

1 The dynamic and diverse nature of parenchyma cells in the *Arabidopsis* root during secondary growth

2 Munan Lyu^{1,5}, Hiroyuki Iida^{1,5}, Thomas Eekhout^{2,3,4}, Meeri Mäkelä¹, Sampo Muranen¹, Lingling Ye¹, Anne
3 Vatén¹, Brecht Wybouw¹, Xin Wang¹, Bert De Rybel^{2,3*}, Ari Pekka Mähönen^{1*}

4 ¹Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences
5 and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.

6 ² Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052
7 Ghent, Belgium

8 ³ VIB Centre for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium

9 ⁴ VIB Single Cell Core, VIB, Ghent-Leuven, Belgium

10 ⁵ These authors contributed equally.

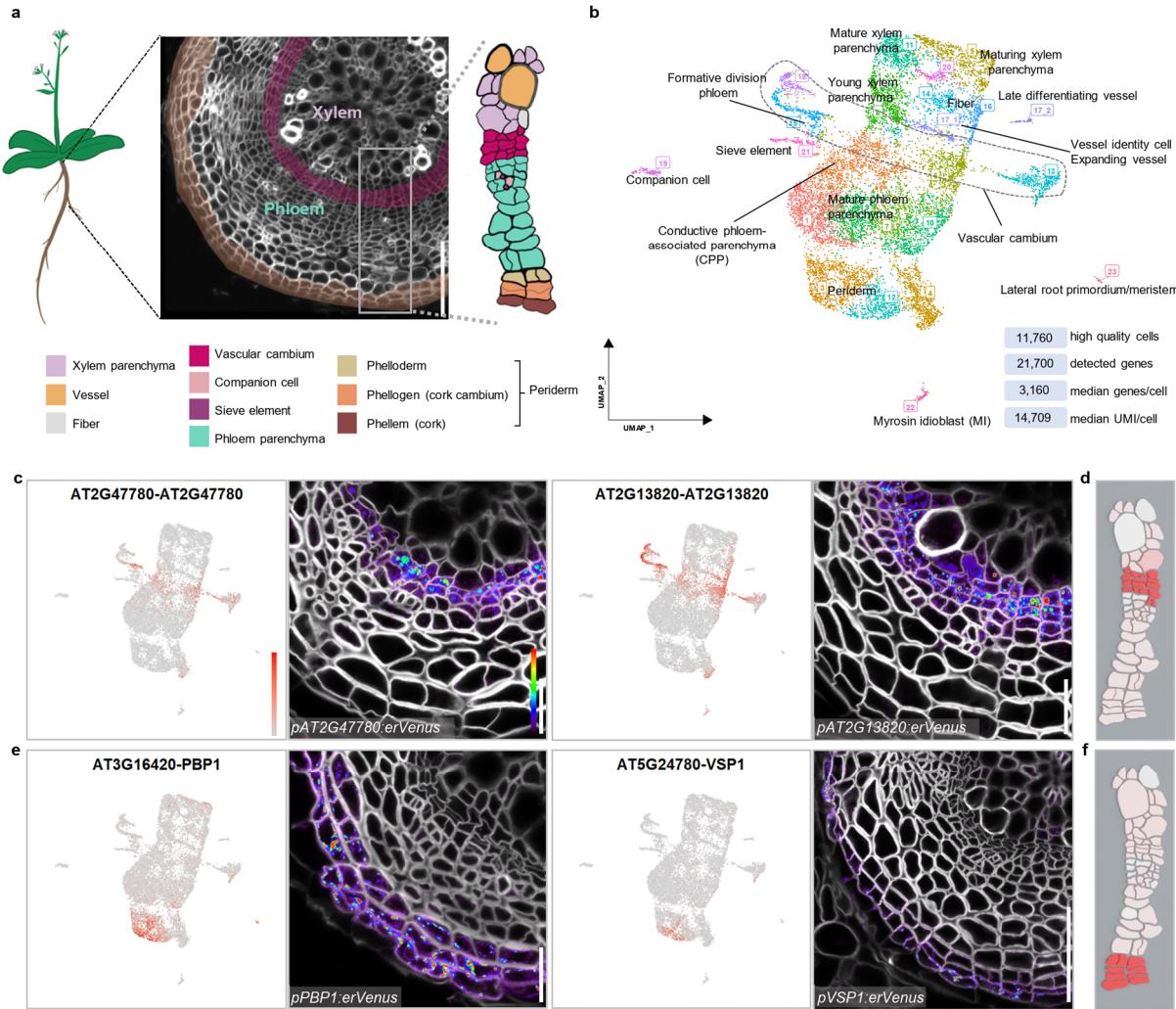
11 *Correspondence: bert.derybel@psb.vib-ugent.be; aripekka.mahonen@helsinki.fi

12 Abstract

13 During the process of secondary growth, the vascular cambium produces the conductive xylem and phloem
14 cells, while the phellogen (cork cambium) deposit phellem (cork) as the outermost protective barrier.
15 Although most of the secondary tissues is made up by parenchyma cells which are also produced by both
16 cambia, their diversity and function are poorly understood. Here we combined single-cell RNA sequencing
17 analysis with lineage tracing to recreate developmental trajectories of the cell types in the *Arabidopsis* root
18 undergoing secondary growth. By analysing 93 reporter lines, we were able to identify 20 different cell types
19 or cell states, many of which have not been described before. We additionally observed distinct
20 transcriptome signatures of parenchyma cells depending on their maturation state and proximity to the
21 conductive cell types. Our data shows that both xylem and phloem parenchyma tissues are required for
22 normal formation of conductive tissue cell types. Furthermore, we showed that mature phloem parenchyma
23 gradually obtains periderm identity, and this transition can be accelerated by jasmonate or wounding. Thus,
24 our study reveals the remarkable dynamic and diverse nature of parenchyma cells during secondary growth.

