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ABSTRACT8

Analysis of genomic and metagenomic sequences is inherently more challenging than that of amino acid sequences due
to the higher divergence among evolutionarily related nucleotide sequences, variable k-mer and codon usage within and
among genomes of diverse species, and poorly understood selective constraints. We introduce Scorpio, a versatile framework
designed for nucleotide sequences that employs contrastive learning to improve embeddings. By leveraging pre-trained
genomic language models and k-mer frequency embeddings, Scorpio demonstrates competitive performance in diverse
applications, including taxonomic and gene classification, antimicrobial resistance (AMR) gene identification, and promoter
detection. A key strength of Scorpio is its ability to generalize to novel DNA sequences and taxa, addressing a significant
limitation of alignment-based methods. Scorpio has been tested on multiple datasets with DNA sequences of varying lengths
(long and short) and shows robust inference capabilities. Additionally, we provide an analysis of the biological information
underlying this representation, including correlations between codon adaptation index as a gene expression factor, sequence
similarity, and taxonomy, as well as the functional and structural information of genes.

9

Introduction10

Next-generation sequencing technologies have revolutionized the biological sciences by providing vast pools of genomic11

and metagenomic data from diverse organisms and environments. Metagenomic data offers the potential to gain insight into12

the composition and function of microbial communities (“microbiomes”) associated with humans or in the environment.13

Specifically, shotgun metagenome sequencing from microbial communities, rather than from individual species, enables14

quantification of in situ microbial consortia to track community diversity, co-evolution, and how community dynamics change15

in response to environmental perturbations. However, analyzing metagenomic data poses significant challenges. Unlike16

marker-based community profiling that primarily measures relative abundances of microbial taxa using 16S rRNA amplicon17

sequencing, shotgun metagenomics provides a more detailed view by capturing the functional genomic content within a18

community along with associated taxonomic signatures1. Alteration in metagenomic content can represent ecological shifts19

or evolutionary adaptations within species. Handling high-throughput reads, managing the complexity of diverse microbial20

populations, and resolving genetic differences within taxa are crucial for understanding the functional consequences to changes21

to the microbiome2.22

Traditional sequence alignment methods, which align unknown sequences to reference databases of genomic sequence,23

become computationally difficult with the ever-increasing volume of metagenomic data3–5. This motivates the development of24

alignment-free methods that can rapidly and efficiently characterize sequences found in metagenomic data without relying25

on computationally expensive alignment processes. Beyond serving as an alternative, such methods can also complement26

alignment-based approaches by enabling tasks like binning or efficiently identifying key sequences for further detailed analysis6.27

Numerous alignment-free methods have been developed that rely on k-mer (i.e., genomic subsequences of length k) features.28

Some of these methods, such as those based on exact k-mer matching2, 7, identify sequences by directly comparing the29

occurrence of k-mers. Others use the composition and abundance of k-mers to represent sequences8. However, both k-mer30

frequency and exact k-mer matching lose positional information—the context and order of k-mers within a sequence—which is31

crucial to the identity and function of genes9, 10.32

To address these limitations, representation learning techniques from natural language processing (NLP) have been adapted33

for genomic data. By treating nucleotides and amino acids as words in a sentence, models such as Bidirectional Encoder34

Representations from Transformers (BERT)11, Embeddings from Language Models (ELMo)12, and Generative Pre-trained35

Transformer (GPT)13 generate lower-dimensional sequence representations through language modeling tasks. These models36

effectively capture both functional and evolutionary features of sequences but typically require fine-tuning for specific tasks to37
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achieve optimal performance14–17, 17–19. In recent years, contrastive learning has emerged as a robust technique for refining38

these representations20. This approach involves creating an embedding space where similar sequences are brought closer39

together, while dissimilar sequences are pushed apart. Contrastive learning enhances the ability to compare sequences rapidly40

and accurately without relying on traditional alignment methods, especially when implemented using triplet networks,. A41

triplet network consists of three parallel neural networks that process three inputs: an anchor (a sample from the training set) , a42

positive example (a sample similar to the anchor), and a negative example (a sample dissimilar to the anchor). This structure43

allows the network to learn to distinguish between similar and dissimilar sequences effectively. By leveraging sequence44

similarity metrics to optimize the embedding space, contrastive learning with triplet networks has been successfully applied to45

various tasks in biology, including enzyme activity prediction, identification of disordered protein regions, and protein structural46

classification9, 21–23. Another benefit of this approach over other supervised deep learning based models is its generalized and47

resilient representation, which allows these models to perform well on out-of-domain tasks24.48

To address challenges of metagenomic analysis, we introduce Scorpio, a flexible framework adaptable to various nucleotide49

sequence analysis tasks. Scorpio leverages a combination of 6-mer frequency and BigBird embeddings25 and is optimized50

for long sequences. For efficient embedding retrieval, the inference pipeline uses FAISS (Facebook AI Similarity Search)26.51

Scorpio also provides a confidence score for its classifications based on a query-distance and class-probability scoring method,52

improving prediction accuracy in downstream applications. This framework demonstrates the versatility to analyze both53

well-characterized sequences and previously unobserved, genetically or taxonomically novel sequences. This capability not54

only enhances its applicability in metagenomic studies but also reduces the dependency on comprehensive database curation,55

enabling efficient and accurate insights even in poorly annotated or highly diverse datasets.56

We validated Scorpio’s performance on a variety of tasks, including gene identification, taxonomic classification, antimi-57

crobial resistance (AMR) detection, and promoter region detection. The method proved to be both powerful and efficient58

when compared to other state-of-the-art methods. Integrating natural language processing techniques with contrastive learning59

addresses the complex challenges of metagenomic analysis, potentially providing valuable insights into microbial communities60

and their impact on human and environmental health.61

Results62

Overview of Scorpio63

As an initial dataset to evaluate the Scorpio framework, we curated a set of 800,318 sequences. First, we used 1929 bacterial64

and archaeal genomes curated using the Woltka pipeline27, each representing a single genus and with a total of 7.2 million65

CDS (Figure 1 (a)). Second, gene names alone were used to filter and group protein-coding sequences; unnamed genes with66

hypothetical or unknown functions were excluded. Third, to improve the dataset’s reliability for training, we included only67

those genes (497 genes) with >1000 named instances.68

This curated dataset aligns with the study’s goal of addressing both functional and phylogenetic challenges. Phylogenetic69

biases in some datasets can hinder the ability to recognize and reconcile rare genomes, as shown in various studies such70

as Centrifuger28, fast.genomics29, and others30, 31. These studies highlight how database biases toward specific genomes71

can significantly impact tool performance. By incorporating fairly responsive genes across taxa, especially those associated72

with horizontal gene transfer events, we ensure a comprehensive comparison between tools and databases while improving73

predictions in tasks such as antimicrobial resistance (AMR) prediction29. This approach mitigates dataset bias and simulates74

a scenario akin to few-shot learning, a concept often leveraged in model optimization to enhance performance with limited75

representative data32.76

The distribution of instances per class at each level is shown in Figure 1 (a). One advantage of the Scorpio model is the77

dataset preparation process and the architecture’s ability to train on gene and taxonomic hierarchies. This dual function/taxa78

focus enables the model to learn multimodal information together, categorized across different hierarchical levels such as79

phylum, class, order and family, . This preparation of the dataset is the foundation for effectively training the model tocapture80

the complex relationships in metagenomic data. The training set is carefully balanced at the highest (gene) to lowest (family)81

level. This balance ensures that we have enough samples for effective triplet training and accurate selection of positive and82

negative examples.83

The framework employs a triplet training approach, where DNA sequences are transformed into embeddings using an84

encoder mechanism (Figure 1(b)). We have three distinct encoder mechanisms for triplet training: one based on 6-mer frequency85

(Scorpio-6Freq), and two others based on the embedding layer of BigBird25, a transformer architecture optimized for long86

sequences using sparse attention mechanisms. In one of these BigBird-based mechanisms, we have a fine-tunable embedding87

layer (Scorpio-BigDynamic), while in the other, all BigBird layers are frozen (Scorpio-BigEmbed). All combinations of88

positive, anchor, and negative samples are fed into the network to train the triplet network, which processes them through89

multiple linear layers to fine-tune the embeddings based on the hierarchical labels.90
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Figure 1. Overview of the Scorpio Framework. (A) Gene-Taxa Dataset Creation: genomes from NCBI was downloaded using
the Woltka pipeline27 and filtered to include 497 named genes from 1929 genera (a single-species representative per genus).
This process removed most unknown and hypothetical proteins and focused on the most common, conserved, and well-studied
genes, particularly housekeeping genes. Genes were labeled with names as-is with no further tests for sequence homology
within-label. Results of filtering are shown as a barplot, and the distribution of samples per level is shown in a box plot,
indicating a balanced dataset at the gene level. (B) Training and Inferring with Scorpio: DNA sequences are encoded using
6-mer frequency and BigBird embeddings. The configuration supports different Scorpio models, such as Scorpio-6Freq,
Scorpio-BigDynamic, and Scorpio-BigEmbed, with adjustable hierarchical levels for enhanced generalization, allowing
adaptation to different datasets and hierarchies. During inference, one triplet branch is used to obtain the embedding vector,
which is the final layer of the network. (C) Indexing and Searching: FAISS is utilized for efficient embedding retrieval of each
query and to find the nearest neighbor. Based on the nearest neighbor from the validation set, we train a confidence score model
at each level of the hierarchy. During inference, this model calculates the confidence for each query. Depending on the
application,classification results and confidence scores are reported.

