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Abstract

Time-to-event prediction is a key task for biological discovery, experimental
medicine, and clinical care. This is particularly true for neurological diseases where
development of reliable biomarkers is often limited by difficulty visualising and
sampling relevant cell and molecular pathobiology. To date, much work has relied on
Cox regression because of ease-of-use, despite evidence that this model includes
incorrect assumptions. We have implemented a set of deep learning and spline
models for time-to-event modelling within a fully customizable ‘app’ and
accompanying online portal, both of which can be used for any time-to-event
analysis in any disease by a non-expert user. Our online portal includes capacity for
end-users including patients, Neurology clinicians, and researchers, to access and
perform predictions using a trained model, and to contribute new data for model
improvement, all within a data-secure environment. We demonstrate a pipeline for
use of our app with three use-cases including imputation of missing data,
hyperparameter tuning, model training and independent validation. We show that
predictions are optimal for use in downstream applications such as genetic
discovery, biomarker interpretation, and personalised choice of medication. We
demonstrate the efficiency of an ensemble configuration, including focused training
of a deep learning model. We have optimised a pipeline for imputation of missing
data in combination with time-to-event prediction models. Overall, we provide a
powerful and accessible tool to develop, access and share time-to-event prediction

models; all software and tutorials are available at www.predictte.orq.
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Research in Context
Evidence before this study

Predicting time-to-event (e.g. survival) is an important goal across almost all human
diseases. We reviewed journal articles describing methods for ‘time-to-event’ and,
particularly ‘survival’ prediction. We focused on applications in ‘amyotrophic lateral
sclerosis’ (ALS) where we are well-placed to assess the extent to which prediction
models are used in the clinic. Regarding imputation of missing data we searched
journal articles pertaining to the use of ‘machine learning’; we identified the
‘MissForrest’ random-forest model together with several use-cases demonstrating
efficacy. For time-to-event prediction, deep learning models within the ‘pycox’
package, which is a python implementation of PyTorch based time-to-event models,
were identified as likely to have the best performance. However, the application of
these models in clinical scenarios was limited or absent. We also identified the
‘flexsurv’ package, which is an R implementation of a range of parametric models for
time-to-event tasks, as a complementary set of models which could provide
comparable or even superior performance to deep learning models, particularly

when the training dataset is smaller.
Added value of this study

Time-to-event prediction of disease milestones such as onset and survival are
essential to guide clinical practice and personalised treatment choices. Yet, research
is often hindered by a gap between clinicians with access to data, and researchers
who possess optimal tools. Our mixed team used clinical data to develop predicTTE,
an integrated pipeline which enables a researcher with a dataset but no
bioinformatics experience, to design an optimal prediction model and make it
available via an online portal to end-users. In addition we provide the capacity for
end-users to directly contribute additional training data. We anticipate a
positive-feedback loop whereby the performance of trained models is improved

progressively via increases in training data, which is sourced directly from the
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community of clinicians and patients, while maintaining patient privacy and offering

appropriate credit.

predicTTE consists of a customizable ‘app’ and accompanying online portal for any
time-to-event analysis. It implements state-of-the-art models, including all the deep
learning models and parametric spline approaches from the ‘pycox’ and ‘flexsurv’
packages, respectively. We provide the capacity to develop ensemble models where
a second round of focused training is performed using a subset of the most
informative training data, based on an initial prediction. We also implement
‘MissForrest’ for missing data imputation, and demonstrate the optimum form of this
model using an independent validation cohort. Our work will inform future practice in

this field.
Implications of all the available evidence

We provided use-cases demonstrating how our pipeline can be used for survival
prediction, biomarker assessment and personalised medicine in three different
neurological disease scenarios. We combine optimum time-to-event prediction tools
in an accessible form which facilitates efficient data sharing. Going forward, our work

could be adapted to include additional models and datasets.
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Introduction

Understanding determinants of time-to-event is an important problem with relevance
in any clinical context including longitudinal progression. Neurological disease has
suffered a dearth of predictive biomarkers, in part because of difficulty accessing the
site of disease within the nervous system'. An alternative to better markers of
molecular pathogenesis is to make better use of available data within a suitable
model. Cox regression? is a popular model for time-to-event tasks which assumes a
fixed proportional-hazard ratio, whereby the relative hazard-rate between patients is
invariable over time. This is an unrealistic assumption for many contexts and has
likely led to misinterpretation of the underlying drivers of time-to-event. Many new
models have been developed (e.g. using deep learning®) but usability is limited by
requirement for computational expertise. In the clinical context this often excludes
important users such as clinicians and patients. We address this limitation in a new
app and accompanying online platform where we implement a range of cutting-edge
models for model design, hyperparameter tuning and prediction. The online platform
includes the capacity to provide end-users such as patients and clinicians with
secure access to a trained model for prediction, and with the option to contribute new
data. We anticipate that this facility could rapidly scale to provide largest-in-class
datasets and optimal prediction performance. We have named our software
‘predicTTE’ (predicting time-to-event); our implementation is summarised in Fig. 1.
Here we demonstrate three use-cases from example Neurological diseases: two
focused on prediction of survival in amyotrophic lateral sclerosis (ALS) using clinical
and/or biofluid biomarkers; and thirdly prediction of time to all-cause mortality for
patients treated with anticoagulation for atrial fibrillation (AF). We show how
predicTTE can be used to provide clinical predictions, to evaluate the relative value
of biomarkers, and to assign an optimal drug treatment in a personalised manner.
ALS is an exemplar because of the lack of a sensitive and specific biomarker, and
the fact that the key cellular pathology within motor neurons (MN), is accessible only

after death.

