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Abstract 

Neurodegenerative diseases such as Parkinson's (PD) and Alzheimer's (AD) exhibit considerable 

heterogeneity of functional brain features within patient populations, complicating diagnosis, 

treatment, prognosis, and drug discovery. Here, we use electroencephalography (EEG) and 

normative modeling to investigate neurophysiological oscillatory mechanisms underpinning this 

heterogeneity. To this aim, we use resting-state EEG activity collected by 14 clinical units, in 

healthy older persons (n=499) and patients with PD (n=237) and AD (n=197), aged over 40 years 

old. Spectral and source connectivity analyses of EEG activity provided EEG features for 

normative modeling and deviation measures in the PD and AD patients. Normative models 

confirmed significant deviations of the EEG features in PD and AD patients over population 

norms, characterized by high heterogeneity and frequency-dependence. The percentage of patients 

with at least one deviating EEG feature was ~30% for spectral measures and ~80% for functional 

source connectivity. Notably, the spatial overlap of the deviant EEG features did not exceed 60% 

for spectral analysis and 25% for functional source connectivity analysis. Furthermore, the patient-

specific deviations were correlated with relevant clinical measures, such as the UPDRS for PD 

(⍴=0.24, p=0.025) and the MMSE for AD (⍴=-0.26, p=0.01), indicating that greater deviations 

from normative EEG features are associated with worsening score values. These results suggest 

that the deviation percentage from EEG norms may enrich clinical assessment in PD and AD 

patients at individual levels in the framework of Precision Neurology. 

Introduction 

As the global population ages rapidly, the number of people over sixty is expected to double by 

20501. This trend coincides with an expected rise in the prevalence of patients with age-related 

progressive neurodegenerative diseases, such as Parkinson’s (PD) and Alzheimer’s (AD) diseases, 

belonging to cognitive deficits and disabilities in the activities of daily living, culminating in the 

diagnosis of dementia. Current estimates project that the number of people living with dementia is 

about 50 million and will triple to 153 million by 20502. Among them, the majority suffer from 

AD. Furthermore, the number of people with PD is expected to reach around 16 million globally3. 

Notably, there has been no therapy able to cure or stop AD and PD until now, motivating more 

research on age-related brain changes in pathological aging.  

Over the past three decades, advances in neuroimaging and electroencephalographic (EEG) 

techniques have provided invaluable biomarkers reflecting brain dysfunctions, enhancing efforts 

 
1 https://population.un.org/wpp/Graphs/DemographicProfiles/Line/900 
2 https://www.alzint.org/news-events/news/new-data-predicts-the-number-of-people-living-with-alzheimers-disease- 

to-triple-by-2050/ 
3 https://news.umiamihealth.org/en/parkinsons-disease-where-does-it-start-and-why-does-it-matter/ 
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to describe aging processes, distinguish between healthy and diseased individuals, and predict 

disease progression (Vecchio et al. 2013; Dennis and Thompson 2014; Li et al. 2015; MacDonald 

and Pike 2021; Pini et al. 2016; Ryman and Poston 2020; Frisoni et al. 2010; Talwar et al. 2021). 

However, most research studies have traditionally focused on MRI and EEG biomarkers derived 

from group analyses, comparing healthy controls to patient populations or patient populations 

along the disease course or in response to treatments (Verdi et al., 2021). However, by averaging 

data across a population, group analyses tend to obscure individual variations, which can mask 

important differences in disease progression and response to treatment at individual level ls 

(Marquand et al. 2016; Verdi et al. 2021). According to Precision Medicine, this ‘one-size-fits-all’ 

methodology fails to account for the unique genetic, environmental, and lifestyle factors that 

influence each patient's condition. Consequently, treatments based on group data may be less 

effective or even inappropriate for certain individuals, leading to suboptimal outcomes.  

In this context, normative models emerge as a powerful tool to make individual-level inferences 

by describing the population norm and then assessing the degree to which each individual deviates 

from these norms (Verdi et al. 2021; Marquand et al. 2016; 2019). While normative charts are 

well-established in other domains, such as pediatric growth charts, their application to 

neuroimaging data is relatively recent. Similar to how growth charts track a child's development 

by comparing their height and weight to peers, recent MRI studies combined with normative 

models have endeavored to chart analogous trajectories for brain phenotypes (e.g., grey and white 

matter volumes, mean cortical thickness, total surface area, etc.) to map lifespan age-related 

changes in brain structure (Bethlehem et al. 2022; Rutherford et al. 2022; 2023) and characterize 

structural/functional heterogeneity in psychiatric disorders (Segal et al. 2023; Wolfers et al. 2020; 

Zabihi et al. 2020), schizophrenia and bipolar disorder (Wolfers et al. 2018), as well as in 

neurodegenerative disease as Alzheihmer’s disease (AD) (Verdi et al. 2023; Rutherford et al. 2022; 

Sun et al. 2023; Huo et al. 2024). 

While recent studies have focused on MRI data, the EEG-based normative modeling field remains 

largely unexplored. Notably, (Lefebvre et al. 2018) used normative models to investigate 

variability among autistic patients as compared to healthy controls. More recently, we charted the 

trajectory of brain development in a population aged between 5 and 18 years and mapped the 

heterogeneity of psychiatric diseases as reflected in spectral power density spectra computed at 

scalp electrodes from resting-state eyes-closed EEG activity and cortical source functional 

connectivity estimated from that activity (Ebadi et al. 2024). In this study, we utilized normative 

models and EEG data from 14 datasets to achieve two primary objectives. First, we aimed to chart 

the trajectory of standard EEG features, including EEG relative power and source-level functional 

connectivity, in a cohort of healthy control (HC) individuals over 40 years old. Second, we 

leveraged individual-level inferences from the normative models to map the heterogeneity within 

AD and PD groups. 
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Results 

Data description 

Resting-state eyes-closed EEG data was collected from subjects aged 40 to 92 years, across 14 

sites (Materials and Methods). Normative models were trained on 400 (46% M) HC participants 

while 99 (42% M) HCts participants were held out as a comparison group against the clinical 

cohort. The clinical groups comprised 237 PD patients (65% M), and 197 AD patients (37% M). 

An overview of the age distribution across groups, sex, and sites is provided in Fig. 1. 

 

Fig. 1| Age distribution overview for the whole study. (a) Age distribution across healthy and 

clinical groups. (b) Age distribution bar plots across sex for each group (lighter color for female). 

(c) Age distribution box plots across different sites. 
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Building the normative model 

Using a reference sample of HC individuals, we trained a GAMLSS for each EEG feature (see 

Methods). Specifically, relative EEG power and cortical source functional connectivity values 

were computed at each scalp electrode/functional connection between cortical source pairs for the 

frequency bands of interest (i.e., delta, theta, alpha, beta, and gamma) were modeled. The optimal 

distribution family, model parameters (𝜇, 𝜎, 𝜈, 𝜏), and covariates are indicated in Tables S4 and 

S5. The performance and robustness of our models are depicted in Fig. S3-S6. Leveraging our 

reference healthy cohort, we generated the typical trajectory observed in spectral and functional 

connectivity features. An example of these normative trajectories at the alpha band is presented in 

Fig. 2, showcasing the averaged spectral and connectivity features across channels and connections 

Results across frequency bands can be found in Fig. S7 and S8. 

 

Fig. 2 | Normative aging trajectories of spectral power and functional connectivity in the 

alpha band. The median (50th percentile) is depicted with a solid blue line, while the 5th and 95th 

percentiles are indicated by dotted blue lines. (a) NM of the relative power averaged over all 

channels. (b) NM of FC values averaged over all connections. 

Heterogeneity within neurodegenerative diseases 

After generating the normative trajectories, we projected individuals diagnosed with PD and AD, 

alongside an HC test group, onto these models, and derived subject-specific deviation scores. 

Following previous work done by (Rutherford et al. 2023; 2022; Segal et al. 2023; Verdi et al. 

