis and immunofluorescence
439 microscopy using an anti-HA antibody.

440

441 **Subcellular fractionation**

442 HCT116 cells were grown to 75% confluence, washed twice with ice-cold 0.25 M sucrose and
443 scraped using a rubber policeman in IM medium (250 mM Mannitol, 5 mM HEPES, 0.5 mM EGTA, pH
444 7.4) supplemented with protease inhibitor cocktail (1 µg/ml apoprotein, 1 µg/ml leupeptin, 1 µg/ml
445 pepstatin, 5 µg/ml antipain, 157 µg/ml benzamidine) and 0.1 mM PMSF. Cells were homogenized on
446 ice by flushing 20-30 times through a Balch Homogenizer with a 8.008 mm diameter tungsten-carbide
447 ball. Nuclei and cellular debris were removed by centrifugation at 600 gmax at 4°C for 5 min. The
448 resultant post-nuclear supernatant was centrifuged at 10,300 gmax at 4°C for 10 min to collect
449 mitochondria. The mitochondrial pellet was resuspended in an ice-cold IM buffer, washed twice in the
450 same buffer and resuspended in 5 volumes R buffer (0.25M sucrose, 10 mM Tris-HCl, pH 7.4)
451 supplemented with protease inhibitor cocktail and 0.1 mM PMSF. The supernatant from the 10,300 g
452 spin was centrifuged at 100,000 gmax at 4°C for 1 h to separate the cytosol from microsomes. The
453 mitochondrial and cytosolic fractions were subjected to immunoblot analysis using antibodies against
454 HKI, HKII, VDAC1, VDAC2 and mitochondrial marker p60.

455

456 **Manipulation of cytosolic pH**

457 pH adjustment buffer was prepared as in Zaki *et al.*⁵⁸ and contained 2 mM CaCl₂, 5 mM KCl, 138 mM
458 NaCl, 1 mM MgCl₂, 10 mM D-glucose and 10 mM HEPES (pH7.4, 6.8) or 10 mM MES (pH6.4, 6.0)
459 and supplemented with 100 µg/ml penicillin-streptomycin (PAN-Biotech, P06-07100). The pH of the
460 buffer was adjusted with 0.1 M NaOH or HCl just before use. Nigericin (Enzo Life Sciences, BML-
461 CA421-0005) was dissolved in DMSO to obtain a 10 mM stock solution and added to the pH
462 adjustment buffer at a final concentration of 10 µM. HeLa HKI KO cells seeded in 8-well slides and
463 transfected with Tom20-EGFP, OMM-mCherry, HKI-N-Halo or Tom20-Halo were labeled with Janelia
464 Fluor® HaloTag® Ligand JF646 (Promega, CS315110) at a final concentration of 30 nM for 30 min.
465 Cells possessing a well-developed mitochondrial network were selected and imaged in Opti-MEM™
466 (Gibco, cat#11058-021) as described below. Next, Opti-MEM™ was replaced with nigericin-
467 containing pH adjustment buffer set at the desired pH and imaging continued after 5 min of
468 incubation. This was repeated after each exchange with nigericin-containing pH adjustment buffer set
469 at a different pH. Equilibration of the cytosolic pH with the pH of externally added pH adjustment
470 buffer was verified using pHrodo™ Red AM intracellular pH indicator dye (Thermo Fisher Scientific,
471 FP35372) according to instructions of the manufacturer.

472

473 **Live cell imaging**

474 Live cells were imaged using a Zeiss Cell Observer microscope equipped with a CSU-X1 spinning
475 disk unit (Yokogawa) at 37°C. Images were acquired at magnification of 75.6 x using an Alpha Plan-

476 Apochromat 63x oil immersion objective (NA 1.46) and immersion oil for 37°C (Immersol 518 F,
477 1.518, Zeiss). Fluorophores used were: EGFP ($\lambda_{\text{ex}}= 488$ nm, $\lambda_{\text{em}}= 509$ nm), mCherry ($\lambda_{\text{ex}}= 587$ nm,
478 $\lambda_{\text{em}}= 610$ nm), and JF646 ($\lambda_{\text{ex}}= 653$ nm, $\lambda_{\text{em}}= 668$ nm). For each cell, a z-stack containing 21 slices
479 of 0.2 μm thickness each was recorded. Images were deconvoluted and corrected for chromatic
480 aberration using Huygens Remote Manager (Scientific Volume Imaging, Netherlands). For chromatic
481 aberration correction, the x,y,z shifts were measured using 100 nm ϕ multicolor beads and the same
482 microscope settings as used for sample imaging. Calculated shifts (D) in μm for the channels in
483 reference to the GFP channel are listed in Table S3. Image processing was performed on the
484 sharpest z-layer using Fiji software (National Institutes of Health, USA, 1.54i). The total fluorescence
485 intensity of the mitochondrial network was quantified using Trainable Weka Segmentation Plugin for
486 ImageJ⁵⁹. Segmentation models of mitochondria, cytosol, and extracellular background were trained
487 uniquely for each cell. After applying a trained model, an intermodes threshold was set on the
488 probability map (Image => Adjust => Threshold) and a binary mask was created. The mask was
489 transformed into a ROI which was added to the original image to measure the mean pixel intensity
490 inside the segmented area. Total pixel intensity at mitochondria was calculated by multiplying mean
491 pixel intensity x total segmented area. Fluorescence values in corresponding pH buffer were set
492 relative to values of same cell in Opti-MEMTM. At least 6 different cells per condition were quantified
493 from 4 independent experiments. The contrasts of the images were set in reference to the intensity
494 level of the Opti-MEMTM images of each channel, except for the image of the cell expressing HKI-N-
495 Halo incubated with pH 7.4 buffer in Fig. 4b, where the intensity was increased to improve
496 visualization.

497

498 **Immunofluorescence microscopy**

499 HeLa cells grown and transfected on 12 mm sterilized glass coverslips were fixed in 4% (w/v)
500 paraformaldehyde in PBS for 10 min at 37°C. After quenching in 50mM ammonium chloride, cells
501 were permeabilized using PBS containing 0.1% (w/v) saponin and 0.2% (w/v) BSA, immunostained
502 for Tom20 and HA-tagged VDACs, counterstained with DAPI and mounted on glass slides using
503 ProLongTM Antifade Gold Mountant (Thermo Fisher Scientific, P36934). Cells were imaged using a
504 DeltaVision Elite microscope (GE Healthcare) using a PLAPON 60x oil immersion objective (NA 1.42)
505 and Immoil FC30CC immersion oil (Olympus Life Science, n= 1.518, 23°C). Fluorophores used were:
506 DAPI ($\lambda_{\text{ex}}= 390$ nm, $\lambda_{\text{em}}= 435$ nm), Cy2 ($\lambda_{\text{ex}}= 475$ nm, $\lambda_{\text{em}}= 523$ nm), Cy3 ($\lambda_{\text{ex}}= 575$ nm, $\lambda_{\text{em}}= 632$
507 nm), and Cy5 ($\lambda_{\text{ex}}= 632$ nm, $\lambda_{\text{em}}= 676$ nm). For each cell, a z-stack containing 16 slices of 0.2 μm
508 thickness was recorded. Images were deconvoluted using SoftWoRx 5.5 software and further
509 processed using Fiji software.

510

511 **Line scan and Pearson's correlation coefficient analysis**

512 Line scan analysis was done on either Huygens-processed data for live-cell imaging or on
513 deconvoluted immunofluorescence images. For this, 32-bit gray live-cell or 16-bit
514 immunofluorescence images were used. An arrow was drawn through the region of interest (ROI) and
515 the pixel intensity data in this region was derived using Analyze => Plot Profile => List. The data was

516 normalized using the formula ((Single value-MIN(Values))/(MAX(Values)-MIN(Values)))*100.
517 Pearson's correlation coefficients were calculated using the Costes' automatic threshold. Pearson's
518 values for the experiment shown in Fig. 1b were determined using the Fiji Plugin Coloc 2. For all other
519 experiments Pearson's values were determined using the Image J Macro described in Supplementary
520 Information.