25 Main

26 Plants undergo primary growth for longitudinal elongation. Additionally, many seed plants exhibit secondary
27 (i.e. radial) growth in their mature stems and roots orchestrated by the lateral meristems, the vascular
28 cambium and the phellogen (cork cambium). The vascular cambium produces conductive cells, secondary
29 xylem inward and secondary phloem outward, and the phellogen provides a barrier tissue, the phellem (cork)
30 outward. Besides these conductive or barrier cell types, both cambia also generate parenchyma cells, xylem
31 and phloem parenchyma from the vascular cambium and the pheloderm from the phellogen, and these
32 parenchymatic cells occupy the largest part of secondary tissues¹⁻³. Parenchyma is generally consisted of
33 thin-walled living cells; there are various types of parenchyma cells and some of their functions are known,
34 for instance, mesophyll cells are essential for photosynthesis¹. However, because parenchyma cells have
35 received less attention compared to the conductive cells in secondary tissues, their functions are largely
36 unknown. Also, from a morphological point of view, there are very little to no differences among the
37 parenchymatic cells in the root⁴. Although a few reports suggest heterogeneity of xylem parenchyma cells⁵,
38 it has not been proven experimentally and it is unclear even whether parenchyma cells within the same tissue
39 have a heterogenous or homogeneous identity. Altogether, little is known about the parenchyma cell types
40 nor their functions in secondary tissues. Here, we optimised single-cell RNA-sequencing⁶⁻⁸ on *Arabidopsis*
41 mature roots to explore the diversity of cell types in root undergoing secondary growth. We validated that
42 our dataset contains all known conductive and parenchymatic cell types in *Arabidopsis* secondary tissues and


43 demonstrate that xylem and phloem parenchyma are composed of diverse cell types and cell states. Through
44 extensive reporter analysis combined with mutant analysis, we also identified that the xylem and phloem
45 parenchyma cells function in supporting conductive tissue formation. Furthermore, lineage tracing analysis
46 suggests that mature phloem parenchyma cells can change their cell identity to replenish a new barrier upon
47 injury. Taken together, our study demonstrates the diverse and dynamic nature of parenchyma cells in
48 *Arabidopsis* secondary tissues.

49 Results

50 Single-cell transcriptomics profiling revealed a diverse set of cell types in *Arabidopsis* roots during
51 secondary growth

52 To explore cell type diversity and dynamics during root secondary growth, we produced a single-cell RNA-
53 seq atlas. For this study, we utilized the 30-day-old *Arabidopsis* seedlings that had just started bolting and
54 were characterised by intensive root secondary growth (Fig. 1a). Sections of the first 2 cm below the root-
55 hypocotyl junction were collected for protoplast isolation and subsequent transcriptome profiling (Fig. 1a).
56 After quality control⁷, 11,760 high-quality cells (with median 3,160 genes and median 14,709 reads per cell)
57 were retained and visualized using uniform manifold approximation (UMAP)⁹ (Fig. 1b). To examine whether
58 the major cell types known to be present in this tissue were captured in our dataset, we initially analysed
59 expression of known tissue-specific genes¹⁰⁻¹⁶. Based on these markers, all the known cell types were
60 predicted to be present in the dataset, while several clusters remained unidentified (Supplementary Fig. 1a,b).
61 The relative positions of each cell type in the dataset UMAP reflect the real organisation of the secondary
62 root, indicating that it is likely that we captured most of the developmental states and transitions between
63 them (Fig. 1a,b). To validate these predictions and annotate all the remaining clusters, we examined
64 expression of 93 fluorescent reporters: 16 published before¹⁷⁻²⁴ and 77 generated for this study
65 (Supplementary Fig. 1c). Many of these reporters indicated the cell states for which no marker had been
66 previously identified and can serve as tissue-specific markers in secondary tissues of *Arabidopsis* roots. A
67 detailed description of the 93 reporter lines used to annotate the clusters is described below and in the
68 Supplementary Fig. 1c-i, Supplementary Notes and Supplementary Table S4. Also, strongly and ubiquitously
69 expressed promoters for overexpression studies in the secondary tissue are presented in the Supplementary
70 Notes and in Supplementary Fig. 1h,i.

71 Vascular cambium and phellogen (cork cambium) are secondary meristems which orchestrate radial growth¹.
72 Since some key vascular cambium regulators are expressed in the periderm (that is, phellem, phellogen and
73 phelloidem) as well, these two cambia share core developmental regulators². However, the different
74 function between these two cambia also indicates that they have cambium-specific regulators. Our single-
75 cell RNA-seq data captured numerous cells of both cambia and successfully identified genes unique to one
76 cambium, as well as those expressed in both (Fig. 1c-f, Supplementary Fig. 1d,e, Supplementary Fig. 2 and
77 Supplementary Notes). Taken together, we generated and validated a transcriptome atlas of the *Arabidopsis*
78 root undergoing secondary growth; allowing to reveal shared and unique regulatory mechanisms driving
79 vascular cambium and/or phellogen activity. This atlas is available in an online tool (<https://www.single->
80 cell.be/plant) together with model based on Cell²⁵ (Fig. 1d,f).

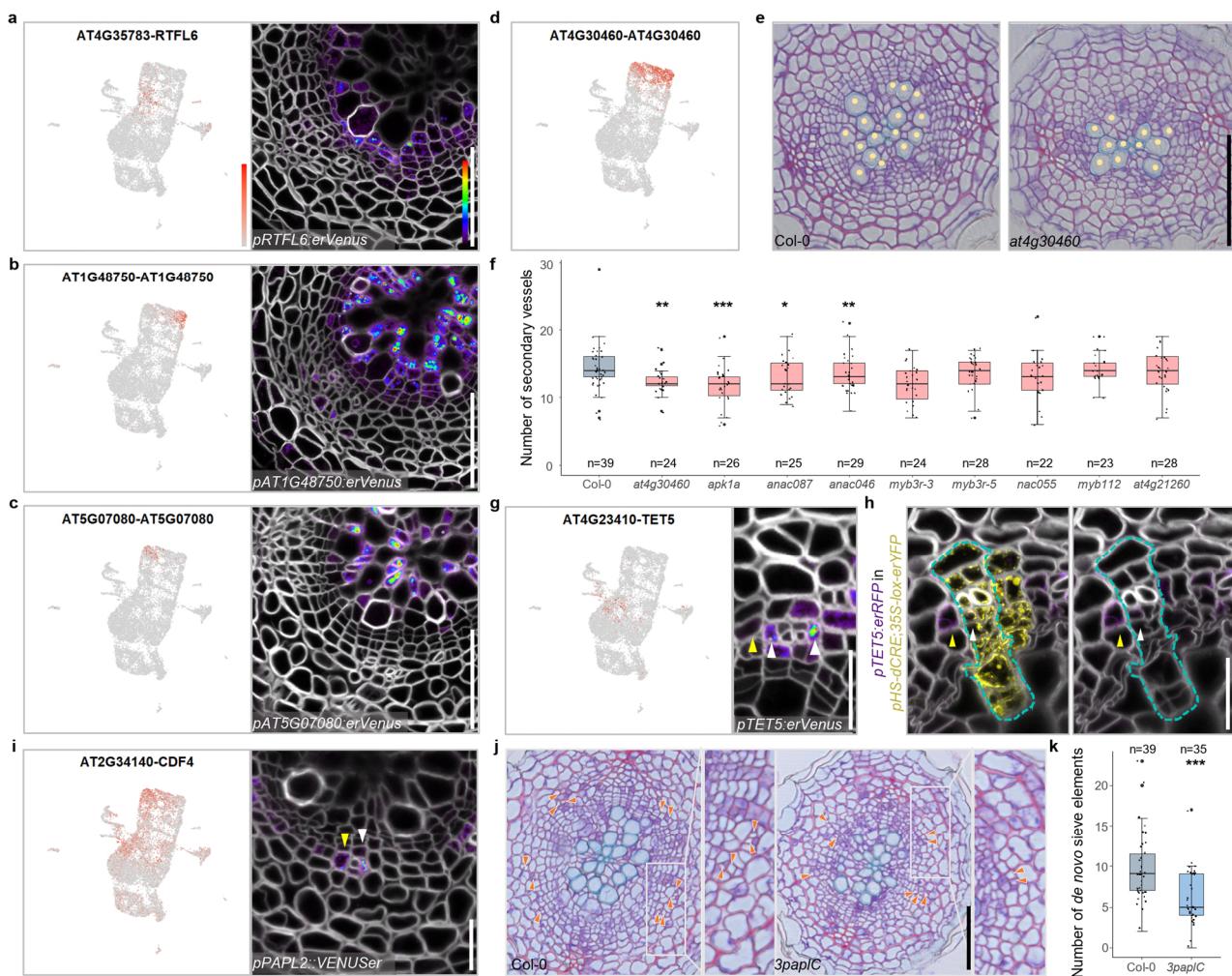
Figure 1. Single-cell transcriptome profiling of the *Arabidopsis* mature root.

