

1 **Telomere-to-telomere sheep genome assembly reveals new**
2 **variants associated with wool fineness trait**

3

4 Ling-Yun Luo^{1, #}, Hui Wu^{1, #}, Li-Ming Zhao^{2, #}, Ya-Hui Zhang¹, Jia-Hui Huang¹, Qiu-Yue Liu³,
5 Hai-Tao Wang³, Dong-Xin Mo¹, He-Hua EER⁴, Lian-Quan Zhang⁵, Hai-Liang Chen⁶, Shan-
6 Gang Jia^{7, *}, Wei-Min Wang^{2, *}, Meng-Hua Li^{1, *}

7 ¹Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of
8 Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural
9 University, Beijing 100193, China

10 ²State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key
11 Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural
12 Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College
13 of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China.

14 ³Institute of Genetics and Developmental Biology, the Innovation Academy for Seed Design,
15 Chinese Academy of Sciences, Beijing, China

16 ⁴Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences,
17 Yinchuan, China.

18 ⁵Ningxia Shuomuyanchi Tan Sheep Breeding Co., Ltd., Wuzhong, China.

19 ⁶Beijing Lvyeqingchuan Zoo Co., Ltd., Beijing, China.

20 ⁷College of Grassland Science and Technology, China Agricultural University, Beijing, China.

21

22 [#]These authors contributed equally: Ling-Yun Luo, Hui Wu and Li-Ming Zhao.

23 ^{*}Corresponding authors. Email: menghua.li@cau.edu.cn, wangweimin@lzu.edu.cn,

24 shangang.jia@cau.edu.cn

25 **Abstract**

26 Ongoing efforts to improve sheep reference genome assemblies still leave many gaps and
27 incomplete regions, resulting in a few common failures and errors in sheep genomic studies.
28 Here, we report a complete, gap-free telomere-to-telomere (T2T) genome of a ram (*T2T-*
29 *sheep1.0*) with a size of 2.85 Gb, including all autosomes and chromosomes X and Y. It adds
30 220.05 Mb of previously unresolved regions (PURs) and 754 new genes to the most updated
31 reference assembly, *ARS-UI_Ramb_v3.0*, and contains four types of repeat units (SatI, SatII,
32 SatIII, and CenY) in the centromeric regions. *T2T-sheep1.0* exhibits a base accuracy
33 of >99.999%, corrects several structural errors in previous reference assemblies, and
34 improves structural variant (SV) detection in repetitive sequences. We identified 192,265 SVs,
35 including 16,885 new SVs in the PURs, from the PacBio long-read sequences of 18 global
36 representative sheep. With the whole-genome short-read sequences of 810 wild and domestic
37 sheep representing 158 global populations and seven wild species, the use of *T2T-sheep1.0* as
38 the reference genome has improved population genetic analysis based on ~133.31 million
39 SNPs and 1,265,266 SVs, including 2,664,979 novel SNPs and 196,471 novel SVs. *T2T-*
40 *sheep1.0* improves selective tests by detecting several novel genes and variants, including
41 those associated with domestication (e.g., *ABCC4*) and selection for the wool fineness trait
42 (e.g., *FOXQ1*) in tandemly duplicated regions.

43

44 **Keywords:** sheep, T2T genome assembly, structural variants, domestication, wool fineness,
45 centromere

46

47

48

49

50 **Introduction**

51 Among the first domesticated livestock species, sheep (*Ovis aries*) have evolved various
52 phenotypes, providing an important source of meat, fur, and dairy products¹. A reference
53 genome assembly of sheep is essential for exploring the evolutionary history², migration³,
54 genetic diversity⁴, and causative genes and variants underlying specialized traits⁵ of sheep.

55 With the rapid advancement of sequencing technologies such as high-throughput
56 chromosome conformation capture (Hi-C), Pacific Biosciences (PacBio) and Oxford
57 Nanopore Technology (ONT) sequencing, continuous efforts have been made to improve
58 sheep reference genomes. To date, as many as 57 sheep assemblies at the chromosome or
59 scaffold level have been made available in public databases, including the most updated
60 genomes, such as *Oar_v4.0* (GenBank accession no. GCA_000298735.2)⁶,
61 *Oar_rambouillet_v1.0* (GCF_002742125), and *ARS-UI_Ramb_v2.0* (GCA_016772045.1)⁷.

62

63 However, these sheep assemblies suffer from numerous gaps, misassembled regions, uneven
64 sequence depth, varied alignment rates, and mapping failures and errors^{4,8}. The total size of
65 the unplaced contigs and scaffolds could be as large as hundreds of million bases. In
66 particular, numerous regions enriched in highly repetitive sequences, such as centromeres,
67 telomeres and transposable elements (TEs), remain unresolved. Additionally, the draft Y
68 chromosome with a size of 25.92 Mb was recently updated⁹ in *ARS-UI_Ramb_v3.0*
69 (GCA_016772045.2, *Ramb_v3.0*), but the divergence and structure of the sheep Y
70 chromosome is still to be confirmed due to abundant repeats, such as long interspersed
71 nuclear elements (LINEs) and long terminal repeats (LTRs)^{10,11}.

72

73 Through the use of sequencing for ultralong reads and assembly algorithms¹², telomere-to-
74 telomere (T2T) genome assemblies have been achieved. Accordingly, previously

75 unresolved/unassembled genomic regions, which are enriched in centromeric satellites,
76 nonsatellite segmental duplications and rDNAs¹⁴⁻¹⁶, as well as novel genes and variants have
77 been revealed in several species, including human^{13,14}, ape¹⁵, maize¹⁶, Arabidopsis¹⁷,
78 soybean¹⁸, and rice¹⁹. However, a complete gap-free T2T ovine genome has not been
79 available until now.

80

81 Here we report the *de novo* T2T gap-free genome assembly for a ram (HU3095) of Hu sheep
82 (*T2T-sheep1.0*), a well-known, highly prolific breed native to China. This complete and
83 seamless assembly covers the Y chromosome and was achieved by using ONT and PacBio
84 HiFi reads of a ram and the sequenced genomes of its parents. Accordingly, the haplotype
85 genome assemblies *T2T-sheep1.0P* and *T2T-sheep1.0M* were also assembled at T2T level.

86 The *T2T-sheep1.0* genome assembled here was subsequently used as a reference to
87 investigate genomic components, particularly centromere and telomere structures, previously
88 unresolved genomic regions, novel genes, structural variants (SVs) and single nucleotide
89 polymorphisms (SNPs). Furthermore, the application of *T2T-sheep1.0* in the analysis of wild
90 and domestic sheep populations worldwide showed its advantages over previous assemblies
91 in variant calling, population genomics analyses and identification of novel genes and
92 variants associated with particular phenotypic traits (e.g., wool fineness) under selection.

93

94 **Results**

95 **T2T gap-free genome assembly**

96 A total of 543.2 Gb of ultralong ONT reads (190.4× coverage) and 149.0 Gb of PacBio HiFi
97 reads (52.2× coverage) were obtained to assemble the *T2T-sheep1.0* reference genome
98 (Supplementary Table 1, Supplementary Fig. 1 and Supplementary Methods). Initial
99 assembly was achieved based on the PacBio HiFi data, and consists of 246 contigs with an

100 N50 of 96.54 Mb (Supplementary Table 2). Furthermore, 1135.86 Gb of Bionano's optical
101 genome mapping (OGM) data and 357.22 Gb of high-throughput chromatin capture (Hi-C)
102 sequencing data (Supplementary Table 1) were used to scaffold the contigs and anchor them
103 onto the 27 pseudomolecules, which correspond to 26 autosomes and chromosome X (ChrX).
104 A total of 139 gaps were identified in the initial assembly, ranging from 108 bp to 1.02 Mb
105 with a total length of 3.41 Mb. The gaps are enriched in centromeric regions that contain
106 highly repetitive sequences (Supplementary Table 3). Ultralong ONT reads were then used to
107 fill the gaps via the strategy of extension or local assembly. Alignments of Bionano optical
108 maps and ONT, HiFi and Hi-C reads indicated that all the gaps in the regions had been filled
109 (Fig. 1a, Supplementary Fig. 2, and Supplementary Fig. 3).

110

111 Initial assembly of chromosome Y (ChrY) was performed independently based on the
112 paternal-specific ultralong ONT reads. Accordingly, gaps were filled using the Y-
113 chromosome-specific contigs, which were assembled by the trio-binning model of Hifiasm²⁰
114 (v0.14) based on the HiFi long reads (Supplementary Table 1). All 56 telomeric regions were
115 locally assembled based on the HiFi reads, and all the incomplete chromosomal ends were
116 replaced with 56 complete telomeres of 1.20 – 25.32 kb (Fig. 1a and Supplementary Fig. 4).
117 Finally, the complete sheep genome assembly, *T2T-sheep1.0*, with a size of 2.85 Gb, was
118 constructed, covering all the autosomes and two sex chromosomes, X and Y (Table 1). In
119 addition, the trio-based assembly was performed to obtain the haplotype-resolved autosomes
120 for *T2T-sheep1.0P* of paternal origin and *T2T-sheep1.0M* of maternal origin. Parent-specific
121 *k*-mers were generated based on parental short reads to bin the ONT and HiFi reads of
122 paternal or maternal origins, which were used to fill 20 gaps for *T2T-sheep1.0P* and 15 gaps
123 for *T2T-sheep1.0M*. Finally, the complete chromosomes X and Y in *T2T-sheep1.0* were
124 included in *T2T-sheep1.0M* and *T2T-sheep1.0P* respectively (Table 1).

125

126 After polishing *T2T-sheep1.0* with ONT and HiFi long reads and NGS short reads, the
127 consensus base quality value (QV) across the whole genome is 51.53, with a QV range of
128 46.05 to 59.75 for the chromosomes (Supplementary Table 4). An accuracy of > 99.999% for
129 each base and a completeness of 92.761% for the whole assembly were obtained. On average,
130 we obtained 99.75%, 98.99%, and 99.97% mapping rates for short, ONT, and HiFi reads,
131 respectively, against *T2T-sheep1.0*. The even coverage distributions of ONT and PacBio HiFi
132 reads suggest a reliable and continuous assembly (Fig. 1a and Supplementary Fig. 2), and
133 both the Hi-C and Bionano optical map data show high consistency of the overall alignment
134 against the pseudochromosomes in *T2T-sheep1.0* (Supplementary Fig. 3). Together, all the
135 statistics above indicated the reliability and completeness of *T2T-sheep1.0* assembled here.
136 Meanwhile, *T2T-sheep1.0P* and *T2T-sheep1.0M* achieve the T2T level, only with 4 and 10
137 gaps left in the centromeric or pericentromeric regions of 2 (Chr25 and Chr26) and 6 (Chr10,
138 Chr13, Chr17, Chr23, Chr25, and Chr26) chromosomes respectively due to the lack of binned
139 long reads. The average genome-wide QVs of *T2T-sheep1.0P* and *T2T-sheep1.0M* are 55.41
140 and 55.23 respectively (Supplementary Table 4). We calculated the switching errors and
141 obtained the estimates of 0.3781‰, 0.0895‰, and 0.1199‰ for *T2T-sheep1.0*, *T2T-*
142 *sheep1.0P*, and *T2T-sheep1.0M*, respectively. Heterozygous regions between *T2T-sheep1.0P*
143 and *T2T-sheep1.0M* were observed (Supplementary Fig. 5a), as 9,982,198 single nucleotide
144 variants (SNVs), 1,248,272 small insertions and deletions (< 50 bp) and 20155 SVs (\geq 50 bp)
145 were discovered between these two haplotype genomes. The coverage distributions of ONT
146 and PacBio HiFi reads suggest a good quality of two parental genome assemblies, with a few
147 of the potential issues in *T2T-sheep1.0P* and *T2T-sheep1.0M* (Supplementary Fig. 5b). In
148 summary, *T2T-sheep1.0* represents a better assembly for the downstream analysis by merging
149 the chromosomal regions from either of the two haplotypes.

150

151 **Improvement of *T2T-sheep1.0***

152 Good collinearity in the syntenic regions was observed between *T2T-sheep1.0* and the NCBI
153 sheep genome reference *Ramb_v3.0*. Nearly 220.05 Mb of previously unresolved regions
154 (PURs) were identified on all 28 chromosomes of *T2T-sheep1.0*, which were unassembled
155 (i.e., gaps) or misassembled on the chromosomes of *Ramb_v3.0* (Fig. 1a and Supplementary
156 Fig. 2). These PURs are mostly located in the centromeric regions and regions enriched for
157 repeats, including unfinished chromosomal ends of telomeric regions and 81 gaps in
158 *Ramb_v3.0* (Supplementary Fig. 6). Chr26 and Chr15 showed the longest accumulated PURs
159 of 22.57 Mb and 21.41 Mb, respectively, and 5.82 Mb of PURs were identified on ChrY. We
160 did not observe an association between the lengths of the PURs and chromosomes.

161

162 The PURs include centromeric satellites (CenSat, 60.72%), segmental duplications (SDs,
163 12.95%), overlapping CenSat and SDs (10.06%), and other repeats (8.15%) (Fig. 1b). The
164 gaps in *Ramb_v3.0* enriched with repeats were filled in *T2T-sheep1.0*, and some genes were
165 annotated in gap-filled regions of *T2T-sheep1.0* (Fig. 1c and Supplementary Fig. 7). For
166 example, the gene ID “Gene1808” (annotated as *HNRNPK*), located in a gap on Chr01, was
167 expressed in longissimus dorsi, cerebrum, and hypothalamus tissues (Fig. 1c). Overall,
168 hundreds of thousands of gaps and unplaced contigs were observed in the available sheep
169 assemblies (Supplementary Figs 8a and 8b). Compared with these previous assemblies, *T2T-*
170 *sheep1.0* is not the longest due to sequence redundancy when considering all the
171 chromosomes and unplaced contigs. However, *T2T-sheep1.0* represents the longest complete
172 gap-free sheep genome assembly after removing unknown nucleotides in the gaps and
173 mitochondrial genome sequences (Supplementary Table 5). More than 96% Benchmarking
174 Universal Single-Copy Orthologs (BUSCO) were annotated in *T2T-sheep1.0* based on a total

175 of 9226 core genes in the *mammalia_odb10* database, while only 93.9% BUSCO annotation
176 was achieved in *Ramb_v3.0*⁷ and 91.2–92.4% in 15 other sheep genome assemblies
177 (Supplementary Fig. 8c). We compared the total lengths of two known centromeric satellites
178 (GenBank accessions KM272303.1 and U24091) among these assemblies, and *T2T-sheep1.0*
179 has the longest lengths for the two satellites, making it the best assembly in terms of
180 centromeric regions (Supplementary Fig. 8d).

181
182 *T2T-sheep1.0* corrected many structural errors in *Ramb_v3.0* (Fig. 1d and Supplementary Fig.
183 9). Based on the MGI-sequenced short reads, rare *k*-mer errors (*k* = 21) were detected in *T2T-*
184 *sheep1.0*, while enriched *k*-mer errors indicated potential assembly issues, which could be
185 ascribed to genome-wide structural errors in *Ramb_v3.0*. A few large inversions between the
186 two assemblies were confirmed as structural errors with the support of multiple lines of
187 evidence. For example, the inversion INV195 between *T2T-sheep1.0* and *Ramb_3.0* was
188 detected on Chr09 (Fig. 1d). We retrieved the raw PacBio sequencing data of Rambouillet
189 sheep assembled previously and aligned the reads to *Ramb_v3.0*. The alignment showed
190 clipped reads, and the junction sites of the inversion INV195 in *Ramb_v3.0* could not be
191 covered by the PacBio reads, together with low read coverage and *k*-mer error peaks (Fig. 1d).
192 However, alignment of the PacBio sequences demonstrated a good coverage at the junction
193 sites when against *T2T-sheep1.0* (Supplementary Figs 9a and 9b). Similarly, the alignment of
194 raw HiFi long reads generated from the Hu sheep assembled here further evidence that the
195 region was assembled correctly in *T2T-sheep1.0*, and an inversion error occurred in
196 *Ramb_v3.0*, rather than a breed difference.

197
198 The improvement in genome quality is also reflected in the average genome-wide QV of
199 51.53 in *T2T-sheep1.0*, compared to 44.77 in *Ramb_v3.0* excluding chromosome Y (i.e.,

200 *Ramb_v2.0*⁷. Minimum unique *k*-mers (MUKs) are defined as *k*-mers that occur only once in
201 *T2T-sheep1.0*. Compared to *Ramb_v3.0*, *T2T-sheep1.0* exhibits an overall increase in the
202 number of MUK sequences across the chromosomes (Fig. 1e and Supplementary Fig. 10),
203 e.g., from 155.86 Mb to 156.13 Mb based on 20-mers, from 234.75 Mb to 236.10 Mb based
204 on 50-mers and from 263.53 Mb to 277.60 Mb based on 1000-mers, which might benefit
205 from improvements in both base-level accuracy and the assembly of repetitive regions in
206 *T2T-sheep1.0*. The centromeric and repetitive regions, e.g., SDs, exhibit longer MUKs in
207 100-kb windows than do the other chromosomal regions (Fig. 1a).

208

209 **Genome annotation**

210 Based on the repeat libraries built by combining *de novo* prediction and available repeats in
211 animals, 47.67% (1360.45 Mb) of the *T2T-sheep1.0* genome sequences were identified as
212 repetitive sequences, more than observed (44.10%, 1164.82 Mb) in *Ramb_v3.0* (Table 1).
213 Among the repetitive sequences, a great majority are transposable elements (TEs), with a
214 total size of 1200.48 Mb, accounting for 42.07% of the whole *T2T-sheep1.0* genome. Long
215 interspersed nuclear repeats (LINEs) derived from TEs are the most abundant, spanning
216 780.1 Mb and covering 27.34% of *T2T-sheep1.0*. The PURs could have been driven by
217 repetitive sequences, which would pose a great challenge for accurate assembly. We found
218 that the repeat contents in PURs were much higher than in the other chromosomal regions
219 (Supplementary Table 6). We assembled satellites with a total length of 162.14 Mb, covering
220 5.68% of the whole genome. However, a total length of only 4.67 Mb (0.18% of the genome)
221 was found in *Ramb_v3.0*, which is congruent with the high content of satellites in PURs.
222 Centromere-specific satellites and SDs account for 70.78% of the PURs with a predominant
223 distribution (Fig. 1b). Among the PURs of *T2T-sheep1.0*, 286,173 satellite sites (157.10 Mb)
224 and 10,214 SDs (50.76 Mb) account for 96.89% and 19.65%, respectively, of all the satellites

225 and SDs in the whole genome (Supplementary Table 6).

226

227 A combination of *ab initio*, homolog-based, and transcriptome-based predictions was used to
228 annotate and integrate the nonredundant gene structures in *T2T-sheep1.0*. After removing the
229 transposon genes, a total of 21,517 high-confidence protein-coding genes were obtained
230 (Table 1), of which 754 are newly anchored genes located in the PURs (Supplementary Fig.
231 11), and 99% of the protein-coding genes were annotated based on public databases,
232 including the NCBI nonredundant (NR) protein database and Kyoto Encyclopedia of Genes
233 and Genomes (KEGG) database. We searched for newly assembled regions (NARs) on the
234 chromosomes in *T2T-sheep1.0* which are not included in *Ramb_v3.0*⁷ (alignment between all
235 chromosomes of *T2T-sheep1.0* and all chromosomes and unplaced contigs of *Ramb_v3.0*),
236 rather than pairwise chromosomal comparisons for PURs (alignment of all chromosomes
237 between *T2T-sheep1.0* and *Ramb_v3.0*). A total of 712 newly assembled genes (NAGs) were
238 identified among the NARs of *T2T-sheep1.0* (Supplementary Fig. 11). The genes in the PURs
239 and NAGs exhibited transcriptional expression in a diverse set of tissues, e.g., adipose, blood,
240 rumen and hypothalamus based on RNA-seq data (Supplementary Table 7 and
241 Supplementary Fig. 11). We annotated 147 genes within the centromeric regions of 25
242 chromosomes in *T2T-sheep1.0*, and RNA-seq analysis revealed low expression levels of these
243 genes (Supplementary Table 8).

244

245 **Gene families and SDs**

246 For the 18084 orthogroups inferred by the program OrthoFinder (v2.5.5)²¹, we observed
247 obvious expansion of gene families with increased copy numbers in *T2T-sheep1.0* compared
248 to the three genome assemblies of sheep *Ramb_v3.0*, argali *CAU_O.ammon polii_1.0* (*Ovis*
249 *ammon polii*, GenBank accession no. GCA_028583565.1) and goat *ARS1* (*Capra hircus*,

250 GCF_001704415.1) (Supplementary Table 9). For example, the orthogroup OG0000002
251 contained 33 genes, with only 1 found in *Ramb_v3.0*, 22 in argali *CAU_O.ammon polii_1.0*
252 and none in goat *ARS1*. Furthermore, gene family expansion showed a strong association
253 with the enrichment of SDs (Supplementary Fig. 12).

254

255 To characterize the SD content, we identified 111.06 Mb and 20.55 Mb of nonredundant
256 segmental duplicated sequences on the 28 chromosomes (26 autosomes and chromosomes X
257 and Y) of *T2T-sheep1.0* and *Ramb_v3.0*, respectively. A total of 45.56% of the
258 interchromosomal SDs are scattered across different chromosomes, while 54.44% of the
259 intrachromosomal SDs were identified. The SDs spanned 68.55 Mb, and covered 2622 genes.
260 Among these genes, 44.28% are in paralogous gene groups with more than one gene in *T2T-*
261 *sheep1.0*, indicating a significant contribution of SDs to gene copy number. Compared with
262 those in *T2T-sheep1.0*, the reductions in SDs and paralogous gene groups in *Ramb_v3.0*
263 might be due to the assembly collapse of repetitive sequences. Of the total SDs, 45.71%
264 overlapped with the PURs of *T2T-sheep1.0*, spanning 50.76 Mb. In particular, 4.52 Mb of
265 SDs within PURs on the Y chromosome were shown to be related to the tandem duplication
266 of three gene families, the testis-specific protein Y-encoded (*TSPY*) gene, the heat shock
267 transcription factor Y-linked (*HSFY*) gene, and the zinc finger Y-linked (*ZFY*) gene.
268 Additionally, our selective sweep tests of global wild and domestic sheep identified strong
269 signals linked to tandemly duplicated genes in the SD-enriched regions (see the results
270 below).