521

522 **MD simulations**

523 For all-atom models, a structure of rat HKI (PDB: 1BG3 at 2.80 Å resolution) and a refined solution
524 NMR structure of human VDAC1 (PDB: 6TIQ) were used. The same VDAC1 structure was used for
525 all CG-MD simulations. As there is no available structure for human VDAC2, we mutated the structure
526 of human VDAC1 to the human sequence of VDAC2 (NCBI ID: NM_001184783.3) using the PyMOL
527 software. The VDAC1 structure shares a β-barrel backbone RMSD of 2.03 Å and a mean of 2.09 Å
528 from all 20 structures of the NMR stack with a zebrafish VDAC2 structure (PDB: 4BUM), supporting
529 our assumption of identical secondary structures between VDAC1 and VDAC2. To achieve similar
530 sequence length, we mutated the twelfth residue of VDAC2 onto the first residue of VDAC1, thus
531 effectively truncating the *N*-terminus of VDAC2 by eleven residues. Since the published structure of
532 human HKI (PDB: 1HKB) lacks the *N*-terminal helix, we used the first 18 residues of the *N*-terminal
533 helix of rat HKI structure (PDB: 1BG3) for CG-MD simulations as this sequence is identical to that of
534 human HKI. All proteins were coarse-grained using the martinize2 script⁶⁰. The HKI-N C-Terminus
535 was protonated to mimic a continuation of the protein. For MD-simulations with HKI-N, VDAC1 was
536 embedded into an OMM-mimicking lipid bilayer with a total of 749 lipids using the insane script⁶¹. The
537 membrane composition was based on Horvath and Daum³⁷, with a mixture of
538 POPC/POPE/SAPI/cholesterol (45/33.5/5/16.5, mol%) in the cytosolic leaflet and
539 POPC/POPE/SAPI/cholesterol (52.5/14/19/14.5, mol%) in the IMS-leaflet. To achieve a similar tilt and
540 starting position between the two VDAC isoforms, the VDAC2 backbone particles were then aligned
541 onto the membrane embedded VDAC1 backbone using the MDAnalysis Python package
542 (<https://github.com/mnmelo/MDreader>). HKI-N was placed away from the VDAC, yet close to the
543 cytosolic membrane leaflet. Two sets of positional restraints were placed on the helix: the first to
544 ensure correct membrane adsorption during equilibration³⁸, and the second to prevent the peptide
545 from crossing the system's periodicity along the z-axis whenever desorption occurred over the course
546 of the simulation — which would otherwise allow HKI-N interactions with the IMS leaflet. In both
547 VDacs, a barrel lumen-facing aspartate (D100 in VDAC1 and D111 in VDAC2) is present, at a
548 position just under the Martini electrostatic interaction cutoff relative to the HKI-N terminal particles
549 when bound to the membrane facing Glu. Two nearby lysine side chains, that would presumably
550 shield the aspartate's anionic charge, fall just outside this electrostatic distance cutoff. Therefore, to
551 avoid overrepresenting the influence of this aspartate's charge on the HKI-N bound state, it was
552 always considered to be protonated. For membrane thickness, lipid phosphate occupancy and water
553 defects analysis, VDAC1 was embedded into a 100mol% POPC membrane containing 386 lipids
554 using the insane-script. VDAC2 was aligned onto it as described above. Approximately 150mM NaCl
555 was added to all systems, with an excess of Na⁺ to reach charge neutrality. The Martini 3 force field³⁵

556 was used for all simulations and the secondary structure of all proteins was restricted using an elastic-
557 network approach⁶², placing harmonic bonds of $500 \text{ kJ mol}^{-1} \text{ nm}^{-2}$ between backbone particles that lie
558 within 0.9 nm after coarse-graining of the reference structures. All simulations were run with
559 GROMACS versions 2021⁶³. We employed standard Martini 3 parameters to calculate interparticle
560 interactions. For electrostatic interactions, reaction field electrostatics with a Coulombic potential
561 cutoff of 1.1 nm were applied. The relative dielectric constant was set to 15, with an infinite dielectric
562 constant of the reaction field. Van der Waals interactions were modeled by the Lennard-Jones
563 potentials up to a cutoff of 1.1 nm. The particle neighbor list was updated using the Verlet list scheme.
564 All simulations were run at 20 fs time steps. All systems were minimized using a steepest descent
565 algorithm. The systems were then equilibrated for 2 ns at 300 K and 1 bar in the isothermal–isobaric
566 (NpT) ensemble. During equilibration, temperature was controlled with the v-rescale thermostat with a
567 coupling constant of 1.0 ps. Pressure was coupled seiisotropically using the Berendsen barostat, with
568 a coupling constant of 3.0 ps and a compressibility of $4.5 \times 10^{-5} \text{ bar}^{-1}$. During the equilibration, HKI-N
569 was adsorbed onto the membrane bilayer using a restraining protocol described previously³⁸.
570 Production runs followed largely the same setup, but with the more formally correct Parrinello-
571 Rahman barostat, used with a coupling constant of 12.0 ps and a compressibility of $3.4 \times 10^{-5} \text{ bar}^{-1}$;
572 particle coordinates were saved as a trajectory every 500 ps. Except for the comparison of residence
573 time on the membrane between HKI-N and HKI-N^{L7Q}, all other HKI-N simulations were run with a
574 potential on the helix that imposed an effective barrier to crossing the system's periodicity over the z-
575 axis, should HKI-N become desorbed during the simulation. This repulsive harmonic potential of 1000
576 $\text{kJ mol}^{-1} \text{ nm}^{-2}$ was only imposed within a vertical thickness of 1.5 nm of the z=0 position, and thus did
577 not influence the membrane-adsorbed state. Total simulation times and box sizes of all conditions are
578 documented in Table S1.
579

580 **Titratable Martini simulations of VDAC channels**

581 To perform the titration of VDAC1 and VDAC2, the corresponding channel structures (see above)
582 were first simulated in a purely POPC membrane using the insane tool⁶¹ and a solvated box with
583 neutralising ions for 1 μs using a time-step of 20 fs. The final frame then provided the starting
584 structures for the titration simulations. To perform the titration simulations, the protocol described by
585 Martini Sour⁶⁴ was used as described previously³⁹. Briefly, the side chain of interest (E73 for VDAC1
586 and E84 for VDAC2) was replaced with a titratable particle (type P2_4.8) which has the ability to bind
587 a proton particle. The standard Martini water was replaced with titratable Martini water. For each
588 protein, three independent sets of titrations were performed. Each pH (in the range 3–8 with half pH
589 steps) was simulated for 20 ns. Prior to the production simulation, minimisation and equilibration steps
590 were performed (2 ns each) at each pH value. The production simulations were calculated using the
591 NPT ensemble, with the temperature set at 298 K and pressure set at 1 bar. To maintain these, a
592 velocity rescale thermostat (time constant 1.0 ps) and the isotropic Parrinello Rahman barostat (time
593 constant 3 ps) were used. All titrations were performed using the stochastic dynamics integrator⁶⁵ with
594 a timestep of 10 fs. The PME algorithm was used to calculate electrostatic interactions, with a cutoff
595 value of 1.1 nm. For analysis, only the last 10 ns of each simulation were considered. The scripts to

596 perform the titrations and analysis can be found at
597 https://github.com/fgrunewald/titratable_martini_tools and <http://cgmartini.nl>. The degree of
598 deprotonation is calculated based on the number of proton particles bound to the titratable site at
599 each pH.

600

601 **Simulation analysis**

602 To analyze the residence time on the membrane between HKI-N and HKI-N^{L7Q}, we first equilibrated
603 the adsorption of HKI-N or HKI-N^{L7Q} onto an OMM-mimicking lipid bilayer without VDACs, using the
604 restraint approach described above and then lifted the restraint for the production run. The minimum
605 distance between protein and membrane particles was calculated for each frame of the trajectory and
606 followed/Plotted until it exceeded 1.4 nm, upon which desorption was considered to have occurred.
607 HKI-N–VDAC interactions were analyzed as contacts between the proteins' particles within a 0.6 nm
608 cutoff, grouped into contacts per residues (residues were considered in contact if they have any
609 particles in contact). These were plotted as either HKI-N Met1 contacts to any VDAC residues or any
610 HKI-N residue contacting VDAC1/VDAC2 Glu73/84 or the corresponding mutants. In case of
611 VDAC1^{E73F/F71E}, Glu71 was plotted. Contact intensity is shown as the fraction of the total simulation
612 time for which the contact was established. The membrane-depth of the membrane-buried Glu was
613 calculated by first defining the membrane center as the average position of the centers of geometry
614 from each leaflet's lipid backbone glycerols. The z-position of the Glu was then calculated relative to
615 the membrane center over the course of the simulation. To analyze leaflet specific membrane
616 thinning, the absolute value of the difference between the average z-position of the lipid backbone
617 phosphate in a particular leaflet in 0.1 nm bins along the x and y plane and the global membrane
618 center of mass was calculated. Water defects were calculated with the same bin dimensions. Here,
619 the average number of water molecules inside a cylinder over the course of a simulation was
620 calculated. The cylinder was placed in the geometric center of the protein in the xy-plane with a radius
621 of 2.5 nm and in the geometric center of the membrane in the z-axis with a total height of 3 nm, thus
622 protruding 1.5 nm into each leaflet. The average leaflet thickness of a 100 mol% POPC membrane
623 was approx. 1.95 nm. We analyzed the lipid backbone phosphate occupancy using the VMD VolMap
624 Tool, by gridding the simulation box at a 2 Å spacing and then calculating the presence of a
625 phosphate in each cell relative to the total simulation time, leading to an occupancy range per cell
626 from 0% (never present) to 100% (always present). For the representation, an isooccupancy surface
627 threshold of 0.5% was chosen. To analyze membrane thinning, water defects and phosphate
628 occupancy, VDACs were centered in the xy-plane and their rotation around the z-axis was restricted.

629 **REFERENCES**

630

631 1. Choudhary, O. P. *et al.* Structure-guided simulations illuminate the mechanism of ATP
632 transport through VDAC1. *Nat. Struct. Mol. Biol.* **21**, (2014).