a, Illustration of the tissue utilized for the single-cell RNA sequencing. The illustrative image is a cross section of 30-day-old *Arabidopsis* mature root. **b**, Visualization of 23 cell clusters using Uniform Manifold Approximation and Projection (UMAP), with identity annotations validated by reporter analysis. Each dot represents an individual cell, with colors representing different clusters. A dotted circle highlights the vascular cambial cells. The dataset quality information is displayed in the bottom right corner. **c**, UMAP plots of genes (AT2G47780 and AT2G13820) specifically detected in vascular cambium clusters and confocal cross-sections of their promoter-reporter lines. **d**, Expression of AT2G13820 in Cella model. **e**, UMAP plots of genes (PBP1 and VSP1) highly detected in periderm clusters and confocal cross-sections of their promoter-reporter lines. **f**, Expression of VSP1 in Cella model. In cross sections of **a**, **c**, **e**, cell walls were stained with SR2200. In **c** and **e**, for each gene, the UMAP plot and cross section of 16-day-old roots was shown in the left and right, respectively. Relative expression levels of genes in UMAP and Venus-YFP signals in cross sections were shown according to the colour map in **c**. Scale bars, 100 μ m (**a**), 20 μ m (**c**, **e**). 81

82 The xylem parenchyma cell pool consists of at least three distinct developmental states

83 Next, we analysed different cell types in the xylem domain by combining bioinformatic and reporter analysis. 84 We identified xylem fibers and xylem vessels at various stages of development in the dataset. Subcluster 85 17_1 represents cells that have recently obtained vessel identity and initiated cell expansion, and from there 86 cells progress to subcluster 17_2 to finalize terminal differentiation (Supplementary Notes, Supplementary 87 Fig. 3 and Supplementary Fig. 4a).

88 Given that xylem parenchyma is less comprehensively understood compared to the morphologically distinct 89 xylem cell types, we conducted a deeper analysis on xylem parenchyma. We found that xylem parenchyma 90 cells were classified in three clusters (8, 11 and 5) containing different transcriptional information. The 91 transcriptional reporter lines of genes predominantly expressed in cluster 8 (*ROTUNDIFOLIA LIKE 6 (RTFL6)*, 92 *MIZU-KUSSEI 1 (MIZ1)*, and *AT1G03620*) showed high fluorescence signals in young xylem parenchyma cells


93 adjacent to the meristematic zone and near the expanding vessels (Fig. 2a and Supplementary Fig. 4b).
94 Reporter expression driven by the promoters of cluster 11-enriched genes (*AT5G07080* and *AT1G11925*)
95 were preferentially detected in the most mature xylem parenchyma cells near the primary xylem axis both
96 in 16-day-old and in 30-day-old roots (Fig. 2c and Supplementary Fig. 4c,d). The cluster 5-enriched genes
97 (*AT1G48750*, *UDP-GLUCOSYL TRANSFERASE 72D1 (UGT72D1)* and *CASPARIAN STRIP INTEGRITY FACTOR 2*
98 (*CIF2*)) were expressed in the parenchyma between the mature and young xylem parenchyma cells, which
99 we termed maturing xylem parenchyma (Fig. 2b and Supplementary Fig. 4e). These results thus suggest that
100 the xylem parenchyma is not a homogenous tissue but is rather composed of cells with different maturation
101 states. To further characterize the different states, we performed gene ontology (GO) comparison of xylem
102 parenchyma clusters. Cluster 8 showed specific response to salt stress, auxin transport and cluster 11 to
103 hypoxia, additionally both clusters were enriched by genes, for example, related to response to fungus
104 (Supplementary Fig. 4f). Cluster 5 DEGs were involved in phenylpropanoid biosynthesis and metabolic
105 pathways, that are required for processes such as lignin biosynthesis and defence
106 responses²⁶(Supplementary Fig. 4f). As such, the subsequent maturation states of the xylem parenchyma
107 appear to be correlated with different functions including stress responses and vessel lignification.
108 Supporting this, it has been shown that neighbouring xylem parenchyma participate in vessel lignification²⁷.
109 To furhter investigate the function of xylem parenchyma cells, we examined a series of T-DNA insertion
110 mutants whose corresponding genes are expressed preferentially in any of the states of xylem parenchyma
111 maturation (Fig. 2d and Supplementary Fig. 4g). Even though the expression of these genes was low in the
112 vessel cluster, nearly half of examined single mutants (four out of nine mutants) showed a significant
113 reduction in secondary vessel formation (Fig. 2e,f and Supplementary Fig. 4h,i). Secondary growth in these
114 mutants tended to be reduced, however, even when considering their growth retardation, secondary vessel
115 formation was proportionally significantly decreased in *at4g30460* and *apk1a* loss-of-function mutants (Fig.
116 2e and Supplementary Fig. 4h,i). Taken together, our results indicate that xylem parenchyma cells are diverse,
117 and one of the functions of xylem parenchyma is to promote vessel formation during the secondary growth.

