

1 **A high-resolution model of gene expression during *Gossypium hirsutum* (cotton)**
2 **fiber development**

3 Corrinne E Grover^{1*}, Josef J Jareczek^{1,2}, Sivakumar Swaminathan³, Youngwoo Lee⁴, Alexander H
4 Howell⁴, Heena Rani^{4,5}, Mark A Arick II⁶, Alexis G Leach^{1,7}, Emma R Miller¹, Pengcheng Yang⁸,
5 Guanjing Hu^{9,10}, Xianpeng Xiong^{9,10}, Eileen L Mallery⁴, Daniel G Peterson⁶, Jun Xie⁸, Candace H
6 Haigler^{11,12}, Olga A Zabotina³, Daniel B Szymanski⁴, Jonathan F Wendel¹

7
8 ¹ Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011,
9 USA

10 ² Current address: Bellarmine University, Louisville, KY, USA

11 ³ Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University,
12 Ames, IA 50011, USA

13 ⁴ Department of Botany and Plant Pathology, Center for Plant Biology, Purdue University, West
14 Lafayette, IN 47907, USA

15 ⁵ Current address: USDA-ARS, Cereal Crops Research Unit, Madison, WI 53726, USA

16 ⁶ Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State,
17 MS 39762, USA

18 ⁷ Current address: Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman
19 School of Medicine, Philadelphia, PA 19104, USA

20 ⁸ Department of Statistics, Purdue University, West Lafayette, IN 47907, USA

21 ⁹ State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural
22 Sciences, Anyang 455000, China

23 ¹⁰ Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis
24 Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese
25 Academy of Agricultural Sciences, Shenzhen 518120, China

26 ¹¹ Department of Crop & Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA

27 ¹² Department of Plant & Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA

28
29 *author for correspondence: corrinne@iastate.edu

30

31 **Running title:** *G. hirsutum* fiber development

32 **Keywords:** cotton fiber; fiber development; cellulose synthase; developmental transcriptomics; turgor

33

34

35 Abstract

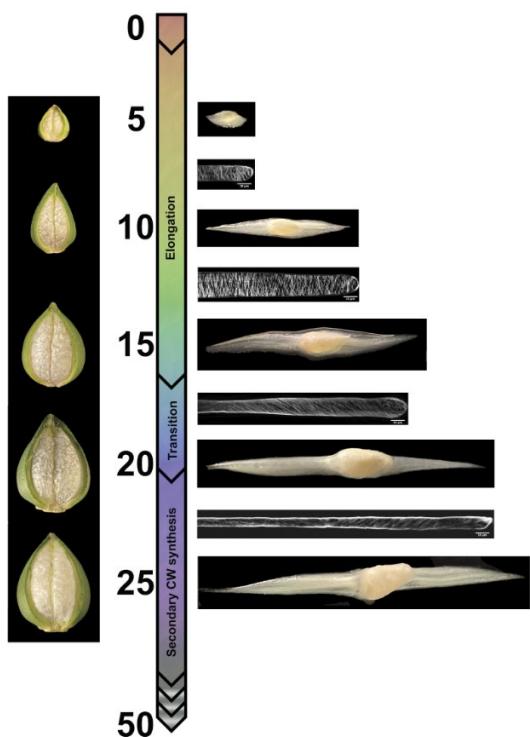
36 Cotton fiber development relies on complex and intricate biological processes to transform newly
37 differentiated fiber initials into the mature, extravagantly elongated cellulosic cells that are the foundation
38 of this economically important cash crop. Here we extend previous research into cotton fiber development
39 by employing controlled conditions to minimize variability and utilizing time-series sampling and
40 analyses to capture daily transcriptomic changes from early elongation through the early stages of
41 secondary wall synthesis (6 to 24 days post anthesis; DPA). A majority of genes are expressed in fiber,
42 largely partitioned into two major coexpression modules that represent genes whose expression generally
43 increases or decreases during development. Differential gene expression reveals a massive transcriptomic
44 shift between 16 and 17 DPA, corresponding to the onset of the transition phase that leads to secondary
45 wall synthesis. Subtle gene expression changes are captured by the daily sampling, which are discussed in
46 the context of fiber development. Coexpression and gene regulatory networks are constructed and
47 associated with phenotypic aspects of fiber development, including turgor and cellulose production. Key
48 genes are considered in the broader context of plant secondary wall synthesis, noting their known and
49 putative roles in cotton fiber development. The analyses presented here highlight the importance of fine-
50 scale temporal sampling on understanding developmental processes and offer insight into genes and
51 regulatory networks that may be important in conferring the unique fiber phenotype.

52

53 Introduction

54 Cotton fibers are individual cells that emerge from the developing ovule epidermis and develop over a
55 period of about two months from initiation to maturity. Fiber development entails a tightly coordinated
56 series of overlapping stages that oversee the transformation of individual cells from spherical epidermal
57 protrusions on the ovular surface to mature fibers whose length can exceed 5 cm and whose cell wall
58 (CW) composition approaches 98% cellulose (Kim and Triplett, 2001; Butterworth *et al.*, 2009; Kim,
59 2018; Jareczek, Grover and Wendel, 2023). These highly polarized cells are both useful models for plant
60 cell morphogenesis (Kim and Triplett, 2001; Butterworth *et al.*, 2009; Kim, 2018; Jareczek, Grover and
61 Wendel, 2023; Haigler *et al.*, 2012) and form the foundation of a multibillion dollar textile industry;
62 therefore, understanding their growth and development are important from both agronomic and
63 fundamental biology perspectives. Although four species of cotton have been independently
64 domesticated, *Gossypium hirsutum* (or Upland cotton), comprises the vast majority of the market share
65 (~95%) due to its high yield, greater pest resistance, and environmental adaptability (Constable *et al.*,
66 2015). *Gossypium hirsutum* is an allopolyploid containing two coresident genomes (At, Dt) donated by
67 the progenitor diploids at the time of polyploid formation circa 1 million years ago (reviewed in (Viot and
68 Wendel, 2023; Hu, Grover, Yuan, *et al.*, 2021)). Following its initial domestication, *G. hirsutum*
69 experienced strong directional selection for intensely elongated fiber (Kim, 2015; Applequist *et al.*,
70 2001), among other traits, which resulted in massive reorganization of the fiber transcriptome and tighter
71 coordination among fiber-related genes (Gallagher *et al.*, 2020; Rapp *et al.*, 2010).

72


73 At the biosynthetic level, fiber development requires intricate coordination of cellular processes that
74 establish the shape and length of the fiber cell. Morphogenesis takes place over several overlapping stages
75 (Figure 1) whose interplay ultimately determines fiber characteristics. The first stage, initiation, begins on
76 the ovular surface around the time of anthesis (i.e., flower opening) and is regulated by phytohormones

77 (e.g., positive regulators include auxin, brassinosteroids, and jasmonic acid; reviewed in (Xiao *et al.*,
78 2019; Jareczek, Grover and Wendel, 2023), as well as reactive oxygen species (ROS). Evolutionarily
79 conserved MYB cell-fate control genes are implicated in fiber initiation, as are many other genes (L.,
80 Wang *et al.*, 2021; Zou *et al.*, 2022; Qin *et al.*, 2019; N.-N., Wang *et al.*, 2021; Ando *et al.*, 2021; Zhao
81 *et al.*, 2019; Jiao *et al.*, 2023; Jiang *et al.*, 2021; Hu *et al.*, 2016), including those involved in
82 cytoskeleton-dependent cell wall patterning (Li *et al.*, 2005; Qu *et al.*, 2012; Gilbert *et al.*, 2014; Y.,
83 Zhang *et al.*, 2021). Fiber cells elongate through a highly polarized form of anisotropic diffuse growth
84 over about 3 weeks (Kim, 2018). Soon after fiber elongation begins, the cells taper under the influence of
85 apical microtubules and cellulose to progressively reduce and restrict cell diameter throughout
86 development (Stiff and Haigler, 2016; Yanagisawa *et al.*, 2015; Yanagisawa *et al.*, 2022). This
87 specialized apical domain and transverse network of microtubules help to establish fiber cell diameter and
88 enable resistance to swelling along the cell axis as elongation continues. Transverse cortical microtubules
89 direct the synthesis of parallel stiff cellulose microfibrils that resist radial expansion as high turgor
90 pressure drives anisotropic growth (Lockhart, 1965; Proseus *et al.*, 2000; Ryser, 1977; Tiwari and
91 Wilkins, 1995; Qin and Zhu, 2011; Yu *et al.*, 2019).

92

93

94

Figure 1. Illustration of cotton fiber developmental timeline focusing on the first half of development. Cotton fiber development starts with initiation of fiber cells on the ovule seed coat, which begins around the time of flower opening (anthesis) and continues during the first few days of seed development during which the fiber cells taper to reduce cell diameter (by 2 days post anthesis; DPA). The elongation phase, which includes primary wall synthesis, has complex dynamics and persists for about 20 days. At approximately 16 DPA, the transition between elongation and cell wall thickening begins. The mature, cellulose-rich fiber is fully formed at about 50 DPA. Images are placed in their approximate position along the developmental timeline. Cut capsules (“bolls”) and developing fibers are shown to the left and right of the timeline, respectively. Confocal images of developing fibers show the orientation of the cellulose microfibrils, which changes from approximately transverse during elongation to an increasingly steep helix beginning at the transition stage. Images of growing ovules with fiber combed away in two directions are intercalated.

115

the transition stage. Images of growing ovules with fiber combed away in two directions are intercalated.

116

117 The composition and material properties of the cell wall matrix polysaccharides are also tuned during the
118 elongation phase to enable predictable cell shape outcomes (Avci *et al.*, 2013; Swaminathan *et al.*, 2024;
119 Delmer *et al.*, 2024). Complex interactions between the cellulose and matrix components of the wall
120 likely underlie much of the observed growth rate variability (Yanagisawa *et al.*, 2015; Yanagisawa *et al.*,

121 2022). Important polysaccharides during this phase are those such as cellulose, xyloglucan, and pectin
122 (Haigler *et al.*, 2012; Kim and Triplett, 2001; Avci *et al.*, 2013; Pettolino *et al.*, 2022; Jareczek, Grover
123 and Wendel, 2023), whose arrangement and composition results in unidirectional extensibility. Both
124 turgor and cell wall stiffness influence fiber growth rate (Yanagisawa *et al.*, 2015; Yanagisawa *et al.*,
125 2022), which makes turgor modulation and fiber cell wall composition change during development (Avci
126 *et al.*, 2013; Meinert and Delmer, 1977; Pettolino *et al.*, 2022) active areas of research.

127

128 As with the initiation phase, numerous genes have been implicated in elongation, including transcription
129 factors and various cytoskeletal genes (Pu *et al.*, 2008; Machado *et al.*, 2009; Shan *et al.*, 2014; Luo *et al.*,
130 2007; Yang *et al.*, 2014; Zhang *et al.*, 2017; Huang *et al.*, 2021; Takatsuka *et al.*, 2018). Phytohormones
131 continue to play an important role in elongation (Jareczek, Grover and Wendel, 2023), with many
132 ethylene biosynthetic genes and pathways upregulated during this stage (Ahmed *et al.*, 2018; Xiao *et al.*,
133 2019). These in turn influence the expression of fiber-related genes such as cellulose synthase, expansins,
134 and sucrose synthase, while also influencing both the brassinosteroid pathway and ROS management, the
135 latter contributing to anisotropic growth in the fiber (Ahmed *et al.*, 2018; Xiao *et al.*, 2019; Tang *et al.*,
136 2014; Jareczek, Grover and Wendel, 2023).

137

138 A major developmental transition takes place somewhere between ~16 to 20 DPA ([Figure 1](#)), marking the
139 switch from fiber elongation to secondary cell wall (SCW) synthesis (Meinert and Delmer, 1977). The
140 transition is a distinct development stage characterized by: increased cellulose synthesis; changes in
141 microtubule and cellulose microfibril orientation; decreased synthesis of primary cell wall (PCW)
142 polysaccharides; and degradation of the cotton fiber middle lamella (CFML), among other changes in
143 biochemical and cellular features (Haigler *et al.*, 2012; Singh *et al.*, 2009). Correspondingly extensive
144 changes in gene expression and other regulatory processes (e.g., phytohormone activity) occur (Zhou *et*
145 *al.*, 2019; Tuttle *et al.*, 2015; Jareczek, Grover and Wendel, 2023). The fiber, which is composed of 90 -
146 95% cellulose at maturity, commits increasing resources toward cellulose production as the fiber moves
147 into the last phase of SCW thickening (~23 DPA to 45 DPA; [Figure 1](#)). Some of the regulatory genes
148 involved in the transition include NAC-domain factors (e.g., SND1 and TALE family genes; (Zhong *et*
149 *al.*, 2006; Ma *et al.*, 2019)), MYB genes (including GhMYBL1; (Zhong *et al.*, 2006; Li *et al.*, 2009; Sun
150 *et al.*, 2015)), and the transcription factor Hot216, a KIP-related protein that regulates a network of ~1000
151 cell wall synthesis genes (Li *et al.*, 2020). As the cell moves into SCW synthesis, a subgroup of cellulose
152 synthases become highly expressed (Kim, 2018), along with genes related to regulation of UDP-glucose,
153 the substrate for synthesis of cellulose and some other cell wall polymers (Buchala, 1999). Many other
154 genes are also up-regulated, given the complex changes in the metabolome during the SCW stage (Tuttle
155 *et al.*, 2015).

156

157 The molecular underpinnings of fiber development and various fiber properties (e.g., length, strength) in
158 *G. hirsutum* have been evaluated at the transcriptome level using different comparative strategies and
159 time points. Many comparisons have evaluated the expression differences that underlie important fiber
160 morphologies via differential gene expression at key timepoints between accessions that vary in these
161 important fiber properties (Qin *et al.*, 2019; Li *et al.*, 2023; Naoumkina *et al.*, 2015; Islam *et al.*, 2016) or
162 among time points sampled (Wang *et al.*, 2010; Gallagher *et al.*, 2020; Jareczek, Grover, Hu, *et al.*, 2023;
163 Yoo and Wendel, 2014), resulting in many of the insights mentioned above. Others have made
164 interspecific comparisons to *G. barbadense*, whose fiber possesses several desirable properties (Tuttle *et*

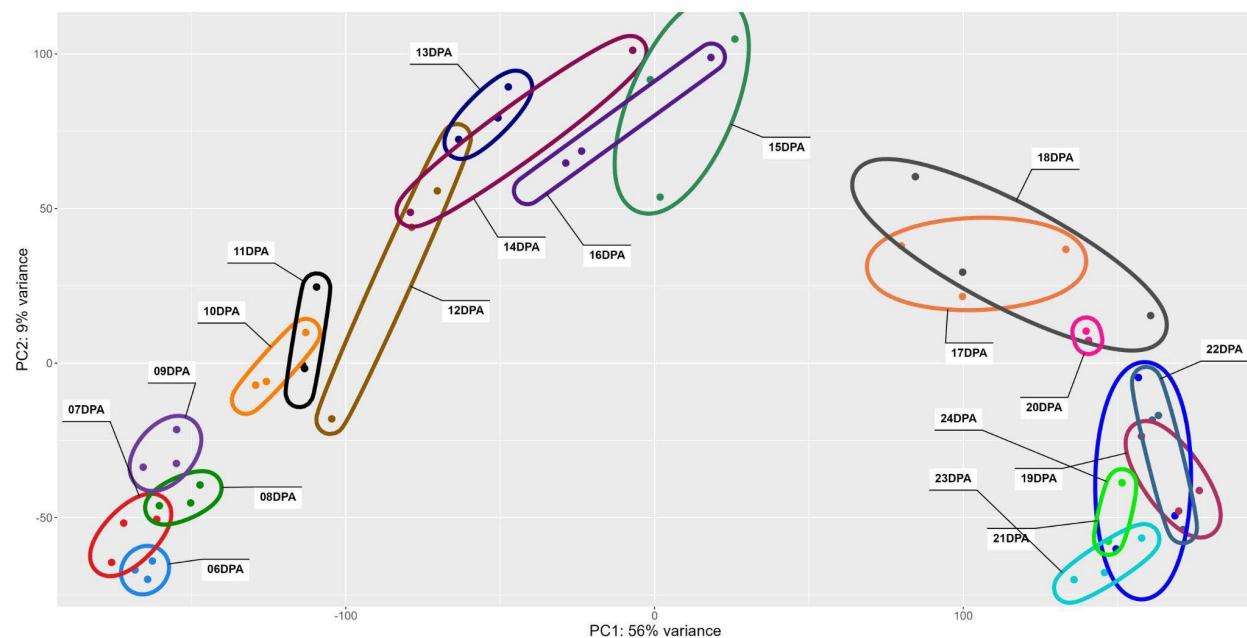
165 *al.*, 2015; Jareczek, Grover, Hu, *et al.*, 2023; Zhu *et al.*, 2011; Chen *et al.*, 2012; Rapp *et al.*, 2010), or
166 compared developmental timelines between wild and domesticated forms of *G. hirsutum* (Jareczek,
167 Grover, Hu, *et al.*, 2023; Rapp *et al.*, 2010; Gallagher *et al.*, 2020; Yoo and Wendel, 2014). The
168 emerging picture from these and other studies is that fiber development is transcriptionally complex, in
169 part reflecting overlap and compromises among the gene networks regulating important fiber properties
170 such as length and strength.

171
172 In this study, we extend our prior understanding of fiber development by sampling the transcriptome more
173 densely than in prior studies and, combined with data from other ‘omics’ and fiber phenotypes, provide
174 preliminary information regarding the networks controlling cotton fiber development. These data allow a
175 more fine-scale characterization of elongation, the transition phase, and SCW synthesis, when fiber
176 becomes increasingly committed to cellulose production. Using the genetic standard line *G. hirsutum* cv.
177 TM-1 (Kohel *et al.*, 1970) grown under light and temperature-controlled conditions, we sampled daily
178 from 6 to 24 days post anthesis (DPA) to evaluate changes in gene expression during key stages defining
179 the qualities of mature cotton fiber. We characterize gene expression patterns in the context of a
180 developmental time series and use multiple methods to understand the relationships among genes, finding
181 that gene expression is highly coordinated with over half of expressed genes gradually increasing or
182 decreasing in expression throughout the time period studied. We also note a major transcriptomic shift
183 corresponding to the start of the transition phase (Figure 1) and use network analyses to determine
184 putative relationships among key genes. We combine gene expression data with proteomic, glycomic, and
185 phenotypic surveys in the same accession (*G. hirsutum* cv. TM-1) grown under the same conditions and
186 sampled at the same time points to further increase our understanding of the phenotypic consequences of
187 transcriptomic changes. Key candidate genes for control of fiber development are identified and
188 discussed.

189

190 **Results**

191 *General description of the data*


192 Gene expression during fiber development was surveyed from the early stages of PCW synthesis through
193 the initiation and maintenance of SCW synthesis (i.e., 6 - 25 DPA; Figure 1). Three replicates were
194 collected for each stage; however, library construction failed for four samples (one each for 20 and 24
195 DPA and two for 25 DPA). Repeated attempts to generate these replicates were unsuccessful, and thus
196 they were omitted. From the 56 successful samples, we recovered between 1.5 and 264.6 million (M)
197 reads (mean = 41.2 M, median = 36.4 M) per sample. Clean reads were mapped to the 74,776 reference
198 genes, resulting in an average of 55,008 genes expressed at any given time point (Supplementary Figure
199 1; Supplementary Table 1).

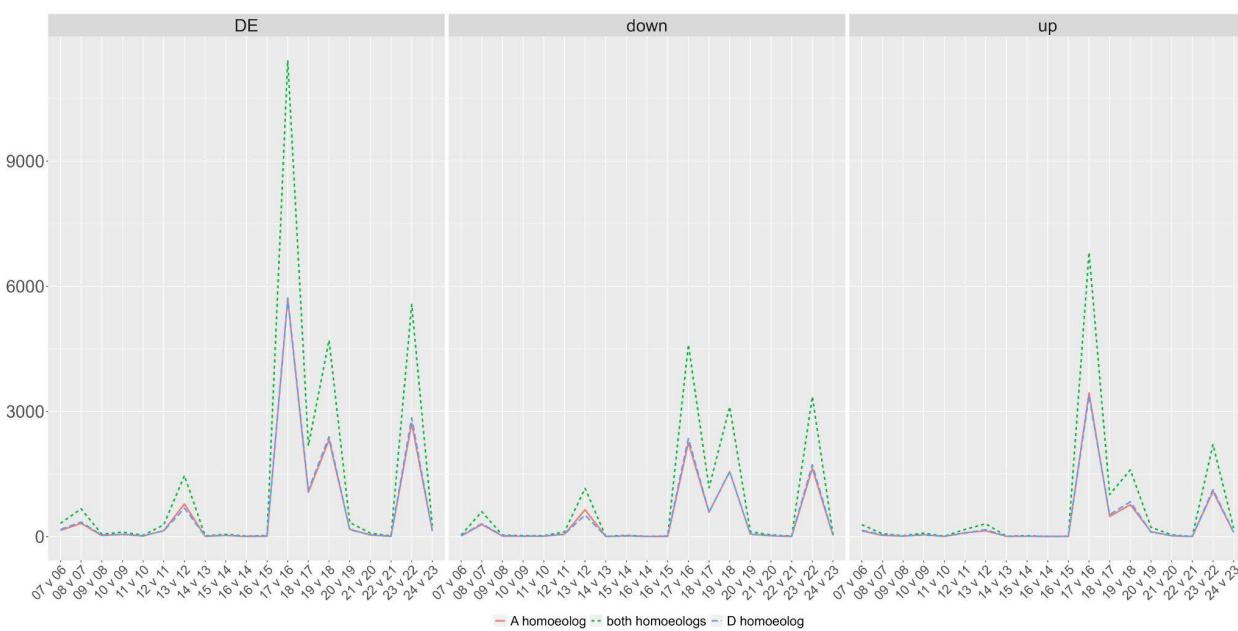
200

201 Notably the number of expressed genes (~74% of transcriptome) is generally stable across replicates and
202 DPA, with the exception of 14 DPA replicate A and the sole 25 DPA replicate (Supplementary Figure 1).
203 Because 14 DPA replicate A had substantially fewer expressed genes than the other replicates, we
204 removed this sample as a potentially early-aborted capsule. We also removed the single 25 DPA sample
205 noted above from subsequent analyses of differential gene expression (DGE) and gene regulatory and/or
206 coexpression reconstruction.