A key aspect of our platform is the capability to impute missing data using a random
forrest model called MissForest which has shown superior performance in real-world
testing.*® Missing data is a common real-world problem and failure to handle missing

data can limit usability. We develop and test an implementation of MissForrest for
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combination with deep learning prediction models; we show that our implementation
can handle missing data in >50% of training instances without significantly degrading
prediction performance, and is optimal for use in downstream applications such as

discovery of genetic drivers of disease survival.

Prediction of time-to-event
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Figure 1: Accessible and optimal time-to-event prediction is achieved through implementation
of cutting-edge models within an app and online platform. We have implemented a set of deep
learning and spline models for time-to-event modelling, including model selection, hyperparameter
tuning, model training and imputation of missing data. This functionality is provided within a fully
customizable ‘app’ (left panels). An accompanying online portal includes capacity for end-users
including patients, clinicians and researchers, to access and perform predictions using a trained
model, and to contribute new data for model improvement, all within a data-secure environment (right

panels). All software and tutorials are available at www.predictte.org.

Results

The capabilities and potential of predicTTE are demonstrated in three Neurological

disease use-cases.

Use-case 1: Predicting survival in ALS, optimisation of model training and

imputation of missing data
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Amyotrophic lateral sclerosis (ALS) is an archetypal neurodegenerative disease
associated with irreversible progression. For most patients, it leads to death within 2
to 5 years, primarily due to respiratory failure.® Importantly ALS survival is thought to
be largely a function of disease progression i.e. death does not usually occur from an
unrelated cause. Given that the disease progression is observable at diagnosis, we
and others’ have hypothesised that accurate survival prediction is feasible based on

baseline clinical measurements.

We chose a set of baseline clinical variables with evidence for a relationship with
ALS survival, and with previous evidence in survival prediction:” age,
presence/absence of an ALS-associated C9ORF72 mutation,? site of disease onset,
diagnostic delay, ALSFRS-R slope, El-Escorial category,® and presence/absence of
frontotemporal dementia (FTD). Diagnostic delay is the time from symptom onset to
diagnosis with ALS and has been consistently linked to ALS survival,® probably
because it represents the speed of progression to the point where the disease is
both clinically manifest and the patient has sufficient functional impairment to seek
medical assistance. The ALSFRS-R is a commonly used functional rating scale for
ALS™"; to infer the rate of change or ‘slope’ we assumed a linear decline between the
time of symptom onset and the time of diagnosis i.e. over the period which
constitutes the diagnostic delay. Importantly all of these data are frequently collected
at ALS diagnosis, including the El-Escorial category, which is calculated from routine
neurophysiological assessment. We also added sex because there is consistent

evidence that sex impacts ALS biology'? and the data are typically available.

Hyperparameter tuning (Supplementary Fig. 1, Methods) selected a PCHazard
deep learning model' with parameters detailed in Supplementary Table 1. Training
utilised 5,336 ALS patients from Project MinE'* who were recruited from ALS clinics
throughout Europe (Methods); for 4,053 of these patients an accurate survival time
was recorded because the patient was deceased, and for the remainder we relied
upon a censored survival time. We trialled an ensemble approach based on the
hypothesis that patients with similar predicted survival are more informative
regarding the actual survival of a test patient and similarly, patients with very different
survival may be relatively uninformative (Fig. 2a). Our ensemble model works as

follows: In the first step we applied a trained model to generate a prediction for the
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exact time point when a patient is more likely to have died than to be surviving. In the
second step the model is further trained before delivering a final prediction; but this
training uses only a subset of the training cohort including individuals with measured

survival within a range defined by the initial prediction (Methods, Fig. 2b-c).

Testing was performed on an entirely independent UK validation cohort (n=661 ALS
patients including 595 patients with observed survival, Methods). The ensemble
model delivered a median absolute difference between predicted and actual survival
of 10.9 months (se=1.4 months) (Fig. 2b, Supplementary Table 2) and C-index
(concordance, Methods) of 0.76 (Fig. 2e, Supplementary Table 2). The ensemble
approach significantly improved prediction accuracy compared to the optimum spline
model — Royston Palmar — and to a single stage of training of the PCHazard model
(t-test, p<0.01, Fig. 2d, Supplementary Table 2, Supplementary Fig. 3).
Concordance was not significantly improved by model choice (Fig. 2e,
Supplementary Table 2). As an additional comparison we repeated hyperparameter
tuning and model training using training data with randomly shuffled clinical variables
(Methods); as expected prediction performance in the UK validation cohort was

significantly impaired (Fig. 2b-e).
Data missingness is frequent and can be imputed using MissForest

Reported results include imputation of missing covariates via a random-forest model
called MissForest.* Missing data is a common real-world phenomenon, which
necessitates the adoption of imputation methods that can yield highly accurate
results. Moreover, relevant for this particular use-case, the survival profile of ALS
patients with missing data is not equivalent to those without missing data'™ and
thereby, a model that neglects patients with missing data does not capture the full
range of ALS phenotypic variation. Numbers and proportions of missing data used in

training are detailed in Supplementary Table 3.