Indexing and searching embeddings efficiently is a critical component of the Scorpio framework (Figure 1(c)). The inference91

time of deep learning-based methods, particularly those utilizing LLM embeddings, tends to be longer compared to certain92

conventional bioinformatics tools2, 24. To address this, we use FAISS (Facebook AI Similarity Search) to store and retrieve93

precomputed embeddings efficiently. When a query is made, the framework identifies the nearest neighbors to the query94

embedding and calculates a distance metric. This distance is used to train a simple perceptron model on a range of distance95

thresholds to predict the F1-macro score. The process normalizes the distance values to confidence scores between 0 and 1,96

ensuring a robust and interpretable output. The inference pipeline supports diverse outputs, including hierarchical prediction97

reports and providing raw embeddings for further analysis.98

One unique aspect of the Scorpio framework is its flexibility; users can adjust the number of hierarchical levels, select the99

type of level, and change the order of levels to train the model on. This adaptability is crucial for enhancing the model’s ability100

to generalize and perform multiple tasks and integrate phylogenetic and functional information effectively. Our evaluations,101

detailed in the following sections, demonstrate its effectiveness in training for different tasks and its robust adaptability to102
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several potential applications.103

Scorpio embeddings can uncover both the gene’s type and taxonomy levels from full-length gene sequences104

Gene-centric metagenomic and pangenomic analysis focuses on identifying coding sequence (CDS) genes from metagenomic105

datasets or genomic assemblies. With the advancement of long-read sequencing technologies and improved gene-finding106

algorithms, this approach is gaining popularity and becoming more accessible to researchers.33–36 . We evaluated the107

performance of Scorpio embeddings for on a dataset with of the 800,318 full-length DNA gene sequences described above108

beside these leading methodologies, Kraken25 (a k-mer-based technique widely used for taxonomy), MMseqs237 (a fast and109

efficient alignment search),DeepMicrobes10 (a deep learning technique for taxonomy), and BERTax19 (a Transformer-based110

architecture) (see Methods). For MMseqs2 and all embedding-based methods, we used the best hit for classification. BERTax111

required a different approach because its original pre-training data did not overlap with our dataset. To fairly evaluate its112

capabilities, we employed two methods: one leveraging an embedding-based approach integrated with FAISS for best hit113

classification, and the other utilizing BERTax’s native prediction function to predict taxonomic levels.114

In the Test set (Table 2a), we included DNA sequences such that each gene or genus represented was present in the training115

set, but the specific combinations of genes and genera were not repeated. MMseqs2 had the highest accuracy across taxonomic116

levels, which was anticipated since alignment-based techniques typically excel with sequences similar to their indexing database.117

Scorpio outperformed other methods, including Kraken2 and DeepMicrobes. Kraken2’s performance was notably affected by118

the dataset design, which included only up to one representative gene per genus and only 497 genes. Since Kraken2 relies119

heavily on large, diverse reference databases with multiple preparations for each taxonomic group, the dataset itself reduced its120

ability to take advantage of variation across whole genomes.121

We next focused on how well the set of methods generalized using the Gene Out and Taxa Out datasets to test performance122

on previously unseen representative genes and taxa. In generalizing to unknown genes (Table 2b), defined here as novel genes123

absent from similar genera in the training set, Scorpio embeddings had higher performance than to Kraken2, MMseqs2, and124

DeepMicrobes, highlighting its ability to capture nuanced patterns within gene sequences, surpassing traditional alignment-125

based methods that struggle with novel gene classes due to lower sequence similarity with the training set. However, BigBird126

alone generalized better to classifying taxonomy than Scorpio, having the highest F1-macro across all levels. We attribute127

this to two main factors: first, the LLM-based embeddings capture more generalized features compared to a strict contrastive128

learning approach, and second, our model placed gene at the highest level of the hierarchy, so embeddings can become more129

distinct from each other, reducing performance at the taxonomic levels for out-of-domain data. We also observed this effect130

when comparing Scorpio-BigEmbed embeddings to Scorpio-BigDynamic, where the latter showed better generalization at131

lower levels due to hierarchical fine-tuning on top of BigBird, performing better with taxonomy. Notably, these observations132

also apply to Scorpio-6Freq, which may also be influenced by the hierarchical nature of Scorpio’s training. Scorpio models133

consistently outperformed others at higher levels of taxonomy, achieving significantly better accuracy performance: 17 times134

higher than MMseqs2, 67 times higher than Kraken2, and 3 times higher than DeepMicrobes at the phylum level.135

In the Taxa Out dataset, which included similar genes but from different phyla than those in the training set„ our Scorpio-136

BigDynamic model achieved a higher accuracy of 95.5% and an F1-macro score of 94.7%. Interestingly, Scorpio also showed137

stronger generalization than BigBird in gene classification, with an average performance improvement of 12 times over BigBird.138

A key advantage of Scorpio over supervised models like DeepMicrobes is its capacity to simultaneously perform taxonomy and139

gene classification in a single training task by optimizing the loss across all hierarchical gene-taxonomy levels, eliminating the140

need for separate models for family and gene classification.141

Transferability of Scorpio Embeddings to Other Domains: Antibiotic Resistance Prediction142

Next, we evaluated whether Scorpio models originally trained on the Gene-Taxa dataset in Figure 1 could generate embeddings143

for antimicrobial resistance prediction tasks. We expected that gene and taxonomy information could help determine the144

particular genes associated with resistance to a drug class. To test this, we evaluated the transferability of the previously trained145

gene-taxa model to AMR prediction tasks without additional fine-tuning.146

For evaluation, we used a combination of the MEGARes38 and CARD39 datasets, with details provided in the Dataset147

section. MEGARes and CARD are global antimicrobial resistance (AMR) databases that integrate relevant data on bacterial148

taxonomy, genomics, resistance mechanisms, and drug susceptibility. To ensure a fair comparison, we created a custom149

database by integrating sequences from both MEGARes and CARD, standardizing the data to maintain consistency40. We150

evaluated models based on accuracy and F1-score, choosing benchmark approaches that allowed for database customization.151

Thus, we evaluated our models with MMseqs237, Abricate41 (a well-known tool for mass screening of contigs for antimicrobial152

resistance genes, virulence factors, and other important genetic markers in microbial genomes), BLASTn42 and BERTax19.153

For embedding-based methods like our BigBird, BERTax, 6-mer Frequency and Scorpios, we used the best hit to determine154

the class. We present the results in Figure 3a. Scorpio models, particularly Scorpio-BigDynamic and Scorpio-BigEmbed,155

outperformed all other models in class prediction accuracy across all tasks. While the Scorpio models displayed a 0.4%156
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(a)

Accuracy (%) F1-macro (%)
Level phylum class order family gene phylum class order family gene
Model

6mer Freq. 57.6 45.8 35.9 27.5 29.3 30.4 21.1 19.6 15.6 34.5
DeepMicrobes_family 24.2 8.8 3.7 0.5 0.2 2.7 0.7 0.2 0.1 0.1
DeepMicrobes_gene 25.9 10.5 3.2 1.0 94.1 5.1 1.8 0.7 0.3 93.8
BERTax* 66.4 N/A N/A N/A N/A 16.9 N/A N/A N/A N/A
BERTax_Embedding* 77.4 63.0 44.7 34.3 11.6 60.6 50.7 41.6 33.0 11.0
MMseqs2 93.3 89.8 79.7 61.5 97.4 79.4 54.8 47.0 31.2 98.2
Kraken2 64.8 58.0 30.9 1.09 N/A 36.4 23.5 19.3 13.7 N/A
BigBird 71.2 58.4 42.6 32.2 28.2 48.4 37.3 31.8 25.6 27.4
Scorpio-6Freq 85.8 75.3 49.8 29.1 95.1 49.6 27.0 18.5 9.9 94.9
Scorpio-BigEmbed 86.2 76.9 59.3 41.5 89.6 60.1 38.2 30.5 19.2 88.9
Scorpio-BigDynamic 89.0 80.4 62.8 44.2 98.8 65.3 40.8 32.2 19.7 98.5