207
208
209
210
211
212
213
214
215
216
217
218
219

Principal component analysis (PCA) of the expressed genes was used to explore patterns in the data (Figure 2). In general, the first axis (PC1; 56% variance) clustered replicates and sequentially separated DPA along a temporal axis (from left to right). A small gap on the primary axis is observed between 9 and 10 DPA, which reflects the middle of elongation via PCW synthesis. Notably, the largest gap in the primary axis (PC1) is between 16 and 17 DPA, which is at the beginning of the transition stage (~16-20 DPA; (Tuttle *et al.*, 2015)). Interestingly, the initial four timepoints (6-9 DPA) and last six timepoints (19-24 DPA) surveyed exhibited little differentiation along the primary axis, perhaps suggesting relative consistency in expression and/or tighter regulation of expression during the stages of early elongation and early CW thickening, respectively. The seven intervening timepoints (10-16 DPA), which are spread out along the primary axis, are correlated with the majority of elongation before the transition phase begins.

220
221
222
223
224
225


Figure 2. PCA of expression data for cotton fiber sampled daily between 6 and 24 DPA. Each DPA is individually colored and listed, and ellipses encompass replicates for each DPA. First and second axes are displayed, accounting for 54% and 9% of the variance, respectively. PC1 generally separates samples by time, whereas PC2 likely reflects variation between plants or bolls.

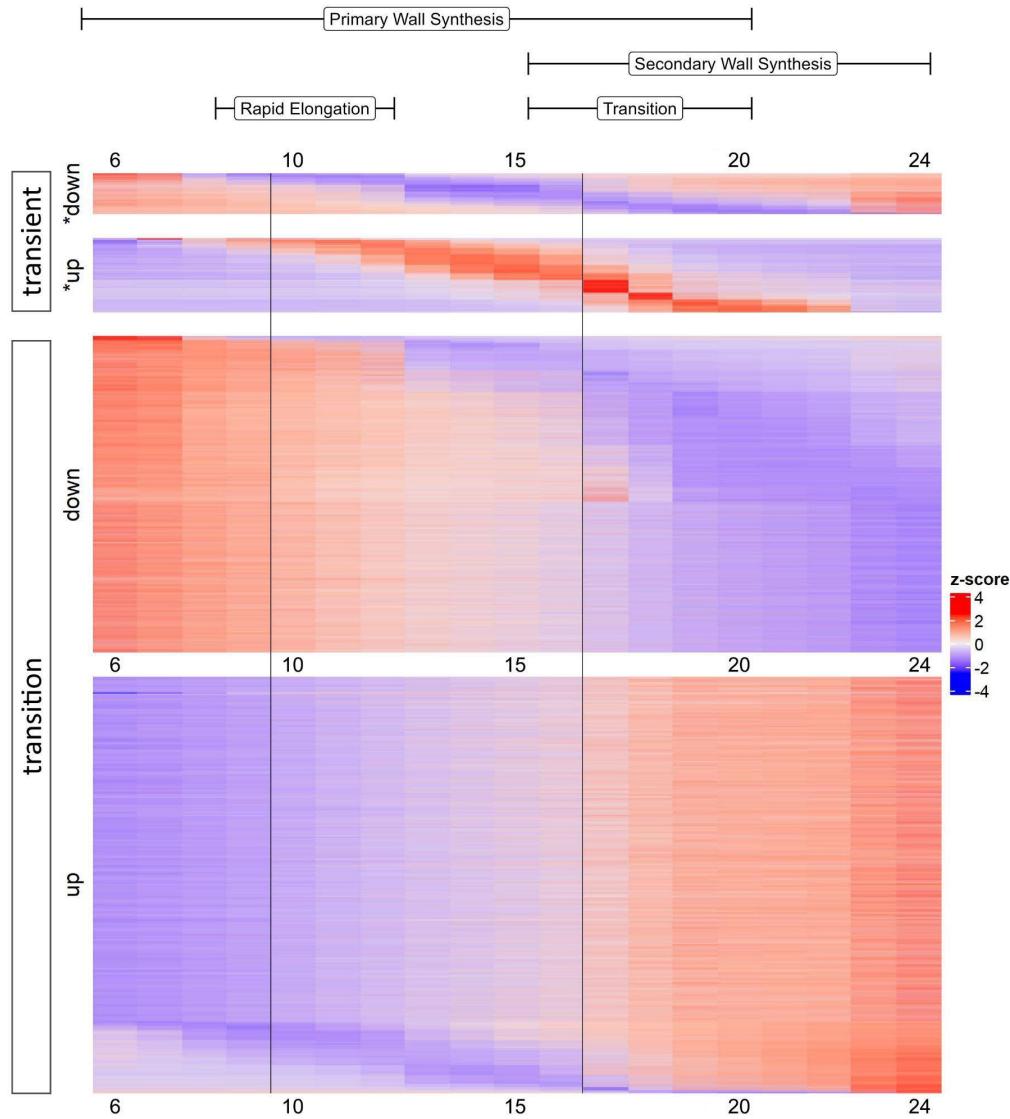
226
227
228
229
230

Gene expression trends across fiber development

Differential gene expression was evaluated for all 74,776 reference genes for adjacent stages, as summarized in Figure 2. In general, the number of differentially expressed genes was equivalent between both subgenomes (*i.e.*, A_T and D_T). Consistent with the aforementioned observation of a distinct difference between 16 and 17 DPA samples (Figure 2), the number of differentially expressed genes

231 (DEG) between those timepoints was more than an order of magnitude greater than most other
232 comparisons (11,417 DEG, versus 16 - 5,562 in other comparison; median = 269 DEG, mean = 1,531
233 DEG; Supplementary Table 2), suggesting massive changes in gene expression correlated with entering
234 the transition stage. Other, smaller spikes in DEG number were also apparent in the subsequent two
235 comparisons (*i.e.*, 18 versus 17 DPA and 19 versus 18 DPA), as well as between 22 and 23 DPA (Figure
236 3). Few sharp increases were seen prior to the transition phase, save for small increases in DEG between 7
237 - 8 DPA and between 12 - 13 DPA. Interestingly, despite the disjunction between 9 and 10 DPA evident
238 in the PCA plot, few genes exhibited significant differences in expression, suggesting that this apparent
239 disjunction between these two DPA is the result of numerous subtle (*i.e.*, not statistically significant)
240 changes in gene expression.
241

242
243 **Figure 3.** Differential gene expression between adjacent DPA. The number of differentially expressed
244 genes between adjacent DPA comparisons is depicted for the time series. The left panel represents all
245 differentially expressed genes, whereas the middle and right panels are parsed as genes that are up- or
246 down-regulated in the later DPA, respectively. Colors and line types represent either the number of DEG
247 when considering both homoeologs together (green, short dash), the A-homoeolog only (red, solid line),
248 or the D-homoeolog only (blue, long dash).
249


250 On average, the number of genes exhibiting down-regulation on adjacent days slightly out-numbered up-
251 regulation (average of 805 versus 726, respectively) across the developmental timeline surveyed here. In
252 nearly two-thirds of the adjacent DPA contrasts (60%; 11 contrasts), the number of down-regulated DEGs
253 at the later days outnumbered the number of up-regulated DEGs; however, the opposite is true when
254 evaluating patterns of differential expression in the context of a timeseries. When fit to a continuous
255 model of gene-wise expression using ImpulseDE2, the number of genes that transition up (Tr-Up; 19,706
256 genes) or are transiently upregulated (Im-Up; 3,402 genes) during this developmental period (6 to 24
257 DPA) outnumbers those that transition down (Tr-Down; 14,491 genes) or are transiently downregulated
258 (Im-Down; 1,871 genes; Figure 4). The broad classifications of genes in these categories are available in
259 (Supplementary Figure 1). As defined by ImpulseDE2, genes in the transition categories either

260 continuously increase (TrGene-Up) or decrease (TrGene-Down) their expression throughout the sampled
261 time period. The 19,076 genes in the TrGene-Up category encode: glycoside hydrolases with a predicted
262 role in deconstructing CW matrix polymers such as those found in the CFML (Singh *et al.*, 2009);
263 transcriptional regulators of SCW synthesis; polysaccharide synthases, including cellulose synthases in all
264 six major classes; accessory protein participants in cellulose synthesis; modulators of the microtubule and
265 actin cytoskeleton; FASCICLIN-like arabinogalactan proteins; hormone response regulators (e.g auxin,
266 brassinosteroid, ethylene, gibberellin, and jasmonic acid); producers and scavengers of reactive oxygen
267 species; and many other proteins that can be logically associated with cotton fiber development (see other
268 text and references in this article). The TrGene-Up category also includes homologs of many other
269 regulatory and structural proteins that have been characterized in cotton or other species (primarily
270 *Arabidopsis*), as well as many uncharacterized proteins.

271
272

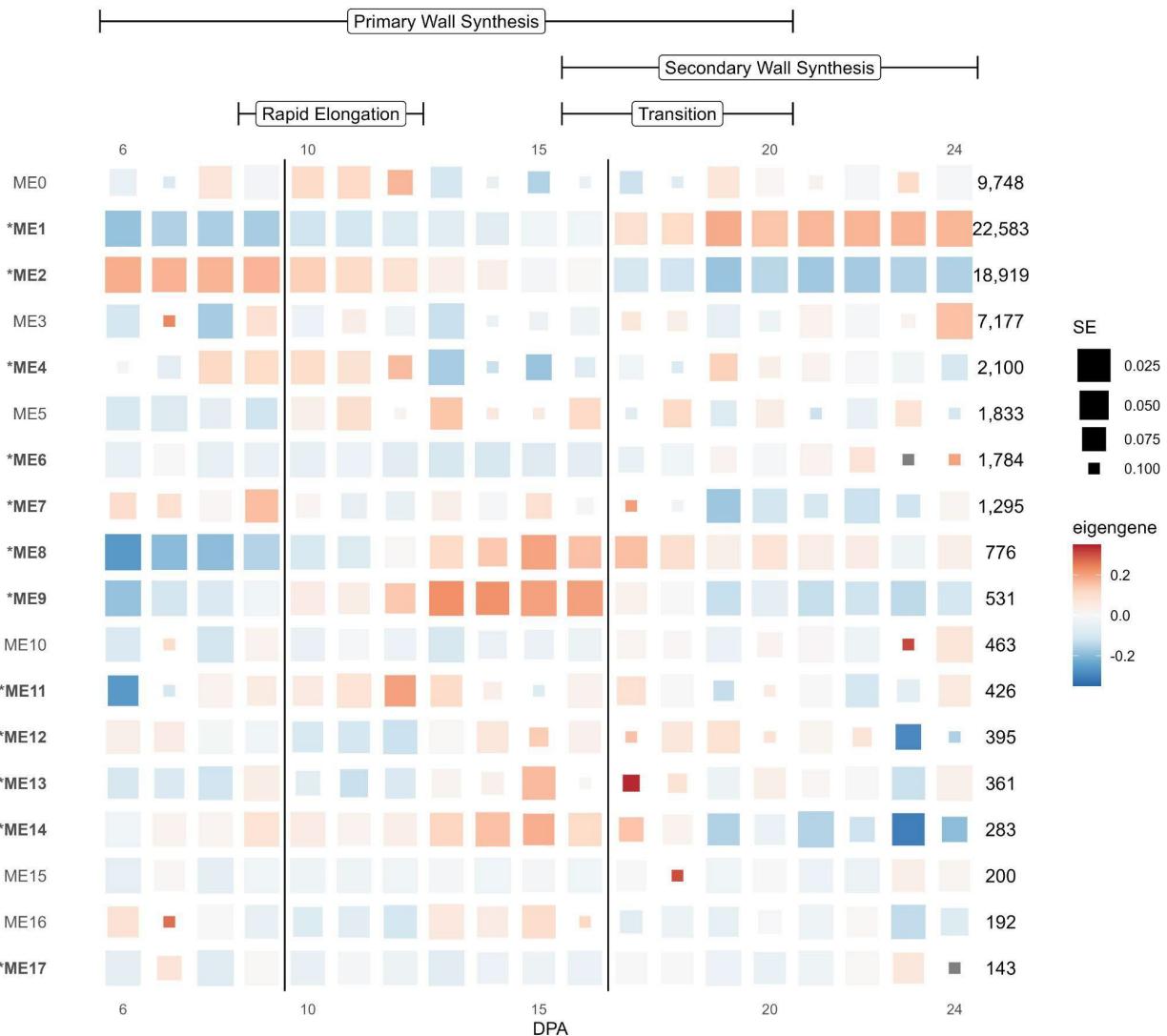
273 The transient (or impulse) categories refer to genes whose expression profiles exhibit either increased
274 (Im-Up) or decreased (Im-Down) expression during the middle of the time course and relatively lower or
275 higher expression at the beginning and end, respectively. Interestingly, the beginning of the impulse
276 periods (i.e., where Im-Up and Im-Down genes change expression) coincides with the small disjunction
277 on the PCA between 9 and 10 DPA and the apex of the impulse period coincides with the major shift in
278 gene expression between 16 and 17 DPA. The latter apex is particularly interesting, as it may reflect
279 genes which regulate or participate in the massive changes in gene expression observed at the onset of the
280 transition phase. Gene ontology (GO) analyses of these categories reveal many terms enriched within the
281 Im-Up category for both Molecular Function (MF) and Biological Process (BP), and comparatively fewer
282 terms for the Im-Down category (Supplementary Figures 1 and 2). Among the Im-Up genes (i.e., *up;
283 Figure 4) are genes related to CW extensibility (Jareczek, Grover and Wendel, 2023), which is required
284 for rapid elongation. Interestingly, the proportion of transcription factors in the Im-Up category (10.1%)
285 is significantly lower than found in the Tr-Up category (20.3%, $p < 0.01$ 1-sample proportion test) and the
286 proportion of Im-Down transcription factors (17.9%) is significantly greater than that found in the Tr-
287 Down category (10.7%, $p < 0.01$ 1-sample proportion test).

288

289

290 **Figure 4.** ImpulseDE2 profiles for developing cotton fibers (6 DPA through 24 DPA). Categories include
291 genes whose expression transition up (up, Tr-Up); transition down (down; Tr-Down); impulse up (*up,
292 Im-Up); or impulse down (*down; Im-Down). Colors reflect relative expression levels, where blue
293 indicates lower expression and red indicates higher expression. Bars at the top of the diagram indicate the
294 phase in fiber development covered by those DPA, i.e., PCW synthesis to support rapid elongation,
295 transitional CW remodeling, and SCW synthesis. Vertical black lines indicate the 9-10 and 16-17 DPA
296 gaps from the PCA that also exhibit the most adjacent DPA expression changes.

297


298 Interestingly, the time points sampled captured a small number of genes whose expression increased
299 sharply between 23 and 24 DPA. DEG analysis revealed 201 genes upregulated at 24 DPA relative to 23
300 DPA (log2 fold change of 0.80 - 33.34), with 82% of the genes having log2 fold change ≥ 2.0 . Among
301 these include genes that may be involved in the dominant process of cellulose deposition (see discussion)
302 that begins circa 24 to 25 DPA in cotton fiber, including a GTPase protein (Gorai.011G031400, both

303 homoeologs), two NAC transcription factors (Gorai.006G205300.A and Gorai.003G077700.D), and a
304 MYB-like transcription factor (Gorai.001G138800.D).

305

306 *Construction of a gene coexpression network*

307 Expression relationships among genes were first analyzed using coexpression network analysis, which
308 places genes into modules based on their correlated expression patterns and summarizes the expression of
309 the genes within each module as the eigengene (i.e., the first principal component of the module).
310 Approximately 7% (5,237) of the 74,446 genes were removed due to zero variance across the sampled
311 times. The remaining 69,209 genes were placed in 18 modules, referred to as ME0 through ME17 (Figure
312 5; *Supplementary Figure 3*), where ME0 (9,748, 14.1%) comprises genes whose expression could not be
313 assigned to a coexpression module (Langfelder and Horvath, 2008). Interestingly, the first two true
314 modules (i.e., ME1 and ME2) each contain over 25% of the genes in the network. ME1 comprises 22,583
315 genes (32.6%) and exhibits an eigengene profile consistent with increased expression over time (Figure 5;
316 *Supplementary Figure 3*). Intersection between ME1 and the Tr-Up category of differential expression
317 (above) reveals 16,705 genes from ME1 are also contained within that category (*Supplementary Table 3*),
318 representing 87.6% of the Tr-Up genes and 74.0% of ME1 genes. Complementing ME1, ME2 (18,919
319 genes; 27.3% of network) exhibits an eigengene profile consistent with decreasing expression over the
320 time series. Similar to ME1, a majority of Tr-Down genes (12,991 genes, or 89.7%; *Supplementary Table*
321 3) are contained within ME2, comprising 68.7% of the total genes in ME2. Notably, the expression
322 profiles of the eigengenes for these first two modules exhibits an axial flip between 16 and 17 DPA
323 (*Supplementary Figure 3*), reflecting both the disjunction observed in the PCA and the major shift in gene
324 expression exhibited in the time series differential expression analysis.
325

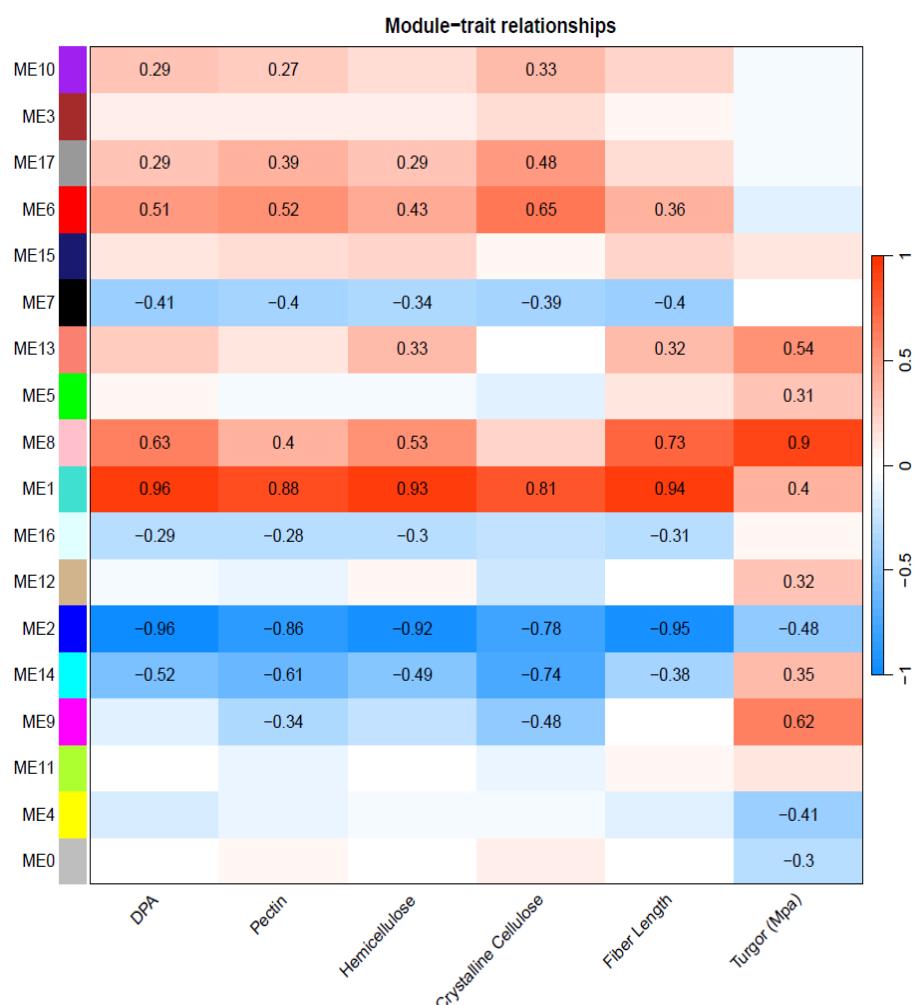
326

327 **Figure 5.** Eigengene expression for coexpression modules derived from cotton fibers developing in
 328 stages, as indicated at the top. Modules are listed in numerical order, and modules significantly associated
 329 with development are noted with * and in bold. Colors represent the relative module eigengene
 330 expression, and box size represents the standard error (SE), where larger boxes represent eigengene
 331 expression values with low SE. Fiber development stages are noted at the top, and the division between 9
 332 versus 10 and 16 versus 17 DPA are noted by vertical lines.