MissForest was trained using the relationships between observed covariates in the
training dataset. To test the performance of the MissForest model we randomly
selected and omitted 50 rounds of 50 data points from each covariate in the training
dataset (Methods). These data were then imputed using the MissForest model and
the correlation between imputed and correct values was calculated. For continuous

variables we demonstrate that MissForest achieves a statistically significant
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correlation between actual and imputed values (age of onset: Pearson correlation,
r=0.27, p=8.61e-17; diagnostic delay: r=0.31, p=9.35e-49; ALSFRS-R slope: r=0.53,
p=3.12e-137; Fig. 3a, c), supporting the efficacy of this imputation strategy.
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Figure 2: Use-case 1: Use of predicTTE to predict survival in ALS. (a) Ensemble model structure
consisting of two stages of PCHazard model training and prediction. Initially the prediction model is
trained using the entire training cohort and a prediction of median survival is outputted for the test
patient; in the second stage further training is applied using a focused cohort of patients most similar
to the predicted survival from the first stage (Methods). The final prediction of survival time for the test

patient is the output from the model following the second stage of training. (b-c) lllustrations of
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survival probability outputs for the various models, for example patients with survival <2 years, 2-5
years and 5-10 years. Dotted lines indicate randomised training data for comparison with the real
training data (solid lines). Blue indicates the optimum spine model, yellow indicates the optimum deep
learning model and red indicates the ensemble model. In (c) the total set of patients utilised in stage
one of ensemble training is indicated by grey shading and the observed time by the grey line; the
focused cohort used in the second stage of ensemble model training is indicated by yellow shading
with the yellow line being the initial prediction and the red line indicating the final prediction. (d-e)
Accuracy of survival prediction in the UK validation cohort using models trained in the Project MinE
cohort. (d) Absolute difference between predicted and observed survival is plotted for each individual;
vertical lines indicate median values, darker shading indicate the 25-75% quantile range. P-values are
shown for a Wilcoxon rank-sum test comparing absolute difference between predicted and observed

survival for each model. ***p<0.01. (e) C-index for model performance; models are as specified in (d).

An important decision in imputation of missing data is whether to include the
outcome variable in imputation. Inclusion can increase the risk of overfitting to the
training set whereas omission can artificially depress the importance of imputed data
points.’ However, if the missingness of the covariate is a determinant of the
relationship between the covariate and the outcome variable (e.g. if short survivors
are less likely to perform all tests) then imputing including the outcome variable relies
on an incorrect assumption.” To evaluate these alternatives we performed
imputation, training and prediction under both scenarios: with and without the use of
survival in the imputation of missing datapoints; and also using a training dataset
without any imputed data (n=1,683) (Methods). As expected, imputation
performance improved with inclusion of the outcome variable (Fig. 3b-c). However,
despite this, prediction performance in the UK validation cohort was most accurate
using the ensemble model where imputation of missing data was performed without
the outcome variable (Fig. 3d, Supplementary Table 2, Supplementary Fig. 3).
Inclusion of the outcome variable in imputation reduced the accuracy of prediction in
the validation cohort for both the ensemble model and the optimum spline model
(Fig. 3d, Supplementary Table 2, Supplementary Fig. 3). As expected, prediction
accuracy for patients with complete data, i.e. where imputation was not necessary,
was better than for more inclusive models trained with imputed data; however this
difference was relatively small and not statistically significant (Fig. 3d,

Supplementary Table 2, Supplementary Fig. 3). We conclude that the prediction
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model we have implemented can accommodate realistic clinical data including

missing covariates, without significant decline in performance.
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Figure 3: Missing datapoints can be imputed using MissForest without degrading prediction
performance. To evaluate MissForest* the model was trained and used to impute held-out covariate
values within the training dataset. We randomly selected and omitted 50 rounds of 50 data points from
each covariate in the Project MIinE training dataset. Results are shown for ALSFRS-R-slope,
diagnostic delay, and age of onset. Imputation was performed (a) not including and (b) including the
outcome variable (ALS survival). (a-b) Each point in the plot represents a single instance of

imputation for an observed covariate. The coloured lines depict the median linear regression fits to
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the imputed values for each round, and every colour indicates a different round. The black line
represents the median linear regression fit for all imputed values from all 50 rounds of imputation.
This visualisation effectively demonstrates the stability and consistency of the prediction
performance. The correlation coefficients are summarised in (c), where the filled dots represent
significant correlations (Pearson correlation, p<0.05). As expected, overall the imputation
performance is better if the outcome is included. (d-e) Accuracy of survival prediction using models
trained in the Project MinE cohort; assessment is performed in an independent UK validation cohort
including 661 ALS patients where survival time was observed in n=595. Accuracy is shown for
survival prediction models with and without imputation of missing data; and where imputation is
performed with and without inclusion of the outcome variable. (d) Absolute difference between
predicted and observed survival is plotted for each individual; vertical lines indicate median values,
darker shading indicate the 25-75% quantile range. P-values are shown for a Wilcoxon rank-sum test
comparing absolute difference between predicted and observed survival for each model. * p<0.05;