(b)
Taxonomy Generalization Gene Label Generalization

Accuracy (%) F1-macro (%) Accuracy (%) F1-macro (%)

Model phylum class order family phylum class order family gene gene

6mer Frequency 49.2 31.0 17.0 10.8 20.9 13.5 10.6 8.4 2.3 2.4
DeepMicrobes_family 25.4 9.2 4.1 0.5 2.4 0.6 0.1 0.0 0.2 0.1
DeepMicrobes_gene 19.4 7.5 1.9 0.6 3.6 1.1 0.4 0.2 87.8 89.0
MMseqs2 4.3 2.7 1.1 0.5 2.2 1.4 0.9 0.5 87.3 90.8
Kraken2 1.1 0.6 0.26 0.17 0.5 0.7 0.4 0.3 N/A N/A
BigBird 64.0 47.1 29.0 20.4 36.7 27.6 22.4 17.8 7.4 7.1
Scorpio-6Freq 73.8 56.3 21.9 9.5 29.3 13.7 6.7 2.9 88.4 87.4
Scorpio-BigEmbed 62.5 41.8 17.2 8.2 24.2 13.1 8.0 5.0 68.9 66.1
Scorpio-BigDynamic 48.5 24.8 7.6 2.7 11.3 4.7 2.2 1.0 95.5 94.7

(c)
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Figure 2. Full gene length results: (a) Memorization Test: Identification of additional training-data-known taxonomy and
genes (Test Set). * All models, except for BERTax, were trained on the same dataset; for BERTax, we employed a pre-trained
version. (b) Generalization Test: Taxonomy Generalization (Genes-Out Set) and Gene Label Generalization (Taxa-Out Set).
We show that while standard techniques, like MMseqs2, memorize data well for identifying known classes, Scorpio is
competitive at classifying novel taxa, especially at higher levels and is competitive for genes as well.(c) Performance
comparison of different promoter detection methods highlights the effectiveness of our Scorpio approach in handling
short-length sequences and out-of-domain tasks for promoter detection 5/24
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decrease in F1-macro score of Gene Family Classification, their overall performance, especially in accuracy, consistently157

surpassed other methods. On average, Scorpio-BigDynamic (gene-taxa) achieved a score of 92.98%, closely followed by158

Scorpio-BigEmbed (gene-taxa) at 92.83%. In contrast, Abricate exhibited a markedly lower average score of 34.22%, and159

while Mmseqs2 performed better with an 87.97% average, it still fell short of the accuracy provided by the Scorpio models.160

An intriguing observation is that LLM-based models (BigBird, BERTax, Scorpio-BigDynamic, and Scorpio-BigEmbed) all161

outperformed traditional alignment-based tools in classifying resistance mechanisms. This advantage may stem from LLMs’162

ability to leverage pre-trained knowledge about patterns associated with resistance that detect functional relationships beyond163

strict sequence alignment. Notably, resistance genes frequently spread across bacterial species through horizontal gene transfer164

(HGT)43, a process that LLM-based models and Scorpio appear better suited to capture due to their capacity for generalized165

learning across diverse taxa.166

The performance difference between our model and MMseqs2 for resistance mechanism prediction is particularly notable167

for Antibiotic Target Alteration, with our model achieving a 7% higher accuracy (Supplementary Figure 7). To investigate this168

further, we analyzed Kmr and KamB, two AMR genes that share the same resistance mechanism (Antibiotic Target Alteration).169

Kmr, used as a test gene, and KamB, included in the training set, were experimentally validated in the study by Savic et al.44.170

As illustrated in Figure 3c, we identified key regions critical for AMR functionality. These include the β6/7 linker (yellow),171

which plays an essential role in S-adenosyl-l-methionine (SAM) binding and target nucleotide positioning, and the catalytic site172

at A1408 (purple), a specific nucleotide in the 16S rRNA that confers resistance to aminoglycosides through methylation44.173

Additional structural features, such as β N1 and β N2 (orange), form a β -hairpin structure that contributes to protein stability and174

SAM binding44.175

Figure 3b highlights the cross-attention analysis45 conducted by our Scorpio-BigDynamic model, which effectively captures176

these regions in two AMR genes (KamB and Kmr). The analysis uses windowed averages (aggregated for every 6 nucleotides,177

equivalent to 2 amino acids).Notably, the model demonstrates heightened attention to regions critical for AMR, including β N1
178

and β N2 (orange), as well as conserved regions (blue and green) between the two genes and mutation sites (purple), such as179

W105A and W193A44. These regions are particularly significant due to their conserved or functional importance. We also180

present the 3D structure of the KamB protein in Figure 3b, colorized based on the same high-attention regions identified by our181

model. Interestingly, these high-attention regions are mostly located at the junctions of α-helices and β -sheets, suggesting182

potential functional relevance detected by our model.183

In contrast, MMseqs2 failed to predict Kmr as a match for KamB, likely due to its reliance on strict sequence alignment184

criteria. The sequence identity after full alignment was only 55%, which falls below the default alignment coverage threshold185

in MMseqs2 and does not account for differences in codon usage or subtle structural variations. On the other hand, the186

Scorpio-BigDynamic and Scorpio-BigEmbed models successfully identified KamB as the best hit for Kmr, showcasing their187

ability to learn whole-gene representations and effectively capture the structural and functional properties of sequences.188

Fine tuning of Scorpio Embeddings for Bacterial Promoter Prediction189

Next, we evaluated Scorpio’s performance in predicting promoter regions that regulate the expression of downstream genes.190

Notably, since our pre-trained model, BigBird, was originally trained exclusively on gene-encoding regions, it had neither191

encountered promoter regions nor been trained on sequences of such short lengths prior to fine-tuning. We aimed to investigate192

the impact of Scorpio on fine-tuning for promoter sequences, considering the significant shift in hierarchical information193

from coding sequences to promoters. For promoter prediction, the hierarchical representation in Scorpio simplifies to a single194

level, distinguishing between promoter and non-promoter sequences. We initiated the evaluation by collecting promoter and195

non-promoter sequences from the ProkBERT dataset46. Prokaryotic promoter sequences typically span 81 base pairs. Our196

model’s performance was independently evaluated using an Escherichia coli Sigma70 promoter dataset, providing an objective197

assessment of its capabilities. This dataset, obtained from the study by Cassiano et al.47, comprises 864 E. coli sigma70-binding198

sequences. Positive samples, sourced from Regulon DB48, have been experimentally validated and widely recognized promoter199

sites.200

In Figure 2c, we compared the performance results of different methods on promoter detection against our Scorpio method.201

Firstly, we observe that both Scorpio-BigDynamic and Scorpio-6Freq show improvements in accuracy and Matthews correlation202

coefficient (MCC) metrics by more than 18% compared to the raw pre-trained model. Additionally, in comparison with state-203

of-the-art methods49–53 for promoter detection, our models perform significantly better on average than most other methods,204

except for ProkBERT46, which had 2% higher accuracy than our model (1% higher sensitivity and 3% higher specificity). This205

difference likely arises because the BigBird model was solely trained on genes, unlike the ProkBERT model, which was trained206

on fragments from whole genomes. Language modeling helps capture high-level initial features, and since our model was207

not exposed to promoter regions during initial training, it may sometimes misclassify promoters as non-promoters. This is208

further evidenced by the results of Scorpio-BigEmbed, which is trained with frozen embeddings; the model with fixed gene209

embeddings struggled to adapt to promoter detection. Our pre-trained BigBird model outperforms BERTax, likely due to210
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BERTax’s non-overlapping 3-mer tokenization, which may fail to capture codons in CDS sequences, reducing representation211

quality and downstream performance. Upon further investigation, we found that some sequences misclassified by our model as212

non-promoters are actually promoters, such as the sequence, "CGGTTGCCAACAACGTTCATAACTTTGTTGAGCACCGAT-213

ACGCATTGTTGGAATTATCGCTCCTGGGCCAGGACCAAGATG", which also appears in the coding sequence (CDS) region214

of NlpI. This also suggests that, due to the compact nature of bacterial genomes, embedded promoters may be part of coding215

sequences. Consequently, a model trained solely on genes might misclassify these sequences since it was not exposed to the216

broader genomic context during training.217

Scorpio Embeddings Capture Nucleotide-Level Evolution of Coding Sequences and the Relationship218

Between Codon Adaptation and Sequence Similarity219

In molecular evolution, the Codon Adaptation Index (CAI) is an important metric that reflects the frequency of specific codons220

within a gene in its genomic context and indicates how well-adapted a gene sequence is to its host organism’s translational221

machinery. Higher CAI values generally correlate with higher RNA expression and more efficient translation54. Codon usage222

bias, the preference for certain synonymous codons, has been shown to regulate transcription and mRNA stability, translational223

efficiency and accuracy, and co-translational protein folding55–57, thus nucleotide-based models capture subtle variations absent224

from their protein translations.225

We thus set out to test whether Scorpio embeddings captured information about CAI following structured approach. First,226

we selected the 20 most common gene names from our training set. Then, we identified all genera that include these genes,227

resulting in a dataset covering 31 genera. For each genus, we calculated the CAI of each gene relative to its own genome as the228

reference54. Figure 4a shows the distribution of CAI for each gene across genera sorted by average length (shown as grey bars).229

