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Abstract

Ongoing efforts to improve sheep reference genome assemblies still leave many gaps and
incomplete regions, resulting in a few common failures and errors in sheep genomic studies.
Here, we report a complete, gap-free telomere-to-telomere (T2T) genome of a ram (T2T-
sheepl.0) with a size of 2.85 Gb, including all autosomes and chromosomes X and Y. It adds
220.05 Mb of previously unresolved regions (PURs) and 754 new genes to the most updated
reference assembly, ARS-UI_Ramb_v3.0, and contains four types of repeat units (Satl, Satll,
Satlll, and CenY) in the centromeric regions. T2T-sheepl.0 exhibits a base accuracy

of >99.999%, corrects several structural errors in previous reference assemblies, and
improves structural variant (SV) detection in repetitive sequences. We identified 192,265 SVs,
including 16,885 new SVs in the PURs, from the PacBio long-read sequences of 18 global
representative sheep. With the whole-genome short-read sequences of 810 wild and domestic
sheep representing 158 global populations and seven wild species, the use of T2T-sheepl.0 as
the reference genome has improved population genetic analysis based on ~133.31 million
SNPs and 1,265,266 SVs, including 2,664,979 novel SNPs and 196,471 novel SVs. T2T-
sheepl.0 improves selective tests by detecting several novel genes and variants, including
those associated with domestication (e.g., ABCC4) and selection for the wool fineness trait

(e.g., FOXQ1) in tandemly duplicated regions.

Keywords: sheep, T2T genome assembly, structural variants, domestication, wool fineness,

centromere
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I ntroduction

Among the first domesticated livestock species, sheep (Ovis aries) have evolved various
phenotypes, providing an important source of meat, fur, and dairy products. A reference
genome assembly of sheep is essential for exploring the evolutionary history?, migration®,
genetic diversity®, and causative genes and variants underlying specialized traits® of sheep.
With the rapid advancement of sequencing technologies such as high-throughput
chromosome conformation capture (Hi-C), Pacific Biosciences (PacBio) and Oxford
Nanopore Technology (ONT) sequencing, continuous efforts have been made to improve
sheep reference genomes. To date, as many as 57 sheep assemblies at the chromosome or
scaffold level have been made available in public databases, including the most updated
genomes, such as Oar_v4.0 (GenBank accession no. GCA_000298735.2)°,

Oar_rambouillet_v1.0 (GCF_002742125), and ARS-UI_Ramb_v2.0 (GCA_016772045.1)".

However, these sheep assemblies suffer from numerous gaps, misassembled regions, uneven
sequence depth, varied alignment rates, and mapping failures and errors*®. The total size of
the unplaced contigs and scaffolds could be as large as hundreds of million bases. In
particular, numerous regions enriched in highly repetitive sequences, such as centromeres,
telomeres and transposable elements (TES), remain unresolved. Additionally, the draft Y
chromosome with a size of 25.92 Mb was recently updated® in ARS-UI_Ramb_v3.0

(GCA _016772045.2, Ramb_Vv3.0), but the divergence and structure of the sheep Y
chromosome is still to be confirmed due to abundant repeats, such as long interspersed

nuclear elements (LINEs) and long terminal repeats (LTRs)**.

Through the use of sequencing for ultralong reads and assembly algorithms'?, telomere-to-

telomere (T2T) genome assemblies have been achieved. Accordingly, previously
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unresolved/unassembled genomic regions, which are enriched in centromeric satellites,

14-16

nonsatellite segmental duplications and rDNAs™, as well as novel genes and variants have

1314 ape’®, maize'®, Arabidopsis'’,

been revealed in several species, including human
soybean®®, and rice™. However, a complete gap-free T2T ovine genome has not been

available until now.

Here we report the de novo T2T gap-free genome assembly for a ram (HU3095) of Hu sheep
(T2T-sheepl.0), a well-known, highly prolific breed native to China. This complete and
seamless assembly covers the Y chromosome and was achieved by using ONT and PacBio
HiFi reads of a ram and the sequenced genomes of its parents. Accordingly, the haplotype
genome assemblies T2T-sheepl.0P and T2T-sheepl.0M were also assembled at T2T level.
The T2T-sheepl.0 genome assembled here was subsequently used as a reference to
investigate genomic components, particularly centromere and telomere structures, previously
unresolved genomic regions, novel genes, structural variants (SVs) and single nucleotide
polymorphisms (SNPs). Furthermore, the application of T2T-sheepl.0 in the analysis of wild
and domestic sheep populations worldwide showed its advantages over previous assemblies
in variant calling, population genomics analyses and identification of novel genes and

variants associated with particular phenotypic traits (e.g., wool fineness) under selection.

Results

T2T gap-free genome assembly

Atotal of 543.2 Gb of ultralong ONT reads (190.4x coverage) and 149.0 Gb of PacBio HiFi
reads (52.2x coverage) were obtained to assemble the T2T-sheepl.0 reference genome
(Supplementary Table 1, Supplementary Fig. 1 and Supplementary Methods). Initial

assembly was achieved based on the PacBio HiFi data, and consists of 246 contigs with an
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100  N50 of 96.54 Mb (Supplementary Table 2). Furthermore, 1135.86 Gb of Bionano’s optical
101  genome mapping (OGM) data and 357.22 Gb of high-throughput chromatin capture (Hi-C)
102 sequencing data (Supplementary Table 1) were used to scaffold the contigs and anchor them
103  onto the 27 pseudomolecules, which correspond to 26 autosomes and chromosome X (ChrX).
104  Atotal of 139 gaps were identified in the initial assembly, ranging from 108 bp to 1.02 Mb
105  with atotal length of 3.41 Mb. The gaps are enriched in centromeric regions that contain

106  highly repetitive sequences (Supplementary Table 3). Ultralong ONT reads were then used to
107  fill the gaps via the strategy of extension or local assembly. Alignments of Bionano optical
108  maps and ONT, HiFi and Hi-C reads indicated that all the gaps in the regions had been filled
109  (Fig. 1a, Supplementary Fig. 2, and Supplementary Fig. 3).

110

111 Initial assembly of chromosome Y (ChrY) was performed independently based on the

112 paternal-specific ultralong ONT reads. Accordingly, gaps were filled using the Y-

113 chromosome-specific contigs, which were assembled by the trio-binning model of Hifiasm®
114  (v0.14) based on the HiFi long reads (Supplementary Table 1). All 56 telomeric regions were
115 locally assembled based on the HiFi reads, and all the incomplete chromosomal ends were
116  replaced with 56 complete telomeres of 1.20 — 25.32 kb (Fig. 1a and Supplementary Fig. 4).
117  Finally, the complete sheep genome assembly, T2T-sheepl.0, with a size of 2.85 Gb, was

118  constructed, covering all the autosomes and two sex chromosomes, X and Y (Table 1). In

119  addition, the trio-based assembly was performed to obtain the haplotype-resolved autosomes
120  for T2T-sheepl.OP of paternal origin and T2T-sheepl.0M of maternal origin. Parent-specific
121 k-mers were generated based on parental short reads to bin the ONT and HiFi reads of

122 paternal or maternal origins, which were used to fill 20 gaps for T2T-sheep1.0P and 15 gaps
123 for T2T-sheepl.OM. Finally, the complete chromosomes X and Y in T2T-sheepl.0 were

124 included in T2T-sheepl.0M and T2T-sheepl.OP respectively (Table 1).
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After polishing T2T-sheepl.0 with ONT and HiFi long reads and NGS short reads, the
consensus base quality value (QV) across the whole genome is 51.53, with a QV range of
46.05 to 59.75 for the chromosomes (Supplementary Table 4). An accuracy of > 99.999% for
each base and a completeness of 92.761% for the whole assembly were obtained. On average,
we obtained 99.75%, 98.99%, and 99.97% mapping rates for short, ONT, and HiFi reads,
respectively, against T2T-sheepl.0. The even coverage distributions of ONT and PacBio HiFi
reads suggest a reliable and continuous assembly (Fig. 1a and Supplementary Fig. 2), and
both the Hi-C and Bionano optical map data show high consistency of the overall alignment
against the pseudochromosomes in T2T-sheepl.0 (Supplementary Fig. 3). Together, all the
statistics above indicated the reliability and completeness of T2T-sheep1.0 assembled here.
Meanwhile, T2T-sheepl.0P and T2T-sheepl.0M achieve the T2T level, only with 4 and 10
gaps left in the centromeric or pericentromeric regions of 2 (Chr25 and Chr26) and 6 (Chr10,
Chr13, Chrl7, Chr23, Chr25, and Chr26) chromosomes respectively due to the lack of binned
long reads. The average genome-wide QVs of T2T-sheepl.0P and T2T-sheepl.0M are 55.41
and 55.23 respectively (Supplementary Table 4). We calculated the switching errors and
obtained the estimates of 0.3781%o, 0.0895%., and 0.1199%. for T2T-sheepl.0, T2T-
sheepl.0P, and T2T-sheepl.0M, respectively. Heterozygous regions between T2T-sheepl.OP
and T2T-sheepl.0M were observed (Supplementary Fig. 5a), as 9,982,198 single nucleotide
variants (SNVs), 1,248,272 small insertions and deletions (< 50 bp) and 20155 SVs (> 50 bp)
were discovered between these two haplotype genomes. The coverage distributions of ONT
and PacBio HiFi reads suggest a good quality of two parental genome assemblies, with a few
of the potential issues in T2T-sheepl.0P and T2T-sheepl.0M (Supplementary Fig. 5b). In
summary, T2T-sheepl.0 represents a better assembly for the downstream analysis by merging

the chromosomal regions from either of the two haplotypes.
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Improvement of T2T-sheepl.0

Good collinearity in the syntenic regions was observed between T2T-sheep1.0 and the NCBI
sheep genome reference Ramb_v3.0. Nearly 220.05 Mb of previously unresolved regions
(PURs) were identified on all 28 chromosomes of T2T-sheepl.0, which were unassembled
(i.e., gaps) or misassembled on the chromosomes of Ramb_Vv3.0 (Fig. 1a and Supplementary
Fig. 2). These PURs are mostly located in the centromeric regions and regions enriched for
repeats, including unfinished chromosomal ends of telomeric regions and 81 gaps in
Ramb_v3.0 (Supplementary Fig. 6). Chr26 and Chrl5 showed the longest accumulated PURS
of 22.57 Mb and 21.41 Mb, respectively, and 5.82 Mb of PURs were identified on ChrY. We

did not observe an association between the lengths of the PURs and chromosomes.

The PURs include centromeric satellites (CenSat, 60.72%), segmental duplications (SDs,
12.95%), overlapping CenSat and SDs (10.06%), and other repeats (8.15%) (Fig. 1b). The
gaps in Ramb_v3.0 enriched with repeats were filled in T2T-sheepl.0, and some genes were
annotated in gap-filled regions of T2T-sheepl.0 (Fig. 1c and Supplementary Fig. 7). For
example, the gene ID “Genel1808” (annotated as HNRNPK), located in a gap on Chr01, was
expressed in longissimus dorsi, cerebrum, and hypothalamus tissues (Fig. 1c). Overall,
hundreds of thousands of gaps and unplaced contigs were observed in the available sheep
assemblies (Supplementary Figs 8a and 8b). Compared with these previous assemblies, T2T-
sheepl.0 is not the longest due to sequence redundancy when considering all the
chromosomes and unplaced contigs. However, T2T-sheepl.0 represents the longest complete
gap-free sheep genome assembly after removing unknown nucleotides in the gaps and
mitochondrial genome sequences (Supplementary Table 5). More than 96% Benchmarking

Universal Single-Copy Orthologs (BUSCO) were annotated in T2T-sheepl.0 based on a total
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175  of 9226 core genes in the mammalia_odb10 database, while only 93.9% BUSCO annotation

176  was achieved in Ramb_v3.0” and 91.2-92.4% in 15 other sheep genome assemblies

177  (Supplementary Fig. 8c). We compared the total lengths of two known centromeric satellites
178  (GenBank accessions KM272303.1 and U24091) among these assemblies, and T2T-sheepl.0
179  has the longest lengths for the two satellites, making it the best assembly in terms of

180  centromeric regions (Supplementary Fig. 8d).

181

182  T2T-sheegpl.O corrected many structural errors in Ramb_v3.0 (Fig. 1d and Supplementary Fig.
183  9). Based on the MGI-sequenced short reads, rare k-mer errors (k = 21) were detected in T2T-
184  sheepl.O, while enriched k-mer errors indicated potential assembly issues, which could be
185  ascribed to genome-wide structural errors in Ramb_Vv3.0. A few large inversions between the
186  two assemblies were confirmed as structural errors with the support of multiple lines of

187  evidence. For example, the inversion INV195 between T2T-shegpl.0 and Ramb_3.0 was

188  detected on Chr09 (Fig. 1d). We retrieved the raw PacBio sequencing data of Rambouillet
189  sheep assembled previously and aligned the reads to Ramb_Vv3.0. The alignment showed

190  clipped reads, and the junction sites of the inversion INV195 in Ramb_v3.0 could not be

191  covered by the PacBio reads, together with low read coverage and k-mer error peaks (Fig. 1d).
192 However, alignment of the PacBio sequences demonstrated a good coverage at the junction
193 sites when against T2T-sheepl.0 (Supplementary Figs 9a and 9b). Similarly, the alignment of
194  raw HiFi long reads generated from the Hu sheep assembled here further evidence that the
195  region was assembled correctly in T2T-sheepl.0, and an inversion error occurred in

196 Ramb v3.0, rather than a breed difference.

197

198  The improvement in genome quality is also reflected in the average genome-wide QV of

199  51.53 in T2T-sheepl.0, compared to 44.77 in Ramb_v3.0 excluding chromosome Y (i.e.,
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200 Ramb_v2.0)". Minimum unique k-mers (MUKSs) are defined as k-mers that occur only once in
201 T2T-sheepl.0. Compared to Ramb_v3.0, T2T-sheepl.0 exhibits an overall increase in the

202 number of MUK sequences across the chromosomes (Fig. 1e and Supplementary Fig. 10),
203  e.g., from 155.86 Mb to 156.13 Mb based on 20-mers, from 234.75 Mb to 236.10 Mb based
204  on 50-mers and from 263.53 Mb to 277.60 Mb based on 1000-mers, which might benefit
205  from improvements in both base-level accuracy and the assembly of repetitive regions in
206  T2T-sheepl.O. The centromeric and repetitive regions, e.g., SDs, exhibit longer MUKS in
207  100-kb windows than do the other chromosomal regions (Fig. 1a).