2023; Wolfers et al. 2018; Zabihi et al. 2020) to quantify within-group heterogeneity, we computed 

the number of extremely deviated channels (scalp electrodes)/functional source connections (|z-

scores|>2) per participant (Fig. S9-S10) and the percentage of participants with at least one 

extremely deviated channel/connection (Table S6-S7). 
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Results of the spectral analysis showed that the percentages of participants having at least one 

deviation were relatively low with the highest values occurring at the theta band (PD: 31.36%, 

AD: 27.41%, positive deviation). The values of the negative deviation reached their maximum at 

the beta band (PD: 12.71%, AD: 23.35%, negative deviation), indicating that a good proportion of 

participants exhibited significant similarities with the HC persons forming the training HC(train) 

group. The number of channels (EEG power density computed at scalp electrodes) per participant 

negatively deviating from the normative model was significantly greater for AD compared to 

HC(test) at the alpha and beta bands (p<0.01, Mann-Whitney test). Compared to the HC 

individuals, these patients had lower EEG power density at those bands. Regarding positive 

deviations, both PD and AD groups showed significant differences compared to the HC(test) group 

at the theta, alpha, and beta bands (p<0.05). Compared to the HC group, these patients had higher 

EEG power density at those bands.  

Unlike the findings from the EEG spectral analysis, we observed an increase in the number of 

participants exhibiting at least one extreme negative/positive deviation in the EEG cortical source 

connectivity analysis. Detailed percentages across all frequency bands and disorders are provided 

in Supplementary Table S7. Fig. 3 demonstrates an example of these measures at the theta band. 

Particularly noteworthy are the percentages of negative extreme deviations in PD across all 

frequency bands, where they reached 86.86% at the delta band. Interestingly, PD exhibited a 

greater number of extreme negative deviations compared to HC(test), while AD displayed fewer. 

Conversely, the PD group had significantly fewer deviated positive EEG connections at source 

pairs than the HC(test) group across all EEG frequency bands except delta, whereas AD exhibited 

a significantly higher number of deviated EEG source connections only at the alpha band (p<0.05).  
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Fig. 3 | Distributions of the numbers of extremely deviated connections per subject across 

groups for theta band (a) and Percentages of subjects with at least one extreme deviation per 

group (b). Blue (Red) violins represent positive (negative) deviations. 

Next, interested in searching for a common deviation pattern within each group, we evaluated the 

spatial overlap of extreme deviations by calculating the percentage of participants with extreme 

deviations (|z-score|>2) at each channel (EEG power density at scalp electrode)/ functional 

connection at source pairs within each group to create deviation overlap maps (Fig.4 a, b). For the 

EEG spectral features at scalp electrodes, a certain consistency in spatial locations among 

individuals within the same group was observed, more prominently within the HC(test) group than 

within the PD and AD groups, across all frequency bands. Specifically, we noted some deviated 

channels that are shared by more than 60% of individuals within the same group. These cases 

correspond to the HC(test) participants evaluated at the alpha and beta bands (negative deviation), 

as well as the delta and theta  bands (positive deviation). More than 60% of the PD patients shared 

common extremely deviated channels at the theta band (positive deviation). Similar observations 

were noted in the case of AD patients at the beta band (negative deviation). 

We then compared the channel-wise overlap maps between PD and AD groups and the HC group 

using group-based permutations (Segal et al. 2023), generating significant overlap maps (Fig. 4 

c,d). All results were corrected for multiple comparisons using FDR (p < 0.05). Our results showed 

that the overlap maps of both clinical groups, PD and AD, differed significantly from the HC(test) 

group at the delta, theta, and beta bands. In general, PD patients shared several deviating fronto-

central channels for EEG power biomarker (e.g., 6 out of 19 channels) at the delta band, and 2-3 

deviating central channels at the theta and beta bands respectively. As for the AD group, few 
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channels survived the permutations and correction at the delta band, while some occipital channels 

at the theta band and 4 out of 19 left temporal parietal channels at the beta band were significant. 

Results of overlap maps and permutations test for the remaining frequency bands are presented in 

Supplementary Fig. S11-S13. 

 

Fig. 4 | Relative power overlap maps. (a, b) Overlap maps of deviation scores for clinical groups 

and the held-out healthy control group (HC(test)), illustrating areas of common deviation in theta 

and beta bands respectively. (c, d) Significant overlap maps highlighting channels with significant 

differences between HC(test) and clinical groups, determined by group-based permutation tests 

(p<0.05, FDR corrected) in theta and beta, respectively.  

Regarding the EEG functional source connectivity features, the spatial overlap of extreme 

deviations across participants with at least one extreme deviation was notably low, not exceeding 

25% across all cases and EEG frequency bands, as shown in Fig. 5. This indicates low consistency 

in the spatial location of extreme EEG functional source connections among individuals within the 

same group. Significant differences, detected through group-based permutation tests and corrected 

using FDR, are illustrated in Fig. 5 for the theta and beta bands and in Supplementary Fig. S14-

S16 for the other frequency bands. These results illustrate the variations in the overlap maps 
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between clinical (i.e., PD and AD) and HCy groups. Notably, only EEG source functional 

connections with extreme negative deviations survived the permutations and correction tests.  

The results revealed that the majority of significantly deviated EEG source functional connections 

belonged to the default mode network (DMN) network, particularly at the delta (PD: 39%, AD: 

44%), theta (PD: 40%, AD: 35%) and alpha (PD: 42%, AD: 44%) bands for both clinical groups. 

Detailed proportions across resting-state cortical source networks for each clinical group and 

frequency band can be found in Supplementary Table S8. 

 

Fig. 5 | Functional connectivity overlap maps. (a,b) Overlap maps of positive and negative 

deviation scores for clinical groups and the held-out healthy control group (HC(test)) within theta 

and beta bands respectively, illustrating areas of common deviation among patients. (c,d) 

Significant overlap maps of functional connections showing significant differences between 

HC(test) and clinical groups at theta and beta bands, determined through group-based permutation 

tests (p<0.05, FDR corrected). 

Normative model-derived scores as patient-specific markers for clinical assessment 

Given the above demonstrated high within-group heterogeneity of the EEG biomarkers used, it is 

crucial to take into account the participant-specific deviations in any further analysis. Thus, we 

used the patient-specific deviations to compute a new metric called EDI (extreme deviations index) 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 23, 2024. ; https://doi.org/10.1101/2024.07.22.604542doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.22.604542
http://creativecommons.org/licenses/by-nc/4.0/


 

defined as the averaged EEG source connectivity of the extremely deviated solutions. This metric 

was then correlated (Spearman’s correlation) with the patients' clinical assessments. For the PD 

patients, we used their UPDRS scores as a clinical assessment measure. UPDRS scores were 

available for 86 patients. Similarly, we used the MMSE scores to assess the global cognitive 

function in the AD patients, with MMSE scores available for a total of 146 AD patients. In 

addition, we examined the correlation between the EDI and the general cognitive status of the PD 

patients using the available MMSE scores from 182 PD patients. We found a significant correlation 

at the delta band for both PD patients (⍴=0.24, p=0.0254) and AD patients (⍴=-0.26, p=0.0107), 

as depicted in Fig. 6. These findings represent a preliminary step toward developing EEG-based 

patient-specific markers that can be used for objectively quantifying personalized treatment 

modalities. More details on the AD subjects showing significant p with MMSE scores in other 

frequency bands can be found in supplementary Fig. S17-S18. 

 

Fig. 6 | NM-derived scores for clinical assessments. (a) Correlation between PD subjects' ‘EDI’ 

and UPDRS in the delta band for negative extreme deviations. (b) Correlation between PD 

subjects' ‘EDI’ and MMSE in the delta band for negative extreme deviations. (c) Correlation 

between AD subjects' ‘EDI’ and clinical assessment scores (MMSE) in the delta band for negative 

extreme deviations. 

Discussion 

In this study, we aimed to achieve three key contributions. First, we mapped the aging trajectories 

of the EEG spectral power at scalp electrodes and EEG functional connectivity at cortical source 

pairs in a HC cohort (>40 yo) as popular neurophysiological biomarkers of interest. Second, we 

demonstrated the electrophysiological heterogeneity among PD and AD patients, challenging the 

prevailing reliance on the traditional case-control approach, and emphasizing the importance of 

acknowledging individual variability. Last, the identification of patient-specific markers derived 

from normative models showed an association with clinical assessments, which constitutes a 

preliminary step in developing EEG patient-specific biomarkers for those neurodegenerative 

diseases with potential applications to other neurodegenerative diseases. 
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Electrophysiological normative aging maps  

We used a normative modeling approach to map the trajectories of EEG biomarkers (features) of 

interest throughout the >40yo lifespan, providing a reference model to which individual cases can 

be compared. As mentioned above, we selected EEG relative spectral power and functional source 

connectome across standard frequency bands from delta to gamma as response variables for the 

normative models due to their notable prevalence in the EEG literature (Chiarion et al. 2023; Zhang 

et al. 2023) and the substantial body of research reporting age-related alterations in these features 

during the process of normal and pathological aging (Benwell et al. 2020; Harada, Natelson Love, 

and Triebel 2013; Javaid, Kumarnsit, and Chatpun 2022; Meghdadi et al. 2021). 