This shows that the CAI distribution for these genes is independent of length, which could potentially influence the Scorpio230

embeddings.231

Next, to obtain a global representation of the sequences, we employed t-SNE. Although t-SNE transformations of232

embeddings (Figure 4b) can be nonlinear and may depend on parameters like perplexity and the number of iterations, we233

used a perplexity value of approximately 50 to capture global structural information in our embedding space58, 59. A higher234

perplexity value helps obtain more global rather than local information about each cluster and their distribution in the space.235

In Figure 4c, we compared the average CAI against the average of the first t-SNE dimension of our embeddings. A negative236

correlation emerged, with Pearson and Spearman’s rank correlation coefficients of -0.60 (p = 5.11e−3) and -0.67 (p = 1.25e−3),237

respectively. This indicates a significant negative correlation between the overall representation of these 20 genes’ embeddings238

in space and the CAI.239

Although we observed a correlation, it should be emphasized that embeddings do not linearly represent sequences.240

Understanding the causal influences for the observed gene distributions in the embedding space is highly complex and involves241

multiple factors. For example, in Figure 4b, we noticed that AspS and GltX genes, both encoding aminoacyl-tRNA synthetases-242

key enzymes in the translation of the genetic code-are clustered closely together in embedding space despite not having similar243

CAI. Additionally, we observed distinct clustering when considering a substantial portion of the aminoacyl-tRNA synthetases,244

along with others likely involved in tRNA biosynthesis. Other proteins, including several ribosomal proteins, also appeared near245

each other in the embedding space (Supplementary Figure 9), suggesting that the embeddings capture structural and functional246

information about genes.247

Our analysis also indicated a correlation between the embedding distance of genes and their sequence similarities. We used248

edit distance to measure gene distance and Euclidean distance to measure embedding distance, as shown in (Supplementary249

Figure 10). Our examination of sequence similarity within each gene shows that genes in embedding space are distributed250

based on their sequence similarity. On average, the R2 value is about 0.41, indicating a moderately large correlation between251

the edit distance of gene pairs and the Euclidean distance of their embeddings.252

These analyses suggest that factors such as gene expression, function, taxonomy information, and sequence similarity may253

influence the organization of genes in the embedding space. However, it is important to caution that the relationship between254

sequences and their embeddings is not a simple one-to-one mapping, and the non-linear transformation complicates direct255

interpretations.256
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(a)
Accuracy (%) F1-macro (%)

GeneFamily Resist-Mech DrugClass GeneFamily Resist-Mech DrugClass

Abricate 55.7 55.7 55.7 4.3 13.9 20.0
Mmseqs2 91.9 95.3 95.0 75.2 83.9 86.5
BLASTn 87.4 90.2 90.0 71.1 80.9 82.2
BERTax_Embedding 90.4 95.5 92.1 65.4 91.9 85.5
6mer Freq. 89.6 95.3 92.3 63.5 86.8 89.0
BigBird 90.0 95.2 94.2 65.0 89.8 88.6
Scorpio-6Freq (gene-taxa) 91.4 96.8 94.5 66.7 86.8 90.0
Scorpio-BigEmbed (gene-taxa) 94.2 98.8 96.9 74.7 97.8 94.6
Scorpio-BigDynamic (gene-taxa) 93.4 98.9 96.9 74.8 98.8 95.1

(b)
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Figure 3. (a) Comparison of Antimicrobial Resistance (AMR) prediction performance metrics across different models. This
table highlights that Scorpio models outperform other models in AMR tasks, even though they were not explicitly trained on
the AMR dataset, using gene-taxa-based training instead. (b) Cross-attention analysis of two AMR genes (KamB and Kmr)
conducted using the Scorpio-BigDynamic model. High-attention regions identified by the model include critical areas such as
the β N1 and β N2 (orange) regions, conserved regions (blue and green), mutation sites (purple), and the β6/7 linker (yellow).
These regions are predominantly located at the junctions of α-helices and β -sheets, suggesting functional relevance as detected
by the model. (c) Sequence logo of the KamB and Kmr genes, with letters highlighted based on the regions with high attention
identified by the model. 8/24
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(a) Distribution of CAI values for each gene, sorted based on gene length from left to right. rpmG is the shortest gene, while urvA is the
longest.
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(b) t-SNE visualization of gene embeddings.
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(c) Correlation between the first dimension of t-SNE and the average
CAI per gene.

Figure 4. Exploratory analysis shows that Codon Adaptation Index(CAI), independent of gene length metrics, has a significant
negative correlation with gene embeddings in the t-SNE visualization, suggesting a potential relationship between gene spatial
organization and expression levels. (a) The violin plot shows the distribution of CAI values across genes, indicating variations
in codon usage bias. The shaded bars demonstrate that CAI is not dependent on gene length. (b) The t-SNE visualization
illustrates gene embeddings in a lower-dimensional space, revealing patterns of similarity and clustering. A high perplexity
value was used to capture the global structure of the data, showing how genes relate to each other in space. (c) The correlation
analysis between the first dimension of t-SNE embeddings and CAI values provides insights into the relationship between gene
spatial organization and CAI. This analysis suggests a significant correlation between gene expression levels and CAI, with
Pearson and Spearman’s rank correlation coefficients of -0.60 (p = 5.11×10−3) and -0.67 (p = 1.25×10−3), respectively.
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Assessing Confidence Scores: A Comparative Analysis of Gene and Taxonomy Classification Methods257

For benchmarking against existing algorithms and improving useability on metagenomic datasets, we introduce a novel258

confidence scoring method for classifications based on Scorpio embeddings60. Since the gene-level class was trained with only259

497 gene labels, evaluating the quality of classifications is crucial for profiling metagenomic reads that come from all genes260

across all genomes in a community. Most methods like Kraken2 and MMseqs2 apply a cutoff threshold using a confidence score261

of E-value before reporting results. Using such a threshold presents a trade-off between the number of sequences classified and262

the precision but is especially required in the presence of many off-target sequences.263

We evaluated the gene and taxonomy identification performance of our method against established approaches Kraken2264

and MMseqs2. For Kraken2, our training set comprising 540K sequences was indexed, setting the confidence parameters as265

minimum-hit-groups 1 and confidence as 0. With MMseqs2, we employed the easy-search method on same indexed dataset,266

specifying search-type 3 for nucleotide/nucleotide searches, while retaining default values for other parameters. We adjusted267

our threshold for confidence reporting to observe differences in the number of classified sequences and precision (see Methods)268

We show the results in Figure 5e, displaying the number of classified sequences for each method. Both Kraken2 and269

MMseqs2 encountered challenges in classifying genes from the Gene Out dataset, with Kraken2 detecting only 2.8% and270

MMseqs2 detecting 28%. This underscores the drawbacks of methodological factors such as sequence similarity and long271

k-mer searching in accurately classifying novel sequences. In Table 5a, we show the precision of our model compared to others272

at different threshold values. Even though the number of classified sequences in the Gene Out dataset is very low, the precision273

for both Kraken2 and MMseqs2 is also low compared to our model across various thresholds. Scorpio achieved 94% precision274

and 90% precision when we used thresholds that returned the same number of classified sequences as Kraken2 and MMseqs2.275

For the Taxa Out dataset, which consists of sequences from similar genes but from unseen taxa, we observe that MMseqs2276

was highly effective, correctly classifying 99% of sequences, while Kraken2 classifies only 50%. Considering precision, which277

crucially reflects the accuracy of classifications without being influenced by the dataset’s total size, MMseqs2 is particularly278

strong at identifying similar genes. Scorpio also performs well, though with lower precision than MMseq2 for this task and279

dataset. Kraken2 classified more sequences than Scorpio, since it shares similar phyla and genes with the training set, but280

Scorpio still outperformed Kraken2 in precision, even when returning a similar number of sequences. Unlike other methods,281

our approach selects thresholds by considering both the number of sequences to return and the precision. By calculating a282

confidence score specific to the dataset, we determine a cut-off based on test sets. This threshold represents an inflection point,283

balancing the number of classified sequences while maintaining high precision. Alternatively, all results can be returned with284

the associated confidence score and user-defined cut-offs.285

In Figure 5, we show precision vs. confidence and the number of classified sequences vs. confidence for all three datasets.286