208

209 Genomeannotation

210  Based on the repeat libraries built by combining de novo prediction and available repeats in
211 animals, 47.67% (1360.45 Mb) of the T2T-sheepl.0 genome sequences were identified as
212 repetitive sequences, more than observed (44.10%, 1164.82 Mb) in Ramb_v3.0 (Table 1).
213 Among the repetitive sequences, a great majority are transposable elements (TEs), with a
214  total size of 1200.48 Mb, accounting for 42.07% of the whole T2T-sheepl1.0 genome. Long
215  interspersed nuclear repeats (LINEs) derived from TEs are the most abundant, spanning

216 780.1 Mb and covering 27.34% of T2T-sheepl.0. The PURSs could have been driven by

217  repetitive sequences, which would pose a great challenge for accurate assembly. We found
218  that the repeat contents in PURs were much higher than in the other chromosomal regions
219  (Supplementary Table 6). We assembled satellites with a total length of 162.14 Mb, covering
220  5.68% of the whole genome. However, a total length of only 4.67 Mb (0.18% of the genome)
221 was found in Ramb_v3.0, which is congruent with the high content of satellites in PURs.

222 Centromere-specific satellites and SDs account for 70.78% of the PURs with a predominant
223 distribution (Fig. 1b). Among the PURs of T2T-sheepl.0, 286,173 satellite sites (157.10 Mb)

224  and 10,214 SDs (50.76 Mb) account for 96.89% and 19.65%, respectively, of all the satellites
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and SDs in the whole genome (Supplementary Table 6).

A combination of ab initio, homolog-based, and transcriptome-based predictions was used to
annotate and integrate the nonredundant gene structures in T2T-sheepl.0. After removing the
transposon genes, a total of 21,517 high-confidence protein-coding genes were obtained
(Table 1), of which 754 are newly anchored genes located in the PURs (Supplementary Fig.
11), and 99% of the protein-coding genes were annotated based on public databases,
including the NCBI nonredundant (NR) protein database and Kyoto Encyclopedia of Genes
and Genomes (KEGG) database. We searched for newly assembled regions (NARs) on the
chromosomes in T2T-sheep1.0 which are not included in Ramb_v3.0” (alignment between all
chromosomes of T2T-sheepl.0 and all chromosomes and unplaced contigs of Ramb_v3.0),
rather than pairwise chromosomal comparisons for PURs (alignment of all chromosomes
between T2T-sheepl.0 and Ramb_v3.0). Atotal of 712 newly assembled genes (NAGs) were
identified among the NARs of T2T-sheepl.0 (Supplementary Fig. 11). The genes in the PURs
and NAGs exhibited transcriptional expression in a diverse set of tissues, e.g., adipose, blood,
rumen and hypothalamus based on RNA-seq data (Supplementary Table 7 and
Supplementary Fig. 11). We annotated 147 genes within the centromeric regions of 25
chromosomes in T2T-sheepl.0, and RNA-seq analysis revealed low expression levels of these

genes (Supplementary Table 8).

Genefamiliesand SDs

For the 18084 orthogroups inferred by the program OrthoFinder (v2.5.5)%, we observed
obvious expansion of gene families with increased copy numbers in T2T-shegpl.0 compared
to the three genome assemblies of sheep Ramb_Vv3.0, argali CAU_O.ammon polii_1.0 (Ovis

ammon polii, GenBank accession no. GCA_028583565.1) and goat ARSL (Capra hircus,

10
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GCF_001704415.1) (Supplementary Table 9). For example, the orthogroup OG0000002
contained 33 genes, with only 1 found in Ramb_v3.0, 22 in argali CAU_O.ammon polii_1.0
and none in goat ARSL. Furthermore, gene family expansion showed a strong association

with the enrichment of SDs (Supplementary Fig. 12).

To characterize the SD content, we identified 111.06 Mb and 20.55 Mb of nonredundant
segmental duplicated sequences on the 28 chromosomes (26 autosomes and chromosomes X
and Y) of T2T-sheepl.0 and Ramb_v3.0, respectively. A total of 45.56% of the
interchromosomal SDs are scattered across different chromosomes, while 54.44% of the
intrachromosomal SDs were identified. The SDs spanned 68.55 Mb, and covered 2622 genes.
Among these genes, 44.28% are in paralogous gene groups with more than one gene in T2T-
sheepl.0, indicating a significant contribution of SDs to gene copy number. Compared with
those in T2T-sheepl.0, the reductions in SDs and paralogous gene groups in Ramb_v3.0
might be due to the assembly collapse of repetitive sequences. Of the total SDs, 45.71%
overlapped with the PURs of T2T-sheepl.0, spanning 50.76 Mb. In particular, 4.52 Mb of
SDs within PURs on the Y chromosome were shown to be related to the tandem duplication
of three gene families, the testis-specific protein Y-encoded (TSPY) gene, the heat shock
transcription factor Y-linked (HSFY) gene, and the zinc finger Y-linked (ZFY) gene.
Additionally, our selective sweep tests of global wild and domestic sheep identified strong
signals linked to tandemly duplicated genes in the SD-enriched regions (see the results

below).

Centromeric regionsand their repeat content
Eleven acrocentric chromosomes shared similar satellite sequences, and created an assembly

graph with tangles among them (Fig. 2a), which were further discovered to be centromeric

11
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repeats. After gap-filling, the centromeric regions were resolved with the support of sufficient
read coverage (Fig. 1a and Supplementary Fig. 2). As histone H3 binds to centromeres on
nucleosomes, ChlP-seq based on an antibody of phosphor-CENP-A (Ser7) was used to
determine the centromeric regions (Fig. 2b). It is known that centromeres are dominated by
centromeric satellites and rich in highly hypermethylated CpG as observed in humans'*#.
Our evidence also supported the identification of centromeric regions, including the
enrichment of methylated cytosine based on HiFi data (Supplementary Fig. 13) and the
successful alignment of two known centromere-specific satellite DNA sequences (NCBI
accessions KM272303.1 and U24091) in these regions. Hypermethylated regions covered the
entire centromeric region on Chr02 (Fig. 2b), and similar to that in humans, the
hypomethylation displayed a centromeric dip region (CDR) corresponding to Satll on Chr02.

2223 and medaka fish®, as CDRs related to hypomethylation

CDR is also reported in humans
might be associated with interaction with CENP-A for binding of functional kinetochores and
serving as a part of distinct marks for euchromatin and heterochromatin®?2’. Based on the
high content of repetitive sequences and their higher similarities in centromeric regions, we
performed calculations of pairwise sequence identity and sequence complexity or entropy
across all the whole chromosomes. Heatmaps of pairwise sequence identity also confirm
centromeric locations with significant continuous blocks (Fig. 2b), while the sequence
complexity signals or entropies exhibit different distributions in centromeric regions from
those in the other regions (Fig. 2b and Supplementary Fig. 14). These results are congruent
with the lines of evidence from enriched signals of ChIP-seq, hypermethylation, and satellite

DNA alignment (Supplementary Fig. 13). The centromere lengths ranged from 0.36 Mb to

22.63 Mb, showing no association with chromosomal length (Fig. 2c).

Satellite DNAs that consisted of higher-order repeats (HORs) dominated the centromeric
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300 regions of autosomes and the X chromosome. The satellite repeats were classified into three
301  categories: Satl (816 bp), Satll (702 bp) and Satlll (22 bp) (Supplementary Methods and Fig.
302 2c). Satl and Satll, which corresponded to two previously described satellites (KM272303.1
303 and U24091, respectively)®® dominated the centromeric regions of T2T-sheepl.0 (Fig. 2c).
304  We confirmed the sequence of Satl, determined the size of Satll to be 702 bp instead of the
305  ~400 bp reported previously®®, and revealed a new satellite, Satlll. The centromeric Satll|
306  repeat arrays were validated through fluorescence in situ hybridization (FISH) assays (Fig.
307  2d). The intensities of the FISH signals on the ends of the chromosomes were in accordance
308  with the centromeric presence of Satlll in our assembly. Additionally, lower entropy values
309  were found in centromeric satellites, such as, Satl and Satll on Chr02 (Fig. 2b), indicating
310  less sequence complexity than in other chromosomal regions. The primate centromere

311  evolved via the amplification of satellite sequences within its inner core, which forms layers
312 of varying ages®. Like the presentation of centromeric regions in humans®, we also observed
313  the evolutionary layers of centromeric satellites based on sequence identity and similarity
314  heatmaps. For example, on the X chromosome, Satll dominated the centromeric region, and
315  at least two layers were identified in the Satll HORs (Supplementary Fig. 13). Additionally,
316  we detected the insertion of other repeat units such as LINEs and SINEs into the centromeric
317  regions (Fig. 2b). In contrast to genes within centromeric regions, genes in pericentromeric
318  regions were highly expressed according to the RNA-seq data (Fig. 2b).

319

320 Evolution of centromeric satellites and chromosomal fusion

321 Sheep have experienced significant evolutionary events for chromosomal centric fusion of
322 the three metacentric chromosomes of Chrl, Chr2, and Chr3%. Nonallelic homologous

323 recombination (NAHR) occurred on the two acrocentric chromosomes of their wild ancestors

324  and related species, and generated a metacentric chromosome. As a result, footprints of
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325  centromeric evolution might remain in the centromeric regions of the three metacentric

326  chromosomes. We examined the genome of argali® to trace its chromosomal reorganization
327  using the goat genome®! as an outgroup (Fig. 2e). The collinearity among sheep, argali, and
328  goat apparently revealed the two-to-one fusion relationships (CHI1 + CHI3 in goat vs. Chr01
329  insheep; CHI2 + CHIS8 in goat vs. Chr02 in sheep; CHI5 + CHI11 in goat vs. Chr03 in sheep)
330  between 6 chromosomes in goat and 3 chromosomes in the two ovine species. Based on the
331  centromeric locations on chromosomes in goats and the two ovine species, we established the
332 chromosomal fusion pattern involving the footprints of centromeric satellites (Fig. 2e). In

333 addition, Satll was in the core of centromeric regions with high sequence identity on the three
334  metacentric chromosomes Chr01, Chr02, and Chr03 (Fig. 2b and Supplementary Fig. 13).

335  According to the sequence identity heatmap of the centromeric regions of sheep, there are

336  four evolutionary layers on Chr02 including layers #1 and #2 of Satl and layers #3 and #4 of

337  Satll (Fig. 2b) based on identity values of 80—-100%, which suggested multiple amplification

338 events of Satl and Satll. We did not detect telomeric sequences in the centromeric regions of
339 these three metacentric chromosomes with NAHR or fusion events in T2T-sheepl.0, which is
340  different from previous observations of telomeres in centromeric regions in muntjac®.

341

342  We determined the sequence similarity and conservation of Satl, Satll and Satlll in Caprinae
343 and Bovidae species, by comparing related sequences in the NCBI database. Multiple

344 sequence alignment of Satl sequences revealed 599 variant sites among the 16 Bovidae

345  species, and 86 variants between T2T-sheepl.0 and T2T-goat1.0** (Supplementary Table 10
346 and Supplementary Fig. 15a). The Satl sequences accumulated variants among Caprinae

347  species, and a phylogenetic tree based on their consensus sequences showed the split of

348  Caprinae and Hippotraginae species in the Bovidae family (Fig. 2f). The sequences of Satl|

349  harbored 130 variable sites between sheep and goat (Supplementary Fig. 15b), while two
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Satlll variants (Satll1-20GG and Satll1-20CC for T2T-sheepl.0, Satlll-VV2A and Satlll-V2C
for T2T-goat1.0) were found for both the species (Fig. 2d). As shown by the binding results
of the FISH probes, the two primary Satlll variants (Satll1-20GG and Satll1-20CC) exhibited

intensified signals on the chromosomal ends (Fig. 2d).

Y chromosome structure

It has been difficult to assemble the Y chromosome due to the homology of the X and Y
chromosomes™, i.e., pseudoautosomal regions (PARs). Thus, a relatively complete Y
chromosomal assembly is available for only a few species such as human, monkey, rat,
mouse, cattle, and donkey (Supplementary Fig. 16a). However, only the human®® (assembly
T2T-CHM13v2.0) and six apes™ have a gap-free T2T Y chromosome. Hereby, T2T-sheepl.0-
chrY of sheep was assembled and significantly improved compared with the most updated Y
chromosome reference® (Ramb_v3.0-chrY, CP128831.1) for sheep in the Ramb_v3.0
assembly. T2T-sheepl.0-chrY had a length of 26.59 Mb, which was 0.67 Mb and 15.97 Mb
longer than those of Ramb_v3.0 and the earlier Hu sheep reference genome ASM1117029v1*°
(GCA_011170295.1), respectively. The ~17-Mb region covering the PAR showed good
collinearity between T2T-sheepl.0-chrY and Ramb_v3.0-chrY, except for a 1.18-Mb
inversion at ~10 Mb (Fig. 3a). The remaining ~9-Mb region distal to the PAR of the Y
chromosome (namely Z zone) showed a low-quality assembly and highly fragmented DNA
as small inversions in Ramb_v3.0-chrY, which was annotated as a ZFY gene array in T2T-
sheep-chrY (Fig. 3a and Fig. 3b). The pairwise sequence identity heatmap showed an

apparent block in this region, suggesting the presence of repeats (Fig. 3b).

Centromere-specific satellites (Satl, Satll, and Satlll) were not observed, but another type of

simple repeat sequence, CenY, which was 2516 bp long and spanned a total of 180.12 kb,
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was present on the sheep Y chromosome. As a potential centromeric repeat unit on the Y
chromosome, CenY was supported by hypermethylation data and the sequence identity
heatmap (Fig. 3b). Similar sequences of CenY could be detected on the goat Y chromosome™,
but the length was only approximately 1400 bp. In addition to the Caprinae subfamily, CenY
sequences are also found on the Y chromosomes of other Bovidae species, such as Bos taurus

(GenBank accessions CP128563.1 and LR962769.1).

ChlIP-seq based on phospho-CENP-A (Ser7) antibody failed to capture any reads on the
whole Y chromosome of sheep, despite the presence of ChlP-seq peaks in the other
chromosomal centromeric regions with Satl~Satlll repeats (Fig. 2b and Supplementary Fig.
13). This observation is congruent with the lack of hybridization of the Satl and Satll probes
to the Y chromosome observed in FISH assays of sheep?®*. In this study, the binding of
FISH probes confirmed the unique presence of CenY on the Y chromosome (Fig. 2d). Apart
from CenY, other repeats, such as LINEs, SINEs and LTRs, were also detected on the Y
chromosome, accounting for 39.72%, 6.20% and 7.24% of the whole Y chromosome,

respectively.

