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Abstract

Neurodegenerative diseases such as Parkinson's (PD) and Alzheimer's (AD) exhibit considerable
heterogeneity of functional brain features within patient populations, complicating diagnosis,
treatment, prognosis, and drug discovery. Here, we use electroencephalography (EEG) and
normative modeling to investigate neurophysiological oscillatory mechanisms underpinning this
heterogeneity. To this aim, we use resting-state EEG activity collected by 14 clinical units, in
healthy older persons (n=499) and patients with PD (n=237) and AD (n=197), aged over 40 years
old. Spectral and source connectivity analyses of EEG activity provided EEG features for
normative modeling and deviation measures in the PD and AD patients. Normative models
confirmed significant deviations of the EEG features in PD and AD patients over population
norms, characterized by high heterogeneity and frequency-dependence. The percentage of patients
with at least one deviating EEG feature was ~30% for spectral measures and ~80% for functional
source connectivity. Notably, the spatial overlap of the deviant EEG features did not exceed 60%
for spectral analysis and 25% for functional source connectivity analysis. Furthermore, the patient-
specific deviations were correlated with relevant clinical measures, such as the UPDRS for PD
(0=0.24, p=0.025) and the MMSE for AD (p=-0.26, p=0.01), indicating that greater deviations
from normative EEG features are associated with worsening score values. These results suggest
that the deviation percentage from EEG norms may enrich clinical assessment in PD and AD
patients at individual levels in the framework of Precision Neurology.

Introduction

As the global population ages rapidly, the number of people over sixty is expected to double by
2050, This trend coincides with an expected rise in the prevalence of patients with age-related
progressive neurodegenerative diseases, such as Parkinson’s (PD) and Alzheimer’s (AD) diseases,
belonging to cognitive deficits and disabilities in the activities of daily living, culminating in the
diagnosis of dementia. Current estimates project that the number of people living with dementia is
about 50 million and will triple to 153 million by 20502. Among them, the majority suffer from
AD. Furthermore, the number of people with PD is expected to reach around 16 million globally3.
Notably, there has been no therapy able to cure or stop AD and PD until now, motivating more
research on age-related brain changes in pathological aging.

Over the past three decades, advances in neuroimaging and electroencephalographic (EEG)
techniques have provided invaluable biomarkers reflecting brain dysfunctions, enhancing efforts

1 https://population.un.org/wpp/Graphs/DemographicProfiles/Line/900

2 hitps://www.alzint.org/news-events/news/new-data-predicts-the-number-of-people-living-with-alzheimers-disease-
to-triple-by-2050/

3 https://news.umiamihealth.org/en/parkinsons-disease-where-does-it-start-and-why-does-it-matter/
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to describe aging processes, distinguish between healthy and diseased individuals, and predict
disease progression (Vecchio et al. 2013; Dennis and Thompson 2014; Li et al. 2015; MacDonald
and Pike 2021; Pini et al. 2016; Ryman and Poston 2020; Frisoni et al. 2010; Talwar et al. 2021).
However, most research studies have traditionally focused on MRI and EEG biomarkers derived
from group analyses, comparing healthy controls to patient populations or patient populations
along the disease course or in response to treatments (Verdi et al., 2021). However, by averaging
data across a population, group analyses tend to obscure individual variations, which can mask
important differences in disease progression and response to treatment at individual level Is
(Marquand et al. 2016; Verdi et al. 2021). According to Precision Medicine, this ‘one-size-fits-a/l’
methodology fails to account for the unique genetic, environmental, and lifestyle factors that
influence each patient's condition. Consequently, treatments based on group data may be less
effective or even inappropriate for certain individuals, leading to suboptimal outcomes.

In this context, normative models emerge as a powerful tool to make individual-level inferences
by describing the population norm and then assessing the degree to which each individual deviates
from these norms (Verdi et al. 2021; Marquand et al. 2016; 2019). While normative charts are
well-established in other domains, such as pediatric growth charts, their application to
neuroimaging data is relatively recent. Similar to how growth charts track a child's development
by comparing their height and weight to peers, recent MRI studies combined with normative
models have endeavored to chart analogous trajectories for brain phenotypes (e.g., grey and white
matter volumes, mean cortical thickness, total surface area, etc.) to map lifespan age-related
changes in brain structure (Bethlehem et al. 2022; Rutherford et al. 2022; 2023) and characterize
structural/functional heterogeneity in psychiatric disorders (Segal et al. 2023; Wolfers et al. 2020;
Zabihi et al. 2020), schizophrenia and bipolar disorder (Wolfers et al. 2018), as well as in
neurodegenerative disease as Alzheihmer’s disease (AD) (Verdi et al. 2023; Rutherford et al. 2022;
Sun et al. 2023; Huo et al. 2024).