118 A subset of phloem parenchyma cells controls conductive phloem formation

119 Next, we investigated the cell types in phloem domain by integrating bioinformatic and reporter analysis with
120 lineage tracing. Similar to the primary phloem differentiation process in the root tip^{17,18}, the formative
121 division in phloem identity cells (subgroup of cluster 15) give rise to sieve elements (cluster 21) and
122 companion cells (cluster 19) (Supplementary Notes and Extended Fig. 5a-c).

123 Since most secondary phloem tissue consists of parenchyma cells (Fig. 1a) and we know very little about this
124 cell type, we carried out detailed analysis of the phloem parenchyma cell clusters. During the validation
125 process, we noticed that the promoter activities of the phloem-side cambium genes, *DNA BINDING WITH*
126 *ONE FINGER 2.4 (DOF2.4) / PHLOEM EARLY DOF 1 (PEAR1)*^{11,17}and *AT1G12080*, were also highly detected in
127 the parenchyma cells adjacent to the sieve elements and companion cells (Supplementary Fig. 5d). This
128 expression implies the unique identity of phloem parenchyma associated with conductive phloem cells. This
129 type of expression pattern seems to be associated with cluster 2 since the reporters of cluster 2-enriched
130 genes (*TETRASPININ5 (TET5)*, *AT3G16330* and *WRKY DNA-BINDING PROTEIN 63 (WRKY63)*) showed
131 preferential expression in those parenchyma cells (Fig. 2g and Supplementary Fig. 5e). We named these cells
132 in cluster 2 as Conductive Phloem-Associated Parenchyma (CPP) cells. Next, we studied the ontogeny of these
133 CPP cells and devised two possible mechanisms. First, CPP identity could be established by lineage-based
134 mechanisms by which these cells are co-ordinately formed with the conductive phloem within the same
135 lineage. Alternatively, these cells could be recruited by cell-cell communication-based mechanism from
136 neighbouring conductive cells regardless of their lineage. To examine between these two possibilities, we
137 generated *pTET5:erRFP* reporter line in the background of the cell-lineage tracing line in which the clones
138 were marked with the expression of *YFP* reporter gene upon heat shock (modified from Smetana et al¹¹).

139 Sector analysis was performed six days after *YFP* clones were induced in 10-day-old roots (Fig. 2h). *TET5* signal
140 was detected in CPP cells of both the conductive and nonconductive phloem lineage (Fig. 2h). Thus, both
141 mechanisms coexist; CPP identity can be obtained as a result of formative divisions of conductive cell types
142 as well as recruitment by the neighbouring conductive phloem in a non-cell autonomous manner. Location
143 of the CPP cells reminded us of genes expressed in the cells surrounding the conductive phloem in primary
144 roots such as *PINEAPPLE* (*PAPL*) transcription factors¹⁹. In our UMAP, three *PAPL* genes showed high
145 expression in cluster 2, and, consistently, fluorescence signals in their reporter lines were detected in CPP
146 cells (Fig. 2i and Supplementary Fig. 5f). While there was a slight but significant reduction in secondary growth
147 in the *papl* triple mutant (Fig. 2j and Supplementary Fig. 5g), a strong reduction in sieve element formation
148 outside of the primary phloem poles region (i.e. *de novo* sieve element formation) was observed (Fig. 2j,k).
149 The ratio of sieve elements versus vasculature diameter reduced significantly in the triple mutant
150 (Supplementary Fig. 5g), implying that the reduction in *de novo* secondary sieve element formation in the
151 *papl* triple mutant is not caused by general growth retardation. These findings suggest that *PAPL* genes are
152 required for the conductive phloem formation. Taken together the findings in this and the previous
153 subsection, disruption of genes expressing in xylem or phloem parenchyma cells resulted in less conductive
154 cell formation, suggesting that xylem and phloem parenchyma generally support conductive cell formation.

Figure 2. Diversity of parenchyma cells and their functions in conductive tissue development.