333

334

335 Both ME1 and ME2 also contain relatively high proportions of the Im-Up and Im-Down genes
 336 ([Supplementary Table 3](#)). ME1 contains 26.4% (899 out of 3,402) of the Im-Up genes and 21.4% of the
 337 Im-Down genes (400 out of 1,871), while ME2 contains 10.9% (370 genes) and 42.7% (798 genes),
 338 respectively. Although this represents 37.3 - 64.0% of genes contained within each impulse category,
 339 these genes represent only about 2 - 4% of the total genes in each module ([Supplementary Table 3](#)).
 340 While the expression trajectories of these transiently expressed/suppressed genes may not directly


341 correspond to the module eigengene expression trajectory, their inclusion in these modules may indicate
342 their participation in the general increase or decrease in expression of these modules.
343

344 The remaining modules (ME3 - ME17) contain far fewer genes (7,177 to 143, respectively), of which 12
345 modules are significant with respect to development ($p < 0.05$; anova ME~sample; [Figure 5](#)). Notable
346 among these are ME8 (766 genes) and ME9 (531 genes), both of which contain a relatively high
347 proportion of the Im-Up genes (~13% each) relative to the remaining modules (except ME1;
348 [Supplementary Table 3](#)). In both modules, more than half of the genes are assigned to the Im-Up category
349 (ME8: 450 genes, 58.0% and ME9: 443 genes, 83.4%), which is reflected in their eigengenes, which start
350 with low expression, peak in the middle of the timeseries, and then exhibit declining expression in the
351 later time points; no Im-Down genes are detected in this category. This pattern is particularly apparent in
352 ME9, which exhibits a sharp increase in expression between 9 - 12 DPA and a sharp decline between 16 -
353 19 DPA, and notably coincides with the fiber developmental periods encompassing rapid elongation and
354 attenuation of elongation, respectively.
355

356 Three additional, consecutive modules (i.e., ME12-14) exhibit a high proportion of genes that are
357 considered Im-Up or Im-Down ([Supplementary Table 3](#)), which is also somewhat consistent with their
358 eigengene profiles ([Figure 5](#); [Supplementary Figure 3](#)). Of those three, ME13 and ME14 have the greatest
359 number of genes in the model that are Im-Up (i.e., 48.2% and 49.8% of module genes, versus 33.9% in
360 ME12), and contain no genes that are considered Im-Down (as was observed for ME8 and ME9).
361 Conversely, ME12 contains proportionately fewer Im-Up genes along with a small number of Im-Down
362 genes (24; 6.1% of genes in module); however, the eigengene trajectory in ME13 is more similar to
363 ME12 than it is to ME14. That is, both ME12 and ME13 exhibit an increase in eigengene expression
364 starting around 13 DPA that subsequently plummets at ~23 DPA. ME14 exhibits a dissimilar profile (i.e.,
365 increasing steadily from 6 DPA followed by a sharp decline at 19 DPA) to both of these, suggesting that
366 it may reflect a different aspect of fiber development.
367

368 With respect to the remainder of the Im-Down category genes, fewer modules (aside from ME1 and
369 ME2) exhibit a relatively high number of these genes relative to the abundance in other modules
370 ([Supplementary Table 3](#)). Interestingly, ME0 (i.e., unplaced genes) contains the third greatest number of
371 Im-Down genes after ME1/ME2, perhaps indicating a role for some of these genes that is unclear from
372 the current coexpression analysis. After ME0, ME4 and ME6 contain the most genes from the Im-Down
373 category (ME4=157 and ME6=114), comprising 7.5% and 6.4% of the genes contained within each
374 module, respectively. The eigengene for ME4 ([Figure 5](#), [Supplementary Figure 3](#)) exhibits a transient-like
375 pattern of expression, exhibiting a marked reduction between 13 and 18 DPA after which it sharply
376 increases before tapering to 24 DPA. ME6, on the other hand, exhibits low expression until about 22
377 DPA, where it displays a sharp peak between 22 and 24 DPA, potentially indicating genes important for
378 SCW synthesis, although the standard error for these DPA is high. Nevertheless, 243 genes from ME6
379 also exhibit significant DE between 22 and 23 DPA, most of which are classified as Tr-Up (226 genes).
380 GO annotations for these genes are diverse, relating to metabolic processes (e.g., lipid, carbohydrate, and
381 cellular), stimulus/stress response, etc.
382
383
384

385 *Correlations between coexpression modules and measured phenotypes*
386 We correlated module eigengenes with phenotypic data gathered from the same accession (i.e., *G.*
387 *hirsutum* cv TM-1) across the same developmental period (Figure 6; Supplementary Table 4;
388 (Swaminathan *et al.*, 2024); Howell et al, in prep). As expected from the large number of genes present in
389 the first two modules (22,583 and 18,919 genes, respectively) and the highly canalized nature of fiber
390 development, most traits were significantly correlated (or inversely correlated) with those modules. Those
391 molecules that contribute to CW development (e.g., encode genes involved in pectin, hemicellulose, and
392 cellulose biosynthesis; (Swaminathan *et al.*, 2024)) were strongly positively correlated with ME1, which
393 increases in expression over development and strongly negatively correlated with ME2, which decreases
394 over time (Figure 6). Likewise, fiber length (Howell et al, in prep) was strongly positively correlated with
395 ME1 and negatively with ME2; however, these two traits also exhibit relatively strong, significant
396 correlation with ME8 as well. As expected by the enrichment of Im-Up genes in this module, ME8
397 expression is impulse-like (Supplementary Figure 3), whereby expression starts low, peaks at around 15
398 DPA, and then decreases again. GO analysis of the 776 genes in this module reveals glycosyl hydrolases,
399 oxidoreductases, and peroxidases (Supplementary Figure 4), which are all important for elongation.
400

401
402 **Figure 6.** Associations between coexpression modules and phenotypes. Modules are listed on the left, and
403 phenotypes are listed at the bottom. Pectin, hemicellulose, and crystalline cellulose are measured as mg

404 per boll, as per Swaminathan et al (2024), and fiber length is measured as mm, as per Howell et al (in
405 prep). Turgor is interpolated from Ruan et al. (2001), as described in the methods. Positive (red) and
406 negative (blue) correlations are noted, and significant correlations are listed in each box.
407

408 Interestingly, turgor pressure exhibited strong correlations with different modules than the rest of the
409 traits. Ruan and coworkers (Ruan et al 2001) used experimental data to estimate turgor values in 5, 10, 16,
410 20, and 30 DPA, which represented early, mid-, and late-elongation (5 – 16 DPA); transition or early
411 SCW synthesis (20 DPA); and mid-SCW synthesis (30 DPA). For precise correlations with our daily
412 transcriptome data, we interpolated the data to cover 6 – 24 DPA, which showed a gradual increase from
413 6 – 16 DPA (Supplementary Table 4). Although the interpolated data may be overly smoothed, there was
414 a gradual increase to the peak at 16 DPA (0.67 MPa), followed by a decline through 20 DPA (0.28 mPa)
415 and sustaining of similar values thereafter. Although turgor pressure is somewhat positively correlated
416 with ME1 ($r^2=0.4$) and negatively correlated with ME2 ($r^2=-0.48$), stronger correlations were seen for
417 ME8 ($r^2=0.9$), followed by ME9 ($r^2=0.62$) and ME13 ($r^2=0.54$). Like ME8, ME9 and (to a lesser degree)
418 ME13 exhibits impulse-like behavior, peaking between 13-16 DPA for ME9 and at 17 DPA for ME13.
419

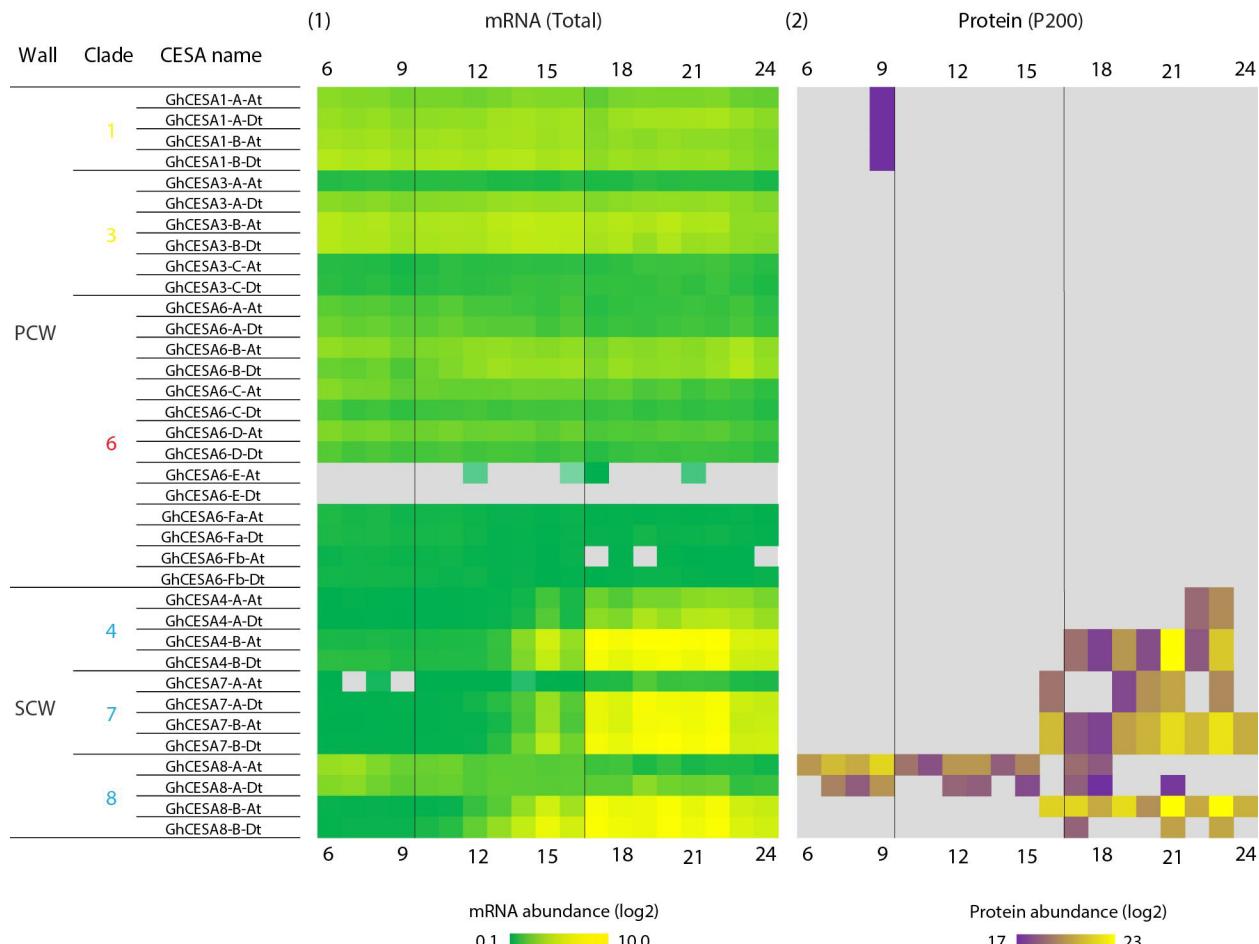
420 *Construction of a crowd network*

421 Because gene network inference algorithms are known to exhibit biases (Marbach *et al.*, 2012), we used
422 Seidr (Schiffthaler *et al.*, 2023) to generate a crowd network employing 13 algorithms (see methods),
423 including the high performing GEne Network Inference with Ensemble of trees (GENIE3; (Huynh-Thu *et*
424 *al.*, 2010; Greenfield *et al.*, 2010)) and Weighted Gene Coexpression Network Analysis (WGCNA). This
425 network was aggregated using the inverse rank product (Zhong *et al.*, 2014; Schiffthaler *et al.*, 2023),
426 resulting in 2.8 billion (B) edges (30%, or 0.85 B, “directed”edges) between all 74,446 nodes (genes) that
427 exhibit variation among timepoints. Among these, 21,227 undirected and 15,996 directed edges connect
428 nodes representing homoeologs. Since this dense network is composed of both “noisy” edges and those
429 that represent core interactions, we calculated the network backbone to retain only those edges that
430 represent the strongest connections for each node (Coscia and Neffke, 2017; Schiffthaler *et al.*, 2023).
431 Employing a 90% confidence interval reduced the number of edges over 500-fold to 5.1 million (M),
432 which was further reduced to 2.2 M under a 95% confidence interval (see methods). Among these 2.2 M
433 edges, the edge direction (i.e., which member of each pair of adjacent genes operates upstream of the
434 other) is known for 721,101 edges (versus 1.5 M undirected edges). Despite the massively duplicated
435 nature of this polyploid network, <1% of surviving edges (10,761) connect homoeologs; however, just
436 over half of those (5,422) of those are considered directed.
437

438 We compared these 2.2M backbone edges to the WGCNA-generated coexpression modules by first
439 clustering the edges of the overall graph using two different algorithms, i.e., Louvain and InfoMap, which
440 produced 188 and 1971 clusters, respectively. By overlapping these clusters with the WGCNA modules,
441 we were able to place genes into 6,519 high confidence groups representing genes which are both placed
442 within the same module and cluster using both algorithms. From these 6,519 groups, slightly less than
443 half (3,094; or 47%) contain at least 1 edge (max: 118,932 edges and 2540 nodes), and possibly represent
444 groups of genes that comprise small subdivisions of the broader gene network (Supplementary Table 5).
445 As expected, the three largest clusters are derived from ME1 (1,500-2,540 genes each out of 22,583 genes
446 total); however, the next largest clusters are not derived from ME1 or ME2 (module membership:~20k
447 genes each) but are rather formed from genes placed in ME4 (1,438 out of 2,100 genes) and ME5 (1,298

448 out of 1,833 genes), the latter module which is notably not significant with respect to development. ME4,
449 however, exhibits an eigengene profile consistent with Im-Down between 13 to 18 DPA, a pattern also
450 consistent with the relative abundance of genes exhibiting transient down-regulation expression profiles.
451 While the average and median number of genes per group is relatively low (16 and 3, respectively), 73
452 groups contain more than 100 genes (average = 424 genes; median = 214) connected by at least 113 edges
453 (average = 11,408; median = 1,620).

454
455 Because gene regulatory networks provide insight into the regulatory hierarchies among genes, we
456 isolated those 850 M edges representing the directed gene expression network from the broader crowd
457 network for further analysis. From the top 10% of these edges (i.e., 8.5 M edges), few edges (7,330 or
458 0.09%) link homoeologs, most of which (5,422 or 74%) are retained in the network backbone described
459 above. Louvain and Infomap clustering of these 8.5 M is similar to the above in that Infomap produces far
460 more clusters (626) than Louvain (5); however, this clustering is notable in the small number of Louvain
461 clusters (5), two of which together contain nearly 92% of genes (Louvain cluster 1 = 35,619 genes, or
462 48%; Louvain cluster 3 = 32,735 genes, or 44%). When the composition of these clusters is merged with
463 each other and the module designations by WGCNA, it results in 2,206 cluster-groups (Louvain-Infomap-
464 WGCNA), approximately one-third the number of cluster-groups in the backbone that includes both
465 directed and undirected edges. These clusters (Supplementary Table 1; Supplementary Table 5) represent
466 the most confident directed associations among genes in this dataset.
467

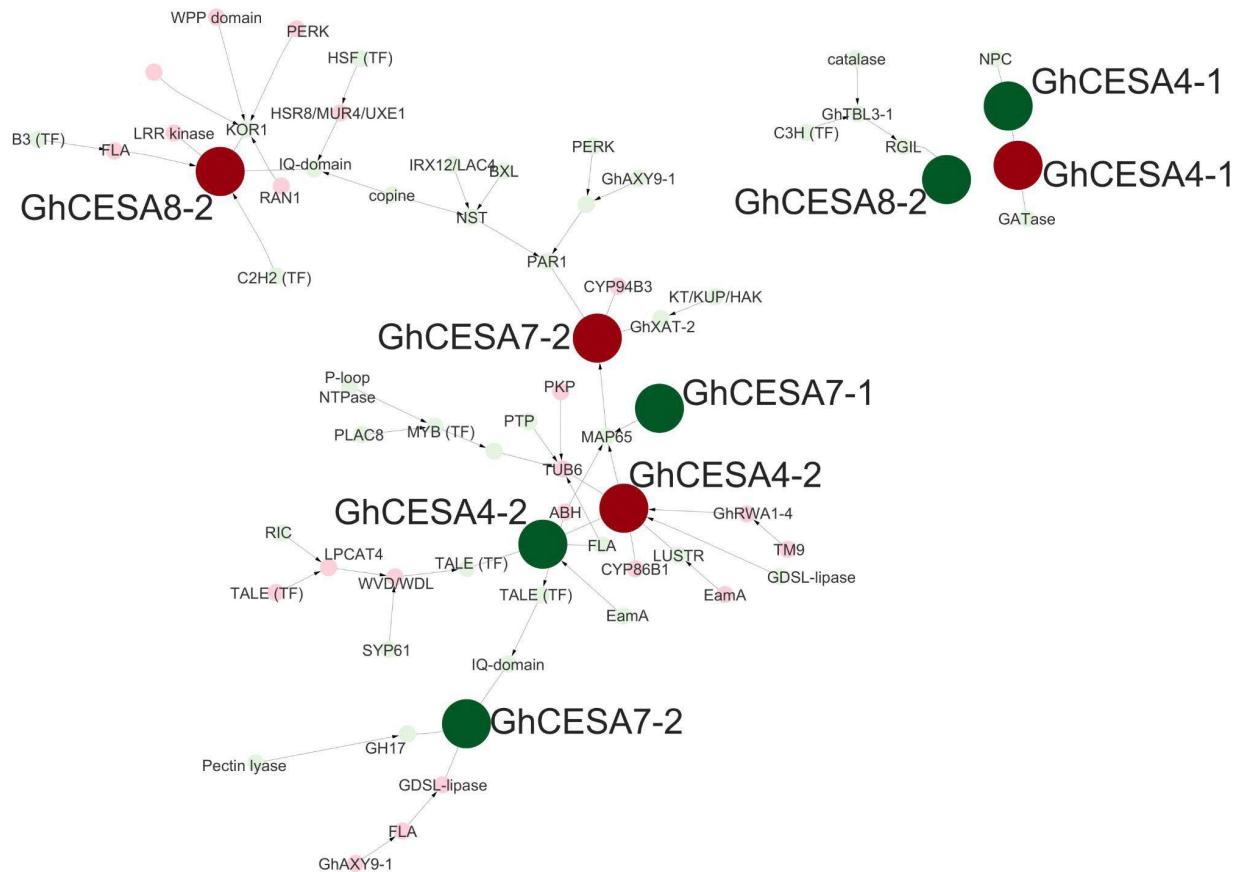

468 *Phenotypic association between cellulose content and gene regulatory networks*
469 Cellulose deposition in plant cells, including cotton fibers, is a tightly coordinated process driven by
470 cellulose synthase complexes (CSC; (Delmer *et al.*, 2024)). Because mature cotton fibers are
471 predominantly composed of cellulose, the orientation of cellulose microfibrils and the amount of cellulose
472 deposited in the SCW are major determinants of key fiber properties (e.g., length and strength). As
473 expected from the integral role of cellulose, crystalline cellulose accumulation (as measured in
474 (Swaminathan *et al.*, 2024)) is significantly associated with nearly half (8) of the 17 coexpression
475 modules (Figure 6). Also as expected, cellulose accumulation is most strongly positively correlated with
476 ME1 and most strongly negatively correlated with ME2, the two most gene-rich modules in the
477 coexpression network; however, a strong positive correlation (0.65) was found with the 1,784 genes
478 comprising ME6 and a strong negative correlation (-0.74) was found with the 283 genes comprising
479 ME14. ME6 exhibits generally low expression until around 22 DPA, where it increases rapidly. This
480 module (ME6) notably contains two CesA interacting genes (i.e., a KORRIGAN1-like, KOR1, and a
481 COMPANION OF CELLULOSE SYNTHASE3-like, CC, gene; Gorai.003G089600.A and
482 Gorai.005G256100.D, respectively), which are involved in cellulose synthesis (Pedersen *et al.*, 2023).
483

484 Phylogenetic analysis of the annotated cotton homoeologs with existing cellulose synthase A (*CesA*)
485 homologs from *Populus trichocarpa* (Kim *et al.*, 2019; Paterson *et al.*, 2012) and other species revealed
486 24 *G. hirsutum* *CesA* genes related to PCW and 12 related to SCW (Supplementary Figure 5;
487 Supplementary Table 6). Due to strong conservation of *CesA* families in vascular plants, expression of
488 *CesA* genes can be broadly partitioned into three major isoform classes each that are expressed during
489 PCW (*CesA1, 3, 6 or 6-like*) or SCW synthesis (*CesA4, 7, 8*), assuming the 10-member *CesA* family of
490 *Arabidopsis* as the canonical reference point (Richmond and Somerville, 2000). Genome duplication in *G.*
491 *hirsutum* has fostered expansion of the expression set for most of the major *CesA* classes, while also

492 resulting in a non-canonical expression pattern during PCW synthesis for *CesA8-A* homologs. We
493 observed that the three canonical PCW *CesA* classes typically maintain relatively even expression
494 throughout, which may correlate with sampling ending early in SCW synthesis. In contrast,
495 representatives of the three major SCW *CesA* gene classes, which co-function during SCW cellulose
496 synthesis, are all expressed at a low-level beginning at 13 DPA followed by increasing expression during
497 the transition stage and the onset of SCW synthesis. In an exception, there is a *decrease* in expression for
498 both homoeologs of *CesA8-A*, as noted previously (Tuttle *et al.*, 2015; MacMillan *et al.*, 2017), which
499 may indicate that only the *CesA8-B* paralog fulfills the canonical role in SCW synthesis at DPA. In most
500 cases (i.e., *CesA7-B*, *CesA8-A*, *CesA8-B*), the maternal and paternal homoeolog expression profiles were
501 similar within gene; the sole outlier ([Figure 7](#)), paralog *CesA7-A* (Gorai.001G04470), exhibited both
502 comparatively reduced expression in the A homoeolog, as well as a delayed increase in expression (+5
503 DPA) that peaked at the same time as the rest of the SCW paralogs (~20 DPA).