While recent studies have focused on MRI data, the EEG-based normative modeling field remains
largely unexplored. Notably, (Lefebvre et al. 2018) used normative models to investigate
variability among autistic patients as compared to healthy controls. More recently, we charted the
trajectory of brain development in a population aged between 5 and 18 years and mapped the
heterogeneity of psychiatric diseases as reflected in spectral power density spectra computed at
scalp electrodes from resting-state eyes-closed EEG activity and cortical source functional
connectivity estimated from that activity (Ebadi et al. 2024). In this study, we utilized normative
models and EEG data from 14 datasets to achieve two primary objectives. First, we aimed to chart
the trajectory of standard EEG features, including EEG relative power and source-level functional
connectivity, in a cohort of healthy control (HC) individuals over 40 years old. Second, we
leveraged individual-level inferences from the normative models to map the heterogeneity within
AD and PD groups.
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Results

Data description

Resting-state eyes-closed EEG data was collected from subjects aged 40 to 92 years, across 14
sites (Materials and Methods). Normative models were trained on 400 (46% M) HC participants
while 99 (42% M) HCts participants were held out as a comparison group against the clinical
cohort. The clinical groups comprised 237 PD patients (65% M), and 197 AD patients (37% M).
An overview of the age distribution across groups, sex, and sites is provided in Fig. 1.
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Fig. 1| Age distribution overview for the whole study. (a) Age distribution across healthy and
clinical groups. (b) Age distribution bar plots across sex for each group (lighter color for female).
(c) Age distribution box plots across different sites.
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Building the normative model

Using a reference sample of HC individuals, we trained a GAMLSS for each EEG feature (see
Methods). Specifically, relative EEG power and cortical source functional connectivity values
were computed at each scalp electrode/functional connection between cortical source pairs for the
frequency bands of interest (i.e., delta, theta, alpha, beta, and gamma) were modeled. The optimal
distribution family, model parameters (u, o, v, t), and covariates are indicated in Tables S4 and
S5. The performance and robustness of our models are depicted in Fig. S3-S6. Leveraging our
reference healthy cohort, we generated the typical trajectory observed in spectral and functional
connectivity features. An example of these normative trajectories at the alpha band is presented in
Fig. 2, showcasing the averaged spectral and connectivity features across channels and connections
Results across frequency bands can be found in Fig. S7 and S8.
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Fig. 2 | Normative aging trajectories of spectral power and functional connectivity in the
alpha band. The median (50th percentile) is depicted with a solid blue line, while the 5th and 95th
percentiles are indicated by dotted blue lines. (a) NM of the relative power averaged over all
channels. (b) NM of FC values averaged over all connections.

Heterogeneity within neurodegenerative diseases

After generating the normative trajectories, we projected individuals diagnosed with PD and AD,
alongside an HC test group, onto these models, and derived subject-specific deviation scores.
Following previous work done by (Rutherford et al. 2023; 2022; Segal et al. 2023; Verdi et al.
2023; Wolfers et al. 2018; Zabihi et al. 2020) to quantify within-group heterogeneity, we computed
the number of extremely deviated channels (scalp electrodes)/functional source connections (|z-
scores|>2) per participant (Fig. S9-S10) and the percentage of participants with at least one
extremely deviated channel/connection (Table S6-S7).
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Results of the spectral analysis showed that the percentages of participants having at least one
deviation were relatively low with the highest values occurring at the theta band (PD: 31.36%,
AD: 27.41%, positive deviation). The values of the negative deviation reached their maximum at
the beta band (PD: 12.71%, AD: 23.35%, negative deviation), indicating that a good proportion of
participants exhibited significant similarities with the HC persons forming the training HC(train)
group. The number of channels (EEG power density computed at scalp electrodes) per participant
negatively deviating from the normative model was significantly greater for AD compared to
HC(test) at the alpha and beta bands (p<0.01, Mann-Whitney test). Compared to the HC
individuals, these patients had lower EEG power density at those bands. Regarding positive
deviations, both PD and AD groups showed significant differences compared to the HC(test) group
at the theta, alpha, and beta bands (p<0.05). Compared to the HC group, these patients had higher
EEG power density at those bands.

Unlike the findings from the EEG spectral analysis, we observed an increase in the number of
participants exhibiting at least one extreme negative/positive deviation in the EEG cortical source
connectivity analysis. Detailed percentages across all frequency bands and disorders are provided
in Supplementary Table S7. Fig. 3 demonstrates an example of these measures at the theta band.
Particularly noteworthy are the percentages of negative extreme deviations in PD across all
frequency bands, where they reached 86.86% at the delta band. Interestingly, PD exhibited a
greater number of extreme negative deviations compared to HC(test), while AD displayed fewer.
Conversely, the PD group had significantly fewer deviated positive EEG connections at source
pairs than the HC(test) group across all EEG frequency bands except delta, whereas AD exhibited
a significantly higher number of deviated EEG source connections only at the alpha band (p<0.05).


https://doi.org/10.1101/2024.07.22.604542
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.22.604542; this version posted July 23, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

a.