633 2. De Pinto, V. Renaissance of vdac: New insights on a protein family at the interface between
634 mitochondria and cytosol. *Biomolecules* **11**, (2021).

635 3. Raghavan, A., Sheiko, T., Graham, B. H. & Craigen, W. J. Voltage-dependant anion channels:
636 Novel insights into isoform function through genetic models. *Biochimica et Biophysica Acta -*
637 *Biomembranes* vol. 1818 (2012).

638 4. Jahn, H. *et al.* Phospholipids are imported into mitochondria by VDAC, a dimeric beta barrel
639 scramblase. *Nat. Commun.* **14**, (2023).

640 5. Naghdi, S. & Hajnóczky, G. VDAC2-specific cellular functions and the underlying structure.
641 *Biochim. Biophys. Acta - Mol. Cell Res.* **1863**, (2016).

642 6. Lauterwasser, J. *et al.* The porin VDAC2 is the mitochondrial platform for Bax
643 retrotranslocation. *Sci. Rep.* **6**, (2016).

644 7. Chin, H. S. *et al.* VDAC2 enables BAX to mediate apoptosis and limit tumor development. *Nat.*
645 *Commun.* **9**, (2018).

646 8. Kroemer, G., Galluzzi, L. & Brenner, C. Mitochondrial membrane permeabilization in cell
647 death. *Physiological Reviews* vol. 87 (2007).

648 9. Dadsena, S. *et al.* Ceramides bind VDAC2 to trigger mitochondrial apoptosis. *Nat. Commun.*
649 **10**, (2019).

650 10. De Jesus, A. *et al.* Hexokinase 1 cellular localization regulates the metabolic fate of glucose.
651 *Mol. Cell* **82**, (2022).

652 11. Warburg, O. Injuring of Respiration the Origin of Cancer Cells. *Science (80-)* **123**, (1956).

653 12. Gatenby, R. A. & Gillies, R. J. Why do cancers have high aerobic glycolysis? *Nature Reviews*
654 *Cancer* vol. 4 (2004).

655 13. Heiden, M. G. Vander *et al.* Understanding the Warburg Effect : Cell Proliferation. *Science (80-)*
656 **324**, (2009).

657 14. Patra, K. C. *et al.* Hexokinase 2 is required for tumor initiation and maintenance and its
658 systemic deletion is therapeutic in mouse models of cancer. *Cancer Cell* **24**, (2013).

659 15. Pastorino, J. G., Shulga, N. & Hoek, J. B. Mitochondrial binding of hexokinase II inhibits Bax-
660 induced cytochrome c release and apoptosis. *J. Biol. Chem.* **277**, (2002).

661 16. Abu-Hamad, S., Zaid, H., Israelson, A., Nahon, E. & Shoshan-Barmatz, V. Hexokinase-I
662 protection against apoptotic cell death is mediated via interaction with the voltage-dependent
663 anion channel-1: Mapping the site of binding. *J. Biol. Chem.* **283**, (2008).

664 17. Schindler, A. & Foley, E. Hexokinase 1 blocks apoptotic signals at the mitochondria. *Cell.*
665 *Signal.* **25**, (2013).

666 18. Israelson, A. *et al.* Misfolded mutant SOD1 directly inhibits VDAC1 conductance in a mouse
667 model of inherited ALS. *Neuron* **67**, (2010).

668 19. Magri, A. *et al.* Hexokinase i N-terminal based peptide prevents the VDAC1-SOD1 G93A

669 interaction and re-establishes ALS cell viability. *Sci. Rep.* **6**, (2016).

670 20. Goldin, N. *et al.* Methyl jasmonate binds to and detaches mitochondria-bound hexokinase. *Oncogene* **27**, (2008).

671 21. Arzoine, L., Zilberberg, N., Ben-Romano, R. & Shoshan-Barmatz, V. Voltage-dependent anion

672 channel 1-based peptides interact with hexokinase to prevent its anti-apoptotic activity. *J. Biol.*

673 *Chem.* **284**, (2009).

674 22. Gautier, B. *et al.* Mapping the N-Terminal Hexokinase-I Binding Site onto Voltage-Dependent

675 Anion Channel-1 to Block Peripheral Nerve Demyelination. *J. Med. Chem.* **65**, (2022).

676 23. Gelb, B. D. *et al.* Targeting of hexokinase 1 to liver and hepatoma mitochondria. *Proc. Natl.*

677 *Acad. Sci. U. S. A.* **89**, (1992).

678 24. Ehsani-Zonouz, A., Golestani, A. & Nemat-Gorgani, M. Interaction of hexokinase with the

679 outer mitochondrial membrane and a hydrophobic matrix. *Mol. Cell. Biochem.* **223**, (2001).

680 25. Bryan, N. & Raisch, K. P. Identification of a mitochondrial-binding site on the N-terminal end of

681 hexokinase II. *Biosci. Rep.* **35**, (2015).

682 26. Rosano, C. Molecular model of hexokinase binding to the outer mitochondrial membrane porin

683 (VDAC1): Implication for the design of new cancer therapies. *Mitochondrion* **11**, (2011).

684 27. Zhang, D., Yip, Y. M. & Li, L. In silico construction of HK2-VDAC1 complex and investigating

685 the HK2 binding-induced molecular gating mechanism of VDAC1. *Mitochondrion* **30**, (2016).

686 28. De Pinto, V., Al Jamal, J. A. & Palmieri, F. Location of the dicyclohexylcarbodiimide-reactive

687 glutamate residue in the bovine heart mitochondrial porin. *J. Biol. Chem.* **268**, (1993).

688 29. Zaid, H., Abu-Hamad, S., Israelson, A., Nathan, I. & Shoshan-Barmatz, V. The voltage-

689 dependent anion channel-1 modulates apoptotic cell death. *Cell Death Differ.* **12**, (2005).

690 30. Haloi, N. *et al.* Structural basis of complex formation between mitochondrial anion channel

691 VDAC1 and Hexokinase-II. *Commun. Biol.* **4**, (2021).

692 31. McDonald, B. M., Wydro, M. M., Lightowers, R. N. & Lakey, J. H. Probing the orientation of

693 yeast VDAC1 in vivo. *FEBS Lett.* **583**, (2009).

694 32. Tomasello, M. F., Guarino, F., Reina, S., Messina, A. & De Pinto, V. The Voltage-Dependent

695 Anion selective Channel 1 (VDAC1) topography in the mitochondrial outer membrane as

696 detected in intact cell. *PLoS One* **8**, (2013).

697 33. Cho, N. H. *et al.* OpenCell: Endogenous tagging for the cartography of human cellular

698 organization. *Science* (80-). **375**, (2022).

699 34. Xie, G. & Wilson, J. E. Rat brain hexokinase: The hydrophobic N-terminus of the

700 mitochondrially bound enzyme is inserted in the lipid bilayer. *Arch. Biochem. Biophys.* **267**,

701 (1988).

702 35. Souza, P. C. T. *et al.* Martini 3: a general purpose force field for coarse-grained molecular

703 dynamics. *Nat. Methods* **18**, (2021).

704 36. Marrink, S. J. *et al.* Two decades of Martini: Better beads, broader scope. *Wiley*

705 *Interdisciplinary Reviews: Computational Molecular Science* vol. 13 (2023).

706 37. Horvath, S. E. & Daum, G. Lipids of mitochondria. *Progress in Lipid Research* vol. 52 (2013).

707 38. Melo, M. N. Coarse-Grain Simulations of Membrane-Adsorbed Helical Peptides. in *Methods in*

709 Molecular Biology vol. 2405 (2022).

710 39. Chiariello, M. G., Grünewald, F., Zarmiento-Garcia, R. & Marrink, S. J. pH-Dependent
711 Conformational Switch Impacts Stability of the PsbS Dimer. *J. Phys. Chem. Lett.* **14**, (2023).

712 40. Isom, D. G., Castañeda, C. A., Cannon, B. R., Velu, P. D. & García-Moreno E, B. Charges in
713 the hydrophobic interior of proteins. *Proc. Natl. Acad. Sci. U. S. A.* **107**, (2010).

714 41. Doherty, G. P., Bailey, K. & Lewis, P. J. Stage-specific fluorescence intensity of GFP and
715 mCherry during sporulation in *Bacillus Subtilis*. *BMC Res. Notes* **3**, (2010).

716 42. Villinger, S. *et al.* Functional dynamics in the voltage-dependent anion channel. *Proc. Natl.*
717 *Acad. Sci. U. S. A.* **107**, (2010).

718 43. Rossi, A. *et al.* Defective Mitochondrial Pyruvate Flux Affects Cell Bioenergetics in Alzheimer's
719 Disease-Related Models. *Cell Rep.* **30**, (2020).

720 44. Ujwal, R., Cascio, D., Chaptal, V., Ping, P. & Abramson, J. Crystal packing analysis of murine
721 VDAC1 crystals in a lipidic environment reveals novel insights on oligomerization and
722 orientation. *Channels (Austin)*. **3**, (2009).