504
505 We explored the gene-to-protein expression connection for these genes by comparing the abundance of
506 *CesA* proteins in the membrane-associated (P200) fraction to the transcriptional data for the same DPA
507 profiled here, which detected several secondary wall CESAs from fiber cell extracts ([Figure 7](#)). Of the 36
508 *CesA* homoeologs, all but two (i.e., putative paralogs *CesA6-E-At* and *Dt*; see [Supplementary Table 1](#))
509 exhibited measurable *gene* expression ([Figure 7](#)) and in all cases both homoeologs were distinguishable in
510 the gene expression data. Due to the challenges of *protein* identification, however, only a subset of those
511 genes were quantifiable via mass spectrometry (16, typically SCW-related; [Figure 7](#); [Supplementary](#)
512 [Figure 6](#)), most of which were ambiguous with respect to homoeolog of origin (all but *CesA-8A* and
513 *CesA-8B*). All of the quantifiable proteins were derived from the membrane-associated (P200) fraction,
514 which is expected due to the multiple transmembrane domains present in *CesAs* (Li *et al.*, 2014).
515 Notably, the demonstrated presence of *CesA8* proteins during PCW synthesis points to the need for future
516 research to understand their specific function at this time (see (Haigler and Roberts, 2019) for a review of
517 less common potential roles for *CesA8* orthologs in other species and tissues).

518
519 Overall, protein expression profiles for SCW cellulose synthase subunits were generally consistent with
520 their corresponding gene expression profiles, albeit with approximately a 2-3 day difference in expression
521 peaks ([Figure 7](#); [Supplementary Figure 6](#)). Abundance profiles for *GhCESA4-B*, *GhCESA7-A/B*, and
522 *GhCESA8-B* proteins were similar to their respective transcripts ([Figure 7](#)), being first detected at ~16
523 DPA and exhibiting a 2-3 day lag relative to their transcripts. These preliminary results provide a
524 foundation for further exploration of *CesA* transcript-protein associations during fiber development.


527
528 **Figure 7.** Gene and protein expression for 36 CESA genes across cotton fiber development. CESA
529 homologs that function in primary and secondary wall synthesis (PCW and SCW) are shown. DPA are
530 given across the top and bottom, and key timepoints are noted in vertical black lines. **1.** Gene expression
531 trends for CESA homoeologs for the A and D genomes. **2.** Abundances of CESA proteins isolated from
532 the membrane-associated fraction (P200). Expression for genes and proteins not detected here were
533 rendered with gray background color. The proposed *G. hirsutum* CESA nomenclature and clades are
534 summarized in [Supplementary Figure 5](#) and [Supplementary Table 6](#).

535
536 We further compared the expression among CesA isoforms by considering putative regulatory elements
537 involved in CesA gene expression. Using only the directed edges from the Seidr crowd network, we
538 found putative known transcription factors (Jin *et al.*, 2014) for 7 genes (10 homoeologs), representing
539 ~41% of expressed CesA genes (~30% of CesA homoeologs; [Supplementary Table 7](#)). For 6 of the 10
540 homoeologs, only one transcription factor was directly connected to that gene (3 each for PCW and SCW
541 synthesis); however, for the remaining 4 homoeologs (3 SCW, 1 PCW), between 2-9 putative
542 transcription factors of varying scores and ranks were directly connected to those genes. For the PCW
543 CesA, putative transcription factors were found for the homoeologs GhCESA3-C-At and GhCESA3-C-
544 Dt, although interestingly by transcription factors from different classes (Myb and ARF, respectively;
545 [Supplementary Table 7](#)), both of which function in fiber development (Sun *et al.*, 2015; X., Zhang *et al.*,
546 2021). The other two PCW genes (GhCESA3-B-Dt and GhCESA6-B-At) are putatively regulated by
547 DOF (DNA-Binding with One Finger) transcription factors, the latter of which has multiple candidate

548 transcription factors from diverse families (Supplementary Table 7). Slightly more putative regulators
549 were found for the SCW genes, likely because the onset of PCW was not sampled here. A single putative
550 TF regulator was associated with GhCESA4-A-At, GhCESA4-A-Dt, and GhCESA4-B-Dt, i.e., a TALE
551 TF (Gorai.003G156000.D; Supplementary Table 7 (Kay *et al.*, 2007; Bürglin, 1997)), that rapidly
552 increases in expression beginning around 10 DPA (Tr-Up). Putative regulators for the other subunits were
553 found only for GhCESA7-B-Dt and GhCESA8-B (both homoeologs), each of which had more than one
554 potential TF, sometimes from diverse families. GhCESA7-B-Dt, for example, was associated with 7
555 possible regulators, including one GATA, two Myb, three NAC, and one TALE TF, with the strongest
556 association (highest ranked edge) connecting GhCESA7-B-Dt to the Myb Gorai.004G138300.D
557 (Supplementary Table 7). Likewise, GhCesA8-B-Dt was associated with 5 possible regulators, including
558 one Dof, two Myb, and two TALE TF, with the strongest association with the TALE
559 Gorai.004G206600.A (Supplementary Table 7). For GhCesA8-B-At, however, there were only two
560 candidate TF, both of which were from the C2H2 family and one of which (Gorai.008G178000.D)
561 exhibited a stronger association.

562
563 To understand the position of the SCW cellulose synthase homologs in the context of the broader gene
564 regulatory network (GRN), we explored a subset of the crowd network enriched for the strongest
565 associations between those cellulose synthases and neighboring genes. This strict filtering criteria (see
566 methods) resulted in three subnetworks, a main subnetwork containing representative homologs for each
567 SCW cellulose synthase isoform (i.e., CesA4, CesA7, CesA8; Figure 7, hereafter SCW subnetwork) and
568 two smaller subnetworks that contained only the GhCesA4-A homoeologs or only GhCesA8-B-Dt, both
569 of which were less strongly connected to the larger subnetwork, given our filtering criteria (Figure 8). The
570 large subnetwork contained 3 CESA7s, 2 CESA4s, and 1 CESA8, consistent with the cofunction of the
571 encoded proteins in SCW cellulose synthesis. Both homoeologs of GhCESA4-B are adjacent and linked
572 in the network, occupying a somewhat central location. Notably, some of the putative cellulose synthase
573 transcription factors mentioned above were not present in this subnetwork, likely due to the limited
574 strength of their connections. As expected, several genes that are closely linked to the SCW CesA genes
575 have been previously noted for their importance to fiber development. For example, a FASCICLIN-like
576 arabinogalactan (FLA) precursor is adjacent to GhCESA8-2-At, as is a KOR1-like protein, both of which
577 have been associated with SCW synthesis, but with unproven specific roles so far (Pedersen *et al.*, 2023).
578 Another FLA-like protein is proximal to GhCESA7-B-Dt, as are a pectin-lyase and a O-glycosyl
579 hydrolase (GH17) gene, which likely encode enzymes participating in cleavage of CW polymers.
580 Different genes appear adjacent to the A-genome homoeolog for GhCESA7-B, including a gene for xylan
581 side-chain synthesis (GhXAT-2) and a microtubule-associated protein (MAP65-like), the latter of which
582 also appears to be influenced by GhCESA7-A-Dt and both homoeologs of GhCESA4-B. In addition, both
583 GhCESA4-B homoeologs are also linked to previously noted CW genes such as another FLA, a beta-6-
584 tubulin (TUB6), and a reduced wall acetylation gene (GhRWA1-4). Each of these observations has
585 relevance to CW thickening and other transition stage events, as discussed below.

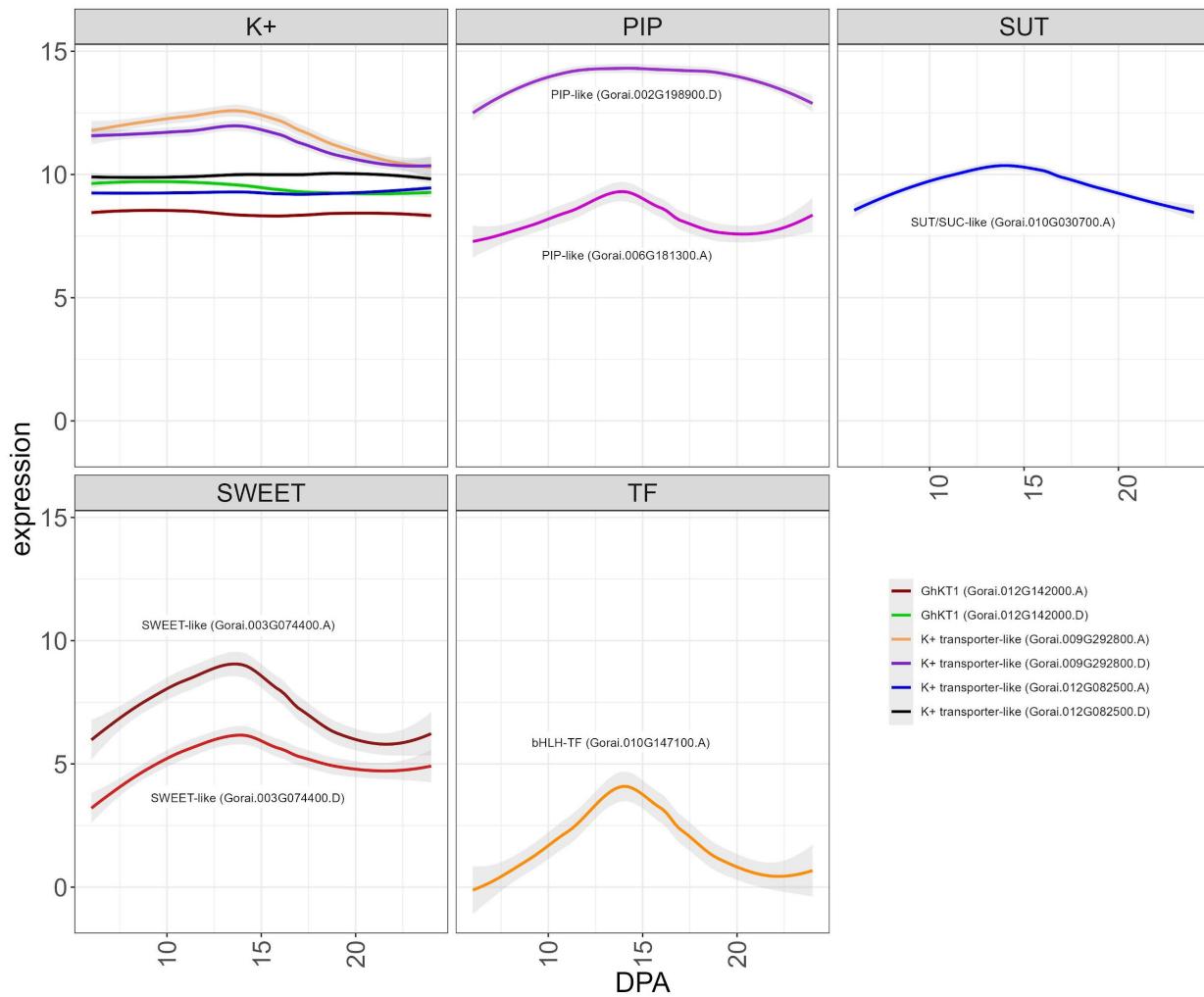
586

587

588

589

590 **Figure 8.** SCW-related CesA subnetwork with neighboring genes. Red circles indicate A homoeologs and
 591 green indicate D homoeologs. Further information regarding nodes can be found in [Supplementary Table](#)
 592 [8](#) and edge information can be found in [Supplementary Table](#) [9](#). Abbreviations beginning with “Gh” are
 593 predicted homologs to the given gene (e.g., “GhCESA4” is homologous to CESA4 from other plants);
 594 abbreviations not beginning with “Gh” represent the closest gene annotation, as per (Paterson *et al.*,
 595 2012).


596

597

598 *Phenotypic association between turgor pressure and gene interactions*

599 Although high turgor pressure is implicated in rapid elongation of cotton fibers (Dhindsa *et al.*, 1975;
 600 Ruan *et al.*, 2001; Smart *et al.*, 1998), few genes have been identified that may contribute to changes in
 601 turgor during fiber development (Sun *et al.*, 2019; Ruan *et al.*, 2001). Here, we find that turgor is strongly
 602 associated with modules that exhibit transient expression patterns, which is perhaps unsurprising given
 603 the transient nature of high turgor pressure in driving fiber elongation. Estimated values for turgor
 604 pressure were most significantly associated with ME8 (Figure 5) in which gene expression was highest at
 605 15 DPA followed by a gradual decline through 24 DPA. A total of 776 genes are in ME8, including two
 606 with functional annotations related to turgor (i.e., a SWEET-like gene (Gorai.003G074400.D) and a PIP-
 607 like gene (Gorai.002G198900.D)), both with Im-Up expression patterns similar to the module. There

608 were four genes with functional annotations related to turgor in ME9, which contained 531 genes. ME9
609 generally contains genes with high expression at 13 - 16 DPA followed by a sharp decline. These ME9
610 turgor-related genes are: a PIP-like gene (Gorai.006G181300.A), a SWEET-like gene
611 (Gorai.003G074400.A), a SUT/SUC-like gene (Gorai.010G030700.A), and a bHLH transcription factor
612 (Gorai.010G147100.A). As with the two ME8 genes, these genes are considered ImUp, exhibiting
613 increased expression during the intermediate stages and often showing peak expression before 15 DPA
614 when elongation begins to slow down (Figure 9). Notably, the K⁺ transporter GhKT1 (here,
615 Gorai.012G142000.A and Gorai.012G142000.D) originally noted by Ruan et al (2001) was not found
616 within either of these modules, but rather in ME2 where it exhibits expression that transitions down
617 (considered Tr-Down by ImpulseDE2), congruent with observations in Ruan et al (2001). A different K⁺
618 transporter was identified in ME8 (Gorai.009G292800) that was also classified as Tr-Down, and two
619 additional K⁺ transporters (Gorai.012G082500.A and Gorai.012G082500.D) were identified in ME9,
620 although their expression trend was not described by ImpulseDE2. See discussion for further
621 interpretation of these and other genes relevant to turgor from this module.
622
623

624
625

626 Figure 9. Expression trends for notable genes in ME8 and ME9 with putative relevance to turgor pressure.
627 Genes are partitioned by family, and all lines are labeled except for the potassium transporters (upper left
628 graph), which are distinguished by color. Graphs begin from the initial time point (6 DPA) and continue
629 through the last sampled time point (24 DPA). Intermediate DPA are noted at the bottom of the graphs.
630

631 **Discussion**

632 Cotton fiber development entails complex and intricate biological processes encompassing diverse
633 biochemical pathways and transcriptional networks that collectively orchestrate the transformation of
634 newly differentiated fiber initials into mature, elongated fiber cells composed primarily of cellulose.
635 Because of its agronomic importance, understanding the processes that underlie fiber development and
636 how they influence the mature fiber phenotype has been the subject of decades of research. Growth in our
637 understanding of fiber developmental processes has emerged from a great diversity of molecular genetic
638 and genomic studies, ranging from forward genetic analyses of individual genes to large population
639 GWAS studies encompassing multiple accessions. This wealth of prior research has provided a
640 foundation for and motivated the present study, in which carefully controlled conditions were used to
641 constrain experimental and environmental variability. In addition, we used high-dimensionality
642 coexpression and time-series analysis entailing daily sampling of the developing fiber transcriptome to
643 further illuminate the fine-scale molecular basis of fiber development during key stages from early fiber
644 elongation to early CW thickening and associated key fiber modules with important cotton fiber
645 phenotypes.

646
647 A striking demonstration of the complexity of cotton fiber development is encapsulated in our
648 observation, initially hinted at over 15 years ago using the less refined technology of the day (Hovav,
649 Udall, *et al.*, 2008), that a majority of the ~70,000 genes (74%) in the cotton genome are expressed in at
650 least one time point in the developing cotton fiber. In general, the transcriptome samples generated here
651 are arrayed along PC1, which divides samples almost linearly according to DPA. Notably, our daily
652 transcriptomic analysis between 6 – 24 DPA diagnosed major, known, aspects of cotton fiber
653 morphogenesis that were hinted at previously but with less temporal resolution. Although prior studies of
654 fiber development in growth chambers or greenhouses have varied in the accession(s) analyzed and the
655 precise growing conditions, there is broad agreement that the transition stage begins at about 14-17 DPA
656 (Avci *et al.*, 2013; Tuttle *et al.*, 2015; Applequist *et al.*, 2001; Chen *et al.*, 2012; MacMillan *et al.*, 2017).
657 Notably, these same days were among the most dynamic in our analyses (Figures 2 - 4), as indicated by
658 numbers of differentially expressed genes. A genomically global demarcation in gene expression (11,417
659 DE genes) occurs between 16 – 17 DPA (Figure 2), when the multi-dimensional cellular events
660 characterizing the transition stage are beginning (Haigler *et al.*, 2012). Both the number of upregulated
661 and downregulated genes are approximately an order of magnitude greater between 16 and 17 DPA than
662 between any other two adjacent DPA. This impressive and sharp transcriptional demarcation underscores
663 the genome-wide complexity and coregulation of many thousands of genes and their distinctions before
664 and after this transition. Collectively, these data point to this surprisingly brief developmental window as
665 being promising for future insights into the gene regulatory networks and their molecular genetic and
666 chromatin level controls that are key to establishing the SCW synthesis machinery responsible for the
667 development of cotton fiber, and perhaps for its agronomic improvement.

668 More subtle cellular changes are also revealed by differences in gene expression on adjacent days, noted
669 either by PCA or by adjacent DPA contrasts (Figures 2, 3). A demarcation in gene expression (105 DE
670 genes) occurs between 9 and 10 DPA (see the gap in PC1, Figure 2), when the highest rate of fiber
671 elongation occurs (although the majority of length increase occurs afterwards; (Benedict *et al.*, 1999)). At
672 this time, changes also occur in the plasmodesmata that symplastically connect the fiber to the seed.
673 Specifically, at ~10 DPA the plasmodesmata become impermeable and structurally begins to switch to a
674 branched form prior to reopening at ~16 DPA. This change was hypothesized to allow turgor to increase
675 and drive the main phase of fiber elongation (Ruan *et al.*, 2001). At the same time, analyzing gene
676 expression changes in the context of a time series revealed expression differences too subtle to be
677 statistically significant in adjacent DPA contrasts. This revealed an interesting difference: although
678 adjacent DPA contrasts (as described above) suggest an overall excess of downregulated genes, the
679 number of genes that increase expression (slowly or rapidly) during the time series is greater than the
680 number of genes that decrease expression. This difference highlights complementary analyses afforded by
681 daily sampling and suggests that expression may increase more slowly, but decline more rapidly, for
682 many of the genes in this key developmental transition. Conceptually, this is consistent with the
683 deposition of nearly pure cellulose into the SCW after the transition stage.

684 Remarkably, our coexpression analysis partitions nearly 60% of genes into two primary modules
685 reflecting a transcriptionally global synergistic coordination for the singular purpose of fiber CW
686 biosynthesis. These two modules, ME2 and ME1, reflect the major processes of PCW synthesis (to
687 facilitate fiber elongation) and SCW synthesis (to facilitate fiber thickening). Correspondingly, ME2 gene
688 expression generally decreases over time, whereas ME1 gene expression generally increases. ME1
689 contained the greatest number of genes (22,583) with high expression typically beginning at 17 DPA as
690 CW thickening begins. Conversely, ME2 with the second greatest number of genes (18,919), showed
691 decreasing expression through 17 DPA when elongation was ending. This genome-wide, massive
692 transcriptomic rewiring has few if any precedents in plant biology and begs the question whether other
693 terminally differentiated cell types experience comparable dynamism, or if this property of plant CW
694 development will be discovered to be more common for other cell types.

695 Although general expression and module association with phenotypes indicates that the fiber
696 transcriptional network is committed to cellulose production during the surveyed timeframe, expression
697 of secondary cell wall CESA genes peaked at around 20 DPA, diminishing shortly thereafter. This result
698 mirrors those from the other cultivated allopolyploid cotton species, *G. barbadense* (Pima cotton), whose
699 developmental timeline is similar albeit with a longer elongation phase (Chen *et al.*, 2012; Tuttle *et al.*,
700 2015; Schubert *et al.*, 1973). In previous research, gene expression of CW-related genes in *G. barbadense*
701 peaked at 25 DPA (Liu *et al.*, 2023), somewhat later than here, although the authors also note that other
702 data demonstrated upregulation of CESA genes at 18 and 28 DPA (Tuttle *et al.*, 2015). Given these
703 differences in CESA transcription between species and between studies, it will be of interest to compare
704 the transcriptional program utilized for fiber development in *G. hirsutum* to *G. barbadense* using a
705 similarly controlled and temporally dense sampling of fibers in the latter species as implemented here for
706 the former. This comparison is likely to reveal both commonalities and differences in transcriptional
707 modular deployment, thereby offering possible insight into the important phenotypic traits that distinguish
708 these two important crop species. Likewise, additional sampling is required to further refine the profile of
709 SCW CESA transcription versus translation. At the protein level, SCW CESA subunit production peaks
710 approximately 2 days later, suggesting that post-transcriptional and/or translational control may influence

711 the timing and accumulation of CESA subunits in developing cotton fibers. We note that the longevity of
712 both the mRNA and protein for each SCW CESA isoform was not captured in the present timeline,
713 requiring additional sampling during later timepoints to estimate persistence of each in the cell.