2000

1500
=
5
8 1000 Positive deviations

Negative deviations
500 ) : .
HC(test) AD PD

b.

=
(=]
o

Extreme Devation
[¥,]
o

(=]

HC(test) AD PD

Percentage of at least one

Fig. 3 | Distributions of the numbers of extremely deviated connections per subject across
groups for theta band (a) and Percentages of subjects with at least one extreme deviation per
group (b). Blue (Red) violins represent positive (negative) deviations.

Next, interested in searching for a common deviation pattern within each group, we evaluated the
spatial overlap of extreme deviations by calculating the percentage of participants with extreme
deviations (|z-score[>2) at each channel (EEG power density at scalp electrode)/ functional
connection at source pairs within each group to create deviation overlap maps (Fig.4 a, b). For the
EEG spectral features at scalp electrodes, a certain consistency in spatial locations among
individuals within the same group was observed, more prominently within the HC(test) group than
within the PD and AD groups, across all frequency bands. Specifically, we noted some deviated
channels that are shared by more than 60% of individuals within the same group. These cases
correspond to the HC(test) participants evaluated at the alpha and beta bands (negative deviation),
as well as the delta and theta bands (positive deviation). More than 60% of the PD patients shared
common extremely deviated channels at the theta band (positive deviation). Similar observations
were noted in the case of AD patients at the beta band (negative deviation).

We then compared the channel-wise overlap maps between PD and AD groups and the HC group
using group-based permutations (Segal et al. 2023), generating significant overlap maps (Fig. 4
c,d). All results were corrected for multiple comparisons using FDR (p < 0.05). Our results showed
that the overlap maps of both clinical groups, PD and AD, differed significantly from the HC(test)
group at the delta, theta, and beta bands. In general, PD patients shared several deviating fronto-
central channels for EEG power biomarker (e.g., 6 out of 19 channels) at the delta band, and 2-3
deviating central channels at the theta and beta bands respectively. As for the AD group, few
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channels survived the permutations and correction at the delta band, while some occipital channels
at the theta band and 4 out of 19 left temporal parietal channels at the beta band were significant.
Results of overlap maps and permutations test for the remaining frequency bands are presented in
Supplementary Fig. S11-S13.
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Fig. 4 | Relative power overlap maps. (a, b) Overlap maps of deviation scores for clinical groups
and the held-out healthy control group (HC(test)), illustrating areas of common deviation in theta
and beta bands respectively. (c, d) Significant overlap maps highlighting channels with significant
differences between HC(test) and clinical groups, determined by group-based permutation tests
(p<0.05, FDR corrected) in theta and beta, respectively.

Regarding the EEG functional source connectivity features, the spatial overlap of extreme
deviations across participants with at least one extreme deviation was notably low, not exceeding
25% across all cases and EEG frequency bands, as shown in Fig. 5. This indicates low consistency
in the spatial location of extreme EEG functional source connections among individuals within the
same group. Significant differences, detected through group-based permutation tests and corrected
using FDR, are illustrated in Fig. 5 for the theta and beta bands and in Supplementary Fig. S14-
S16 for the other frequency bands. These results illustrate the variations in the overlap maps
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between clinical (i.e., PD and AD) and HCy groups. Notably, only EEG source functional
connections with extreme negative deviations survived the permutations and correction tests.

The results revealed that the majority of significantly deviated EEG source functional connections
belonged to the default mode network (DMN) network, particularly at the delta (PD: 39%, AD:
44%), theta (PD: 40%, AD: 35%) and alpha (PD: 42%, AD: 44%) bands for both clinical groups.
Detailed proportions across resting-state cortical source networks for each clinical group and
frequency band can be found in Supplementary Table S8.
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Fig. 5 | Functional connectivity overlap maps. (a,b) Overlap maps of positive and negative
deviation scores for clinical groups and the held-out healthy control group (HC(test)) within theta
and beta bands respectively, illustrating areas of common deviation among patients. (c,d)
Significant overlap maps of functional connections showing significant differences between
HC(test) and clinical groups at theta and beta bands, determined through group-based permutation
tests (p<0.05, FDR corrected).