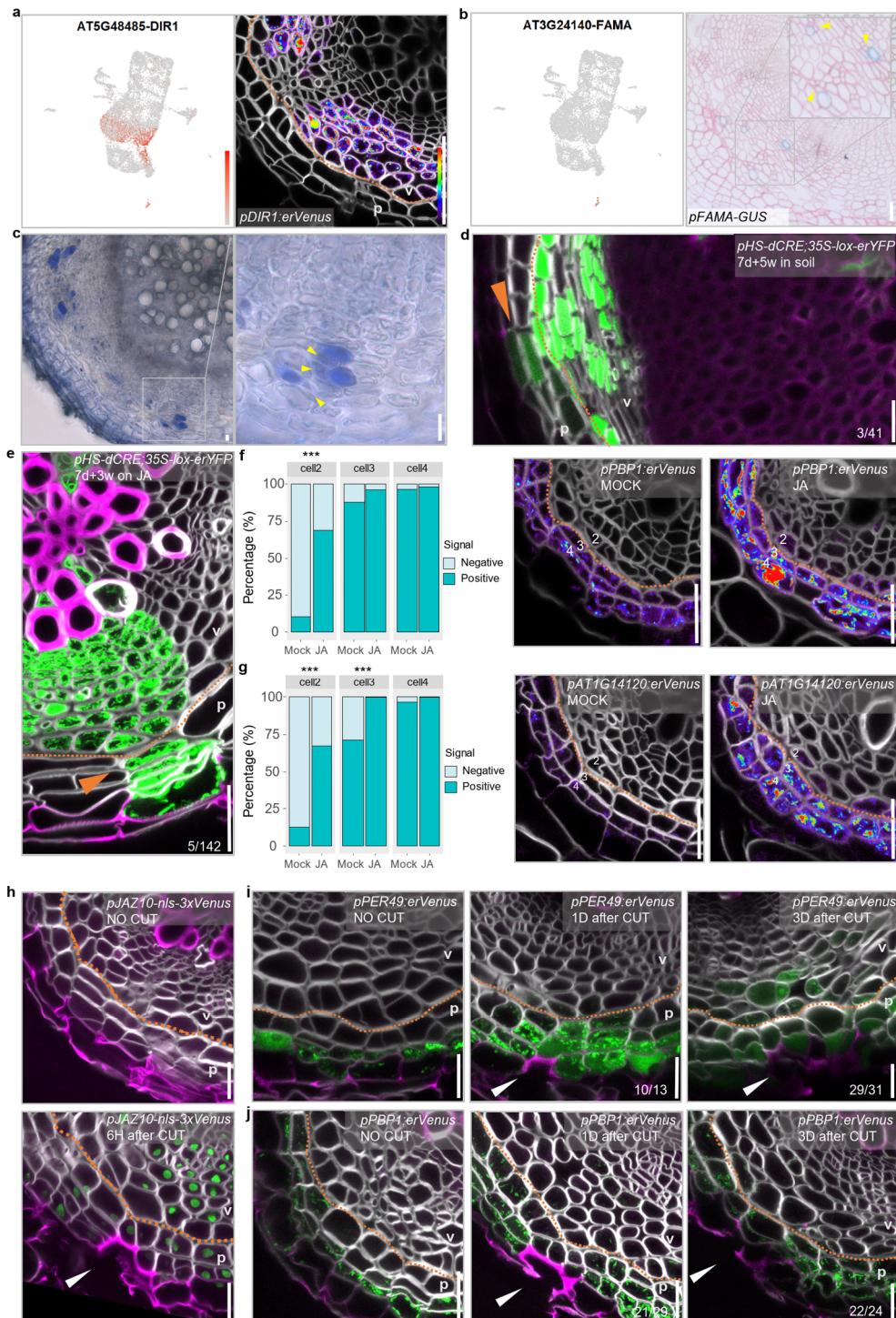
155 a, b, c, UMAP plots of *RTFL6* (a), *AT1G48750* (b) and *AT5G07080* (c) highly detected in young, maturing, and mature xylem parenchyma cluster, respectively, and confocal cross-sections of their promoter-reporter lines. d, UMAP plot of *AT4G30460* highly expressed in xylem parenchyma clusters. e, Bright-field cross-sections of 14-day-old wildtype and *at4g30460* single mutant roots. Yellow dots indicate secondary vessels. f, Quantification of secondary vessels number in 14-day-old wildtype and mutant seedlings. g, UMAP plot of *TET5* highly detected in CPP cluster and confocal cross-section of its promoter reporter line. h, Confocal cross-section of 16-day-old *pTET5:erRFP* in *pHS-dCRE;35S-lox-erYFP* root 6 days after clone induction. Left; merged image, right; image with RFP and cell wall channels. A sector from a single clone was encircled by dotted lines. Yellow; *Venus-YFP* signals. i, UMAP plot of *CDF4/PAPL1* and confocal cross-sections of its promoter reporter line. In g-i, white and yellow arrowheads indicate CPP cells originated from formative division and recruited from neighboring cell lineages, respectively. j, Bright-field cross sections of 16-day-old wildtype and *3pap/C* mutant roots. Orange arrowheads point at *de novo* sieve elements. k, Quantification of *de novo* sieve elements number in 16-day-old wildtype and *3pap/C* mutant seedlings. In a-c and g-i, for each gene, the UMAP plot and cross section of 16-day-old roots was shown in the left and right, respectively. In cross sections of a-c and g-i, cell walls were stained with SR2200. In f and k, the boxes in the box-and-whisker plots represent median values and interquartile range, the whiskers indicate the total range. The black dots indicate measurements from individual roots. Shapiro-Wilk normality test followed by a two-tailed Wilcoxon test was utilized for statistic test between Col-0 and mutants. *p<0.05, **p<0.01, ***p<0.001. The experiment was repeated twice (f) or four times (k). n indicate the number of examined roots. Relative expression levels of genes in UMAP and *Venus-YFP* signals in a-d, g, and i or RFP signals in h in cross sections were shown according to the colour map in a. Scale bars, 50 μ m (e, j), 20 μ m (a-c, g-i).

155

156 Mature phloem parenchyma is involved in biotic stress responses

157 As continuous growth pushes the more mature phloem parenchyma cells outwards, these cells become
158 larger and more loosely arranged than the young parenchyma cells near vascular cambium. Based on this
159 morphological characteristic, we named these large parenchyma cells 'mature phloem parenchyma' cells, a
160 novel cell type marked by *DEFECTIVE IN INDUCED RESISTANCE 1 (DIR1)*, *COLD-REGULATED 15A (COR15A)*,
161 and *AT1G62500* expression (Fig. 3a and Supplementary Fig. 6a). Within this region, we identified the
162 existence of a specialized parenchymatic storage cell, myrosin idiosyncrasy (MI), which functions as part of the
163 unique glucosinolate-myrosinase defence system in *Brassicaceae* plants against herbivory attacks²⁸⁻³⁰.
164 Majority of validated or potential regulators of MI function or differentiation³¹ showed strong expression in
165 the MI cluster (22 out of 35 genes; Supplementary Fig. 6c). Also, signals of myrosinase (also called

166 thioglucosidase) encoding gene *THIOGLUCOSIDE GLUCOHYDROLASE2* (*TGG2*)³² and MI regulator *FAMA*^{30,31}
167 reporters were sparsely detected in individual cells in mature phloem parenchyma region (Fig. 3b and
168 Supplementary Fig. 6b). We utilized Coomassie brilliant blue (CBB) staining to visualize the Mis³³, and
169 supportively, CBB-stained cells were scattered in the similar area where *TGG2* and *FAMA*-positive cells were
170 found (Fig. 3c). To our knowledge, this is the first report demonstrating that MI exists also in the mature root.
171 This also highlights the power of single cell approaches to reveal the presence of a cell type which has not
172 been reported before in mature root. Interestingly, we often detected promoter activities of *TGG2* and *FAMA*,
173 and CBB staining, in cells next to the sieve element, the position previously occupied by the companion cells
174 (Fig. 3b,c and Supplementary Fig. 6b). From GO enrichment comparison among conductive phloem clusters
175 (cluster 2, 19, 21) and cluster 22, cluster 22 companion cells seem to have a tight connection with MI cells in
176 the context of glucosinolate catabolic and sulfur compound metabolic processes (Supplementary Fig. 6d). In
177 summary, although we cannot exclude other origins, our data strongly supports the notion that MI cells
178 mature from companion cells in the phloem lineage.