723 45. Quach, C. H. T. *et al.* Mild alkalization acutely triggers the Warburg effect by enhancing
724 hexokinase activity via voltage-dependent anion channel binding. *PLoS One* **11**, (2016).

725 46. Sun, L., Shukair, S., Naik, T. J., Moazed, F. & Ardehali, H. Glucose Phosphorylation and
726 Mitochondrial Binding Are Required for the Protective Effects of Hexokinases I and II. *Mol.*
727 *Cell. Biol.* **28**, (2008).

728 47. Corbet, C. & Feron, O. Tumour acidosis: From the passenger to the driver's seat. *Nature*
729 *Reviews Cancer* vol. 17 (2017).

730 48. Dadsena, S., Hassan, D. G. & Holthuis, J. C. M. Unraveling the molecular principles by which
731 ceramides commit cells to death. *Cell Stress* **3**, (2019).

732 49. Patwardhan, G. A., Beverly, L. J. & Siskind, L. J. Sphingolipids and mitochondrial apoptosis. *J.*
733 *Bioenerg. Biomembr.* **48**, 153–168 (2016).

734 50. Ogretmen, B. Sphingolipid metabolism in cancer signalling and therapy. *Nat. Rev. Cancer* **18**,
735 33–50 (2018).

736 51. Galluzzi, L., Kepp, O., Tajeddine, N. & Kroemer, G. Disruption of the hexokinase-VDAC
737 complex for tumor therapy. *Oncogene* vol. 27 (2008).

738 52. Smilansky, A. *et al.* The voltage-dependent anion channel 1 mediates amyloid β toxicity and
739 represents a potential target for Alzheimer disease therapy. *J. Biol. Chem.* **290**, (2015).

740 53. Magri, A. & Messina, A. Interactions of VDAC with Proteins Involved in Neurodegenerative
741 Aggregation: An Opportunity for Advancement on Therapeutic Molecules. *Curr. Med. Chem.*
742 **24**, (2017).

743 54. Magrì, A. *et al.* Small hexokinase 1 peptide against toxic sod1 g93a mitochondrial
744 accumulation in als rescues the atp-related respiration. *Biomedicines* **9**, (2021).

745 55. Shoshan-Barmatz, V., Zakar, M., Rosenthal, K. & Abu-Hamad, S. Key regions of VDAC1
746 functioning in apoptosis induction and regulation by hexokinase. *Biochim. Biophys. Acta -*
747 *Bioenerg.* **1787**, (2009).

748 56. Jain, A., Beutel, O., Ebell, K., Korneev, S. & Holthuis, J. C. M. Diverting CERT-mediated

749 ceramide transport to mitochondria triggers Bax-dependent apoptosis. *J. Cell Sci.* **130**, (2017).

750 57. Jain, A., Dadsena, S. & Holthuis, J. C. M. A switchable ceramide transfer protein for dissecting
751 the mechanism of ceramide-induced mitochondrial apoptosis. *FEBS Lett.* (2020)
752 doi:10.1002/1873-3468.13956.

753 58. Ghaffari Zaki, A. *et al.* Development of a Chemogenetic Approach to Manipulate Intracellular
754 pH. *J. Am. Chem. Soc.* **145**, (2023).

755 59. Arganda-Carreras, I. *et al.* Trainable Weka Segmentation: A machine learning tool for
756 microscopy pixel classification. *Bioinformatics* **33**, (2017).

757 60. Kroon, P. C. *et al.* Martinize2 and Vermouth: Unified Framework for Topology Generation. *Elife*
758 **12**, (2023).

759 61. Wassenaar, T. A., Ingólfsson, H. I., Böckmann, R. A., Tielemans, D. P. & Marrink, S. J.
760 Computational lipidomics with insane: A versatile tool for generating custom membranes for
761 molecular simulations. *J. Chem. Theory Comput.* **11**, (2015).

762 62. Periole, X., Cavalli, M., Marrink, S. J. & Ceruso, M. A. Combining an elastic network with a
763 coarse-grained molecular force field: Structure, dynamics, and intermolecular recognition. *J.*
764 *Chem. Theory Comput.* **5**, (2009).

765 63. Hess, B., Kutzner, C., Van Der Spoel, D. & Lindahl, E. GRGMACS 4: Algorithms for highly
766 efficient, load-balanced, and scalable molecular simulation. *J. Chem. Theory Comput.* **4**,
767 (2008).

768 64. Grünwald, F. *et al.* Titratable Martini model for constant pH simulations. *J. Chem. Phys.* **153**,
769 (2020).

770 65. Van Gunsteren, W. F. & Berendsen, H. J. C. A Leap-Frog Algorithm for Stochastic Dynamics.
771 *Mol. Simul.* **1**, (1988).

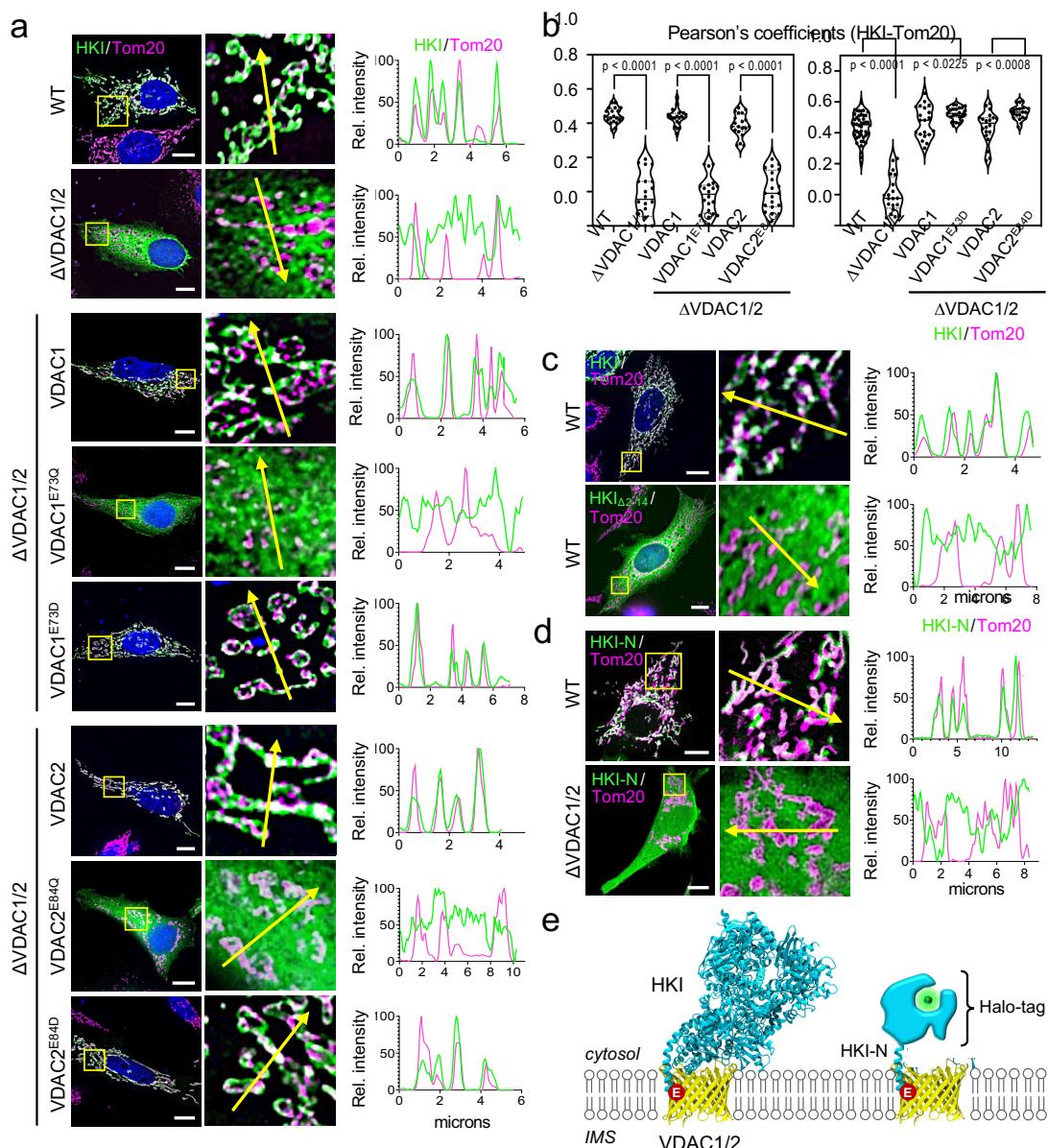
772

773 **Acknowledgements:** We gratefully acknowledge Ladislav Bartos and Robert Vácha (National Centre
774 for Biomolecular Research, Masaryk University, Brno, Czech Republic) for providing the scripts for
775 membrane thinning and water defects analysis, and Varda Shoshan-Barmatz (Ben-Gurion University
776 of the Negev, Israel) for the pEGFP-HKI construct. This work was supported by the Deutsche
777 Forschungsgemeinschaft (HO3539/1-2 and HO 3539/2-1 to J. C. M. H.), the German Egyptian
778 Research Long-term Scholarship Program (GERLI project 57222240 to D. G. H.), the European
779 Research Council (ERC Advanced grant 101053661 „COMP-O-CELL“ to S. J. M.) and the FCT –
780 Fundação para a Ciência e a Tecnologia I.P. (through MOSTMICRO-ITQB R&D Unit with projects
781 UIDB/04612/2020 and UIDP/04612/2020, and LS4FUTURE Associated Laboratory with projects
782 LA/P/0087/2020 and CEECIND/04124/2017/CP1428/CT0008 to M. N. M.).