Normative model-derived scores as patient-specific markers for clinical assessment

Given the above demonstrated high within-group heterogeneity of the EEG biomarkers used, it is
crucial to take into account the participant-specific deviations in any further analysis. Thus, we
used the patient-specific deviations to compute a new metric called EDI (extreme deviations index)
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defined as the averaged EEG source connectivity of the extremely deviated solutions. This metric
was then correlated (Spearman’s correlation) with the patients' clinical assessments. For the PD
patients, we used their UPDRS scores as a clinical assessment measure. UPDRS scores were
available for 86 patients. Similarly, we used the MMSE scores to assess the global cognitive
function in the AD patients, with MMSE scores available for a total of 146 AD patients. In
addition, we examined the correlation between the EDI and the general cognitive status of the PD
patients using the available MMSE scores from 182 PD patients. We found a significant correlation
at the delta band for both PD patients (p=0.24, p=0.0254) and AD patients (p=-0.26, p=0.0107),
as depicted in Fig. 6. These findings represent a preliminary step toward developing EEG-based
patient-specific markers that can be used for objectively quantifying personalized treatment
modalities. More details on the AD subjects showing significant p with MMSE scores in other
frequency bands can be found in supplementary Fig. S17-S18.
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Fig. 6 | NM-derived scores for clinical assessments. (a) Correlation between PD subjects' ‘EDI’
and UPDRS in the delta band for negative extreme deviations. (b) Correlation between PD
subjects' ‘EDI’ and MMSE in the delta band for negative extreme deviations. (c) Correlation
between AD subjects' ‘EDI’ and clinical assessment scores (MMSE) in the delta band for negative
extreme deviations.

Discussion

In this study, we aimed to achieve three key contributions. First, we mapped the aging trajectories
of the EEG spectral power at scalp electrodes and EEG functional connectivity at cortical source
pairs in a HC cohort (>40 yo) as popular neurophysiological biomarkers of interest. Second, we
demonstrated the electrophysiological heterogeneity among PD and AD patients, challenging the
prevailing reliance on the traditional case-control approach, and emphasizing the importance of
acknowledging individual variability. Last, the identification of patient-specific markers derived
from normative models showed an association with clinical assessments, which constitutes a
preliminary step in developing EEG patient-specific biomarkers for those neurodegenerative
diseases with potential applications to other neurodegenerative diseases.
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Electrophysiological normative aging maps

We used a normative modeling approach to map the trajectories of EEG biomarkers (features) of
interest throughout the >40yo lifespan, providing a reference model to which individual cases can
be compared. As mentioned above, we selected EEG relative spectral power and functional source
connectome across standard frequency bands from delta to gamma as response variables for the
normative models due to their notable prevalence in the EEG literature (Chiarion et al. 2023; Zhang
et al. 2023) and the substantial body of research reporting age-related alterations in these features
during the process of normal and pathological aging (Benwell et al. 2020; Harada, Natelson Love,

and Triebel 2013; Javaid, Kumarnsit, and Chatpun 2022; Meghdadi et al. 2021).

For both EEG features and across all frequency bands, we observed continuous trajectories across
age with relatively low variability in averaged EEG functional source connectivity features
compared to spectral features. These developmental trajectories suggest that the healthy human
brain undergoes gradual development, maintaining a state of stability as individuals age beyond
40 yo. The slow developmental trajectory observed in our study may be attributed to the brain’s
adaptive capacity, accumulated knowledge, and lifelong experiences that shape brain function over
time (Harada, Natelson Love, and Triebel 2013; Hedden and Gabrieli 2004; Oschwald et al. 2019;
Salthouse 2010).

After constructing the typical aging trajectories from the HC cohort, we sought to elucidate
abnormal changes in the electrophysiological aging maps in neurodegenerative diseases. We
focused on characterizing the extent to which patient metrics deviate from established norms,
thereby providing preliminary insights into the clinical utility of our electrophysiological
normative models. Emerging evidence increasingly suggests abnormal alterations in EEG spectral
power (Al-Qazzaz et al. 2014; Benwell et al. 2020; Chaturvedi et al. 2017; Lejko et al. 2020;
Shirahige et al. 2020; McMackin et al. 2019) and functional connectivity (Briels et al. 2020; Lejko
et al. 2020; McMackin et al. 2019) associated with AD and PD. Significant deviations in EEG
functional source connectivity within default mode network (DMN) and dorsal attention network
(DAN) were observed in both clinical groups across frequency bands. Based on the
comprehensible review by (Filippi et al. 2023), research work has documented disruptions within
these networks in the context of neurodegenerative diseases, reflecting their pivotal roles in
cognitive processing and their susceptibility to age-related pathological changes.