271

272 **Centromeric regions and their repeat content**

273 Eleven acrocentric chromosomes shared similar satellite sequences, and created an assembly
274 graph with tangles among them (Fig. 2a), which were further discovered to be centromeric

275 repeats. After gap-filling, the centromeric regions were resolved with the support of sufficient
276 read coverage (Fig. 1a and Supplementary Fig. 2). As histone H3 binds to centromeres on
277 nucleosomes, ChIP-seq based on an antibody of phosphor-CENP-A (Ser7) was used to
278 determine the centromeric regions (Fig. 2b). It is known that centromeres are dominated by
279 centromeric satellites and rich in highly hypermethylated CpG as observed in humans^{14,22}.
280 Our evidence also supported the identification of centromeric regions, including the
281 enrichment of methylated cytosine based on HiFi data (Supplementary Fig. 13) and the
282 successful alignment of two known centromere-specific satellite DNA sequences (NCBI
283 accessions KM272303.1 and U24091) in these regions. Hypermethylated regions covered the
284 entire centromeric region on Chr02 (Fig. 2b), and similar to that in humans, the
285 hypomethylation displayed a centromeric dip region (CDR) corresponding to SatII on Chr02.
286 CDR is also reported in humans^{22,23} and medaka fish²⁴, as CDRs related to hypomethylation
287 might be associated with interaction with CENP-A for binding of functional kinetochores and
288 serving as a part of distinct marks for euchromatin and heterochromatin²⁵⁻²⁷. Based on the
289 high content of repetitive sequences and their higher similarities in centromeric regions, we
290 performed calculations of pairwise sequence identity and sequence complexity or entropy
291 across all the whole chromosomes. Heatmaps of pairwise sequence identity also confirm
292 centromeric locations with significant continuous blocks (Fig. 2b), while the sequence
293 complexity signals or entropies exhibit different distributions in centromeric regions from
294 those in the other regions (Fig. 2b and Supplementary Fig. 14). These results are congruent
295 with the lines of evidence from enriched signals of ChIP-seq, hypermethylation, and satellite
296 DNA alignment (Supplementary Fig. 13). The centromere lengths ranged from 0.36 Mb to
297 22.63 Mb, showing no association with chromosomal length (Fig. 2c).
298
299 Satellite DNAs that consisted of higher-order repeats (HORs) dominated the centromeric

300 regions of autosomes and the X chromosome. The satellite repeats were classified into three
301 categories: SatI (816 bp), SatII (702 bp) and SatIII (22 bp) (Supplementary Methods and Fig.
302 2c). SatI and SatII, which corresponded to two previously described satellites (KM272303.1
303 and U24091, respectively)^{28,29}, dominated the centromeric regions of *T2T-sheep1.0* (Fig. 2c).
304 We confirmed the sequence of SatI, determined the size of SatII to be 702 bp instead of the
305 ~400 bp reported previously²⁹, and revealed a new satellite, SatIII. The centromeric SatIII
306 repeat arrays were validated through fluorescence in situ hybridization (FISH) assays (Fig.
307 2d). The intensities of the FISH signals on the ends of the chromosomes were in accordance
308 with the centromeric presence of SatIII in our assembly. Additionally, lower entropy values
309 were found in centromeric satellites, such as, SatI and SatII on Chr02 (Fig. 2b), indicating
310 less sequence complexity than in other chromosomal regions. The primate centromere
311 evolved via the amplification of satellite sequences within its inner core, which forms layers
312 of varying ages³⁰. Like the presentation of centromeric regions in humans²², we also observed
313 the evolutionary layers of centromeric satellites based on sequence identity and similarity
314 heatmaps. For example, on the X chromosome, SatII dominated the centromeric region, and
315 at least two layers were identified in the SatII HORs (Supplementary Fig. 13). Additionally,
316 we detected the insertion of other repeat units such as LINEs and SINEs into the centromeric
317 regions (Fig. 2b). In contrast to genes within centromeric regions, genes in pericentromeric
318 regions were highly expressed according to the RNA-seq data (Fig. 2b).

319

320 **Evolution of centromeric satellites and chromosomal fusion**

321 Sheep have experienced significant evolutionary events for chromosomal centric fusion of
322 the three metacentric chromosomes of Chr1, Chr2, and Chr3²⁹. Nonallelic homologous
323 recombination (NAHR) occurred on the two acrocentric chromosomes of their wild ancestors
324 and related species, and generated a metacentric chromosome. As a result, footprints of

325 centromeric evolution might remain in the centromeric regions of the three metacentric
326 chromosomes. We examined the genome of argali⁵ to trace its chromosomal reorganization
327 using the goat genome³¹ as an outgroup (Fig. 2e). The collinearity among sheep, argali, and
328 goat apparently revealed the two-to-one fusion relationships (CHI1 + CHI3 in goat vs. Chr01
329 in sheep; CHI2 + CHI8 in goat vs. Chr02 in sheep; CHI5 + CHI11 in goat vs. Chr03 in sheep)
330 between 6 chromosomes in goat and 3 chromosomes in the two ovine species. Based on the
331 centromeric locations on chromosomes in goats and the two ovine species, we established the
332 chromosomal fusion pattern involving the footprints of centromeric satellites (Fig. 2e). In
333 addition, SatII was in the core of centromeric regions with high sequence identity on the three
334 metacentric chromosomes Chr01, Chr02, and Chr03 (Fig. 2b and Supplementary Fig. 13).
335 According to the sequence identity heatmap of the centromeric regions of sheep, there are
336 four evolutionary layers on Chr02 including layers #1 and #2 of SatI and layers #3 and #4 of
337 SatII (Fig. 2b) based on identity values of 80–100%, which suggested multiple amplification
338 events of SatI and SatII. We did not detect telomeric sequences in the centromeric regions of
339 these three metacentric chromosomes with NAHR or fusion events in *T2T-sheep1.0*, which is
340 different from previous observations of telomeres in centromeric regions in muntjac³².
341
342 We determined the sequence similarity and conservation of SatI, SatII and SatIII in Caprinae
343 and Bovidae species, by comparing related sequences in the NCBI database. Multiple
344 sequence alignment of SatI sequences revealed 599 variant sites among the 16 Bovidae
345 species, and 86 variants between *T2T-sheep1.0* and *T2T-goat1.0*³¹ (Supplementary Table 10
346 and Supplementary Fig. 15a). The SatI sequences accumulated variants among Caprinae
347 species, and a phylogenetic tree based on their consensus sequences showed the split of
348 Caprinae and Hippotraginae species in the Bovidae family (Fig. 2f). The sequences of SatII
349 harbored 130 variable sites between sheep and goat (Supplementary Fig. 15b), while two

350 SatIII variants (SatIII-20GG and SatIII-20CC for *T2T-sheep1.0*, SatIII-V2A and SatIII-V2C
351 for *T2T-goat1.0*) were found for both the species (Fig. 2d). As shown by the binding results
352 of the FISH probes, the two primary SatIII variants (SatIII-20GG and SatIII-20CC) exhibited
353 intensified signals on the chromosomal ends (Fig. 2d).

354

355 **Y chromosome structure**

356 It has been difficult to assemble the Y chromosome due to the homology of the X and Y
357 chromosomes¹⁰, i.e., pseudoautosomal regions (PARs). Thus, a relatively complete Y
358 chromosomal assembly is available for only a few species such as human, monkey, rat,
359 mouse, cattle, and donkey (Supplementary Fig. 16a). However, only the human³³ (assembly
360 *T2T-CHM13v2.0*) and six apes¹⁵ have a gap-free T2T Y chromosome. Hereby, *T2T-sheep1.0-*
361 *chrY* of sheep was assembled and significantly improved compared with the most updated Y
362 chromosome reference⁹ (*Ramb_v3.0-chrY*, CP128831.1) for sheep in the *Ramb_v3.0*
363 assembly. *T2T-sheep1.0-chrY* had a length of 26.59 Mb, which was 0.67 Mb and 15.97 Mb
364 longer than those of *Ramb_v3.0* and the earlier Hu sheep reference genome ASM1117029v1¹⁰
365 (GCA_011170295.1), respectively. The ~17-Mb region covering the PAR showed good
366 collinearity between *T2T-sheep1.0-chrY* and *Ramb_v3.0-chrY*, except for a 1.18-Mb
367 inversion at ~10 Mb (Fig. 3a). The remaining ~9-Mb region distal to the PAR of the Y
368 chromosome (namely Z zone) showed a low-quality assembly and highly fragmented DNA
369 as small inversions in *Ramb_v3.0-chrY*, which was annotated as a *ZFY* gene array in *T2T-*
370 *sheep-chrY* (Fig. 3a and Fig. 3b). The pairwise sequence identity heatmap showed an
371 apparent block in this region, suggesting the presence of repeats (Fig. 3b).

372

373 Centromere-specific satellites (SatI, SatII, and SatIII) were not observed, but another type of
374 simple repeat sequence, CenY, which was 2516 bp long and spanned a total of 180.12 kb,

375 was present on the sheep Y chromosome. As a potential centromeric repeat unit on the Y
376 chromosome, CenY was supported by hypermethylation data and the sequence identity
377 heatmap (Fig. 3b). Similar sequences of CenY could be detected on the goat Y chromosome³¹,
378 but the length was only approximately 1400 bp. In addition to the Caprinae subfamily, CenY
379 sequences are also found on the Y chromosomes of other Bovidae species, such as *Bos taurus*
380 (GenBank accessions CP128563.1 and LR962769.1).

381

382 ChIP-seq based on phospho-CENP-A (Ser7) antibody failed to capture any reads on the
383 whole Y chromosome of sheep, despite the presence of ChIP-seq peaks in the other
384 chromosomal centromeric regions with SatI~SatIII repeats (Fig. 2b and Supplementary Fig.
385 13). This observation is congruent with the lack of hybridization of the SatI and SatII probes
386 to the Y chromosome observed in FISH assays of sheep^{29,34}. In this study, the binding of
387 FISH probes confirmed the unique presence of CenY on the Y chromosome (Fig. 2d). Apart
388 from CenY, other repeats, such as LINEs, SINEs and LTRs, were also detected on the Y
389 chromosome, accounting for 39.72%, 6.20% and 7.24% of the whole Y chromosome,
390 respectively.

391

392 A total of 133 protein-coding genes and 59 pseudogenes were annotated (Fig. 3b). Unlike in
393 human³³ and goat³¹, we did not find apparent double tandem gene copies on the sheep Y
394 chromosome, but detected significantly increased copy numbers of three gene families, i.e., 9,
395 11, and 33 copies for *TSPY*, *HSFY*, and *ZFY*, respectively. Our pseudogene prediction further
396 revealed 10 more *ZFY*-like pseudogenes in the Z zone. In comparison, the *ZFY* gene on the Y
397 chromosome showed only one copy in human *T2T-CHM13v2.0*, and 5 dispersedly distributed
398 copies on the Y chromosome of the goat T2T genome assembly *T2T-goat1.0*³¹. Phylogenetic
399 analysis of the *ZFY* genes confirmed their very high sequence similarity and placed them into

400 a single clade of the tree based on nucleotide sequences (Supplementary Fig. 16b). Notably,
401 the expansion of these three gene families was strongly related to the enrichment of SDs in
402 these regions (Fig. 3b). RNA-seq of 148 samples covering 28 tissues from the public NCBI
403 database confirmed the transcription of these protein-coding genes, particularly with high
404 expression in the testis (Fig. 3b and Supplementary Fig. 17).

405

406 RNA-seq revealed no or low expression of 54 genes in the hypermethylated homologous
407 regions in blood, compared to the abundant expression of genes in the male-specific Y (MSY)
408 region and Z zone in the testis (Fig. 3b). *T2T-sheep1.0-chY* is one of the first complete sheep
409 Y chromosomes with detailed gene annotation⁹, and 7 genes (i.e., *IL9R*, *IL3RA*, *SLC25A6*,
410 *ASMTL*, *P2RY8*, *ASMT*, and *DHRSX*) on the X-chromosome-homologous region of the Y
411 chromosome (~4 Mb) showed an order similar to that in *human T2T-CHM13v2.0-chrY*.

412

413 **Features of the X chromosome**

414 In addition to the Y chromosome, *T2T-sheep1.0* also significantly improved the assembly of
415 the X chromosome, with an increase in QV from 44.76 in *Ramb_v3.0* to 51.04. The assembly
416 of the X chromosome showed uniform coverage for ONT and HiFi reads (Fig. 3c). We
417 corrected the mistakenly assembled inversions on the X chromosome of *Ramb_v3.0*. For
418 example, just like INV195 on Chr09 (Fig. 1d), we confirmed errors for the two inversions
419 (7.25 Mb for INV405 and 3.29 Mb for INV406) on the X chromosome in *Ramb_v3.0*, due to
420 the alignment failure of PacBio reads from both Rambouillet and Hu sheep for *T2T-sheep1.0*
421 at the two junction sites (Fig. 3d and Supplementary Fig. 9c). We annotated 959 genes on the
422 X chromosome of *T2T-sheep1.0*, and identified centromeric regions based on enrichment of
423 ChIP-seq and hypermethylation signals. We found that the p arm (~7 Mb) of the X
424 chromosome, covering 31 genes, was homologous to the ~8.6 Mb region with 54 genes on

425 the p arm of the Y chromosome, and was considered as PAR (Fig. 3c). Furthermore, the PAR
426 is enriched with MUK and PURs and hypermethylated on both the X and Y chromosomes in
427 blood (Fig. 3b and 3c). In addition, 10 genes in the middle region of the X chromosome from
428 81.71 Mb to 100.68 Mb exhibited collinearity with the 10 corresponding genes in the MSY
429 region of the Y chromosome (Fig. 3c).

430

431 **Structural variants based on long reads**

432 To investigate the performance of *T2T-sheep1.0* as a reference for calling large SVs, we
433 sequenced the genomes of two sheep individuals from the Tan and European mouflon
434 (Supplementary Fig. 18), and aligned their PacBio long reads to *T2T-sheep1.0* together with
435 the downloaded datasets of the other 16 sheep samples (Supplementary Table 1 and
436 Supplementary Table 11). The mismatch rate for alignment observed for *T2T-sheep1.0*
437 decreased significantly (Fig. 4a), most likely because of the greater accuracy of the consensus
438 sequences. After merging and filtering, we identified a total of 192,265 SVs overlapping with
439 11,987 genes (55.93% of the total genes), including 75,962 deletions (DELS) and 113,541
440 insertions (INSSs) (Supplementary Table 12). Alignment to *Ramb_v3.0* yielded substantially
441 less SVs across the 18 sheep samples (Fig. 4b and Supplementary Table 13). However, we
442 discovered 663 homologous DELs and INSSs with allele frequency of 36 in all 18 samples
443 (Supplementary Table 13), less than the 959 ones with *Ramb_v3.0* as a reference, and it could
444 be explained by structural errors corrected in *T2T-sheep1.0*. We observed a significant
445 increase in the number of SVs in the two wild sheep of Asiatic mouflon and argali compared
446 to the other 15 domestic sheep and European mouflon (Fig. 4b). *T2T-sheep1.0* enabled the
447 discovery of additional 16,885 SVs within PURs spanning 24.20 Mb (Supplementary Fig. 19),
448 most of which are deletions ($n = 10,979$) and insertions ($n = 5473$). Compared with
449 *Ramb_v3.0*, *T2T-sheep1.0* used as the reference resulted in more deletions and insertions in

450 highly repetitive regions with smaller size, such as satellites and SINEs, than in LINEs, LTRs,
451 and genes (Fig. 4c and Supplementary Fig. 18). This observation can be explained by the fact
452 that satellites dominated the PURs. In total, we observed 16,885 new SVs spanning 24.20 Mb
453 (Fig. 4d), most of which were deletions ($n = 10,979$) and insertions ($n = 5473$). We
454 discovered 16 SVs related to exons and homologous in all 18 individuals and their
455 overlapping genes are related to the functions of fertility, wool, and development with a
456 unique role in Hu sheep (Supplementary Table 14). Within the collinearity regions between
457 *T2T-sheep1.0* and *Ramb_v3.0*, we also observed improvements in SV calling. For example, a
458 deletion in an exon of the *TUBE1* gene was detected on Chr08 in all 18 individuals when
459 using *T2T-sheep1.0* as a reference, and the gene assembly and annotation are supported by
460 the presence of complete transcripts in the Iso-seq data (Supplementary Fig. 20).

461

462 **Novel genetic variants based on short reads**

463 *T2T-sheep1.0* showed improvements in short read-based variant calling. We collected next-
464 generation genome sequencing datasets for 810 sheep worldwide (Fig. 5a and Supplementary
465 Table 15) and compared the SNPs detected when using *T2T-sheep1.0* and *Ramb_v1.0* as
466 references (Supplementary Table 16). For comparison with previous results⁴, *Ramb_v1.0* was
467 used as a reference for the alignment and call variants, rather than *Ramb_v3.0*. The depth of
468 short reads with alignment against *T2T-sheep1.0* ranges from 10.47 to 43.41. A total of 764
469 (94.32%) samples showed a $\geq 10\%$ increase in the number of mapped reads when using *T2T-*
470 *sheep1.0* as a reference compared with *Ramb_v1.0*. We divided all 738 domestic sheep
471 samples into 6 geographic populations (i.e., Central- and- East Asia, South- and- Southeast
472 Asia, the Middle East, Africa, Europe, and America) according to their sampling locations.
473 The remaining 72 samples comprise 7 wild species of European mouflon, Asiatic mouflon,
474 urial, Argali, snow sheep, thinhorn sheep, and bighorn sheep. Compared to the number called

475 by *Ramb_v1.0*, more reads were mapped to *T2T-sheep1.0* in all the geographic populations
476 and wild species, with up to >10% added in some populations or species. We observed a
477 much lower per-read mismatch rate when *T2T-sheep1.0* was used as the reference, while the
478 mismatch rates of the wild species were obviously greater than those of the domestic sheep
479 (Supplementary Fig. 21). Moreover, more reads with zero mapping quality were generated
480 when using *T2T-sheep1.0* as the reference. This could be due to the increase in satellite
481 sequences and SDs, which resulted in multiple locations for the alignment of short reads.
482 Significantly fewer outward-oriented pairs were aligned with *T2T-sheep1.0*. Moreover, we
483 detected $\geq 3\%$ additional properly paired reads in 252 samples with alignment to *T2T-*
484 *sheep1.0* (Supplementary Fig. 21). Therefore, improvements in the mapping of *T2T-sheep1.0*
485 indicate its advantage as a sheep reference genome.

486
487 We obtained 133,314,255 high-quality SNP variants against *T2T-sheep1.0*, 2,664,979 of
488 which were located in PURs (Supplementary Table 16), 12,060,995 more than observed
489 against *Ramb_v1.0* (Supplementary Fig. 22). After further filtering SNPs with minor allele
490 frequencies (MAFs) <0.05 , 27,493,776 SNPs were used for subsequent analysis, among
491 which 336,166 SNPs located in PURs (Supplementary Fig. 22) covering 1635 genes. Notably,
492 we found that more low-quality SNPs were filtered with *Ramb_v1.0* as the reference,
493 probably because of the relatively low base-level QV. The number of SNPs in the PURs on
494 each chromosome showed no association with the length of the PURs (Supplementary Fig.
495 22). With *T2T-sheep1.0* as the reference, the increase in the number of total SNPs was
496 observed in the six geographic populations and in the wild sheep population, in terms of both
497 heterozygous and homozygous SNPs (Supplementary Fig. 22). Additionally, we identified
498 1,265,266 SVs (Supplementary Table 16), including 196,471 SVs in PURs, which were
499 dominated by 1,048,080 DELs and were much more abundant than those identified in our

500 previous study⁴ using *Ram_v1.0* as the reference.

501

502 The assembly of the PURs in *T2T-sheep1.0* provided new variants for quantitative trait locus
503 (QTL) mapping analysis. A total of 4729 sheep QTLs related to morphological and
504 agronomic traits were identified in 248 previous studies, according to the Animal
505 Quantitative Trait Loci (QTL) Database (Animal QTLdb)³⁵. We converted their genomic
506 coordinates relative to *T2T-sheep1.0*, and found that 758 SNPs in the PURs were located
507 within 2 Mb of the closest regions of the QTLs (Fig. 5b).

508

509 **Nucleotide diversity and genetic structure**

510 SNPs called by *T2T-sheep1.0* were used to perform population analysis of wild and domestic
511 sheep. We found the highest average nucleotide diversity (π) value in domestic sheep,
512 compared to all the wild populations (Supplementary Fig. 23), while two wild sheep, Urial
513 and Asiatic mouflon, harbored higher π values than previously reported for domestic sheep⁴.
514 Phylogenetic position of sheep population is sensitive to the reference, and the analysis with
515 *T2T-sheep1.0* as the reference resolved some samples with confusing phylogenetic positions
516 (Fig. 5c and 5d) in the neighbor joining (NJ) tree and principal component analysis (PCA). In
517 the NJ tree with *Ramb_v1.0* as the reference, five populations originating from Southwest
518 China (Diqing with a label of DQS, Tengchong with TCS, and Tibetan sheep with ZRJ and
519 ZLX) and Kazakhstan (Degeres mutton-wool sheep with DEG) were not placed in the clade
520 of Central and East Asia (Supplementary Table 15), while the NJ tree with *T2T-sheep1.0* was
521 updated with these five populations in the Central and East Asian clade. So we labeled them
522 as previously misclassified samples (PMSs), and F_{ST} -based Neighbor-Net network further
523 confirmed close phylogenetic relationships of PMSs with Central and East Asian sheep
524 (Supplementary Fig. 24).

525

526 Genetic structure by ADMIXTURE ($k=10$) and F_{ST} -based Neighbor-Net network based on
527 the SNPs showed consistent patterns of genetic differentiation among domestic (six
528 populations: red for Europe, green-blue for Africa, light-blue for Central-and-East Asia,
529 yellow for South-and-Southeast Asia, and mosaic colors for the Middle East and America)
530 and wild (four populations) sheep populations according to their geographic origins (Fig. 5c,
531 5d, 5e, and Supplementary Fig. 24). Furthermore, genetic divergence of the lineages was
532 observed inside the domestic sheep populations on the continents. For example, Chinese
533 Merino (abbreviated as MFW and MSF) and six breeds of Central Asia and Tibet (AZME,
534 ARME, KATO, DEG, TCS, and ZRJ) in Central-and-East Asia received the genetic
535 introgression of European sheep with closer relationships with European clade
536 (Supplementary Fig. 24) and showed the colors of blue and red respectively, rather than light-
537 blue (Fig. 5e). African sheep consist of two groups (green-blue and dark green-blue in Fig. 5e)
538 and contain a breed of Dorper sheep (DPS in orange in Fig. 5e) with European blood.
539 European sheep have the genetic introgression of African sheep in 12 breeds of South Europe
540 (ALT, MKS, etc.) in light-blue, while North European sheep (OUE and SOL) also show the
541 different lineage origin.

542

543 **Selection signatures for domestication**

544 To confirm the improved ability of *T2T-sheep1.0* to identify genomic regions selected during
545 domestication, we reanalyzed the sequencing data in a genomic comparison between Asiatic
546 mouflon and five old domestic landrace populations from a previous study in which the sheep
547 assembly *Oar_v4.0* (GCA_000298735.2) was used as a reference³⁶. The regions with the top
548 1% of outliers for the cross-population composite likelihood ratio (XP-CLR) and F_{ST} were
549 considered as candidate selective sweeps. A total of 1066 selected regions of 53.30 Mb and

550 covering 338,024 SNPs and 197 SVs were identified with extreme allele frequency
551 differentiation across the 27 chromosomes (Supplementary Table 17 and Supplementary
552 Table 18). Overall, 311,888 SNPs (92.27%) associated with the top 1% selected regions as
553 detected with *T2T-sheep1.0* could be successfully mapped onto *Oar_v4.0*, and 1403 genes
554 within these sweeps were designated candidate selected genes (Fig. 6a). We discovered
555 multiple novel selection signals (blue-colored in Fig. 6a) in the PURs of pericentromeric
556 regions, such as those on Chr03, Chr17, Chr18, and Chr24. A total of 146 candidate genes
557 obtained using *Oar_v4.0* as a reference³⁶, such as *MBOAT2*, *TEX12*, *PDE6B* and *CUX1*, were
558 also included in the list of selected genes detected by *T2T-sheep1.0* (Fig. 6b).

559

560 In particular, 550 and 36 novel selected genes that were not identified by *Oar_v4.0* were
561 identified in non-PURs (e.g., *TIMM17A*, *PLEKHA5*, *UNCX* and *PKD1L3*; gray-colored in
562 Fig. 6a) and PURs (e.g., *ABCC4*, *SPAG16*, *OASI*, *BNC1*, *CD226* and *FAM20C*; blue-colored
563 in Fig. 6a) of *T2T-sheep1.0*, respectively (Supplementary Fig. 25 and Supplementary Table
564 17). These novel genes were mostly involved in immunity, neuron development, sperm,
565 energy metabolism, etc. For example, we detected selective signals of a ~4 Mb region (Chr10:
566 80,150,000-83,900,000) by both XP-CLR and nucleotide diversity (π) ratio of π -O.
567 orientalis/ π -landrace (Fig. 6c). This selected region covered 20 *ABCC4* gene copies
568 (Gene10176~10179, Gene10434, Generf10555, Gene10437~10438, Generf10560,
569 Gene10440, Generf10562, Gene10443, Generf10563, Gene10445~10446, Gene10448~10452,
570 Fig. 6d) and was not assembled in *Ramb_v3.0* with only 8 truncated short *ABCC4* gene
571 copies (Fig. 6e). These 20 *ABCC4* copies were expressed in multiple tissues, including blood,
572 colon, duodenum, and ileum, indicating specialized functions. Further examination revealed
573 37 nonsynonymous mutations in one *ABCC4* copy (Gene10176, Fig. 6f) and selected sites in
574 the other two *ABCC4* copies (Gene10178 and Gene10446) in domestic sheep compared to

575 wild sheep (Fig. 6e and Supplementary Fig. 25a). The selection signals of other novel genes
576 (e.g., *SPAG16*, *OAS1*, *BNC1*, *CD226* and *FAM20C*) were also confirmed based on the π ratio
577 and differentiated alleles between the wild and landrace sheep populations (Supplementary
578 Fig. 25b).