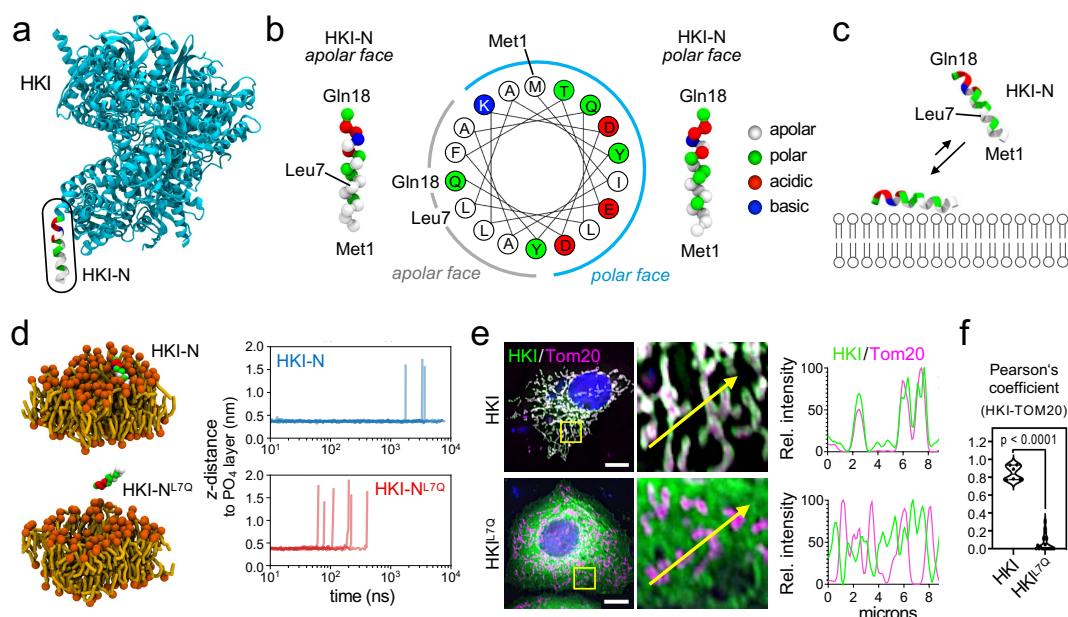
783

784 **Author Contributions:** M. N. M. and J. C. M. H. designed the research with critical input from S. B.
785 and M. T.; S. B. performed experiments in cells with critical input from D. H.; M. T. carried out the CG-
786 MD simulations with critical input from N. W.; C. M. B. carried out all titratable MD simulations; J. C.
787 M. H. provided expertise for experiments in cells and helped interpret the data; M. N. M. and S. J. M.
788 provided expertise for CG-MD simulations and helped interpret the data; J. C. M. H. wrote the
789 manuscript; all authors discussed results and commented on the manuscript.

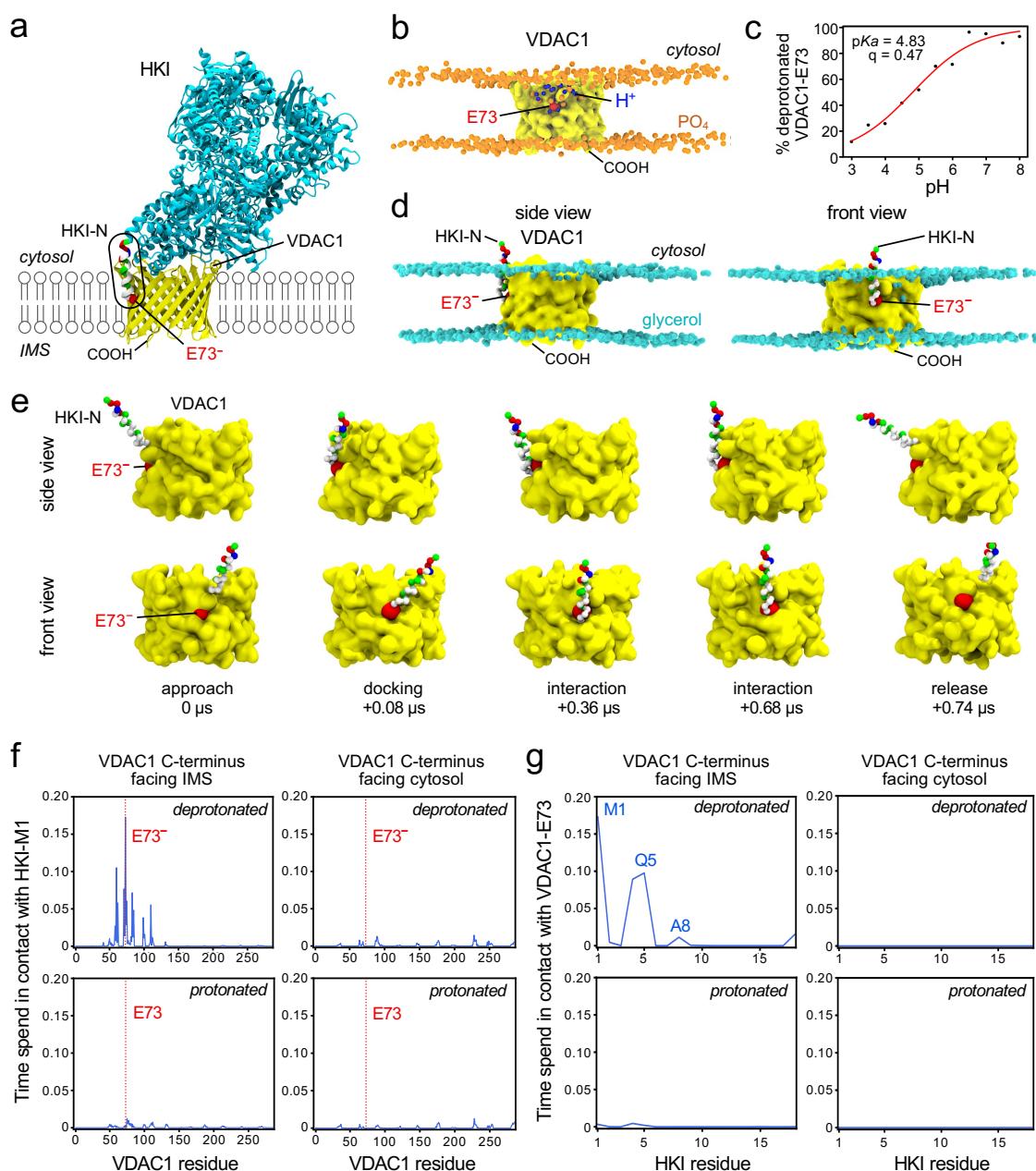
790


791 **Competing Interests:** The authors declare no competing interests.

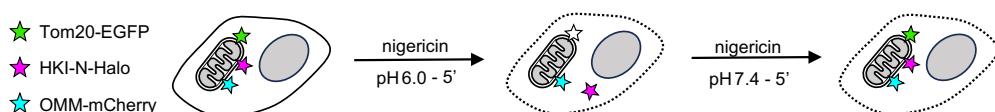
792


793 **Data Availability:** All data generated or analyzed in this study are included in the manuscript and
794 supporting files. Source data with sample sizes, number of technical and/or biological replicates,
795 means, standard deviations, and calculated P values (where applicable) are provided in the Source
796 Data file for Figs. 1b, 2f, 4d, 7f, and Supplementary Fig. S2b. Uncropped scans of immunoblots are
797 provided in Supplementary Information.

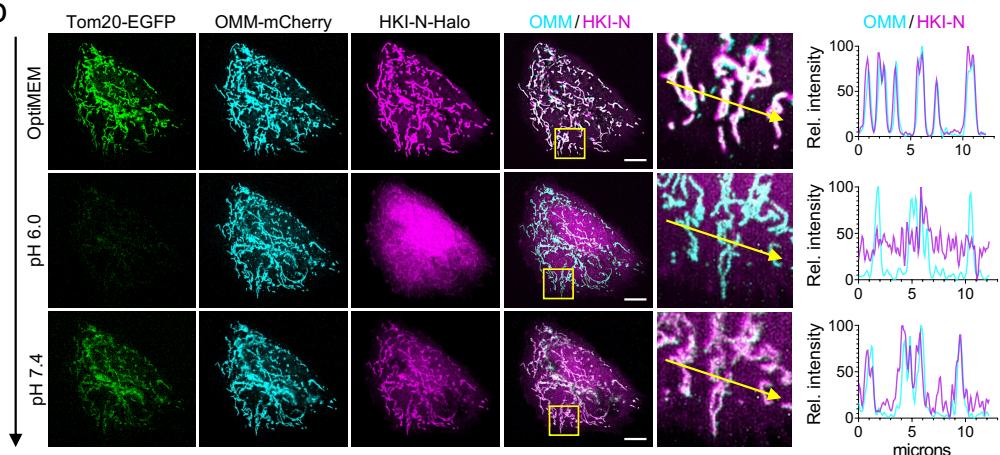
798


799 **Code Availability:** All custom code is provided in Supplementary Information.