Heterogeneity in EEG spectral and connectivity features

Despite the considerable body of research on the induced alterations in EEG features associated
with AD and PD, findings across studies lack consistency. Specifically, studies focusing on AD
patients have reported examples of inconsistencies in resting-state EEG functional source
connectivity literature (Briels et al., 2020). This variability may be attributed to the lack of a
standardized methodology for EEG acquisition and functional analysis, as well as the reliance on
dataset samples that may compromise the results' generalizability. We think that a primary
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contributor to this inconsistency arises from the inherent heterogeneity among patient populations
affected by PD and AD (and other neurodegenerative diseases), which introduces confounding
factors often inadequately addressed in group-level analyses. For instance, despite the general
trend of EEG power density shift from higher to lower frequency bands observed in
neurodegenerative disease groups compared to HC controls, as outlined in recent systematic
reviews (Lejko et al. 2020; Shirahige et al. 2020), numerous studies have revealed individual
heterogeneity among patients with aging pathologies (Chen et al. 2024; Duara and Barker 2022;
Robinson et al. 2023; Vogel et al. 2023; Willner et al. 2023). The main contributors to this
substantial heterogeneity are phenotypic diversity, reflecting disease subtypes, and temporal
variability, including various disease stages, sex, education attainment, and several endogenous
and environmental disease risk factors (Hampel et al. 2018; Young et al. 2018). In our study, the
identified heterogeneity in aging EEG functional patterns, characterized by an overlap below 25%
for the deviated EEG functional source connectivity measures, aligns with recent findings from
investigations that utilized structural MRI and normative modeling in aging cohorts. Indeed, it was
shown that spatial patterns of cortical thickness were heterogeneous among AD patients, with
overlapping outliers at the regional level not exceeding 50% within the AD group (Verdi et al.
2023). We believe that the demonstrated heterogeneity poses a significant barrier to the
development of EEG-based biomarkers. The challenge associated with the group-level analysis
manifests across multiple levels. At the diagnostic level, patients are typically categorized into
distinct groups, assuming uniformity within each group. Similarly, treatment approaches often
adopt a general 'one-size-fits-all' strategy, overlooking individual differences. To tackle this issue
effectively, the development of patient-specific electrophysiological biomarkers is imperative.

Beyond heterogeneity mapping

It is crucial to recognize that the differentiation between neurodegenerative diseases, particularly
during early and middle stages, poses a significant challenge in clinical practice due to overlapping
clinical symptoms across different conditions (Armstrong, Lantos, and Cairns 2005). In particular,
individuals with mild cognitive impairment (MCI) may share common clinical and
neurophysiological profiles among aging pathologies, adding complexity to capturing the nuanced
variations between conditions (Jongsiriyanyong and Limpawattana 2018). Our work addresses this
challenge by generating electrophysiological aging trajectories and leveraging normative models
to derive patient-specific deviation scores, which may offer a refined clinical approach compared
to traditional methods relying solely on raw features. In the framework of Precision Medicine, the
patient’s assessment is aimed at not only providing a clinical diagnosis by proper in-vivo biofluid
or neuroimaging techniques measuring disease-specific neuropathological species in the brain of
PD or AD patients (e.g., amyloid-beta and tau in AD patients), but also to use reliable and valid
biomarkers accounting for neurobiological, neuroanatomical, and neurophysiological
underpinnings of the individual clinical manifestations along the disease course. Along this line,
here we proposed normative models and neurophysiological measures of deviance from resting-
state EEG rhythms reflecting specific alterations in the regulation of quiet vigilance in PD and AD
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patients that are quite relevant to the quality of life of patients (e.g., watching TV programs, reading
books and newspapers, having quiet social conversation, etc.) (Babiloni 2022).

It is noteworthy to mention that our clinical dataset comprises AD and PD patients with MCI. For
example, Dataset 7 includes 38 PD patients with MCI as well as 13 AD patients with MCI.
However, the subtype distribution of patients in other datasets is not explicitly stated, potentially
including cases of dementia and MCI. As part of our future endeavors, we aim to elucidate patient
data regarding subtypes further and use deviation scores derived from the normative models to
distinguish between subtypes within each disease, motivated by the work of Young et al., who
sought to develop a machine learning tool that enables the discovery of disease subtypes and stages
for precise medicine in neurodegenerative disorders (Young et al. 2018).

Furthermore, a primary objective of combining EEG and normative modeling is to establish a
patient-specific marker with clinical utility. Assessing whether extreme deviations in functional
metrics are associated with symptom severity or cognition is crucial. In this study, we examined
the clinical correlates of extremely deviated features and demonstrated significant associations
between individual-specific deviations and clinical assessments. Thus, normative models hold
promise for the development of personalized electrophysiological approaches.

Limitations

Several challenges warrant further consideration. First, while our sample size is substantial for
EEG studies (n~933), it does not reach the scale often seen in the most important international
MRI and fMRI initiatives, and it may not be fully representative of the general population. Notably,
in this study, EEG data collected from HC participants primarily fall within the age range (60-70
years), with a notable lack of EEG data above 72 years (see Fig. 1). Further efforts should
incorporate additional neuroimaging cohorts to achieve a more balanced representation of
individuals across diverse age ranges. We anticipate that EEG-based aging maps established herein
will serve as a dynamic resource, with ongoing updates to the electrophysiological aging model as
more resource data sets become available. We will specifically focus on integrating longitudinal
datasets for a precise characterization of aging developmental trajectories.