579

580 Seven SVs within the top 1% of the F_{ST} outliers were identified in the PURs (Fig. 6g and
581 Supplementary Table 18). Within an ~3.5-Mb PUR (Fig. 6h), we identified two deletions
582 (1.06 kb and 1.49 kb in length) located within the introns of the *ADAMTSL3* gene on Chr18
583 (Supplementary Fig. 25c), which plays a cardioprotective role in maintaining cardiac function
584 in human and mice³⁷. This PUR in *T2T-sheep1.0* included 24 genes not present on Chr18 of
585 *Ramb_v3.0* (Fig. 6i). A newly identified deletion in one intron of *SPAG16*, which is involved
586 in the development, maturation, and motility of sperm³⁸, was also detected in a small PUR,
587 and allele frequencies of this deletion and other SNPs revealed significant differentiation
588 between five landrace sheep breeds and Asiatic mouflon (Supplementary Fig. 25d).

589

590 **Selection signatures for fleece fiber diameter**

591 We applied *T2T-sheep1.0* to detect genome-wide selection signatures among hairy and
592 coarse-, medium- and fine-wool domestic sheep populations with decreasing fleece fiber
593 diameters based on both SNPs and SVs (Supplementary Table 19 and Supplementary Table
594 20). To compare the results, we followed the same analysis procedures used in our previous
595 study, with *Ramb_v1.0* as a reference⁴. The top 1% of XP-CLRs revealed 1014 selection
596 signals between fine-wool and hairy sheep, and 383,248 (98.54%) SNPs within the top 1% of
597 the selected regions based on *T2T-sheep1.0* could be successfully lifted over to *Ramb_v1.0*,
598 and 228 genes, including *TP63*, *KRT* (*KRT77*, *KRT1*, *KRT2*, *KRT74* and *KRT71*), and
599 *IRF2BP2*, were shared when using two reference genomes (Fig. 7a). These genes known to

600 be under selection⁴ were confirmed based on the selected sites in domestic sheep
601 (Supplementary Fig. 26a). Compared to those in *Ramb_v1.0*, ~779 and 24 novel selected
602 genes were identified in non-PURs and PURs, respectively, in the comparison of fine-wool
603 and hairy sheep (Fig. 7b). For example, *TARBP1*, *EPS8*, and *DMXL2* in non-PURs were
604 identified with selected alleles for the fine-wool trait (Supplementary Fig. 26b). *FOXQ1* was
605 identified in a PUR at the end of Chr20, whose selection is supported by the π ratio between
606 fine-wool and hairy sheep (Fig. 7c), and *FOXQ1* was reported to play a role in hair follicle
607 differentiation³⁹. The incomplete and misassembled end of Chr20 in *Ramb_v3.0* was
608 confirmed in the collinearity analysis with *T2T-sheep1.0* (Fig. 7d). We explored the variants
609 in *FOXQ1*, and found five variants with different allele frequencies between the coarse-,
610 medium- and fine-wool sheep populations and the hairy population (Fig. 7e). Moreover, we
611 detected significant selection signatures in *FOXQ1* in the other three comparisons of hair vs.
612 coarse wool, hair vs. medium wool, and fine wool vs. medium wool (Fig. 7e and
613 Supplementary Fig. 27).

614
615 We also identified 195 candidate SVs on the basis of the top 1% of F_{ST} values between the
616 fine-wool and hairy populations when using *T2T-sheep1.0* as a reference (Supplementary
617 Table 20). The strongest signal was derived from an insertion in 3' UTR of the *IRF2BP2* gene
618 located on Chr25, and the inserted fragment was previously identified and determined as an
619 antisense *EIF2S2* retrogene (called as *EIF2S2*)⁴⁰. The selection of *IRF2BP2* gene is also
620 supported by eight SNP sites with significant allele differences between fine-wool and hairy
621 populations, including two SNPs in the 3' UTR and intron of *IRF2BP2* gene in our previous
622 findings⁴, and six more SNPs in the promoter (<2000 bp away from the transcription
623 initiation site) and ~5 kb upstream regions in this study (Fig. 7f and Supplementary Fig. 28).
624 Another top signal detected based on both SNPs and SVs revealed a deletion within the

625 intron of *DMXL2* (Supplementary Fig. 26b and Supplementary Fig. 26c). Both the SNPs and
626 SVs of these two genes have been under selection due to obvious differences between the
627 hairy and fine-wool populations (Fig. 7b and Fig. 7f). Some genes overlapping with selected
628 SVs, such as *RSP03*⁴¹ and *OFCCI*^{42,43}, reportedly have functions related to hair follicle
629 development and hair curling. Besides, nine selected SVs overlapped with PURs. For
630 example, a deletion (1763 bp) under selection was located in the intron of *CA1* within a PUR
631 (Supplementary Fig. 26d). Selective signals for *CA1* were also found in three other
632 comparisons: fine- vs. coarse-wool, medium- vs. coarse-wool, and medium-wool vs. hairy
633 sheep (Supplementary Fig. 29). We used PacBio long reads to verify the SVs in PURs called
634 by short reads, and five of the 7 SVs associated with domestication and all 9 SVs associated
635 with selection for wool fineness trait were confirmed (Supplementary Table 21).

636

637 **Discussion**

638 Since the release of human *T2T-CHM13*, T2T genome assemblies have become popular and
639 available for several species^{16,44,45}. Nevertheless, several gaps are still present in recent nearly
640 complete animal genome assemblies, including those of chicken⁴⁶, duck⁴⁷, Mongolian
641 gerbil⁴⁸, and cattle⁴⁹. The *T2T-sheep1.0* genome assembled here represents the first gap-free
642 T2T genome of a ruminant, which we obtained by resolving PURs, particularly those in
643 centromeres and on the Y chromosome (*T2T-sheep-chrY*).

644

645 In earlier years, different assembly strategies have been adopted for the Y chromosome,
646 including the utilization of third-generation long-read sequences for sheep¹⁰, and BACs and
647 Y-chromosomal markers for human⁵⁰, threespine stickleback⁵¹, and horse⁵². Quite recently, Y-
648 chromosome assemblies of human and brown planthopper^{14,33,53} were performed with the
649 newly developed method of trio-binning haplotype-resolved assembly and parental

650 sequencing data¹². *T2T-sheep-chrY* was assembled with the recent approach as above, and
651 became the representative Y assembly of the family Bovidae. Multiple copies of the *TSPY*,
652 *HSFY*, and *ZFY* genes were detected in *T2T-sheep1.0*. Multiple copies of spermatogenesis-
653 related genes on Y chromosome promote healthy sperm function, ensure the proceed of
654 spermatogenesis in spite of loss of some copies, and mitigate further gene loss in male
655 animals⁵⁴. In human, multiple copies of the *TSPY*, *DAZ*, and *RBMY* genes were detected on
656 the Y chromosome³³. Also, a growing body of evidence showed that multiple copies of the
657 *TSPY* gene have been reported on Y chromosome of other animals, such as goat (26 copies)³¹
658 and cattle (94 copies)⁵⁵, which could be explained by the regulation of spermatogenic
659 efficiency via highly variable copy dosage³³.

660

661 The *ZFY* gene is also involved in spermatogenesis and is potentially a sex determination
662 factor in Hu sheep⁵⁶. Two *ZFY* genes (*ZFY1* and *ZFY2*) in mice and only one *ZFY* gene with
663 two major splice variants in human are essential for sperm formation⁵⁷, and only five
664 diversely-distributed *ZFY* genes were identified on the goat Y chromosome³¹. In contrast, the
665 bovine Y chromosome harbors 136 *TSPY*, 192 *HSFY*, and 313 *ZFY* genes (including 79
666 *ZNF280AY* and 234 *ZNF280BY* genes)⁵⁸. In this study, the amplification of *ZFY* genes
667 occurred in the Z zone distal to the PAR of *T2T-sheep-chrY* (Fig. 3a), and a similar structure
668 of the satellite (HSat) arrays was also discovered at the distal end of the q arm on the human
669 Y chromosome³³. The similar phenomenon for satellite expansion distal to the PAR of T2T-
670 level Y chromosome was also observed in the apes¹⁵. It is believed that the strategy of repeats
671 on the distal end of Y chromosome might be functional and beneficial to the maintenance of
672 Y chromosome in male animals. One possible hypothesis is of a potential role in preventing
673 the recombination between chromosomes X and Y and avoiding loss of male-specific genes
674 on Y chromosome during crossover of meiosis⁵⁹. The chromosomal structure, centromeric

675 location, ampliconic genes, and multiple copies of *HSFY*, *TSPY* and *ZFY* genes in *T2T-sheep-*
676 *chrY* were confirmed by those in *Ramb_v3.0-chrY*⁹. However, *Ramb_v3.0-chrY* is 0.69 Mb
677 shorter than *T2T-sheep1.0-chrY*, which is primarily attributed to the highly fragmented
678 assembly of the Z zone on *Ramb_v3.0-chrY* (Fig. 3a). Compared with other sheep
679 assemblies^{7,10,60}, *T2T-sheep1.0* with the addition of the complete Y chromosome may
680 facilitate sheep genomic studies involving rams, for example, paternal lineage analysis with
681 improved alignments.

682

683 Centromeric sequences provide evidence for chromosomal evolution in sheep. Consistent
684 with the pattern observed for the human assembly *T2T-CHM13*, the centromeric regions in
685 *T2T-sheep1.0* dominated the PURs. Contrary to the traditional view of gene-poor centromeres,
686 centromeric regions in *T2T-sheep1.0* contain many genes, albeit with no or extremely low
687 levels of expression across multiple tissues. The binding of centromeric proteins (e.g., CENP-
688 A, CENP-C, and CENP-E) inhibited transcriptional initiation⁶¹. Due to the lack of known
689 transcripts and proteins, it is unknown whether these centromeric genes are functional, but
690 their mutations and evolution are worth investigating in the future. Given that these genes are
691 still intact, it is very likely that they are under selective constraint and thus still are functional.
692 In rice, ~41% of 395 non-TE genes that were found in centromeric regions are transcribed⁶².
693 However, no centromeric genes have been reported in human *T2T-CHM13*¹³, but they can be
694 found in neo-centromeres for centromere repositioning⁶¹ or in the pericentromeric regions²⁶.
695 Additionally, we discovered four centromere repeat units and their variants, including two
696 new ones SatIII and CenY, and two known ones, SatI and SatII^{29,34}. While many previous
697 studies estimated sheep SatII sequences to be approximately 400 bp⁶³ in length, the *T2T-*
698 *sheep1.0* assembly shows that its length actually is 702 bp. Conservation of SatI sequences
699 among the Bovidae species was confirmed by the phylogenetic tree built from *p*-distance for

700 nucleotide differences (Fig. 2f), as described previously for the SatI sequence analysis in
701 Bovidae^{64,65}. The similarities of sheep centromeric repeats retained the footprints of centric
702 fusions or Robertsonian translocations on Chr01, Chr02, and Chr03, as the satellite DNA
703 sequences are believed to promote chromosomal rearrangements and NAHR⁶⁴. CenY with a
704 size of 2516 bp was uniquely present on *T2T-sheep-chrY*, as confirmed by FISH (Fig. 3b), a
705 phenomenon commonly reported in other mammals. For example, a unique centromeric
706 repeat unit (1747 bp) of the Y chromosome was discovered in gerbil⁴⁸. Also, 34-mer HORs of
707 alpha-satellites are observed in the Y chromosome of human *T2T-CHM13*, differing from the
708 centromeric alpha-satellites of 171-bp monomer in autosomes³³.

709

710 The improvement of *T2T-sheep1.0* provided more accurate chromosome sequences, by
711 correcting structural and base-level errors in the current reference genome *Ramb_v3.0*, and
712 resulted in more variants being detected than in previous studies^{4,36}. A total of 170,396 SVs
713 (with 149,158 deletions and insertions) were found in the pangenome of 15 individual sheep
714 genomes⁶⁶, while in this study, 192,265 SVs (with 189,503 deletions and insertions) were
715 discovered with *T2T-sheep1.0* as a reference in long reads from 18 individuals. The complete
716 assembly of repetitive sequences in *T2T-sheep1.0* enabled us to identify additional duplicated
717 genes and variants related to domestication and selection on wool fineness, whose copies or
718 duplications inhibited accurate assembly in the previous assemblies (Supplemental Fig. 12).
719 For example, *ABCC4* genes within a selected region associated with domestication formed a
720 duplicated gene cluster on Chr10, and the SDs inhibited accurate assembly and generated a
721 gap in the previous assemblies. Compared with that in wild goats, the copy number of
722 *ABCC4*, a gene which was involved in the immune response, decreased in domestic goats⁶⁷.
723 As gene duplication commonly occurs under selection in the sheep genome⁶⁸, a selective
724 PUR associated with fleece fiber diameter contains three FOX family genes (*FOXQ1*, *FOXF*,

725 and *FOXC*) at the end of Chr20. We also identified some more alleles for selection of genes,
726 for example, six more SNP sites of *IRF2BP2* gene associated with fleece fiber phenotype
727 (Supplementary Fig. 28), in addition to the three previously identified variations^{4,40}. The LD
728 analysis showed strong linkage of these 9 alleles of *IRF2BP2*, probably being responsible as
729 a whole for the selection of *IRF2BP2* (Supplementary Fig. 28).

730

731 Our study shows that *T2T-sheep1.0* provides a gap-free complete sheep genome, and this
732 assembly is expected to promote more comprehensive research on genome evolution, the
733 detection of SVs and SNPs, and the discovery of gene functions in sheep and related species.

734

735 **Methods**

736 **Sample collection**

737 We selected Hu sheep, a popular Chinese native breed with high fertility and unique white
738 lambskin⁶⁹, for the T2T genome assembly. Blood from a 4-month-old ram (HU3095) and its
739 parents were collected at the Qianbao Animal Husbandry Co., Ltd. (latitude 33.4761° N,
740 longitude 120.2795° E, Yancheng City, Jiangsu Province, China), using 10 ml BD
741 Vacutainer blood collection tubes (Cat. No. 368589, Becton Dickinson, NY, USA) with
742 EDTA. The blood was then stored in a -80°C freezer before the extraction of RNA and DNA
743 or formaldehyde cross-linking for sequencing. Blood from one adult ewe of Tan sheep (a
744 Chinese native sheep breed well-known for its pelt) and an adult ewe of European mouflon
745 (*Ovis musimon*) were sampled, followed by DNA extraction and PacBio sequencing. Long-
746 read sequences of the two sheep samples, together with those of 16 sheep downloaded from
747 the NCBI database (Supplementary Table 1), were included in the SV calling. All
748 experimental protocols in this study were reviewed and approved by the Institutional Animal

749 Care and Use Committee of China Agricultural University (CAU20160628-2).

750

751 **DNA extraction, long-read sequencing, and optical map generation**

752 For HU3095, high quality genomic DNA for sequencing was extracted by the cetyl-
753 trimethylammonium bromide (CTAB) method and purified with a QIAGEN® Genomic Kit
754 (Cat#13343, QIAGEN, Beijing, China). The 20-kb single-molecule real-time sequencing
755 (SMRT) bell libraries for HU3095 (i.e., the T2T assembly individual) and 15-kb libraries for
756 the two other individuals (i.e., Tan sheep and European mouflon) were prepared using the
757 SMRTbell Express Template Prep Kit 2.0 (Pacific Biosciences, CA, USA) and sequenced on
758 a PacBio Sequel II system according to the standard protocol (Pacific Biosciences, CA, USA).

759

760 Ultralong Nanopore libraries were constructed with approximately 10 µg of size-selected
761 (>200 kb) genomic DNA with the SageHLS HMW library system (Sage Science, MA, USA),
762 and then processed using a Ligation Sequencing Kit (Cat# SQK-LSK109, Oxford Nanopore
763 Technologies, Oxford, UK) following the manufacturer's instructions. DNA libraries
764 (approximately 800 ng) were sequenced on a PromethION instrument (Oxford Nanopore
765 Technologies, Oxford, UK).

766

767 Additionally, ultra-high-molecular weight (uHMW) DNA was extracted from fresh blood
768 using a modified Bionano Prep Blood DNA Isolation Protocol (Cat# 30033, Bionano
769 Genomics, San Diego, CA, USA), and labeling and staining were performed with DLE-1
770 enzyme (Bionano Genomics) according to the Bionano Prep Direct Label and Stain (DLS)
771 protocol (Cat# 30206, Bionano Genomics). Stained DNA was loaded onto Saphyr chips and
772 imaged in the Bionano Genomics Saphyr System (Bionano Genomics).

773

774 **Short-read sequencing**

775 The whole-genome sequencing libraries for short reads were prepared using an MGIEasy FS
776 DNA Prep Kit (MGI, Shenzhen, China), and 150-bp paired-end sequencing was performed
777 on the DNBSEQ-T7RS platform (MGI) for sample HU3095 and its parents. Hi-C libraries
778 were prepared from cross-linked chromatin of white blood cells according to a previous Hi-C
779 protocol⁷⁰ and sequenced on a DNBSEQ-T7RS platform (MGI).

780

781 Chromatin immunoprecipitation sequencing (ChIP-seq) was conducted to identify the
782 centromeric regions using phospho-CENP-A (Ser7) rabbit polyclonal antibody (Cat# 2187,
783 Cell Signaling Technology, Beverly, MA, USA). Approximately 10 ml of fresh blood was
784 collected from the sheep HU3095, and nucleic DNA was extracted and crosslinked in 1%
785 formaldehyde for 15 min. The crosslinking reaction was quenched with 200 mM glycine, and
786 the DNA-protein complex was sonicated using a Covaris E220 Focused-ultrasonicator
787 (Woburn, MA, USA). For ChIP-seq, chromatin was incubated with the phospho-CENP-A
788 (Ser7) antibody mentioned above for DNA purification. Libraries were constructed following
789 the instructions of the Illumina ChIP-seq Sample Prep Kit (Cat# IP-102-1001, Illumina, San
790 Diego, CA, USA) and sequenced to generate 150-bp paired-end reads on the Illumina
791 NovaSeq-6000 platform.

792

793 **RNA extraction, RNA-seq and Iso-seq**

794 We performed RNA-seq and Iso-seq of HU3095 for subsequent genome annotation. Total
795 RNA was isolated from the blood of HU3095 (Supplementary Table 1) using an RNAPrep
796 Pure Tissue Kit (Cat# 4992236, TIANGEN Biotech, Beijing, China) according to the
797 manufacturer's instructions. High-quality RNA samples (RIN>8, OD260/OD280=1.8–2.2,
798 OD260/OD230>2.0) were used to construct the RNA-seq and Iso-seq libraries. For RNA-seq,

799 RNA was first fragmented into small pieces using fragmentation reagents from the MGIEasy
800 RNA Library Prep Kit V3.1 (Cat# 1000005276, MGI). The first strand of cDNA was then
801 synthesized using random primers and reverse transcriptase, followed by second-strand
802 cDNA synthesis. Based on double-stranded cDNA, short-read RNA-seq libraries were
803 prepared using the MGIEasy RNA Library Prep Kit V3.1 (Cat# 1000005276, MGI), and
804 sequenced on the DNBSEQ-T7RS platform (MGI) to generate paired-end reads. For gene
805 annotation and tissue-specific expression analysis, 148 RNA-seq datasets from 28 tissues of
806 Hu sheep, were downloaded from the NCBI database (Supplementary Table 7).

807

808 For Iso-seq of HU3095, cDNA was synthesized using polydT primers and a SMARTer PCR
809 cDNA Synthesis Kit (Cat# 634926, TaKaRa Bio, Shiga, Japan), and double-stranded cDNA
810 was synthesized via downstream large-scale PCRs using PrimeSTAR GXL DNA Polymerase
811 (Cat# R050A, TaKaRa Bio, Shiga, Japan). Full-length cDNAs were used to construct
812 sequencing libraries with the SMRTbell Template Prep Kit 2.0 (PacBio Biosciences), and
813 sequenced on the PacBio Sequel II platform using the Sequel Binding Kit 2.0 (PacBio
814 Biosciences).

815

816 **Fluorescence in situ hybridization (FISH)**

817 FISH was performed as previously described with minor modifications⁵. The 2516-bp CenY
818 and 22-bp Sat III sequences were synthesized and labeled with Dig-dUTP or Bio-dUTP
819 (Roche Diagnostics, Basel, Switzerland) using Nick Translation Mix (Roche, Mannheim,
820 Germany). Chromosome preparations were made from fibroblast cultures derived from skin
821 biopsies. Slides with cell suspensions at metaphase were hybridized with a hybridization mix
822 containing probes, and the hybridization was detected with signals of Alexa Fluor 488
823 streptavidin (Thermo Fisher Scientific, Waltham, MA, USA) for biotin-labeled probes and

824 rhodamine-conjugated anti-digoxigenin (Roche Diagnostics, Basel, Switzerland) for
825 digoxigenin-labeled probes. Chromosomes were counterstained with DAPI (Vector
826 Laboratories, Odessa, Florida, USA). FISH images were observed using an Olympus BX63
827 fluorescence microscope equipped with an Olympus DP80 CCD camera (Olympus, Tokyo,
828 Japan).

829

830 **Long-read and short-read sequence data for SV and SNP calling**

831 To assess the performance of *T2T-sheep1.0* as a reference genome for mapping long reads
832 and calling SVs, we collected PacBio HiFi and PacBio CLR data from 16 sheep individuals
833 from the NCBI database and generated long reads from one Tan sheep and one European
834 mouflon (Supplementary Table 11). In total, we obtained long-read datasets of 3 wild sheep
835 (Asiatic mouflon, *O. orientalis*: argali, *O. ammon*: and European mouflon, *O. musimon*) and
836 15 domestic sheep individuals representing 15 breeds worldwide.

837

838 Additionally, whole-genome short-read sequences of 810 samples representing 72 wild
839 (including 32 Asiatic mouflon, 6 bighorn sheep, 6 thinhorn sheep, 9 urial, 8 argali, 8 snow
840 sheep, and 3 European mouflon) and 738 domestic sheep from 158 populations were
841 retrieved from public databases. The short-read sequences showed an average sequencing
842 coverage of 16.1× and were included in the variant calling for population genomics analyses,
843 including population structure, phylogenetic tree, and selection signature detection
844 (Supplementary Table 15).

845

846 **Initial assembly based on HiFi reads**

847 PacBio HiFi reads were used to construct the initial assembly of autosomes and the X
848 chromosome after removing low-quality reads and adapters. HiFi reads were generated using

849 circular consensus sequencing (CCS) analysis in SMRT Link (v8.0)
850 (<https://www.pacb.com/support/software-downloads/>) with the following parameters: “--min-
851 passes 1 --min-length 100 --min-rq=0.99”. We first used HiFi reads to create the initial
852 assembly via Hifiasm²⁰ software (v0.16.1) with default parameters. Then, the initial assembly
853 was screened against the NCBI nonredundant nucleotide (Nt) database to remove
854 mitochondrial sequences and bacterial contaminants using the BLASTN⁷¹ tool (v2.10.0).