For both EEG features and across all frequency bands, we observed continuous trajectories across 

age with relatively low variability in averaged EEG functional source connectivity features 

compared to spectral features. These developmental trajectories suggest that the healthy human 

brain undergoes gradual development, maintaining a state of stability as individuals age beyond 

40 yo. The slow developmental trajectory observed in our study may be attributed to the brain’s 

adaptive capacity, accumulated knowledge, and lifelong experiences that shape brain function over 

time (Harada, Natelson Love, and Triebel 2013; Hedden and Gabrieli 2004; Oschwald et al. 2019; 

Salthouse 2010).  

After constructing the typical aging trajectories from the HC cohort, we sought to elucidate 

abnormal changes in the electrophysiological aging maps in neurodegenerative diseases. We 

focused on characterizing the extent to which patient metrics deviate from established norms, 

thereby providing preliminary insights into the clinical utility of our electrophysiological 

normative models. Emerging evidence increasingly suggests abnormal alterations in EEG spectral 

power (Al-Qazzaz et al. 2014; Benwell et al. 2020; Chaturvedi et al. 2017; Lejko et al. 2020; 

Shirahige et al. 2020; McMackin et al. 2019) and functional connectivity (Briels et al. 2020; Lejko 

et al. 2020; McMackin et al. 2019) associated with AD and PD. Significant deviations in EEG 

functional source connectivity within default mode network (DMN) and dorsal attention network 

(DAN) were observed in both clinical groups across frequency bands. Based on the 

comprehensible review by (Filippi et al. 2023), research work has documented disruptions within 

these networks in the context of neurodegenerative diseases, reflecting their pivotal roles in 

cognitive processing and their susceptibility to age-related pathological changes.  

Heterogeneity in EEG spectral and connectivity features 

Despite the considerable body of research on the induced alterations in EEG features associated 

with AD and PD, findings across studies lack consistency. Specifically, studies focusing on AD 

patients have reported examples of inconsistencies in resting-state EEG functional source 

connectivity literature (Briels et al., 2020). This variability may be attributed to the lack of a 

standardized methodology for EEG acquisition and functional analysis, as well as the reliance on 

dataset samples that may compromise the results' generalizability. We think that a primary 
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contributor to this inconsistency arises from the inherent heterogeneity among patient populations 

affected by PD and AD (and other neurodegenerative diseases), which introduces confounding 

factors often inadequately addressed in group-level analyses. For instance, despite the general 

trend of EEG power density shift from higher to lower frequency bands observed in 

neurodegenerative disease groups compared to HC controls, as outlined in recent systematic 

reviews (Lejko et al. 2020; Shirahige et al. 2020), numerous studies have revealed individual 

heterogeneity among patients with aging pathologies (Chen et al. 2024; Duara and Barker 2022; 

Robinson et al. 2023; Vogel et al. 2023; Wüllner et al. 2023). The main contributors to this 

substantial heterogeneity are phenotypic diversity, reflecting disease subtypes, and temporal 

variability, including various disease stages, sex, education attainment, and several endogenous 

and environmental disease risk factors (Hampel et al. 2018; Young et al. 2018). In our study, the 

identified heterogeneity in aging EEG functional patterns, characterized by an overlap below 25% 

for the deviated EEG functional source connectivity measures, aligns with recent findings from 

investigations that utilized structural MRI and normative modeling in aging cohorts. Indeed, it was 

shown that spatial patterns of cortical thickness were heterogeneous among AD patients, with 

overlapping outliers at the regional level not exceeding 50% within the AD group (Verdi et al. 

2023). We believe that the demonstrated heterogeneity poses a significant barrier to the 

development of EEG-based biomarkers. The challenge associated with the group-level analysis 

manifests across multiple levels. At the diagnostic level, patients are typically categorized into 

distinct groups, assuming uniformity within each group. Similarly, treatment approaches often 

adopt a general 'one-size-fits-all' strategy, overlooking individual differences. To tackle this issue 

effectively, the development of patient-specific electrophysiological biomarkers is imperative.  

Beyond heterogeneity mapping 

It is crucial to recognize that the differentiation between neurodegenerative diseases, particularly 

during early and middle stages, poses a significant challenge in clinical practice due to overlapping 

clinical symptoms across different conditions (Armstrong, Lantos, and Cairns 2005). In particular, 

individuals with mild cognitive impairment (MCI) may share common clinical and 

neurophysiological profiles among aging pathologies, adding complexity to capturing the nuanced 

variations between conditions (Jongsiriyanyong and Limpawattana 2018). Our work addresses this 

challenge by generating electrophysiological aging trajectories and leveraging normative models 

to derive patient-specific deviation scores, which may offer a refined clinical approach compared 

to traditional methods relying solely on raw features. In the framework of Precision Medicine, the 

patient’s assessment is aimed at not only providing a clinical diagnosis by proper in-vivo biofluid 

or neuroimaging techniques measuring disease-specific neuropathological species in the brain of 

PD or AD patients (e.g., amyloid-beta and tau in AD patients), but also to use reliable and valid 

biomarkers accounting for neurobiological, neuroanatomical, and neurophysiological 

underpinnings of the individual clinical manifestations along the disease course. Along this line, 

here we proposed normative models and neurophysiological measures of deviance from resting-

state EEG rhythms reflecting specific alterations in the regulation of quiet vigilance in PD and AD 
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patients that are quite relevant to the quality of life of patients (e.g., watching TV programs, reading 

books and newspapers, having quiet social conversation, etc.) (Babiloni 2022). 

It is noteworthy to mention that our clinical dataset comprises AD and PD patients with MCI. For 

example, Dataset 7 includes 38 PD patients with MCI as well as 13 AD patients with MCI. 

However, the subtype distribution of patients in other datasets is not explicitly stated, potentially 

including cases of dementia and MCI. As part of our future endeavors, we aim to elucidate patient 

data regarding subtypes further and use deviation scores derived from the normative models to 

distinguish between subtypes within each disease, motivated by the work of Young et al., who 

sought to develop a machine learning tool that enables the discovery of disease subtypes and stages 

for precise medicine in neurodegenerative disorders (Young et al. 2018).  

Furthermore, a primary objective of combining EEG and normative modeling is to establish a 

patient-specific marker with clinical utility. Assessing whether extreme deviations in functional 

metrics are associated with symptom severity or cognition is crucial. In this study, we examined 

the clinical correlates of extremely deviated features and demonstrated significant associations 

between individual-specific deviations and clinical assessments. Thus, normative models hold 

promise for the development of personalized electrophysiological approaches.  

Limitations 

Several challenges warrant further consideration. First, while our sample size is substantial for 

EEG studies (n~933), it does not reach the scale often seen in the most important international 

MRI and fMRI initiatives, and it may not be fully representative of the general population. Notably, 

in this study, EEG data collected from HC participants primarily fall within the age range (60-70 

years), with a notable lack of EEG data above 72 years (see Fig. 1). Further efforts should 

incorporate additional neuroimaging cohorts to achieve a more balanced representation of 

individuals across diverse age ranges. We anticipate that EEG-based aging maps established herein 

will serve as a dynamic resource, with ongoing updates to the electrophysiological aging model as 

more resource data sets become available. We will specifically focus on integrating longitudinal 

datasets for a precise characterization of aging developmental trajectories.  

Our data was gathered from 14 distinct spontaneous EEG studies, each using different EEG 

systems with a varying spatial resolution (19, 32, 64, 128, 256 channels) and protocol and 

instructions to participants not harmonized. To standardize our analysis for scalp spectral analysis 

of EEG activity, we mapped all systems to a common low spatial resolution (19 channels). Yet, 

this approach may overlook some relevant information that could be derived from higher spatial 

resolution setups. Moreover, sample sizes varied across datasets. However, to address this issue 

and identify potential bias arising from individual datasets, we ran a leave-one-study-out analysis. 