Our data was gathered from 14 distinct spontaneous EEG studies, each using different EEG
systems with a varying spatial resolution (19, 32, 64, 128, 256 channels) and protocol and
instructions to participants not harmonized. To standardize our analysis for scalp spectral analysis
of EEG activity, we mapped all systems to a common low spatial resolution (19 channels). Yet,
this approach may overlook some relevant information that could be derived from higher spatial
resolution setups. Moreover, sample sizes varied across datasets. However, to address this issue
and identify potential bias arising from individual datasets, we ran a leave-one-study-out analysis.
Results showed that no specific dataset significantly influenced NM trajectories (See
Supplementary Fig. S5, S6). Another methodological limitation was the use of fixed EEG
frequency bands for delta, theta, and alpha despite the recommendations on the spectral analysis
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of resting state EEG rhythms by expert panels of the International Federation of Clinical
Neurophysiology and The Alzheimer's Association International Society to Advance Alzheimer's
Research and Treatment (Babiloni et al. 2020; 2021; 2021). These recommendations are based on
the evidence that compared to HC persons, AD and PD patients have a remarkable frequency
slowing of EEG alpha rhythms (even more pronounced in PD than AD patients), suggesting the
use of individual alpha frequency peaks as a landmark to define delta, theta, and alpha frequency
bands. In the present study, we preferred to use standard frequency bands for delta, theta, and alpha
rhythms to allow a more direct comparability with the large majority of the EEG literature on PD
and AD.

Another challenge of the study arises from the inherent heterogeneity within patient groups, with
individuals exhibiting different stages of PD and AD diagnosis. For instance, many datasets lack
sufficient information to confirm whether PD or AD patients were at MCI or dementia stages.
Therefore, we focused on examining disease-related electrophysiological normative model
metrics, regardless of the disease stage. Additionally, a limitation of this study is the potential
influence of medications on EEG results in the patient cohort. While we aim to uncover
neurobiological patterns, it is important to acknowledge that medication effects could introduce
part of the variability shown in the present study. Addressing individual variations and medication
interactions was challenging due to incomplete medication profiles in some cases. Future studies
could be improved by including detailed records of disease stages and pharmacological histories.
In addition, it is recommended for future studies to consider the diversity of environmental factors
as covariates in normative modeling, particularly given that data is collected from multiple sites
with different socio-economic statuses and education levels, which may influence brain aging
trajectories.

Conclusion

This study utilized popular resting-state EEG biomarkers and normative modeling to delineate the
typical aging trajectories of EEG spectral power and cortical functional source connectivity
features and explore the electrophysiological heterogeneity in PD and AD patients. Our findings
revealed significant variability in those EEG features among patients, with deviations from
normative trajectories correlating with the clinical severity. These findings emphasize the
emergent need for patient-level inferences to enhance the accuracy of the neurophysiological
assessment in PD and AD patients and inform more personalized treatment strategies. Further
research and clinical validation will be necessary to realize these potential benefits fully.

Materials and Methods

Datasets

Our cohort consisted of 933 individuals, subdivided into a group of healthy controls (N=400 in the
training set, N=99 in the held-out testing set) and a group of 434 participants clinically diagnosed
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with neurodegenerative disorders, including PD (N=237), and AD (N=197). All participants were
aged above 40 years old (mean = 64.95 + 10.28; 48% M) and underwent resting-state EEG
recordings with their eyes closed. For subjects with multiple sessions/runs, only the first
session/run was included. The data were aggregated from 14 distinct datasets, with each being
approved by its local ethics committee. Please refer to Supplementary Table S1 for a detailed and
comprehensive overview of the datasets used in this study, and Fig. 1 for age distribution across
groups, sex, and sites.

Data Preprocessing

The EEG preprocessing and artifact removal pipeline employed a multi-stage and automated
algorithm, supported by visual inspection. Initially, EEG signals underwent bandpass filtering (1-
100 Hz). All data signals were downsampled to a common frequency (200 Hz), and a notch filter
was applied to target the dataset-specific line frequency. Bad EEG channels were identified using
the pyprep algorithm, which employs a RANSAC-based approach, and interpolated based on
neighboring electrode data (Bigdely-Shamlo et al. 2015). RANSAC selects a small group of EEG
channels, estimates a model based on these channels, and then identifies potential outliers or bad
channels. Next, re-referencing was applied using the common average reference method to
minimize noise across electrodes. Eye blink artifacts were identified and rejected using
Independent Component Analysis (ICA) the IClabel algorithm (Pion-Tonachini, Kreutz-Delgado,
and Makeig 2019). A second bandpass filter (1-45 Hz) further refines the data. Then, EEG signals
were segmented into 10-second epochs as a trade-off between the needed length for computing the
connectivity matrices and the available segment length per site, and the Autoreject toolbox (Jas et
al. 2017) was used to detect and clean or reject bad epochs. All EEG datasets underwent the same
preprocessing steps described here, except for dataset 3 (BASEL), which was already preprocessed
as detailed in (Yassine et al. 2022).