855

856 **Bionano scaffolding**

857 The Bionano data analysis, including data filtering, *de novo* assembly and scaffolding, was
858 performed using the Bionano Solve software suite (v3.7.1, <https://bionano.com/software->
859 [downloads/](https://bionano.com/software-downloads/)). In brief, Bionano raw data were quality controlled with a molecular length of
860 <150 kb, a signal-to-noise ratio (SNR) of <2.75 and a label intensity of >0.8. *De novo*
861 assembly of clean Bionano data was performed to generate consensus maps using the
862 BioNano Solve software suite (v3.7.1). Hybrid scaffolding of the contigs by Hifiasm and
863 Bionano optical maps was used to obtain superscaffolds. To construct the hybrid scaffold
864 maps, the assembled contigs were converted to *in silico* cmap format and then aligned to the
865 Bionano consensus maps using the proprietary alignment tool RefAligner of Bionano
866 (<https://bionano.com/software-downloads/>). Finally, scaffold sequences were produced
867 according to the above alignments before subsequent Hi-C anchoring.

868

869 **Pseudochromosome construction**

870 Quality control was conducted on the Hi-C raw reads by HiC-Pro⁷² (v2.8.1). Clean Hi-C
871 reads were aligned to the scaffolds produced by Bionano using Bowtie2⁷³ (v2.3.2) with
872 default parameters. Valid read pairs were used to place the scaffolds onto
873 pseudochromosomes based on their interactions by using LACHESIS⁷⁴ with default

874 parameters. Potential assembly errors were manually checked and adjusted using Juicebox⁷⁵
875 (v2.18.0). Finally, all the scaffolds were anchored to 27 pseudochromosomes (26 autosomes
876 and the X chromosome), which was consistent with the karyotype results in previous sheep
877 studies^{76,77}. We conducted an independent *de novo* T2T assembly of the Y chromosome,
878 which is described in detail below.

879

880 **Gap verification and filling**

881 The gaps were verified by aligning HiFi and ONT ultralong reads to pseudochromosomes
882 and manual review of the sequencing coverage in IGV (v2.13)⁷⁸. Some gaps were produced
883 by splitting the conflict sites between the Bionano consensus maps and the initial assembly
884 and were examined manually for potential errors. The gaps were removed by replacement
885 with the original assembled contigs in the initial assembly if the read coverage (≥ 5) on the
886 original contigs was continuous.

887

888 The ≥ 100 -kb ultralong ONT reads within the gaps were searched out based on alignment
889 against the genome assembly via Minimap2⁷⁹ (v2.23) with the parameter “-x map-ont”. Short
890 gaps were filled by extending the overlapping ONT long reads, while the other gaps were
891 further filled by using local assembly based on ONT reads. In brief, the reads that uniquely
892 aligned with the ends of two neighboring contigs connecting the beginning site and ending
893 site of a gap (identity $\geq 95\%$, coverage $\geq 90\%$, and QV ≥ 20) were used as anchors, and based
894 on these anchors, the long reads that overlapped themselves (identity $< 95\%$ and coverage $<$
895 90%) were searched iteratively. Local assembly was then performed based on all the gap-
896 related ONT reads, including the above aligned reads and the reads unmapped to the genome
897 sequences. The k -mers ($k = 23$) were generated based on the MGI short reads using
898 Jellyfish⁸⁰ (v2.3.0), and low-frequency k -mers of less than the average depth were selected as

899 rare k -mers for each ONT read. A string assembly graph was built based on the overlapping
900 ONT reads and their rare k -mers using the NextGraph module in NextDenovo⁸¹ (v2.5.2). The
901 final graph was reached when the longest accumulated length of rare k -mers was achieved,
902 and a contig was obtained accordingly to connect the beginning site and ending site of a gap.
903 The gap-filled pseudochromosomes were double checked to ensure the correct gap-free
904 genome assembly with possible manual adjustment, based on the alignments and coverage of
905 all the ONT reads in IGV (v2.13).

906

907 **Initial assembly of the Y chromosome**

908 The haplotype-resolved assembly strategy was adopted to assemble the Y chromosome
909 following a modified version of Koren's method¹². Using MGI whole-genome shotgun
910 sequencing data, 21-mer libraries unique to HU-3095 and its parents were constructed using
911 Jellyfish⁸⁰ (v2.3.0). Paternal 21-mers in HU3095 were identified based on their unique
912 presence in the father but not in the mother. Paternal ultralong ONT reads (1.73 Gb, ~64.13×
913 coverage) were chosen based on more paternal 21-mers than maternal ones. The paternal
914 ONT reads that were uniquely aligned to the autosomes by Minimap2 (v2.23) were removed.
915 The remaining ONT reads potentially from the paternal X and Y chromosomes were used to
916 construct an assembly graph of the Y chromosome using the NextGraph module in
917 NextDenovo⁸¹ (v2.5.2). The assembled graph was manually adjusted for gap filling,
918 scaffolding, and correction, with assistance from the Y contigs using the trio-binning option
919 of Hifiasm (v0.16.1) based on HiFi reads and 31-mers of the parents of HU3095. To validate
920 the completeness and reliability of the above initial Y chromosome assembly, the Y
921 chromosome (CP128831.1) from *Ramb_v3.0* was included in the collinearity analysis using
922 MUMmer⁸² (v4.0.0), and the length of the Y chromosome assembled here was double
923 checked based on the estimated karyotype length in previous studies^{76,77}. Alignment of

924 Bionano consensus maps against the Y chromosome was performed to examine possible
925 assembly errors.

926

927 **Telomere filling**

928 HiFi reads containing >10 copies of the telomere-specific repeat sequence
929 “AACCCCT/AGGGTT” were retrieved as type I using BLASTN (v2.10.0). The HiFi reads
930 were aligned to the gap-free genome assembly using Minimap2 (v2.26), and those without
931 any hits against the genome were extracted as type II using SAMtools (v1.18)⁸³. The type III
932 HiFi reads could be aligned to a 1-Mb interval at the chromosomal ends. The above three
933 types of HiFi reads (types I, II, and III) were used to construct the primary assembly of
934 telomeric regions using Hifiasm (v0.16.1) with default parameters. The contigs were
935 corrected and scaffolded together with the sequences of 1-Mb chromosomal ends using
936 RagTag⁸⁴ (v2.1.0), and the telomeres were placed at the two ends of each chromosome
937 (Supplementary Methods).

938

939 **Genome polishing**

940 Genome polishing was performed using a customized pipeline
941 (<https://github.com/lly1214/CAU-T2T-Sheep>), which included five steps of polishing
942 (Supplementary Methods). HiFi reads were first mapped to the gap-free genome assembly
943 using Minimap2 (v2.26)⁷⁹. The low-quality regions (LQRs) were determined based on the
944 three cutoffs of a mapping quality (MAPQ) score ≤ 1 , clipped reads identified at their two
945 ends, and <3 HiFi-aligned reads, when compared to the high-quality regions (HQRs). These
946 LQRs were polished in the first round with HiFi reads using NextPolish2 (v0.2.0)⁸⁵ and two
947 additional independent rounds with ultralong ONT and MGI reads using NextPolish
948 (v1.4.1)⁸⁶. LQRs and HQRs were merged into one whole genome before the last round of

949 NextPolish2 (v0.2.0) polishing based on HiFi long reads. Finally, a gap-free complete
950 genome assembly (*T2T-sheep1.0*) of all chromosomes, including autosomes and
951 chromosomes X and Y, was constructed for sheep, with the average QV (51.53) higher than
952 that (36.30) for the unpolished genome sequences.

953

954 **Haplotype genome assembly**

955 The trio strategy was used to assemble the autosomes of the haplotype-resolved genomes
956 (*T2T-sheep1.0P* and *T2T-sheep1.0M*), based on HiFi reads and parents' short reads, by using
957 Hifiasm (v0.16.1 r375) with the default parameters. The scaffolding, gap filling and polishing
958 for *T2T-sheep1.0P* and *T2T-sheep1.0M* were performed according to the similar method for
959 *T2T-sheep1.0*. ONT and HiFi reads were trio-binned and determined for paternal and
960 maternal origins based on the 21-mers from parents' short reads and the paternal or maternal
961 dominance. The binned ONT and HiFi reads were used for filling gaps and polishing. The
962 haplotype genomes were polished based on binned ONT and HiFi reads for two rounds by
963 using NextPolish2 (v0.2.0), and the NGS data was not involved to avoid the introduction of
964 the other haplotype sequences.

965

966 **Assessment and validation of genome assemblies**

967 The *T2T-sheep1.0* genome assembly was validated by multiple methods, including the
968 coverage of reads, collinearity and QV. Depth coverage was calculated in 200-kb windows
969 using Bamdst (<https://github.com/shiquan/bamdst>) based on the bam files of the HiFi and
970 ONT long reads by Minimap2 (v2.26) and short reads by BWA⁸⁷ (v0.7.17). The genome
971 coverage was plotted using the karyoplotR⁸⁸ package (v1.8.4). The reliability of the *T2T-*
972 *sheep1.0* assembly was compared with that of the most updated sheep genome reference,
973 *ARS-UI_Ramb_v3.0* (GCF_016772045.2), based on collinearity analysis, which was

974 performed based on alignment using Minimap2 (v2.26) with the parameter “-cx asm10”. The
975 genome synteny between the two assemblies was visualized using paf2doplot
976 (<https://github.com/moold/paf2dotplot>). A 21-mer hash table was created from the MGI short
977 reads using the meryl command of Merqury⁸⁹ (v1.3.1). The quality score (QV), switch error,
978 and error k -mer frequency of *T2T-sheep1.0* and the haplotypes were calculated accordingly.
979 In addition, we downloaded 26 published chromosome-level ovine genomes (Supplementary
980 Table 5), and compared them with *T2T-sheep1.0* for gap lengths, gap counts, total bases, total
981 bases with unplaced contigs excluded, and total bases with the mitochondrial genomes and
982 unknown bases of gaps excluded.

983

984 The completeness of the *T2T-sheep1.0* assembly was assessed using BUSCO⁹⁰ (v4.0.5) based
985 on the mammalia_odb10 database. To evaluate the accuracy of *T2T-sheep1.0*, all the MGI
986 paired-end reads were mapped to the assembly using BWA (v0.7.17). We computed the
987 mapping rate and base accuracy using SAMtools⁸³ (v1.18) and BCFtools⁸³ (v1.15.1).

988

989 **Repeat annotation**

990 Tandem repeats were *de novo* predicted using GMATA⁹¹ (v2.2) and Tandem Repeats
991 Finder⁹² (TRF, v4.09.1). Transposable elements were *de novo* predicted using MITE-
992 Hunter⁹³ (v1.0) and RepeatModeler2⁹⁴ (v2.0.4). The *de novo* repeat libraries were merged
993 with the Repbase⁹⁵ database of repetitive DNA elements. The merged repeat library was then
994 used to perform repeat annotation using RepeatMasker (v4.1.4)⁹⁶ with default parameters.
995 The repeats were masked in the *T2T-sheep1.0* assembly using RepeatMasker, and used for
996 subsequent SDs and coding-gene annotation.

997

998 **Segmental duplication (SD) identification**

999 First, the SDs were detected using BISER⁹⁷ (v1.4) with the parameters: “--max-error 20 --
1000 max-edit-error 10 --kmer-size 31”. Afterward, the SDs were filtered following a previously
1001 described method for human *T2T-CHM13*⁹⁸. In brief, filtering was based on the following
1002 criteria: >90% gap-compressed identity, ≤50% gapped sequence in the alignment, >1 kb of
1003 the aligned sequence, and ≤70% satellite sequence as assessed by RepeatMasker. Finally, SDs
1004 were plotted using Circos⁹⁹ (v0.69). We counted the number of SDs that overlapped with
1005 PURs and genes using local scripts.

1006

1007 **Protein-coding gene annotation**

1008 A combination of *de novo* prediction, homolog-based determination, and transcriptome-based
1009 identification was used to annotate genes in *T2T-sheep1.0*. For the transcriptome-based
1010 approach, RNA-seq data for 28 tissues of Hu sheep (Supplementary Table 7) downloaded
1011 from the NCBI were used to assemble the transcripts. In summary, after filtering and quality
1012 control, the clean reads were aligned to *T2T-sheep1.0* with STAR¹⁰⁰ (v2.7.9a), and the
1013 transcripts were assembled with Stringtie¹⁰¹ (v1.3.4d). Full-length transcripts from Iso-seq
1014 were aligned to *T2T-sheep1.0* using Minimap2 (v2.16) with the parameter “-x splice -uf”, and
1015 nonredundant transcripts were obtained using the “collapse_isoforms_by_sam.py” command
1016 of IsoSeq3 (v3.8.2, <https://github.com/PacificBiosciences/IsoSeq>). Nonredundant transcripts
1017 from RNA-seq and Iso-seq were used to predict gene models via PASA software (v2.5.2)¹⁰².
1018 For the homolog-based approach, homologous proteins from sheep and other mammalian
1019 species (e.g., sheep, *O. aries*; argali, *O. ammon*; goat, *Capra hircus*; house mouse, *Mus*
1020 *musculus*; cattle, *Bos taurus*; and human, *Homo sapiens*) were downloaded from the NCBI
1021 (Supplementary Table 22), and genes were identified after alignment to the *T2T-sheep1.0*
1022 using GeMoMa software¹⁰³. For *de novo* prediction, genes were predicted using the software
1023 AUGUSTUS (v3.3.1)¹⁰⁴ based on the above complete genes. All the above gene models were

1024 integrated using EvidenceModeler (v1.1.1)¹⁰⁵ with default parameters. The genes containing
1025 TEs were filtered out using TransposonPSI software (v1.0.0,
1026 <https://github.com/NBISweden/TransposonPSI>). We collected 369 known genes from
1027 previous publications and the homologous genes annotated in *Ramb_v3.0*, and manually
1028 adjusted gene structures in our gene annotation files in IGV-GSaman
1029 (<https://gitee.com/CJchen/IGV-sRNA>), based on the transcript evidence (RNA-seq and Iso-
1030 seq).

1031

1032 **Methylation by PacBio and ONT long reads**

1033 Methylated cytosine was examined based on the ONT and HiFi raw data. The HiFi data in
1034 BAM format was aligned to the *T2T-sheep1.0* assembly using pbmm2 (v1.13.0)
1035 (<https://github.com/PacificBiosciences/pbmm2>). Subsequently, 5mC methylation probability
1036 was generated for the sites using the “aligned_bam_to_cpg_scores” command of pb-CpG-
1037 tools (v2.3.1) (<https://github.com/PacificBiosciences/pb-CpG-tools>). For methylation analysis
1038 based on ONT data, Fast5 format files were converted to fastq files using GuPPy¹⁰⁶ (v6.1.2),
1039 and methylated sites were called using Nanopolish¹⁰⁷ (v0.14.0). We filtered out the
1040 methylation sites with a frequency < 50% and calculated the frequency of methylated bases
1041 in 10-kb windows using BEDTools¹⁰⁸ (v2.31.0). Their distribution was plotted with the R
1042 package karyoplotR (v1.8.4).

1043

1044 **Identification and validation of centromeric regions**

1045 Centromeric regions were first identified by ChIP-seq based on the enrichment of histone
1046 binding. The raw ChIP-seq reads were trimmed using fastp (v0.23.1)¹⁰⁹ with the parameters
1047 “-f 5 -F 5 -t 5 -T 5”. Clean ChIP-seq reads were aligned to *T2T-sheep1.0* using Bowtie2
1048 (v2.4.2) with the parameters “–very-sensitive –no-mixed –no-discordant -k 10”. The ChIP-

1049 seq peaks corresponding to the centromeric regions were called using MACS3 (v3.0.0b2)¹¹⁰,
1050 and the average read depth for ChIP enrichment in 10-kb sliding windows was calculated
1051 using BEDTools (v2.30.0) and plotted with the karyoploteR package (v1.8.4).

1052

1053 Centromeric regions were further validated based on sequence complexity and identity across
1054 the whole genome of *T2T-sheep1.0*. Sequence linguistic complexity and Shannon entropy
1055 measures were calculated across the whole chromosomes with NeSSie¹¹¹ in a window size of
1056 1 kb and a step size of 8 bp, where lower values indicate more repetitive sequences. The
1057 locations of centromeres with enriched repeats are shown by low entropy values⁴⁸. Sequence
1058 similarity within and around the centromeric regions was calculated in a window size of 5 kb,
1059 and was used to construct heatmaps in StainedGlass¹¹² (v0.5).

1060

1061 **Repeat identification within centromeres**

1062 The centromeric regions were estimated based on the above ChIP-seq peaks and enriched
1063 alignment of known centromere-specific satellite DNA sequences (KM272303.1). The
1064 centromeric sequences on autosomes and the X chromosome were obtained using BEDTools
1065 (v2.30.0). Based on the methylation enrichment and the nature of the metacentric
1066 centromeres on the Y chromosome, we retrieved a region of ~5 Mb in the middle of the Y
1067 chromosome as the candidate centromeric region. We pooled all the sequences of the
1068 candidate centromeric regions and identified novel centromere-specific satellite repeat
1069 sequences using Satellite Repeat Finder (SRF)¹¹³. These satellites were classified into four
1070 types according to four minimal repeat units (SatI, 816 bp; SatII, 702 bp; SatIII, 22 bp; and
1071 CenY, 2516 bp) based on sequence identity (Supplementary Methods). The abundance of
1072 satellite repeats in the centromeric regions was assessed using BLASTN (v2.10.0).

1073

1074 **SV identification based on long-read sequences**

1075 To assess the performance of the reference genome for mapping long reads and calling
1076 variants, three commonly used SV callers, i.e., Sniffles (v2.0.6,
1077 <https://github.com/fritzsedlazeck/Sniffles>), cuteSV¹¹⁴ (v2.0.1) and pbsv (v2.9.0,
1078 <https://github.com/PacificBiosciences/pbsv>), were used to detect SVs. The PacBio HiFi and
1079 CLR long-read data of 18 wild and domestic sheep (Supplementary Table 11) were aligned to
1080 *T2T-sheep1.0* and *Ramb_v3.0*, respectively, using Minimap2 (v2.26) with the parameters “-x
1081 map-pb” for PacBio CLR reads and “-x map-hifi” for PacBio HiFi reads. The sequence
1082 depths of the 18 individuals were calculated using the “stat” module of SAMtools (v1.18)⁸³.
1083 The means and standard deviations of the sequence depths across the 18 individuals were
1084 summarized for satellites, genes, and syntenic and nonsyntenic regions, and differences in
1085 these indices were assessed when the sequences were mapped against *T2T-sheep1.0* and
1086 *Ramb_v3.0* using Mosdepth¹¹⁵ (v0.3.4) and 500-bp windows. SVs were called using pbsv and
1087 Sniffles with default parameters and using cuteSV with the parameters “--
1088 max_cluster_bias_INS 1000 --diff_ratio_merging_INS 0.9 --max_cluster_bias_DEL 1000 --
1089 diff_ratio_merging_DEL 0.5 --genotype”. SVs passing the quality filters suggested by pbsv
1090 (flag PASS), cuteSV (flag PASS) and Sniffles (flag PRECISE) were retained for merging that
1091 was performed by using SURVIVOR (v1.0.7)¹¹⁶ with the parameters “1000 2 1 1 0 50”. Only
1092 SVs supported by more than two software tools were kept, and further merged across all 18
1093 sheep samples using SURVIVOR (v1.0.7) with the parameters “1000 1 1 1 0 50”.
1094

1095 **SNP and SV calling based on short-read sequences**

1096 To assess the performance of short-read alignment and variant calling using *T2T-sheep1.0* as
1097 the reference genome, we collected whole-genome sequencing data from 810 wild and
1098 domestic sheep across the world from the NCBI database (Supplementary Table 15). Low-

1099 quality bases and reads were removed using Trimmomatic¹¹⁷ (v0.39), and the high-quality
1100 paired-end reads were aligned to *T2T-sheep1.0* using BWA mem (v0.7.17-r1188) with
1101 default parameters. The mapped reads were then converted into bam files and sorted using
1102 SAMtools⁸³ (v1.16). The sequence depth and mapping statistics were summarized using the
1103 “stats” module of SAMtools.

1104

1105 SNPs for individuals were called from the bam files using the module “HaplotypeCaller” and
1106 were merged using the modules “GenomicsDBImport” and “GenotypeGVCFs” in GATK¹¹⁸
1107 (v4.3). To reduce potential false-positive calls, “VariantFiltration” of GATK was applied to
1108 filter SNPs with the following parameters: “QUAL< 30.0 || QD< 2.0 || MQ< 40.0 || FS> 60.0
1109 || SOR> 3.0 || MQRankSum< -12.5 || ReadPosRankSum< -8.0”. We counted homozygous and
1110 heterozygous SNPs for each wild species or sheep population using local scripts. All
1111 identified SNPs were annotated in specific genes of *T2T-sheep1.0* using SnpEff¹¹⁹ (v5.1d).

1112

1113 Only samples (534 sheep) with a sequencing depth $>15\times$ of short reads were selected to call
1114 SVs from the bam files using three tools, namely, Delly¹²⁰ (v0.8.7), Manta¹²¹ (v1.6.0) and
1115 Smoove (v0.2.8, <https://github.com/brentp/smoove>) with default parameters. SVs called
1116 based on short reads were filtered according to the criteria of 50 bp \leq SVs \leq 1 Mb and
1117 support by more than two software tools. SVs were merged across the 497 domestic sheep
1118 and 37 wild sheep by using SURVIVOR (v1.0.7) for a 1-kb merging bin and a minimum
1119 length of 50 bp. For populational analysis, SNPs and SVs with a MAF > 0.05 and a
1120 proportion of missing genotypes $< 10\%$ were retrieved using VCFtools⁸³ (v0.1.16).

1121

1122 **Genetic diversity and population structure**

1123 High-quality SNPs were used to assess nucleotide diversity (π). The π values were calculated

1124 in 1-Mb windows using VCFtools⁸³ (v0.1.16). We implemented linkage disequilibrium (LD)
1125 pruning to remove SNPs in LD using PLINK¹²² (v2.00a3.7) with the parameters: “--indep-
1126 pairwise 50 5 0.2”, and independent SNPs were used for population structure analysis.
1127 Principal component analysis (PCA) was performed among the 810 wild and domestic sheep
1128 individuals with the “smartpca” command of the EIGENSOFT¹²³ package (v8.0.0) and
1129 default parameters. Population structure was further validated using ADMIXTURE¹²⁴
1130 (v1.3.0). The independent SNPs were used to generate a genetic distance matrix with
1131 VCF2Dis (v1.47, <https://github.com/BGI-shenzhen/VCF2Dis>) software, and a neighbor-
1132 joining (NJ) tree was built using TreeBeST¹²⁵ (v1.9.2) and visualized by iTOL¹²⁶ (v6.8.1).
1133 The Neighbor-Net graph based on pairwise F_{ST} genetic distances by VCFtools (v0.1.16) was
1134 created by using SplitsTree (v6.3.27) software¹²⁷.
1135

1136 **Selective sweeps associated with domestication and selection for wool fineness**
1137 As described previously^{4,36}, we identified selective sweeps associated with domestication and
1138 selection for the wool fineness trait through two methods applied to SNPs: the cross-
1139 population composite likelihood ratio (XP-CLR) and pairwise π ratios. For domestication, we
1140 used *T2T-sheep1.0* as a reference to reanalyze the genome sequences of wild sheep of 16
1141 Asiatic mouflons compared with five landrace populations of different geographic origins,
1142 including five Dutch Drenthe Heath, ten East-Asian Hu, ten Central-Asian Altay, one African
1143 Djallonké, and one Middle Eastern Karakul sheep. These wild and domestic sheep were
1144 investigated previously with the sheep assembly *Oar_v4.0* (GCA_000298735.2) as a
1145 reference³⁶. Selective sweeps for fleece fineness were scanned with *T2T-sheep1.0* as the
1146 reference for pairwise comparisons among hairy, coarse-wool, medium-wool, and fine-wool
1147 individuals of wild and domestic sheep, all of which were previously investigated with
1148 *Ramb_v1.0* as the reference⁴. XP-CLR values were calculated in 10-kb nonoverlapping

1149 windows for the selection of fleece fineness and in 50-kb windows with a step of 25 kb for
1150 domestication using XP-CLR¹²⁸ (v1.1.2) software with the following parameters: “-L 0.95 -P
1151 --size 50000 --step 25000”.