Results showed that no specific dataset significantly influenced NM trajectories (See 

Supplementary Fig. S5, S6). Another methodological limitation was the use of fixed EEG 

frequency bands for delta, theta, and alpha despite the recommendations on the spectral analysis 
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of resting state EEG rhythms by expert panels of the International Federation of Clinical 

Neurophysiology and The Alzheimer's Association International Society to Advance Alzheimer's 

Research and Treatment (Babiloni et al. 2020; 2021; 2021). These recommendations are based on 

the evidence that compared to HC persons, AD and PD patients have a remarkable frequency 

slowing of EEG alpha rhythms (even more pronounced in PD than AD patients), suggesting the 

use of individual alpha frequency peaks as a landmark to define delta, theta, and alpha frequency 

bands. In the present study, we preferred to use standard frequency bands for delta, theta, and alpha 

rhythms to allow a more direct comparability with the large majority of the EEG literature on PD 

and AD. 

Another challenge of the study arises from the inherent heterogeneity within patient groups, with 

individuals exhibiting different stages of PD and AD diagnosis. For instance, many datasets lack 

sufficient information to confirm whether PD or AD patients were at MCI or dementia stages. 

Therefore, we focused on examining disease-related electrophysiological normative model 

metrics, regardless of the disease stage.  Additionally, a limitation of this study is the potential 

influence of medications on EEG results in the patient cohort. While we aim to uncover 

neurobiological patterns, it is important to acknowledge that medication effects could introduce 

part of the variability shown in the present study. Addressing individual variations and medication 

interactions was challenging due to incomplete medication profiles in some cases. Future studies 

could be improved by including detailed records of disease stages and pharmacological histories. 

In addition, it is recommended for future studies to consider the diversity of environmental factors 

as covariates in normative modeling, particularly given that data is collected from multiple sites 

with different socio-economic statuses and education levels, which may influence brain aging 

trajectories. 

Conclusion 

This study utilized popular resting-state EEG biomarkers and normative modeling to delineate the 

typical aging trajectories of EEG spectral power and cortical functional source connectivity 

features and explore the electrophysiological heterogeneity in PD and AD patients. Our findings 

revealed significant variability in those EEG features among patients, with deviations from 

normative trajectories correlating with the clinical severity. These findings emphasize the 

emergent need for patient-level inferences to enhance the accuracy of the neurophysiological 

assessment in PD and AD patients and inform more personalized treatment strategies. Further 

research and clinical validation will be necessary to realize these potential benefits fully. 

Materials and Methods 

Datasets 

Our cohort consisted of 933 individuals, subdivided into a group of healthy controls (N=400 in the 

training set, N=99 in the held-out testing set) and a group of 434 participants clinically diagnosed 
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with neurodegenerative disorders, including PD (N=237), and AD (N=197). All participants were 

aged above 40 years old (mean = 64.95 ± 10.28; 48% M) and underwent resting-state EEG 

recordings with their eyes closed. For subjects with multiple sessions/runs, only the first 

session/run was included. The data were aggregated from 14 distinct datasets, with each being 

approved by its local ethics committee. Please refer to Supplementary Table S1 for a detailed and 

comprehensive overview of the datasets used in this study, and Fig. 1 for age distribution across 

groups, sex, and sites.  

Data Preprocessing 

The EEG preprocessing and artifact removal pipeline employed a multi-stage and automated 

algorithm, supported by visual inspection. Initially, EEG signals underwent bandpass filtering (1-

100 Hz). All data signals were downsampled to a common frequency (200 Hz), and a notch filter 

was applied to target the dataset-specific line frequency. Bad EEG channels were identified using 

the pyprep algorithm, which employs a RANSAC-based approach, and interpolated based on 

neighboring electrode data (Bigdely-Shamlo et al. 2015). RANSAC selects a small group of EEG 

channels, estimates a model based on these channels, and then identifies potential outliers or bad 

channels. Next, re-referencing was applied using the common average reference method to 

minimize noise across electrodes. Eye blink artifacts were identified and rejected using 

Independent Component Analysis (ICA) the IClabel algorithm (Pion-Tonachini, Kreutz-Delgado, 

and Makeig 2019). A second bandpass filter (1-45 Hz) further refines the data. Then, EEG signals 

were segmented into 10-second epochs as a trade-off between the needed length for computing the 

connectivity matrices and the available segment length per site, and the Autoreject toolbox (Jas et 

al. 2017) was used to detect and clean or reject bad epochs. All EEG datasets underwent the same 

preprocessing steps described here, except for dataset 3 (BASEL), which was already preprocessed 

as detailed in (Yassine et al. 2022).  

Features Extraction 

Scalp-level Spectral features 

The normative model establishes the relationship between a response variable and one or more 

covariates. In this study, we initially focused on the spectral features of the EEG signal as the 

designated response variable. This choice was motivated by the extensive literature highlighting 

the changes in EEG power associated with neurodegenerative diseases (Chaturvedi et al. 2019; 

Lejko et al. 2020; Shirahige et al. 2020; Al-Qazzaz et al. 2014). The power spectrum density (PSD) 

for each epoch and each channel is computed using Welch’s method (1-second Hann window with 

a 50% overlap, and a spectral resolution of 0.5 Hz). PSDs are then averaged across all epochs 

within a subject. Relative power in specific frequency bands (delta [1-4 Hz], theta [4-8 Hz], alpha 

[8-13 Hz], beta [13-30 Hz], gamma [30-45 Hz]) is computed by dividing the absolute power within 

each narrow band by the total power of the broader band [1-45 Hz]. Since the number of channels 
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was not consistent across all datasets, we downsampled the electrode configurations to a common 

10-20 montage, consisting of 19 channels.  

Source-level Functional connectivity features 

We computed EEG-based functional networks using the EEG source connectivity method (Hassan 

and Wendling 2018). Cortical sources were estimated using the exact low-resolution brain 

electromagnetic tomography (eLORETA) (Pascual-Marqui 2007). The noise covariance matrix 

was set to an identity matrix and the regularization parameter was fixed at λ=0.1. Age-specific 

head models of the brain, skull, and scalp layers were built using an MRI template of elderly 

individuals aged 65-69 years (Fillmore, Phillips-Meek, and Richards 2015), employing the 

Boundary Element Method (BEM) from the MNE Python package. The forward and inverse 

models were solved within a source space of 4098 sources per hemisphere, with approximately 5 

mm spacing. We then downsampled the source space to 68 representative sources by averaging 

the sources within each region defined by the Desikan-Killiany atlas (Desikan et al. 2006). 

Subsequently, we computed the functional connectivity between pairwise regions of interest, using 

the amplitude envelope correlation (AEC) method, defined as the Pearson correlation between 

signals’ envelopes derived from the Hilbert transform (Brookes et al. 2011; Hipp et al. 2012). To 

mitigate zero-lag signal overlaps caused by spatial leakage, we applied a pairwise 

orthogonalization approach before computing connectivity (Brookes, Woolrich, and Barnes 2012). 

Normative Modeling 

Normative Modeling (NM) aims to establish a normative relationship between a response variable 

(behavioral, demographic, or clinical variables) and at least one covariate (a quantitative biological 

measure, e.g. age or sex).  To estimate the normative age-related curves for EEG spectral power 

and functional connectivity (as response variables), we implemented the Generalized Additive 

Models for Location, Scale, and Shape (GAMLSS) (Stasinopoulos and Rigby 2008) using the 

gamlss package. We started by identifying the optimal data distribution and best-fitting parameters 

and covariates. Utilizing these specific GAMLSS models, we obtained nonlinear normative 

trajectories for each feature and at each frequency band. The model performance was assessed by 

the model convergence, residuals, and Q-Q (quantile-quantile) plots. The model sensitivity was 

analyzed with a leave-one-study-out (LOSO) analysis. Leveraging these population-level 

normative trajectories, we established benchmarks for each subject using individualized deviation 

scores. 