Atotal of 133 protein-coding genes and 59 pseudogenes were annotated (Fig. 3b). Unlike in
human®® and goat®!, we did not find apparent double tandem gene copies on the sheep Y
chromosome, but detected significantly increased copy numbers of three gene families, i.e., 9,
11, and 33 copies for TSPY, HSFY, and ZFY, respectively. Our pseudogene prediction further
revealed 10 more ZFY-like pseudogenes in the Z zone. In comparison, the ZFY gene on the Y
chromosome showed only one copy in human T2T-CHM13v2.0, and 5 dispersedly distributed
copies on the Y chromosome of the goat T2T genome assembly T2T-goat1.0*!. Phylogenetic

analysis of the ZFY genes confirmed their very high sequence similarity and placed them into
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a single clade of the tree based on nucleotide sequences (Supplementary Fig. 16b). Notably,
the expansion of these three gene families was strongly related to the enrichment of SDs in
these regions (Fig. 3b). RNA-seq of 148 samples covering 28 tissues from the public NCBI
database confirmed the transcription of these protein-coding genes, particularly with high

expression in the testis (Fig. 3b and Supplementary Fig. 17).

RNA-seq revealed no or low expression of 54 genes in the hypermethylated homologous
regions in blood, compared to the abundant expression of genes in the male-specific Y (MSY)
region and Z zone in the testis (Fig. 3b). T2T-sheepl.0-chY is one of the first complete sheep
Y chromosomes with detailed gene annotation®, and 7 genes (i.e., IL9R, IL3RA, SLC25A6,
ASMTL, P2RY8, ASMT, and DHRSX) on the X-chromosome-homologous region of the Y

chromosome (~4 Mb) showed an order similar to that in human T2T-CHM13v2.0-chrY.

Features of the X chromosome

In addition to the Y chromosome, T2T-sheepl.0 also significantly improved the assembly of
the X chromosome, with an increase in QV from 44.76 in Ramb_v3.0 to 51.04. The assembly
of the X chromosome showed uniform coverage for ONT and HiFi reads (Fig. 3c). We
corrected the mistakenly assembled inversions on the X chromosome of Ramb_v3.0. For
example, just like INV195 on Chr09 (Fig. 1d), we confirmed errors for the two inversions
(7.25 Mb for INV405 and 3.29 Mb for INV406) on the X chromosome in Ramb_v3.0, due to
the alignment failure of PacBio reads from both Rambouillet and Hu sheep for T2T-sheepl.0
at the two junction sites (Fig. 3d and Supplementary Fig. 9¢). We annotated 959 genes on the
X chromosome of T2T-sheepl.0, and identified centromeric regions based on enrichment of
ChlP-seq and hypermethylation signals. We found that the p arm (~7 Mb) of the X

chromosome, covering 31 genes, was homologous to the ~8.6 Mb region with 54 genes on
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the p arm of the Y chromosome, and was considered as PAR (Fig. 3c). Furthermore, the PAR
is enriched with MUK and PURs and hypermethylated on both the X and Y chromosomes in
blood (Fig. 3b and 3c). In addition, 10 genes in the middle region of the X chromosome from
81.71 Mb to 100.68 Mb exhibited collinearity with the 10 corresponding genes in the MSY

region of the Y chromosome (Fig. 3c).

Structural variants based on long reads

To investigate the performance of T2T-sheepl.0 as a reference for calling large SVs, we
sequenced the genomes of two sheep individuals from the Tan and European mouflon
(Supplementary Fig. 18), and aligned their PacBio long reads to T2T-sheepl.0 together with
the downloaded datasets of the other 16 sheep samples (Supplementary Table 1 and
Supplementary Table 11). The mismatch rate for alignment observed for T2T-sheepl.0
decreased significantly (Fig. 4a), most likely because of the greater accuracy of the consensus
sequences. After merging and filtering, we identified a total of 192,265 SVs overlapping with
11,987 genes (55.93% of the total genes), including 75,962 deletions (DELs) and 113,541
insertions (INSs) (Supplementary Table 12). Alignment to Ramb_v3.0 yielded substantially
less SVs across the 18 sheep samples (Fig. 4b and Supplementary Table 13). However, we
discovered 663 homologous DELs and INSs with allele frequency of 36 in all 18 samples
(Supplementary Table 13), less than the 959 ones with Ramb_v3.0 as a reference, and it could
be explained by structural errors corrected in T2T-sheepl.0. We observed a significant
increase in the number of SVs in the two wild sheep of Asiatic mouflon and argali compared
to the other 15 domestic sheep and European mouflon (Fig. 4b). T2T-sheepl.0 enabled the
discovery of additional 16,885 SVs within PURSs spanning 24.20 Mb (Supplementary Fig. 19),
most of which are deletions (n = 10,979) and insertions (n = 5473). Compared with

Ramb_v3.0, T2T-sheepl.0 used as the reference resulted in more deletions and insertions in
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highly repetitive regions with smaller size, such as satellites and SINEs, than in LINEs, LTRs,
and genes (Fig. 4c and Supplementary Fig. 18). This observation can be explained by the fact
that satellites dominated the PURSs. In total, we observed 16,885 new SVs spanning 24.20 Mb
(Fig. 4d), most of which were deletions (n = 10,979) and insertions (n = 5473). We

discovered 16 SVs related to exons and homologous in all 18 individuals and their
overlapping genes are related to the functions of fertility, wool, and development with a
unique role in Hu sheep (Supplementary Table 14). Within the collinearity regions between
T2T-sheepl.0 and Ramb_v3.0, we also observed improvements in SV calling. For example, a
deletion in an exon of the TUBEL gene was detected on Chr08 in all 18 individuals when
using T2T-sheepl.0 as a reference, and the gene assembly and annotation are supported by

the presence of complete transcripts in the I1so-seq data (Supplementary Fig. 20).

Novel genetic variants based on short reads

T2T-sheepl.0 showed improvements in short read-based variant calling. We collected next-
generation genome sequencing datasets for 810 sheep worldwide (Fig. 5a and Supplementary
Table 15) and compared the SNPs detected when using T2T-sheepl.0 and Ramb_v1.0 as
references (Supplementary Table 16). For comparison with previous results*, Ramb_v1.0 was
used as a reference for the alignment and call variants, rather than Ramb_v3.0. The depth of

short reads with alignment against T2T-sheepl.0 ranges from 10.47 to 43.41. A total of 764

(94.32%) samples showed a = 10% increase in the number of mapped reads when using T2T-

sheepl.0 as a reference compared with Ramb_v1.0. We divided all 738 domestic sheep

samples into 6 geographic populations (i.e., Central- and- East Asia, South- and- Southeast
Asia, the Middle East, Africa, Europe, and America) according to their sampling locations.
The remaining 72 samples comprise 7 wild species of European mouflon, Asiatic mouflon,

urial, Argali, snow sheep, thinhorn sheep, and bighorn sheep. Compared to the number called
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by Ramb_v1.0, more reads were mapped to T2T-sheepl.0 in all the geographic populations
and wild species, with up to >10% added in some populations or species. We observed a
much lower per-read mismatch rate when T2T-sheepl.0 was used as the reference, while the
mismatch rates of the wild species were obviously greater than those of the domestic sheep
(Supplementary Fig. 21). Moreover, more reads with zero mapping quality were generated
when using T2T-sheepl.0 as the reference. This could be due to the increase in satellite
sequences and SDs, which resulted in multiple locations for the alignment of short reads.
Significantly fewer outward-oriented pairs were aligned with T2T-sheepl.0. Moreover, we
detected > 3% additional properly paired reads in 252 samples with alignment to T2T-
sheepl.0 (Supplementary Fig. 21). Therefore, improvements in the mapping of T2T-sheepl.0

indicate its advantage as a sheep reference genome.

We obtained 133,314,255 high-quality SNP variants against T2T-sheepl.0, 2,664,979 of
which were located in PURs (Supplementary Table 16), 12,060,995 more than observed
against Ramb_v1.0 (Supplementary Fig. 22). After further filtering SNPs with minor allele
frequencies (MAFs) <0.05, 27,493,776 SNPs were used for subsequent analysis, among
which 336,166 SNPs located in PURs (Supplementary Fig. 22) covering 1635 genes. Notably,
we found that more low-quality SNPs were filtered with Ramb_v1.0 as the reference,
probably because of the relatively low base-level QV. The number of SNPs in the PURs on
each chromosome showed no association with the length of the PURs (Supplementary Fig.
22). With T2T-sheepl.0 as the reference, the increase in the number of total SNPs was
observed in the six geographic populations and in the wild sheep population, in terms of both
heterozygous and homozygous SNPs (Supplementary Fig. 22). Additionally, we identified
1,265,266 SVs (Supplementary Table 16), including 196,471 SVs in PURs, which were

dominated by 1,048,080 DELs and were much more abundant than those identified in our
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previous study” using Ram v1.0 as the reference.

The assembly of the PURs in T2T-sheepl.0 provided new variants for quantitative trait locus
(QTL) mapping analysis. A total of 4729 sheep QTLs related to morphological and
agronomic traits were identified in 248 previous studies, according to the Animal
Quantitative Trait Loci (QTL) Database (Animal QTLdb)®. We converted their genomic
coordinates relative to T2T-sheepl.0, and found that 758 SNPs in the PURSs were located

within 2 Mb of the closest regions of the QTLs (Fig. 5b).

Nucleotide diversity and genetic structure

SNPs called by T2T-sheepl.0 were used to perform population analysis of wild and domestic
sheep. We found the highest average nucleotide diversity () value in domestic sheep,
compared to all the wild populations (Supplementary Fig. 23), while two wild sheep, Urial
and Asiatic mouflon, harbored higher z values than previously reported for domestic sheep®.
Phylogenetic position of sheep population is sensitive to the reference, and the analysis with
T2T-sheepl.0 as the reference resolved some samples with confusing phylogenetic positions
(Fig. 5¢ and 5d) in the neighbor joining (NJ) tree and principal component analysis (PCA). In
the NJ tree with Ramb_Vv1.0 as the reference, five populations originating from Southwest
China (Diging with a label of DQS, Tengchong with TCS, and Tibetan sheep with ZRJ and
ZLX) and Kazakhstan (Degeres mutton-wool sheep with DEG) were not placed in the clade
of Central and East Asia (Supplementary Table 15), while the NJ tree with T2T-sheepl1.0 was
updated with these five populations in the Central and East Asian clade. So we labeled them
as previously misclassified samples (PMSs), and Fsr-based Neighbor-Net network further
confirmed close phylogenetic relationships of PMSs with Central and East Asian sheep

(Supplementary Fig. 24).
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Genetic structure by ADMIXTURE (k=10) and Fsr-based Neighbor-Net network based on
the SNPs showed consistent patterns of genetic differentiation among domestic (six
populations: red for Europe, green-blue for Africa, light-blue for Central-and-East Asia,
yellow for South-and-Southeast Asia, and mosaic colors for the Middle East and America)
and wild (four populations) sheep populations according to their geographic origins (Fig. 5c,
5d, 5e, and Supplementary Fig. 24). Furthermore, genetic divergence of the lineages was
observed inside the domestic sheep populations on the continents. For example, Chinese
Merino (abbreviated as MFW and MSF) and six breeds of Central Asia and Tibet (AZME,
ARME, KATO, DEG, TCS, and ZRJ) in Central-and-East Asia received the genetic
introgression of European sheep with closer relationships with European clade
(Supplementary Fig. 24) and showed the colors of blue and red respectively, rather than light-
blue (Fig. 5e). African sheep consist of two groups (green-blue and dark green-blue in Fig. 5e)
and contain a breed of Dorper sheep (DPS in orange in Fig. 5e) with European blood.
European sheep have the genetic introgression of African sheep in 12 breeds of South Europe
(ALT, MKS, etc.) in light-blue, while North European sheep (OUE and SOL) also show the

different lineage origin.

Selection signaturesfor domestication

To confirm the improved ability of T2T-sheepl.0 to identify genomic regions selected during
domestication, we reanalyzed the sequencing data in a genomic comparison between Asiatic
mouflon and five old domestic landrace populations from a previous study in which the sheep
assembly Oar_v4.0 (GCA_000298735.2) was used as a reference®®. The regions with the top
1% of outliers for the cross-population composite likelihood ratio (XP-CLR) and Fst were

considered as candidate selective sweeps. Atotal of 1066 selected regions of 53.30 Mb and
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covering 338,024 SNPs and 197 SVs were identified with extreme allele frequency
differentiation across the 27 chromosomes (Supplementary Table 17 and Supplementary
Table 18). Overall, 311,888 SNPs (92.27%) associated with the top 1% selected regions as
detected with T2T-sheepl.0 could be successfully mapped onto Oar_v4.0, and 1403 genes
within these sweeps were designated candidate selected genes (Fig. 6a). We discovered
multiple novel selection signals (blue-colored in Fig. 6a) in the PURs of pericentromeric
regions, such as those on Chr03, Chr17, Chrl18, and Chr24. A total of 146 candidate genes
obtained using Oar_v4.0 as a reference®, such as MBOAT2, TEX12, PDE6B and CUX1, were

also included in the list of selected genes detected by T2T-sheepl.0 (Fig. 6b).

In particular, 550 and 36 novel selected genes that were not identified by Oar_v4.0 were
identified in non-PURs (e.g., TIMM17A, PLEKHA5, UNCX and PKD1L3; gray-colored in
Fig. 6a) and PURs (e.g., ABCC4, SPAG16, OASL, BNC1, CD226 and FAM20C; blue-colored
in Fig. 6a) of T2T-sheepl.0, respectively (Supplementary Fig. 25 and Supplementary Table
17). These novel genes were mostly involved in immunity, neuron development, sperm,
energy metabolism, etc. For example, we detected selective signals of a ~4 Mb region (Chr10:
80,150,000-83,900,000) by both XP-CLR and nucleotide diversity (r) ratio of n-O.
orientalis/n-landrace (Fig. 6¢). This selected region covered 20 ABCC4 gene copies
(Genel0176~10179, Genel0434, Generfl0555, Gene10437~10438, Generf10560,
Genel0440, Generfl0562, Gene10443, Generf10563, Gene10445~10446, Gene10448~10452,
Fig. 6d) and was not assembled in Ramb_v3.0 with only 8 truncated short ABCC4 gene

copies (Fig. 6e). These 20 ABCCA4 copies were expressed in multiple tissues, including blood,
colon, duodenum, and ileum, indicating specialized functions. Further examination revealed
37 nonsynonymous mutations in one ABCC4 copy (Genel0176, Fig. 6f) and selected sites in

the other two ABCCA4 copies (Gene10178 and Genel10446) in domestic sheep compared to
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575  wild sheep (Fig. 6e and Supplementary Fig. 25a). The selection signals of other novel genes
576  (e.g., SPAG16, OASL, BNC1, CD226 and FAM20C) were also confirmed based on the = ratio
577  and differentiated alleles between the wild and landrace sheep populations (Supplementary
578  Fig. 25h).