179 Mature phloem parenchyma cells obtain periderm cell identity in response to superficial injury

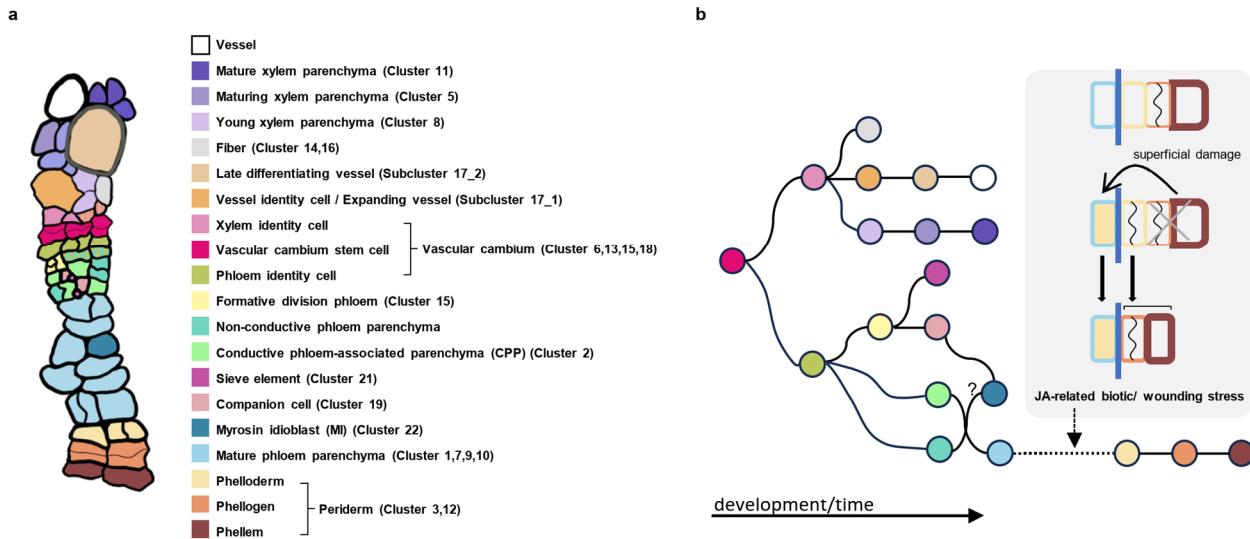
180 In our dataset, the periderm clusters 12 and 3 were adjacent to but separated from mature phloem
181 parenchyma clusters. This separation is consistent with the observation that the periderm and phloem
182 parenchyma have a different origin in primary tissue: the periderm originates from the pericycle cells and
183 the phloem parenchyma primarily from procambium cells^{11,3}. Thus, the clonal boundary is well-defined,
184 especially in young secondary tissues (Fig. 3a)¹¹. However, we found genes which were frequently detected
185 in both mature phloem parenchyma and periderm clusters and reporters validated expression in both tissues
186 (Supplementary Fig. 6e). Moreover, in the dataset, there were a small group of cells between mature phloem
187 parenchyma and periderm clusters (Fig. 1b). Since the phelloderm is adjacent to the mature phloem
188 parenchyma, we thus hypothesized that mature phloem parenchyma cells gradually obtain the phelloderm
189 identity. To test this hypothesis, we carried out lineage tracing by inducing YFP clones in procambial cells
190 within a few days after the secondary growth activation. Five weeks after the induction, we examined the
191 non-XPP lineage sectors in which the phloem parenchyma and periderm have distinct origins¹¹, and found
192 that the majority of these sectors reached the boundary of the periderm and mature phloem parenchyma
193 (35 out of 41 sectors). However, a small proportion of sectors extended into the periderm; we found that
194 single phelloderm cell (one cell invasion) (3 out of 41 sectors) or even an entire radial periderm cell file (one
195 cell file invasion) (3 out of 41 sectors) was originated from the procambium (Fig. 3d). These data thus shows
196 that mature phloem parenchyma cells have the capacity to obtain periderm identity, but at low frequency
197 under normal growth conditions.

198 Next, we investigated the biological role of this transition. Mature phloem parenchyma clusters showing the
199 gradual transition to the periderm (clusters 1 and 9), were overrepresented by jasmonic acid (JA) and salicylic
200 acid (SA) responses and response to biotic stress (Supplementary Fig. 6f). These data suggest that mature
201 phloem parenchyma cells might be preparing for biotic stress and these stress hormones could promote the
202 transition of the phloem parenchyma to the periderm to reinforce the root barrier. To examine the role of JA
203 and SA in the transition, we performed lineage tracing upon JA or SA treatment. We induced single-cell YFP
204 clones in the procambium within a few days after the initiation of secondary growth and treated the seedlings
205 with JA or SA for three weeks. Among 88 vascular sectors, four sectors showed one cell or one cell file invasion
206 into the periderm upon SA treatment (one cell invasion; three out of 88 sectors, one cell file invasion; one
207 out of 88 sectors), whereas no sector showed such transition in mock-treated roots (none out of 47 sectors)
208 (Supplementary Fig. 7a). Upon JA treatment, five out of 142 sectors showed two cells or an entire cell file
209 invasion into the periderm (two cell invasion; four out of 142 sectors, cell file invasion; one out of 142 sectors)
210 (Fig. 3e). Conversely, mock-treated roots for JA treatment did not show any sectors with more than two cell
211 invasions (75 sectors). Only three of them showed sectors with one cell invasion. These results suggest that

212 treatment of JA and SA accelerates the transition of mature phloem parenchyma cells to periderm cells. This
213 accelerated transition seems not to be caused by general growth retardation caused by JA and SA^{34,35}, since
214 abscisic acid (ABA), another stress hormone and growth inhibitor³⁶, did not accelerate the transition (none
215 out of 54 sectors), despite being able to slow down radial growth. We wondered whether such a hormone
216 treatment might affect cell identities in the mature phloem parenchyma cells as a part of the transition
217 process. Hormonal treatment was first applied to two periderm markers, *pPBP1-erVenus* and *pAT1G14120-*
218 *erVenus*. JA resulted in the most significant expansion of periderm marker expression inward, into mature
219 phloem parenchyma. (Fig. 3f, g, Supplementary Fig. 7b). SA or ABA showed minor effect on these periderm
220 markers (Supplementary Fig. 7b-f). We also tested JA treatment with other periderm markers generated from
221 this study. *AT3G26450* and *PER49* reporter lines showed clear or slight expansion upon JA treatment,
222 respectively. The reporter line of *BGLU23*, which is known to be JA induced³⁷, showed drastic signal increase
223 and expansion in the whole secondary tissues after JA treatment (Supplementary Fig. 7b,g-i). These results
224 suggest that phloem parenchyma adjacent to the periderm obtains periderm identity as a result of JA
225 treatment. This is in accordance with the accelerated transition as observed in our lineage tracing experiment
226 (Fig. 3e).