GAMLSS framework 

GAMLSS are semi-parametric regression models offering a flexible framework for capturing 

complex relationships (Rigby and Stasinopoulos 2005). They assume a specific distribution for 

the response variable, with parameters linked to a set of explanatory variables through linear or 

nonlinear predictor functions. The mathematical formulation of GAMLSS is as follows: 
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𝑦~𝐹(𝜇, 𝜎, 𝜈, 𝜏) 

𝑔𝜇
⬚(𝜇) = 𝑋𝜇𝛽𝜇

⬚ + 𝑍𝜇𝛾𝜇
⬚ +∑⬚

⬚

𝑖

𝑠𝜇,𝑖
⬚ (𝑥𝑖)⬚ 

𝑔𝜎
⬚(𝜎) = 𝑋𝜎𝛽𝜎

⬚ + 𝑍𝜎𝛾𝜎
⬚ +∑⬚

⬚

𝑖

𝑠𝜎,𝑖
⬚ (𝑥𝑖)⬚ 

𝑔𝜈
⬚(𝜈) = 𝑋𝜈𝛽𝜈

⬚ + 𝑍𝜈𝛾𝜈
⬚ +∑⬚

⬚

𝑖

𝑠𝜈,𝑖
⬚ (𝑥𝑖)⬚ 

𝑔𝜏
⬚(𝜏) = 𝑋𝜏𝛽𝜏

⬚ + 𝑍𝜏𝛾𝜏
⬚ +∑⬚

⬚

𝑖

𝑠𝜏,𝑖
⬚(𝑥𝑖)⬚ 

The response variable 𝑦 follows a distribution 𝐹 defined by parameters (𝜇, 𝜎, 𝜈, 𝜏). Each parameter 

is linked to explanatory variables via the link function 𝑔(), where 𝛽 represents the fixed effect 

term and 𝑋 is its design matrix. 𝛾 accounts for the random effects, and Z is its design matrix. 𝑠 

denotes the non-parametric smoothing function (Bethlehem et al. 2022; Rigby and Stasinopoulos 

2005). In this study, our response variable is an EEG-derived feature, and age serves as the main 

covariate. The inclusion of other covariates such as sex and data collection sites is detailed in 

subsequent sections. Following Bethlehem et al., we used fractional polynomials as a smoothing 

function to accommodate nonlinearity while maintaining model stability (Bethlehem et al. 2022).  

Model distribution 

The GAMLSS framework provides an extensive range of distribution families. Here, we used an 

empirical approach to determine the most suitable distribution, by training models across all 

considered distribution families (with 3 or more moments, continuous/mixed), and comparing 

them using the Bayesian Information Criterion (BIC). The distribution with the lowest BIC score 

was selected. This process was systematically applied to the two features under study. The 

distributions that best fit the averaged spectral power and connectivity values are reported in 

supplementary Tables S4, and S5, respectively. In addition, we determined the optimal number of 

polynomials for the age covariate and whether to include it in parameters beyond μ by comparing 

BIC scores across various models. 

Model covariates 

Model covariates beyond age, including sex and site (considered both as a fixed effect and a 

random effect), are empirically selected. Each covariate is sequentially incorporated into the 

parameter formulas, and the resulting models are compared based on their BIC scores. The model 

with the lowest BIC score is chosen, determining whether the covariates are retained in the final 

model. The final models for spectral and connectivity features are reported in supplementary 

Tables S4 and S5. See Fig. S1, S2, and Tables S2, S3 for an exploratory analysis of the differences 

in EEG feature distributions between male and female participants within each group. 
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Model performance 

To evaluate the performance of our models, we examined the normalized quantile residuals. Visual 

inspection of the residual plots depicted in Supplementary Fig. S3, S4 suggests that our models 

exhibit adequate fit and quality. Specifically, the residuals plotted against the fitted values of 𝜇 and 

the index were evenly scattered around the horizontal line at 0. The kernel density estimation of 

the residuals displayed an approximate normal distribution, and the normal quantile-quantile (Q-

Q) plots showed an approximately linear trend with an intercept of 0 and a slope of 1. 

Model sensitivity 

To validate the robustness of the model, we conducted a series of leave-one-study-out analyses. 

Specifically, we systematically excluded one dataset from the primary datasets, refitted the 

GAMLSS models, evaluated all model parameters, and then extracted developmental trajectories. 

We then compared these alternative trajectories to those derived from the 14 datasets for each 

feature and frequency band. Our findings showed remarkable consistency, with a very high 

correlation between the trajectories derived from the primary full dataset and those from the 

subsets (all r > 0.88 for spectral features, all r > 0.90 for FC features), even when large datasets 

were excluded (Supplementary Fig. S5, S6).  

Deviation maps 

After parameters selection and validation, we trained GAMLSS models for each 

channel/connection across all frequency bands using the healthy control training group HC(train) 

(80% of the healthy sample). Subsequently, we projected the features data (i.e., relative power and 

functional connectivity values), of our clinical groups (PD, and AD) and the held-out healthy 

control testing group HC(test) (remaining 20% of the healthy sample), onto the corresponding 

models. This process enables us to generate the individual centiles and calculate the deviation 

scores (z-scores) using the quantile randomized residuals approach (Dunn and Smyth 1996), for 

each channel/connection and each subject, resulting in an individual deviation map per subject.  

Overlap maps  

An extreme deviation is defined as |z-score| > 2. Consequently, we derived positive and negative 

extreme deviation maps for z-scores > 2 and < -2, respectively. We then computed the number of 

subjects with at least one extreme deviation, as well as the number of extreme deviations per 

subject. Additionally, for each channel and location, we calculated the percentage of subjects 

showing extreme deviations at this specific location among those with at least one extreme 

deviation, which resulted in group-specific overlap maps. 

Significant overlap maps  
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We used group-based permutation tests to assess group differences in channel/connectivity-level 

overlap maps  (Segal et al. 2023). This involved shuffling case and control labels of individual-

specific deviation maps. During each iteration, group labels were permuted, resulting in a new 

grouping of extreme deviation maps for each subject based on the shuffled labels. Subsequently, 

new overlap maps were computed for both HC(test) and clinical groups. By subtracting the 

surrogate HC(test) overlap map from the surrogate clinical group’s overlap map, an overlap 

difference map for each disorder was derived. This procedure was repeated 5,000 times to establish 

an empirical distribution of overlap difference maps under the null hypothesis of random group 

assignment. For each channel/connection, p-values were obtained as the proportion of null values 

that exceeded the observed difference. Statistically significant effects were identified using two-

tailed FDR correction (p<0.05). 

Data availability 

Datasets 1, 2, 4, 11, 12, 13, and 14 are openly accessible on the OpenNeuro, OSF, and Zenodo 

platforms. The corresponding download links can be found in Supplementary Table S1. Access to 

other datasets can be made available upon request.  

Code availability 

Codes are available at https://github.com/MINDIG-1/NM-neurodeg. We used gamlss package in 

R (Stasinopoulos and Rigby 2008) for statistical modeling, MNE-python package 

(https://mne.tools/stable/index.html) for EEG signal processing, and  BrainNet Viewer 

(https://www.nitrc.org/projects/bnv/) (Xia, Wang, and He 2013) for networks visualization.  

References 

Al-Qazzaz, Noor Kamal, Sawal Hamid Bin Md. Ali, Siti Anom Ahmad, Kalaivani Chellappan, Md. Shabiul Islam, 

and Javier Escudero. 2014. “Role of EEG as Biomarker in the Early Detection and Classification of 

Dementia.” The Scientific World Journal 2014:1–16. https://doi.org/10.1155/2014/906038. 

Armstrong, Richard A., Peter L. Lantos, and Nigel J. Cairns. 2005. “Overlap between Neurodegenerative Disorders.” 

Neuropathology 25 (2): 111–24. https://doi.org/10.1111/j.1440-1789.2005.00605.x. 

Babiloni, Claudio. 2022. “The Dark Side of Alzheimer’s Disease: Neglected Physiological Biomarkers of Brain 

Hyperexcitability and Abnormal Consciousness Level.” Journal of Alzheimer’s Disease 88 (3): 801–7. 

https://doi.org/10.3233/JAD-220582. 

Babiloni, Claudio, Xianghong Arakaki, Hamed Azami, Karim Bennys, Katarzyna Blinowska, Laura Bonanni, Ana 

Bujan, et al. 2021. “Measures of Resting State EEG Rhythms for Clinical Trials in Alzheimer’s Disease: 

Recommendations of an Expert Panel.” Alzheimer’s & Dementia 17 (9): 1528–53. 

https://doi.org/10.1002/alz.12311. 

Babiloni, Claudio, Robert J. Barry, Erol Başar, Katarzyna J. Blinowska, Andrzej Cichocki, Wilhelmus H.I.M. 

Drinkenburg, Wolfgang Klimesch, et al. 2020. “International Federation of Clinical Neurophysiology (IFCN) 

– EEG Research Workgroup: Recommendations on Frequency and Topographic Analysis of Resting State 

EEG Rhythms. Part 1: Applications in Clinical Research Studies.” Clinical Neurophysiology 131 (1): 285–

307. https://doi.org/10.1016/j.clinph.2019.06.234. 