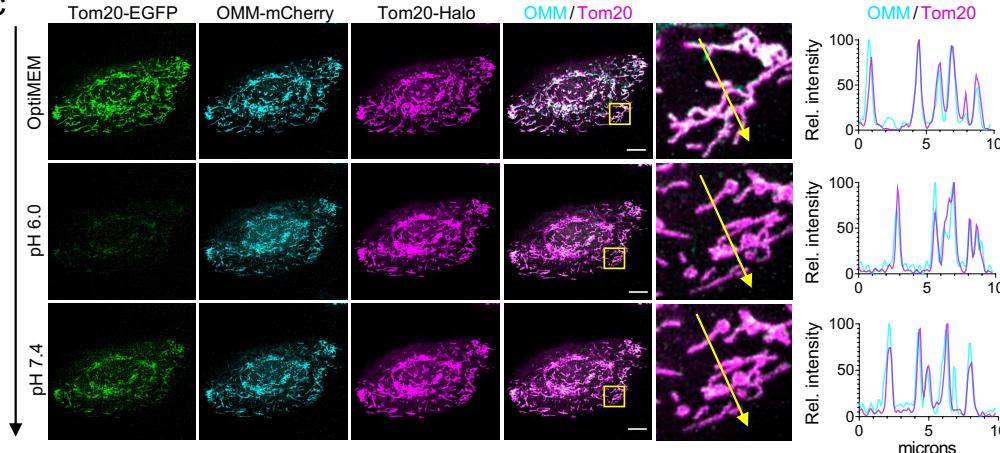
800 **Figure 1 | Mitochondrial localization of HKI relies on its N-terminal α -helix and a membrane-buried**
801 **Glu in VDACs. (a)** Fluorescence images of wild-type (WT) and VDAC1/2-DKO HeLa cells expressing
802 EGFP-tagged HKI (green) alone or in combination with HA-tagged VDAC1, VDAC1^{E73Q}, VDAC1^{E73D},
803 VDAC2, VDAC2^{E84Q} or VDAC2^{E84D}, fixed and then stained with DAPI (blue) and an antibody against Tom20
804 (magenta). Line scans showing degree of overlap between HKI and Tom20 signals along the path of the
805 arrow shown in the zoom-in. Scale bar, 10 μ m. **(b)** Pearson's correlation co-efficient analysis between HKI
806 and Tom20 signals in cells as in (a). For each violin plot, the middle line denotes the median, and the top
807 and bottom lines indicate the 75th and 25th percentile. From left to right, $n = 20$ (WT), 20 (VDAC1/2-DKO),
808 20 (VDAC1/2-DKO+VDAC1), 20 (VDAC1/2-DKO+ VDAC1^{E73Q}), 20 (VDAC1/2-DKO+VDAC2), 20
809 (VDAC1/2-DKO+VDAC2^{E84Q}), 46 (WT), 20 (VDAC1/2-DKO), 20 (VDAC1/2-DKO+VDAC1), 23 (VDAC1/2-
810 DKO+VDAC1^{E73D}), 20 (VDAC1/2-DKO+VDAC2) and 20 cells (VDAC1/2-DKO+VDAC2^{E84D}) over at least 2
811 independent experiments. p values were calculated by unpaired two-tailed t test. **(c)** Fluorescence images
812 of WT HeLa cells expressing EGFP-tagged HKI or N-terminal truncation mutant HKI_{Δ2-14}, fixed and then
813 stained with DAPI (blue) and an antibody against Tom20 (magenta). Line scans showing degree of overlap
814 between HKI and Tom20 signals along the path of the arrow shown in the zoom-in. Scale bar, 10 μ m. **(d)**
815 Fluorescence images of live WT and VDAC1/2-DKO HeLa cells co-expressing EGFP-tagged Tom20
816 (magenta) and Halo-tagged HKI-N (N-terminal HKI residues 1-17, green). Line scans showing degree of
817 overlap between HKI-N and Tom20 signals along the path of the arrow shown in the zoom-in. Scale bar, 10
818 μ m. **(e)** Models of complexes formed between HKI, Halo-tagged HKI-N and VDAC1/2. The membrane-
819 buried Glu is marked in red.

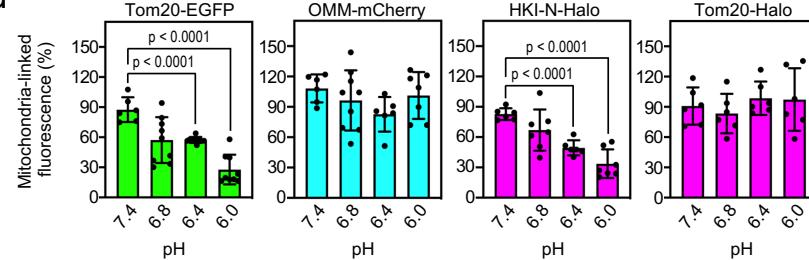


820 **Figure 2 | HKI-N binding to membranes.** (a) Atomic model of HKI (PDB: 1BG3, cyan) with the N-terminal
821 **α-helix (HKI-N) highlighted in residue-type coloring.** (b) HeliQuest analysis and ball-and-stick
822 representation of the coarse-grained HKI-N backbone reveals an α-helix with a polar and apolar face. (c)
823 Model predicting that the apolar face of HKI-N mediates membrane binding, with the first half of the α-helix
824 protruding deeper into the membrane bilayer. (d) Membrane adsorption survival analysis of HKI-N and HKI-
825 N^{L7Q} using CG-MD simulations, plotted as each helix's minimum distance to the membrane; desorption was
826 considered when the distance surpassed 1.4 nm. Data shown represents six independent replicas per
827 condition. (e) Fluorescence images of WT HeLa cells expressing EGFP-tagged HKI or HKI^{L7Q} (green), fixed
828 and then stained with DAPI (blue) and an antibody against Tom20 (magenta). Line scans showing degree
829 of overlap between HKI and Tom20 signals along the path of the arrow shown in the zoom-in. Scale bar, 10
830 μm. (f) Pearson's correlation co-efficient analysis between HKI and Tom20 signals in cells as in (e). $n = 21$
831 (HKI) and 28 cells (HKI^{L7Q}) over three independent experiments. p values were calculated by unpaired two-
832 tailed t test.