Features Extraction
Scalp-level Spectral features

The normative model establishes the relationship between a response variable and one or more
covariates. In this study, we initially focused on the spectral features of the EEG signal as the
designated response variable. This choice was motivated by the extensive literature highlighting
the changes in EEG power associated with neurodegenerative diseases (Chaturvedi et al. 2019;
Lejko et al. 2020; Shirahige et al. 2020; Al-Qazzaz et al. 2014). The power spectrum density (PSD)
for each epoch and each channel is computed using Welch’s method (1-second Hann window with
a 50% overlap, and a spectral resolution of 0.5 Hz). PSDs are then averaged across all epochs
within a subject. Relative power in specific frequency bands (delta [1-4 Hz], theta [4-8 Hz], alpha
[8-13 Hz], beta [13-30 Hz], gamma [30-45 Hz]) is computed by dividing the absolute power within
each narrow band by the total power of the broader band [1-45 Hz]. Since the number of channels
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was not consistent across all datasets, we downsampled the electrode configurations to a common
10-20 montage, consisting of 19 channels.

Source-level Functional connectivity features

We computed EEG-based functional networks using the EEG source connectivity method (Hassan
and Wendling 2018). Cortical sources were estimated using the exact low-resolution brain
electromagnetic tomography (eLORETA) (Pascual-Marqui 2007). The noise covariance matrix
was set to an identity matrix and the regularization parameter was fixed at A=0.1. Age-specific
head models of the brain, skull, and scalp layers were built using an MRI template of elderly
individuals aged 65-69 years (Fillmore, Phillips-Meek, and Richards 2015), employing the
Boundary Element Method (BEM) from the MNE Python package. The forward and inverse
models were solved within a source space of 4098 sources per hemisphere, with approximately 5
mm spacing. We then downsampled the source space to 68 representative sources by averaging
the sources within each region defined by the Desikan-Killiany atlas (Desikan et al. 2006).
Subsequently, we computed the functional connectivity between pairwise regions of interest, using
the amplitude envelope correlation (AEC) method, defined as the Pearson correlation between
signals’ envelopes derived from the Hilbert transform (Brookes et al. 2011; Hipp et al. 2012). To
mitigate zero-lag signal overlaps caused by spatial leakage, we applied a pairwise
orthogonalization approach before computing connectivity (Brookes, Woolrich, and Barnes 2012).

Normative Modeling

Normative Modeling (NM) aims to establish a normative relationship between a response variable
(behavioral, demographic, or clinical variables) and at least one covariate (a quantitative biological
measure, e.g. age or sex). To estimate the normative age-related curves for EEG spectral power
and functional connectivity (as response variables), we implemented the Generalized Additive
Models for Location, Scale, and Shape (GAMLSS) (Stasinopoulos and Rigby 2008) using the
gamlss package. We started by identifying the optimal data distribution and best-fitting parameters
and covariates. Utilizing these specific GAMLSS models, we obtained nonlinear normative
trajectories for each feature and at each frequency band. The model performance was assessed by
the model convergence, residuals, and Q-Q (quantile-quantile) plots. The model sensitivity was
analyzed with a leave-one-study-out (LOSO) analysis. Leveraging these population-level
normative trajectories, we established benchmarks for each subject using individualized deviation
scores.

GAMLSS framework

GAMLSS are semi-parametric regression models offering a flexible framework for capturing
complex relationships (Rigby and Stasinopoulos 2005). They assume a specific distribution for
the response variable, with parameters linked to a set of explanatory variables through linear or
nonlinear predictor functions. The mathematical formulation of GAMLSS is as follows:
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The response variable y follows a distribution F defined t)y parameters (u, o, v, 7). Each parameter
is linked to explanatory variables via the link function g(), where S represents the fixed effect
term and X is its design matrix. y accounts for the random effects, and Z is its design matrix. s
denotes the non-parametric smoothing function (Bethlehem et al. 2022; Rigby and Stasinopoulos
2005). In this study, our response variable is an EEG-derived feature, and age serves as the main
covariate. The inclusion of other covariates such as sex and data collection sites is detailed in
subsequent sections. Following Bethlehem et al., we used fractional polynomials as a smoothing
function to accommodate nonlinearity while maintaining model stability (Bethlehem et al. 2022).