227 Given that JA signalling is induced upon tissue injury³⁷, we hypothesized that the transition is beneficial for
228 reinforcing the barrier upon superficial injury caused by e.g. growth in soil³⁸. To mimic superficial injury, we
229 ablated the phellem and phellogen with a shallow longitudinal cut along mature roots with a razor blade. We
230 confirmed that superficial injury was sufficient to induce JA response marker expression *pJAZ10-nls-3xVenus*
231 near and further away from the cut site six hours after the injury (Fig. 3h). One day after the injury, the
232 periderm markers, *PER49* and *PBP1*, expanded their expression into the mature phloem parenchyma cells,
233 beneath the wound (Fig. 3i,j). These observations suggest an inward identity shift after the superficial injury.
234 Re-establishment of phellogen in former phellogen cells and the phellem cells adjacent to them were first
235 observed three days after the injury. *PER49* and *PBP1* expression were maintained beneath the wound site
236 to mark the newly formed periderm (Fig. 3i,j). Together, our data indicate that the phellogen and phloem
237 parenchyma function as a reservoir for the phellogen, and thus for the barrier re-establishment. During
238 normal development, the transition from phloem parenchyma via phellogen to phellogen is slow and
239 sporadic, but this can be accelerated in case of superficial injury to reinforce the barrier.

Figure 3. Mature phloem parenchyma functions in stress response and re-specification of the barrier upon injury.


a, UMAP plot and confocal cross-section of 16-day-old promoter-reporter line of *DIR1* which is highly detected in mature phloem parenchyma clusters. **b**, UMAP plot and light microscopy image of cross-section of promoter-reporter line of *FAMA* specifically detected in myrosin idioblast (MI) cluster. **c**, Bright-field cross-section of wild-type root with CBB staining. **b** and **c** show cross-sections of 30-day-old roots. Yellow arrowheads point at sieve elements adjacent to the MIs. **d**, **e**, Confocal cross-section of *pHS-dCRE;35S-lox-erYFP* root. Clones induced in 7-day-old seedlings were analyzed 5 weeks after growth on soil (**d**) or 3 weeks after growth on 1/2 GM plates supplemented with 10 μ M methyl jasmonate (**e**). Orange arrowheads indicate the transition sector. The fraction indicates 3 out of 41 (**d**) or 5 out of 142 (**e**) sectors extended to the periderm. **f**, **g**, Confocal cross-sections of 12-day-old *pPBP1:erVenus* (**f**) and *pAT1G14120:erVenus* (**g**) roots grown without (Mock) or with (JA) methyl jasmonate for 2 days, and the frequency of signal positive cells in each cell in a cell file. Numbers in the cross-sections indicate cell position numbers in the barchart. Fisher's exact test was performed. *** p <0.001. **h**, Confocal cross-sections of 17-day-old *pJAZ10-nls-3xVenus* roots without injury (upper) or 6 hours after the phloem and phloogen were damaged (lower). **i**, **j**, Confocal cross-sections of *pPER49:erVenus* (**i**) and *pPBP1:erVenus* (**j**) roots without injury (left) and one day (middle) or three days (right) after the phloem and phloogen were damaged in 17-day-old roots. In cross sections of **a**, **d-j**, cell walls were stained with SR2200. In **d**, **e**, **h-j**, Green; YFP, magenta; Basic Fuchsin. In **a**, **d-j**, orange dashed line indicates the clonal boundary of vascular tissue and periderm. In **d**, **e**, **h-j**, v; vascular region, p; periderm. Relative expression levels of genes in UMAP and Venus signals in cross sections were shown according to the color map in **a**. In **h-j**, white arrowheads indicate the wounding site. Scale bars, 20 μ m (**a-j**).

241 Discussion

242 In this study we used single-cell RNA sequencing and extensive reporter analysis to identify cell types and
243 states in the *Arabidopsis* root undergoing secondary growth (Fig. 4a). By combining prior knowledge and our
244 new findings, we were able to generate a hierachal cell fate determination map for all cell types during
245 secondary growth in roots (Fig. 4b; Supplementary Fig. 8). The vascular cambial stem cells produce xylem
246 cells inwards and phloem cells outwards^{11,39}. Our new data indicate that xylem-side stem cell daughters first
247 obtain common xylem identity before specifying into one of three different cell types: vessels, parenchyma
248 or fiber cells. Similar to the visibly differentiated xylem cell types, we found that also xylem parenchyma
249 undergoes several maturation steps. The phloem-side stem cell daughters obtain phloem identity before
250 becoming phloem parenchyma cells or they undergo formative divisions to form conductive phloem cells
251 (sieve elements and companion cells) and CPP cells (Fig. 4b). We discovered that CPP cells can also be
252 recruited from the parenchyma cell lineage by the adjacent conductive phloem cells. As vascular cambium
253 produces more phloem cells, the previously produced phloem parenchyma cells enlarge and become mature
254 phloem parenchyma cells. Myrosin idioblast (MI) cells are also developed within the mature phloem
255 parenchyma region, at least in part by differentiating from mature companion cells.

256 We made an unexpected discovery that the mature phloem parenchyma cells gradually undergo identity
257 transition to become phellogen, the innermost cell type of the periderm. Our data suggest that upon
258 physical damage of the periderm, JA signalling is triggered which in turn stimulates the accelerated transition
259 of mature phloem parenchyma into periderm cells to quickly reinforce the barrier. Since wounding caused
260 faster cell transition than JA treatment, we hypothesize that there are also other factors than JA in promoting
261 the transition. It has been reported that damage-induced JA signaling in root apical meristem triggers stem
262 cell regeneration to sustain primary root growth⁴⁰. Whereas the underlying mechanism for the transition of
263 phloem parenchyma into the periderm is unknown, it is possible that the common regulatory factors are
264 utilized for stem cell regeneration in the root tip and periderm replenishment. In addition to abiotic stress,
265 also biotic stress, such as bacteria, fungi or herbivore, can cause damage to the periderm and activate JA-
266 induced barrier reinforcement. Additionally, herbivore attack can cause deeper damage to the secondary
267 tissue, which can be confronted with the MI cells located within the mature phloem parenchyma. Breakage
268 of the MI cells and the neighbouring mature phloem parenchyma cells in *Brassicaceae* such as *Arabidopsis*
269 *thaliana* triggers a herbivory defence response called the mustard oil bomb^{29,30}. Thus, two elaborated
270 defence mechanisms are elicited upon injury depending on the depth of damage to protect the mature root.
271 Protection of the mature root is critical for the plant's survival as it connects the whole root system to the
272 entire shoot system located above.

273 Storage organs consist of specialized secondary tissue produced by vascular cambium of several important
274 crop species, such as cassava and sweet potato^{41,42}. Majority of the tissue in storage organs are composed of
275 xylem parenchyma cells, which have a function to act as storage tissue for carbohydrates and other
276 nutrients^{41,43}. Thus, our parenchyma transcriptome dataset will be valuable in identifying state-specific roles
277 of parenchyma cells, which may have a function in corresponding storage cell types in crop species.