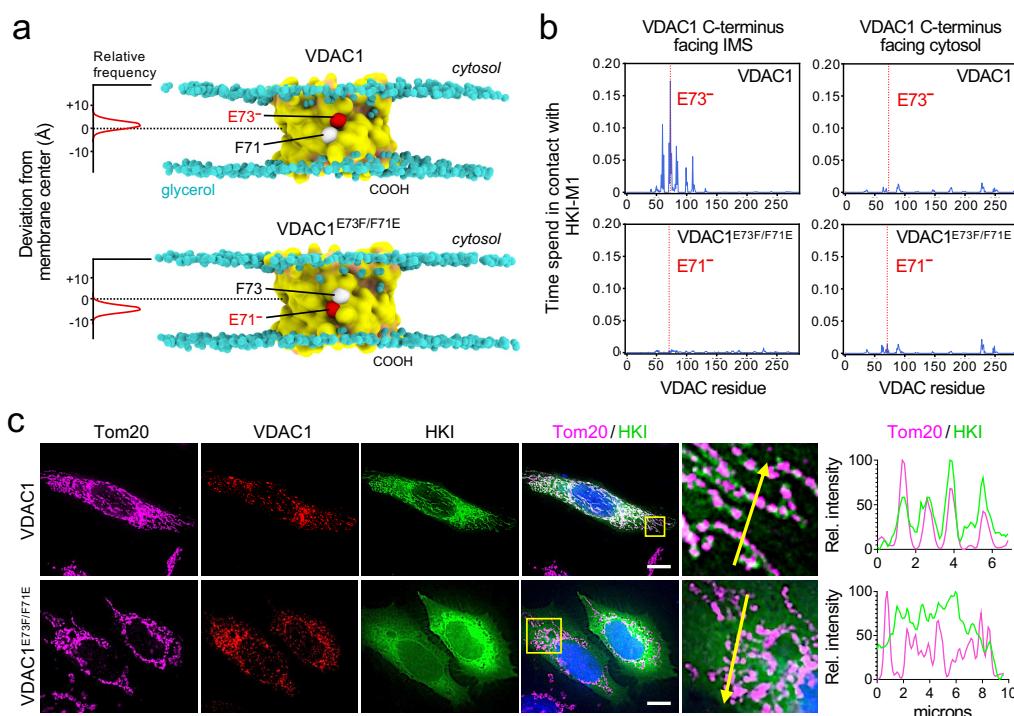


833 **Figure 3 | HKI-N binding to VDAC1 is directly controlled by the protonation state of the membrane-**
 834 **buried Glu.** (a) Atomic model of HKI (cyan, with residue-type colored HKI-N) bound to VDAC1 (yellow) with
 835 the membrane-buried Glu (E73) marked in red. (b) Still from a titratable MD simulation of VDAC1 (yellow)
 836 to evaluate the protonation state of E73 (red) at pH 5.0. PO₄ groups in the POPC-based bilayer are marked
 837 in orange and protons are marked in blue. (c) Titration curve showing the degree of deprotonation of E73 in
 838 VDAC1, simulated at a pH range of 3-8. (d) Stills from an MD simulation showing HKI-N bound to VDAC1
 839 with a deprotonated E73 (red) and IMS-facing C-terminus. Glycerol groups in the OMM-mimicking bilayer
 840 are marked in cyan. (e) Stills from an MD simulation, showing the approach and binding of HKI-N to
 841 VDAC1 with a deprotonated E73 (red) and IMS-facing C-terminus. (f) Relative duration of contacts
 842 between HKI-M1 and specific residues of VDAC1 with a protonated or deprotonated E73 and cytosol- or
 843 IMS-facing C-terminus simulated in an OMM-mimicking bilayer. Shown are the combined data of three
 844 individual replicas with a total simulation time between 169 μs and 211 μs per condition. (g) Relative
 845 duration of contacts between VDAC1-E73 and specific residues of HKI-N under the same conditions as in
 846 (f).