579

580  Seven SVs within the top 1% of the Fst outliers were identified in the PURs (Fig. 6g and
581  Supplementary Table 18). Within an ~3.5-Mb PUR (Fig. 6h), we identified two deletions
582  (1.06 kb and 1.49 kb in length) located within the introns of the ADAMTSL3 gene on Chrl8
583  (Supplementary Fig. 25c), which plays a cardioprotective role in maintaining cardiac function
584  in human and mice®. This PUR in T2T-sheepl.0 included 24 genes not present on Chrl8 of
585 Ramb v3.0 (Fig. 6i). Anewly identified deletion in one intron of SPAG16, which is involved
586 inthe development, maturation, and motility of sperm, was also detected in a small PUR,
587  and allele frequencies of this deletion and other SNPs revealed significant differentiation

588  between five landrace sheep breeds and Asiatic mouflon (Supplementary Fig. 25d).

589

590 Selection signaturesfor fleece fiber diameter

591  We applied T2T-sheepl.0 to detect genome-wide selection signatures among hairy and

592  coarse-, medium- and fine-wool domestic sheep populations with decreasing fleece fiber

593  diameters based on both SNPs and SVs (Supplementary Table 19 and Supplementary Table
594  20). To compare the results, we followed the same analysis procedures used in our previous
595  study, with Ramb_v1.0 as a reference”. The top 1% of XP-CLRs revealed 1014 selection

596  signals between fine-wool and hairy sheep, and 383,248 (98.54%) SNPs within the top 1% of
597 the selected regions based on T2T-sheepl.0 could be successfully lifted over to Ramb_v1.0,
598 and 228 genes, including TP63, KRT (KRT77, KRT1, KRT2, KRT74 and KRT71), and

599  IRF2BP2, were shared when using two reference genomes (Fig. 7a). These genes known to

24


https://doi.org/10.1101/2024.07.21.604451
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.21.604451; this version posted July 23, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

available under aCC-BY-NC-ND 4.0 International license.

be under selection* were confirmed based on the selected sites in domestic sheep
(Supplementary Fig. 26a). Compared to those in Ramb_v1.0, ~779 and 24 novel selected
genes were identified in non-PURs and PURSs, respectively, in the comparison of fine-wool
and hairy sheep (Fig. 7b). For example, TARBP1, EPS3, and DMXL2 in non-PURS were
identified with selected alleles for the fine-wool trait (Supplementary Fig. 26b). FOXQ1 was
identified in a PUR at the end of Chr20, whose selection is supported by the & ratio between
fine-wool and hairy sheep (Fig. 7c), and FOXQ1 was reported to play a role in hair follicle
differentiation®*. The incomplete and misassembled end of Chr20 in Ramb_v3.0 was
confirmed in the collinearity analysis with T2T-sheepl.0 (Fig. 7d). We explored the variants
in FOXQL1, and found five variants with different allele frequencies between the coarse-,
medium- and fine-wool sheep populations and the hairy population (Fig. 7e). Moreover, we
detected significant selection signatures in FOXQ1 in the other three comparisons of hair vs.
coarse wool, hair vs. medium wool, and fine wool vs. medium wool (Fig. 7e and

Supplementary Fig. 27).

We also identified 195 candidate SVs on the basis of the top 1% of Fsr values between the
fine-wool and hairy populations when using T2T-sheepl.0 as a reference (Supplementary
Table 20). The strongest signal was derived from an insertion in 3 UTR of the IRF2BP2 gene
located on Chr25, and the inserted fragment was previously identified and determined as an
antisense EIF2S2 retrogene (called as EIF2S2)*. The selection of IRF2BP2 gene is also
supported by eight SNP sites with significant allele differences between fine-wool and hairy
populations, including two SNPs in the 3’ UTR and intron of IRF2BP2 gene in our previous
findings*, and six more SNPs in the promoter (<2000 bp away from the transcription
initiation site) and ~5 kb upstream regions in this study (Fig. 7f and Supplementary Fig. 28).

Another top signal detected based on both SNPs and SVs revealed a deletion within the
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intron of DMXL2 (Supplementary Fig. 26b and Supplementary Fig. 26¢). Both the SNPs and
SVs of these two genes have been under selection due to obvious differences between the
hairy and fine-wool populations (Fig. 7b and Fig. 7f). Some genes overlapping with selected
SVs, such as RSPO3* and OFCC1**?, reportedly have functions related to hair follicle
development and hair curling. Besides, nine selected SVs overlapped with PURs. For
example, a deletion (1763 bp) under selection was located in the intron of CA1 within a PUR
(Supplementary Fig. 26d). Selective signals for CA1 were also found in three other
comparisons: fine- vs. coarse-wool, medium- vs. coarse-wool, and medium-wool vs. hairy
sheep (Supplementary Fig. 29). We used PacBio long reads to verify the SVs in PURs called
by short reads, and five of the 7 SVs associated with domestication and all 9 SVs associated

with selection for wool fineness trait were confirmed (Supplementary Table 21).

Discussion

Since the release of human T2T-CHM13, T2T genome assemblies have become popular and
available for several species*®*“°. Nevertheless, several gaps are still present in recent nearly
complete animal genome assemblies, including those of chicken*, duck*’, Mongolian
gerbil®, and cattle®. The T2T-sheep1.0 genome assembled here represents the first gap-free
T2T genome of a ruminant, which we obtained by resolving PURs, particularly those in

centromeres and on the Y chromosome (T2T-sheep-chrY).

In earlier years, different assembly strategies have been adopted for the Y chromosome,
including the utilization of third-generation long-read sequences for sheep™®, and BACs and
Y-chromosomal markers for human®°, threespine stickleback™, and horse®?. Quite recently, Y-

14,33,53

chromosome assemblies of human and brown planthopper were performed with the

newly developed method of trio-binning haplotype-resolved assembly and parental
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sequencing data'?. T2T-sheep-chrY was assembled with the recent approach as above, and
became the representative Y assembly of the family Bovidae. Multiple copies of the TSPY,
HSFY, and ZFY genes were detected in T2T-shegpl.0. Multiple copies of spermatogenesis-
related genes on Y chromosome promote healthy sperm function, ensure the proceed of
spermatogenesis in spite of loss of some copies, and mitigate further gene loss in male
animals®. In human, multiple copies of the TSPY, DAZ, and RBMY genes were detected on
the Y chromosome™. Also, a growing body of evidence showed that multiple copies of the
TSPY gene have been reported on Y chromosome of other animals, such as goat (26 copies)®*
and cattle (94 copies)™, which could be explained by the regulation of spermatogenic

efficiency via highly variable copy dosage®.

The ZFY gene is also involved in spermatogenesis and is potentially a sex determination
factor in Hu sheep®®. Two ZFY genes (ZFY1 and ZFY2) in mice and only one ZFY gene with
two major splice variants in human are essential for sperm formation®’, and only five
diversely-distributed ZFY genes were identified on the goat Y chromosome®.. In contrast, the
bovine Y chromosome harbors 136 TSPY, 192 HSFY, and 313 ZFY genes (including 79
ZNF280AY and 234 ZNF280BY genes)®®. In this study, the amplification of ZFY genes
occurred in the Z zone distal to the PAR of T2T-sheep-chrY (Fig. 3a), and a similar structure
of the satellite (HSat) arrays was also discovered at the distal end of the g arm on the human
Y chromosome™®. The similar phenomenon for satellite expansion distal to the PAR of T2T-
level Y chromosome was also observed in the apes™. It is believed that the strategy of repeats
on the distal end of Y chromosome might be functional and beneficial to the maintenance of
Y chromosome in male animals. One possible hypothesis is of a potential role in preventing
the recombination between chromosomes X and Y and avoiding loss of male-specific genes

on Y chromosome during crossover of meiosis>. The chromosomal structure, centromeric
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location, ampliconic genes, and multiple copies of HSFY, TSPY and ZFY genes in T2T-sheep-
chrY were confirmed by those in Ramb_v3.0-chr Y. However, Ramb_v3.0-chrY is 0.69 Mb
shorter than T2T-sheepl.0-chr, which is primarily attributed to the highly fragmented
assembly of the Z zone on Ramb_v3.0-chrY (Fig. 3a). Compared with other sheep
assemblies”'*® T2T-sheep1.0 with the addition of the complete Y chromosome may
facilitate sheep genomic studies involving rams, for example, paternal lineage analysis with

improved alignments.

Centromeric sequences provide evidence for chromosomal evolution in sheep. Consistent
with the pattern observed for the human assembly T2T-CHM13, the centromeric regions in
T2T-sheepl.0 dominated the PURs. Contrary to the traditional view of gene-poor centromeres,
centromeric regions in T2T-sheepl.0 contain many genes, albeit with no or extremely low
levels of expression across multiple tissues. The binding of centromeric proteins (e.g., CENP-
A, CENP-C, and CENP-E) inhibited transcriptional initiation®. Due to the lack of known
transcripts and proteins, it is unknown whether these centromeric genes are functional, but
their mutations and evolution are worth investigating in the future. Given that these genes are
still intact, it is very likely that they are under selective constraint and thus still are functional.
In rice, ~41% of 395 non-TE genes that were found in centromeric regions are transcribed®.
However, no centromeric genes have been reported in human T2T-CHM13", but they can be
found in neo-centromeres for centromere repositioning®® or in the pericentromeric regions®.
Additionally, we discovered four centromere repeat units and their variants, including two
new ones Satlll and CenY, and two known ones, Satl and Satl1****. While many previous
studies estimated sheep Satll sequences to be approximately 400 bp®® in length, the T2T-
sheepl.0 assembly shows that its length actually is 702 bp. Conservation of Satl sequences

among the Bovidae species was confirmed by the phylogenetic tree built from p-distance for
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700  nucleotide differences (Fig. 2f), as described previously for the Satl sequence analysis in

701 Bovidae®®. The similarities of sheep centromeric repeats retained the footprints of centric
702  fusions or Robertsonian translocations on Chr01, Chr02, and Chr03, as the satellite DNA
703 sequences are believed to promote chromosomal rearrangements and NAHR®. CenY with a
704 size of 2516 bp was uniquely present on T2T-sheep-chrY, as confirmed by FISH (Fig. 3b), a
705  phenomenon commonly reported in other mammals. For example, a unique centromeric

706  repeat unit (1747 bp) of the Y chromosome was discovered in gerbil*®. Also, 34-mer HORs of
707  alpha-satellites are observed in the Y chromosome of human T2T-CHM13, differing from the
708  centromeric alpha-satellites of 171-bp monomer in autosomes®,

709

710  The improvement of T2T-sheepl.0 provided more accurate chromosome sequences, by

711 correcting structural and base-level errors in the current reference genome Ramb_v3.0, and
712 resulted in more variants being detected than in previous studies**®. A total of 170,396 SVs
713 (with 149,158 deletions and insertions) were found in the pangenome of 15 individual sheep
714 genomes®, while in this study, 192,265 SVs (with 189,503 deletions and insertions) were
715  discovered with T2T-sheepl.0 as a reference in long reads from 18 individuals. The complete
716 assembly of repetitive sequences in T2T-sheepl.0 enabled us to identify additional duplicated
717  genes and variants related to domestication and selection on wool fineness, whose copies or
718  duplications inhibited accurate assembly in the previous assemblies (Supplemental Fig. 12).
719  For example, ABCC4 genes within a selected region associated with domestication formed a
720  duplicated gene cluster on Chrl10, and the SDs inhibited accurate assembly and generated a
721 gap in the previous assemblies. Compared with that in wild goats, the copy number of

722 ABCC4, a gene which was involved in the immune response, decreased in domestic goats®’.
723 As gene duplication commonly occurs under selection in the sheep genome®, a selective

724  PUR associated with fleece fiber diameter contains three FOX family genes (FOXQ1, FOXF,

29


https://doi.org/10.1101/2024.07.21.604451
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.21.604451; this version posted July 23, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

available under aCC-BY-NC-ND 4.0 International license.

and FOXC) at the end of Chr20. We also identified some more alleles for selection of genes,
for example, six more SNP sites of IRF2BP2 gene associated with fleece fiber phenotype

(Supplementary Fig. 28), in addition to the three previously identified variations*“. The LD
analysis showed strong linkage of these 9 alleles of IRF2BP2, probably being responsible as

a whole for the selection of IRF2BP2 (Supplementary Fig. 28).

Our study shows that T2T-sheepl.0 provides a gap-free complete sheep genome, and this
assembly is expected to promote more comprehensive research on genome evolution, the

detection of SVs and SNPs, and the discovery of gene functions in sheep and related species.

Methods

Sample collection

We selected Hu sheep, a popular Chinese native breed with high fertility and unique white
lambskin®, for the T2T genome assembly. Blood from a 4-month-old ram (HU3095) and its
parents were collected at the Qianbao Animal Husbandry Co., Ltd. (latitude 33.4761° N,
longitude 120.2795° E, Yancheng City, Jiangsu Province, China), using 10 ml BD
Vacutainer blood collection tubes (Cat. No. 368589, Becton Dickinson, NY, USA) with
EDTA. The blood was then stored in a —80°C freezer before the extraction of RNA and DNA
or formaldehyde cross-linking for sequencing. Blood from one adult ewe of Tan sheep (a

Chinese native sheep breed well-known for its pelt) and an adult ewe of European mouflon

(Ovis musimon) were sampled, followed by DNA extraction and PacBio sequencing. Long-

read sequences of the two sheep samples, together with those of 16 sheep downloaded from
the NCBI database (Supplementary Table 1), were included in the SV calling. All

experimental protocols in this study were reviewed and approved by the Institutional Animal
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Care and Use Committee of China Agricultural University (CAU20160628-2).

DNA extraction, long-read sequencing, and optical map generation

For HU3095, high quality genomic DNA for sequencing was extracted by the cetyl-
trimethylammonium bromide (CTAB) method and purified with a QIAGEN® Genomic Kit
(Cat#13343, QIAGEN, Beijing, China). The 20-kb single-molecule real-time sequencing
(SMRT) bell libraries for HU3095 (i.e., the T2T assembly individual) and 15-kb libraries for
the two other individuals (i.e., Tan sheep and European mouflon) were prepared using the
SMRThbell Express Template Prep Kit 2.0 (Pacific Biosciences, CA, USA) and sequenced on

a PacBio Sequel Il system according to the standard protocol (Pacific Biosciences, CA, USA).

Ultralong Nanopore libraries were constructed with approximately 10 ug of size-selected
(>200 kb) genomic DNA with the SageHLS HMW library system (Sage Science, MA, USA),
and then processed using a Ligation Sequencing Kit (Cat# SQK-LSK109, Oxford Nanopore
Technologies, Oxford, UK) following the manufacturer’s instructions. DNA libraries
(approximately 800 ng) were sequenced on a PromethlON instrument (Oxford Nanopore

Technologies, Oxford, UK).

Additionally, ultra-high-molecular weight (UHMW) DNA was extracted from fresh blood
using a modified Bionano Prep Blood DNA Isolation Protocol (Cat# 30033, Bionano
Genomics, San Diego, CA, USA), and labeling and staining were performed with DLE-1
enzyme (Bionano Genomics) according to the Bionano Prep Direct Label and Stain (DLS)
protocol (Cat# 30206, Bionano Genomics). Stained DNA was loaded onto Saphyr chips and

imaged in the Bionano Genomics Saphyr System (Bionano Genomics).