We also highlight the thresholds s used based on how many sequences were classified by Kraken2 and MMseqs2. In all plots,287

the red threshold indicates the selection based on MMseqs2, and the blue threshold indicates the cutoff based on Kraken2. The288

red is the threshold we pick based on the infimum between the number of classified sequences and precision. As it is observable289

in Figures 5c, 5d, and 5e, all three cases exhibit an increasing trend between the confidence score and precision, validating the290

reliability of the score.291
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Dataset Gene Out Taxa Out Test
Precision Phylum (%) Precision Gene (%) Precision Phylum (%)

Kraken2 43 N/A 88
Scorpio-6Freq(green) 94 99 91
Mmseq2 50 99 95
Scorpio-6Freq(blue) 90 88 87
Scorpio-6Freq(red) 85 93 94

(a) Precision Levels for Different Datasets
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(c) Gene Out Dataset: Phylum-Level Confidence Scores
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(d) Taxa Out Dataset: Gene-Level Confidence Scores
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(e) Test Dataset: Phylum-Level Confidence Scores

Figure 5. We examined Kraken2 and MMseq2 thresholds and their impact on the number of classified instances. As shown in
subpanel (b), the number of classified instances varies across datasets for each method. In the "Gene Out" dataset, Kraken2
classified 2.8% of instances, while MMseq2 classified 28%. We compared our model’s precision across these different
thresholds (subpanels c, d, and e), with green representing Kraken2-like thresholds, blue for MMseq2-like thresholds, and red
for our thresholds. In Table (a), at a 2.8% classification rate (green), our Scorpio model achieved 94% precision, compared to
Kraken2’s 43%. At a 28% classification rate (blue), our Scorpio model achieved 90% precision, while MMseq2 achieved 50%.
This analysis demonstrates our model’s effectiveness in maintaining high precision while balancing the number of classified
instances in novel sequences. 11/24
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Scorpio embeddings can identify both gene and taxonomy labels of short fragments292

We next evaluated the effectiveness of Scorpio embeddings in identifying genes and classifying taxonomy in short fragments to293

test the potential of using Scorpio for critical tasks in metagenomics. We focus on a target read size of 400 bp, comparable to294

overlapping paired reads generated by Illumina and other short-read as some next-generation sequencing (NGS) platforms.295

All models used for testing are trained and indexed on the same dataset, except for BERTax:, where we used the pre-trained296

BERTax. Detailed information about the dataset and the choice of 400 bp read length can be found in the dataset section.297

One significant advantage of our approach revealed in by this analysis is the reduced training time compared to DeepMi-298

crobes. As illustrated in (Supplementary Figure 8), the unified objective across all hierarchical levels in Scorpio eliminates the299

need for separate model training for each task, which is necessary for DeepMicrobes. This streamlined process enhances both300

efficiency and scalability, making Scorpio a powerful tool in metagenomic analysis.301

For the test set (Table 1a), MMseq2 outperformed other methods at various taxonomic levels. Scorpio-BigDynamic excelled302

at the gene level and was second-best at the phylum level. The 6-mer Frequency representation, despite not using a learning303

procedure, performed well, indicating its effectiveness for memorization with similar training-testing sequences. Kraken2304

showed high precision at lower taxonomic levels. However, Scorpio’s hierarchical selection was significantly affected by dataset305

imbalance at lower taxonomic levels. Some studies suggest that using balanced datasets is essential for training contrastive306

learning-based models22.307

The test set illustrates different methods’ memorization capabilities, while the Genes-Out and Taxa Out datasets demonstrate308

generalizability. In the Gene Out set (Table 1a), Scorpio outperformed others at the phylum and class levels in both accuracy309

and F1 score. DeepMicrobes_family excelled at lower levels like order and family, as it is specifically trained for the family310

level, unlike our model, which is trained on six levels of hierarchy. DeepMicrobes_gene, trained for the gene level, showed311

low performance across all taxonomic levels. Our model significantly outperformed MMseq2 and Kraken2, with over 60%312

improvement at the phylum level. This improvement is due to MMseq2 and Kraken2 struggling with novel gene sequences313

not in their databases, whereas Scorpio’s embeddings, which capture k-mer frequency and sequence similarity, performed314

much better than sequence search methods. For the TaxaOut set (Table 1), our Scorpio-BigDynamic model outperformed other315

models in gene classification, achieving 92% accuracy, while MMseqs2 and DeepMicrobes_gene models achieved 78% and316

76% accuracy, respectively. These tests show the generalization of these algorithms on more challenging previously unseen317

sequences.318

With Scorpio embeddings, we also gained valuable interpretability insights into our model’s ability to discriminate both319

genes and the taxonomy of short fragments. In Figures 6a and 6b, we compare the t-SNE representations of embeddings from320

both BigBird and Scorpio-BigEmbed models. In Figure 6a, distinct clusters of genes are clearly visible, a distinction that is321

not as apparent in the pre-trained model. This highlights the robust nature of our model in differentiating gene sequences.322

Additionally, when we colorize the visualization based on phyla, as seen in Figure 6b, it becomes evident that Scorpio is323

adept at detecting taxonomic information compared to the pre-trained model. Although there are slight differences between324

embeddings of each taxonomic level, Scorpio’s hierarchical structure enhances its ability to distinguish taxa within each gene325

cluster. This hierarchical clustering is particularly effective, demonstrating that our model performs significantly better in326

taxonomy-based differentiation compared to the pre-trained model.327

As a proof of concept to support future experiments, we conducted an experiment using ART-simulated data61 with 150 bp328

reads. Details of the dataset and results are provided in Supplementary Table 3. Our results demonstrate that Scorpio generally329

achieves higher accuracy across all taxonomic levels compared to Kraken2. For instance, Scorpio achieved a phylum-level330

prediction accuracy of 27.9%, significantly outperforming Kraken2’s 0.15%, which classified only approximately 0.38% of the331

sequences. Despite these promising results, Scorpio’s lower F1-macro scores may reflect its sensitivity to sequencing errors,332

sequence length dependencies, and challenges in embedding-based search, particularly when handling long-read embeddings333

for short-read searches in underrepresented classes.334

One intriguing insight from this visualization, using the 10 most common phyla, is that in Figure 6b, Euryarchaeota335

displays a highly distinct representation compared to Bacteria. Despite the model’s attempt to cluster the genes, the hierarchical336

clustering ability and the significant distinction between Archaea and Bacteria prevented the model from clustering sequences337

from the same genes but different Kingdoms together. This indicates that taxonomic information influences the model’s338

organization. To further explore these insights, we zoomed in on a region in Figure 7 that includes all fragments of the urvA339

gene. We colorized this region based on different hierarchical levels, each time displaying the 10 most common categories340

for each level. It is noteworthy how the model discriminates based on each category at lower hierarchical levels. However, it341

becomes apparent that as we delve into lower hierarchy levels, the sample size for each genus becomes limited, reflecting the342

initial gene-based discrimination.343
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(a)

Accuracy (%) F1-macro (%)
Level phylum class order family gene phylum class order family gene
Model

6mer Freq. 90.3 86.1 76.7 65.6 92.4 78.3 69.0 63.4 55.8 91.9
BigBird 72.4 62.7 50.1 41.5 55.6 53.6 44.0 40.1 35.5 54.9
DeepMicrobes_family 72.7 61.6 43.6 30.8 3.1 42.7 28.3 24.2 19.7 2.4
DeepMicrobes_gene 21.5 8.9 2.4 0.7 93.0 4.3 1.4 0.5 0.2 93.2
BERTax* 76.4 N/A N/A N/A N/A 22.9 N/A N/A N/A N/A
BERTax_Embedding* 55.2 38.4 20.9 13.0 15.5 27.9 16.8 12.0 8.4 14.8
Mmseqs2 94.8 92.3 84.1 70.7 97.7 85.0 75.8 69.4 57.9 97.2
Kraken2 77.8 74.4 66.7 59.6 N/A 70.0 67.2 64.4 60.9 N/A
Scorpio-BigEmbed 76.6 66.1 49.8 38.9 74.0 54.3 42.4 37.1 31.4 74.5
Scorpio-6Freq 81.3 70.4 47.7 32.6 92.2 49.8 34.6 29.1 22.9 92.3
Scorpio-BigDynamic 91.0 83.4 63.3 45.8 98.8 73.7 53.3 42.9 32.8 98.9

(b)

Taxonomic Generalization Gene Generalization

Accuracy (%) F1-macro (%) Accuracy (%) F1-macro (%)