714 The genes encapsulated by the sharp transcriptional change between the last sampled DPA (i.e., 23 and 24
715 DPA) also hint at gene expression changes underlying the switch to massive cellulose production. These
716 final sampled DPA correspond to: (a) the highest rate of dry matter accumulation beginning at 24-25 DPA
717 in cotton fiber in this and other studies (Avci *et al.*, 2013; Schubert *et al.*, 1973); and (b) about 50% (w/w)
718 crystalline cellulose in *G. hirsutum* var TM-1 fiber cell walls by this time, as observed in the current work
719 and previously (Abidi *et al.*, 2014). Consistently, spectroscopic analyses show that cotton fiber cellulose
720 begins to exhibit greater self-aggregation around this time (Abidi *et al.*, 2014; Lee *et al.*, 2015), which is
721 correlated with its progressively increasing proportion in the SCW (Meinert and Delmer, 1977). Genes
722 encoding regulatory proteins that were upregulated in this last surveyed time period were predicted to be
723 positive regulators of mainly cellulose synthesis, which characterizes the final stage of cotton fiber SCW
724 deposition through about 45 DPA.

725 These last two time points sampled (24-25 DPA) are followed developmentally by streamlined cellulose
726 production in cotton fiber, in which cotton fiber diverges from other plant SCWs to achieve about 95%
727 cellulose content at maturity. This developmental divergence among species is important from
728 fundamental and applied viewpoints; therefore, we highlight genes upregulated at the end of the sampled
729 time series (23 DPA versus 24 DPA) that could logically encode positive regulators of cellulose
730 deposition and be candidates for future research. Two alleles of GhRAC13 (Gorai.011G031400.A and
731 Gorai.010G242900.D; a small, signaling, GTPase protein; see (Didsbury *et al.*, 1989) for the meaning of
732 RAC) are upregulated between 23 and 24 DPA, which could result in activation of NADPH oxidase and,
733 consequently, an increasing concentration of H₂O₂ that stimulates CW thickening (Potikha *et al.*, 1999;
734 Delmer *et al.*, 1995). NAC transcription factors, all of which contain a conserved N-terminal NAC
735 domain (Aida *et al.*, 1997), are also likely to be important. Two NAC alleles (Gorai.006G205300.A and
736 Gorai.003G077700.D) that resemble NST1/SND1 in other species are significantly upregulated at 24
737 DPA and are able to activate SCW synthesis (Tuttle *et al.*, 2015; MacMillan *et al.*, 2017). An allele of
738 another high-level SCW transcription factor (Gorai.001G138800.D, resembling MYB83/AT3G08500; see
739 (Ambawat *et al.*, 2013) for the meaning of MYB) is also significantly upregulated at this final timepoint.
740 In primary xylem and wood, these transcription factors and others downstream regulate the synthesis of
741 cellulose and other SCW components (Zhong *et al.*, 2019; Zhang *et al.*, 2018); however, MYB46, an
742 ortholog of the MYB83-type transcription factor upregulated here, can directly bind to the promoters of
743 SCW CESAs and upregulate crystalline cellulose content when over-expressed in *Arabidopsis* (Kim *et al.*,
744 2013). We suggest that the upregulation of apparent orthologs of NST1/SND1 and MYB83, along with
745 other direct regulators such as RAC13, may underlie the dominance of cellulose synthesis in cotton fiber
746 after 24 DPA. Notably, putative orthologs of other SCW transcription factors, as inferred from studies of
747 primary and secondary xylem in various species, are expressed in cotton fiber later in developmental time
748 (Tuttle *et al.*, 2015; MacMillan *et al.*, 2017), which highlights the value of the day-by-day sampling
749 leveraged in this study that captured the first apparent day of transcriptional change to support mainly
750 cellulose synthesis. Further exploration of gene expression changes demarcating these latter DPA,
751 including transcription factors and regulatory genes, and their associations within the GRN underscores
752 the usefulness of this dataset in further exploration of how the synthesis of other typical SCW polymers is

753 downregulated, enhancing our prior insights into how cotton fiber has no or very low lignin (Tuttle *et al.*,
754 2015; MacMillan *et al.*, 2017).

755 *Insights into phenotype via network analysis*

756 Network analysis provides the opportunity to gain insight into the gene relationships that underlie
757 phenotypes. While the spatiotemporal dynamics of several polysaccharides are important for conferring
758 properties relating to fiber quality, we focus here on cellulose accumulation during SCW. The primary
759 GRN that contains representatives of all three main classes of SCW cellulose synthases (CESA4, CESA7,
760 and CESA8; Figure 8) is broadly relevant to events occurring during the transition stage between PCW
761 and SCW synthesis in cotton fiber. Most of the genes in the GRN have increased or sustained expression
762 during the transition stage. Predictions from the function of *Arabidopsis* homologs support the association
763 of known processes with the SCW CESA GRN. Beyond the increased expression of SCW CESAs, an
764 essential gene for cellulose synthesis, KOR1 (Gorai.010G143300.D, AT5G49720.1) is network-adjacent
765 to GhCESA8-2-At. The glucanase-like KOR1 protein interacts with the active cellulose synthase complex
766 (CSC) during cellulose microfibril formation, although its function *in vivo* is unknown (Delmer *et al.*,
767 2024). Increased cellulose synthesis requires more CSCs to be exported to the plasma membrane, and a
768 phosphoserine protein phosphatases superfamily protein (PAT; Gorai.011G011300.D, AT1G05000.1) can
769 function in this intracellular trafficking (McFarlane *et al.*, 2021), as can SYNTAXIN OF PLANTS61
770 (SYP61; Gorai.009G166000.D, AT1G28490.2) that is able to transport CESAs and KOR1 ((Worden *et*
771 *al.*, 2015) and references therein). Abundant, highly-organized microtubules help to regulate the delivery
772 and function of CSCs in the plasma membrane during SCW formation (Seagull, 1993; Schneider *et al.*,
773 2021). Members of the GRN related to microtubule function include: WAVE-DAMPENED 2-LIKE3
774 (WDL3 aka WVD/WDL; Gorai.011G171200, At5G61340) (Liu *et al.*, 2013), which is involved in the
775 stabilization of cortical microtubules; and MICROTUBULE-ASSOCIATED PROTEIN65-8, which is
776 involved in microtubule bundling during SCW synthesis in tracheary elements (MAP65;
777 Gorai.005G168400.D, AT1G27920.1) (Mao *et al.*, 2006). Changes in the microtubule array correlate with
778 an increasingly steep orientation of microtubules and cellulose microfibrils relative to the fiber axis in the
779 distinct ‘winding’ CW layer that is deposited during the transition stage (Meinert and Delmer, 1977;
780 Seagull, 1993). Numerous proteins in the SCW CESA GRN that relate to CW polymer degradation or
781 modification and xylan synthesis are discussed further based on daily characterization of the cotton fiber
782 glycome conducted in parallel to this transcriptomic study (Swaminathan *et al.*, 2024). Consistent with
783 the major transcriptional change that occurs at 16 DPA between PCW synthesis (ME2) and SCW
784 synthesis (ME1), the GRN defined by SCW CESAs reflects regulatory processes at several levels
785 including hormones, calcium, management of hydrogen peroxide [a stimulus for the transition to SCW
786 synthesis in cotton fiber (Potikha *et al.*, 1999)], protein phosphorylation, transcription factors, sugar and
787 ion transporters, and proposed cell surface glycoprotein sensors (the FLA proteins; see (Pedersen *et al.*,
788 2023)). While it is beyond the scope of this article to discuss all the available functional studies of the
789 genes represented in this GRN, this overview establishes the relevance of the SCW CESA GRN for future
790 research on the control of cotton fiber development and quality.

791
792 Turgor pressure, which is regulated through osmotic pressures, is an essential force for plant cell
793 expansion (Zimmermann, 1978; MacRobbie, 2006; Steudle and Zimmermann, 1977). In cotton fibers,
794 high turgor pressure is implicated in rapid elongation (Dhindsa *et al.*, 1975; Ruan *et al.*, 2001; Smart *et*
795 *al.*, 1998). Turgor pressure is generated by the accumulation of osmotically active solutes like malate

796 (Thaker *et al.*, 1999), potassium (Dhindsa *et al.*, 1975), and soluble sugars including sucrose (Ruan, 2005)
797 in the central vacuole, followed by the influx of water. During several days within the rapid elongation
798 period, the pressure within the fiber cells increases in association with symplastic isolation as the
799 plasmodesmatal connections to other seed epidermal cells transiently close by the synthesis of callose
800 plugs (Ruan *et al.*, 2001). While candidate genes for regulating synthesis and importation of water and
801 solutes have been suggested (Sun *et al.*, 2019; Ruan *et al.*, 2001), key proteins involved in turgor pressure
802 regulation in cotton fiber remain enigmatic.

803
804 In contrast to other fiber phenotypes discussed here that were strongly associated with either ME1 or
805 ME2, the changing turgor pressure estimates derived from prior data (Ruan *et al.*, 2001) (Supplementary
806 Table 4) were strongly associated with ME8, which exhibits an impulse-like expression profile for the
807 module eigengene, or with ME9. Both ME8 and ME9 reflect transient gene up-regulation during the latter
808 part of elongation when the plasmodesmata are closed and turgor pressure is increasing. Afterwards, these
809 modules reflect a sharp (ME9) or gradual (ME8) decline in gene expression in the transition stage when
810 fiber elongation is slowing.

811
812 Within ME8 or ME9, results implicated genes of four major types as potentially underpinning high turgor
813 in cotton fiber, with cotton and *Arabidopsis* homolog names as follows: a SWEET-like gene
814 (Gorai.003G074400.A and D; At4g10850, AtSWEET7; SUGAR WILL EVENTUALLY BE
815 EXPORTED TRANSPORTER); a SUT/SUC-like gene (Gorai.010G030700.A, At1g09960, SUCROSE
816 TRANSPORTER); two PIP-like genes (Gorai.002G198900.D; Gorai.006G181300.A; At4g35100 PIP2;7;
817 AT4G00430.1, PIP1;4; PLASMA MEMBRANE INTRINSIC PROTEIN); and a bHLH transcription
818 factor (Gorai.010G147100.A; At1g61660, AtBLH112; BASIC-HELIX-LOOP-HELIX). Some members
819 of the sugar transporter families have been characterized in the context of loading photosynthetic sugar
820 into the phloem of *Arabidopsis* leaves, as recently reviewed (Xu and Liesche, 2021). This analogy
821 supports the putative role of the cotton fiber homologs in turgor pressure generation; however, only
822 tentative inferences are appropriate, given evidence that AtSWEET7 functions as a glucose and xylose
823 transporter in engineered yeast (Kuanyshhev *et al.*, 2021). Characterized sugar transport mechanisms
824 including these protein families often include an apoplastic component (Xu and Liesche, 2021), which
825 would be necessary when cotton fiber plasmodesmata are closed. PIP proteins (like the two detected
826 here), or aquaporins, are well known to transport water across membranes (Jensen *et al.*, 2016), and the
827 water will follow an increasing concentration of solutes into the central vacuole to increase turgor
828 pressure. Reduced expression of PIP genes was correlated with shorter mature fibers in transgenic cotton
829 (Li *et al.*, 2013) and natural mutants (Naoumkina *et al.*, 2015). The AtBLH112 transcription factor acts to
830 increase the synthesis of proline, which is an osmoticum and a free radical scavenger, and to increase the
831 synthesis of enzymes that help to mitigate reactive oxygen stress (Liu *et al.*, 2015). Given the role of
832 hydrogen peroxide in triggering the transition stage in cotton fiber (Potikha *et al.*, 1999), further research
833 will be needed to determine the role(s) of the cotton homolog of AtBLH112 found in the turgor-
834 associated ME9. In general, the potential role and relevance of these specific genes/proteins to turgor
835 pressure must be functionally tested in cotton itself.

836

837 Conclusions

838 Here we have characterized the *G. hirsutum* cotton fiber transcriptome with unprecedented daily
839 resolution in plants grown in a growth chamber with uniform light and temperature cycling. The data
840 encompass the 6 – 24 DPA period of fiber development, inclusive of high-rate primary cell elongation,
841 the transition stage to secondary wall synthesis, and thickening of the secondary wall by mainly cellulose
842 deposition. Overall, we report that fiber development involves a dramatically dynamic, genome-wide
843 coordination during which approximately half of the transcriptome increases or decreases expression as
844 development progresses. Our results revealed major gene expression modules associated with known
845 aspects of fiber development, such as the switch from PCW to SCW synthesis. These co-expression
846 modules contain genes, many of which we highlight here, that can be functionally characterized in future
847 research. Sampling at daily intervals also revealed other, more transient gene expression profiles. Some of
848 the transiently expressed genes may prove to be key regulators of important processes, such as turgor
849 pressure, warranting further functional testing. Others may implicate as yet undescribed cellular changes
850 in cotton fiber, stimulating further research. For major discontinuities in gene expression on adjacent
851 days, e.g. 16-17 DPA, even more fine scale temporal sampling will be worthwhile in the future. Applying
852 this approach to other species, e.g. *Gossypium barbadense* with higher fiber quality, or cultivars with
853 different fiber properties, may also be promising directions for studies aimed at understanding
854 evolutionary divergence and crop improvement, respectively. The concurrent proteomic, metabolomic,
855 and phenotypic surveys cited here will provide additional insight into the molecular underpinnings of
856 cotton fiber development and should be generally applicable to the fiber of other modern *G. hirsutum*
857 accessions grown under non-stressful conditions.

858 Methods

859 Plant growth and sampling

860 Multiple plants for *Gossypium hirsutum* cultivar TM1 were grown from seed in two gallon pots in growth
861 chambers at Iowa State University (ISU). Growing conditions were standardized on Conviron E15 growth
862 chambers with a relative humidity of 50-70% and a photosynthetic photon flux density (PPFD) of 500
863 $\mu\text{mol m}^{-2} \text{s}^{-1}$. Seeds were sown directly in a soil mixture prepared as 4:2:2:1 soil:perlite:bark:chicken grit.
864 Seeds were germinated and subsequently grown under the same growth chamber conditions, i.e., 16 hour
865 days with 500 umol of light and a temperature of 28°C. A gradual increase in photon intensity was set for
866 the first and last 30 minutes of each day (15 minutes at 166 umol photons + 15 minutes at 336 umol
867 photons). Plants were permitted full dark overnight (8 hours) and growth chambers were cooled to 23°C.
868

869 Flowers were hand (self)pollinated using a cotton swab and tagged on the day of anthesis (flowering; 0
870 DPA). Three samples (replicates) were collected daily during fiber development from 6 DPA (elongation)
871 to 25 DPA (SCW synthesis) for a total of 60 samples (3 replicates x 20 days). Replicates were typically
872 from different plants, aside from two 7 DPA replicates, which were derived from the same plant. Fiber
873 was harvested by extracting whole locules from the bolls prior to flash freezing in liquid nitrogen.
874 Harvested fiber (in locules) was stored at -80°C until RNA extraction.
875

876 *RNA-extraction and RNA-seq*
877 Total RNA was extracted from each sample using a modification of the Sigma Plant Spectrum Total RNA
878 kit (Sigma-Aldrich). First, frozen fibers were ruptured by vortexing locules with ≤ 106 μm acid-washed
879 glass beads (Sigma-Aldrich) in liquid nitrogen for all DPA, and RNA was extracted using the Spectrum
880 kit including optional washes. The extracted RNA was further purified using phenol-chloroform, as
881 previously described (Hovav, Chaudhary, *et al.*, 2008). RNA quality was assessed by the ISU DNA
882 facility using the Agilent 2100 Bioanalyzer, and samples passing quality control (QC) were submitted for
883 RNA-seq at the ISU DNA facility. All three replicates passed QC for each DPA, except for 20 DPA (2
884 replicates), 24 DPA (2 replicates), and 25 DPA (1 sample only). Although multiple attempts were made to
885 recover additional replicates for these later-stage DPA, these attempts were unsuccessful, due to
886 challenges in extracting RNA from high-cellulose samples. These samples were subsequently omitted,
887 along with a single 14 DPA sample, which exhibited low recovery of gene expression.
888
889 Libraries were constructed at the ISU DNA facility using the NEBNext Ultra II RNA Library Prep Kit
890 and sequenced on the Illumina NovaSeq 6000 as paired-end 150-nucleotide reads (PE150). Raw reads
891 were quality and adapter trimmed using trimmomatic version 0.39 (Bolger *et al.*, 2014) from Spack
892 (Gamblin *et al.*, 2015) as trimmomatic/0.39-da5npsr. Only surviving read-pairs (minimum length of 75nt
893 per read) were retained for expression and network analyses.
894
895 *Reference transcriptome generation and mapping*
896 A species-specific, homoeolog-diagnostic reference transcriptome was generated using the *G. raimondii*
897 genome annotation (Paterson *et al.*, 2012) in conjunction with species/homoeolog-specific SNP
898 information (Page *et al.*, 2013) and a custom script available from
899 <https://github.com/Wendellab/TM1fiber>. This reference has previously been validated as performing well
900 in the polyploid *G. hirsutum* (Hu, Grover, Arick, *et al.*, 2021) and allowing precise assignment of paired
901 homoeologs. Kallisto v0.46.1 (Bray *et al.*, 2016) was used to pseudoalign and quantify transcripts from
902 each sample using 'kallisto quant' and processed in parallel using GNU parallel v20220522 (Tange,
903 2022).
904
905 Raw read counts were imported into R/4.2.2 (R Core Team, 2022), and the data were normalized using
906 the variance stabilizing transformation (vst) in DESeq2 v.1.36.0 (Love *et al.*, 2014) and the design
907 ' ~DPA'. Principal Component Analysis (PCA) was conducted in DESeq2 using 'plotPCA', and the first
908 two axes were visualized using ggplot2 v3.4.0 (Wickham, 2016). Minimum volume enclosing ellipses
909 were added in ggplot2 using the ggforce v0.4.1 (Pedersen, 2022) Khachiyan-based (Khachiyan, 1996)
910 method '+ geom_mark_ellipse()'. Samples irregularly placed on the PCA were noted for follow-up, as
911 they may represent pre-aborted bolls. Of these, only the removed 14 DPA sample exhibiting generally
912 low expression was removed.
913
914 RNA-seq quality was also assessed by evaluating generalized expression metrics. Specifically, the
915 number of expressed genes per sample (TPM > 0) was evaluated for consistency among replicates, as
916 were the mean, median, and quantiles (in 10% steps) of these metrics. These metrics were plotted across
917 developmental time using ggplot2, and visual outliers were discarded.
918

919 *Differential gene expression*

920 Differential gene expression (DGE) was analyzed in DESeq2 using the design ‘~DPA’. Contrasts were
921 conducted between adjacent DPA, and p-values were adjusted (i.e., padj) using the Benjamini-Hochberg
922 correction method (Benjamini and Hochberg, 1995). Differential expression was inferred for any contrast
923 where padj < 0.05. Datatables were generated using tidyverse v1.3.2 (Wickham *et al.*, 2019), magrittr
924 v.2.0.3 (Bache and Wickham, n.d.), and data.table v1.14.6 (Dowle *et al.*, n.d.). Relevant code is at
925 <https://github.com/Wendellab/TM1fiber>.

926

927 Expression trajectories for genes within the time series were estimated by ImpulseDE2 (Fischer *et al.*,
928 2018) in R/4.2.2. Trajectories were classified by ImpulseDE2 into four categories: consistently increasing
929 (up), consistently decreasing (down), impulse up (up*), and impulse down (down*). For the latter two
930 (impulse) categories, the expression trajectories follow a unimodal pattern where the genes in those
931 categories exhibit transiently high (up*) or low (down*) expression during the time course but return their
932 expression to a level similar to the beginning of the time series.

933

934 *Co-expression and GRN analysis*

935 Weighted gene coexpression networks were generated for the 18 remaining timepoints using WGCNA
936 (Langfelder and Horvath, 2008). Raw gene expression values were log-transformed using the ‘rld’
937 function in WGCNA, and 5327 genes with zero variance were removed, leaving 69,209 genes for
938 coexpression network construction. Soft-thresholding powers were evaluated using the function
939 *pickSoftThreshold* and evaluating powers 1 to 10 and even numbers from 12 to 40, resulting in the
940 selection of power=10. The WGCNA function *blockwiseModules* was used for automatic network
941 construction and module detection using a blocksize that would contain all genes (block=70,000). Module
942 significance relative to the time course was assessed using an ANOVA and p < 0.05. Eigengene values
943 across development were visualized in WGCNA, and modules were functionally assessed using topGO
944 (Alexa and Rahnenfuehrer, 2016). Module-phenotype correlations were computed within WGCNA and
945 visualized using ggplot2. Relevant code is at <https://github.com/Wendellab/TM1fiber>.

946

947 Crowd networks were generated using Seidr v0.14.2 (Schiffthaler *et al.*, 2023) and combining networks
948 from 13 algorithms (Supplementary Table 10). All networks were generated within Seidr except
949 WGCNA, which was imported from the above analyses. Networks were combined within Seidr using the
950 inverse rank product (IRP) algorithm (Zhong *et al.*, 2014; Schiffthaler *et al.*, 2023). This aggregated
951 network was pruned using the backbone function in Seidr, which uses a backboning algorithm (Coscia
952 and Neffke, 2017) to remove edges based on standard deviations from the expected value for that edge. In
953 the present, we used ‘seidr backbone -F 1.64’, which corresponds to retaining edges with p < 0.05. Both
954 the initial aggregate network and the backbone network were clustered using the Louvain (Blondel *et al.*,
955 2008) and InfoMap (Rosvall and Bergstrom, 2008) algorithms from the igraph (v1.4.1) package (Csardi *et*
956 *al.*, 2006). Gene clusters from each algorithm were intersected between themselves and the WGCNA-
957 generated modules to form cluster-groups that are composed of those genes that belong to the same
958 module, Louvain cluster, and InfoMap cluster.