31


https://doi.org/10.1101/2024.07.21.604451
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.21.604451; this version posted July 23, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

available under aCC-BY-NC-ND 4.0 International license.

Short-read sequencing

The whole-genome sequencing libraries for short reads were prepared using an MGIEasy FS
DNA Prep Kit (MGI, Shenzhen, China), and 150-bp paired-end sequencing was performed
on the DNBSEQ-T7RS platform (MGI) for sample HU3095 and its parents. Hi-C libraries
were prepared from cross-linked chromatin of white blood cells according to a previous Hi-C

protocol™ and sequenced on a DNBSEQ-T7RS platform (MG]).

Chromatin immunoprecipitation sequencing (ChlP-seq) was conducted to identify the
centromeric regions using phospho-CENP-A (Ser7) rabbit polyclonal antibody (Cat# 2187,
Cell Signaling Technology, Beverly, MA, USA). Approximately 10 ml of fresh blood was
collected from the sheep HU3095, and nucleic DNA was extracted and crosslinked in 1%
formaldehyde for 15 min. The crosslinking reaction was quenched with 200 mM glycine, and
the DNA Liprotein complex was sonicated using a Covaris E220 Focused-ultrasonicator
(Woburn, MA, USA). For ChIP-seq, chromatin was incubated with the phospho-CENP-A
(Ser7) antibody mentioned above for DNA purification. Libraries were constructed following
the instructions of the Illumina ChiP-seq Sample Prep Kit (Cat# 1P-102-1001, lllumina, San
Diego, CA, USA) and sequenced to generate 150-bp paired-end reads on the Illumina

NovaSeq-6000 platform.

RNA extraction, RNA-seq and | so-seq
We performed RNA-seq and Iso-seq of HU3095 for subsequent genome annotation. Total
RNA was isolated from the blood of HU3095 (Supplementary Table 1) using an RNAprep

Pure Tissue Kit (Cat# 4992236, TIANGEN Biotech, Beijing, China) according to the

manufacturer’s instructions. High-quality RNA samples (RIN>8, OD260/0D280=1.8-2.2,

0OD260/0D230>2.0) were used to construct the RNA-seq and Iso-seq libraries. For RNA-seq,
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799  RNA was first fragmented into small pieces using fragmentation reagents from the MGIEasy
800  RNA Library Prep Kit V3.1 (Cat# 1000005276, MGI). The first strand of cDNA was then
801  synthesized using random primers and reverse transcriptase, followed by second-strand

802  cDNA synthesis. Based on double-stranded cDNA, short-read RNA-seq libraries were

803  prepared using the MGIEasy RNA Library Prep Kit V3.1 (Cat# 1000005276, MGI), and

804  sequenced on the DNBSEQ-T7RS platform (MGI) to generate paired-end reads. For gene
805  annotation and tissue-specific expression analysis, 148 RNA-seq datasets from 28 tissues of
806  Hu sheep, were downloaded from the NCBI database (Supplementary Table 7).

807

808  For Iso-seq of HU3095, cDNA was synthesized using polydT primers and a SMARTer PCR
809  cDNA Synthesis Kit (Cat# 634926, TaKaRa Bio, Shiga, Japan), and double-stranded cDNA
810  was synthesized via downstream large-scale PCRs using PrimeSTAR GXL DNA Polymerase
811  (Cat# RO50A, TaKaRa Bio, Shiga, Japan). Full-length cDNAs were used to construct

812  sequencing libraries with the SMRTbell Template Prep Kit 2.0 (PacBio Biosciences), and
813  sequenced on the PacBio Sequel Il platform using the Sequel Binding Kit 2.0 (PacBio

814  Biosciences).

815

816  Fluorescencein situ hybridization (FI SH)

817  FISH was performed as previously described with minor modifications®. The 2516-bp CenY
818  and 22-bp Sat Il sequences were synthesized and labeled with Dig-dUTP or Bio-dUTP

819  (Roche Diagnostics, Basel, Switzerland) using Nick Translation Mix (Roche, Mannheim,
820  Germany). Chromosome preparations were made from fibroblast cultures derived from skin
821  biopsies. Slides with cell suspensions at metaphase were hybridized with a hybridization mix
822  containing probes, and the hybridization was detected with signals of Alexa Fluor 488

823  streptavidin (Thermo Fisher Scientific, Waltham, MA, USA) for biotin-labeled probes and
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824  rhodamine-conjugated anti-digoxigenin (Roche Diagnostics, Basel, Switzerland) for

825  digoxigenin-labeled probes. Chromosomes were counterstained with DAPI (Vector

826  Laboratories, Odessa, Florida, USA). FISH images were observed using an Olympus BX63
827  fluorescence microscope equipped with an Olympus DP80 CCD camera (Olympus, Tokyo,
828  Japan).

829

830 Long-read and short-read sequence datafor SV and SNP calling

831  To assess the performance of T2T-sheepl.0 as a reference genome for mapping long reads
832 and calling SVs, we collected PacBio HiFi and PacBio CLR data from 16 sheep individuals
833  from the NCBI database and generated long reads from one Tan sheep and one European
834  mouflon (Supplementary Table 11). In total, we obtained long-read datasets of 3 wild sheep
835  (Asiatic mouflon, O. orientalis: argali, O. ammon: and European mouflon, O. musimon) and
836 15 domestic sheep individuals representing 15 breeds worldwide.

837

838  Additionally, whole-genome short-read sequences of 810 samples representing 72 wild

839  (including 32 Asiatic mouflon, 6 bighorn sheep, 6 thinhorn sheep, 9 urial, 8 argali, 8 snow
840  sheep, and 3 European mouflon) and 738 domestic sheep from 158 populations were

841  retrieved from public databases. The short-read sequences showed an average sequencing
842  coverage of 16.1x and were included in the variant calling for population genomics analyses,
843 including population structure, phylogenetic tree, and selection signature detection

844  (Supplementary Table 15).

845

846 Initial assembly based on HiFi reads

847  PacBio HiFi reads were used to construct the initial assembly of autosomes and the X

848  chromosome after removing low-quality reads and adapters. HiFi reads were generated using
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circular consensus sequencing (CCS) analysis in SMRT Link (v8.0)
(https://www.pach.com/support/software-downloads/) with the following parameters: “--min-
passes 1 --min-length 100 --min-rq=0.99". We first used HiFi reads to create the initial
assembly via Hifiasm? software (v0.16.1) with default parameters. Then, the initial assembly
was screened against the NCBI nonredundant nucleotide (Nt) database to remove

mitochondrial sequences and bacterial contaminants using the BLASTN* tool (v2.10.0).

Bionano scaffolding

The Bionano data analysis, including data filtering, de novo assembly and scaffolding, was
performed using the Bionano Solve software suite (v3.7.1, https://bionano.com/software-
downloads/). In brief, Bionano raw data were quality controlled with a molecular length of
<150 kb, a signal-to-noise ratio (SNR) of <2.75 and a label intensity of >0.8. De novo
assembly of clean Bionano data was performed to generate consensus maps using the
BioNano Solve software suite (v3.7.1). Hybrid scaffolding of the contigs by Hifiasm and
Bionano optical maps was used to obtain superscaffolds. To construct the hybrid scaffold
maps, the assembled contigs were converted to in silico cmap format and then aligned to the
Bionano consensus maps using the proprietary alignment tool RefAligner of Bionano

(https://bionano.com/software-downloads/). Finally, scaffold sequences were produced

according to the above alignments before subsequent Hi-C anchoring.

Pseudochromosome construction

Quality control was conducted on the Hi-C raw reads by HiC-Pro’? (v2.8.1). Clean Hi-C
reads were aligned to the scaffolds produced by Bionano using Bowtie2” (v2.3.2) with
default parameters. Valid read pairs were used to place the scaffolds onto

pseudochromosomes based on their interactions by using LACHESIS™ with default
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874  parameters. Potential assembly errors were manually checked and adjusted using Juicebox’
875  (v2.18.0). Finally, all the scaffolds were anchored to 27 pseudochromosomes (26 autosomes
876  and the X chromosome), which was consistent with the karyotype results in previous sheep
877  studies’®”’. We conducted an independent de novo T2T assembly of the Y chromosome,
878  which is described in detail below.

879

880  Gap verification and filling

881  The gaps were verified by aligning HiFi and ONT ultralong reads to pseudochromosomes
882  and manual review of the sequencing coverage in IGV (v2.13)®. Some gaps were produced
883 by splitting the conflict sites between the Bionano consensus maps and the initial assembly

884  and were examined manually for potential errors. The gaps were removed by replacement

885  with the original assembled contigs in the initial assembly if the read coverage (25) on the

886  original contigs was continuous.

887

888  The >100-kb ultralong ONT reads within the gaps were searched out based on alignment

889  against the genome assembly via Minimap2™ (v2.23) with the parameter “-x map-ont”. Short
890  gaps were filled by extending the overlapping ONT long reads, while the other gaps were
891  further filled by using local assembly based on ONT reads. In brief, the reads that uniquely
892  aligned with the ends of two neighboring contigs connecting the beginning site and ending
893  site of a gap (identity > 95%, coverage > 90%, and QV > 20) were used as anchors, and based
894  on these anchors, the long reads that overlapped themselves (identity < 95% and coverage <
895  90%) were searched iteratively. Local assembly was then performed based on all the gap-
896  related ONT reads, including the above aligned reads and the reads unmapped to the genome
897  sequences. The k-mers (k = 23) were generated based on the MGI short reads using

gos  Jellyfish®® (v2.3.0), and low-frequency k-mers of less than the average depth were selected as
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rare k-mers for each ONT read. A string assembly graph was built based on the overlapping
ONT reads and their rare k-mers using the NextGraph module in NextDenovo® (v2.5.2). The
final graph was reached when the longest accumulated length of rare k-mers was achieved,
and a contig was obtained accordingly to connect the beginning site and ending site of a gap.
The gap-filled pseudochromosomes were double checked to ensure the correct gap-free
genome assembly with possible manual adjustment, based on the alignments and coverage of

all the ONT reads in IGV (v2.13).

Initial assembly of theY chromosome

The haplotype-resolved assembly strategy was adopted to assemble the Y chromosome
following a modified version of Koren’s method*?. Using MGI whole-genome shotgun
sequencing data, 21-mer libraries unique to HU-3095 and its parents were constructed using
Jellyfish®® (v2.3.0). Paternal 21-mers in HU3095 were identified based on their unique
presence in the father but not in the mother. Paternal ultralong ONT reads (1.73 Gb, ~64.13x
coverage) were chosen based on more paternal 21-mers than maternal ones. The paternal
ONT reads that were uniquely aligned to the autosomes by Minimap2 (v2.23) were removed.
The remaining ONT reads potentially from the paternal X and Y chromosomes were used to
construct an assembly graph of the Y chromosome using the NextGraph module in
NextDenovo® (v2.5.2). The assembled graph was manually adjusted for gap filling,
scaffolding, and correction, with assistance from the Y contigs using the trio-binning option
of Hifiasm (v0.16.1) based on HiFi reads and 31-mers of the parents of HU3095. To validate
the completeness and reliability of the above initial Y chromosome assembly, the Y
chromosome (CP128831.1) from Ramb_v3.0 was included in the collinearity analysis using
MUMmer® (v4.0.0), and the length of the Y chromosome assembled here was double

checked based on the estimated karyotype length in previous studies’®’’. Alignment of
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924  Bionano consensus maps against the Y chromosome was performed to examine possible
925  assembly errors.

926

927 Telomerefilling

928  HiFi reads containing >10 copies of the telomere-specific repeat sequence

929  “AACCCT/AGGGTT” were retrieved as type | using BLASTN (v2.10.0). The HiFi reads
930  were aligned to the gap-free genome assembly using Minimap2 (v2.26), and those without
931  any hits against the genome were extracted as type 11 using SAMtools (v1.18)%%. The type Il
932  HiFi reads could be aligned to a 1-Mb interval at the chromosomal ends. The above three
933  types of HiFi reads (types I, I1, and 111) were used to construct the primary assembly of

934  telomeric regions using Hifiasm (v0.16.1) with default parameters. The contigs were

935  corrected and scaffolded together with the sequences of 1-Mb chromosomal ends using

936  RagTag® (v2.1.0), and the telomeres were placed at the two ends of each chromosome

937  (Supplementary Methods).

938

939  Genome polishing

940  Genome polishing was performed using a customized pipeline

941  (https://github.com/lly1214/CAU-T2T-Sheep), which included five steps of polishing

942  (Supplementary Methods). HiFi reads were first mapped to the gap-free genome assembly
943 using Minimap2 (v2.26)". The low-quality regions (LQRs) were determined based on the
944  three cutoffs of a mapping quality (MAPQ) score <1, clipped reads identified at their two
945  ends, and <3 HiFi-aligned reads, when compared to the high-quality regions (HQRS). These
946  LQRs were polished in the first round with HiFi reads using NextPolish2 (v0.2.0)* and two
947  additional independent rounds with ultralong ONT and MGI reads using NextPolish

948  (v1.4.1)*. LQRs and HQRs were merged into one whole genome before the last round of
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NextPolish2 (v0.2.0) polishing based on HiFi long reads. Finally, a gap-free complete
genome assembly (T2T-sheepl.0) of all chromosomes, including autosomes and
chromosomes X and Y, was constructed for sheep, with the average QV (51.53) higher than

that (36.30) for the unpolished genome sequences.

Haplotype genome assembly

The trio strategy was used to assemble the autosomes of the haplotype-resolved genomes
(T2T-sheepl.0P and T2T-sheepl.0M), based on HiFi reads and parents’ short reads, by using
Hifiasm (v0.16.1 r375) with the default parameters. The scaffolding, gap filling and polishing
for T2T-sheepl.0P and T2T-sheepl.0M were performed according to the similar method for
T2T-sheepl.0. ONT and HiFi reads were trio-binned and determined for paternal and
maternal origins based on the 21-mers from parents’ short reads and the paternal or maternal
dominance. The binned ONT and HiFi reads were used for filling gaps and polishing. The
haplotype genomes were polished based on binned ONT and HiFi reads for two rounds by
using NextPolish2 (v0.2.0), and the NGS data was not involved to avoid the introduction of

the other haplotype sequences.