1152

1153 Additionally, F_{ST} values were also calculated based on SVs in the above populations to detect
1154 the selective sweeps associated with domestication and selection for wool fineness, using
1155 VCFtools (v0.1.16). We selected the SVs with the top 1% of F_{ST} values as the candidate
1156 selective sweeps, and plotted them using the R package ggplot2¹²⁹ (v2.1.1). Candidate
1157 regions with the top 1% of XP-CLR and F_{ST} values were considered to have signals of
1158 selective sweeps. The SNPs and SVs located in these top 1% regions of *Oar_v4.0* and
1159 *Ramb_v.1.0* were converted to those in *T2T-goat1.0* using LiftOver
1160 (https://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/liftOver).

1161

1162 Acknowledgements

1163 We thank Xueyan Feng (China Agricultural University) for the help on data analysis. This
1164 work was supported by grants from the National Key Research and Development Program-
1165 Key Projects (2021YFD1200900, 2022YFF1003402, 2021YFF1000703, 2022YFE0113300,
1166 2021YFD1300904), the National Key Research and Development Young Scientists Project
1167 (2022YFD1302000), the National Natural Science Foundation of China (nos. 32320103006,
1168 32272845, 31825024, 31661143014, 31972527, 32061133010 and U21A20246), the Project
1169 of Northern Agriculture and Livestock Husbandry Technical Innovation Center, Chinese
1170 Academy of Agricultural Sciences (BFGJ2022002), and the Strategic Priority Research
1171 Program of Chinese Academy of Sciences (No. XDA24030205), and the Second Tibetan
1172 Plateau Scientific Expedition and Research Program (STEP; no. 2019QZKK0501).

1173 Data Availability

1174 The genome assemblies (*T2T-sheep1.0* and its maternal and parental haploid assemblies *T2T-*
1175 *sheep1.0P* and *T2T-sheep1.0M*) and raw sequencing data generated in this study, including
1176 PacBio HiFi data, ultralong ONT data, MGI data, Iso-seq data and ChIP-seq data, can be
1177 achieved from the Genome Sequence Archive in National Genomics Data Center
1178 (<https://ngdc.cncb.ac.cn/>) under the BioProject accession number PRJCA024127 and NCBI
1179 under the BioProject accession number PRJNA1033229.

1180

1181 **Code availability**

1182 Custom scripts and codes used in this study are available at GitHub
1183 (<https://github.com/lly1214/CAU-T2T-Sheep>). Software and parameters used are stated in
1184 the Supplementary Methods with more details.

1185

1186 **Author contributions**

1187 M.-H.L. conceived the project, and M.-H.L. and S.-G.J. supervised the study. L.-Y.L. and
1188 H.W. performed genome assembly and data analysis. L.-M.Z. participated in data analysis
1189 and manuscript drafting. W.-M.W. provided part help and financial support for the study. Y.-
1190 H.Z. was involved in data analysis. J.-H.H. was involved in interpretation and plotting of the
1191 results. L.-Y.L. H.-T.W. and Q.-Y.L. performed the blood collection for HU3095 and its
1192 parents. For PacBio sequencing to call SVs, H.-H.E. and L.-Q.Z. collected the blood samples
1193 of Tan sheep, and L.-Y.L. and D.-X.M. collected the blood samples of European mouflon. S.-
1194 G.J., L.-Y.L., and M.-H.L. wrote the manuscript.

1195

1196 **References**

1197 1. Chessa, B. et al. Revealing the history of sheep domestication using retrovirus

1198 integrations. *Science* **324**, 532-536 (2009).

1199 2. Naval-Sanchez, M. et al. Sheep genome functional annotation reveals proximal
1200 regulatory elements contributed to the evolution of modern breeds. *Nat. Commun.* **9**,
1201 859 (2018).

1202 3. Alberto, F.J. et al. Convergent genomic signatures of domestication in sheep and goats.
1203 *Nat. Commun.* **9**, 813 (2018).

1204 4. Lv, F.H. et al. Whole-genome resequencing of worldwide wild and domestic sheep
1205 elucidates genetic diversity, introgression, and agronomically important loci. *Mol.*
1206 *Biol. Evol.* **39**, msab353 (2022).

1207 5. Li, X. et al. Genomic analyses of wild argali, domestic sheep, and their hybrids
1208 provide insights into chromosome evolution, phenotypic variation, and germplasm
1209 innovation. *Genome Res.* **32**, 1669-1684 (2022).

1210 6. Jiang, Y. et al. The sheep genome illuminates biology of the rumen and lipid
1211 metabolism. *Science* **344**, 1168-1173 (2014).

1212 7. Davenport, K. et al. An improved ovine reference genome assembly to facilitate in-
1213 depth functional annotation of the sheep genome. *GigaScience* **11**, 1-9 (2022).

1214 8. Cheng, H. et al. Long divergent haplotypes introgressed from wild sheep are
1215 associated with distinct morphological and adaptive characteristics in domestic sheep.
1216 *PLoS Genet.* **19**, e1010615 (2023).

1217 9. Smith, T. et al. The first complete T2T assemblies of cattle and sheep Y-chromosomes
1218 uncover remarkable divergence in structure and gene content. *Res. Sq.*, doi:
1219 10.21203/rs.3.rs-4033388/v1 (2024).

1220 10. Li, R. et al. A Hu sheep genome with the first ovine Y chromosome reveal
1221 introgression history after sheep domestication. *Sci. China Life Sci.* **64**, 1116-1130
1222 (2021).

1223 11. Tomaszkiewicz, M., Medvedev, P. & Makova, K.D. Y and W chromosome assemblies:
1224 approaches and discoveries. *Trends Genet.* **33**, 266-282 (2017).

1225 12. Koren, S. et al. *De novo* assembly of haplotype-resolved genomes with trio binning.
1226 *Nat. Biotechnol.* **36**, 1174-1182 (2018).

1227 13. Nurk, S. et al. The complete sequence of a human genome. *Science* **376**, 44-53 (2022).

1228 14. Yang, C. et al. The complete and fully-phased diploid genome of a male Han Chinese.
1229 *Cell Res.* **33**, 745–761 (2023).

1230 15. Makova, K.D. et al. The complete sequence and comparative analysis of ape sex
1231 chromosomes. *Nature* **630**, 401-411 (2024).

1232 16. Chen, J. et al. A complete telomere-to-telomere assembly of the maize genome. *Nat.*
1233 *Genet.* **55**, 1221-1231 (2023).

1234 17. Hou, X., Wang, D., Cheng, Z., Wang, Y. & Jiao, Y. A near-complete assembly of an
1235 *Arabidopsis thaliana* genome. *Mol. Plant* **15**, 1247-1250 (2022).

1236 18. Wang, L. et al. A telomere-to-telomere gap-free assembly of soybean genome. *Mol.*
1237 *Plant* **16**, 1711-1714 (2023).

1238 19. Li, K. et al. Gapless indica rice genome reveals synergistic contributions of active
1239 transposable elements and segmental duplications to rice genome evolution. *Mol.*
1240 *Plant* **14**, 1745-1756 (2021).

1241 20. Cheng, H. et al. Haplotype-resolved assembly of diploid genomes without parental
1242 data. *Nat. Biotechnol.* **40**, 1332-1335 (2022).

1243 21. Emms, D.M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for
1244 comparative genomics. *Genome Biol.* **20**, 238 (2019).

1245 22. Logsdon, G.A. et al. The structure, function and evolution of a complete human
1246 chromosome 8. *Nature* **593**, 101-107 (2021).

1247 23. Gershman, A. et al. Epigenetic patterns in a complete human genome. *Science* **376**,

1248 eabj5089 (2022).

1249 24. Ichikawa, K. et al. Centromere evolution and CpG methylation during vertebrate
1250 speciation. *Nat. Commun.* **8**, 1833 (2017).

1251 25. McKinley, K.L. & Cheeseman, I.M. The molecular basis for centromere identity and
1252 function. *Nat. Rev. Mol. Cell Biol.* **17**, 16-29 (2016).

1253 26. Altemose, N. et al. Complete genomic and epigenetic maps of human centromeres.
1254 *Science* **376**, eabl4178 (2022).

1255 27. Sacristan, C. et al. Vertebrate centromeres in mitosis are functionally bipartite
1256 structures stabilized by cohesin. *Cell* **187**, 3006-3023 (2024).

1257 28. Nieddu, M. et al. Evolution of satellite DNA sequences in two tribes of Bovidae: A
1258 cautionary tale. *Genet. Mol. Biol.* **38**, 513-518 (2015).

1259 29. Burkin, D.J., Broad, T.E. & Jones, C. The chromosomal distribution and organization
1260 of sheep satellite I and II centromeric DNA using characterized sheep-hamster
1261 somatic cell hybrids. *Chromosome Res.* **4**, 49-55 (1996).

1262 30. Shepelev, V.A., Alexandrov, A.A., Yurov, Y.B. & Alexandrov, I.A. The evolutionary
1263 origin of man can be traced in the layers of defunct ancestral alpha satellites flanking
1264 the active centromeres of human chromosomes. *PLoS Genet.* **5**, e1000641 (2009).

1265 31. Wu, H. et al. Telomere-to-telomere genome assembly of a male goat reveals novel
1266 variants associated with cashmere traits. *bioRxiv*, 2024.03.03.582909 (2024).

1267 32. Yin, Y. et al. Molecular mechanisms and topological consequences of drastic
1268 chromosomal rearrangements of muntjac deer. *Nat. Commun.* **12**, 6858 (2021).

1269 33. Rhee, A. et al. The complete sequence of a human Y chromosome. *Nature* **621**, 344-
1270 360 (2023).

1271 34. D'aiuto, L. et al. Physical relationship between satellite I and II DNA in centromeric
1272 regions of sheep chromosomes. *Chromosome Res.* **5**, 375-381 (1997).

1273 35. Hu, Z.-L., Park, C.A. & Reecy, J.M. Bringing the Animal QTLdb and CorrDB into
1274 the future: Meeting new challenges and providing updated services. *Nucleic Acids Res.*
1275 **50**, D956-D961 (2022).

1276 36. Li, X. et al. Whole-genome resequencing of wild and domestic sheep identifies genes
1277 associated with morphological and agronomic traits. *Nat. Commun.* **11**, 2815 (2020).

1278 37. Rypdal, K.B. et al. ADAMTSL3 knock-out mice develop cardiac dysfunction and
1279 dilatation with increased TGF β signalling after pressure overload. *Communications
1280 Biology* **5**, 1392 (2022).

1281 38. Zhang, Z. et al. Haploinsufficiency for the murine orthologue of Chlamydomonas
1282 PF20 disrupts spermatogenesis. *Proc. Natl Acad. Sci. USA* **101**, 12946-12951 (2004).

1283 39. Potter, C.S. et al. Evidence that the satin hair mutant gene *Foxq1* is among multiple
1284 and functionally diverse regulatory targets for *Hoxc13* during hair follicle
1285 differentiation. *J. Biol. Chem.* **281**, 29245-29255 (2006).

1286 40. Demars, J. et al. Genome-wide identification of the mutation underlying fleece
1287 variation and discriminating ancestral hairy species from modern woolly sheep. *Mol.
1288 Biol. Evol.* **34**, 1722-1729 (2017).

1289 41. Liu, Y. et al. Hedgehog signaling reprograms hair follicle niche fibroblasts to a hyper-
1290 activated state. *Dev. Cell* **57**, 1758-1775 (2022).

1291 42. Matamá, T. et al. Changing human hair fibre colour and shape from the follicle. *J. Adv.
1292 Res.*, <https://doi.org/10.1016/j.jare.2023.11.013> (2023).

1293 43. Liu, F. et al. Meta-analysis of genome-wide association studies identifies 8 novel loci
1294 involved in shape variation of human head hair. *Hum. Mol. Genet.* **27**, 559-575 (2018).

1295 44. Aganezov, S. et al. A complete reference genome improves analysis of human genetic
1296 variation. *Science* **376**, eabl3533 (2022).

1297 45. Shang, L. et al. A complete assembly of the rice Nipponbare reference genome. *Mol.*

1298 *Plant* **16**, 1232-1236 (2023).

1299 46. Huang, Z. et al. Evolutionary analysis of a complete chicken genome. *Proc. Natl Acad. Sci. USA* **120**, e2216641120 (2023).

1300 47. Hu, J. et al. A new chromosome-scale duck genome shows a major histocompatibility complex with several expanded multigene families. *BMC Biol.* **22**, 31 (2024).

1301 48. Brekke, T.D. et al. A new chromosome-assigned Mongolian gerbil genome allows characterization of complete centromeres and a fully heterochromatic chromosome. *Mol. Biol. Evol.* **40**, msad115 (2023).

1302 49. Li, T. et al. De novo genome assembly depicts the immune genomic characteristics of cattle. *Nat. Commun.* **14**, 6601 (2023).

1303 50. Jain, M. et al. Linear assembly of a human centromere on the Y chromosome. *Nat. Biotechnol.* **36**, 321-323 (2018).

1304 51. Peichel, C.L. et al. Assembly of the threespine stickleback Y chromosome reveals convergent signatures of sex chromosome evolution. *Genome Biol.* **21**, 177 (2020).

1305 52. Janečka, J.E. et al. Horse Y chromosome assembly displays unique evolutionary features and putative stallion fertility genes. *Nat. Commun.* **9**, 2945 (2018).

1306 53. Ye, Y.X. et al. Chromosome-level assembly of the brown planthopper genome with a characterized Y chromosome. *Mol. Ecol. Resour.* **21**, 1287-1298 (2021).

1307 54. Végesna, R., Tomaszkiewicz, M., Medvedev, P. & Makova, K.D. Dosage regulation, and variation in gene expression and copy number of human Y chromosome ampliconic genes. *PLoS Genet.* **15**, e1008369 (2019).

1308 55. Hamilton, C. et al. Copy number variation of testis-specific protein, Y-encoded (TSPY) in 14 different breeds of cattle (*Bos taurus*). *Sex. Dev.* **3**, 205-213 (2009).

1309 56. Zhang, Y.S. et al. A genetic method for sex determination in *Ovis* spp. by interruption of the zinc finger protein, Y-linked (*ZFY*) gene on the Y chromosome. *Reprod. Fertil.*

1323 1323 Dev. **30**, 1161-1168 (2018).

1324 1324 57. Nakasuji, T. et al. Complementary critical functions of *Zfy1* and *Zfy2* in mouse
1325 spermatogenesis and reproduction. *PLoS Genet.* **13**, e1006578 (2017).

1326 1326 58. Chang, T.-C., Yang, Y., Retzel, E.F. & Liu, W.-S. Male-specific region of the bovine Y
1327 chromosome is gene rich with a high transcriptomic activity in testis development.
1328 *Proc. Natl Acad. Sci. USA* **110**, 12373-12378 (2013).

1329 1329 59. Bachtrog, D. & Charlesworth, B. Reduced adaptation of a non-recombining neo-Y
1330 chromosome. *Nature* **416**, 323-326 (2002).

1331 1331 60. Deng, J. et al. Paternal origins and migratory episodes of domestic sheep. *Curr. Biol.*
1332 **30**, 4085-4095 (2020).

1333 1333 61. Amor, D.J. et al. Human centromere repositioning “in progress”. *Proc. Natl Acad. Sci.*
1334 *USA* **101**, 6542-6547 (2004).

1335 1335 62. Song, J.-M. et al. Two gap-free reference genomes and a global view of the
1336 centromere architecture in rice. *Mol. Plant* **14**, 1757-1767 (2021).

1337 1337 63. Chaves, R., Guedes-Pinto, H., Heslop-Harrison, J. & Schwarzacher, T. The species
1338 and chromosomal distribution of the centromeric α -satellite I sequence from sheep in
1339 the tribe Caprini and other Bovidae. *Cytogenet. Cell Genet.* **91**, 62-66 (2000).

1340 1340 64. Escudeiro, A. et al. Bovine satellite DNAs—a history of the evolution of complexity
1341 and its impact in the Bovidae family. *Eur Zool J* **86**, 20-37 (2019).

1342 1342 65. Chaves, R., Guedes-Pinto, H. & Heslop-Harrison, J.S. Phylogenetic relationships and
1343 the primitive X chromosome inferred from chromosomal and satellite DNA analysis
1344 in Bovidae. *Proc. Biol. Sci.* **272**, 2009-2016 (2005).

1345 1345 66. Li, R. et al. A sheep pangenome reveals the spectrum of structural variations and their
1346 effects on tail phenotypes. *Genome Res.* **33**, 463-477 (2023).

1347 1347 67. Dong, Y. et al. Reference genome of wild goat (*Capra aegagrus*) and sequencing of

1348 goat breeds provide insight into genic basis of goat domestication. *BMC Genomics* **16**,
1349 431 (2015).

1350 68. Yang, L. et al. Diversity of copy number variation in a worldwide population of sheep.
1351 *Genomics* **110**, 143-148 (2018).

1352 69. Li, E.-l. et al. Relationship between the mRNA expression level of TGF- β receptor
1353 genes in tissues and ovulation rate in Hu sheep. *Agri. Sci. China* **9**, 1659-1666 (2010).

1354 70. Li, N. et al. Super-pangenome analyses highlight genomic diversity and structural
1355 variation across wild and cultivated tomato species. *Nat. Genet.* **55**, 852-860 (2023).

1356 71. Camacho, C. et al. BLAST+: architecture and applications. *BMC Bioinformatics* **10**,
1357 421 (2009).

1358 72. Servant, N. et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data
1359 processing. *Genome Biol.* **16**, 259 (2015).

1360 73. Langmead, B. & Salzberg, S.L. Fast gapped-read alignment with Bowtie2. *Nat. Meth.*
1361 **9**, 357-359 (2012).

1362 74. Burton, J.N. et al. Chromosome-scale scaffolding of de novo genome assemblies
1363 based on chromatin interactions. *Nat. Biotechnol.* **31**, 1119-1125 (2013).

1364 75. Durand, N.C. et al. Juicer provides a one-click system for analyzing loop-resolution
1365 Hi-C experiments. *Cell Syst.* **3**, 95-98 (2016).

1366 76. Li, X. et al. Attempt at conserving the genetic resources of Hu sheep by fibroblast line
1367 cryopreservation. *J. Appl. Anim. Res.* **42**, 352-355 (2014).

1368 77. Ansari, H. et al. Standard G-, Q-, and R-banded ideograms of the domestic sheep
1369 (*Ovis aries*): homology with cattle (*Bos taurus*). Report of the committee for the
1370 standardization of the sheep karyotype. *Cytogenet. Cell Genet.* **87**, 134-142 (1999).

1371 78. Robinson, J.T. et al. Integrative genomics viewer. *Nat. Biotechnol.* **29**, 24-26 (2011).

1372 79. Li, H. Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics* **34**,

1373 3094-3100 (2018).

1374 80. Marçais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting
1375 of occurrences of k -mers. *Bioinformatics* **27**, 764-770 (2011).

1376 81. Hu, J. et al. An efficient error correction and accurate assembly tool for noisy long
1377 reads. *bioRxiv*, 2023.03.09.531669 (2023).

1378 82. Marçais, G. et al. MUMmer4: A fast and versatile genome alignment system. *PLoS
1379 Comput. Biol.* **14**, e1005944 (2018).

1380 83. Danecek, P. et al. Twelve years of SAMtools and BCFtools. *Gigascience* **10**, giab008
1381 (2021).

1382 84. Alonge, M. et al. Automated assembly scaffolding using RagTag elevates a new
1383 tomato system for high-throughput genome editing. *Genome Biol.* **23**, 258 (2022).

1384 85. Hu, J. et al. NextPolish2: a repeat-aware polishing tool for genomes assembled using
1385 HiFi long reads. *bioRxiv*, 2023.04. 26.538352 (2023).

1386 86. Hu, J., Fan, J., Sun, Z. & Liu, S. NextPolish: a fast and efficient genome polishing
1387 tool for long-read assembly. *Bioinformatics* **36**, 2253-2255 (2020).

1388 87. Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler
1389 transform. *Bioinformatics* **26**, 589-595 (2010).

1390 88. Gel, B. & Serra, E. karyoploteR: an R/Bioconductor package to plot customizable
1391 genomes displaying arbitrary data. *Bioinformatics* **33**, 3088-3090 (2017).

1392 89. Rhee, A., Walenz, B.P., Koren, S. & Phillippy, A.M. Merqury: reference-free quality,
1393 completeness, and phasing assessment for genome assemblies. *Genome Biol.* **21**, 245
1394 (2020).

1395 90. Manni, M., Berkeley, M.R., Seppey, M., Simão, F.A. & Zdobnov, E.M. BUSCO
1396 update: novel and streamlined workflows along with broader and deeper phylogenetic
1397 coverage for scoring of eukaryotic, prokaryotic, and viral genomes. *Mol. Biol. Evol.*

1398 38, 4647-4654 (2021).

1399 91. Wang, X. & Wang, L. GMATA: an integrated software package for genome-scale SSR
1400 mining, marker development and viewing. *Front. Plant Sci.* **7**, 1350 (2016).

1401 92. Benson, G. Tandem repeats finder: a program to analyze DNA sequences. *Nucleic
1402 Acids Res.* **27**, 573-580 (1999).

1403 93. Han, Y. & Wessler, S.R. MITE-Hunter: a program for discovering miniature inverted-
1404 repeat transposable elements from genomic sequences. *Nucleic Acids Res.* **38**, e199
1405 (2010).

1406 94. Flynn, J.M. et al. RepeatModeler2 for automated genomic discovery of transposable
1407 element families. *Proc. Natl Acad. Sci. USA* **117**, 9451-9457 (2020).

1408 95. Bao, W., Kojima, K.K. & Kohany, O. Repbase Update, a database of repetitive
1409 elements in eukaryotic genomes. *Mob. DNA* **6**, 11 (2015).

1410 96. Tarailo-Graovac, M. & Chen, N. Using repeatMasker to identify repetitive elements
1411 in genomic sequences. *Curr Protoc Bioinformatics* **5**, 4.10.1-4.10.14 (2009).

1412 97. Išerić, H., Alkan, C., Hach, F. & Numanagić, I. Fast characterization of segmental
1413 duplication structure in multiple genome assemblies. *Algorithms Mol. Biol.* **17**, 4
1414 (2022).

1415 98. Vollger, M.R. et al. Segmental duplications and their variation in a complete human
1416 genome. *Science* **376**, eabj6965 (2022).

1417 99. Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics.
1418 *Genome Res.* **19**, 1639-1645 (2009).

1419 100. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15-21
1420 (2013).

1421 101. Shumate, A., Wong, B., Pertea, G. & Pertea, M. Improved transcriptome assembly
1422 using a hybrid of long and short reads with StringTie. *PLoS Comput. Biol.* **18**,

1423 e1009730 (2022).

1424 102. Haas, B.J. et al. Improving the *Arabidopsis* genome annotation using maximal
1425 transcript alignment assemblies. *Nucleic Acids Res.* **31**, 5654-5666 (2003).

1426 103. Wolf, M. et al. The genome of the pygmy right whale illuminates the evolution of
1427 rorquals. *BMC Biol.* **21**, 79 (2023).

1428 104. Stanke, M., Diekhans, M., Baertsch, R. & Haussler, D. Using native and syntenically
1429 mapped cDNA alignments to improve *de novo* gene finding. *Bioinformatics* **24**, 637-
1430 644 (2008).

1431 105. Haas, B.J. et al. Automated eukaryotic gene structure annotation using
1432 EVidenceModeler and the Program to Assemble Spliced Alignments. *Genome Biol.* **9**,
1433 R7 (2008).