Model phylum class order family phylum class order family gene gene

6mer Freq. 47.0 29.9 14.9 8.4 11.4 8.1 6.8 5.1 54.7 52.7
BigBird 51.4 33.9 17.8 10.6 14.3 11.7 9.8 7.5 16.5 14.4
DeepMicrobes_family 55.8 40.3 22.1 13.2 15.7 11.8 10.3 8.3 2.8 1.9
DeepMicrobes_gene 14.2 5.9 1.8 0.5 2.1 0.9 0.4 0.1 76.0 77.0
Mmseqs2 2.6 1.8 0.8 0.4 1.0 0.6 0.5 0.3 78.5 86.1
Kraken2 0.93 0.63 0.27 0.11 0.2 0.1 0.09 0.06 N/A N/A
Scorpio-BigEmbed 54.8 37.2 18.0 9.6 14.5 10.0 7.4 5.2 41.7 42.2
Scorpio-6Freq 50.0 31.1 9.4 4.0 10.7 6.1 3.1 1.5 72.4 73.5
Scorpio-BigDynamic 61.2 43.1 18.3 7.8 17.8 10.4 5.6 2.7 92.3 93.1

Table 1. Short fragment length (400bp) results: (a) Memorization Test: Identifying additional examples of
training-data-known taxonomy and genes (Test Set); * All models, except for BERTax, were trained on the same dataset; for
BERTax, we employed a pre-trained version. (b) Generalization Test: Taxonomy Generalization (Gene Out Set) and Gene
Label Generalization (Taxa Out Set) Tests. Again, Scorpio is superior at classifying novel organisms at the phylum level and
beats out every method for the gene level.
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(a)

(b)

Figure 6. (a)t-SNE visualization of embeddings colorized based on the 10 most common phyla in the dataset using the
Scorpio-BigEmbed(Triplet) and BigBird(Pre-Trained) Models(b) t-SNE visualization ofembeddings colorized based on the 10
most common gene in the dataset using the Scorpio-BigEmbed(Triplet) and BigBird(Pre-Trained) Models
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(a) 10 most common Genes (b) 10 most common Phyla (c) 10 most common Classes

(d) 10 most common Orders (e) 10 most common Families (f) 10 most common Genera

Figure 7. Analyzing a region which includes the urvA gene in the t-SNE plot of Figure 6a and colorizing for each level.

Discussion344

In this study, we introduced the Scorpio framework, which leverages exiting pre-trained language models with triplet networks345

and contrastive learning to enhance the analysis of DNA sequence data. The adoption of nucleotide-based models, unlike346

traditional protein-focused models62, 63, could contribute to our understanding by capturing nuances associated with gene347

expression and translational efficiency embedded with the the nucleotide sequences that encode proteins. By using both348

pre-trained language models and k-mer frequency embeddings, we aimed to demonstrate the robustness of our framework349

across multiple types of encoders, all of which showed promising results. We showed that Scorpio, despite only one training350

round on protein-coding gene sequences with both gene and taxa labels, is among the top-performing algorithms across a variety351

of tasks. Specifically, Scorpio significantly improved taxonomic and gene classification accuracy, particularly in out-of-domain352

datasets, thereby showcasing the robustness and generalizability of the method. The superior performance of Scorpio at gene353

identification and competitive performance for taxonomic classification can be attributed to the ability of triplet networks to354

learn more discriminative features by optimizing the distance between positive and negative pairs. This capability is crucial355

when dealing with the high-dimensional and complex nature of metagenomic data, where traditional alignment-based methods356

may fall short.357

One of the key strengths of the Scorpio framework is its versatility in handling multiple tasks. By extending the triplet358

network to specific applications such as antimicrobial resistance prediction and promoter detection, we demonstrated the359

adaptability of our model to various different nucleotide sequence analysis tasks. Our model generalization surpasses methods360

like MMseqs2 , Kraken2 and Abricate, which rely on k-mer and sequence similarity searches, by showcasing the effectiveness361
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of embedding-based search.362

The ability to transfer learning from one domain to another and fine-tune the model for specific tasks highlights the363

potential of the Scorpio approach for practical applications in health and environmental diagnostics. This adaptability could be364

particularly valuable in metagenomics, where rapid identification and characterization of novel genes and taxa are critical. Our365

evaluation across diverse datasets with varying gene lengths demonstrates the robustness of our method. Consistent performance366

improvements across different datasets indicate that our model can effectively generalize from training data to unseen data, a367

crucial requirement for reliable metagenomic analysis.368

Additionally, our framework incorporates a novel confidence scoring mechanism, which provides a measure of the reliability369

of the results. This scoring method uses both the distance to the nearest neighbor and the class probabilities derived from370

neighboring embeddings, ensuring that confidence scores are meaningful and reliable for use as a quality estimator of the search371

method.372

There are several areas for future research and development. Firstly, while our model performed well in out-of-domain373

classification tasks, further improvements could be achieved by increasing the dataset size to include a more curated and374

diverse genes-taxa. Incorporating additional sources of biological information, such as functional annotations and protein375

interaction networks, could enhance the interpretability of the learned embeddings and provide deeper insights into the376

functional roles of genes and taxa. Furthermore, expanding the data for underrepresented classes and employing techniques to377

address data imbalance could improve accuracy at lower levels of the hierarchy. Secondly, the computational efficiency of378

our framework could be optimized further. Although the use of FAISS for efficient embedding retrieval was effective, and the379

possibility of running FAISS on GPU makes it faster, exploring more advanced indexing techniques like ScaNN (Scalable380

Nearest Neighbors)64, which has demonstrated promising results in our comparative analysis with FAISS in the Supplementary381

Materials, or parallel processing strategies, could reduce the computational overhead and enable the analysis of even larger382

datasets. Lastly, while our approach has shown significant promise, it should be extended and fine-tuned to other domains383

beyond gene/taxa/AMR/promoter classification. The principles underlying our Scorpio framework could be applied to other384

types of biological sequence data, such as transcriptomics and proteomics, potentially opening up new avenues for research and385

application. We also plan to test Scorpio on experimental samples and make our tools available as practical applications for386

integration into metagenomics pipelines.387

In conclusion, our study presents a robust and versatile framework for DNA sequence classification, leveraging triplet388

networks with contrastive learning and integrated embeddings from PreTrained language models and k-mer frequencies. This389

approach significantly advances our capacity to process and interpret complex microbiome data, offering valuable insights for390

health and environmental diagnostics. Future work will focus on further optimizing the model, integrating additional biological391

information, and exploring its applicability to other domains of genomic research.392

Method393

Scorpio: Architecture394

The architectural design features three layers in each branch. It maps either a 768-dimensional pre-trained embedding or a395

4096-dimensional 6-mer frequency vector to a 256-dimensional Scorpio embedding. Each encoder block consists of a linear396

layer followed by a ReLU activation function, producing 256-dimensional embedding vectors for downstream analyses. The397

architecture is flexible and can easily handle k-mer frequency data with only small changes. Specifically, by altering the size of398

the first layer, the model can handle different input dimensions. For example, with 6-mers, the first layer is 4096-dimensional,399

while the rest of the architecture remains consistent. This flexibility demonstrates the model’s ability to adapt to various data400

representations, as illustrated in Figure 8a. We employ three types of encoders. The first is the 6-mer frequency encoder,401

which calculates the 6-mer frequency(Scorpio-6Freq)representation and passes it through the architecture. The other two are402

variations of the BigBird model: one with a trainable final embedding layer(Scorpio-BigDynamic), and another with all layers403

frozen(Scorpio-BigEmbed). Both BigBird models use an average pooling layer to aggregate embeddings into a single vector,404

maintaining the model’s simplicity and efficiency.405

Scorpio: Triplet Training406

In the realm of training contrastive learning models, the method for choosing triplet sets (anchor, positive, negative) is crucial407

for shaping the model’s ability to understand semantic connections. Inspired by the Heinzinger et al.22, our approach involves a408

refined selection process with adjustments to enhance versatility across different similarity levels.409

In our training set, each sample serves as an anchor during every epoch. We deliberately randomize the selection of positive410

and negative samples for each anchor in each epoch, ensuring the model encounters new instances while revisiting the same411

triplet set. This repetition guards against overfitting and promotes generalization. Our hierarchical sample selection involves a412

two-step process depicted in Figure 8b. First, we randomly select the similarity level for each anchor. Based on this similarity413

level, we then randomly select positive and negative samples. Positive samples come from the same hierarchy level as the414
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anchor, while negative samples are selected from one level higher than the anchor’s similarity level. Importantly, similarity at415

a lower hierarchical level does not necessarily guarantee similarity at higher levels. For example, choosing sequences from416

the same phylum for positive and negative samples implies similarity at the gene level as well. This careful consideration417

ensures that positive samples not only share specific traits but also align across all hierarchical levels, reinforcing a nuanced418

understanding of the hierarchy. Also, it is important to note that in this approach, a pair of sequences can be labeled as positive419

at one level and negative at another, with flexibility to select randomly.420

In our special hierarchy of Gene-Taxa training, a notable distinction is made at the gene level, which, unlike other taxonomy421

levels, is not part of the natural hierarchy. Our model actively separates genes from taxonomy, enhancing its ability to422

differentiate between genetic characteristics and broader taxonomic classifications. Additionally, we drew inspiration from423

batch-hard sampling22 to prioritize samples and batches, detecting harder instances throughout training that exhibit the most424

distance between anchor-negative and anchor-positive pairs.425

A key improvement in our framework is its independence from the type and number of hierarchical levels. Our innovation426

lies in the framework’s ability to handle various hierarchies and adapt to changes in the hierarchy structure, such as adding427

or removing levels or incorporating new tasks. To test this, we trained the model on a promoter dataset containing just one428

level—whether it is a promoter or not—and it demonstrated the framework’s adaptation capabilities. We conducted extensive429

studies to determine the optimal batch size, number, and order of levels for hierarchical sampling. Detailed results of these430

studies are provided in the supplementary material.431

We utilized the Margin Ranking Loss technique during our model training to optimize a novel embedding space. This432

approach aimed to draw anchor-positive pairs closer together, effectively reducing their distance, while simultaneously pushing433

anchor-negative pairs further apart, thereby increasing their Euclidean distance.434