959

960 Gene regulatory networks were generated by restricting the output from Seidr to only “directed” edges.
961 Again this was done for the aggregate network and the backbone network, albeit with a more relaxed
962 backbone threshold (‘seidr backbone -F 1.64’, or p < 0.05) to recover more edges from the naturally less

963 dense directed network. These networks were Louvain and InfoMap clustered (as above) and intersected
964 with WGCNA modules to generate directed cluster-groups.
965

966 *Transcription factor analysis*

967 Transcription factors for the *G. raimondii* genome were downloaded from the PlantTFDB v 5.0 (Tian *et*
968 *al.*, 2020; Jin *et al.*, 2017). Both transcription factor (TF) gene ID and family were retained. Expression
969 profiles for transcription factors were extracted from the broader DESeq2 and ImpulseDE2 analyses
970 (above). TF presence in modules and cluster-groups was derived from the above analyses and recovered
971 using tidyverse v1.3.2 (Wickham *et al.*, 2019) in R. With respect to the gene network analyses, two types
972 of networks were considered: (1) TFe, or transcription factor extended, which retained edges when at
973 least one of the two nodes was a transcription factor, and (2) TFr, or transcription factor restricted, which
974 only retained edges when both nodes were transcription factors.
975

976 *Protein sequence alignments and phylogenetic analysis*

977 Cellulose synthase (CESA) protein sequences from *Populus trichocarpa* (Kim *et al.*, 2019) and several
978 landmark species (Lee and Szymanski, 2021) were downloaded from Phytozome V13 (Goodstein *et al.*,
979 2012). A multiple sequence alignment was generated using Clustal Omega at EMBL-EBI (Madeira *et al.*,
980 2022) with the number of combined iterations set to 5 and setting the distance matrix as output. This
981 distance matrix was used for the correlation analysis between protein sequences and transcript
982 abundances (see below). The phylogenetic tree was built from the alignment generated by Clustal Omega
983 on EMBL-EBI (<https://www.ebi.ac.uk/Tools/msa/clustalo/>).
984

985 *CesA network filtering*

986 To evaluate the local neighborhood of the cellulose synthase (CesA) genes involved in SCW synthesis,
987 we targeted genes that belong to the largest WGCNA coexpression module (ME1), Louvain cluster #6,
988 InfoMap cluster #22 (henceforth 1-6-22), which contained 9 of the 12 SCW CesA genes. Using the top
989 10% of edges in the crowd network (54,705 nodes and 222,490 edges), we extracted only directed edges
990 that included one of the 947 genes (nodes) from the SCW cluster as either a source or target node,
991 resulting in a network composed of 1279 nodes and 1448 edges. We further restricted our edges to those
992 included in the top 10% of edges for this SCW cluster, resulting in 225 nodes and 145 edges. We
993 imported those edges into Cytoscape v3.10.1 (Shannon *et al.*, 2003), where we filtered nodes to retain
994 only those with at least one outgoing edge and all CesA genes. We further reduced the network view to
995 include only the nearest neighbors to the CesA genes by iteratively using “Select > First Neighbors of
996 Selected Nodes” five times.
997

998 *Isolation of microsome (P200) fraction*

999 The microsome (P200) fraction was obtained from intact cotton fiber tissue from 6 to 24 DPA (McBride
1000 *et al.*, 2017). Briefly, apoplastic proteins and extracellular vesicles were removed from the intact ovules
1001 (~200 mg) in one locule by dipping each ovule into 5 mL of microsome isolation buffer (MIB) [50 mM
1002 Hepes/KOH (pH 7.5), 250 mM sorbitol, 50 mM KOAc, 2 mM Mg(OAc)₂, 1 mM EDTA, 1 mM EGTA, 1
1003 mM dithiothreitol (DTT), 2 mM PMSF and 1% (v/v) protein inhibitor cocktail (160 mg/mL benzamidine-
1004 HCl, 100 mg/mL leupeptin, 12 mg/mL phenanthroline, 0.1 mg/mL aprotinin, and 0.1 mg/mL pepstatin
1005 A)] with 10 minutes incubation under gentle shaking. The ovules were recovered from the MIB buffer
1006 and fiber tissues were isolated from seeds as described previously (Lee and Szymanski, 2021). The fiber

1007 tissues were homogenized under cold MIB using a Polytron homogenizer (Brinkmann Instruments) and
1008 filtered through 4 layers of cheesecloth pre-soaked in cold MIB. Debris in the filtered homogenate was
1009 pelleted at 1,000 x g for 10 min using an Allegra X-30R centrifuge (Beckman Coulter Life Sciences).
1010 Microsomes were enriched at 200 k x g for 20 minutes at 4°C using a Beckman Optima Ultracentrifuge
1011 with TLA110 rotor (Beckman Coulter Life Sciences) and washed twice with MIB. The final pellet was
1012 mixed with 200 µL of 8 Urea and incubated for 1 hour at room temperature to denature proteins from
1013 membranes. Undissolved debris was removed by centrifugation at 12,000g for 15 minutes using an
1014 Allegra X-30R centrifuge. Three biological replicates were prepared.
1015

1016 *Protein mass spectrometry analysis*

1017 LC-MS/MS run and peptide identification/quantification were performed as described previously (Lee
1018 and Szymanski, 2021; McBride *et al.*, 2017)). Briefly, 50 µg of proteins in the P200 fractions were
1019 digested using trypsin and digested peptides were subsequently purified using C18 Micro Spin Columns
1020 (74-4601, Harvard Apparatus). For each sample, 1 µg was analyzed by reverse-phase LC-ESI-MS/MS
1021 using a Dionex UltiMate 3000 RSLCnano System coupled with the Orbitrap Fusion Lumos Tribrid Mass
1022 Spectrometer (Thermo Fisher Scientific Inc.). The Andromeda search engine on MaxQuant (version
1023 1.6.14.0) was used for relative protein abundance quantification and protein identification (Cox *et al.*,
1024 2014; Tyanova, Temu, & Cox, 2016). The search parameters were as follows: (1) the match between runs
1025 function was set with a maximum matching time window of 0.7 min as default; (2) only proteins
1026 identified by a single unique peptide were selected; (3) the same reference generated for RNAseq was
1027 used; (4) label-free quantification was selected; and (5) all other parameters were set as default.
1028

1029 *Cell wall and polysaccharide extraction*

1030 Alcohol-insoluble CW and subsequently the pectin, hemicellulose and cellulose polysaccharides were
1031 extracted from cotton fiber in triplicate using a modification of previous methods (Avci *et al.*, 2013) using
1032 the same time points sampled above (i.e., 6 to 24 DPA), as per Swaminathan et al (Swaminathan *et al.*,
1033 2024). Each cotton boll (stored at -80°C) was thawed until 28°C, at which point fibers were removed
1034 using a scalpel and forceps and subsequently placed in a tube on ice. Harvested fibers were ground
1035 thoroughly in liquid nitrogen, and the CW was extracted by using a series of organic solvents (Avci *et al.*,
1036 2013). From the CW, non-cellulosic polysaccharides, such as pectin and hemicellulose, were extracted, as
1037 previously described (Zabotina *et al.*, 2012), using 50 mM CDTA:50 mM ammonium oxalate (1:1) buffer
1038 followed by 4M KOH, respectively. The final cellulose pellet (containing a mixture of both amorphous
1039 and crystalline celluloses) that remained after the 50 mM CDTA:50 mM ammonium oxalate buffer and
1040 the 4M KOH extractions was dried, weighed, and analyzed.

1041 *Turgor gene identification*

1042 Turgor pressures over the developmental timeline were estimated by inferring intermediate values based
1043 on existing measured values (Ruan *et al.*, 2001). These data were originally measured by first determining
1044 osmolalities (Ruan *et al.*, 1995) and converting to MPa using 2.48 MPa per Osm kg⁻¹, and then estimating
1045 turgor from the difference in osmotic and water potential. Measured values (Ruan *et al.*, 2001) include
1046 0.075 MPa (5 DPA), 0.11 MPa (10 DPA), 0.68 MPa (16 DPA), 0.28 MPa (20 DPA), and 0.25 MPa (30
1047 DPA). These points were used to generate a first order b-spline of 100 datapoints in the 5 to 30 DPA
1048 interval. The values at 6 to 24 DPA were used as estimates for turgor pressure variability over the time
1049 interval of this study.

1050

1051 Osmolytes involved in increasing turgor were identified from the literature (Kopka *et al.*, 1997; Dong *et*
1052 *al.*, 2018; Ruan *et al.*, 2001; Rhodes and Samaras, 2020). *Arabidopsis thaliana* genes involved in
1053 producing or transporting these osmolytes were identified in TAIR (Berardini *et al.*, 2015; Cheng *et al.*,
1054 2017). Putative cotton homologs were identified using the orthologous groups available on Phytozome
1055 v12.1 (Goodstein *et al.*, 2012) and were assumed to have similar involvement as in *A. thaliana*.
1056 Candidates from this list of turgor-involved genes that were also present in the turgor-associated modules
1057 (ME8 and ME9) were identified. Expression trajectories for those 6 genes were extracted from the log-
1058 transformed, normalized dataset used in WGCNA, and then smoothed and plotted in ggplot2. T

1059

1060

1061 **Data and code availability**

1062 RNAseq reads are available from the Short Read Archive (SRA) under PRJNA1099209. Code used to
1063 analyze the data is available at <https://github.com/Wendellab/TM1fiber>. The mass spectrometry
1064 proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE (Perez-Riverol
1065 *et al.*, 2022) partner repository with the dataset identifier PXD051704.

1066 **Funding**

1067 This research was supported by the National Science Foundation (NSF) Grant No. 1951819 to DBS,
1068 JFW, OS, and JX. This research was also supported by the USDA-ARS (58-6066-0-066, Genomics of
1069 Malvaceae) to DGP.

1070 **Authors Contributions**

1071 JFW, OZ, DBS, and CEG conceptualized the project. PY engaged in data curation. CEG and YL were
1072 involved in formal analysis. Funding was acquired by JFW, OZ, DBS, JX, and DGP. SS, AGL, JJJ, YL,
1073 XX, MAA, CEG, AHH, PY, and CHH conducted the investigation. JFW, DBS, ELM, CEG, JX, and OZ
1074 administered the project. Resources were provided by JJJ, AGL, ERM, MAA, and DGP. JFW, OZ, DBS,
1075 CEG, GH, and DGP engaged in supervision of the project. Visualization was conducted by MAA, CEG,
1076 YL, and HR. The original draft was written by CEG and CHH, and all authors were involved in
1077 manuscript review.

1078

1079 **Acknowledgements**

1080 The authors thank Weixuan Ning and Ehsan Kayal for their helpful discussion. The authors also thank the
1081 ResearchIT unit at Iowa State University for computational support. We thank the USDA-ARS (58-6066-
1082 0-066, Genomics of Malvaceae) for their financial support.

1083

1084 **Conflict of Interest**

1085 The authors declare no conflict of interest.

1086

1087 **Supplementary Figure Legends**

1088 **Supplementary Figure 1.** Molecular function GO enrichment word maps for each category from
1089 ImpulseDE2: (A) impulse up, 3402 genes; (B) impulse down, 1871 genes; (C) transition up, 19706 genes;
1090 and (D) transition down, 14491 genes.

1091

1092 **Supplementary Figure 2.** Biological process word maps for GO enrichment for each category from
1093 ImpulseDE2: (A) impulse up, 3402 genes; (B) impulse down, 1871 genes; (C) transition up, 19706 genes;
1094 and (D) transition down, 14491 genes.

1095

1096 **Supplementary Figure 3.** Relative expression of module eigengenes over developmental time. Each
1097 module is listed by number and color, as output by WGCNA. The number of genes in each module is
1098 listed, and the significance of the module to the developmental timeline (as determined by ANOVA) is
1099 listed.

1100

1101 **Supplementary Figure 4.** Molecular function GO enrichment word map for ME8, 776 genes.

1102 **Supplementary Figure 5.** Phylogenetic analysis of CESA orthologs. CESA protein sequences from
1103 *Populus trichocarpa* (Kim et al, 2019) and landmark species (Lee and Szymanski, 2021) were
1104 downloaded from Phytozome V13 (Goodstein et al, 2012) for the analysis. Phylogenetic analysis was
1105 performed by Clustal Omega (<https://www.ebi.ac.uk/Tools/msa/clustalo/>).

1106 **Supplementary Figure 6.** Profiles of mRNA and protein abundances of selected CESAs that belong to
1107 informative groups at protein level. AtDt suffixes reflect ambiguity with respect to homoeolog
1108 identification and Dt indicates homoeolog-specific peptides were identified. PCC: Pearson Correlation
1109 Coefficient.

1110

1111

1112 **References**

1113 **Abidi, N., Cabrales, L. and Haigler, C.H.** (2014) Changes in the cell wall and cellulose content of
1114 developing cotton fibers investigated by FTIR spectroscopy. *Carbohydr. Polym.*, **100**, 9–16.
1115 Available at: <http://dx.doi.org/10.1016/j.carbpol.2013.01.074>.

1116 **Ahmed, M., Shahid, A.A., Din, S.U., et al.** (2018) An overview of genetic and hormonal control of
1117 cotton fiber development. *Pak. J. Bot.*, **50**, 433–443.

1118 **Aida, M., Ishida, T., Fukaki, H., Fujisawa, H. and Tasaka, M.** (1997) Genes involved in organ
1119 separation in *Arabidopsis*: an analysis of the cup-shaped cotyledon mutant. *Plant Cell*, **9**, 841–857.
1120 Available at: <http://dx.doi.org/10.1105/tpc.9.6.841>.

1121 **Alexa, A. and Rahnenfuhrer, J.** (2016) *topGO: Enrichment Analysis for Gene Ontology*.

1122 **Ambawat, S., Sharma, P., Yadav, N.R. and Yadav, R.C.** (2013) MYB transcription factor genes as
1123 regulators for plant responses: an overview. *Physiol. Mol. Biol. Plants*, **19**, 307–321. Available at:
1124 <http://dx.doi.org/10.1007/s12298-013-0179-1>.

1125 **Ando, A., Kirkbride, R.C., Jones, D.C., Grimwood, J. and Chen, Z.J.** (2021) LCM and RNA-seq
1126 analyses revealed roles of cell cycle and translational regulation and homoeolog expression bias in
1127 cotton fiber cell initiation. *BMC Genomics*, **22**, 309. Available at: <http://dx.doi.org/10.1186/s12864-021-07579-1>.

1129 **Applequist, W.L., Cronn, R. and Wendel, J.F.** (2001) Comparative development of fiber in wild and
1130 cultivated cotton. *Evol. Dev.*, **3**, 3–17. Available at: <http://dx.doi.org/10.1046/j.1525-142x.2001.00079.x>.

1132 **Avci, U., Pattathil, S., Singh, B., Brown, V.L., Hahn, M.G. and Haigler, C.H.** (2013) Cotton fiber cell
1133 walls of *Gossypium hirsutum* and *Gossypium barbadense* have differences related to loosely-bound
1134 xyloglucan. *PLoS One*, **8**, e56315. Available at: <http://dx.doi.org/10.1371/journal.pone.0056315>.

1135 **Bache and Wickham** magrittr: a forward-pipe operator for R. *R package version*.

1136 **Benedict, C.R., Kohel, R.J. and Lewis, H.L.** (1999) Cotton Fiber Quality. In W. C. Smith, ed. *Cotton: Origin, History, Technology, and Production*. New York, NY: John Wiley & Sons, pp. 269–288.

1138 **Benjamini, Y. and Hochberg, Y.** (1995) Controlling the False Discovery Rate: A Practical and Powerful
1139 Approach to Multiple Testing. *J. R. Stat. Soc. Series B Stat. Methodol.*, **57**, 289–300. Available at:
1140 <http://www.jstor.org/stable/2346101>.

1141 **Berardini, T.Z., Reiser, L., Li, D., Mezheritsky, Y., Muller, R., Strait, E. and Huala, E.** (2015) The
1142 *Arabidopsis* information resource: Making and mining the “gold standard” annotated reference plant
1143 genome. *Genesis*, **53**, 474–485. Available at: <http://dx.doi.org/10.1002/dvg.22877>.

1144 **Blondel, V.D., Guillaume, J.-L., Lambiotte, R. and Lefebvre, E.** (2008) Fast unfolding of communities
1145 in large networks. *J. Stat. Mech.*, **2008**, P10008. Available at:
1146 <https://iopscience.iop.org/article/10.1088/1742-5468/2008/10/P10008/meta> [Accessed June 21,
1147 2023].

1148 **Bolger, A.M., Lohse, M. and Usadel, B.** (2014) Trimmomatic: a flexible trimmer for Illumina sequence
1149 data. *Bioinformatics*, **30**, 2114–2120. Available at: <http://dx.doi.org/10.1093/bioinformatics/btu170>.

1150 **Bray, N.L., Pimentel, H., Melsted, P. and Pachter, L.** (2016) Erratum: Near-optimal probabilistic
1151 RNA-seq quantification. *Nat. Biotechnol.*, **34**, 888. Available at: <http://dx.doi.org/10.1038/nbt0816-888d>.

1153 **Buchala, A.J.** (1999) Noncellulosic carbohydrates in cotton fibers. *Cotton fibers-developmental biology, quality improvement, and textile processing*. New York: Haworth Press Inc, 113–136.

1155 **Bürglin, T.R.** (1997) Analysis of TALE superclass homeobox genes (MEIS, PBC, KNOX, Iroquois, TGIF) reveals a novel domain conserved between plants and animals. *Nucleic Acids Res.*, **25**, 4173–4180. Available at: <http://dx.doi.org/10.1093/nar/25.21.4173>.

1158 **Butterworth, K.M., Adams, D.C., Horner, H.T. and Wendel, J.F.** (2009) Initiation and Early
1159 Development of Fiber in Wild and Cultivated Cotton. *International Journal of Plant Sciences*, **170**,
1160 561–574. Available at: <http://dx.doi.org/10.1086/597817>.

1161 **Cheng, C.-Y., Krishnakumar, V., Chan, A.P., Thibaud-Nissen, F., Schobel, S. and Town, C.D.**
1162 (2017) Araport11: a complete reannotation of the *Arabidopsis thaliana* reference genome. *Plant J.*,
1163 **89**, 789–804. Available at: <http://dx.doi.org/10.1111/tpj.13415>.

1164 **Chen, X., Guo, W., Liu, B., Zhang, Y., Song, X., Cheng, Y., Zhang, L. and Zhang, T.** (2012)
1165 Molecular mechanisms of fiber differential development between *G. barbadense* and *G. hirsutum*
1166 revealed by genetical genomics. *PLoS One*, **7**, e30056. Available at:
1167 <http://dx.doi.org/10.1371/journal.pone.0030056>.

1168 **Constable, G., Llewellyn, D., Walford, S.A. and Clement, J.D.** (2015) Cotton Breeding for Fiber
1169 Quality Improvement. In V. M. V. Cruz and D. A. Dierig, eds. *Industrial Crops: Breeding for
1170 BioEnergy and Bioproducts*. New York, NY: Springer New York, pp. 191–232. Available at:
1171 https://doi.org/10.1007/978-1-4939-1447-0_10.

1172 **Coscia, M. and Neffke, F.M.H.** (2017) Network Backboning with Noisy Data. In *2017 IEEE 33rd
1173 International Conference on Data Engineering (ICDE)*. pp. 425–436. Available at:
1174 <http://dx.doi.org/10.1109/ICDE.2017.100>.

1175 **Csardi, G., Nepusz, T. and Others** (2006) The igraph software package for complex network research.
1176 *InterJournal, complex systems*, **1695**, 1–9.

1177 **Delmer, D., Dixon, R.A., Keegstra, K. and Mohnen, D.** (2024) The plant cell wall—dynamic, strong,
1178 and adaptable—is a natural shapeshifter. *Plant Cell*, koad325. Available at:
1179 <https://academic.oup.com/plcell/advance-article/doi/10.1093/plcell/koad325/7596221> [Accessed
1180 February 9, 2024].

1181 **Delmer, D.P., Pear, J.R., Andrawis, A. and Stalker, D.M.** (1995) Genes encoding small GTP-binding
1182 proteins analogous to mammalian rac are preferentially expressed in developing cotton fibers. *Mol.
1183 Genet.*, **248**, 43–51. Available at: <http://dx.doi.org/10.1007/BF02456612>.

1184 **Dhindsa, R.S., Beasley, C.A. and Ting, I.P.** (1975) Osmoregulation in Cotton Fiber: Accumulation of
1185 Potassium and Malate during Growth. *Plant Physiol.*, **56**, 394–398. Available at:
1186 <http://dx.doi.org/10.1104/pp.56.3.394>.

1187 **Didsbury, J., Weber, R.F., Bokoch, G.M., Evans, T. and Snyderman, R.** (1989) rac, a novel ras-
1188 related family of proteins that are botulinum toxin substrates. *J. Biol. Chem.*, **264**, 16378–16382.
1189 Available at: <https://www.ncbi.nlm.nih.gov/pubmed/2674130>.

1190 **Dong, H., Bai, L., Zhang, Y., et al.** (2018) Modulation of Guard Cell Turgor and Drought Tolerance by
1191 a Peroxisomal Acetate-Malate Shunt. *Mol. Plant*, **11**, 1278–1291. Available at:
1192 <http://dx.doi.org/10.1016/j.molp.2018.07.008>.

1193 **Dowle, Srinivasan, Gorecki and Chirico** Package “data.table.” *Extension of 'data.table'*. Available at:
1194 <ftp://ftp.musicbrainz.org/pub/cran/web/packages/data.table/data.table.pdf>.

1195 **Fischer, D.S., Theis, F.J. and Yosef, N.** (2018) Impulse model-based differential expression analysis of
1196 time course sequencing data. *Nucleic Acids Res.*, **46**, e119. Available at:
1197 <http://dx.doi.org/10.1093/nar/gky675>.