Assessment and validation of genome assemblies

The T2T-sheepl.0 genome assembly was validated by multiple methods, including the
coverage of reads, collinearity and QV. Depth coverage was calculated in 200-kb windows
using Bamdst (https://github.com/shiquan/bamdst) based on the bam files of the HiFi and
ONT long reads by Minimap2 (v2.26) and short reads by BWA®’ (v0.7.17). The genome
coverage was plotted using the karyoploteR®® package (v1.8.4). The reliability of the T2T-
sheepl.0 assembly was compared with that of the most updated sheep genome reference,

ARS-UI_Ramb_v3.0 (GCF_016772045.2), based on collinearity analysis, which was
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performed based on alignment using Minimap2 (v2.26) with the parameter “-cx asm10”. The
genome synteny between the two assemblies was visualized using paf2doplot
(https://github.com/moold/paf2dotplot). A 21-mer hash table was created from the MGl short
reads using the meryl command of Merqury® (v1.3.1). The quality score (QV), switch error,
and error k-mer frequency of T2T-sheepl.0 and the haplotypes were calculated accordingly.
In addition, we downloaded 26 published chromosome-level ovine genomes (Supplementary
Table 5), and compared them with T2T-sheepl.0 for gap lengths, gap counts, total bases, total
bases with unplaced contigs excluded, and total bases with the mitochondrial genomes and

unknown bases of gaps excluded.

The completeness of the T2T-sheepl.0 assembly was assessed using BUSCO® (v4.0.5) based
on the mammalia_odb10 database. To evaluate the accuracy of T2T-sheepl.0, all the MGI
paired-end reads were mapped to the assembly using BWA (v0.7.17). We computed the

mapping rate and base accuracy using SAMtools® (v1.18) and BCFtools®® (v1.15.1).

Repeat annotation

Tandem repeats were de novo predicted using GMATA® (v2.2) and Tandem Repeats
Finder® (TRF, v4.09.1). Transposable elements were de novo predicted using MITE-
Hunter® (v1.0) and RepeatModeler2* (v2.0.4). The de novo repeat libraries were merged
with the Repbase® database of repetitive DNA elements. The merged repeat library was then
used to perform repeat annotation using RepeatMasker (v4.1.4)% with default parameters.
The repeats were masked in the T2T-sheepl.0 assembly using RepeatMasker, and used for

subsequent SDs and coding-gene annotation.

Segmental duplication (SD) identification
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999 First, the SDs were detected using BISER®" (v1.4) with the parameters: “--max-error 20 --
1000  max-edit-error 10 --kmer-size 31”. Afterward, the SDs were filtered following a previously
1001 described method for human T2T-CHM13®. In brief, filtering was based on the following
1002  criteria: >90% gap-compressed identity, <50% gapped sequence in the alignment, >1 kb of
1003  the aligned sequence, and <70% satellite sequence as assessed by RepeatMasker. Finally, SDs
1004  were plotted using Circos® (v0.69). We counted the number of SDs that overlapped with
1005  PURSs and genes using local scripts.

1006

1007  Protein-coding gene annotation

1008 A combination of de novo prediction, homolog-based determination, and transcriptome-based
1009 identification was used to annotate genes in T2T-shegpl.0. For the transcriptome-based

1010  approach, RNA-seq data for 28 tissues of Hu sheep (Supplementary Table 7) downloaded
1011 from the NCBI were used to assemble the transcripts. In summary, after filtering and quality
1012 control, the clean reads were aligned to T2T-sheep1.0 with STAR'® (v2.7.9a), and the

1013 transcripts were assembled with Stringtie'™

(v1.3.4d). Full-length transcripts from Iso-seq
1014  were aligned to T2T-sheepl.0 using Minimap2 (v2.16) with the parameter “-x splice -uf”, and
1015  nonredundant transcripts were obtained using the “collapse_isoforms_by sam.py” command
1016  of IsoSeq3 (v3.8.2, https://github.com/PacificBiosciences/IsoSeq). Nonredudant transcripts
1017 from RNA-seq and Iso-seq were used to predict gene models via PASA software (v2.5.2)'%,
1018  For the homolog-based approach, homologous proteins from sheep and other mammalian
1019  species (e.g., sheep, O. aries; argali, O. ammon; goat, Capra hircus; house mouse, Mus

1020  musculus; cattle, Bos taurus; and human, Homo sapiens) were downloaded from the NCBI
1021 (Supplementary Table 22), and genes were identified after alignment to the T2T-sheepl.0

1022 using GeMoMa software’®. For de novo prediction, genes were predicted using the software

1023 AUGUSTUS (v3.3.1)% based on the above complete genes. All the above gene models were
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1024 integrated using EvidenceModeler (v1.1.1)'®

with default parameters. The genes containing
1025  TEs were filtered out using TransposonPSI software (v1.0.0,

1026  https://github.com/NBISweden/TransposonPSI). We collected 369 known genes from

1027  previous publications and the homologous genes annotated in Ramb_v3.0, and manually
1028  adjusted gene structures in our gene annotation files in IGV-GSAman

1029  (https://gitee.com/CJchen/IGV-sRNA), based on the transcript evidence (RNA-seq and Iso-
1030  Seq).

1031

1032  Methylation by PacBio and ONT long reads

1033  Methylated cytosine was examined based on the ONT and HiFi raw data. The HiFi data in
1034  BAM format was aligned to the T2T-sheepl.0 assembly using ppbmm2 (v1.13.0)

1035  (https://github.com/PacificBiosciences/pbmm2). Subsequently, 5mC methylation probability
1036  was generated for the sites using the “aligned_bam_to_cpg_scores” command of pb-CpG-
1037  tools (v2.3.1) (https://github.com/PacificBiosciences/pb-CpG-tools). For methylation analysis
1038 based on ONT data, Fast5 format files were converted to fastq files using GuPPy'® (v6.1.2),
1039 and methylated sites were called using Nanopolish'®’ (v0.14.0). We filtered out the

1040  methylation sites with a frequency < 50% and calculated the frequency of methylated bases
1041 in 10-kb windows using BEDTools'® (v2.31.0). Their distribution was plotted with the R
1042  package karyoploteR (v1.8.4).

1043

1044 ldentification and validation of centromeric regions

1045  Centromeric regions were first identified by ChlP-seq based on the enrichment of histone

1046  binding. The raw ChIP-seq reads were trimmed using fastp (v0.23.1)'%

with the parameters
1047 “-f5-F5-t5-T5”. Clean ChlP-seq reads were aligned to T2T-sheepl.0 using Bowtie2

1048  (v2.4.2) with the parameters “—very-sensitive —no-mixed —no-discordant -k 10”. The ChlIP-
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1049  seq peaks corresponding to the centromeric regions were called using MACS3 (v3.0.0b2)"°,

1050  and the average read depth for ChlIP enrichment in 10-kb sliding windows was calculated
1051 using BEDTools (v2.30.0) and plotted with the karyoploteR package (v1.8.4).

1052

1053  Centromeric regions were further validated based on sequence complexity and identity across
1054  the whole genome of T2T-shegpl.0. Sequence linguistic complexity and Shannon entropy
1055  measures were calculated across the whole chromosomes with NeSSie*! in a window size of
1056 1 kb and a step size of 8 bp, where lower values indicate more repetitive sequences. The

1057  locations of centromeres with enriched repeats are shown by low entropy values®. Sequence
1058  similarity within and around the centromeric regions was calculated in a window size of 5 kb,
1059 and was used to construct heatmaps in StainedGlass'*? (v0.5).

1060

1061  Repeat identification within centromeres

1062  The centromeric regions were estimated based on the above ChlP-seq peaks and enriched
1063  alignment of known centromere-specific satellite DNA sequences (KM272303.1). The

1064  centromeric sequences on autosomes and the X chromosome were obtained using BEDTools
1065  (v2.30.0). Based on the methylation enrichment and the nature of the metacentric

1066  centromeres on the Y chromosome, we retrieved a region of ~5 Mb in the middle of the Y
1067  chromosome as the candidate centromeric region. We pooled all the sequences of the

1068  candidate centromeric regions and identified novel centromere-specific satellite repeat

1069  sequences using Satellite Repeat Finder (SRF)™2. These satellites were classified into four
1070  types according to four minimal repeat units (Satl, 816 bp; Satll, 702 bp; Satlll, 22 bp; and
1071 CenY, 2516 bp) based on sequence identity (Supplementary Methods). The abundance of
1072  satellite repeats in the centromeric regions was assessed using BLASTN (v2.10.0).

1073
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SV identification based on long-read sequences

To assess the performance of the reference genome for mapping long reads and calling
variants, three commonly used SV callers, i.e., Sniffles (v2.0.6,
https://github.com/fritzsedlazeck/Sniffles), cuteSV*** (v2.0.1) and pbsv (v2.9.0,
https://github.com/PacificBiosciences/pbsv), were used to detect SVs. The PacBio HiFi and
CLR long-read data of 18 wild and domestic sheep (Supplementary Table 11) were aligned to
T2T-sheepl.0 and Ramb_Vv3.0, respectively, using Minimap2 (v2.26) with the parameters “-x
map-pb” for PacBio CLR reads and “-x map-hifi” for PacBio HiFi reads. The sequence
depths of the 18 individuals were calculated using the “stat” module of SAMtools (v1.18)®.
The means and standard deviations of the sequence depths across the 18 individuals were
summarized for satellites, genes, and syntenic and nonsyntenic regions, and differences in
these indices were assessed when the sequences were mapped against T2T-sheepl.0 and
Ramb_v3.0 using Mosdepth™™ (v0.3.4) and 500-bp windows. SVs were called using pbsv and
Sniffles with default parameters and using cuteSV with the parameters “--
max_cluster_bias_INS 1000 --diff_ratio_merging_INS 0.9 --max_cluster_bias_DEL 1000 --
diff_ratio_merging_DEL 0.5 --genotype”. SVs passing the quality filters suggested by pbsv
(flag PASS), cuteSV (flag PASS) and Sniffles (flag PRECISE) were retained for merging that
was performed by using SURVIVOR (v1.0.7)™® with the parameters “1000 2 1 1 0 50”. Only
SVs supported by more than two software tools were kept, and further merged across all 18

sheep samples using SURVIVOR (v1.0.7) with the parameters “1000 1 1 1 0 50”.

SNP and SV calling based on short-read sequences
To assess the performance of short-read alignment and variant calling using T2T-sheepl.0 as
the reference genome, we collected whole-genome sequencing data from 810 wild and

domestic sheep across the world from the NCBI database (Supplementary Table 15). Low-
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quality bases and reads were removed using Trimmomatic**’ (v0.39), and the high-quality
paired-end reads were aligned to T2T-sheepl.0 using BWA mem (v0.7.17-r1188) with
default parameters. The mapped reads were then converted into bam files and sorted using
SAMtools® (v1.16). The sequence depth and mapping statistics were summarized using the

“stats” module of SAMtools.

SNPs for individuals were called from the bam files using the module “HaplotypeCaller” and
were merged using the modules “GenomicsDBImport” and “GenotypeGVCFs” in GATK!'®
(v4.3). To reduce potential false-positive calls, “VariantFiltration” of GATK was applied to
filter SNPs with the following parameters: “QUAL< 30.0 || QD< 2.0 || MQ< 40.0 || FS> 60.0
|| SOR> 3.0 || MQRankSum< -12.5 || ReadPosRankSum< -8.0”. We counted homozygous and
heterozygous SNPs for each wild species or sheep population using local scripts. All

identified SNPs were annotated in specific genes of T2T-sheep1.0 using SnpEff**® (v5.1d).

Only samples (534 sheep) with a sequencing depth >15x of short reads were selected to call
SVs from the bam files using three tools, namely, Delly*?® (v0.8.7), Manta*** (v1.6.0) and

Smoove (v0.2.8, https://github.com/brentp/smoove) with default parameters. SVs called
based on short reads were filtered according to the criteria of 50 bp < SVs <1 Mb and
support by more than two software tools. SVs were merged across the 497 domestic sheep
and 37 wild sheep by using SURVIVOR (v1.0.7) for a 1-kb merging bin and a minimum

length of 50 bp. For populational analysis, SNPs and SVs with a MAF > 0.05 and a

proportion of missing genotypes < 10% were retrieved using VCFtools® (v0.1.16).

Genetic diversity and population structure

High-quality SNPs were used to assess nucleotide diversity (). The t values were calculated
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in 1-Mb windows using VCFtools® (v0.1.16). We implemented linkage disequilibrium (LD)
pruning to remove SNPs in LD using PLINK'?? (v2.00a3.7) with the parameters: “--indep-
pairwise 50 5 0.2”, and independent SNPs were used for population structure analysis.
Principal component analysis (PCA) was performed among the 810 wild and domestic sheep
individuals with the “smartpca” command of the EIGENSOFT"?* package (v8.0.0) and
default parameters. Population structure was further validated using ADMIXTURE***
(v1.3.0). The independent SNPs were used to generate a genetic distance matrix with
VVCF2Dis (v1.47, https:// github.com/BGI-shenzhen/VCF2Dis) software, and a neighbor-
joining (NJ) tree was built using TreeBeST*** (v1.9.2) and visualized by iTOL® (v6.8.1).
The Neighbor-Net graph based on pairwise Fst genetic distances by VCFtools (v0.1.16) was

created by using SplitsTree (v6.3.27) software'*’.

Selective sweeps associated with domestication and selection for wool fineness

As described previously*3°

, We identified selective sweeps associated with domestication and
selection for the wool fineness trait through two methods applied to SNPs: the cross-
population composite likelihood ratio (XP-CLR) and pairwise « ratios. For domestication, we
used T2T-sheepl.0 as a reference to reanalyze the genome sequences of wild sheep of 16
Asiatic mouflons compared with five landrace populations of different geographic origins,
including five Dutch Drenthe Heath, ten East-Asian Hu, ten Central-Asian Altay, one African
Djallonké, and one Middle Eastern Karakul sheep. These wild and domestic sheep were
investigated previously with the sheep assembly Oar_v4.0 (GCA_000298735.2) as a
reference®. Selective sweeps for fleece fineness were scanned with T2T-sheepl.0 as the
reference for pairwise comparisons among hairy, coarse-wool, medium-wool, and fine-wool

individuals of wild and domestic sheep, all of which were previously investigated with

Ramb_v1.0 as the reference®. XP-CLR values were calculated in 10-kb nonoverlapping
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windows for the selection of fleece fineness and in 50-kb windows with a step of 25 kb for
domestication using XP-CLR*?® (v1.1.2) software with the following parameters: “-L 0.95 -P

--size 50000 --step 25000”.

Additionally, Fst values were also calculated based on SVs in the above populations to detect
the selective sweeps associated with domestication and selection for wool fineness, using
VCFtools (v0.1.16). We selected the SVs with the top 1% of Fst values as the candidate
selective sweeps, and plotted them using the R package ggplot2'*® (v2.1.1). Candidate
regions with the top 1% of XP-CLR and Fsrvalues were considered to have signals of
selective sweeps. The SNPs and SVs located in these top 1% regions of Oar_v4.0 and
Ramb_v.1.0 were converted to those in T2T-goat1.0 using LiftOver

(https://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/liftOver).
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The genome assemblies (T2T-sheepl.0 and its maternal and parental haploid assemblies T2T-
sheepl.0P and T2T-sheepl.0M) and raw sequencing data generated in this study, including
PacBio HiFi data, ultralong ONT data, MGI data, Iso-seq data and ChIP-seq data, can be
achieved from the Genome Sequence Archive in National Genomics Data Center
(https://ngdc.cncb.ac.cn/) under the BioProject accession number PRICA024127 and NCBI

under the BioProject accession number PRINA1033229.
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1491

Table 1 Comparison between Ramb_v3.0, T2T-sheepl.0, T2T-sheepl.0P and T2T-sheepl.0M.