***p<0.01. (e) C-index for model performance; models are as specified in (d).

Predicted survival times can be used for genetic discovery

In addition to its clinical importance, ALS survival is also an important endpoint for
discovery of the molecular drivers of pathogenesis. We hypothesised that predicted
survival could be used in genetic discovery when actual survival was not available.
rs12608932 within UNC13A is a validated genetic modifier of ALS survival.”® For

5,498 patients from Project MinE (www.projectmine.com) we first predicted survival

using our optimum ensemble model, and then used Cox regression with platform
and first 10 PCs as covariates to test the effect of the rs12608932(C) allele on
predicted survival. This analysis used only predicted and not measured survival;
indeed for many of these patients actual survival data was unavailable. As
expected'® there was a significant negative impact of the rs12608932(C) allele on
predicted survival (coef=+0.05, p=0.02, Cox Regression). This suggests that
predicTTE predictions could be used to improve discovery of molecular mechanisms
underlying ALS survival particularly in cohorts where longitudinal phenotypic
information is not available. By the same logic, predictions could be used to stratify

clinical trial patients based on a baseline assessment.

Notably, using survival predictions where outcome was included in the imputation of
missing data, did not result in a significant link between UNC13A genotype and ALS

survival (coef=+0.04, p=0.09). This supports our conclusion that the outcome
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variable should not be used in imputation of missing data in conjunction with our

prediction model.

Use-case 2: Survival prediction to evaluate candidate biomarkers in ALS

In use-case 1, our focus was on predicting the time to an outcome variable: ALS
survival. Another major use of an optimum time-to-event prediction model is in the
evaluation of specific covariates, such as a candidate biomarker, and their predictive
performance. This is a strength of the Cox model* where hazard ratios are recorded
for each covariate. In contrast, an equivalent covariate-specific measure is not
reported in our pipeline. However, in this use-case we show how specific covariates
can be evaluated using predicTTE in a manner which exploits the enhanced

accuracy gained from using an optimal model.

In our previous case study of ALS, we focused on the use of baseline clinical data to
predict ALS survival. The use of blood-based biomarkers has recently revolutionised
the field'®* and was key to the recent FDA approval of Tofersen to treat ALS caused
by mutations within SOD17.?” We applied predicTTE to a previously published
dataset'® to evaluate how survival prediction using clinical symptoms is improved by
inclusion of two biomarkers: plasma concentration of NfL (neurofilament light chain)

and/or plasma levels of mir181 (Fig. 4a).

Unlike the first use-case, here clinical measurements were not performed at
baseline. Therefore, we have included ALSFRS-R at the time of observation in
addition to the ALSFRS-R slope. Other clinical covariates included were: age, sex,
site of disease onset, and time from symptom onset to time of evaluation. We have
predicted survival from onset of symptoms, exactly as in the first use-case. For
n=248 patients, missing data was restricted to only 5 plasma concentrations of NfL.
This use-case did not include an independent validation cohort and therefore we
performed hyperparameter tuning and evaluated model performance in the same
cohort via nested cross-validation (Methods). During hyperparameter tuning again
the PCHazard model™ performed best (Supplementary Table 1), an ensemble

model was not evaluated because of the small sample size.
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Comparison of prediction performance for models including all covariates or clinical
characteristics with and without plasma biomarkers revealed that, whether
performance is measured by C-index (Fig. 4c, Supplementary Table 4) or by
median absolute difference in predicted versus observed survival (Fig. 4b,

Supplementary Table 4), the best performance was achieved when plasma mir181

Age+Sex
Age+Sex + NFL
Age+Sex + mir181

Age+Sex + NFL + mir181

Clin.Data

Clin.Data + NFL |.".
‘

Clin.Data + mir181

Clin.Data + NFL + mir181 |

Figure 4: Use-case 2: Survival prediction to evaluate candidate biomarkers in ALS. (a) After
hyperparameter tuning and training, the optimal model (here PCHazard) was trained and used to
predict ALS survival. The set of model covariates, including clinical features and blood-based
biomarkers, was varied to allow evaluation of each covariate as a determinant of model performance.
(b) Absolute difference between predicted and observed survival is plotted for each individual for each
of trained model; vertical lines indicate median values, darker shading indicate the 25-75% quantile
range. P-values are shown for a Wilcoxon rank-sum test comparing absolute difference between
predicted and observed survival for each model. * p<0.05. As measured by either model median
absolute difference between observed and predicted survival (b) or concordance (c) the best

prediction performance is achieved including clinical features plus plasma concentration of mir181.
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was combined with clinical measures for survival prediction. The largest
improvement in model performance was achieved by incorporating clinical variables
including ALSFRS-R (slope and value at time of assessment) and site of disease
onset; but prediction performance using blood based biomarkers plus age and sex
was significantly better than for age and sex in isolation (Wilcoxon rank-sum test,
p<0.05, Methods, Fig. 4b). We conclude that both plasma NfL and particularly
mir181 contribute independent information to the prediction performance (Fig. 4b)

and should be evaluated in a larger cohort.