1198 **Gallagher, J.P., Grover, C.E., Hu, G., Jareczek, J.J. and Wendel, J.F.** (2020) Conservation and
1199 Divergence in Duplicated Fiber Coexpression Networks Accompanying Domestication of the
1200 Polyploid *Gossypium hirsutum* L. *G3*, **10**, 2879–2892. Available at:
1201 <http://dx.doi.org/10.1534/g3.120.401362>.

1202 **Gamblin, LeGendre, Collette, Lee, Moody, de Supinski and Futral** (2015) The Spack package
1203 manager: bringing order to HPC software chaos. In *SC15: International Conference for High-*
1204 *Performance Computing, Networking, Storage and Analysis*. pp. 1–12. Available at:
1205 <http://dx.doi.org/10.1145/2807591.2807623>.

1206 **Gilbert, M.K., Kim, H.J., Tang, Y., Naoumkina, M. and Fang, D.D.** (2014) Comparative
1207 transcriptome analysis of short fiber mutants Ligon-lintless 1 and 2 reveals common mechanisms
1208 pertinent to fiber elongation in cotton (*Gossypium hirsutum* L.). *PLoS One*, **9**, e95554. Available at:
1209 <http://dx.doi.org/10.1371/journal.pone.0095554>.

1210 **Goodstein, D.M., Shu, S., Howson, R., et al.** (2012) Phytozome: a comparative platform for green plant
1211 genomics. *Nucleic Acids Res.*, **40**, D1178–86. Available at: <http://dx.doi.org/10.1093/nar/gkr944>.

1212 **Greenfield, A., Madar, A., Ostrer, H. and Bonneau, R.** (2010) DREAM4: Combining genetic and
1213 dynamic information to identify biological networks and dynamical models. *PLoS One*, **5**, e13397.
1214 Available at: <http://dx.doi.org/10.1371/journal.pone.0013397>.

1215 **Haigler, C.H., Betancur, L., Stiff, M.R. and Tuttle, J.R.** (2012) Cotton fiber: a powerful single-cell
1216 model for cell wall and cellulose research. *Front. Plant Sci.*, **3**, 104. Available at:
1217 <http://dx.doi.org/10.3389/fpls.2012.00104>.

1218 **Haigler, C.H. and Roberts, A.W.** (2019) Structure/function relationships in the rosette cellulose
1219 synthesis complex illuminated by an evolutionary perspective. *Cellulose*, **26**, 227–247. Available at:
1220 <https://doi.org/10.1007/s10570-018-2157-9>.

1221 **Hovav, R., Chaudhary, B., Udall, J.A., Flagel, L. and Wendel, J.F.** (2008) Parallel domestication,
1222 convergent evolution and duplicated gene recruitment in allopolyploid cotton. *Genetics*, **179**, 1725–
1223 1733. Available at: <http://dx.doi.org/10.1534/genetics.108.089656>.

1224 **Hovav, R., Udall, J.A., Hovav, E., Rapp, R., Flagel, L. and Wendel, J.F.** (2008) A majority of cotton
1225 genes are expressed in single-celled fiber. *Planta*, **227**, 319–329. Available at:
1226 <http://dx.doi.org/10.1007/s00425-007-0619-7>.

1227 **Huang, G., Huang, J.-Q., Chen, X.-Y. and Zhu, Y.-X.** (2021) Recent Advances and Future
1228 Perspectives in Cotton Research. *Annu. Rev. Plant Biol.*, **72**, 437–462. Available at:
1229 <http://dx.doi.org/10.1146/annurev-arplant-080720-113241>.

1230 **Hu, G., Grover, C.E., Arick, M.A., Liu, M., Peterson, D.G. and Wendel, J.F.** (2021) Homoeologous
1231 gene expression and co-expression network analyses and evolutionary inference in allopolyploids.
1232 *Brief. Bioinform.*, **22**, 1819–1835. Available at: <http://dx.doi.org/10.1093/bib/bbaa035>.

1233 **Hu, G., Grover, C.E., Yuan, D., Dong, Y., Miller, E., Conover, J.L. and Wendel, J.F.** (2021)
1234 Evolution and Diversity of the Cotton Genome. In M.-U.- Rahman, Y. Zafar, and T. Zhang, eds.
1235 *Cotton Precision Breeding*. Cham: Springer International Publishing, pp. 25–78. Available at:
1236 https://doi.org/10.1007/978-3-030-64504-5_2.

1237 **Hu, H., He, X., Tu, L., Zhu, L., Zhu, S., Ge, Z. and Zhang, X.** (2016) GhJAZ2 negatively regulates
1238 cotton fiber initiation by interacting with the R2R3-MYB transcription factor GhMYB25-like. *Plant*
1239 *J.*, **88**, 921–935. Available at: <https://onlinelibrary.wiley.com/doi/10.1111/tpj.13273>.

1240 **Huynh-Thu, V.A., Irrthum, A., Wehenkel, L. and Geurts, P.** (2010) Inferring regulatory networks
1241 from expression data using tree-based methods. *PLoS One*, **5**. Available at:
1242 <http://dx.doi.org/10.1371/journal.pone.0012776>.

1243 **Islam, M.S., Fang, D.D., Thyssen, G.N., Delhom, C.D., Liu, Y. and Kim, H.J.** (2016) Comparative
1244 fiber property and transcriptome analyses reveal key genes potentially related to high fiber strength
1245 in cotton (*Gossypium hirsutum* L.) line MD52ne. *BMC Plant Biol.*, **16**, 36. Available at:
1246 <http://dx.doi.org/10.1186/s12870-016-0727-2>.

1247 **Jareczek, J.J., Grover, C.E., Hu, G., Xiong, X., Arick, M.A., Ii, Peterson, D.G. and Wendel, J.F.**
1248 (2023) Domestication over Speciation in Allopolyploid Cotton Species: A Stronger Transcriptomic
1249 Pull. *Genes*, **14**. Available at: <http://dx.doi.org/10.3390/genes14061301>.

1250 **Jareczek, J.J., Grover, C.E. and Wendel, J.F.** (2023) Cotton fiber as a model for understanding shifts
1251 in cell development under domestication. *Front. Plant Sci.*, **14**, 1146802. Available at:
1252 <http://dx.doi.org/10.3389/fpls.2023.1146802>.

1253 **Jensen, K.H., Berg-Sørensen, K., Bruus, H., Holbrook, N.M., Liesche, J., Schulz, A., Zwieniecki,
1254 M.A. and Bohr, T.** (2016) Sap flow and sugar transport in plants. *Rev. Mod. Phys.*, **88**, 035007.
1255 Available at: <https://link.aps.org/doi/10.1103/RevModPhys.88.035007>.

1256 **Jiang, X., Fan, L., Li, P., Zou, X., Zhang, Z., Fan, S., Gong, J., Yuan, Y. and Shang, H.** (2021) Co-
1257 expression network and comparative transcriptome analysis for fiber initiation and elongation reveal
1258 genetic differences in two lines from upland cotton CCR170 RIL population. *PeerJ*, **9**, e11812.
1259 Available at: <http://dx.doi.org/10.7717/peerj.11812>.

1260 **Jiao, Y., Long, Y., Xu, K., et al.** (2023) Weighted Gene Co-Expression Network Analysis Reveals Hub
1261 Genes for Fuzz Development in *Gossypium hirsutum*. *Genes*, **14**. Available at:
1262 <http://dx.doi.org/10.3390/genes14010208>.

1263 **Jin, J., Tian, F., Yang, D.-C., Meng, Y.-Q., Kong, L., Luo, J. and Gao, G.** (2017) PlantTFDB 4.0:
1264 toward a central hub for transcription factors and regulatory interactions in plants. *Nucleic Acids*
1265 *Res.*, **45**, D1040–D1045. Available at: <http://dx.doi.org/10.1093/nar/gkw982>.

1266 **Jin, J., Zhang, H., Kong, L., Gao, G. and Luo, J.** (2014) PlantTFDB 3.0: a portal for the functional and
1267 evolutionary study of plant transcription factors. *Nucleic Acids Res.*, **42**, D1182–7. Available at:
1268 <http://dx.doi.org/10.1093/nar/gkt1016>.

1269 **Kay, S., Hahn, S., Marois, E., Hause, G. and Bonas, U.** (2007) A bacterial effector acts as a plant

1270 transcription factor and induces a cell size regulator. *Science*, **318**, 648–651. Available at:
1271 <http://dx.doi.org/10.1126/science.1144956>.

1272 **Khachiyan, L.G.** (1996) Rounding of Polytopes in the Real Number Model of Computation.
1273 *Mathematics of OR*, **21**, 307–320. Available at: <https://doi.org/10.1287/moor.21.2.307>.

1274 **Kim, H.J.** (2018) Cotton Fiber Biosynthesis. In D. D. Fang, ed. *Cotton Fiber: Physics, Chemistry and*
1275 *Biology*. Cham: Springer International Publishing, pp. 133–150. Available at:
1276 https://doi.org/10.1007/978-3-030-00871-0_7.

1277 **Kim, H.J.** (2015) Fiber Biology. In *Agronomy Monographs*. Madison, WI, USA: American Society of
1278 Agronomy, Inc., Crop Science Society of America, Inc., and Soil Science Society of America, Inc.,
1279 pp. 97–127. Available at: <http://doi.wiley.com/10.2134/agronmonogr57.2013.0022>.

1280 **Kim, H.J., Thyssen, G.N., Song, X., Delhom, C.D. and Liu, Y.** (2019) Functional divergence of
1281 cellulose synthase orthologs in between wild *Gossypium raimondii* and domesticated *G. arboreum*
1282 diploid cotton species. *Cellulose*. Available at: <https://doi.org/10.1007/s10570-019-02744-y>.

1283 **Kim, H.J. and Triplett, B.A.** (2001) Cotton fiber growth in planta and in vitro. Models for plant cell
1284 elongation and cell wall biogenesis. *Plant Physiol.*, **127**, 1361–1366. Available at:
1285 <https://www.ncbi.nlm.nih.gov/pubmed/11743074>.

1286 **Kim, W.-C., Ko, J.-H., Kim, J.-Y., Kim, J., Bae, H.-J. and Han, K.-H.** (2013) MYB46 directly
1287 regulates the gene expression of secondary wall-associated cellulose synthases in *Arabidopsis*. *Plant*
1288 *J.*, **73**, 26–36. Available at: <http://dx.doi.org/10.1111/j.1365-313x.2012.05124.x>.

1289 **Kohel, R.J., Richmond, T.R. and Lewis, C.F.** (1970) Texas Marker-1. Description of a Genetic
1290 Standard for *Gossypium hirsutum* L.1. *Crop Sci.*, **10**, 670–671. Available at:
1291 <https://acess.onlinelibrary.wiley.com/doi/10.2135/cropsci1970.0011183X001000060019x>.

1292 **Kopka, J., Provart, N.J. and Müller-Röber, B.** (1997) Potato guard cells respond to drying soil by a
1293 complex change in the expression of genes related to carbon metabolism and turgor regulation. *Plant*
1294 *J.*, **11**, 871–882. Available at: <http://dx.doi.org/10.1046/j.1365-313x.1997.11040871.x>.

1295 **Kuanshev, N., Deewan, A., Jagtap, S.S., Liu, J., Selvam, B., Chen, L.-Q., Shukla, D., Rao, C.V. and**
1296 **Jin, Y.-S.** (2021) Identification and analysis of sugar transporters capable of co-transporting glucose
1297 and xylose simultaneously. *Biotechnol. J.*, **16**, e2100238. Available at:
1298 <http://dx.doi.org/10.1002/biot.202100238>.

1299 **Langfelder, P. and Horvath, S.** (2008) WGCNA: an R package for weighted correlation network
1300 analysis. *BMC Bioinformatics*, **9**, 559. Available at: <http://dx.doi.org/10.1186/1471-2105-9-559>.

1301 **Lee, C.M., Kafle, K., Belias, D.W., Park, Y.B., Glick, R.E., Haigler, C.H. and Kim, S.H.** (2015)
1302 Comprehensive analysis of cellulose content, crystallinity, and lateral packing in *Gossypium*
1303 *hirsutum* and *Gossypium barbadense* cotton fibers using sum frequency generation, infrared and
1304 Raman spectroscopy, and X-ray diffraction. *Cellulose*, **22**, 971–989. Available at:
1305 <https://doi.org/10.1007/s10570-014-0535-5>.

1306 **Lee, Y. and Szymanski, D.B.** (2021) Multimerization variants as potential drivers of
1307 neofunctionalization. *Sci Adv*, **7**. Available at: <http://dx.doi.org/10.1126/sciadv.abf0984>.

1308 **Li, D.-D., Ruan, X.-M., Zhang, J., Wu, Y.-J., Wang, X.-L. and Li, X.-B.** (2013) Cotton plasma

1309 membrane intrinsic protein 2s (PIP2s) selectively interact to regulate their water channel activities
1310 and are required for fibre development. *New Phytol.*, **199**, 695–707. Available at:
1311 <http://dx.doi.org/10.1111/nph.12309>.

1312 **Li, J., Ruan, Y.-L., Dai, F., Zhu, S. and Zhang, T.** (2023) Co-expression networks regulating cotton
1313 fiber initiation generated by comparative transcriptome analysis between fiberless XZ142FLM and
1314 GhVIN1i. *Ind. Crops Prod.*, **194**, 116323. Available at:
1315 <https://www.sciencedirect.com/science/article/pii/S0926669023000870>.

1316 **Li, S., Bashline, L., Lei, L. and Gu, Y.** (2014) Cellulose synthesis and its regulation. *Arabidopsis Book*,
1317 **12**, e0169. Available at: <http://dx.doi.org/10.1199/tab.0169>.

1318 **Li, S.F., Milliken, O.N., Pham, H., Seyit, R., Napoli, R., Preston, J., Koltunow, A.M. and Parish,**
1319 **R.W.** (2009) The *Arabidopsis* MYB5 transcription factor regulates mucilage synthesis, seed coat
1320 development, and trichome morphogenesis. *Plant Cell*, **21**, 72–89. Available at:
1321 <http://dx.doi.org/10.1105/tpc.108.063503>.

1322 **Liu, X., Qin, T., Ma, Q., Sun, J., Liu, Z., Yuan, M. and Mao, T.** (2013) Light-regulated hypocotyl
1323 elongation involves proteasome-dependent degradation of the microtubule regulatory protein WDL3
1324 in *Arabidopsis*. *Plant Cell*, **25**, 1740–1755. Available at: <http://dx.doi.org/10.1105/tpc.113.112789>.

1325 **Liu, Y., Ji, X., Nie, X., et al.** (2015) *Arabidopsis* AtbHLH112 regulates the expression of genes involved
1326 in abiotic stress tolerance by binding to their E-box and GCG-box motifs. *New Phytol.*, **207**, 692–
1327 709. Available at: <http://dx.doi.org/10.1111/nph.13387>.

1328 **Liu, Z., Sun, Z., Ke, H., et al.** (2023) Transcriptome, Ectopic Expression and Genetic Population
1329 Analysis Identify Candidate Genes for Fiber Quality Improvement in Cotton. *Int. J. Mol. Sci.*, **24**.
1330 Available at: <http://dx.doi.org/10.3390/ijms24098293>.

1331 **Li, X.-B., Fan, X.-P., Wang, X.-L., Cai, L. and Yang, W.-C.** (2005) The cotton ACTIN1 gene is
1332 functionally expressed in fibers and participates in fiber elongation. *Plant Cell*, **17**, 859–875.
1333 Available at: <http://dx.doi.org/10.1105/tpc.104.029629>.

1334 **Li, Z., Wang, P., You, C., et al.** (2020) Combined GWAS and eQTL analysis uncovers a genetic
1335 regulatory network orchestrating the initiation of secondary cell wall development in cotton. *New
1336 Phytol.*, **226**, 1738–1752. Available at: <http://dx.doi.org/10.1111/nph.16468>.

1337 **Lockhart, J.A.** (1965) An analysis of irreversible plant cell elongation. *J. Theor. Biol.*, **8**, 264–275.
1338 Available at: [http://dx.doi.org/10.1016/0022-5193\(65\)90077-9](http://dx.doi.org/10.1016/0022-5193(65)90077-9).

1339 **Love, M.I., Huber, W. and Anders, S.** (2014) Moderated estimation of fold change and dispersion for
1340 RNA-seq data with DESeq2. *Genome Biol.*, **15**, 550. Available at: <http://dx.doi.org/10.1186/s13059-014-0550-8>.

1342 **Luo, M., Xiao, Y., Li, X., et al.** (2007) GhDET2, a steroid 5alpha-reductase, plays an important role in
1343 cotton fiber cell initiation and elongation. *Plant J.*, **51**, 419–430. Available at:
1344 <https://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2007.03144.x>.

1345 **Machado, A., Wu, Y., Yang, Y., Llewellyn, D.J. and Dennis, E.S.** (2009) The MYB transcription
1346 factor GhMYB25 regulates early fibre and trichome development. *Plant J.*, **59**, 52–62. Available at:
1347 <http://dx.doi.org/10.1111/j.1365-313X.2009.03847.x>.

1348 **MacMillan, C.P., Birke, H., Chuah, A., Brill, E., Tsuji, Y., Ralph, J., Dennis, E.S., Llewellyn, D. and**
1349 **Pettolino, F.A. (2017) Tissue and cell-specific transcriptomes in cotton reveal the subtleties of gene**
1350 **regulation underlying the diversity of plant secondary cell walls. *BMC Genomics*, **18**, 539. Available**
1351 **at: <http://dx.doi.org/10.1186/s12864-017-3902-4>.**

1352 **MacRobbie, E.A.C. (2006) Control of volume and turgor in stomatal guard cells. *J. Membr. Biol.*, **210**,**
1353 **131–142. Available at: <http://dx.doi.org/10.1007/s00232-005-0851-7>.**

1354 **Madeira, F., Pearce, M., Tivey, A.R.N., Basutkar, P., Lee, J., Edbali, O., Madhusoodanan, N.,**
1355 **Kolesnikov, A. and Lopez, R. (2022) Search and sequence analysis tools services from EMBL-EBI**
1356 **in 2022. *Nucleic Acids Res.*, **50**, W276–W279. Available at: <http://dx.doi.org/10.1093/nar/gkac240>.**

1357 **Mao, G., Buschmann, H., Doonan, J.H. and Lloyd, C.W. (2006) The role of MAP65-1 in microtubule**
1358 **bundling during Zinnia tracheary element formation. *J. Cell Sci.*, **119**, 753–758. Available at:**
1359 **<http://dx.doi.org/10.1242/jcs.02813>.**

1360 **Ma, Q., Wang, N., Hao, P., et al. (2019) Genome-wide identification and characterization of TALE**
1361 **superfamily genes in cotton reveals their functions in regulating secondary cell wall biosynthesis.**
1362 ***BMC Plant Biol.*, **19**, 432. Available at: <http://dx.doi.org/10.1186/s12870-019-2026-1>.**

1363 **Marbach, D., Costello, J.C., Küffner, R., et al. (2012) Wisdom of crowds for robust gene network**
1364 **inference. *Nat. Methods*, **9**, 796–804. Available at: <http://dx.doi.org/10.1038/nmeth.2016>.**

1365 **McBride, Z., Chen, D., Reick, C., Xie, J. and Szymanski, D.B. (2017) Global Analysis of Membrane-**
1366 **associated Protein Oligomerization Using Protein Correlation Profiling. *Mol. Cell. Proteomics*, **16**,**
1367 **1972–1989. Available at: <http://dx.doi.org/10.1074/mcp.RA117.000276>.**

1368 **McFarlane, H.E., Mutwil-Anderwald, D., Verbančić, J., et al. (2021) A G protein-coupled receptor-**
1369 **like module regulates cellulose synthase secretion from the endomembrane system in *Arabidopsis*.**
1370 ***Dev. Cell*, **56**, 1484–1497.e7. Available at: <http://dx.doi.org/10.1016/j.devcel.2021.03.031>.**

1371 **Meinert, M.C. and Delmer, D.P. (1977) Changes in biochemical composition of the cell wall of the**
1372 **cotton fiber during development. *Plant Physiol.*, **59**, 1088–1097. Available at:**
1373 **<http://dx.doi.org/10.1104/pp.59.6.1088>.**

1374 **Naoumkina, M., Thyssen, G.N. and Fang, D.D. (2015) RNA-seq analysis of short fiber mutants Ligon-**
1375 **lintless-1 (Li 1) and - 2 (Li 2) revealed important role of aquaporins in cotton (*Gossypium hirsutum***
1376 **L.) fiber elongation. *BMC Plant Biol.*, **15**, 65. Available at: <http://dx.doi.org/10.1186/s12870-015-0454-0>.**

1378 **Page, J.T., Gingle, A.R. and Udall, J.A. (2013) PolyCat: a resource for genome categorization of**
1379 **sequencing reads from allopolyploid organisms. *G3*, **3**, 517–525. Available at:**
1380 **<http://dx.doi.org/10.1534/g3.112.005298>.**

1381 **Paterson, A.H., Wendel, J.F., Gundlach, H., et al. (2012) Repeated polyploidization of *Gossypium***
1382 **genomes and the evolution of spinnable cotton fibres. *Nature*, **492**, 423–427. Available at:**
1383 **<http://dx.doi.org/10.1038/nature11798>.**

1384 **Pedersen, G.B., Blaschek, L., Frandsen, K.E.H., Noack, L.C. and Persson, S. (2023) Cellulose**
1385 **synthesis in land plants. *Mol. Plant*, **16**, 206–231. Available at:**
1386 **<http://dx.doi.org/10.1016/j.molp.2022.12.015>.**

1387 **Pedersen, T.L.** (2022) *ggforce: Accelerating “ggplot2,”* Available at: <https://ggforce.data-imaginist.com>,
1388 <https://github.com/thomasp85/ggforce>.