Model distribution

The GAMLSS framework provides an extensive range of distribution families. Here, we used an
empirical approach to determine the most suitable distribution, by training models across all
considered distribution families (with 3 or more moments, continuous/mixed), and comparing
them using the Bayesian Information Criterion (BIC). The distribution with the lowest BIC score
was selected. This process was systematically applied to the two features under study. The
distributions that best fit the averaged spectral power and connectivity values are reported in
supplementary Tables S4, and S5, respectively. In addition, we determined the optimal number of
polynomials for the age covariate and whether to include it in parameters beyond p by comparing
BIC scores across various models.

Model covariates

Model covariates beyond age, including sex and site (considered both as a fixed effect and a
random effect), are empirically selected. Each covariate is sequentially incorporated into the
parameter formulas, and the resulting models are compared based on their BIC scores. The model
with the lowest BIC score is chosen, determining whether the covariates are retained in the final
model. The final models for spectral and connectivity features are reported in supplementary
Tables S4 and S5. See Fig. S1, S2, and Tables S2, S3 for an exploratory analysis of the differences
in EEG feature distributions between male and female participants within each group.
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Model performance

To evaluate the performance of our models, we examined the normalized quantile residuals. Visual
inspection of the residual plots depicted in Supplementary Fig. S3, S4 suggests that our models
exhibit adequate fit and quality. Specifically, the residuals plotted against the fitted values of x and
the index were evenly scattered around the horizontal line at 0. The kernel density estimation of
the residuals displayed an approximate normal distribution, and the normal quantile-quantile (Q-
Q) plots showed an approximately linear trend with an intercept of 0 and a slope of 1.

Model sensitivity

To validate the robustness of the model, we conducted a series of leave-one-study-out analyses.
Specifically, we systematically excluded one dataset from the primary datasets, refitted the
GAMLSS models, evaluated all model parameters, and then extracted developmental trajectories.
We then compared these alternative trajectories to those derived from the 14 datasets for each
feature and frequency band. Our findings showed remarkable consistency, with a very high
correlation between the trajectories derived from the primary full dataset and those from the
subsets (all r > 0.88 for spectral features, all r > 0.90 for FC features), even when large datasets
were excluded (Supplementary Fig. S5, S6).

Deviation maps

After parameters selection and validation, we trained GAMLSS models for each
channel/connection across all frequency bands using the healthy control training group HC(train)
(80% of the healthy sample). Subsequently, we projected the features data (i.e., relative power and
functional connectivity values), of our clinical groups (PD, and AD) and the held-out healthy
control testing group HC(test) (remaining 20% of the healthy sample), onto the corresponding
models. This process enables us to generate the individual centiles and calculate the deviation
scores (z-scores) using the quantile randomized residuals approach (Dunn and Smyth 1996), for
each channel/connection and each subject, resulting in an individual deviation map per subject.

Overlap maps

An extreme deviation is defined as |z-score| > 2. Consequently, we derived positive and negative
extreme deviation maps for z-scores > 2 and < -2, respectively. We then computed the number of
subjects with at least one extreme deviation, as well as the number of extreme deviations per
subject. Additionally, for each channel and location, we calculated the percentage of subjects
showing extreme deviations at this specific location among those with at least one extreme
deviation, which resulted in group-specific overlap maps.

Significant overlap maps
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We used group-based permutation tests to assess group differences in channel/connectivity-level
overlap maps (Segal et al. 2023). This involved shuffling case and control labels of individual-
specific deviation maps. During each iteration, group labels were permuted, resulting in a new
grouping of extreme deviation maps for each subject based on the shuffled labels. Subsequently,
new overlap maps were computed for both HC(test) and clinical groups. By subtracting the
surrogate HC(test) overlap map from the surrogate clinical group’s overlap map, an overlap
difference map for each disorder was derived. This procedure was repeated 5,000 times to establish
an empirical distribution of overlap difference maps under the null hypothesis of random group
assignment. For each channel/connection, p-values were obtained as the proportion of null values
that exceeded the observed difference. Statistically significant effects were identified using two-
tailed FDR correction (p<0.05).

Data availability

Datasets 1, 2, 4, 11, 12, 13, and 14 are openly accessible on the OpenNeuro, OSF, and Zenodo
platforms. The corresponding download links can be found in Supplementary Table S1. Access to
other datasets can be made available upon request.

Code availability

Codes are available at https://github.com/MINDIG-1/NM-neurodeg. We used gamlss package in
R (Stasinopoulos and Rigby 2008) for statistical modeling, MNE-python package
(https://mne.tools/stable/index.html) for EEG signal processing, and  BrainNet Viewer
(https://www.nitrc.org/projects/bnv/) (Xia, Wang, and He 2013) for networks visualization.
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