Benwell, Christopher S. Y., Paula Davila-Pérez, Peter J. Fried, Richard N. Jones, Thomas G. Travison, Emiliano 

Santarnecchi, Alvaro Pascual-Leone, and Mouhsin M. Shafi. 2020. “EEG Spectral Power Abnormalities and 
Their Relationship with Cognitive Dysfunction in Patients with Alzheimer’s Disease and Type 2 Diabetes.” 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 23, 2024. ; https://doi.org/10.1101/2024.07.22.604542doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?rth7Zn
https://github.com/MINDIG-1/NM-neurodeg
https://www.zotero.org/google-docs/?LWSbC5
https://mne.tools/stable/index.html
https://www.nitrc.org/projects/bnv/
https://www.zotero.org/google-docs/?gkhH1T
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://doi.org/10.1101/2024.07.22.604542
http://creativecommons.org/licenses/by-nc/4.0/


 

Neurobiology of Aging 85 (January):83–95. https://doi.org/10.1016/j.neurobiolaging.2019.10.004. 

Bethlehem, R. a. I., J. Seidlitz, S. R. White, J. W. Vogel, K. M. Anderson, C. Adamson, S. Adler, et al. 2022. “Brain 

Charts for the Human Lifespan.” Nature 604 (7906): 525–33. https://doi.org/10.1038/s41586-022-04554-y. 

Bigdely-Shamlo, Nima, Tim Mullen, Christian Kothe, Kyung-Min Su, and Kay A. Robbins. 2015. “The PREP 

Pipeline: Standardized Preprocessing for Large-Scale EEG Analysis.” Frontiers in Neuroinformatics 9 

(June). https://doi.org/10.3389/fninf.2015.00016. 

Briels, Casper T., Deborah N. Schoonhoven, Cornelis J. Stam, Hanneke de Waal, Philip Scheltens, and Alida A. 

Gouw. 2020. “Reproducibility of EEG Functional Connectivity in Alzheimer’s Disease.” Alzheimer’s 

Research & Therapy 12 (1): 68. https://doi.org/10.1186/s13195-020-00632-3. 

Brookes, M. J., M. W. Woolrich, and G. R. Barnes. 2012. “Measuring Functional Connectivity in MEG: A 

Multivariate Approach Insensitive to Linear Source Leakage.” NeuroImage 63 (2): 910–20. 

https://doi.org/10.1016/j.neuroimage.2012.03.048. 

Brookes, Matthew J., Joanne R. Hale, Johanna M. Zumer, Claire M. Stevenson, Susan T. Francis, Gareth R. Barnes, 

Julia P. Owen, Peter G. Morris, and Srikantan S. Nagarajan. 2011. “Measuring Functional Connectivity 

Using MEG: Methodology and Comparison with fcMRI.” NeuroImage 56 (3): 1082–1104. 

https://doi.org/10.1016/j.neuroimage.2011.02.054. 

Chaturvedi, Menorca, Jan Guy Bogaarts, Vitalii V. Kozak Cozac, Florian Hatz, Ute Gschwandtner, Antonia Meyer, 

Peter Fuhr, and Volker Roth. 2019. “Phase Lag Index and Spectral Power as QEEG Features for Identification 

of Patients with Mild Cognitive Impairment in Parkinson’s Disease.” Clinical Neurophysiology: Official 

Journal of the International Federation of Clinical Neurophysiology 130 (10): 1937–44. 

https://doi.org/10.1016/j.clinph.2019.07.017. 

Chaturvedi, Menorca, Florian Hatz, Ute Gschwandtner, Jan G. Bogaarts, Antonia Meyer, Peter Fuhr, and Volker Roth. 

2017. “Quantitative EEG (QEEG) Measures Differentiate Parkinson’s Disease (PD) Patients from Healthy 

Controls (HC).” Frontiers in Aging Neuroscience 9 (January). https://doi.org/10.3389/fnagi.2017.00003. 

Chen, Pindong, Shirui Zhang, Kun Zhao, Xiaopeng Kang, Timothy Rittman, and Yong Liu. 2024. “Robustly 

Uncovering the Heterogeneity of Neurodegenerative Disease by Using Data-Driven Subtyping in 

Neuroimaging: A Review.” Brain Research 1823:1–13. https://doi.org/10.1016/j.brainres.2023.148675. 

Chiarion, Giovanni, Laura Sparacino, Yuri Antonacci, Luca Faes, and Luca Mesin. 2023. “Connectivity Analysis in 

EEG Data: A Tutorial Review of the State of the Art and Emerging Trends.” Bioengineering 10 (3): 372. 

https://doi.org/10.3390/bioengineering10030372. 

Dennis, Emily L., and Paul M. Thompson. 2014. “Functional Brain Connectivity Using fMRI in Aging and 

Alzheimer’s Disease.” Neuropsychology Review 24 (1): 49–62. https://doi.org/10.1007/s11065-014-9249-6. 

Desikan, Rahul S., Florent Ségonne, Bruce Fischl, Brian T. Quinn, Bradford C. Dickerson, Deborah Blacker, Randy 

L. Buckner, et al. 2006. “An Automated Labeling System for Subdividing the Human Cerebral Cortex on 

MRI Scans into Gyral Based Regions of Interest.” NeuroImage 31 (3): 968–80. 

https://doi.org/10.1016/j.neuroimage.2006.01.021. 

Duara, Ranjan, and Warren Barker. 2022. “Heterogeneity in Alzheimer’s Disease Diagnosis and Progression Rates: 

Implications for Therapeutic Trials.” Neurotherapeutics: The Journal of the American Society for 

Experimental NeuroTherapeutics 19 (1): 8–25. https://doi.org/10.1007/s13311-022-01185-z. 

Dunn, Peter K., and Gordon K. Smyth. 1996. “Randomized Quantile Residuals.” Journal of Computational and 

Graphical Statistics 5 (3): 236–44. https://doi.org/10.2307/1390802. 

Ebadi, Aida, Sahar Allouch, Ahmad Mheich, Judie Tabbal, Aya Kabbara, Gabriel Robert, Aline Lefebvre, et al. 2024. 

“Beyond Homogeneity: Charting the Landscape of Heterogeneity in Psychiatric Electroencephalography.” 

https://doi.org/10.1101/2024.03.04.583393. 

Filippi, Massimo, Edoardo Gioele Spinelli, Camilla Cividini, Alma Ghirelli, Silvia Basaia, and Federica Agosta. 2023. 

“The Human Functional Connectome in Neurodegenerative Diseases: Relationship to Pathology and Clinical 

Progression.” Expert Review of Neurotherapeutics 23 (1): 59–73. 

https://doi.org/10.1080/14737175.2023.2174016. 

Fillmore, Paul T., Michelle C. Phillips-Meek, and John E. Richards. 2015. “Age-Specific MRI Brain and Head 

Templates for Healthy Adults from 20 through 89 Years of Age.” Frontiers in Aging Neuroscience 7 (April). 

https://doi.org/10.3389/fnagi.2015.00044. 

Frisoni, Giovanni B., Nick C. Fox, Clifford R. Jack, Philip Scheltens, and Paul M. Thompson. 2010. “The Clinical 

Use of Structural MRI in Alzheimer Disease.” Nature Reviews Neurology 6 (2): 67–77. 

https://doi.org/10.1038/nrneurol.2009.215. 

Hampel, Harald, Sid E. O’Bryant, José L. Molinuevo, Henrik Zetterberg, Colin L. Masters, Simone Lista, Steven J. 

Kiddle, Richard Batrla, and Kaj Blennow. 2018. “Blood-Based Biomarkers for Alzheimer Disease: Mapping 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 23, 2024. ; https://doi.org/10.1101/2024.07.22.604542doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://doi.org/10.1101/2024.07.22.604542
http://creativecommons.org/licenses/by-nc/4.0/


 

the Road to the Clinic.” Nature Reviews. Neurology 14 (11): 639–52. https://doi.org/10.1038/s41582-018-

0079-7. 

Harada, Caroline N., Marissa C. Natelson Love, and Kristen L. Triebel. 2013. “Normal Cognitive Aging.” Clinics in 

Geriatric Medicine 29 (4): 737–52. https://doi.org/10.1016/j.cger.2013.07.002. 