1389 **Perez-Riverol, Y., Bai, J., Bandla, C., et al.** (2022) The PRIDE database resources in 2022: a hub for
1390 mass spectrometry-based proteomics evidences. *Nucleic Acids Res.*, **50**, D543–D552. Available at:
1391 <http://dx.doi.org/10.1093/nar/gkab1038>.

1392 **Pettolino, F.A., Yulia, D., Bacic, A. and Llewellyn, D.J.** (2022) Polysaccharide composition during
1393 cotton seed fibre development: temporal differences between species and in different seasons.
1394 *Journal of Cotton Research*, **5**, 1–13. Available at:
1395 <https://jcottonres.biomedcentral.com/articles/10.1186/s42397-022-00136-5> [Accessed December 21,
1396 2022].

1397 **Potikha, T.S., Collins, C.C., Johnson, D.I., Delmer, D.P. and Levine, A.** (1999) The involvement of
1398 hydrogen peroxide in the differentiation of secondary walls in cotton fibers. *Plant Physiol.*, **119**,
1399 849–858. Available at: <http://dx.doi.org/10.1104/pp.119.3.849>.

1400 **Proseus, T.E., Zhu, G.L. and Boyer, J.S.** (2000) Turgor, temperature and the growth of plant cells:
1401 using Chara corallina as a model system. *J. Exp. Bot.*, **51**, 1481–1494. Available at:
1402 <http://dx.doi.org/10.1093/jexbot/51.350.1481>.

1403 **Pu, L., Li, Q., Fan, X., Yang, W. and Xue, Y.** (2008) The R2R3 MYB Transcription Factor
1404 GhMYB109 Is Required for Cotton Fiber Development. *Genetics*, **180**, 811–820. Available at:
1405 <https://academic.oup.com/genetics/article-abstract/180/2/811/6073815> [Accessed April 12, 2022].

1406 **Qin, Y.-M. and Zhu, Y.-X.** (2011) How cotton fibers elongate: a tale of linear cell-growth mode. *Curr.*
1407 *Opin. Plant Biol.*, **14**, 106–111. Available at: <http://dx.doi.org/10.1016/j.pbi.2010.09.010>.

1408 **Qin, Y., Sun, H., Hao, P., Wang, H., Wang, C., Ma, L., Wei, H. and Yu, S.** (2019) Transcriptome
1409 analysis reveals differences in the mechanisms of fiber initiation and elongation between long- and
1410 short-fiber cotton (*Gossypium hirsutum* L.) lines. *BMC Genomics*, **20**, 633. Available at:
1411 <http://dx.doi.org/10.1186/s12864-019-5986-5>.

1412 **Qu, J., Ye, J., Geng, Y.-F., Sun, Y.-W., Gao, S.-Q., Zhang, B.-P., Chen, W. and Chua, N.-H.** (2012)
1413 Dissecting functions of KATANIN and WRINKLED1 in cotton fiber development by virus-induced
1414 gene silencing. *Plant Physiol.*, **160**, 738–748. Available at: <http://dx.doi.org/10.1104/pp.112.198564>.

1415 **Rapp, R.A., Haigler, C.H., Flagel, L., Hovav, R.H., Udall, J.A. and Wendel, J.F.** (2010) Gene
1416 expression in developing fibres of Upland cotton (*Gossypium hirsutum* L.) was massively altered by
1417 domestication. *BMC Biol.*, **8**, 139. Available at: <http://dx.doi.org/10.1186/1741-7007-8-139>.

1418 **R Core Team** (2022) *R: A language and environment for statistical computing*, Vienna, Austria: R
1419 Foundation for Statistical Computing. Available at: <https://www.R-project.org/>.

1420 **Rhodes, D. and Samaras, Y.** (2020) Genetic control of osmoregulation in plants. *Am. J. Physiol. Lung*
1421 *Cell. Mol. Physiol.*, 347–361. Available at:
1422 <https://www.taylorfrancis.com/chapters/edit/10.1201/9780367812140-25/genetic-control->
1423 [osmoregulation-plants-david-rhodes-yiannis-samaras](https://www.taylorfrancis.com/chapters/edit/10.1201/9780367812140-25/genetic-control-).

1424 **Richmond, T.A. and Somerville, C.R.** (2000) The cellulose synthase superfamily. *Plant Physiol.*, **124**,
1425 495–498. Available at: <http://dx.doi.org/10.1104/pp.124.2.495>.

1426 **Rosvall, M. and Bergstrom, C.T.** (2008) Maps of random walks on complex networks reveal
1427 community structure. *Proc. Natl. Acad. Sci. U. S. A.*, **105**, 1118–1123. Available at:
1428 <http://dx.doi.org/10.1073/pnas.0706851105>.

1429 **Ruan, Y.-L.** (2005) Recent advances in understanding cotton fibre and seed development. *Seed Sci. Res.*,
1430 **15**, 269–280. Available at: <http://dx.doi.org/10.1079/SSR2005217> [Accessed March 5, 2024].

1431 **Ruan, Y.L., Llewellyn, D.J. and Furbank, R.T.** (2001) The control of single-celled cotton fiber
1432 elongation by developmentally reversible gating of plasmodesmata and coordinated expression of
1433 sucrose and K⁺ transporters and expansin. *Plant Cell*, **13**, 47–60. Available at:
1434 <http://dx.doi.org/10.1105/tpc.13.1.47>.

1435 **Ruan, Y.L., Mate, C., Patrick, J.W. and Brady, C.J.** (1995) Non-Destructive Collection of Apoplast
1436 Fluid From Developing Tomato Fruit Using a Pressure Dehydration Procedure. *Funct. Plant Biol.*,
1437 **22**, 761–769. Available at: <http://dx.doi.org/10.1071/pp9950761> [Accessed April 24, 2024].

1438 **Ryser, U.** (1977) Cell wall growth in elongating cotton fibers: an autoradiographic study. *Cytobiologie*.

1439 **Schiffthaler, B., Zalen, E. van, Serrano, A.R., Street, N.R. and Delhomme, N.** (2023) Seiðr: Efficient
1440 calculation of robust ensemble gene networks. *Helijon*, **9**, e16811. Available at:
1441 <https://www.sciencedirect.com/science/article/pii/S2405844023040185>.

1442 **Schneider, R., Klooster, K.V., Picard, K.L., et al.** (2021) Long-term single-cell imaging and
1443 simulations of microtubules reveal principles behind wall patterning during proto-xylem
1444 development. *Nat. Commun.*, **12**, 669. Available at: <http://dx.doi.org/10.1038/s41467-021-20894-1>.

1445 **Schubert, A.M., Benedict, C.R., Berlin, J.D. and Kohel, R.J.** (1973) Cotton fiber development-kinetics
1446 of cell elongation and secondary wall thickening 1. *Crop Sci.*, **13**, 704–709. Available at:
1447 <http://dx.doi.org/10.2135/cropsci1973.0011183x001300060035x>.

1448 **Seagull, R.W.** (1993) Cytoskeletal involvement in cotton fiber growth and development. *Micron*, **24**,
1449 643–660. Available at: <https://www.sciencedirect.com/science/article/pii/096843289390042Y>.

1450 **Shan, C.-M., Shangguan, X.-X., Zhao, B., et al.** (2014) Control of cotton fibre elongation by a
1451 homeodomain transcription factor GhHOX3. *Nat. Commun.*, **5**, 5519. Available at:
1452 <http://dx.doi.org/10.1038/ncomms6519>.

1453 **Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski,
1454 B. and Ideker, T.** (2003) Cytoscape: a software environment for integrated models of biomolecular
1455 interaction networks. *Genome Res.*, **13**, 2498–2504. Available at:
1456 <http://dx.doi.org/10.1101/gr.1239303>.

1457 **Singh, B., Avci, U., Eichler Inwood, S.E., et al.** (2009) A specialized outer layer of the primary cell wall
1458 joins elongating cotton fibers into tissue-like bundles. *Plant Physiol.*, **150**, 684–699. Available at:
1459 <https://academic.oup.com/plphys/article-abstract/150/2/684/6107960>.

1460 **Smart, L.B., Vojdani, F., Maeshima, M. and Wilkins, T.A.** (1998) Genes involved in osmoregulation
1461 during turgor-driven cell expansion of developing cotton fibers are differentially regulated. *Plant
1462 Physiol.*, **116**, 1539–1549. Available at: <http://dx.doi.org/10.1104/pp.116.4.1539>.

1463 **Steudle, E. and Zimmermann, U.** (1977) Effect of turgor pressure and cell size on the wall elasticity of
1464 plant cells. *Plant Physiol.*, **59**, 285–289. Available at: <http://dx.doi.org/10.1104/pp.59.2.285>.

1465 **Stiff, M.R. and Haigler, C.H.** (2016) Cotton fiber tips have diverse morphologies and show evidence of
1466 apical cell wall synthesis. *Sci. Rep.*, **6**, 27883. Available at: <http://dx.doi.org/10.1038/srep27883>.

1467 **Sun, W., Gao, Z., Wang, J., et al.** (2019) Cotton fiber elongation requires the transcription factor
1468 GhMYB212 to regulate sucrose transportation into expanding fibers. *New Phytol.*, **222**, 864–881.
1469 Available at: <http://dx.doi.org/10.1111/nph.15620>.

1470 **Sun, X., Gong, S.-Y., Nie, X.-Y., Li, Y., Li, W., Huang, G.-Q. and Li, X.-B.** (2015) A R2R3-MYB
1471 transcription factor that is specifically expressed in cotton (*Gossypium hirsutum*) fibers affects
1472 secondary cell wall biosynthesis and deposition in transgenic *Arabidopsis*. *Physiol. Plant.*, **154**, 420–
1473 432. Available at: <https://onlinelibrary.wiley.com/doi/10.1111/ppl.12317>.

1474 **Swaminathan, S., Grover, C.E., Mugisha, A.S., et al.** (2024) Daily glycome and transcriptome profiling
1475 reveals polysaccharide structures and glycosyltransferases critical for cotton fiber growth. *bioRxiv*,
1476 2024.04.23.589927. Available at: <https://www.biorxiv.org/content/10.1101/2024.04.23.589927v1>
1477 [Accessed May 10, 2024].

1478 **Takatsuka, H., Higaki, T. and Umeda, M.** (2018) Actin Reorganization Triggers Rapid Cell Elongation
1479 in Roots. *Plant Physiol.*, **178**, 1130–1141. Available at: <http://dx.doi.org/10.1104/pp.18.00557>.

1480 **Tange, O.** (2022) *GNU Parallel 20220522 ('NATO')*, Available at: <https://zenodo.org/record/6570228>.

1481 **Tang, W., Tu, L., Yang, X., Tan, J., Deng, F., Hao, J., Guo, K., Lindsey, K. and Zhang, X.** (2014)
1482 The calcium sensor GhCaM7 promotes cotton fiber elongation by modulating reactive oxygen
1483 species (ROS) production. *New Phytol.*, **202**, 509–520. Available at:
1484 <https://onlinelibrary.wiley.com/doi/10.1111/nph.12676>.

1485 **Thaker, V.S., Rabadia, V.S. and Singh, Y.D.** (1999) Physiological and biochemical changes associated
1486 with cotton fibre development. *Acta Physiol. Plant.*, **21**, 57–61. Available at:
1487 <https://doi.org/10.1007/s11738-999-0027-7>.

1488 **Tian, F., Yang, D.-C., Meng, Y.-Q., Jin, J. and Gao, G.** (2020) PlantRegMap: charting functional
1489 regulatory maps in plants. *Nucleic Acids Res.*, **48**, D1104–D1113. Available at:
1490 <http://dx.doi.org/10.1093/nar/gkz1020>.

1491 **Tiwari, S.C. and Wilkins, T.A.** (1995) Cotton (*Gossypium hirsutum*) seed trichomes expand via diffuse
1492 growing mechanism. *Can. J. Bot.*, **73**, 746–757. Available at:
1493 <https://cdnsciencepub.com/doi/abs/10.1139/b95-081>.

1494 **Tuttle, J.R., Nah, G., Duke, M.V., Alexander, D.C., Guan, X., Song, Q., Chen, Z.J., Scheffler, B.E.
1495 and Haigler, C.H.** (2015) Metabolomic and transcriptomic insights into how cotton fiber transitions
1496 to secondary wall synthesis, represses lignification, and prolongs elongation. *BMC Genomics*, **16**,
1497 477. Available at: <http://dx.doi.org/10.1186/s12864-015-1708-9>.

1498 **Viott, C.R. and Wendel, J.F.** (2023) Evolution of the Cotton Genus, *Gossypium*, and Its Domestication
1499 in the Americas. *CRC Crit. Rev. Plant Sci.*, 1–33. Available at:
1500 <https://www.tandfonline.com/doi/abs/10.1080/07352689.2022.2156061>.

1501 **Wang, L., Kartika, D. and Ruan, Y.-L.** (2021) Looking into “hair tonics” for cotton fiber initiation.
1502 *New Phytol.*, **229**, 1844–1851. Available at: <http://dx.doi.org/10.1111/nph.16898>.

1503 **Wang, N.-N., Li, Y., Chen, Y.-H., Lu, R., Zhou, L., Wang, Y., Zheng, Y. and Li, X.-B.** (2021)

1504 Phosphorylation of WRKY16 by MPK3-1 is essential for its transcriptional activity during fiber
1505 initiation and elongation in cotton (*Gossypium hirsutum*). *Plant Cell*, **33**, 2736–2752. Available at:
1506 <http://dx.doi.org/10.1093/plcell/koab153>.

1507 **Wang, Q.Q., Liu, F., Chen, X.S., Ma, X.J., Zeng, H.Q. and Yang, Z.M.** (2010) Transcriptome
1508 profiling of early developing cotton fiber by deep-sequencing reveals significantly differential
1509 expression of genes in a fuzzless/lintless mutant. *Genomics*, **96**, 369–376. Available at:
1510 <http://dx.doi.org/10.1016/j.ygeno.2010.08.009>.

1511 **Wickham, H.** (2016) *ggplot2: Elegant Graphics for Data Analysis*, Springer-Verlag New York.

1512 **Wickham, H., Averick, M., Bryan, J., et al.** (2019) Welcome to the tidyverse. *J. Open Source Softw.*, **4**,
1513 1686. Available at: <https://joss.theoj.org/papers/10.21105/joss.01686>.

1514 **Worden, N., Wilkop, T.E., Esteve, V.E., et al.** (2015) CESA TRAFFICKING INHIBITOR inhibits
1515 cellulose deposition and interferes with the trafficking of cellulose synthase complexes and their
1516 associated proteins KORRIGAN1 and POM2/CELLULOSE SYNTHASE INTERACTIVE
1517 PROTEIN1. *Plant Physiol.*, **167**, 381–393. Available at: <http://dx.doi.org/10.1104/pp.114.249003>.

1518 **Xiao, G., Zhao, P. and Zhang, Y.** (2019) A Pivotal Role of Hormones in Regulating Cotton Fiber
1519 Development. *Front. Plant Sci.*, **10**, 87. Available at: <http://dx.doi.org/10.3389/fpls.2019.00087>.

1520 **Xu, Q. and Liesche, J.** (2021) Sugar export from *Arabidopsis* leaves: actors and regulatory strategies. *J.*
1521 *Exp. Bot.*, **72**, 5275–5284. Available at: <http://dx.doi.org/10.1093/jxb/erab241>.

1522 **Yanagisawa, M., Desyatova, A.S., Belteton, S.A., Mallery, E.L., Turner, J.A. and Szymanski, D.B.**
1523 (2015) Patterning mechanisms of cytoskeletal and cell wall systems during leaf trichome
1524 morphogenesis. *Nature Plants*, **1**, 1–8. Available at: <https://www.nature.com/articles/nplants201514>
1525 [Accessed March 29, 2024].

1526 **Yanagisawa, M., Keynia, S., Belteton, S., Turner, J.A. and Szymanski, D.** (2022) A conserved
1527 cellular mechanism for cotton fibre diameter and length control. *in silico Plants*, **4**. Available at:
1528 <https://academic.oup.com/insilicoplants/article-pdf/4/1/diac004/45932206/diac004.pdf> [Accessed
1529 January 19, 2023].

1530 **Yang, Z., Zhang, C., Yang, X., et al.** (2014) PAG1, a cotton brassinosteroid catabolism gene, modulates
1531 fiber elongation. *New Phytol.*, **203**, 437–448. Available at: <http://dx.doi.org/10.1111/nph.12824>.

1532 **Yoo, M.-J. and Wendel, J.F.** (2014) Comparative evolutionary and developmental dynamics of the
1533 cotton (*Gossypium hirsutum*) fiber transcriptome. *PLoS Genet.*, **10**, e1004073. Available at:
1534 <http://dx.doi.org/10.1371/journal.pgen.1004073>.

1535 **Yu, Y., Wu, S., Nowak, J., et al.** (2019) Live-cell imaging of the cytoskeleton in elongating cotton
1536 fibres. *Nat Plants*, **5**, 498–504. Available at: <http://dx.doi.org/10.1038/s41477-019-0418-8>.

1537 **Zabotina, O.A., Avci, U., Cavalier, D., Pattathil, S., Chou, Y.-H., Eberhard, S., Danhof, L.,**
1538 **Keegstra, K. and Hahn, M.G.** (2012) Mutations in multiple XXT genes of *Arabidopsis* reveal the
1539 complexity of xyloglucan biosynthesis. *Plant Physiol.*, **159**, 1367–1384. Available at:
1540 <http://dx.doi.org/10.1104/pp.112.198119>.

1541 **Zhang, J., Xie, M., Tuskan, G.A., Muchero, W. and Chen, J.-G.** (2018) Recent Advances in the
1542 Transcriptional Regulation of Secondary Cell Wall Biosynthesis in the Woody Plants. *Front. Plant*

1543 *Sci.*, **9**, 1535. Available at: <http://dx.doi.org/10.3389/fpls.2018.01535>.

1544 **Zhang, X., Cao, J., Huang, C., Zheng, Z., Liu, X., Shangguan, X., Wang, L., Zhang, Y. and Chen, Z.**
1545 (2021) Characterization of cotton ARF factors and the role of GhARF2b in fiber development. *BMC*
1546 *Genomics*, **22**, 202. Available at: <http://dx.doi.org/10.1186/s12864-021-07504-6>.

1547 **Zhang, X., Hu, D.-P., Li, Y., Chen, Y., Abidallha, E.H.M.A., Dong, Z.-D., Chen, D.-H. and Zhang,**
1548 **L.** (2017) Developmental and hormonal regulation of fiber quality in two natural-colored cotton
1549 cultivars. *J. Integr. Agric.*, **16**, 1720–1729. Available at:
1550 <https://www.sciencedirect.com/science/article/pii/S2095311916615046>.

1551 **Zhang, Y., Yu, J., Wang, X., Durachko, D.M., Zhang, S. and Cosgrove, D.J.** (2021) Molecular
1552 insights into the complex mechanics of plant epidermal cell walls. *Science*, **372**, 706–711. Available
1553 at: <http://dx.doi.org/10.1126/science.abf2824>.

1554 **Zhao, T., Xu, X., Wang, M., Li, C., Li, C., Zhao, R., Zhu, S., He, Q. and Chen, J.** (2019)
1555 Identification and profiling of upland cotton microRNAs at fiber initiation stage under exogenous
1556 IAA application. *BMC Genomics*, **20**, 421. Available at: <http://dx.doi.org/10.1186/s12864-019-5760-8>.

1558 **Zhong, R., Allen, J.D., Xiao, G. and Xie, Y.** (2014) Ensemble-based network aggregation improves the
1559 accuracy of gene network reconstruction. *PLoS One*, **9**, e106319. Available at:
1560 <http://dx.doi.org/10.1371/journal.pone.0106319>.

1561 **Zhong, R., Cui, D. and Ye, Z.-H.** (2019) Secondary cell wall biosynthesis. *New Phytol.*, **221**, 1703–
1562 1723. Available at: <http://dx.doi.org/10.1111/nph.15537>.

1563 **Zhong, R., Demura, T. and Ye, Z.-H.** (2006) SND1, a NAC domain transcription factor, is a key
1564 regulator of secondary wall synthesis in fibers of *Arabidopsis*. *Plant Cell*, **18**, 3158–3170. Available
1565 at: <http://dx.doi.org/10.1105/tpc.106.047399>.

1566 **Zhou, X., Hu, W., Li, B., Yang, Y., Zhang, Y., Thow, K., Fan, L. and Qu, Y.** (2019) Proteomic
1567 profiling of cotton fiber developmental transition from cell elongation to secondary wall deposition.
1568 *Acta Biochim. Biophys. Sin.*, **51**, 1168–1177. Available at: <http://dx.doi.org/10.1093/abbs/gmz111>.

1569 **Zhu, H., Han, X., Lv, J., Zhao, L., Xu, X., Zhang, T. and Guo, W.** (2011) Structure, expression
1570 differentiation and evolution of duplicated fiber developmental genes in *Gossypium barbadense* and
1571 *G. hirsutum*. *BMC Plant Biol.*, **11**, 40. Available at: <http://dx.doi.org/10.1186/1471-2229-11-40>.

1572 **Zimmermann, U.** (1978) Physics of Turgor- and Osmoregulation. *Annu. Rev. Plant Biol.*, **29**, 121–148.
1573 Available at: <http://dx.doi.org/10.1146/annurev.pp.29.060178.001005> [Accessed March 22, 2024].

1574 **Zou, X., Ali, F., Jin, S., Li, F. and Wang, Z.** (2022) RNA-Seq with a novel glabrous-ZM24fl reveals
1575 some key lncRNAs and the associated targets in fiber initiation of cotton. *BMC Plant Biol.*, **22**, 61.
1576 Available at: <http://dx.doi.org/10.1186/s12870-022-03444-9>.

1577