We have demonstrated that predicTTE could also be used to evaluate prediction
performance for selected covariates in subsets of data and even in specific
individuals; this is a key step towards personalised medicine which is the focus of

use-case 3.

Use-case 3: Individualised prediction of all-cause mortality to guide

preventative drug treatment

Cerebrovascular stroke is a potentially fatal complication of atrial fibrillation (AF) due
to cardiac thromboembolism. Current practice is to initiate anticoagulation with a
direct oral anticoagulant (DOAC), except in cases where there is excessive risk of
haemorrhage. However, with several options available, the choice of DOAC is
guided by grouping of patients based on age and comorbidities such as renal
impairment.?? This practice is likely to be suboptimal for certain individuals; an ideal
system would predict outcome for each individual based on their personal
characteristics. Currently randomised clinical trials have focused on relatively
homogenous cohorts and fail to provide evidence for many diverse individuals.?
Here we apply predicTTE to a previously published dataset describing clinical
characteristics, DOAC treatment and outcome measures in patients with AF (Fig.
5a).*

We studied 56,553 AF patients commenced on a DOAC (Methods). To predict time
to all-cause mortality, we used baseline covariates, including choice of DOAC (from
apixaban, rivaroxaban or dabigatran), age at onset of AF and age at DOAC initiation,
sex, country of birth and ancestry, time from AF diagnosis to DOAC initiation,
HAS-BLED?* and CHA2DS2-VASc? scores, weight and BMI prior to DOAC initiation,
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and serum bilirubin, AST, ALT, ALP, platelet count, LDL, eGFR, creatinine, HbA1c,

and haemoglobin prior to DOAC initiation. We excluded data from censored patients.
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Figure 5: Use-case 3: Individualised prediction of all-cause mortality to guide preventative
drug treatment. (a) After hyperparameter tuning and training, the optimal (here PCHazard) model
was used to predict time to all-cause mortality after diagnosis of AF post-stroke. (b) Comparison of
observed and predicted time to all-cause mortality (coloured by DOAC) together with line of best fit
demonstrating a positive correlation (solid line), compared to predictions made using a model trained
with randomised covariates (dashed line). (c¢) Absolute difference between predicted and observed
survival is plotted for each individual; vertical lines indicate median values, darker shading indicate the
25-75% quantile range. (d) Three example patients with varying clinical characteristics, demonstrating
how choice of anticoagulation with either apixaban (purple), dabigatran (green), or rivaroxaban (blue),

impacts predicted survival time. For each DOAC the patient that has the best predicted outcome is

16


https://doi.org/10.1101/2024.07.20.604416
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.20.604416; this version posted July 23, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

shown in comparison to the predicted outcome using the other 2 DOACs. Clinical characteristics are

specified in Supplementary Table 6.

Time to all-cause mortality was available for 1,747 patients. Hyperparameter tuning
(Supplementary Fig. 1, Methods) selected a PCHazard deep learning model™ with
parameters detailed in Supplementary Table 1. As in use-case 2, we did not have a
separate validation cohort available and so we performed nested cross-validation
(Methods). Prediction accuracy was highest for shorter survival times which reflects
the bias of the training data (Fig. 5b). Overall concordance was 0.59, with a median
absolute difference between predicted and observed survival of 0.74 years with
comparable performances for all DOACs. (Fig. 5¢, Supplementary Table 5). We
demonstrate that individualised prediction favours a different DOAC for specific
patients (Methods, Fig 5d, Supplementary Table 6) who would not be differentiated

by traditional guidelines.?”

Webpage implementation of predicTTE

predicTTE is a self-contained software package designed to facilitate the design and
training of time-to-event prediction models. There is a case to be made for
expanding access to trained models beyond those with the means to develop and
train their own model. In a recent survey of ALS patients, 68.9% of patients
expressed a preference to be able to access personalised data regarding their own
survival prediction.” This could be achieved through an online portal via which a
trained model can be interrogated; we have produced this for the use-cases

described in our manuscript (www.predictte.org, Supplementary Video 1). Another

advantage of this online portal is that users, including clinicians and patients, could
contribute their own data for model training (Fig. 1, Supplementary Video 1) and
access our app to design and train their own models. We propose that our online
portal offers some of the advantages of data collection via social media tools such as
ease of use and accessibility, but without the challenges of trying to anonymise data
that is freely available online;?® data submitted within the portal can be anonymised

but is also securely stored with gold-standard SSL encryption.
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Discussion

Time-to-event prediction is relevant to the vast majority of human disease but there
is a particular need for better predictions for Neurological diseases where
tissue-based biomarkers are often missing. Improvements in prediction will likely
provide accurate prognoses, guide personalised medicine and facilitate timely
clinical interventions. However, rapid development in the statistical tools for
time-to-event prediction has had limited impact because of the requirement for
advanced statistical knowledge and computational expertise. Here we address this
limitation through predicTTE, a new app and accompanying online portal
(demonstrated in Supplementary Video 1). predicTTE provides cutting-edge
computational tools to non-expert users who hold the appropriate clinical data.
Moreover, our secure online portal enables sharing of data and distribution of
individualised prediction to patients and clinicians, who can then contribute their own
data via the online portal. We envision a positive feedback loop leading to

exponential improvements in training data size and prediction model performance.