1434 106. Sherathiya, V.N., Schaid, M.D., Seiler, J.L., Lopez, G.C. & Lerner, T.N. GuPPy, a
1435 Python toolbox for the analysis of fiber photometry data. *Sci. Rep.* **11**, 24212 (2021).

1436 107. Loman, N.J., Quick, J. & Simpson, J.T. A complete bacterial genome assembled *de*
1437 *novo* using only nanopore sequencing data. *Nat. Methods* **12**, 733-735 (2015).

1438 108. Quinlan, A.R. & Hall, I.M. BEDTools: a flexible suite of utilities for comparing
1439 genomic features. *Bioinformatics* **26**, 841-842 (2010).

1440 109. Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ
1441 preprocessor. *Bioinformatics* **34**, i884-i890 (2018).

1442 110. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). *Genome Biol.* **9**, R137
1443 (2008).

1444 111. Berselli, M., Lavezzo, E. & Toppo, S. NeSSie: a tool for the identification of
1445 approximate DNA sequence symmetries. *Bioinformatics* **34**, 2503-2505 (2018).

1446 112. Vollger, M.R., Kerpeljiev, P., Phillippy, A.M. & Eichler, E.E. StainedGlass:
1447 Interactive visualization of massive tandem repeat structures with identity heatmaps.

1448 *Bioinformatics* **38**, 2049-2051 (2022).

1449 113. Zhang, Y., Chu, J., Cheng, H. & Li, H. *De novo* reconstruction of satellite repeat units
1450 from sequence data. *Genome Res.* (2023).

1451 114. Jiang, T. et al. Long-read-based human genomic structural variation detection with
1452 cuteSV. *Genome Biol.* **21**, 189 (2020).

1453 115. Pedersen, B.S. & Quinlan, A.R. Mosdepth: quick coverage calculation for genomes
1454 and exomes. *Bioinformatics* **34**, 867-868 (2018).

1455 116. Jeffares, D.C. et al. Transient structural variations have strong effects on quantitative
1456 traits and reproductive isolation in fission yeast. *Nat. Commun.* **8**, 14061 (2017).

1457 117. Bolger, A.M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina
1458 sequence data. *Bioinformatics* **30**, 2114-2120 (2014).

1459 118. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for
1460 analyzing next-generation DNA sequencing data. *Genome Res.* **20**, 1297-1303 (2010).

1461 119. Cingolani, P. et al. A program for annotating and predicting the effects of single
1462 nucleotide polymorphisms, SnpEff: SNPs in the genome of *Drosophila melanogaster*
1463 strain w1118; iso-2; iso-3. *Fly* **6**, 80-92 (2012).

1464 120. Rausch, T. et al. DELLY: structural variant discovery by integrated paired-end and
1465 split-read analysis. *Bioinformatics* **28**, i333-i339 (2012).

1466 121. Chen, X. et al. Manta: rapid detection of structural variants and indels for germline
1467 and cancer sequencing applications. *Bioinformatics* **32**, 1220-1222 (2016).

1468 122. Chang, C.C. et al. Second-generation PLINK: rising to the challenge of larger and
1469 richer datasets. *Gigascience* **4**, s13742-015-0047-8 (2015).

1470 123. Patterson, N., Price, A.L. & Reich, D. Population structure and eigenanalysis. *PLoS
1471 Genet.* **2**, e190 (2006).

1472 124. Alexander, D.H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry

1473 in unrelated individuals. *Genome Res.* **19**, 1655-1664 (2009).

1474 125. Vilella, A.J. et al. EnsemblCompara GeneTrees: Complete, duplication-aware
1475 phylogenetic trees in vertebrates. *Genome Res.* **19**, 327-335 (2008).

1476 126. Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for
1477 phylogenetic tree display and annotation. *Nucleic Acids Res.* **49**, W293-W296 (2021).

1478 127. Huson, D.H. & Bryant, D. Application of phylogenetic networks in evolutionary
1479 studies. *Mol. Biol. Evol.* **23**, 254-267 (2006).

1480 128. Chen, H., Patterson, N. & Reich, D. Population differentiation as a test for selective
1481 sweeps. *Genome Res.* **20**, 393-402 (2010).

1482 129. Wickham, H. ggplot2. *WIREs Comp. Stat.* **3**, 180-185 (2011).

1483 130. Demirci, S. et al. Mitochondrial DNA diversity of modern, ancient and wild sheep
1484 (*Ovis gmelinii anatolica*) from Turkey: new insights on the evolutionary history of
1485 sheep. *PLoS One* **8**, e81952 (2013).

1486

1487

1488

1489 **Table 1 Comparison between *Ramb_v3.0*, *T2T-sheep1.0*, *T2T-sheep1.0P* and *T2T-sheep1.0M*.**

	Annotation	<i>Ramb_v</i> 3.0	<i>T2T- sheep1.0</i>	<i>T2T- sheep1.0P</i>	<i>T2T- sheep1.0M</i>
Assembly summary	Assembled bases (Gb)	2.65	2.85	2.62	2.73
	Unplaced bases (Mb)	12.48	0	0	0
	Gap number	84	0	4	10
	Gap bases (bp)	42000	0	400	1000
	Number of contigs	227	28	31	37
Gene annotation	Contig N50 (Mb)	43.18	103.4	96.54	102.26
	Number of protein coding genes	21,328	21,517	19,792	20,599
	Number of newly assembled genes (NAGs)	/	712	/	/
	Number of genes in PURs	/	754	/	/
	Average length of protein coding genes (Kb)	44.24	48.15	48.75	48.68
Segmental duplications	Average exons per protein coding gene	9.14	9.35	9.53	9.44
	Average exon length (bp)	180	173	171	171
	Average introns per protein coding gene	8.14	8.35	8.53	8.44
	Average intron length (bp)	5,234	5,570	5,523	5,576
	Percentage of segmental duplications (%)	2.52	9.05	5.02	4.92
Repeats according to RepeatMasker	Segmental duplication bases (Mb)	66.62	258.32	143.13	140.44
	Number of segmental duplications	6363	19483	20296	19241
	Percentage of repeats (%)	44.1	47.67	45.57	46.00
	Repeat bases (Mb)	1164.82	1360.45	1194.69	1254.17
	Long interspersed nuclear elements (Mb)	762.39	780.11	721.29	767.35
	Short interspersed nuclear elements (Mb)	192.68	196.29	186.05	194.28
	Long terminal repeats (Mb)	134.72	141.26	131.11	137.96
	Satellite (Mb)	4.67	162.14	80.79	77.85
	DNA (Mb)	70.05	74.92	70.16	71.60
	Simple repeat (Mb)	1.88	2.19	1.83	1.88
	Low complexity (Mb)	0.02	0.02	0.02	0.02

1490

1491

1492 **Figure legends**

1493 **Fig. 1. Genomic comparisons of the *Ramb_v3.0* and *T2T-sheep1.0* sheep assemblies. a,**

1494 Genomic features annotated on chromosome 1 (Chr01) for *Ramb_v3.0* and *T2T-sheep1.0*.

1495 The coverages of ultralong ONT (Cov. ONT) and PacBio HiFi (Cov. PacBio) long reads are

1496 shown in 200-kb windows. Gene, segmental duplication (SD) and transposable element (TE)

1497 density values were calculated in 10-kb windows. MUK, minimum unique k -mer length in

1498 100-kb windows. Error k -mer, 21-mer errors caused by the worse assembly. PUR, previously

1499 unresolved region in *T2T-sheep1.0* compared to *Ramb_v3.0*. The gray blocks between the

1500 two horizontal grey bars of *T2T-sheep1.0* and *Ramb_v3.0* indicate collinearity, and one

1501 inversion and two duplications between the two assemblies are plotted in orange and blue

1502 respectively. Centromeres are highlighted in dark blue, telomeres are marked with black

1503 triangles on the “*T2T-sheep1.0*” grey bar, and gaps are shown in green on the *Ramb_v3.0*

1504 grey bar. **b**, Contents of various sequence types in the PURs of *T2T-sheep1.0* compared to

1505 *Ramb_v3.0*. CenSat, satellites in centromeric regions identified by RepeatMasker. SDs,

1506 segmental duplicaitons. RepMask, other repeats identified by RepeatMasker. **c**, One gap

1507 containing a gene (Gene1808, namely, *HRNPK*) with transcriptional expression on Chr01 of

1508 *Ramb_v3.0* was filled in *T2T-sheep1.0*. Genes colored with yellow showed transcriptional

1509 expression according to RNA-seq in 10-kb windows in longissimus dorsi, cerebrum, and

1510 hypothalamus tissues. The coverage of ONT and PacBio HiFi reads confirmed the reliability

1511 of gap filling. **d**, An inversion error (INV195), highlighted in orange, was found on

1512 chromosome 9 (Chr09) in *Ramb_v3.0* and corrected in *T2T-sheep1.0*. The genes in the region

1513 were expressed in hypothalamus, ileum, and cerebrum tissues. Two peaks of error k -mers ($k =$

1514 21) were found in *Ramb_v3.0* and corresponded to the two junction sites of this false-positive

1515 inversion, which cannot be covered by PacBio reads from Rambouillet sheep (NCBI

1516 Biosample ID SAMN17575729) assembled previously for *Ramb_v3.0*. **e**, Genome-wide

1517 MUK lengths in a comparison of *T2T-sheep1.0* and *Ramb_v3.0*.

1518

1519 **Fig. 2. Assembly of centromeric regions and identification of centromeric repeat units. a,**

1520 An assembly graph tangle among the centromeres of 11 acrocentric chromosomes in different

1521 colors. Centromeric regions are highlighted in yellow. **b**, Genomic features of the centromeric

1522 region on chromosome 2 (Chr02). ChIP-seq for histone H3 variant CENP-A (phospho-

1523 CENP-A (Ser7) antibody), methylation based on HiFi reads, and satellite enrichment were

1524 used to identify centromeric regions. The three types of repeats (LINEs in red, SINEs in

1525 brown, and satellites in light purple) are shown in the “Repeats” bar, and two satellite units

1526 (SatI and SatII) occupy the centromeric region in the “Satellites” bar. The sequence identity

1527 heatmap (bottom) with the color scale at the left bottom corner is shown across the

1528 centromere in nonoverlapping 5-kb windows, and four evolutionary layers corresponding to

1529 two layers (1 and 2) of SatI and two layers (3 and 4) of SatII in the centromeric region are

1530 marked from 1 to 4. **c**, Lengths of chromosomes (bottom) and their centromeric repeat units

1531 (top). **d**, FISH images for probes of SatIII and CenY. Two SatIII variants were identified in

1532 the T2T genome assemblies of both sheep (SatIII-20GG and SatIII-20CC) and goat (SatIII-

1533 V2A and SatIII-V2C in *T2T-goat1.0*), and their sequences were aligned below. The probes of

1534 SatIII-20GG (red) and SatIII-20CC (green) were also used for FISH imaging (right plot),

1535 while the probes of CenY (red) and SatIII (combining SatIII-20GG and SatIII-20CC, green)

1536 were hybridized onto the sheep chromosomes in FISH (left plot). The Y chromosome and

1537 CenY probes (red) in the middle of the left plot are enlarged in a white line box at the top

1538 right corner. **e**, Collinearity of three metacentric chromosomes (chromosomes 1, 2, and 3)

1539 among *T2T-sheep1.0*, *T2T-goat1.0*, and argali (*O. ammon polii*). SatI, SatII and SatIII are

1540 colored for their presence or absence in the centromeres. **f**, Phylogenetic tree of 16 species

1541 based on their SatI sequences (Supplementary Table 10).

1542

1543 **Fig. 3. Assemblies of chromosomes X and Y.** **a**, Collinearity of chromosome Y (ChrY)
1544 between *T2T-sheep1.0* and *Ramb_v3.0*, i.e., *T2T-sheep1.0-chrY* vs. *Ramb_v3.0-chrY*. The
1545 sequence identity scale is colored and placed in the top left corner. **b**, Genomic features of
1546 *T2T-sheep1.0-chrY*. From top to bottom: ChrY consists of the X-homologous region (PAR)
1547 and male-specific region (MSY), with CenY (blue) and Z zone (red) labeled; densities of TEs,
1548 LINEs, SINEs, LTRs and satellites, with scales at the bottom left corner; methylated
1549 cytosines in 10-kb windows based on HiFi (red) and ONT (light red) data; coverage of
1550 PacBio HiFi reads (Cov. PacBio); segmental duplication (SD) density in 10-kb windows;
1551 gene distribution; three multicopy genes, *HSFY*, *TSPY* and *ZFY*; pseudogenes, with the ones
1552 in the Z zone highlighted in red; Gene expression from RNA-seq of testis and blood tissues;
1553 coverage of ONT reads (Cov. ONT). Sequence identity across the whole ChrY showing the
1554 high-identity signals of CenY (magnified in the bottom left corner) and the Z zone. **c**,
1555 Genomic features annotated on chromosome X (ChrX) and regions homologous to ChrY.
1556 Homologous genes between ChrX and ChrY are connected by light blue lines. The color keys
1557 are the same as those in Fig. 1a. **d**, Two inversion errors (INV405 and INV406) on ChrX of
1558 *Ramb_v3.0* that were corrected in *T2T-sheep1.0*. The gray blocks between the horizontal bars
1559 of *T2T-sheep1.0* and *Ramb_v3.0* represent collinear regions. Orange lines indicate inversions
1560 on ChrX between *Ramb_v3.0* and *T2T-sheep1.0*. There was no coverage of Rambouillet
1561 PacBio reads that are downloaded from NCBI (Biosample ID SAMN17575729) at the two
1562 junction sites of each inversion in *Ramb_v3.0*, in contrast to the accurate assembly and
1563 uniform coverage of HiFi reads from Hu sheep in *T2T-sheep1.0*.

1564
1565 **Fig. 4. Improvements for long-read mapping and structural variant calling.** **a**, Numbers
1566 of mapped reads and error rate for a ratio between mismatches and bases mapped were
1567 calculated by using Samtools based on the alignments of PacBio long reads from 18 sheep to
1568 *T2T-sheep1.0* and *Ramb_v3.0*. **b**, Deletions (DEL) and insertions (INS) derived from PacBio

1569 long reads of 18 domestic and wild sheep are compared between *T2T-sheep1.0* and
1570 *Ramb_v3.0* used as references. The counts of INSs and DELs in satellites (**c**) of *T2T-sheep1.0*
1571 and *Ramb_v3.0* and PURs (**d**) of *T2T-sheep1.0* are summed over the lengths. DEL is colored
1572 in blue for *T2T-sheep1.0* and light blue for *Ramb_v3.0*, and INS is colored in red for *T2T-*
1573 *sheep1.0* and orange for *Ramb_v3.0*.

1574

1575 **Fig. 5. Improvement of *T2T-sheep1.0* in the analysis of short reads in sheep populations.**

1576 **a**, Sampling locations of 810 NGS samples from 158 domestic sheep populations and seven
1577 wild sheep species. **b**, Distance of SNPs from PURs to the closest QTL from the AnimalQTL
1578 database. The 1-Mb distance scale is shown in the top right corner. **c**, Neighbor-joining (NJ)
1579 tree of wild and domestic sheep based on SNPs when using *T2T-sheep1.0* as a reference.
1580 Asiatic mouflon and urial genetically are not completely separated in the genetic clustering
1581 analysis and phylogenetic tree due to the presence of hybrids and gene flow between these
1582 two populations^{4,60,130}. The previously misclassified samples (PMSs) are highlighted in red
1583 branches and black labels for five populations (ZLX, DQS, TCS, DEG, and ZRJ). **d**, PCA of
1584 domestic sheep populations based on SNPs using *T2T-sheep1.0* as a reference. The PMSs are
1585 highlighted in black, while the six geographic domestic sheep populations are highlighted in
1586 the same colors in both PCA and NJ tree. The populations (SOM, RED, WDP, etc.) are
1587 labeled with the colored abbreviated names because they are not clustered in the
1588 corresponding continents. **e**, Population genetic structure of wild and domestic sheep inferred
1589 from ADMIXTURE (K = 10) using *T2T-sheep1.0* as the reference. The abnormal populations
1590 in the 6 domestic sheep superpopulations (Central-and-East Asia, South-and-Southeast Asia,
1591 Middle East, Africa, Europe, and America) according to the continents are labeled with
1592 abbreviated names (Supplementary Table 15).

1593

1594 **Fig. 6. Selection signatures associated with domestication.** **a**, Selection signals based on
1595 SNPs and the top 1% of XP-CLR values (horizontal dash line) for landrace sheep breeds
1596 compared with wild sheep of Asiatic mouflon using *T2T-sheep1.0* as a reference. The genes
1597 identified in non-PURs by both *T2T-sheep1.0* and *Oar_v4.0* are shown in gray, the ones in
1598 non-PURs identified only by *T2T-sheep1.0* in black, and the ones in PURs in blue. **b**, Venn
1599 diagram of selected genes associated with domestication based on SNPs between *T2T-*
1600 *sheep1.0* and *Oar_v4.0* as references. **c**, The π ratio (π -*O. orientalis*/ π -landrace) confirms
1601 strong selection signals detected by XP-CLR values in the region of the *ABCC4* gene family
1602 on Chr10. **d**, The collinearity between the two assemblies of *T2T-sheep1.0* and *Ramb_v3.0*
1603 showing a PUR that corresponded to the selected region with the *ABCC4* gene family is
1604 highlighted with a gray bar. **e**, Twenty *ABCC4* family genes are included in the selected
1605 region on Chr10, while only eight ones were assembled in *Ramb_v3.0*. The *ABCC4* genes are
1606 transcribed in blood, jejunum, colon, duodenum, and ileum tissues, as shown in RNA-seq
1607 analysis. The three *ABCC4* genes under domestication selection are highlighted with black
1608 outlines. **f**, Thirty-seven nonsynonymous variants of the *ABCC4* gene “Gene10176” with
1609 differences between domestic and wild sheep. **g**, Selection signals based on SVs and top 1%
1610 of F_{ST} values assessed between landrace and wild sheep with *T2T-sheep1.0* as a reference. **h**,
1611 A selected SV on Chr18 was located in PURs, and the collinearity between *T2T-sheep1.0* and
1612 *Ramb_v3.0* confirmed the presence of this PUR containing the *ADAMTSL3* gene. **i**, The ~3.5-
1613 Mb region with the *ADAMTSL3* gene has been wrongly assembled from Chr18 of *Ramb_v3.0*
1614 and considered a PUR in *T2T-sheep1.0*.

1615
1616 **Fig. 7. Selection signatures associated with fleece fiber diameter.** **a**, Venn diagram of
1617 selected genes for fine-wool sheep based on SNPs between *T2T-sheep1.0* and *Ramb_v3.0*
1618 used as references. **b**, Selection signals based on SNPs and the top 1% of XP-CLR values

1619 when comparing fine-wool and hairy sheep. **c**, The π ratio (π -hair/ π -fine wool) between hairy
1620 and fine-wool sheep confirmed selection on the *FOXQ1* gene on Chr20 detected by the XP-
1621 CLR. **d**, The selected region with the *FOXQ1* gene in gray is located in a PUR at the right
1622 end of Chr20 in *T2T-sheep1.0* compared to *Ramb_v3.0*. **e**, Five mutation sites at the 3'
1623 downstream region of the selected *FOXQ1* gene and their allele frequencies showed selection
1624 in coarse-, medium- and fine-wool sheep, compared to the hairy sheep population. **f**,
1625 Selection signals based on SVs and the top 1% of F_{ST} values detected between fine-wool and
1626 hairy sheep.

1627

1628

1629

1630 **Supplementary Figures**

1631 **Supplementary Fig. 1. HU3095 for T2T assembly and statistics of the HiFi and ONT**

1632 **sequencing data. a**, HU3095 for T2T assembly. **b**, Ultralong ONT read length distribution

1633 for HU3095. **c**, HiFi read length distribution for HU3095.

1634

1635 **Supplementary Fig. 2. Genomic features of the chromosomes of *T2T-sheep1.0*.** The
1636 coverages of ultralong ONT (Cov. ONT) and PacBio HiFi (Cov. HiFi) long reads are shown
1637 in 200-kb windows. Tandem repeat (TE, green), gene (blue), and segmental duplication (SD,
1638 purple) density values were calculated in 10-kb windows. MUK, minimum unique k -mer
1639 length in 100-kb windows. PURs (orange), previously unresolved regions in *T2T-sheep1.0*
1640 compared to *Ramb_v3.0*. Error k -mer (red), 21-mer errors. Centromeres are highlighted in
1641 dark blue, and telomeres are marked with black triangles.

1642

1643 **Supplementary Fig. 3. Bionano and Hi-C validation of *T2T-sheep1.0*.** **a**, Bionano
1644 alignments are shown for the four selected chromosomes (Chr02, Chr11, Chr16, and ChrX).
1645 **b**, Hi-C interaction heatmap showing the reliability of all chromosomes in *T2T-sheep1.0*.

1646

1647 **Supplementary Fig. 4. Telomeric lengths on the chromosomal ends of *T2T-sheep1.0*.** The
1648 number of “CCCTAA” repetitive units in telomeric regions was summarized in 1-kb
1649 windows at both chromosomal ends in *T2T-sheep1.0*.

1650

1651 **Supplementary Fig. 5. Haplotype-resolved assemblies of paternal *T2T-sheep1.0P* and**
1652 **maternal *T2T-sheep1.0M*.** **a**, Visualization of the heterozygous regions between *T2T-*
1653 *sheep1.0P* and *T2T-sheep1.0M* using bubbles, according to the GitHub scripts
1654 (<https://github.com/T2T-CN1/CN1/tree/main/heterozygosity>). The parameter of $h = 4$ (count

1655 of SVs per 500 Kb) was set as the threshold for displaying bubbles. The homozygous regions
1656 are shown as single paths (grey), and the heterozygous regions are marked as bubbles in blue
1657 and red colors. Centromeres are marked as black lines. Uniform whole-genome coverage of
1658 binned HiFi and ONT reads is shown for *T2T-sheep1.0P* (**b**) and *T2T-sheep1.0M* (**c**). The
1659 abnormal coverage regions (>2*the average depth of whole genome or <0.5*the average
1660 depth of whole genome) are indicated by triangles for the potential issues.

1661

1662 **Supplementary Fig. 6. Genomic features of chromosomes of *Ramb_v3.0*.** The labels are
1663 the same as those in Supplementary Fig. 2.

1664

1665 **Supplementary Fig. 7. Four gaps in *Ramb_v3.0* that have been filled in *T2T-sheep1.0*.** **a**,
1666 The two small gaps on Chr01 and Chr10 do not contain genes. Gaps in *Ramb_v3.0* are
1667 marked in red. Purple lines indicate collinearity between *T2T-sheep1.0* and *Ramb_v3.0*. **b**,
1668 The genes annotated in two gaps on Chr23 and Chr05 of *Ramb_v3.0*. The genes in *T2T-*
1669 *sheep1.0* and *Ramb_v3.0* are shown in yellow and green, respectively.

1670

1671 **Supplementary Fig. 8. Comparison among the available sheep genome assemblies.** The
1672 gap length (**a**), gap number (**b**), BUSCO (**c**), and length of two known centromeric satellite
1673 sequences (SatI and SatII, **d**) compared among the 27 available sheep assemblies (sample
1674 details in Supplementary Table 5).