Hassan, Mahmoud, and Fabrice Wendling. 2018. “Electroencephalography Source Connectivity: Aiming for High 

Resolution of Brain Networks in Time and Space.” IEEE Signal Processing Magazine 35 (3): 81–96. 

https://doi.org/10.1109/MSP.2017.2777518. 

Hedden, Trey, and John D. E. Gabrieli. 2004. “Insights into the Ageing Mind: A View from Cognitive Neuroscience.” 

Nature Reviews Neuroscience 5 (2): 87–96. https://doi.org/10.1038/nrn1323. 

Hipp, Joerg F., David J. Hawellek, Maurizio Corbetta, Markus Siegel, and Andreas K. Engel. 2012. “Large-Scale 

Cortical Correlation Structure of Spontaneous Oscillatory Activity.” Nature Neuroscience 15 (6): 884–90. 

https://doi.org/10.1038/nn.3101. 

Huo, Yanxi, Rixing Jing, Peng Li, Pindong Chen, Juanning Si, Guozhong Liu, and Yong Liu. 2024. “Delineating the 

Heterogeneity of Alzheimer’s Disease and Mild Cognitive Impairment Using Normative Models of the 

Dynamic Brain Functional Networks.” Biological Psychiatry, June, S0006322324013659. 

https://doi.org/10.1016/j.biopsych.2024.05.025. 

Jas, Mainak, Denis A. Engemann, Yousra Bekhti, Federico Raimondo, and Alexandre Gramfort. 2017. “Autoreject: 

Automated Artifact Rejection for MEG and EEG Data.” NeuroImage 159 (October):417–29. 

https://doi.org/10.1016/j.neuroimage.2017.06.030. 

Javaid, Hamad, Ekkasit Kumarnsit, and Surapong Chatpun. 2022. “Age-Related Alterations in EEG Network 

Connectivity in Healthy Aging.” Brain Sciences 12 (2): 218. https://doi.org/10.3390/brainsci12020218. 

Jongsiriyanyong, Sukanya, and Panita Limpawattana. 2018. “Mild Cognitive Impairment in Clinical Practice: A 

Review Article.” American Journal of Alzheimer’s Disease and Other Dementias 33 (8): 500–507. 

https://doi.org/10.1177/1533317518791401. 

Lefebvre, Aline, Richard Delorme, Catherine Delanoë, Frederique Amsellem, Anita Beggiato, David Germanaud, 

Thomas Bourgeron, Roberto Toro, and Guillaume Dumas. 2018. “Alpha Waves as a Neuromarker of Autism 

Spectrum Disorder: The Challenge of Reproducibility and Heterogeneity.” Frontiers in Neuroscience 12 

(October):662. https://doi.org/10.3389/fnins.2018.00662. 

Lejko, Nena, Daouia I Larabi, Christoph S Herrmann, André Aleman, and Branislava Ćurčić-Blake. 2020. “Power 

and Functional Connectivity of Alpha Oscillations in Mild Cognitive Impairment: A Systematic Review and 

Meta-Analysis.” Alzheimer’s & Dementia 16 (S5): e040792. https://doi.org/10.1002/alz.040792. 

Li, Hui-Jie, Xiao-Hui Hou, Han-Hui Liu, Chun-Lin Yue, Guang-Ming Lu, and Xi-Nian Zuo. 2015. “Putting Age-

Related Task Activation into Large-Scale Brain Networks: A Meta-Analysis of 114 fMRI Studies on Healthy 

Aging.” Neuroscience & Biobehavioral Reviews 57 (October):156–74. 

https://doi.org/10.1016/j.neubiorev.2015.08.013. 

MacDonald, M. Ethan, and G. Bruce Pike. 2021. “MRI of Healthy Brain Aging: A Review.” NMR in Biomedicine 34 

(9): e4564. https://doi.org/10.1002/nbm.4564. 

Marquand, Andre F., Seyed Mostafa Kia, Mariam Zabihi, Thomas Wolfers, Jan K. Buitelaar, and Christian F. 

Beckmann. 2019. “Conceptualizing Mental Disorders as Deviations from Normative Functioning.” 

Molecular Psychiatry 24 (10): 1415–24. https://doi.org/10.1038/s41380-019-0441-1. 

Marquand, Andre F., Iead Rezek, Jan Buitelaar, and Christian F. Beckmann. 2016. “Understanding Heterogeneity in 

Clinical Cohorts Using Normative Models: Beyond Case-Control Studies.” Biological Psychiatry 80 (7): 

552–61. 

McMackin, Roisin, Peter Bede, Niall Pender, Orla Hardiman, and Bahman Nasseroleslami. 2019. 

“Neurophysiological Markers of Network Dysfunction in Neurodegenerative Diseases.” NeuroImage: 

Clinical 22:101706. https://doi.org/10.1016/j.nicl.2019.101706. 

Meghdadi, Amir H., Marija Stevanović Karić, Marissa McConnell, Greg Rupp, Christian Richard, Joanne Hamilton, 

David Salat, and Chris Berka. 2021. “Resting State EEG Biomarkers of Cognitive Decline Associated with 

Alzheimer’s Disease and Mild Cognitive Impairment.” PLoS ONE 16 (2): e0244180. 

https://doi.org/10.1371/journal.pone.0244180. 

Oschwald, Jessica, Sabrina Guye, Franziskus Liem, Philippe Rast, Sherry Willis, Christina Röcke, Lutz Jäncke, Mike 

Martin, and Susan Mérillat. 2019. “Brain Structure and Cognitive Ability in Healthy Aging: A Review on 

Longitudinal Correlated Change.” Reviews in the Neurosciences 31 (1): 1–57. 

https://doi.org/10.1515/revneuro-2018-0096. 

Pascual-Marqui, Roberto D. 2007. “Discrete, 3D Distributed, Linear Imaging Methods of Electric Neuronal Activity. 

Part 1: Exact, Zero Error Localization.” arXiv:0710.3341 [Math-Ph, Physics:Physics, q-Bio], October. 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 23, 2024. ; https://doi.org/10.1101/2024.07.22.604542doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://doi.org/10.1101/2024.07.22.604542
http://creativecommons.org/licenses/by-nc/4.0/


 

http://arxiv.org/abs/0710.3341. 

Pini, Lorenzo, Michela Pievani, Martina Bocchetta, Daniele Altomare, Paolo Bosco, Enrica Cavedo, Samantha 

Galluzzi, Moira Marizzoni, and Giovanni B. Frisoni. 2016. “Brain Atrophy in Alzheimer’s Disease and 

Aging.” Ageing Research Reviews 30 (September):25–48. https://doi.org/10.1016/j.arr.2016.01.002. 

Pion-Tonachini, Luca, Ken Kreutz-Delgado, and Scott Makeig. 2019. “ICLabel: An Automated 

Electroencephalographic Independent Component Classifier, Dataset, and Website.” NeuroImage 198 

(September):181–97. https://doi.org/10.1016/j.neuroimage.2019.05.026. 

Rigby, R. A., and D. M. Stasinopoulos. 2005. “Generalized Additive Models for Location, Scale and Shape.” Journal 

of the Royal Statistical Society. Series C (Applied Statistics) 54 (3): 507–54. 

Robinson, John L., Sharon X. Xie, Daniel R. Baer, EunRan Suh, Vivianna M. Van Deerlin, Nicholas J. Loh, David J. 

Irwin, et al. 2023. “Pathological Combinations in Neurodegenerative Disease Are Heterogeneous and 

Disease-Associated.” Brain: A Journal of Neurology 146 (6): 2557–69. 

https://doi.org/10.1093/brain/awad059. 

Rutherford, Saige, Pieter Barkema, Ivy F Tso, Chandra Sripada, Christian F Beckmann, Henricus G Ruhe, and Andre 

F Marquand. 2023. “Evidence for Embracing Normative Modeling.” Edited by Chris I Baker, Todd 

Constable, and Oscar Esteban. eLife 12 (March):e85082. https://doi.org/10.7554/eLife.85082. 

Rutherford, Saige, Seyed Mostafa Kia, Thomas Wolfers, Charlotte Fraza, Mariam Zabihi, Richard Dinga, Pierre 

Berthet, et al. 2022. “The Normative Modeling Framework for Computational Psychiatry.” Nature Protocols 

17 (7): 1711–34. https://doi.org/10.1038/s41596-022-00696-5. 