Annotation Ramb_v T2T- T2T- T2T-
3.0 sheepl.0 sheepl.OP  sheepl.OM
Assembled bases (Gb) 2.65 2.85 2.62 2.73
Unplaced bases (Mb) 12.48 0 0 0
Assembly Gap number 84 0 4 10
summary Gap bases (bp) 42000 0 400 1000
Number of contigs 227 28 31 37
Contig N50 (Mb) 43.18 1034 96.54 102.26
Number of protein coding genes 21,328 21,517 19,792 20,599
Number of newly assembled genes (NAGs)  / 712 / /
Number of genes in PURs / 754 / /
Gene Average length of protein coding genes (Kb) 44.24 48.15 48.75 48.68
annotation Average exons per protein coding gene 9.14 9.35 9.53 9.44
Average exon length (bp) 180 173 171 171
Average introns per protein coding gene 8.14 8.35 8.53 8.44
Average intron length (bp) 5,234 5,570 5,523 5,576
Percentage of segmental duplications (%) 2.52 9.05 5.02 4.92
353?5£:2Ls Segmental duplication bases (Mb) 66.62 258.32 143.13 140.44
Number of segmental duplications 6363 19483 20296 19241
Percentage of repeats (%) 441 47.67 45,57 46.00
Repeat bases (Mb) 1164.82  1360.45  1194.69 1254.17
Long interspersed nuclear elements (Mb) 762.39 780.11 721.29 767.35
Repeats Short interspersed nuclear elements (Mb) 192.68 196.29 186.05 194.28
according to Long terminal repeats (Mb) 134.72 141.26 131.11 137.96
RepeatMasker  gatellite (Mb) 4.67 162.14  80.79 77.85
DNA (Mb) 70.05 74.92 70.16 71.60
Simple repeat (Mb) 1.88 2.19 1.83 1.88
Low complexity (Mb) 0.02 0.02 0.02 0.02
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Figurelegends

Fig. 1. Genomic comparisons of the Ramb_v3.0 and T2T-sheepl.0 sheep assemblies. a,
Genomic features annotated on chromosome 1 (Chr01) for Ramb_v3.0 and T2T-sheepl.0.
The coverages of ultralong ONT (Cov. ONT) and PacBio HiFi (Cov. PacBio) long reads are
shown in 200-kb windows. Gene, segmental duplication (SD) and transposable element (TE)
density values were calculated in 10-kb windows. MUK, minimum unique k-mer length in
100-kb windows. Error k-mer, 21-mer errors caused by the worse assembly. PUR, previously
unresolved region in T2T-sheepl.0 compared to Ramb_v3.0. The gray blocks between the
two horizontal grey bars of T2T-sheepl.0 and Ramb_v3.0 indicate collinearity, and one
inversion and two duplications between the two assemblies are plotted in orange and blue
respectively. Centromeres are highlighted in dark blue, telomeres are marked with black
triangles on the “T2T-sheepl.0” grey bar, and gaps are shown in green on the Ramb_v3.0
grey bar. b, Contents of various sequence types in the PURs of T2T-sheepl.0 compared to
Ramb_v3.0. CenSat, satellites in centromeric regions identified by RepeatMasker. SDs,
segmental duplicaitons. RepMask, other repeats identified by RepeatMasker. ¢, One gap
containing a gene (Genel808, namely, HRNPK) with transcriptional expression on Chr01 of
Ramb_v3.0 was filled in T2T-sheepl.0. Genes colored with yellow showed transcriptional
expression according to RNA-seq in 10-kb windows in longissimus dorsi, cerebrum, and
hypothalamus tissues. The coverage of ONT and PacBio HiFi reads confirmed the reliability
of gap filling. d, An inversion error (INV195), highlighted in orange, was found on
chromosome 9 (Chr09) in Ramb_v3.0 and corrected in T2T-sheepl.0. The genes in the region
were expressed in hypothalamus, ileum, and cerebrum tissues. Two peaks of error k-mers (k =
21) were found in Ramb_v3.0 and corresponded to the two junction sites of this false-positive
inversion, which cannot be covered by PacBio reads from Rambouillet sheep (NCBI

Biosample ID SAMN17575729) assembled previously for Ramb_v3.0. e, Genome-wide
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MUK lengths in a comparison of T2T-sheepl.0 and Ramb_v3.0.

Fig. 2. Assembly of centromeric regions and identification of centromeric repeat units. a,
An assembly graph tangle among the centromeres of 11 acrocentric chromosomes in different
colors. Centromeric regions are highlighted in yellow. b, Genomic features of the centromeric
region on chromosome 2 (Chr02). ChlP-seq for histone H3 variant CENP-A (phospho-
CENP-A (Ser7) antibody), methylation based on HiFi reads, and satellite enrichment were
used to identify centromeric regions. The three types of repeats (LINEs in red, SINEs in
brown, and satellites in light purple) are shown in the “Repeats” bar, and two satellite units
(Satl and Satll) occupy the centromeric region in the “Satellites” bar. The sequence identity
heatmap (bottom) with the color scale at the left bottom corner is shown across the
centromere in nonoverlapping 5-kb windows, and four evolutionary layers corresponding to
two layers (1 and 2) of Satl and two layers (3 and 4) of Satll in the centromeric region are
marked from 1 to 4. ¢, Lengths of chromosomes (bottom) and their centromeric repeat units
(top). d, FISH images for probes of Satlll and CenY. Two Satlll variants were identified in
the T2T genome assemblies of both sheep (Satll1-20GG and Satl11-20CC) and goat (Satll|I-
VV2A and Satlll-V2C in T2T-goat1.0), and their sequences were aligned below. The probes of
Satll1-20GG (red) and Satll1-20CC (green) were also used for FISH imaging (right plot),
while the probes of CenY (red) and Satlll (combining Satll1-20GG and Satll1-20CC, green)
were hybridized onto the sheep chromosomes in FISH (left plot). The Y chromosome and
CenY probes (red) in the middle of the left plot are enlarged in a white line box at the top
right corner. e, Collinearity of three metacentric chromosomes (chromosomes 1, 2, and 3)
among T2T-sheepl.0, T2T-goat1.0, and argali (O. ammon polii). Satl, Satll and Satlll are
colored for their presence or absence in the centromeres. f, Phylogenetic tree of 16 species

based on their Satl sequences (Supplementary Table 10).
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Fig. 3. Assemblies of chromosomes X and Y. a, Collinearity of chromosome Y (ChrY)
between T2T-sheepl.0 and Ramb_Vv3.0, i.e., T2T-sheepl.0-chrY vs. Ramb_v3.0-chrY. The
sequence identity scale is colored and placed in the top left corner. b, Genomic features of
T2T-sheepl.O-chrY. From top to bottom: ChrY consists of the X-homologous region (PAR)
and male-specific region (MSY), with CenY (blue) and Z zone (red) labeled; densities of TEs,
LINEs, SINEs, LTRs and satellites, with scales at the bottom left corner; methylated
cytosines in 10-kb windows based on HiFi (red) and ONT (light red) data; coverage of
PacBio HiFi reads (Cov. PacBio); segmental duplication (SD) density in 10-kb windows;
gene distribution; three multicopy genes, HSFY, TSPY and ZFY; pseudogenes, with the ones
in the Z zone highlighted in red; Gene expression from RNA-seq of testis and blood tissues;
coverage of ONT reads (Cov. ONT). Sequence identity across the whole ChrY showing the
high-identity signals of CenY (magnified in the bottom left corner) and the Z zone. c,
Genomic features annotated on chromosome X (ChrX) and regions homologous to ChrY.
Homologous genes between ChrX and ChrY are connected by light blue lines. The color keys
are the same as those in Fig. 1a. d, Two inversion errors (INV405 and INV406) on ChrX of
Ramb_v3.0 that were corrected in T2T-sheepl.0. The gray blocks between the horizontal bars
of T2T-sheepl.0 and Ramb_Vv3.0 represent collinear regions. Orange lines indicate inversions
on ChrX between Ramb_v3.0 and T2T-sheepl.0. There was no coverage of Rambouillet
PacBio reads that are downloaded from NCBI (Biosample ID SAMN17575729) at the two
junction sites of each inversion in Ramb_v3.0, in contrast to the accurate assembly and

uniform coverage of HiFi reads from Hu sheep in T2T-sheepl.0.

Fig. 4. Improvements for long-read mapping and structural variant calling. a, Numbers
of mapped reads and error rate for a ratio between mismatches and bases mapped were
calculated by using Samtools based on the alignments of PacBio long reads from 18 sheep to

T2T-sheegpl.0 and Ramb Vv3.0. b, Deletions (DEL) and insertions (INS) derived from PacBio
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long reads of 18 domestic and wild sheep are compared between T2T-sheegpl.0 and
Ramb_v3.0 used as references. The counts of INSs and DELSs in satellites (c) of T2T-sheepl.0
and Ramb_v3.0 and PURs (d) of T2T-sheepl.0 are summed over the lengths. DEL is colored
in blue for T2T-sheepl.0 and light blue for Ramb_v3.0, and INS is colored in red for T2T-

sheepl.0 and orange for Ramb_v3.0.

Fig. 5. Improvement of T2T-sheepl.0 in the analysis of short readsin sheep populations.
a, Sampling locations of 810 NGS samples from 158 domestic sheep populations and seven
wild sheep species. b, Distance of SNPs from PURs to the closest QTL from the AnimalQTL
database. The 1-Mb distance scale is shown in the top right corner. ¢, Neighbor-joining (NJ)
tree of wild and domestic sheep based on SNPs when using T2T-sheepl.0 as a reference.
Asiatic mouflon and urial genetically are not completely separated in the genetic clustering
analysis and phylogenetic tree due to the presence of hybrids and gene flow between these
two populations*®**, The previously misclassified samples (PMSs) are highlighted in red
branches and black labels for five populations (ZLX, DQS, TCS, DEG, and ZRJ). d, PCA of
domestic sheep populations based on SNPs using T2T-sheepl.0 as a reference. The PMSs are
highlighted in black, while the six geographic domestic sheep populations are highlighted in
the same colors in both PCA and NJ tree. The populations (SOM, RED, WDP, etc.) are
labeled with the colored abbreviated names because they are not clustered in the
corresponding continents. e, Population genetic structure of wild and domestic sheep inferred
from ADMIXTURE (K = 10) using T2T-sheep1.0 as the reference. The abnormal populations
in the 6 domestic sheep superpopulations (Central-and-East Asia, South-and-Southeast Asia,
Middle East, Africa, Europe, and America) according to the continents are labeled with

abbreviated names (Supplementary Table 15).
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Fig. 6. Selection signatures associated with domestication. a, Selection signals based on
SNPs and the top 1% of XP-CLR values (horizontal dash line) for landrace sheep breeds
compared with wild sheep of Asiatic mouflon using T2T-sheepl.0 as a reference. The genes
identified in non-PURs by both T2T-sheepl1.0 and Oar_v4.0 are shown in gray, the ones in
non-PURs identified only by T2T-sheepl.0 in black, and the ones in PURs in blue. b, Venn
diagram of selected genes associated with domestication based on SNPs between T2T-
sheepl.0 and Oar_v4.0 as references. ¢, The x ratio (n-O. orientalis/z-landrace) confirms
strong selection signals detected by XP-CLR values in the region of the ABCC4 gene family
on Chr10. d, The collinearity between the two assemblies of T2T-sheepl.0 and Ramb_v3.0
showing a PUR that corresponded to the selected region with the ABCC4 gene family is
highlighted with a gray bar. e, Twenty ABCC4 family genes are included in the selected
region on Chr10, while only eight ones were assembled in Ramb_v3.0. The ABCC4 genes are
transcribed in blood, jejunum, colon, duodenum, and ileum tissues, as shown in RNA-seq
analysis. The three ABCC4 genes under domestication selection are highlighted with black
outlines. f, Thirty-seven nonsynonymous variants of the ABCC4 gene “Genel10176” with
differences between domestic and wild sheep. g, Selection signals based on SVs and top 1%
of Fst values assessed between landrace and wild sheep with T2T-sheepl.0 as a reference. h,
Aselected SV on Chrl8 was located in PURs, and the collinearity between T2T-sheepl.0 and
Ramb_v3.0 confirmed the presence of this PUR containing the ADAMTSL3 gene. i, The ~3.5-
Mb region with the ADAMTSL3 gene has been wrongly assembled from Chr18 of Ramb v3.0

and considered a PUR in T2T-sheepl.0.

Fig. 7. Selection signatures associated with fleece fiber diameter. a, Venn diagram of
selected genes for fine-wool sheep based on SNPs between T2T-shegpl.0 and Ramb_v3.0

used as references. b, Selection signals based on SNPs and the top 1% of XP-CLR values
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when comparing fine-wool and hairy sheep. ¢, The « ratio (z-hair/z-fine wool) between hairy
and fine-wool sheep confirmed selection on the FOXQ1 gene on Chr20 detected by the XP-
CLR. d, The selected region with the FOXQL1 gene in gray is located in a PUR at the right
end of Chr20 in T2T-shegpl.0 compared to Ramb_Vv3.0. e, Five mutation sites at the 3’
downstream region of the selected FOXQ1 gene and their allele frequencies showed selection
in coarse-, medium- and fine-wool sheep, compared to the hairy sheep population. f,
Selection signals based on SVs and the top 1% of Fsr values detected between fine-wool and

hairy sheep.
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Supplementary Figures

Supplementary Fig. 1. HU3095 for T2T assembly and statistics of the HiFi and ONT
sequencing data. a, HU3095 for T2T assembly. b, Ultralong ONT read length distribution

for HU3095. c, HiFi read length distribution for HU3095.

Supplementary Fig. 2. Genomic featur es of the chromosomes of T2T-sheepl.0. The
coverages of ultralong ONT (Cov. ONT) and PacBio HiFi (Cov. HiFi) long reads are shown
in 200-kb windows. Tandem repeat (TE, green), gene (blue), and segmental duplication (SD,
purple) density values were calculated in 10-kb windows. MUK, minimum unique k-mer
length in 100-kb windows. PURs (orange), previously unresolved regions in T2T-sheepl.0
compared to Ramb_v3.0. Error k-mer (red), 21-mer errors. Centromeres are highlighted in

dark blue, and telomeres are marked with black triangles.