ANi =
√
(anchori −negativei)

2

APi =
√
(anchori −positivei)

2

loss =
1
N

N

∑
i=1

max(0,−yi · (ANi −APi)+margin)

(1)

Here, ANi represents the Euclidean distance between the anchor and negative embeddings, while APi denotes the Euclidean435

distance between the anchor and positive embeddings. The loss function loss averages the maximum of zero and the difference436

between the anchor-negative distance and the anchor-positive distance, weighted by the labels yi and a margin parameter.437

Confidence Score438

Our objective is to derive a confidence score for each prediction at every hierarchical level. To accomplish this, we employed a439

hybrid methodology leveraging two key techniques: I) A confidence predictor, which calculates the confidence score based on440

the raw distance value of the query point to the best match in the training set. II) Utilization of class probabilities derived from441

neighborhood embeddings specific to each query. Consider Figure 9a, which visually depicts the necessity of integrating both442

metrics in determining the confidence score. For instance, comparing two query points, yellow and green, which exhibit similar443

decision boundaries and nearest neighbors, the yellow point demonstrates a significantly lower distance to its best hit compared444

to the green point. Consequently, the confidence score for the yellow query should exceed that of the green query. Further, let’s445

analyze the scenario involving the yellow and purple stars. Although both share equidistant nearest neighbors, the surrounding446

point probability differs; purple records 0.4 while yellow boasts 0.6. Consequently, the confidence score for the yellow query447

should surpass that of the purple query. However, outliers such as the blue star, which lie considerably distant from the training448

points, challenge the importance of neighborhood class probability due to their significant deviation from decision boundaries.449

In such outliers’ cases, confidence scores may solely rely on distance to the nearest neighbor.450

In light of these insights, we formulated a function to estimate confidence scores by harnessing the information encapsulated451

within neighborhood training points for each query. Let D represent the set of distances between query points and their closest452

target points in the validation set (conf_set). This conf_set includes instances from the training set but not appearing in the453

training set used for validation, ensuring that the distances are representative of the data distribution. Let H be the set of all454

hierarchical levels. For a specific level ℓ ∈ H, ensure that the predictions at all upper levels u ∈ H (where u < ℓ) are correct. To455

calculate the F1 score for each level, we further filter the data based on hierarchical levels. For the most upper level, such as456

gene, the F1 score is calculated as an accuracy F1 score. However, for lower levels, the dataset is split based on upper levels,457

and we should consider inner distances as reliable distances to calculate the confidence score. The dataset is further filtered to458

include only rows where the predictions at all upper levels are correct:459
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Figure 8. 8a Model Architecture: Each branch transforms 768 (or 4096)-dimensional encoded embeddings to a
256-dimensional triplet vector. We have three types of encoders: BigBird embedding vectors, 6-mer Freq., and a model where
BigBird is used with the embedding layer. 8b The diagram illustrates the hierarchical selection process for a positive and
negative for an anchor in our gene-taxa dataset. First, the level of similarity is randomly determined (e.g., Ge: Gene, P: Phylum,
C: Class, O: Order, F: Family, G: Genus). Positive samples match the anchor at this level, while negative samples are chosen
from one level up to ensure dissimilarity.

conf_setfiltered = {e ∈ conf_setoriginal | ∀u ∈ H,u < ℓ,e[uquery] = e[utarget]} (2)

Using this filtered data, the precision and recall for the current level ℓ are calculated, leading to the final F1 score for the460

specified threshold.461

For each distance threshold ti in D, we filter the conf_set data based on the condition that the distance between query points462

and their closest target points is less than or equal to ti. This filtered dataset is used to calculate the F1 score F1(ti) for the463

current hierarchical level ℓ, considering the correctness of predictions at upper levels. The F1 score is calculated as follows:464

F1(ti) =
2×precision(ti)× recall(ti)

precision(ti)+ recall(ti)
(3)

where precision and recall are defined as:465

precision(ti) =
TP(ti)

TP(ti)+FP(ti)
(4)

recall(ti) =
TP(ti)

TP(ti)+FN(ti)
(5)

Here, TP, FP, and FN denote the true positive, false positive, and false negative counts, respectively. Once we have calculated466

the F1 scores for all thresholds in D, we use them as the target variable y and the corresponding distance thresholds as the467

input variable X to train a simple neural network to predict F1 based on distance threshold. This neural network, denoted as468

N, N : ti → F1 is a function that maps distance thresholds to F1 scores: The architecture of the neural network N is a fully469

connected feedforward network with multiple hidden layers, with the output layer having a single neuron since it’s a regression470

model. The activation function in the hidden layers is ReLU. The neural network is trained using Mean Squared Error (MSE),471
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Figure 9. 9a Confidence Score Illustration: Circular points represent the training set, with different colors corresponding to
different classes, while star points represent query points. The outlines around the stars depict decision boundaries. In this
example, the distance of query point a < b ≪ c, illustrating how the confidence score could vary despite the proximity of the
nearest neighbors. The confidence score calculation integrates both the distance to the closest training point and neighborhood
class probabilities. The blue star, despite being equidistant from its nearest neighbor as others, receives a lower confidence
score due to its outlier status and the influence of decision boundaries. Figure 9b shows the KDE plot illustrating the
distribution of confidence scores for genes of E. coli Genes are categorized based on their availability in the training set, with
"In Training Set (462 genes)" indicating genes present in the training data and "Out of Training Set (3853 genes)" indicating
genes absent from the training data. This shows the power of the confidence score as a quality estimator of predictions for users
to ensure the results.

which measures the difference between the predicted F1 scores and the actual F1 scores:472

Loss =
1
n

n

∑
i=1

(yi − ŷi)
2 (6)

After training the model, we use it to predict the confidence score Ĉ1 for a given distance threshold t̂, providing us with a473

confidence score Ĉ1 = N(t̂). This kind of representation helps us ensure that the confidence score is bounded between 0 and474

1, whereas comparing with raw distance values, which are not normalized, may not provide meaningful low and high values.475

Additionally, very low F1 scores typically indicate low confidence, while high F1 scores suggest high confidence. This can be476

interpreted akin to a threshold finder. Next, we calculate class probabilities of target as Ĉ2, which represents the number of477

times class i (the most common class in the neighborhood) was present among the total number of nearest neighbors considered,478

K. Ĉ2 =
mi
K , and then we compute the final confidence as follows: Ctotal = Ĉ1 ×Ĉ2.479

Dataset480

Gene and Taxonomy Dataset481

We obtained the complete Basic genome dataset using Woltka’s pipeline27, comprising 4634 genomes. A specific characteristic482

of this dataset is that only one genome is included for each genus, making it unique and challenging. After considering483

the taxonomic properties, we attempted to download all CDS files from the NCBI database for the Basic genome dataset.484

Subsequently, we extracted all coding sequences (CDS) from the Basic genomes dataset, resulting in 8 million distinct CDS.485

We then focused our study on bacteria and archaea, excluding genomes from viruses and fungi, which often lack sufficient gene486

information.487

To ensure the initial annotation accuracy of genes in the dataset, we filtered out hypothetical proteins, uncharacterized488

protein and sequences lacking gene labels. Another issue encountered during our observation of gene labels in NCBI was the489

potential unreliability of gene names, possibly due to misspellings or differences in nomenclature. To address this, we retained490

only genes with more than 1000 samples and also imposed a filter to ensure a minimum number of sequences per phylum,491