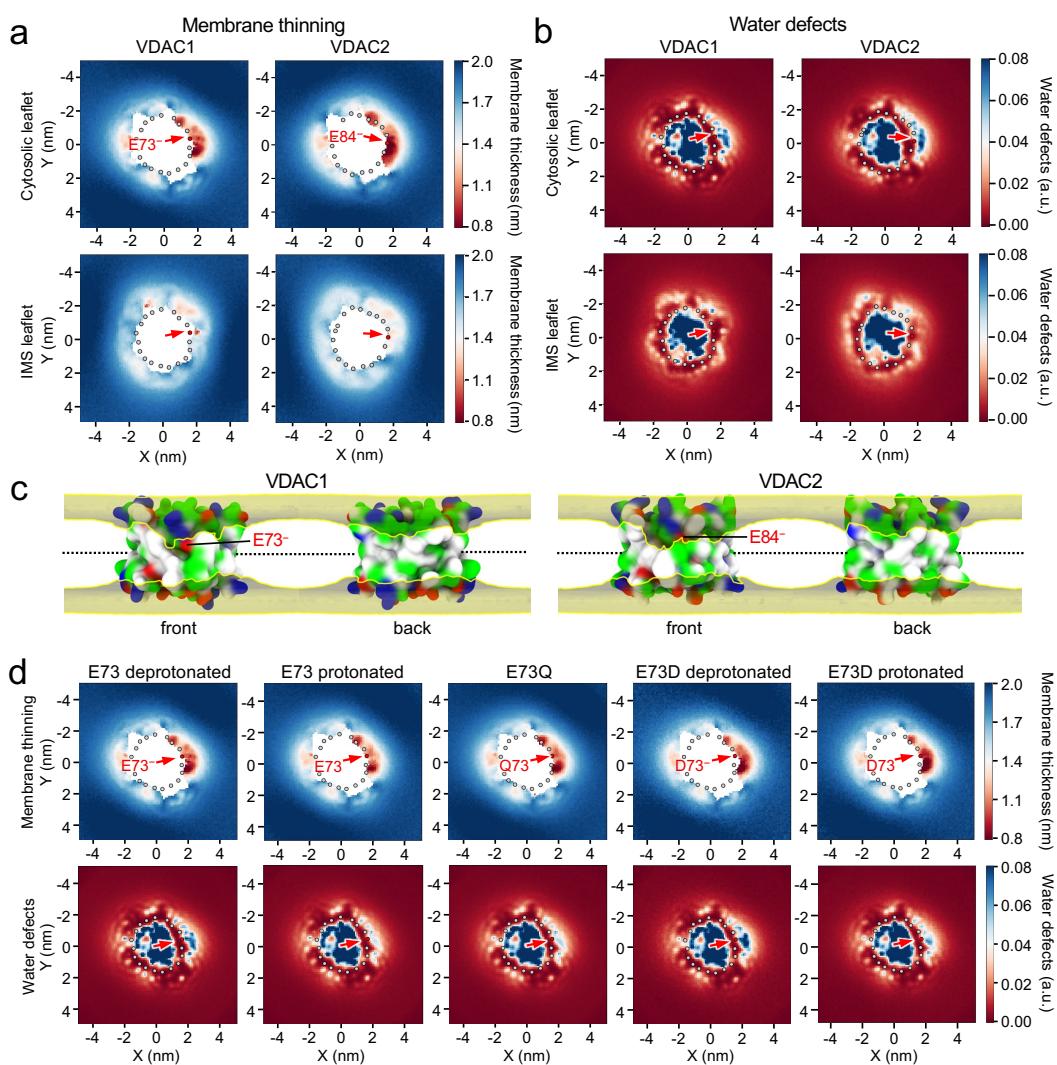

a


b

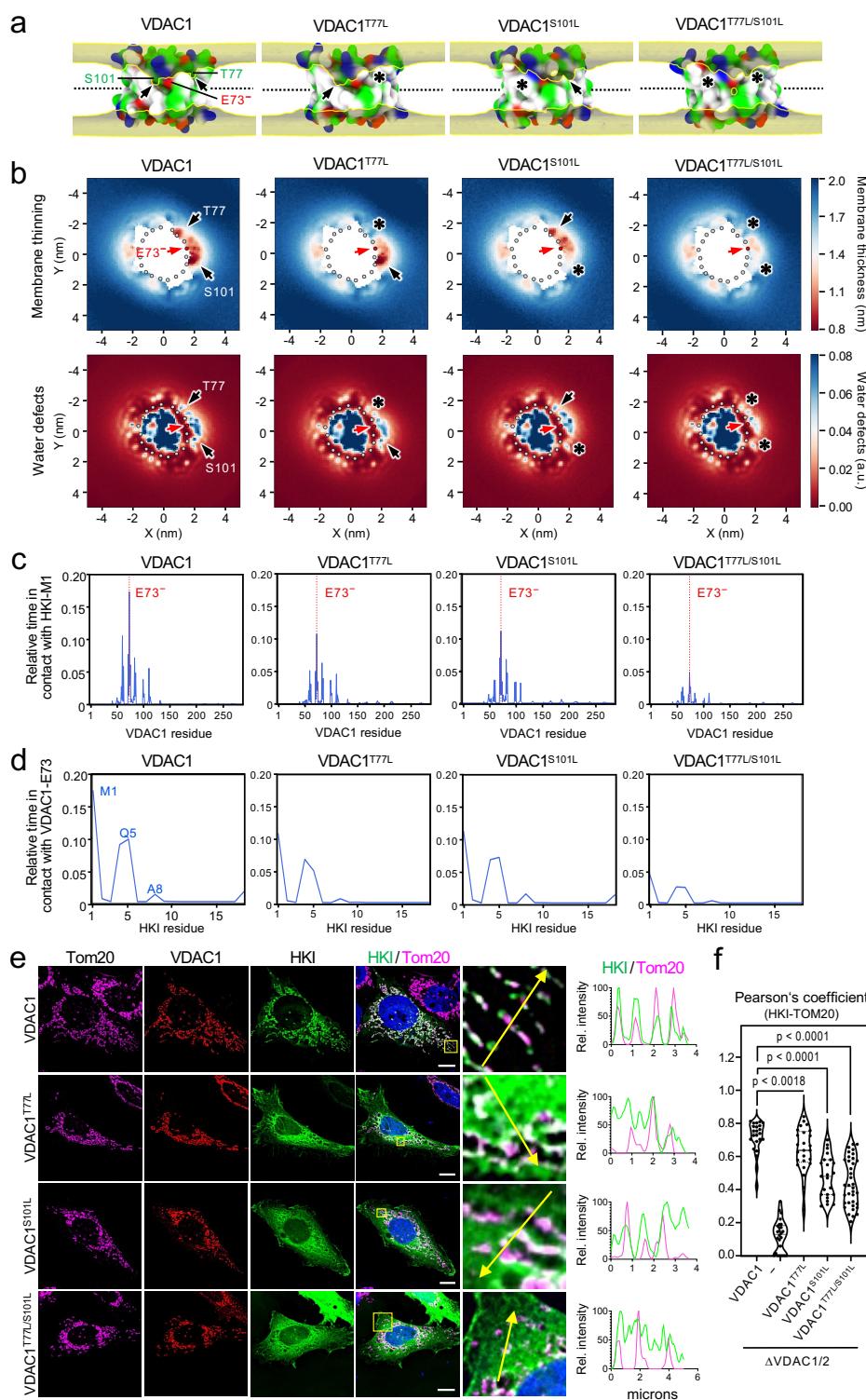
c



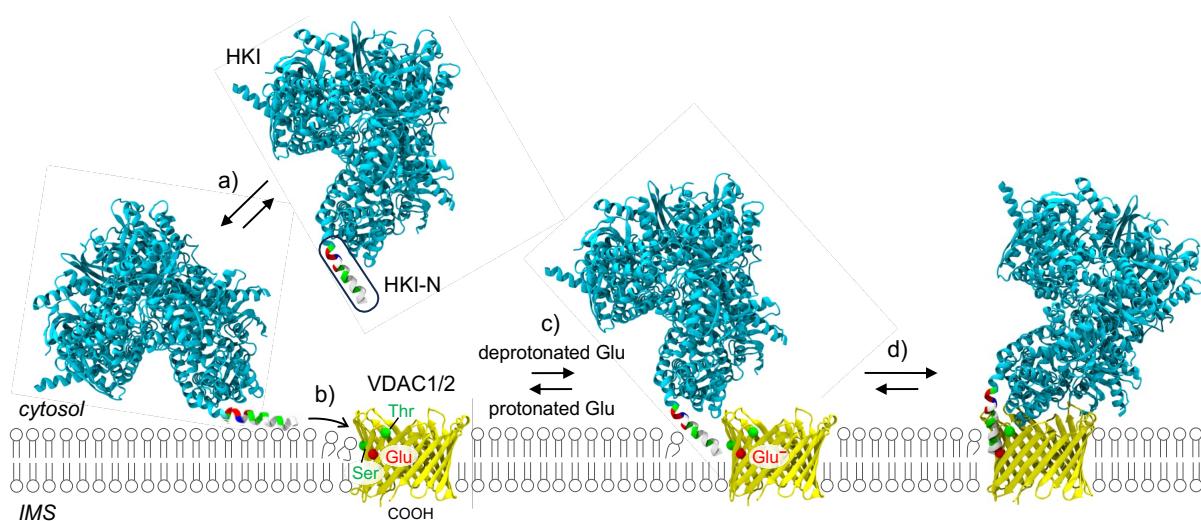
d



847
848
849
850
851
852
853
854
855
856
857
858


Figure 4 | Cytosolic pH controls mitochondrial association of HKI-N. (a) Schematic outline of experimental strategy to determine the impact of cytosolic acidification on mitochondrial association of HKI-N. (b) Fluorescence images of live HeLa cells co-expressing EGFP-tagged Tom20 (green), OMM-mCherry (cyan) and Halo-tagged HKI-N (magenta) grown in Optimem (top), treated with 10 μ M nigericin in pH 6.0 buffer for 5 min (middle) and then with 10 μ M nigericin in pH 7.4 buffer for 5 min (bottom). Line scans showing degree of overlap between OMM and HKI-N signals along the path of the arrow shown in the zoom-in. Scale bar, 10 μ m. (c) Fluorescence images of live HeLa cells co-expressing EGFP-tagged Tom20 (green), OMM-anchored mCherry (cyan) and Halo-tagged Tom20 (magenta) treated as in (b). Line scans showing degree of overlap between OMM and Tom20-Halo signals along the path of the arrow shown in the zoom-in. Scale bar, 10 μ m. (d) Quantitative assessment of mitochondria-associated levels of OMM-mCherry, Tom20-EGFP, Tom20-Halo and HKI-N-Halo in live HeLa cells after treatment with nigericin in buffer at indicated pH for 5 min.

859 **Figure 5 | HKI-VDAC binding critically relies on an asymmetric positioning of the membrane-buried**
860 **Glu.** (a) Stills from MD simulations of VDAC1 and VDAC1^{E73F/F71E} with the membrane-facing Glu and Phe
861 residues at positions 71 and 73 represented as red and white balls, respectively. The graphs show the
862 position of Glu73 in VDAC1 and Glu71 in VDAC1^{E73F/F71E} relative to the membrane center (dashed line)
863 over the course of a simulation. (b) Relative duration of contacts between HKI-Met1 and specific residues
864 of VDAC1 or VDAC1^{E73F/F71E} with cytosol- or IMS-facing C-termini. Data for VDAC1 are taken from Fig. 3f
865 and shown for comparison. For VDAC1^{E73F/F71E} data of three individual simulations were combined with a
866 total simulation time between 148 μ s and 162 μ s per condition. (c) Fluorescence images of VDAC1/2-DKO
867 HeLa cells co-expressing EGFP-tagged HKI (green) and HA-tagged VDAC1 or VDAC1^{E73F/F71E}, fixed and
868 then stained with DAPI (blue) and antibodies against the HA-epitope (red) and Tom20 (magenta). Line
869 scans showing degree of overlap between HKI and Tom20 signals along the path of the arrow shown in the
870 zoom-in. Scale bar, 10 μ m.



871 **Figure 6 | VDAC channels cause lipid packing defects and membrane leaflet thinning proximal to**
872 **the bilayer-facing Glu.** (a) Leaflet-specific membrane thinning graphs of VDAC1 and VDAC2 simulated in
873 a POPC bilayer with C-termini facing the IMS leaflet. Gray spheres indicate the VDAC backbone and the
874 position of the bilayer facing Glu is marked by an arrow. Membrane thinning was calculated as the average
875 distance of the lipid backbone phosphates to the global membrane center. (b) Leaflet-specific water defect
876 graphs of VDAC1 and VDAC2 simulated as in (a). Water defects were calculated as the amount of water
877 molecules detected within a z-distance of 1.5 nm to the global membrane center. (c) Occupancies of lipid
878 PO₄ groups in simulations of VDAC1 and VDAC2 as in (a). Occupancy surfaces enclose volumes with
879 average occupancy of 0.5% or greater. The position of the bilayer-facing Glu is marked. (d) Cytosolic
880 leaflet thinning and water defect graphs of VDAC1, VDAC1^{E73Q} and VDAC1^{E73D} simulated in a POPC
881 bilayer with C-termini facing the IMS (bottom) leaflet. The bilayer-facing acidic residues were protonated or
882 deprotonated, as indicated. Analysis was done as in (a) and (b).

883 **Figure 7 | Membrane leaflet thinning and HKI-VDAC1 binding critically rely on channel residues**
884 **Thr77 and Ser101.** (a) Occupancy maps of lipid backbone phosphates in simulations of VDAC1,
885 VDAC1^{T77L}, VDAC1^{S101L} and VDAC1^{T77L/S101L} in a DOPC bilayer. Positions of polar residues T77 and S101
886 are indicated. Analysis was done as in Fig. 6d. The VDAC1 panel is from Fig. 6c and shown as reference.
887 (b) Cytosolic leaflet thinning and water defect graphs of VDAC1, VDAC1^{T77L}, VDAC1^{S101L} and
888 VDAC1^{T77L/S101L} simulated in a DOPC bilayer with C-termini facing the IMS leaflet. Analysis was done as in
889 Fig. 6a and 6b. (c) Relative duration of contacts between HKI-Met1 and specific residues of VDAC1,
890 VDAC1^{T77L}, VDAC1^{S101L} and VDAC1^{T77L/S101L} simulated in OMM-mimicking bilayers with IMS-facing C-
891 termini and a deprotonated E73. Shown are the combined data of three individual replicas with a total
892 simulation time between 169 μ s and 172 μ s per condition. (d) Relative duration of contacts between

893 VDAC1-E73 and specific residues of HKI-N under the same conditions as in (c). (e) Fluorescence images
894 of VDAC1/2-DKO HeLa cells co-expressing EGFP-tagged HKI (green) and HA-tagged VDAC1, VDAC1^{T77L},
895 VDAC1^{S101L} and VDAC1^{T77L/S101L}, fixed and then stained with DAPI (blue) and antibodies against Tom20
896 (magenta) and the HA-epitope (red). Line scans showing degree of overlap between HKI and Tom20
897 signals along the path of the arrow shown in the zoom-in. Scale bar, 10 μ m. (f) Pearson's correlation co-
898 efficient analysis between HKI and Tom20 signals in cells as in (e). From left to right, $n = 24$ (VDAC1), 21 (-
899), 30 (VDAC1^{T77L}), 27 (VDAC2^{S101L}) and 42 cells (VDAC1^{T77L/S101L}) over at least two independent
900 experiments. p values were calculated by unpaired two-tailed t test.

901 **Figure 8 | Model of HKI-VDAC complex formation.** HKI-VDAC complex assembly is a multistep process,
902 comprising the following steps: a) HKI binds the OMM through membrane absorption of its N-terminal
903 amphipathic helix, HK-N; b) HK-N inserts into the membrane at a site where a pair of polar channel
904 residues proximal to the bilayer-facing Glu causes a thinning of the cytoplasmic leaflet; c) HKI-N undergoes
905 tilting to become aligned for stable interactions with the deprotonated (charged) bilayer-facing Glu on the
906 channel wall; d) the HKI-VDAC complex is stabilized. See main text for further details.