1675

1676 **Supplementary Fig. 9. Inversion errors on chromosomes 9 and X of *T2T-sheep1.0***
1677 **compared with *Ramb_v3.0*.** The gray lines represent collinear regions, and the orange lines
1678 represent inversions. The alignments of PacBio HiFi reads were used to check for the
1679 inversion errors of INV195 on chromosome 9 (Chr09) and INV405 and INV406 on

1680 chromosome X (ChrX), based on the IGV snapshots. PacBio reads from both Rambouillet
1681 sheep (NCBI Biosample ID SAMN17575729 for *Ramb_v3.0*) and HU3095 (i.e., *T2T-*
1682 *sheep1.0* individual) were aligned to *T2T-sheep1.0* well, suggesting the correct assembly on
1683 the inversion regions, but the alignment of PacBio reads to *Ramb_v3.0* cannot cover the
1684 junction sites of these three inversions. **a**, *Ramb_v3.0* reads were aligned to *T2T-sheep1.0* at
1685 the junctions of INV195 on Chr09. **b**, *T2T-sheep1.0* reads were aligned to the two assemblies
1686 *T2T-sheep1.0* and *Ramb_v3.0* at the junctions of INV195 on Chr09. **c**, Reads from *T2T-*
1687 *sheep1.0* and *Ramb_v3.0* were aligned to *Ramb_v3.0* and *T2T-sheep1.0* respectively at the
1688 junctions of INV405 and INV406 on ChrX.

1689

1690 **Supplementary Fig. 10. Minimum unique *k*-mer length per 100 kb on all the**
1691 **chromosomes of *T2T-sheep1.0* and *Ramb_v3.0*.** Minimum unique *k*-mers (MUKs) were
1692 calculated in 100-kb windows for *T2T-sheep1.0* and *Ramb_v3.0*, according to T2T Minimum
1693 Unique K-mer Analysis pipeline (https://github.com/msauria/T2T_MUK_Analysis). The
1694 more MUK values indicate more repetitive sequences in a 100-kb window.

1695

1696 **Supplementary Fig. 11. Transcriptional expression of genes in previously unresolved**
1697 **regions (PURs) and newly assembled genes of *T2T-sheep1.0*.** **a**, Newly assembled genes
1698 (NAGs) of *T2T-sheep1.0* compared to all sequences of *Ramb_v3.0*. **b**, Genes in PURs in *T2T-*
1699 *sheep1.0* compared to only the chromosomes of *Ramb_v3.0*. **c**, Expression of NAGs in
1700 different tissues. **d**, Expression of genes in PURs in different tissues.

1701

1702 **Supplementary Fig. 12. Circos plot for SDs and genes in orthogroups.** From the outer to
1703 the inner layer: 28 chromosomes of *T2T-sheep1.0* (**a**), density of genes in orthogroups
1704 identified by the OrthoFinder software (**b**), selected genes based on SNPs and SVs associated

1705 with domestication (**c**) and wool fineness (**d**) and SDs (**e**). SDs in PURs are highlighted in red,
1706 interchromosomal SDs in gray, and intrachromosomal SDs in black.

1707

1708 **Supplementary Fig. 13. Centromeric regions for selected autosomes and ChrX.** Chr03
1709 (**a**), Chr04 (**b**), Chr10 (**c**), and ChrX (**d**) are selected to show the centromeric features. From
1710 top to bottom: methylation based on HiFi reads; ChIP-seq for histone H3 variant CENP-A
1711 (phospho-CENP-A (Ser7) antibody); Centromeric satellite units of SatI (purple), SatII (blue-
1712 green), and SatIII (orange); Repeats of satellite (grey purple), LTR (red), LINE (green), and
1713 SINE (orange); the chromosome bar with centromere highlighted in blue; and the sequence
1714 identity heatmap (bottom) with the color scale at the left bottom corner in nonoverlapping 5-
1715 kb windows.

1716

1717 **Supplementary Fig. 14. Entropy plots for the selected chromosomes of T2T-sheep1.0.**
1718 Entropy values were calculated across the whole chromosomes (Chr03, Chr04, Chr10, and
1719 ChrX) with NeSSie software using a sliding window size of 10 kb with a step of 1 kb.

1720

1721 **Supplementary Fig. 15. Variants in SatI and SatII between T2T-goat1.0 and T2T-
1722 sheep1.0.** The aligned sequences of SatI (**a**) and SatII (**b**) between *T2T-goat1.0* and *T2T-
1723 sheep1.0* are shown.

1724

1725 **Supplementary Fig. 16. Y-chromosome assembly for different animal species and
1726 phylogenetic tree of the ZFY gene family on the Y chromosome of T2T-sheep1.0. a,**
1727 Summarized history of Y-chromosome assemblies in major animals, including pig, human,
1728 mouse, donkey, cattle, and sheep. **b**, The nucleotide sequences of *ZFY* genes were used to
1729 reconstruct a maximum likelihood (ML) phylogenetic tree, with the *ZFY* gene in *T2T-goat1.0*

1730 serving as an outgroup.

1731

1732 **Supplementary Fig. 17. Expression heatmap of all genes on chromosome Y of T2T-**

1733 ***sheep1.0* in 28 tissues.**

1734

1735 **Supplementary Fig. 18. Alignment of long reads from 18 sheep and SV calling. a,**

1736 European mouflon and Tan sheep for PacBio sequencing which was performed in this study
1737 and the subsequent SV calling. **b**, The mean coverage values and their standard deviation (std)
1738 among 18 sheep (X axis) were calculated in 500-bp windows in all genomic regions (all),
1739 genes (gene), nonsyntenic regions (non-syn), satellite repeats (satellite), and syntenic regions
1740 (syn), in a comparison of *T2T-sheep1.0* and *Ramb_v3.0*. In contrast to the PacBio HiFi reads,
1741 the PacBio continuous long reads (CLRs) with more sequencing errors from the three sheep
1742 exhibited more abnormal coverage when aligned to both assemblies. **c**, The length
1743 distribution for the counts of DELs and INSs based on long reads were compared in a line
1744 plot (left) between *T2T-sheep1.0* and *Ramb_v3.0* used as references. The total counts (right)
1745 of INSs and DELs are compared between *T2T-sheep1.0* and *Ramb_v3.0* as references. **d**, The
1746 counts of DELs and INSs of the different lengths based on long reads were compared
1747 between *T2T-sheep1.0* and *Ramb_v3.0* as references, in LINEs, SINEs, LTRs, exon, gene,
1748 and non-PURs. DEL is colored in blue for *T2T-sheep1.0* and light blue for *Ramb_v3.0*, and
1749 INS is colored in red for *T2T-sheep1.0* and orange for *Ramb_v3.0*.

1750

1751 **Supplementary Fig. 19. SV density data obtained from PacBio data using T2T-sheep1.0**

1752 **as a reference.** SV density was calculated in 10-kb windows based on the PacBio data in 18
1753 sheep (Supplementary Table 11). Centromeres and telomeres are shown in yellow and black
1754 respectively.

1755

1756 **Supplementary Fig. 20. A homologous deletion inside *TUBE1* gene in the 18 samples.**

1757 Comparison of *TUBE1* on *T2T-sheep1.0* and *Ramb_v3.0* (top), with exons in red and blue
1758 colors supported by Iso-seq reads. Based on the coverages, a deletion allele was detected in
1759 all 18 individuals based on PacBio long reads with *T2T-sheep1.0* as the reference (bottom
1760 left), while no deletion was found with *Ramb_v3.0* as the reference (bottom right).

1761

1762 **Supplementary Fig. 21. Improvement of short read alignment in *T2T-sheep1.0***

1763 **compared to *Ramb_v3.0*.** The 810 samples were divided into 6 geographic domestic sheep
1764 populations and wild sheep. Compared with *Ramb_v3.0* (orange), *T2T-sheep1.0* (blue)
1765 showed improvement of read alignments, including MQ0 (a), aligned properly paired reads
1766 (b), outward oriented pairs (c), aligned reads (d) and error rate (e).

1767

1768 **Supplementary Fig. 22. Statistics of SNPs based on short reads.** a, The SNPs in 810
1769 samples of all 28 chromosomes assessed against *T2T-sheep1.0* and *Ramb_v1.0*. “Total” and
1770 “PASS” indicate the SNPs before and after filtering by GATK program, respectively. b, The
1771 SNPs in PURs on each chromosome in *T2T-sheep1.0*. Total (c), heterozygous (d) and
1772 homozygous (e) SNPs for different geographic domestic and wild sheep populations in a
1773 comparison of using *T2T-sheep1.0* (red) and *Ramb_v1.0* (green) as references.

1774

1775 **Supplementary Fig. 23. Average nucleotide diversity (π) of domestic and wild sheep**
1776 **determined using *T2T-sheep1.0* as the reference.**

1777

1778 **Supplementary Fig. 24. Neighbor-Net tree for the populations of domestic and wild**
1779 **sheep.** A Neighbor-Net tree was constructed based on SNPs using *T2T-sheep1.0* as the

1780 reference and the F_{ST} genetic distances among the domestic and wild sheep. To better
1781 visualize the detailed breeds' names, the branches are magnified around the tree, indicated by
1782 dashed lines and arrows. Six superpopulations according to the continents are colored.

1783

1784 **Supplementary Fig. 25. Selected genes associated with domestication and their allele**
1785 **frequencies. a,** Allele frequency differences of SNPs within two *ABCC4* genes (Gene10178
1786 and Gene10446) between Asiatic mouflon (MOU, *Ovis orientalis*) and landrace sheep (*Ovis*
1787 *aries*). The five landrace breeds are Drenthe Heathen (DRS) in Europe, Altay (ALS) in
1788 Central Asia, Hu sheep (HUS) in East Asia, Djallonké sheep (DJI) in Africa and Karakul
1789 sheep (KAR) in the Middle East. **b,** Validation of π values (π -*O. orientalis*/ π -landrace) and
1790 allele frequencies of selected genes (*OAS1*, *BNC1*, *SPAG16*, *CD226* and *FAM20C*) in the
1791 PURs. Deletions in the selected genes *ADAMTSL3* (**c**) and *SPAG16* (**d**) are under selection,
1792 with allele frequency differences between domestic and wild sheep and their read coverages
1793 as viewed in IGV.

1794

1795 **Supplementary Fig. 26. Selected genes associated with the wool fineness trait and their**
1796 **allele frequencies.** The π values (π -hair/ π -fine wool) and allele frequencies of the previously
1797 reported selected genes (*TP63* and *KRT1*, **a**) and the newly identified genes (*DMXL2*,
1798 *TARBP1* and *EPS8*, **b**) in non-PURs in this study are shown. Deletions of selected genes in
1799 non-PURs (*DMXL2*, **c**) and PURs (*CA1*, **d**) are validated with read alignments in IGV, and
1800 their allele frequencies are shown with differences in fine-, coarse- and medium-wool sheep,
1801 compared to hairy sheep.

1802

1803 **Supplementary Fig. 27. XP-CLR values based on SNPs for the four sheep populations**
1804 **with various fleece fiber diameters.** In addition to fine-wool vs. hairy sheep, the other five

1805 comparisons of fine-wool vs. medium-wool sheep (**a**), fine-wool vs. coarse-wool sheep (**b**),
1806 medium-wool vs. coarse-wool sheep (**c**), medium-wool vs. hairy sheep (**d**), and coarse-wool
1807 vs. hairy sheep (**e**) were also used to search for selection signals based on SNPs and the XP-
1808 CLR approach. Genes detected in the hairy vs. fine-wool comparison are marked in red, and
1809 genes in the PURs are marked in blue. The selection signals in PURs are highlighted with
1810 green lines.

1811

1812 **Supplementary Fig. 28. Selection of *IRF2BP2* gene and its selected sites associated with**
1813 **various fleece fiber diameters. a**, The π values (π -hair/ π -fine wool) confirms the selection of
1814 *IRF2BP2* gene on Chr25. **b**, The allele frequencies of one insertion and eight SNPs are
1815 different between hair and fine wool populations, suggesting a fine wool selection. **c**, The six
1816 newly identified sites (16307402, 16307498, 16308112, 16308153, 16310330, and 16311100)
1817 are located in the promoter region and 5' upstream regulation region. The insertion site of
1818 16302462 is the one previously reported by Demars et al. 2017⁴⁰, and the two ones of
1819 16303394 and 16305442 are from the study by Lv et al. 2022⁴. Linkage disequilibrium (LD)
1820 analysis based on r^2 showed the linkage among these alleles in fine wool population.

1821

1822 **Supplementary Fig. 29. F_{ST} values based on SVs for the four sheep populations with**
1823 **various fleece fiber diameters.** The five comparisons of coarse-wool vs. fine-wool, coarse-
1824 wool vs. hairy, coarse-wool vs. medium-wool, fine-wool vs. medium-wool, and hairy vs.
1825 medium-wool were used to search for selection signals based on SVs and F_{ST} . Genes detected
1826 in the hairy vs. fine-wool comparison are marked in red, and genes in the PURs are marked in
1827 blue. The selection signals in the PURs are highlighted with green lines.

1828

1829 **Supplementary Tables**

1830 **Supplementary Table 1. Summary of the sequencing data in this study.**

1831

1832 **Supplementary Table 2. Statistics for the *T2T-sheep1.0* assembly.**

1833

1834 **Supplementary Table 3. The 139 gaps in the initial assembly of *T2T-sheep1.0*.**

1835

1836 **Supplementary Table 4. Length of PURs and quality values (QVs) for the chromosomes**
1837 **of *T2T-sheep1.0*, *T2T-sheep1.0P* and *T2T-sheep1.0M*.**

1838

1839 **Supplementary Table 5. Statistics of the ovine genome assemblies downloaded from the**
1840 **NCBI in a comparison to *T2T-sheep1.0*.**

1841

1842 **Supplementary Table 6. Genomic features in the whole genome and PURs of *T2T-***
1843 ***sheep1.0*.**

1844

1845 **Supplementary Table 7. RNA-seq samples used for gene annotation and validation.**

1846

1847 **Supplementary Table 8. RNA expression (FPKM) of genes in the centromeric regions.**

1848

1849 **Supplementary Table 9. Number of genes in the top orthogroups identified among four**
1850 **genomes (*T2T-sheep1.0*, *Argali*, *Ramb_v3.0* and *ARS1*) of closely related species.**

1851

1852 **Supplementary Table 10. Satellite sequences of the sixteen species used for phylogenetic**
1853 **tree reconstruction.**

1854

1855 **Supplementary Table 11. Long reads of 18 sheep samples used for calling structural**
1856 **variants (SVs).**

1857

1858 **Supplementary Table 12. The number of structural variants based on PacBio long reads**
1859 **using *T2T-sheep1.0* and *Ramb_v3.0* as references.**

1860

1861 **Supplementary Table 13. Allele frequency of structural variants based on PacBio long**
1862 **reads using *T2T-sheep1.0* and *Ramb_v3.0* as references.**

1863

1864 **Supplementary Table 14. Homozygous structural variants (SVs) in exons detected**
1865 **among 18 individuals with *T2T-sheep1.0*.**

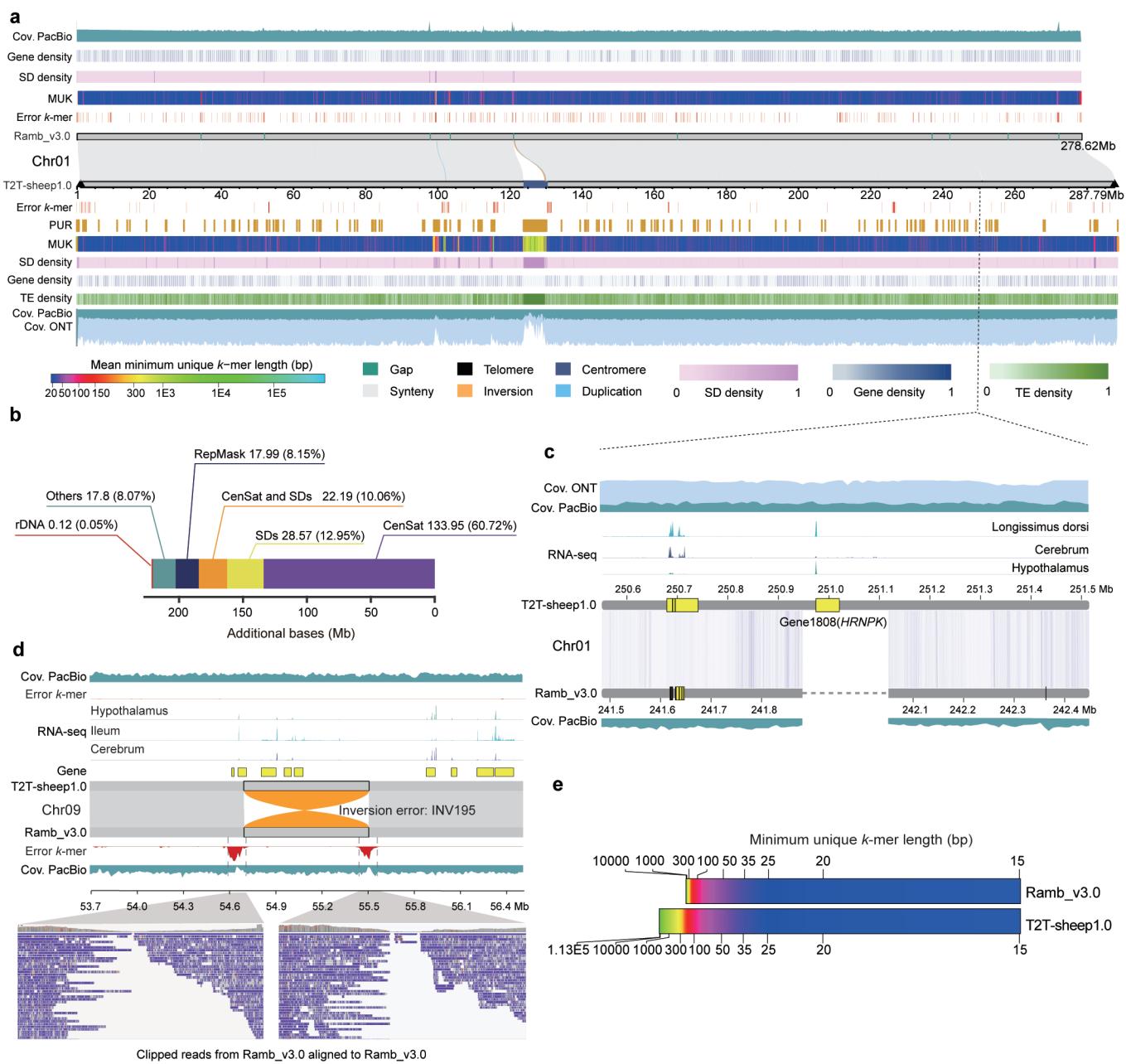
1866

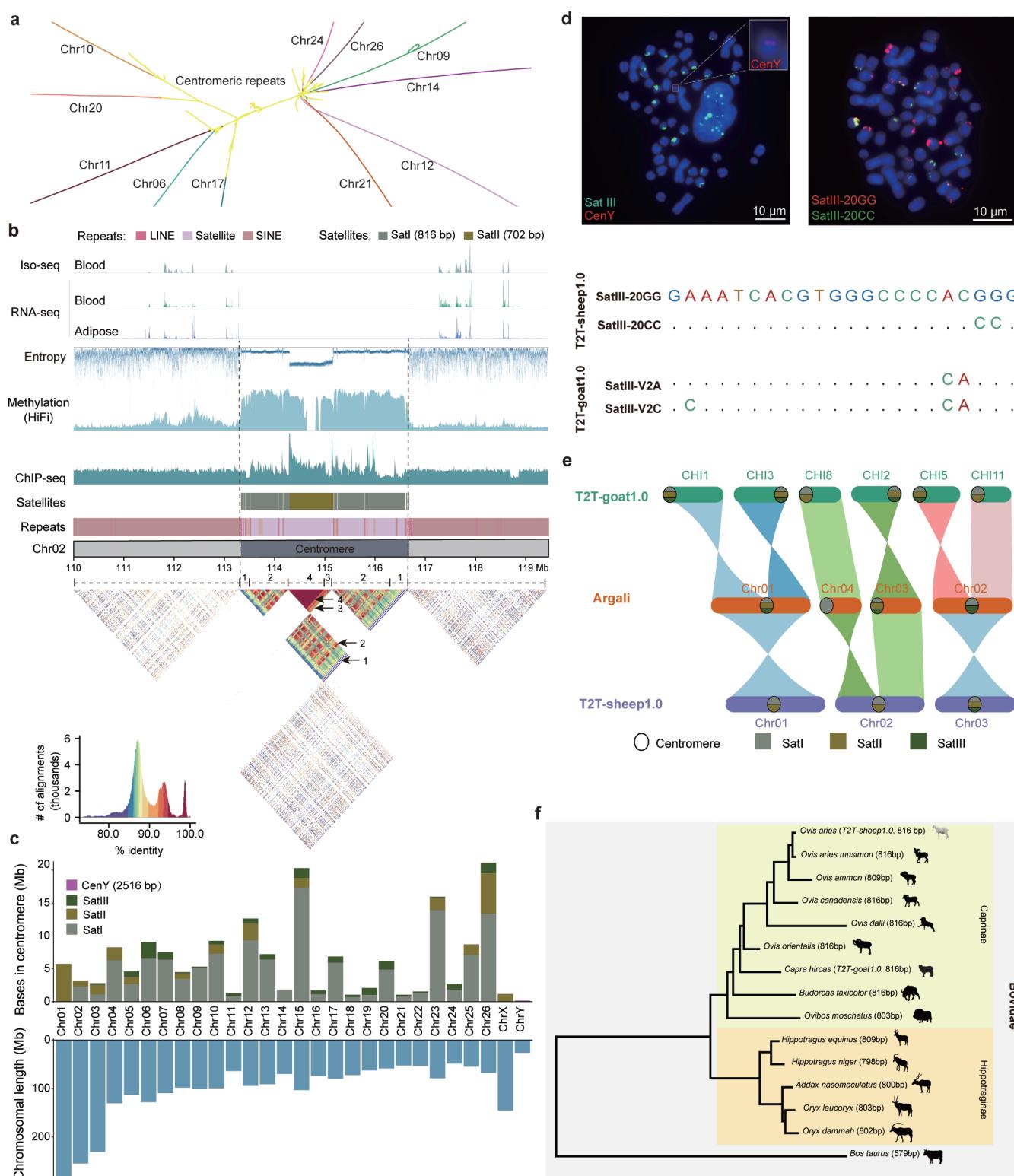
1867 **Supplementary Table 15. Short reads of 810 wild and domestic sheep used for**
1868 **population genetics analysis.**