19/24

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 9, 2024. ; https://doi.org/10.1101/2024.07.19.604359doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.19.604359
http://creativecommons.org/licenses/by/4.0/


considering only those with more than 350 sequences. This curation process yielded a dataset of 800,318 gene sequences,492

representing 497 gene types across 2,046 genera.493

To assess the generalizability of our model, we deliberately constructed four types of datasets. One dataset for training,494

collectively referred to as the Train Set. Additionally, we created another dataset for testing, referred to as the Test Set, which495

comprises the same classes at all levels (same genus and same gene with Train Set) but with different samples. We also496

excluded 18 different phyla, designated as the Taxa Out Set, which have the same gene as the training set but from different497

phyla. Furthermore, we excluded 60 different genes from the Train Set, all originating from the same phyla, forming the Gene498

Out Set. In all testing sets, we also made sure to include only CDS that have only one representation for a genome, because499

we observed that once we have downloaded the CDS files for different genomes like Hungatella hathewayi species, we may500

have multiple gene sequences for one type of gene (lepB, for instance, has 34 representations for this species). So, we have501

removed such genes from our analysis because we found that in some species it may have multiple gene representations in502

NCBI but these genes may not be from the same species65. Therefore, to add more validity to our test datasets, we removed503

those sequences from the analysis as well. Our goal was to include holdout sets that represent diverse aspects, allowing us504

to evaluate the model’s performance with unseen data. The detailed information regarding the exact number of samples and505

the range of values per class is presented in Supplementary Table 1. Additionally, the dataset selection strategy is provided in506

Supplementary Figure 1.507

For the short-fragment dataset, we extracted 400bp fragments from the 800k-sequence gene dataset. Our approach508

involved selecting 400bp fragments from various regions of the gene sequences, ensuring a minimum 50bp distance between509

them. This was done using the range Range:[0, Gap: 50, length(gene_sequence)]. We believed this strategy was essential to510

avoid selecting fragments with minimal base-pair differences and to mimic sequences that do not necessarily start with an open511

reading frame.512

Some of these fragments are not open reading frames (ORFs), which is significant because, in real metagenomic sequences,513

fragments can originate from any part of the genome and are not necessarily confined to ORFs. To address this, we utilized our514

curated gene dataset to ensure that the short-fragment dataset includes gene-specific information beyond just taxonomy. This515

approach is crucial for training the gene-taxa version of our model effectively.516

Promoter Dataset517

In this study, we utilized the promoter dataset provided by Ligeti et al.46 for training and testing our promoter prediction518

models. The promoter dataset by Ligeti et al. consists of experimentally validated promoter sequences primarily drawn from519

the Prokaryotic Promoter Database (PPD), which includes sequences from 75 different organisms. To ensure a balanced and520

comprehensive dataset, non-promoter sequences were generated using higher and zero-order Markov chains.Additionally,521

an independent test set focusing on E. coli sigma70 promoters66 was used to benchmark the models against established522

datasets. The non-promoter sequences were constructed using three methods: coding sequences (CDS) extracted from the NCBI523

RefSeq database, random sequences generated based on a third-order Markov chain, and pure random sequences generated524

using a zero-order Markov chain. The balanced distribution of these non-promoter sequences (40% from CDS, 40% from525

Markov-derived random sequences, and 20% from pure random sequences) was crucial for thorough evaluation and robust526

model training. The inclusion of the independent E. coli sigma70 test set, curated by Cassiano and Silva-Rocha (2020), further527

validated the effectiveness of the promoter prediction models, ensuring no overlap with the training data and providing a528

rigorous benchmark for model performance.529

Antimicrobial Resistance Dataset530

We utilized an integrated dataset combining the CARD39 v2 and MEGARes38 v3 datasets, referred to as the Antimicrobial531

Resistance Dataset, following methodologies from previous studies40. Classes with fewer than 15 samples were removed as532

they hindered the attainment of meaningful results during data splitting. The remaining data was divided into 75% for training,533

20% for testing, and 5% for validation. After integrating the data using the EBI (European Bioinformatics Institute) ARO534

(Antibiotic Resistance Ontology) ontology search, it was similarly divided. Classes that yielded non-meaningful results were535

also excluded. The MEGARes dataset comprises 9733 reference sequences, 1088 SNPs, 4 antibiotic types, 59 resistance536

classes, and 233 mechanisms. The CARD dataset includes 5194 reference sequences, 2005 SNPs, 142 drug classes, 331 gene537

families, and 10 resistance mechanisms. The EBI ARO ontology provides hierarchical group information for genes, allowing538

gene family class information to be integrated into a higher-level hierarchy. For MEGARes, there are 589 gene family text539

information classes, while CARD has 331. There are 300 and 166 datasets with only one sample in their respective gene family540

classes for MEGARes and CARD, respectively.Resistance mechanisms categories are integrated based on the 6 categories of541

CARD. The original 8 categories were reduced to 6 by excluding various class combinations and those with very few samples.542

Drug classes are integrated using 9 common drug classes found in competing models. The integration is based on names and543

theories and has been validated by experts in the field.544
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FAISS545

In our framework, FAISS (Facebook AI Similarity Search)26 played a pivotal role as a cornerstone element for conducting546

similarity search tasks. This versatile library, designed by Johnson et al. (2019)26, specializes in facilitating approximate547

nearest neighbor search (ANNS) on vector embeddings, addressing various domains and applications. Leveraging FAISS,548

we efficiently conducted similarity searches on our collection of query embeddings, benefiting from its indexing techniques549

that involve preprocessing, compression, and non-exhaustive search methods detailed in Supplementary Table 4. These550

strategies enabled swift retrieval of nearest neighbors, whether based on Euclidean distance or highest dot product67. This551

streamlined approach greatly aided in identifying similar embeddings within our expansive dataset while effectively managing552

computational resources and memory overhead.Additionally, FAISS provides optimized versions for both CPU and GPU553

platforms64 with the latter proving particularly advantageous, especially when dealing with high-dimensional vectors exceeding554

1000 dimensions. This GPU acceleration, noted for its significant performance boost, accelerated our similarity search tasks,555

especially vital for processing large-scale datasets, leveraging the parallel processing capabilities inherent to GPUs.556

Pre-training the BigBird Model557

In this study, we utilized the BigBird model, a transformer-based architecture specifically designed to handle long sentences, to558

represent our gene sequences. The BigBird model enhances the standard transformer model by incorporating sparse attention559

mechanisms, allowing it to efficiently manage much longer contexts, which is particularly advantageous for genomic data560

characterized by lengthy sequences and complex dependencies25. We follow the approach in MetaBERTa17 to select the561

parameters for the BigBird model. We trained the BigBird model using a sequence length of 4096, with a batch size of 16, and an562

embedding dimension of 768. The feed-forward neural network within the transformer layers was configured with a dimension563

of 3072. The model employed 4 attention heads and comprised 4 transformer layers, facilitating the learning of hierarchical564

representations. The Adam optimizer with an epsilon value of 1e-8 was used for training. Training was conducted over 2565

epochs. The vocabulary size of our model is based on 6-mer, which corresponds to 4096 tokens. This selection can be attributed566

to the fact that each 6-mer represents two codons, which correspond to amino acids, ensuring more functional information17.567

These configurations were selected to optimize the model’s performance for genomic sequence analysis, leveraging its unique568

capabilities to manage and learn from long sequences efficiently. Our BigBird model, MetaBERTa-bigbird-gene, is available at569

https://huggingface.co/MsAlEhR/MetaBERTa-bigbird-gene.570

Benchmarking and Configuration of Comparative Tools571

All benchmark tools were trained and evaluated on a standardized dataset to maintain consistency in comparisons. The572

configurations applied to each tool are outlined below.573

Kraken 2 (gene-taxa classification): Kraken 2 was configured with -minimum-hit-groups 1 and -confidence 0,574

enabling a more comprehensive search to increase sensitivity for unclassified taxa.575

MMseqs2 (AMR and gene-taxa classification): The mmseqs easy-search command was executed with parameters576

-max-accept 1, -max-seqs 1, and -search-type 3 to focus on the best-hit nucleotide-to-nucleotide alignment.577

BLASTN (AMR identification): The blastn tool was used with the following arguments: -db ./myblastdb/triplet,578

-evalue 0.01, -word_size 11.579

BERTax (gene-taxa classification): The pre-trained BERTax model was used without further fine-tuning. Access to the tool is580

available at https://github.com/rnajena/bertax.581

ABRicate (AMR identification):ABRicate was indexed with a custom AMR database to perform antimicrobial resistance582

(AMR) gene detection. Further details are available at https://github.com/tseemann/abricate.583

DeepMicrobes (gene-taxa classification): We trained DeepMicrobes to adapt for long-read data, with separate training at both584

the family and gene levels. The model was configured for gene-level classification specifically for this purpose, in addition to585

family-level classification. The full methodology follows their original approach, with details available at https://github.586

com/MicrobeLab/DeepMicrobes, using the following arguments: -model_name attention, -vocab_size587

32898, -train_epochs 10, -batch_size 256, -max_len 2048.588
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