Ryman, Sephira G., and Kathleen L. Poston. 2020. “MRI Biomarkers of Motor and Non-Motor Symptoms in 

Parkinson’s Disease.” Parkinsonism & Related Disorders 73 (April):85–93. 

https://doi.org/10.1016/j.parkreldis.2019.10.002. 

Salthouse, Timothy A. 2010. “Selective Review of Cognitive Aging.” Journal of the International 

Neuropsychological Society: JINS 16 (5): 754–60. https://doi.org/10.1017/S1355617710000706. 

Segal, Ashlea, Linden Parkes, Kevin Aquino, Seyed Mostafa Kia, Thomas Wolfers, Barbara Franke, Martine 

Hoogman, et al. 2023. “Regional, Circuit and Network Heterogeneity of Brain Abnormalities in Psychiatric 

Disorders.” Nature Neuroscience 26 (9): 1613–29. https://doi.org/10.1038/s41593-023-01404-6. 

Shirahige, Lívia, Marina Berenguer-Rocha, Sarah Mendonça, Sérgio Rocha, Marcelo Cairrão Rodrigues, and Kátia 

Monte-Silva. 2020. “Quantitative Electroencephalography Characteristics for Parkinson’s Disease: A 

Systematic Review.” Journal of Parkinson’s Disease 10 (2): 455–70. https://doi.org/10.3233/JPD-191840. 

Stasinopoulos, D. Mikis, and Robert A. Rigby. 2008. “Generalized Additive Models for Location Scale and Shape 

(GAMLSS) in R.” Journal of Statistical Software 23:1–46. https://doi.org/10.18637/jss.v023.i07. 

Sun, Lianglong, Tengda Zhao, Xinyuan Liang, Mingrui Xia, Qiongling Li, Xuhong Liao, Gaolang Gong, et al. 2023. 

“Functional Connectome through the Human Life Span.” https://doi.org/10.1101/2023.09.12.557193. 

Talwar, Puneet, Suman Kushwaha, Monali Chaturvedi, and Vidur Mahajan. 2021. “Systematic Review of Different 

Neuroimaging Correlates in Mild Cognitive Impairment and Alzheimer’s Disease.” Clinical Neuroradiology 

31 (4): 953–67. https://doi.org/10.1007/s00062-021-01057-7. 

Vecchio, Fabrizio, Claudio Babiloni, Roberta Lizio, Fabrizio De Vico Fallani, Katarzyna Blinowska, Giulio Verrienti, 

Giovanni Frisoni, and Paolo M. Rossini. 2013. “Resting State Cortical EEG Rhythms in Alzheimer’s Disease: 

Toward EEG Markers for Clinical Applications: A Review.” In Supplements to Clinical Neurophysiology, 

62:223–36. Elsevier. https://doi.org/10.1016/B978-0-7020-5307-8.00015-6. 

Verdi, Serena, Seyed Mostafa Kia, Keir X. X. Yong, Duygu Tosun, Jonathan M. Schott, Andre F. Marquand, and 

James H. Cole. 2023. “Revealing Individual Neuroanatomical Heterogeneity in Alzheimer Disease Using 

Neuroanatomical Normative Modeling.” Neurology 100 (24): e2442–53. 

https://doi.org/10.1212/WNL.0000000000207298. 

Verdi, Serena, Andre F. Marquand, Jonathan M. Schott, and James H. Cole. 2021. “Beyond the Average Patient: How 

Neuroimaging Models Can Address Heterogeneity in Dementia.” Brain 144 (10): 2946–53. 

Vogel, Jacob W., Nick Corriveau-Lecavalier, Nicolai Franzmeier, Joana B. Pereira, Jesse A. Brown, Anne Maass, 

Hugo Botha, et al. 2023. “Connectome-Based Modelling of Neurodegenerative Diseases: Towards Precision 

Medicine and Mechanistic Insight.” Nature Reviews. Neuroscience 24 (10): 620–39. 

https://doi.org/10.1038/s41583-023-00731-8. 

Wolfers, Thomas, Christian F. Beckmann, Martine Hoogman, Jan K. Buitelaar, Barbara Franke, and Andre F. 

Marquand. 2020. “Individual Differences v. the Average Patient: Mapping the Heterogeneity in ADHD Using 

Normative Models.” Psychological Medicine 50 (2): 314–23. https://doi.org/10.1017/S0033291719000084. 

Wolfers, Thomas, Nhat Trung Doan, Tobias Kaufmann, Dag Alnæs, Torgeir Moberget, Ingrid Agartz, Jan K. 

Buitelaar, et al. 2018. “Mapping the Heterogeneous Phenotype of Schizophrenia and Bipolar Disorder Using 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 23, 2024. ; https://doi.org/10.1101/2024.07.22.604542doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://doi.org/10.1101/2024.07.22.604542
http://creativecommons.org/licenses/by-nc/4.0/


 

Normative Models.” JAMA Psychiatry 75 (11): 1146–55. https://doi.org/10.1001/jamapsychiatry.2018.2467. 

Wüllner, Ullrich, Per Borghammer, Chi-Un Choe, Ilona Csoti, Björn Falkenburger, Thomas Gasser, Paul Lingor, and 

Peter Riederer. 2023. “The Heterogeneity of Parkinson’s Disease.” Journal of Neural Transmission (Vienna, 

Austria: 1996) 130 (6): 827–38. https://doi.org/10.1007/s00702-023-02635-4. 

Xia, Mingrui, Jinhui Wang, and Yong He. 2013. “BrainNet Viewer: A Network Visualization Tool for Human Brain 

Connectomics.” Edited by Peter Csermely. PLoS ONE 8 (7): e68910. 

https://doi.org/10.1371/journal.pone.0068910. 

Yassine, Sahar, Ute Gschwandtner, Manon Auffret, Sophie Achard, Marc Verin, Peter Fuhr, and Mahmoud Hassan. 

2022. “Functional Brain Dysconnectivity in Parkinson’s Disease: A 5-Year Longitudinal Study.” Movement 

Disorders: Official Journal of the Movement Disorder Society 37 (7): 1444–53. 

https://doi.org/10.1002/mds.29026. 

Young, Alexandra L., Razvan V. Marinescu, Neil P. Oxtoby, Martina Bocchetta, Keir Yong, Nicholas C. Firth, David 

M. Cash, et al. 2018. “Uncovering the Heterogeneity and Temporal Complexity of Neurodegenerative 

Diseases with Subtype and Stage Inference.” Nature Communications 9 (1): 4273. 

https://doi.org/10.1038/s41467-018-05892-0. 

Zabihi, Mariam, Dorothea L. Floris, Seyed Mostafa Kia, Thomas Wolfers, Julian Tillmann, Alberto Llera Arenas, 

Carolin Moessnang, et al. 2020. “Fractionating Autism Based on Neuroanatomical Normative Modeling.” 

Translational Psychiatry 10 (1): 384. https://doi.org/10.1038/s41398-020-01057-0. 

Zhang, Hao, Qing-Qi Zhou, He Chen, Xiao-Qing Hu, Wei-Guang Li, Yang Bai, Jun-Xia Han, et al. 2023. “The 

Applied Principles of EEG Analysis Methods in Neuroscience and Clinical Neurology.” Military Medical 

Research 10 (1): 67. https://doi.org/10.1186/s40779-023-00502-7. 

 

Acknowledgments 

This work was fully funded by MINDIG as a part of its R&D activity. We would like to thank all 

the researchers who shared their data in open access and all the participants who approved the use 

of their data in research. This work was supported by the ‘Region Bretagne’, Inno R&D project n 

23001155 and Rennes Metropole (AICE project). 

Author contributions 

J.T., S.A., AE. and M.H. conceived the study and wrote the manuscript, with valuable revision 

from all authors. Results were interpreted by J.T., S.A., A.M., A.E, C.B. and M.H., with 

contributions from all authors. A.M. M.V., B.G., G.Y, U.G, P.F., V.P. provided datasets. A.K. and 

A.E. helped in the data preprocessing and analysis part. 

Competing interests 

N/A 

 

 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 23, 2024. ; https://doi.org/10.1101/2024.07.22.604542doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://www.zotero.org/google-docs/?ogaeWe
https://doi.org/10.1101/2024.07.22.604542
http://creativecommons.org/licenses/by-nc/4.0/

	Abstract
	Introduction
	Results
	Discussion
	Conclusion
	Materials and Methods
	Data availability
	Code availability
	References