We present three use-cases for predicTTE where we have empirically addressed
open questions in the field. We provide an implementation of a random forest model
— MissForrest — for imputation of missing data. In testing this method, we considered
whether the outcome variable should be used in imputation. We show that inclusion
of the outcome variable can degrade model performance in a validation dataset. This
is in opposition to previous findings? but notably the contradictory study predates the
development of the set of spline and deep learning time-to-event prediction tools we
have applied. In particular, deep learning models may be more vulnerable to
overfitting when missing values within the training data carry an artificial signature of

the outcome variable.

In the prediction of ALS survival we also compared a single-step prediction model to
an ensemble framework, whereby a final prediction is reached following a second
stage of focused learning in a subset of the most informative patients within the
training dataset; this is analogous to a transfer learning approach.*® We achieved a
statistically significant improvement in model performance via this ensemble method.
We hypothesise that this strategy will be most useful in future works focused on

phenotypes such as ALS survival, where the distribution of events is significantly
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non-normal and skewed towards one extreme (Fig. 2c); most ALS patients die within
five years but 10% can live longer than 10 years.® Indeed we did not choose to apply
the ensemble model configuration for the third use-case where survival of AF

patients shows less skew (Fig. 5b).

In our three use-cases we have focused on the accuracy of an absolute
time-to-event prediction rather than concordance or a range of probable values. In
the context of ALS, this aligns with expressed patient preference.’” predicTTE can be
used to develop prediction models where hyperparameter tuning and model
performance is judged by concordance (Supplementary Video 1), and within the
app and online portal, graphical outputs provide a probability distribution in addition
to an absolute prediction value. In use-case 2, concordance and the absolute
difference between predicted and observed survival were similarly altered between
models. However, in use-case 1, concordance failed to capture the improvement in
performance as a result of our ensemble model. A practical advantage of an exact
prediction value is that results are optimally portable to other applications, as we

demonstrate for discovery of genetic drivers of ALS survival.

A common approach which we have not applied is to use multiple imputation rounds
where predictions are performed after each round of imputation so that uncertainty in
the resulting prediction can be quantified via Rubin’s rules.®' This was not possible
for our pipeline because Rubin’s rules assume a normal distribution of imputed

estimates which is not true for the MissForrest model.

We have shown how predicTTE can be used in translational applications such as
survival prediction, for the evaluation of covariates such as biomarkers, and even
personalised treatment strategies. Our predicTTE framework is based on the idea
that the key to seeing these applications become reality across many diseases, is

the combination of optimal models with good quality large datasets.
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Methods
Study Cohorts
Use-case 1: Use of PrediTTE to predict survival in ALS

Project MinE: The sporadic unrelated ALS patients included in this study as part of
the Project MinE cohort were recruited at specialised neuromuscular centres in the
UK, Belgium, Germany, Ireland, Italy, Spain, Turkey, the United States and the
Netherlands.' Patients were diagnosed with possible, probable or definite ALS
according to the 1994 El-Escorial criteria.** All controls were free of neuromuscular
diseases and matched for age, sex and geographical location. The complete cohort
consisted of 6,288 samples; 322 samples did not have a recorded observed or
censored survival time and so were removed. Comparison of cohorts revealed
atypically long survival in cohorts from Turkey and Portugal, as described

elsewhere;* these patients were removed to leave 5,336 patients for analysis.

UK validation cohort: 661 patients who attended the Sheffield MND Care Centre
were randomly selected. Patients received their diagnosis between 1999 and 2015.
Baseline data were recorded from actual clinical reports and therefore this cohort is

representative of real world data. Survival data were obtained or censored on 1st
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August 2022. Survival was observed (not censored) in 595 (90%) of the patients;

179 (27%) of the patients had no missing data.
Use-case 2: Survival prediction to evaluate candidate biomarkers in ALS

We applied predicTTE to a previously published dataset consisting of 248 ALS
patients with details of clinical symptoms at the time of biomarker sampling.'®
Patients were diagnosed with possible, probable or definite ALS according to the

1994 El-Escorial criteria.®?

Use-case 3: Individualised prediction of all-cause mortality to guide preventative drug

treatment

Clalit cohort: Data from 56,553 patients with AF commenced on a DOAC were
obtained from the centralised database of Clalit Health Services, Israel’s largest
integrated healthcare provider and insurer. Established by the Clalit Research
Institute, it serves more than half of Israel's population of 4 million, with >95% of
patients retained for five-years or more. A more detailed description of this dataset is

available elsewhere.?*
Hyperparameter tuning and model choice

Model choice and hyperparameter tuning were guided by comparative testing of
model configurations encompassing the full range of parameters within the pycox 3
implementation of MTLR* PC-Hazard,” PMF,"® and DeepHit*® deep learning
models. Tuned model parameters included layer structure, number of knots and
learning rate (Supplementary Table 1). Similarly we tested forty flexible parametric
models including the Royston-Parmar spline model, generalised gamma and
generalised F-distributions as implemented within the flexsurv R package;* the
optimum spline model was implemented for comparison of prediction performance

with the optimum deep learning model.