Supplementary Fig. 3. Bionano and Hi-C validation of T2T-sheepl.0. a, Bionano
alignments are shown for the four selected chromosomes (Chr02, Chrl1, Chrl6, and ChrX).

b, Hi-C interaction heatmap showing the reliability of all chromosomes in T2T-sheepl.0.

Supplementary Fig. 4. Telomeric lengths on the chromosomal ends of T2T-sheepl.0. The
number of “CCCTAA” repetitive units in telomeric regions was summarized in 1-kb

windows at both chromosomal ends in T2T-sheepl.0.

Supplementary Fig. 5. Haplotype-resolved assemblies of pater nal T2T-sheepl.0P and
mater nal T2T-sheepl.0M. a, Visualization of the heterozygous regions between T2T-
sheepl.0P and T2T-sheepl.0M using bubbles, according to the GitHub scripts

(https://github.com/T2T-CN1/CN1/tree/main/heterozygosity). The parameter of h = 4 (count
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of SVs per 500 Kb) was set as the threshold for displaying bubbles. The homozygous regions
are shown as single paths (grey), and the heterozygous regions are marked as bubbles in blue
and red colors. Centromeres are marked as black lines. Uniform whole-genome coverage of
binned HiFi and ONT reads is shown for T2T-sheepl.0P (b) and T2T-shegpl.0M (c). The
abnormal coverage regions (>2*the average depth of whole genome or <0.5*the average

depth of whole genome) are indicated by triangles for the potential issues.

Supplementary Fig. 6. Genomic features of chromosomes of Ramb_v3.0. The labels are

the same as those in Supplementary Fig. 2.

Supplementary Fig. 7. Four gapsin Ramb_v3.0 that have been filled in T2T-sheepl.0. a,
The two small gaps on Chr01 and Chr10 do not contain genes. Gaps in Ramb_v3.0 are
marked in red. Purple lines indicate collinearity between T2T-sheegpl.0 and Ramb_v3.0. b,
The genes annotated in two gaps on Chr23 and Chr05 of Ramb_v3.0. The genes in T2T-

sheepl.0 and Ramb_Vv3.0 are shown in yellow and green, respectively.

Supplementary Fig. 8. Comparison among the available sheep genome assemblies. The
gap length (a), gap number (b), BUSCO (c), and length of two known centromeric satellite
sequences (Satl and Satll, d) compared among the 27 available sheep assemblies (sample

details in Supplementary Table 5).

Supplementary Fig. 9. Inversion errors on chromosomes 9 and X of T2T-shegpl.0
compared with Ramb_v3.0. The gray lines represent collinear regions, and the orange lines
represent inversions. The alignments of PacBio HiFi reads were used to check for the

inversion errors of INV195 on chromosome 9 (Chr09) and INV405 and INV406 on
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chromosome X (ChrX), based on the IGV snapshots. PacBio reads from both Rambouillet
sheep (NCBI Biosample ID SAMN17575729 for Ramb_v3.0) and HU3095 (i.e., T2T-
sheepl.0 individual) were aligned to T2T-sheegpl.0 well, suggesting the correct assembly on
the inversion regions, but the alignment of PacBio reads to Ramb_v3.0 cannot cover the
junction sites of these three inversions. a, Ramb_v3.0 reads were aligned to T2T-sheepl.0 at
the junctions of INV195 on Chr09. b, T2T-sheegpl.0 reads were aligned to the two assemblies
T2T-shegpl.0 and Ramb_v3.0 at the junctions of INV195 on Chr09. c, Reads from T2T-
sheepl.0 and Ramb_Vv3.0 were aligned to Ramb_Vv3.0 and T2T-sheepl.0 respectively at the

junctions of INV405 and INV406 on ChrX.

Supplementary Fig. 10. Minimum unique k-mer length per 100 kb on all the
chromosomes of T2T-sheepl.0 and Ramb_v3.0. Minimum unique k-mers (MUKSs) were
calculated in 100-kb windows for T2T-sheepl.0 and Ramb_Vv3.0, according to T2T Minimum

Unique K-mer Analysis pipeline (https://github.com/msauria/T2T_MUK_Analysis). The

more MUK values indicate more repetitive sequences in a 100-kb window.

Supplementary Fig. 11. Transcriptional expression of genesin previousy unresolved
regions (PURs) and newly assembled genes of T2T-sheepl.0. a, Newly assembled genes
(NAGS) of T2T-sheepl.0 compared to all sequences of Ramb_v3.0. b, Genes in PURs in T2T-
sheepl.0 compared to only the chromosomes of Ramb_v3.0. ¢, Expression of NAGs in

different tissues. d, Expression of genes in PURs in different tissues.

Supplementary Fig. 12. Circos plot for SDs and genesin orthogroups. From the outer to
the inner layer: 28 chromosomes of T2T-sheepl.0 (a), density of genes in orthogroups

identified by the OrthoFinder software (b), selected genes based on SNPs and SVs associated
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1705  with domestication (c) and wool fineness (d) and SDs (€). SDs in PURs are highlighted in red,
1706  interchromosomal SDs in gray, and intrachromosomal SDs in black.

1707

1708  Supplementary Fig. 13. Centromeric regionsfor selected autosomes and ChrX. Chr03
1709 (&), Chr04 (b), Chrl0 (c), and ChrX (d) are selected to show the centromeric features. From
1710  top to bottom: methylation based on HiFi reads; ChlIP-seq for histone H3 variant CENP-A
1711 (phospho-CENP-A (Ser7) antibody); Centromeric satellite units of Satl (purple), Satll (blue-
1712 green), and Satlll (orange); Repeats of satellite (grey purple), LTR (red), LINE (green), and
1713 SINE (orange); the chromosome bar with centromere highlighted in blue; and the sequence
1714  identity heatmap (bottom) with the color scale at the left bottom corner in nonoverlapping 5-
1715 kb windows.

1716

1717  Supplementary Fig. 14. Entropy plotsfor the selected chromosomes of T2T-shegpl.0.
1718  Entropy values were calculated across the whole chromosomes (Chr03, Chr04, Chr10, and
1719 ChrX) with NeSSie software using a sliding window size of 10 kb with a step of 1 kb.

1720

1721 Supplementary Fig. 15. Variantsin Satl and Satl| between T2T-goat1.0 and T2T-

1722 sheepl.0. The aligned sequences of Satl (a) and Satll (b) between T2T-goat1.0 and T2T-
1723 sheepl.O are shown.

1724

1725  Supplementary Fig. 16. Y-chromosome assembly for different animal species and

1726 phylogenetic tree of the ZFY gene family on theY chromosome of T2T-sheepl.0. a,

1727  Summarized history of Y-chromosome assemblies in major animals, including pig, human,
1728  mouse, donkey, cattle, and sheep. b, The nucleotide sequences of ZFY genes were used to

1729  reconstruct a maximum likelihood (ML) phylogenetic tree, with the ZFY gene in T2T-goat1.0
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serving as an outgroup.

Supplementary Fig. 17. Expression heatmap of all genes on chromosomeY of T2T-

sheepl.0 in 28 tissues.

Supplementary Fig. 18. Alignment of long reads from 18 sheep and SV calling. a,
European mouflon and Tan sheep for PacBio sequencing which was performed in this study
and the subsequent SV calling. b, The mean coverage values and their standard deviation (std)
among 18 sheep (X axis) were calculated in 500-bp windows in all genomic regions (all),
genes (gene), nonsyntenic regions (non-syn), satellite repeats (satellite), and syntenic regions
(syn), in a comparison of T2T-sheepl1.0 and Ramb_v3.0. In contrast to the PacBio HiFi reads,
the PacBio continuous long reads (CLRs) with more sequencing errors from the three sheep
exhibited more abnormal coverage when aligned to both assemblies. ¢, The length
distribution for the counts of DELs and INSs based on long reads were compared in a line
plot (left) between T2T-sheegpl.0 and Ramb_v3.0 used as references. The total counts (right)
of INSs and DELs are compared between T2T-sheepl.0 and Ramb_v3.0 as references. d, The
counts of DELs and INSs of the different lengths based on long reads were compared
between T2T-sheepl.0 and Ramb_v3.0 as references, in LINES, SINEs, LTRs, exon, gene,
and non-PURs. DEL is colored in blue for T2T-sheegpl.0 and light blue for Ramb_v3.0, and

INS is colored in red for T2T-sheepl.0 and orange for Ramb_Vv3.0.

Supplementary Fig. 19. SV density data obtained from PacBio data using T2T-sheepl.0
asareference. SV density was calculated in 10-kb windows based on the PacBio data in 18
sheep (Supplementary Table 11). Centromeres and telomeres are shown in yellow and black

respectively.
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Supplementary Fig. 20. A homologous deletion inside TUBEL genein the 18 samples.
Comparison of TUBEL on T2T-sheepl.0 and Ramb_v3.0 (top), with exons in red and blue
colors supported by Iso-seq reads. Based on the coverages, a deletion allele was detected in
all 18 individuals based on PacBio long reads with T2T-sheepl.0 as the reference (bottom

left), while no deletion was found with Ramb_v3.0 as the reference (bottom right).

Supplementary Fig. 21. Improvement of short read alignment in T2T-sheepl.0
compared to Ramb_v3.0. The 810 samples were divided into 6 geographic domestic sheep
populations and wild sheep. Compared with Ramb_v3.0 (orange), T2T-sheepl.0 (blue)
showed improvement of read alignments, including MQO (a), aligned properly paired reads

(b), outward oriented pairs (c), aligned reads (d) and error rate (e).

Supplementary Fig. 22. Statistics of SNPs based on short reads. a, The SNPs in 810
samples of all 28 chromosomes assessed against T2T-sheepl.0 and Ramb_v1.0. “Total” and
“PASS” indicate the SNPs before and after filtering by GATK program, respectively. b, The
SNPs in PURs on each chromosome in T2T-sheepl.0. Total (c), heterozygous (d) and
homozygous (e) SNPs for different geographic domestic and wild sheep populations in a

comparison of using T2T-sheepl.0 (red) and Ramb_v1.0 (green) as references.

Supplementary Fig. 23. Average nucleotide diversity (rr) of domestic and wild sheep

determined using T2T-sheepl.0 as the reference.

Supplementary Fig. 24. Neighbor-Net tree for the populations of domestic and wild

sheep. A Neighbor-Net tree was constructed based on SNPs using T2T-sheepl.0 as the
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reference and the Fst genetic distances among the domestic and wild sheep. To better
visualize the detailed breeds’ names, the branches are magnified around the tree, indicated by

dashed lines and arrows. Six superpopulations according to the continents are colored.

Supplementary Fig. 25. Selected genes associated with domestication and their allele
frequencies. a, Allele frequency differences of SNPs within two ABCC4 genes (Gene10178
and Genel0446) between Asiatic mouflon (MOU, Ovis orientalis) and landrace sheep (Ovis
aries). The five landrace breeds are Drenthe Heathen (DRS) in Europe, Altay (ALS) in
Central Asia, Hu sheep (HUS) in East Asia, Djallonké sheep (DJI) in Africa and Karakul
sheep (KAR) in the Middle East. b, Validation of & values (n-O. orientalis/n-landrace) and
allele frequencies of selected genes (OASL, BNC1, SPAG16, CD226 and FAM20C) in the
PURSs. Deletions in the selected genes ADAMTSL3 (c) and SPAG16 (d) are under selection,
with allele frequency differences between domestic and wild sheep and their read coverages

as viewed in IGV.

Supplementary Fig. 26. Selected genes associated with the wool finenesstrait and their
alldefrequencies. The n values (n-hair/z-fine wool) and allele frequencies of the previously
reported selected genes (TP63 and KRT1, a) and the newly identified genes (DMXL2,
TARBPL1 and EPSB, b) in non-PURs in this study are shown. Deletions of selected genes in
non-PURs (DMXL2, c) and PURs (CAL, d) are validated with read alignments in IGV, and
their allele frequencies are shown with differences in fine-, coarse- and medium-wool sheep,

compared to hairy sheep.

Supplementary Fig. 27. XP-CLR values based on SNPsfor thefour sheep populations

with various fleece fiber diameters. In addition to fine-wool vs. hairy sheep, the other five
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comparisons of fine-wool vs. medium-wool sheep (a), fine-wool vs. coarse-wool sheep (b),
medium-wool vs. coarse-wool sheep (c), medium-wool vs. hairy sheep (d), and coarse-wool
vs. hairy sheep (e) were also used to search for selection signals based on SNPs and the XP-
CLR approach. Genes detected in the hairy vs. fine-wool comparison are marked in red, and
genes in the PURs are marked in blue. The selection signals in PURSs are highlighted with

green lines.

Supplementary Fig. 28. Selection of IRF2BP2 gene and its selected sites associated with
various fleece fiber diameters. a, The n values (n-hair/n-fine wool) confirms the selection of
IRF2BP2 gene on Chr25. b, The allele frequencies of one insertion and eight SNPs are
different between hair and fine wool populations, suggesting a fine wool selection. c, The six
newly identified sites (16307402, 16307498, 16308112, 16308153, 16310330, and 16311100)
are located in the promoter region and 5’ upstream regulation region. The insertion site of
16302462 is the one previously reported by Demars et al. 2017*°, and the two ones of
16303394 and 16305442 are from the study by Lv et al. 2022°. Linkage disequilibrium (LD)

analysis based on r? showed the linkage among these alleles in fine wool population.

Supplementary Fig. 29. Fsr values based on SVsfor the four sheep populations with
various fleece fiber diameters. The five comparisons of coarse-wool vs. fine-wool, coarse-
wool vs. hairy, coarse-wool vs. medium-wool, fine-wool vs. medium-wool, and hairy vs.
medium-wool were used to search for selection signals based on SVs and Fst. Genes detected
in the hairy vs. fine-wool comparison are marked in red, and genes in the PURSs are marked in

blue. The selection signals in the PURs are highlighted with green lines.
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Supplementary Tables

Supplementary Table 1. Summary of the sequencing data in this study.

Supplementary Table 2. Statistics for the T2T-sheepl.0 assembly.

Supplementary Table 3. The 139 gapsin theinitial assembly of T2T-sheepl.0.

Supplementary Table 4. Length of PURs and quality values (QVs) for the chromosomes

of T2T-sheep1.0, T2T-sheepl.0P and T2T-sheepl.OM.

Supplementary Table 5. Statistics of the ovine genome assemblies downloaded from the

NCBI in a comparison to T2T-sheepl.0.

Supplementary Table 6. Genomic featuresin the whole genome and PURs of T2T-

sheepl.0.

Supplementary Table 7. RNA-seq samples used for gene annotation and validation.

Supplementary Table 8. RNA expression (FPKM) of genesin the centromeric regions.

Supplementary Table 9. Number of genesin thetop orthogroupsidentified among four

genomes (T2T-sheepl.0, Argali, Ramb_v3.0 and ARSL) of closely related species.

Supplementary Table 10. Satellite sequences of the sixteen species used for phylogenetic

treereconstruction.
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