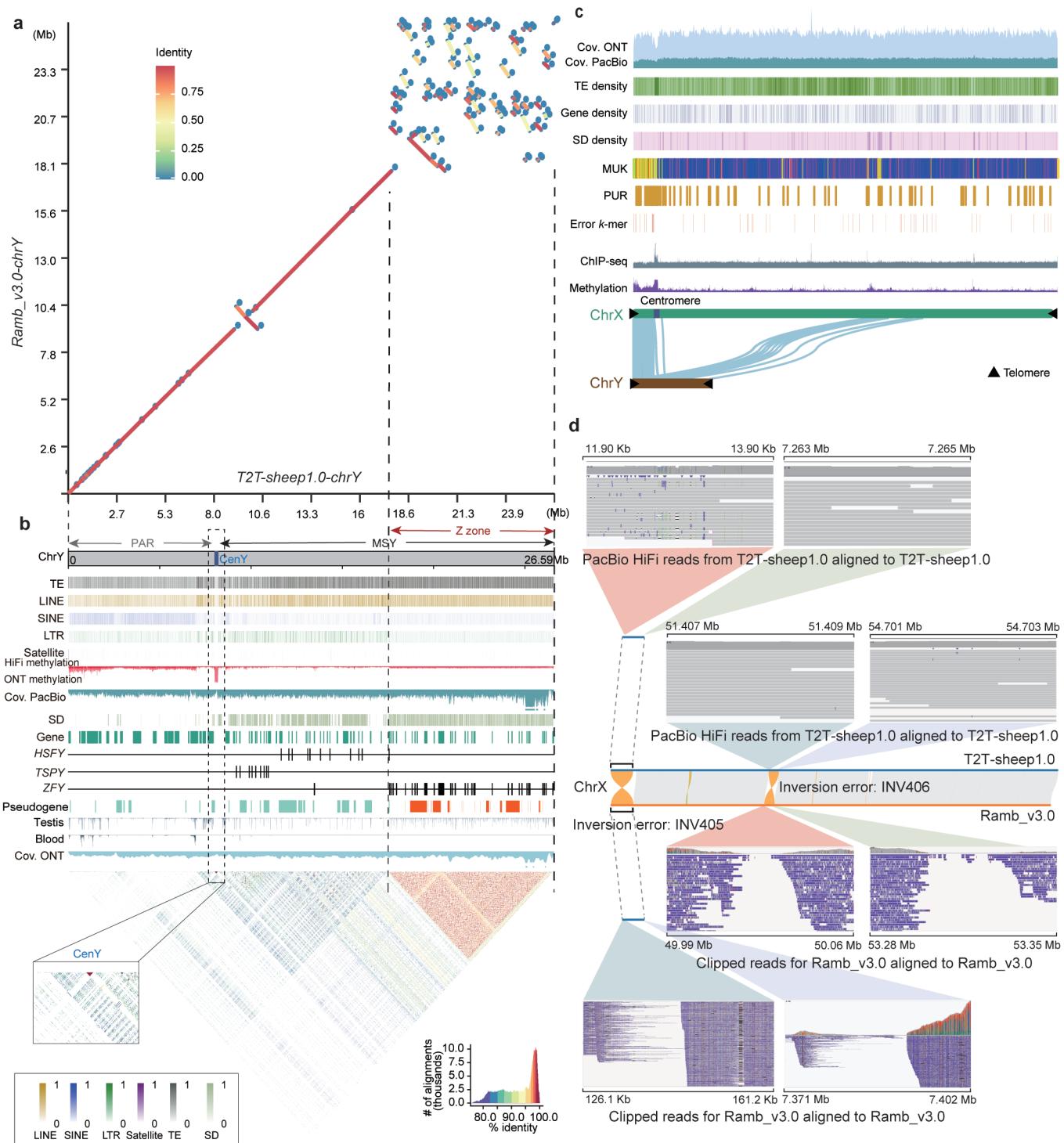
1869

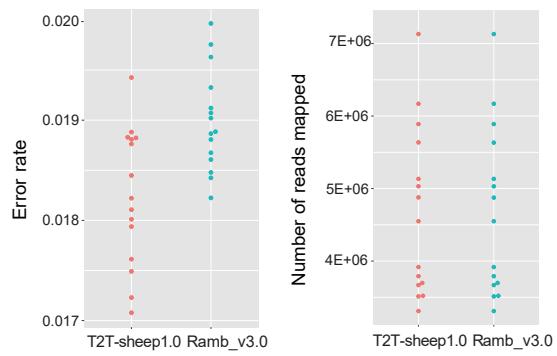
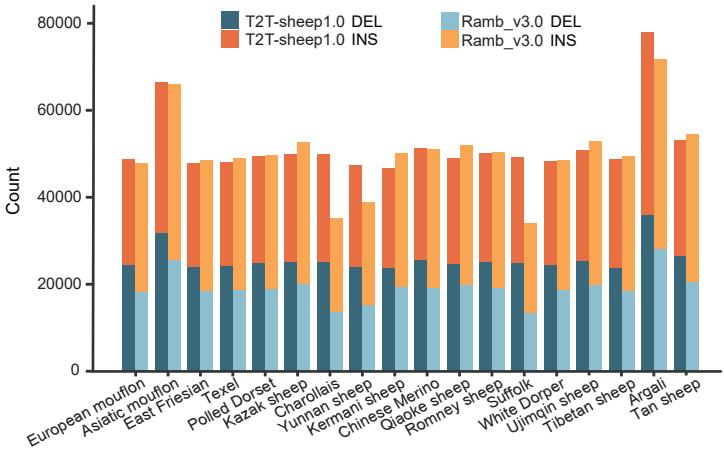
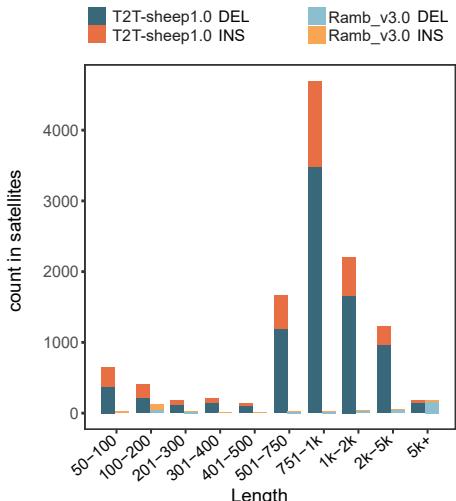
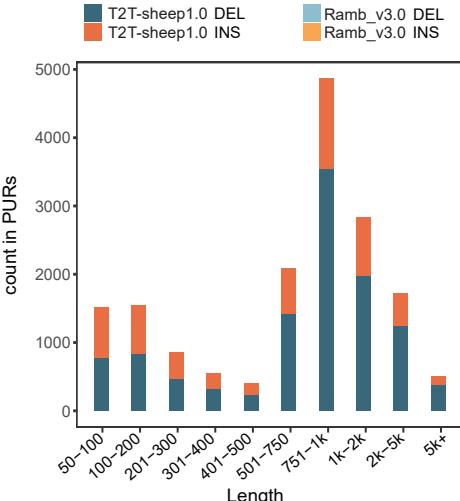
1870 **Supplementary Table 16. Counts of SNPs and structural variants (SVs) based on *T2T-***
1871 ***sheep1.0* and *Ramb_v1.0*.**

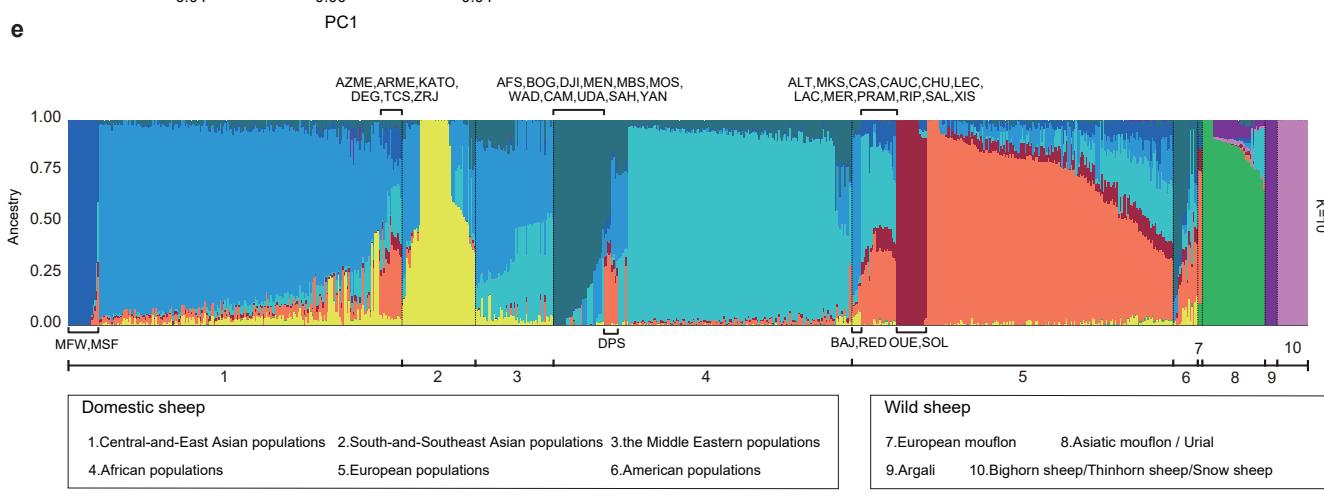
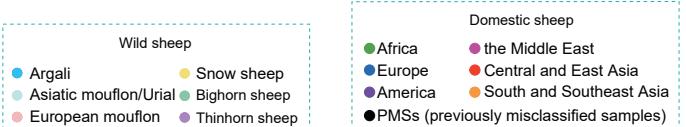
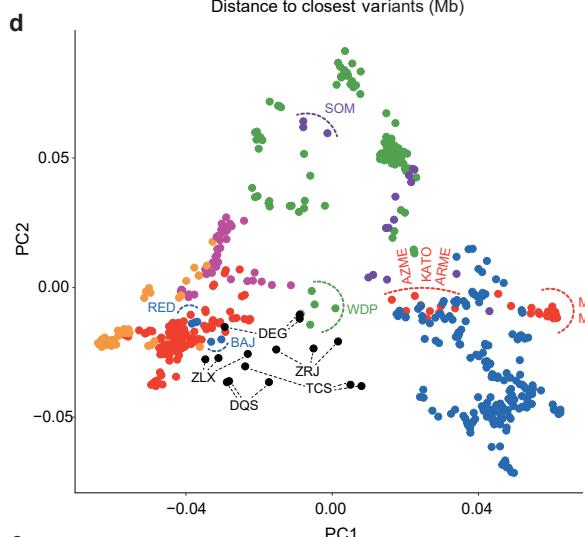
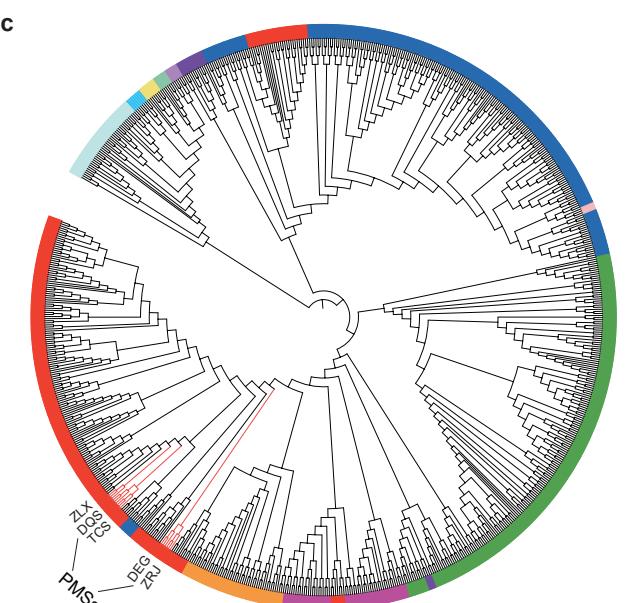
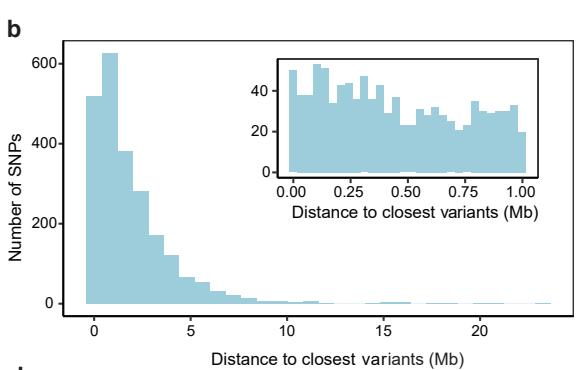
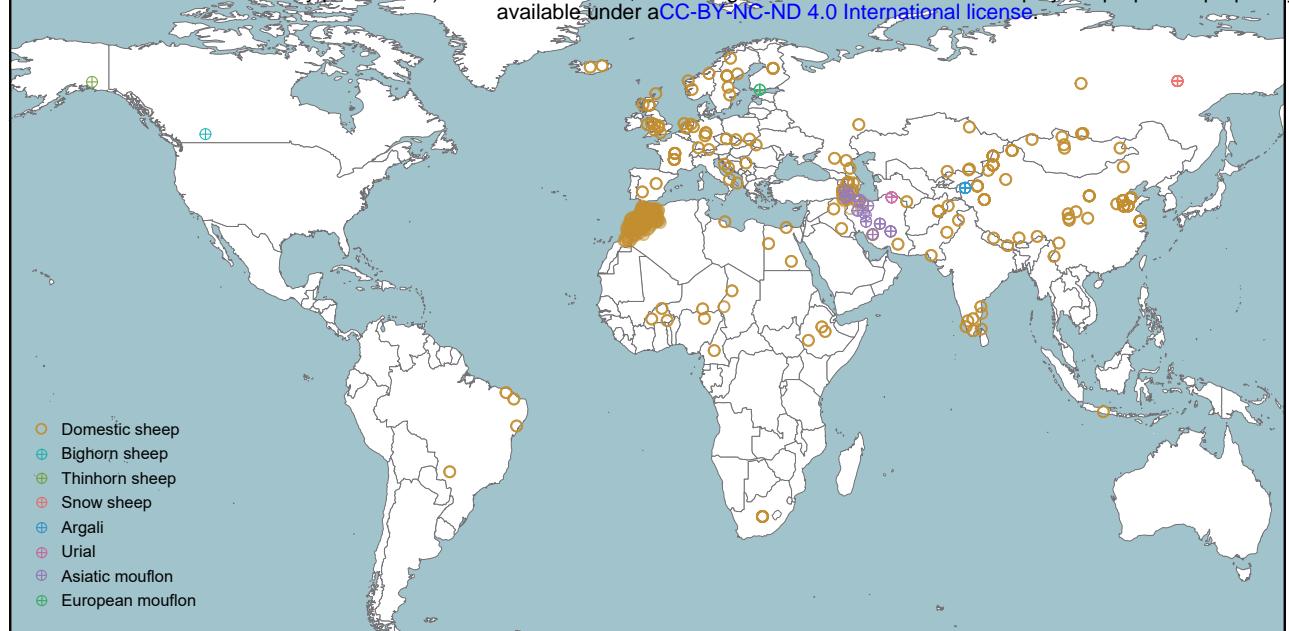
1872

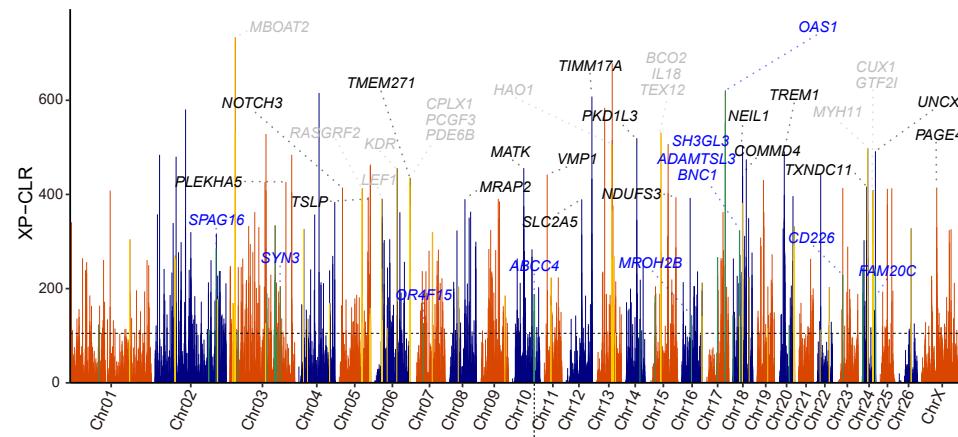
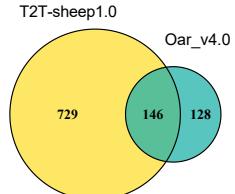
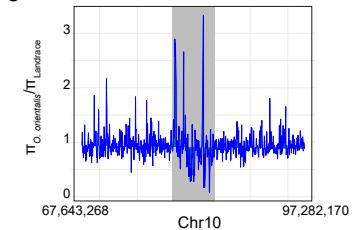
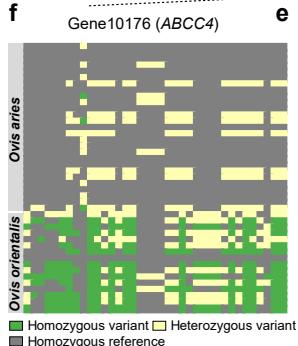
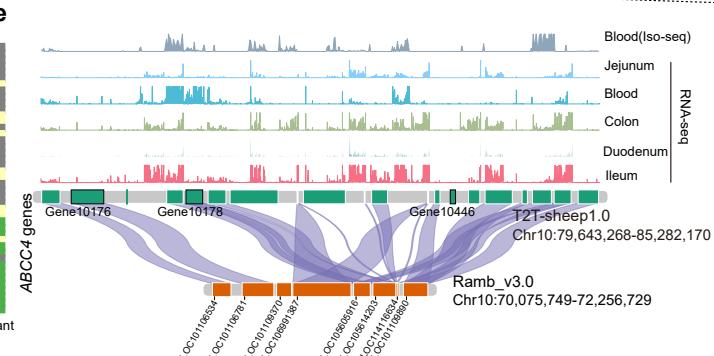
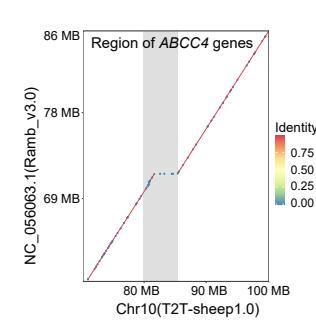
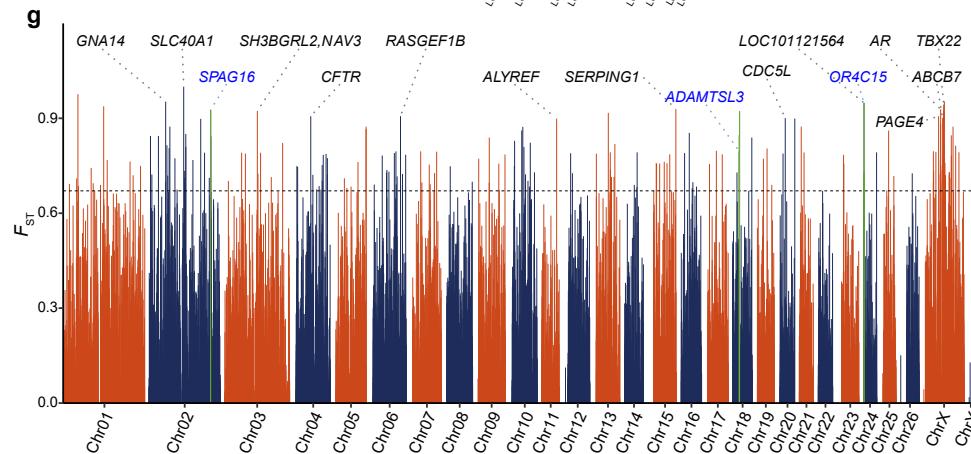
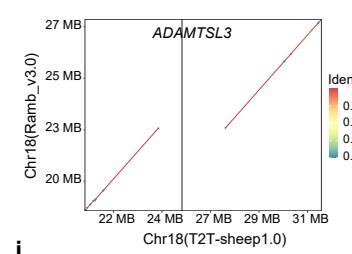
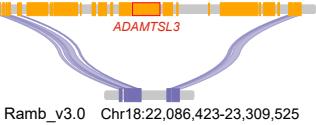

1873 **Supplementary Table 17. Putative selected genomic regions associated with**
1874 **domestication based on SNPs and the top 1% of XP-CLR values.**

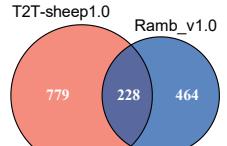
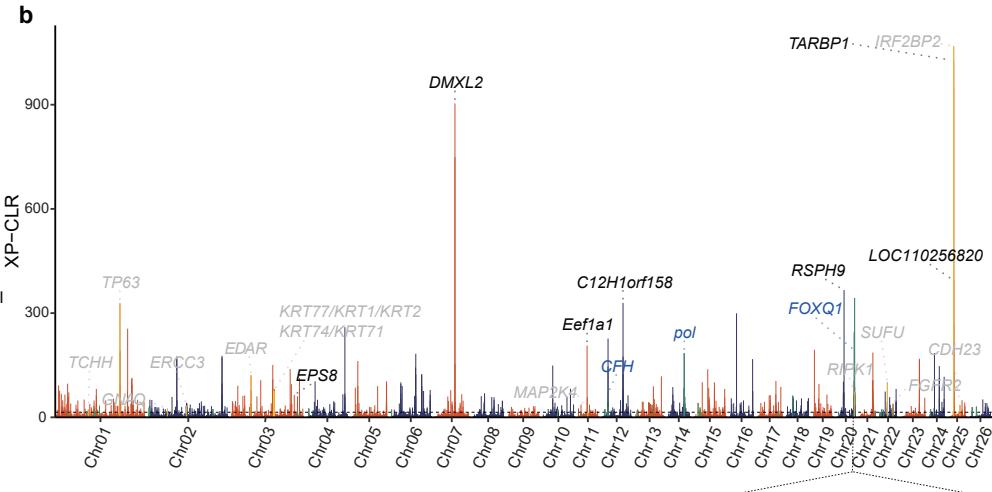
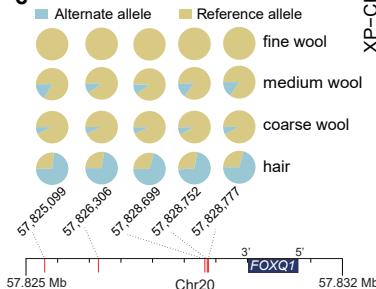
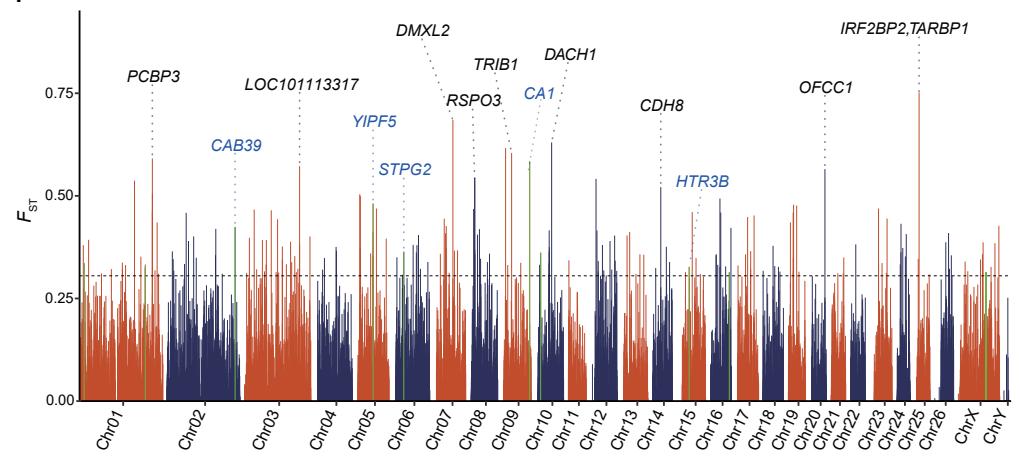
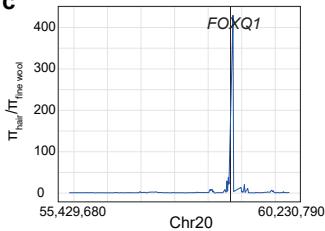
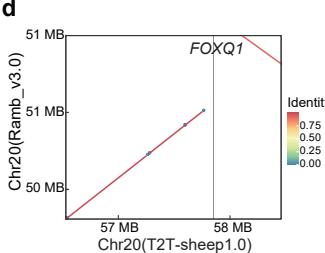

1875


1876 **Supplementary Table 18. Selected structural variants (SVs) associated with**
1877 **domestication based on the top 1% of *F_{ST}* values.**





1878







1879 **Supplementary Table 19. Genomic regions putatively under selection for the wool**
1880 **fineness trait based on SNPs and the top 1% of XP-CLR values.**
1881
1882 **Supplementary Table 20. Selected structural variants (SVs) for the hairy vs. fine-wool**
1883 **sheep comparison based on the top 1% of F_{ST} values.**
1884
1885 **Supplementary Table 21. Structural variants (SVs) within previously unresolved regions**
1886 **(PURs) based on short reads and PacBio long reads.**
1887
1888 **Supplementary Table 22. Genome assemblies for sheep and other mammalian species**
1889 **downloaded from the NCBI for gene annotation.**
1890

a**b****c****d**

a**b****c****f****e****d****g****h****i**

a**b****e****f****c****d**