For each use-case, model selection utilised the total training set including imputed
data and censored survival times. We divided the model choice process into a series
of discrete steps to reduce the number of iterations and the potential for overfitting
(Supplementary Fig. 1). Hyperparameter tuning was performed via nested

cross-validation. We separated the data into 80% for training and 20%, which we
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designate the external validation dataset, for the final assessment of model
performance. We then performed 10-fold cross validation within the 80% of data
designated for training; here the data was further divided, on 10 separate occasions,
into 80% for training and 20% for validation. We selected a random starting seed for
each of the 10 rounds of cross-validation. Afterwards the 10 survival probability
functions were summarised using their median values in order to achieve one

uniformed prediction for evaluation in the external validation dataset.

In total hyperparameter tuning and model choice involves testing ~2000 models
(Supplementary Figure 1). Model evaluation is performed by combining three
outcome measurements: concordance, the median absolute difference between
actual and observed time to event, and the normalised median absolute difference
(in which the absolute difference is divided by the observed time to account for
deviations in short and long survivors equally). Models are ranked by performance in
each outcome measure, and the lowest rank across all three measures is used to
direct model choice (Supplementary Fig. 2). predicTTE provides capacity to select

alternative outcome measures in future use-cases.

In some instances we have compared model performance against a model trained
using randomised covariate values. To facilitate a fair comparison we repeated

hyperparameter tuning with the randomised data.
Construction of an ensemble model

We developed an ensemble approach based on the hypothesis that patients with
similar predicted time-to-event are more informative regarding the actual
time-to-event of a test patient and, similarly, patients with very different time-to-event
may be relatively uninformative (Fig. 2A). The ensemble model is constructed as
follows: in the first step we trained the optimum deep learning model (determined by
hyperparameter tuning) and used it to generate a prediction for a patient with
unknown time-to-event. In the second step, the trained model is further trained with
an additional 200 epochs utilising only the subset of the training cohort containing
individuals with measured time-to-event within a range defined by the initial
prediction value. The final model is then used to output a final predicted

time-to-event.
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We used the ensemble model in use-case 1 which concerned ALS survival. The
distribution of ALS survival events is significantly non-normal and skewed towards
shorter survivors (Fig. 2c) i.e. the majority of patients have shorter survival times.
Therefore we used a dynamic range (x 70% of the predicted value) to select the
focused training cohort used in the second stage of the ensemble model. The
advantage of this approach is that the selected range of included survival times is
larger for longer survival predictions than shorter survival predictions, such that the
number of patients used in the focused training is approximately equivalent
irrespective of the initial prediction. The +/-70% range was selected based on a level

of accuracy that provided an improved prediction in four-fifths of the cohort.
Training and testing optimal models

After model choice and hyperparameter tuning, the optimal model (determined by
hyperparameter tuning) was trained using 10-fold cross validation. In each fold ~80%
of training samples were selected at random for model training and 20% of training
samples are used for testing. After 10 folds, the final prediction is output as the
median of the 10 different predictions. The C-index (Concordance) was calculated

based on* and in case of ties in predictions and event times adjusted according to>.

In use-case 1 each fold used the entire training dataset for model training because a
separate independent validation dataset was available. In the other use-cases
differences in training dataset size and the lack of an independent external validation
cohort necessitated a nested cross-validation approach. In use-case 2, 5 samples
were sequentially left-out from training and used for external validation of the trained
model performance; in use-case 3, 10 samples were sequentially left-out from

training and used for external validation of the trained model performance.
Training and testing the MissForest model for imputation of missing data

A key aspect of our platform is the capability to impute missing data using a model
called “MissForest”, which has shown superior performance in real-world testing®
and an ability to simultaneously handle continuous and categorical data.* MissForest
imputes data iteratively, starting with the variable with the least missing observations
and progressing to the variable with the most missing observations. A random forest

model is fit on the observed values. Each imputed value in this study relied on the
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mean result from 10 rounds of imputation because this represented the best
compromise between computational time and independence of initial random seeds.
In use-case 1, for testing predictions within the independent validation dataset, to
avoid data leakage missing covariates for each patient were imputed using a new
dataset including the training dataset and only the specific single patient from the

validation dataset.

We validated the performance of the MissForest model using the 5,336 patients
within the training dataset used for use-case 1, where the number of missing data
ranged from site of onset (n=55) to ALSFRS-R slope (n=3,369 missing). In fifty
different rounds we randomly selected and omitted 50 data points from each
covariate in the training dataset. These data were then imputed using the MissForest
model and the Pearson correlation between imputed and correct values was

calculated.
Identification of personalised DOAC treatment for AF patients

We sought to demonstrate, using our trained prediction model, that the optimal
DOAC for an individual to maximise survival time may be impacted by a range of
clinical factors. To investigate this we created a synthetic set of patients by dividing
all continuous clinical covariates into quartiles and manufacturing all possible
combinations of values. Prediction was performed on this synthetic dataset,
determining the optimal DOAC for each patient. We demonstrate that the optimal
DOAC is variable (Fig. 5d) between patients who would not be differentiated by
traditional guidelines.?’

Software availability

The predicTTE online portal (https:/www.predictte.org/) includes instructional

material and links to download the app for different platforms.

Supplementary Material Legends

Supplementary Table 1: Hyperparameters for optimal prediction models in each use-case.

Supplementary Table 2: Prediction model performance for use-case 1 including randomised
training data, and with/without imputation which included/did not include the outcome

variable. Model performance is measured by the difference, absolute difference, absolute difference
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normalised for patient survival and C-index. We also show the proportion of predictions within 'x' years
and % of actual patient survival. DL = optimum deep learning model. RP = Royston-Parmar which

was the optimum spline model.
Supplementary Table 3: Number (%) of missing data points for use-case 1

Supplementary Table 4: Prediction model performance for use-case 2. Model performance is
measured by the difference, absolute difference, absolute difference normalised for patient survival
and C-index. We also show the proportion of predictions within 'x' years and % of actual patient

survival.

Supplementary Table 5: Prediction model performance for use-case 3. Model performance is
measured by the difference, absolute difference, absolute difference normalised for patient survival
and C-index. We also show the proportion of predictions within 'x' years and % of actual patient

survival.

Supplementary Table 6: Example patients where choice of anticoagulation with either

dabigatran, rivaroxaban, or apixaban impacts survival time. Corresponding to Fig. 5d.

Supplementary Video 1: Demonstration of the predicTTE online portal for model training,

individualised prediction and data sharing
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Supplementary Figure 1: Hyperparameter tuning and model choice. The figure illustrates the
step-by-step process of hyperparameter tuning. Plotted data denotes prediction performance derived
from every tested combination of hyperparameters. Each panel demonstrates the effect of varying a
single hyperparameter using the training data from use-case 1. The specific hyperparameter is noted
in the title; boxplots are shown for the median absolute difference between actual and predicted time
to event (MAD) in the entire training dataset (top subpanel), and in the external validation dataset
(middle subpanel). For comparison, in the bottom subpanel the MAD value is shown for both the
entire cohort (black line) and the external validation dataset (grey line). To avoid testing all possible
combinations of hyperparameters, which could lead to overfitting, we select hyperparameters in a
series of discrete steps. The first step includes hyperparameters which are more likely to have a large
effect on prediction performance. In the first step only the model type was tested (a); in the second
step the possible nodes and layers were reduced to a smaller subset and within the same models the
scheme was selected (b, ¢). In the third step the number of intervals, the learning rate and the
number of dropout were selected from the same model combinations (d, e, f). Finally the decoupled
weight decay (g), cycle multiplier (h) and cycle eta multiplier (i) were chosen. Underneath each panel
there is a list of all hyperparameters tested; red hyperparameters in a specific category are those
taken forward to the next step of hyperparameter tuning whereas black hyperparameters in that same
category are dismissed. The interpretation of hyperparameters is found in®. Other hyperparameters
including the number of epochs and batch size had a minimal effect on prediction performance (data

not shown).
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Supplementary Figure 2: Ranking of models during hyperparameter tuning. This figure
illustrates the concept behind choice of the optimal model via hyperparameter tuning. Model rank and
performance relates to the best 1000 models tested during hyperparameter tuning for use-case 1, as
described in Supplementary Fig. 1. The top row shows model rank and performance in the entire
training set (60% training, 20% validation, 20% external validation) and the bottom row shows model
rank and performance for the 20% external validation set. From left to right the outcome
measurements: median absolute difference, normalised median absolute difference (median absolute
difference divided by observed time), concordance and combined (normalised sum of the ranks of all
three outcome measurements) are shown and coloured differently. For comparison, in each plot the
rank of the best model according to a different outcome measure is shown in the corresponding
colour, and with circles for the entire data and triangles for the external validation data. As
demonstrated the best combined (summed rank for all outcome measures) model for the entire
dataset (that was picked as the optimal model) performs well (is ranked low) in all other outcome
measurements (blue circle) apart from the concordance in the external validation dataset, although
the difference to the best model was low (0.015). On the other hand picking the model that performs
best in the external validation set with respect to concordance (red triangle) leads to a relatively poor

performance would be low in all other measurements.
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Supplementary Figure 3: Prediction model performance for use-case 1 including shuffled
training data, and with/without imputation which included/did not include the outcome
variable. P-values are shown for a Wilcoxon rank-sum test comparing absolute difference between
predicted and observed survival for each pair of models. Pycox = optimum deep learning model.
Royston-Parmar = the optimum spline model. Ensemble indicates the ensemble model including a
second stage of focused model training. The lowest median absolute difference between predicted
and observed survival for a model which included imputation, was achieved with the ensemble model,
with imputation which did not include the outcome variable (Fig. 3d); the difference between
performance of this model and alternatives was statistically significant (p<0.05) with the exception of
the ensemble model with imputation which did include the outcome variable (p=0.094).
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