Figure 4. A hierarchical cell fate determination map of the *Arabidopsis* root undergoing secondary growth.

a, Schematic illustration of cell types in *Arabidopsis* secondary tissues. Cell type classification based on previous reports and data presented in this study. Cluster ID corresponds to the cluster ID in the UMAP. **b**, Schematic illustration of hierarchical cell fate determination in secondary tissue. Color of each circle represents cell identity in **a**.

278

279

280 **Methods**

281 **Plant growth condition**

282 The seeds were sterilized with 20% chlorine for 3 min followed by sterilization with 70% ethanol for 5 min
283 and were washed with milliQ water twice. The seeds were kept in dark at 4 °C for two days and then plated
284 on half-strength Murashige and Skoog growth medium (1/2 GM) supplemented with 2.2 g/L MS salt mixture
285 with vitamins (Duchefa), 1% sucrose, 0.5 g/L MES and 0.8% agar (pH 5.8). In case of the T1 generation seeds,
286 the seeds were mixed with 0.1% agar supplemented with 250 µg/ml Cefotaxime (Duchefa) before plating to
287 avoid Agrobacterium contamination. The plates were placed vertically in a growth chamber. The day when
288 the plates were moved to the growth chamber was defined as day 0. Analysis was performed with plate-
289 grown seedlings unless otherwise mentioned. The seedlings were transferred to soil around day 7 if
290 necessary for analysis. The plants were grown at 23 °C under long-day photoperiod conditions (16 hours
291 light/8 hours dark).

292 **Protoplast isolation and fluorescence-activated cell sorting**

293 We utilized 30-day-old *pPXY:erYFP* (Col-0) grown on soil to isolate protoplasts for single cell analysis. The
294 protoplast isolation protocol was modified from the published protocol⁴⁴. Roots within 2 cm below the root-
295 hypocotyl junction were harvested (lateral roots were removed) and washed with tap water and then Milli-
296 Q water. The roots were longitudinally dissected with a razor blade under a stereo microscope and put into
297 the protoplast isolation solution (1.5% (w/v) cellulase-R10 (Yakult), 0.4% (w/v) macerozyme-R10 (Yakult),
298 0.4 M mannitol (Sigma-Aldrich), 20 mM MES (Duchefa), 20 mM KCl (1 M stock in Milli-Q water), 0.1% (w/v)
299 BSA (Sigma-Aldrich) and 10 mM CaCl₂ (1 M stock in Milli-Q water)). The samples were incubated at room
300 temperature under the dark condition with gentle shaking (75 rpm) for one hour. After the incubation, the
301 solution was filtered once with the 70 µm cell strainer and the flow-through was centrifuged at 400 g for 6
302 min. The supernatant was gently removed, and the protoplasts were resuspended in the buffer (the
303 protoplast isolation solution without enzymes). The resuspended protoplast solution was filtered three times

304 with the 40 μ m cell strainer. Protoplasts were stained with 14 μ M 4',6-diamidino-2-phenylindole (DAPI) in
305 PBS and the DAPI negative cells were sorted by BD FACSaria II. We confirmed the efficiency of this protocol
306 by isolating protoplasts from known tissue-specific reporters covering the major cell types in the root
307 secondary tissue. We were able to capture fluorescence-positive protoplasts from each reporter lines,
308 suggesting that our protoplast isolation method was sufficient to acquire cells residing in different regions of
309 the secondary tissue.

310 Single-cell RNA sequencing sample processing, library establishment and sequencing

311 After sorting, the protoplasts were centrifuged at 400 g at 4°C for 5 minutes and then resuspended in
312 resuspension solution to a final concentration of around 1,000 cells/ μ L. Resuspended cells were loaded on a
313 Chromium Single Cell 3' GEM, Library & Gel Bead Kit (V3 chemistry, 10X Genomics) according to the
314 manufacturer's instructions. Libraries were sequenced on an Illumina HiSeq4000 and NovaSeq6000
315 instrument following recommendations of 10X Genomics at the VIB Nucleomics Core facility (VIB, Leuven).

316 Processing of raw sequencing data and data analysis

317 The FASTQ files obtained after demultiplexing were used as the input for 'cellranger count' (version 6.1.2),
318 with reads being mapped to the *Arabidopsis thaliana* reference genome (Ensembl TAIR10.40). Initial filtering
319 in CellRanger recovered 17,140 cells, corresponding with 33,679 mean reads per cell and 2,409 median genes
320 per cell. Further data processing was performed in R (version > 3.6.0) (<https://www.r-project.org/>) by the
321 'scater' package⁴⁵ (version 1.10.1). Outlier cells were defined as having less than 4,000 UMIs or as cells
322 containing more than 5% mitochondrial or chloroplast transcripts. After removing outliers, 11,760 cells were
323 retained for further analysis. Normalizing the raw counts, detecting highly variable genes, finding clusters
324 and creating Uniform Manifold Approximation and Projection (UMAP) plots were done using the Seurat
325 package (version 4.1.0)⁴⁶. Differential expression analysis for marker gene identification per subpopulation
326 was based on the non-parametric Wilcoxon rank sum test implemented within the Seurat pipeline. Necessary
327 reported information to allow evaluation and repetition of a plant single cell/nucleus experiment is included
328 in Supplementary Table S1.

329 Gene ontology (GO) enrichment analysis

330 Differentially expressed gene (DEG) list ($\text{avg_logF2C} \geq 0.5$) of each cluster or subcluster was used for Gene
331 ontology (GO) enrichment analysis using the clusterProfiler v 4.2.2⁴⁷ in the program R v4.0.2 (<https://www.r-project.org/>) with $p < 0.05$.

333 Cloning of reporter lines and plant transformation

334 We selected genes for cluster validation based on their expression in clusters in the dataset. Their promoter
335 regions were amplified with primers listed in Supplementary Table S4 and cloned into the *pDONRP41R* entry
336 vector as the first box by Gateway BP Clonase II enzyme (Thermo Fisher Scientific). The first box plasmid
337 (promoter), the second box plasmid (reporter gene), 221z-*erVen* or 221z-*erRFP*⁴⁸, the third box plasmid
338 (terminator), 2R3e-3AT⁴⁸, and the destination vector, *pFRm43GW*⁴⁹ containing an *RFP* seed coat selection
339 marker, were used to generate the reporter line constructs by MultiSite Gateway technology (Thermo Fisher
340 Scientific). The genes selected for the reporter analysis, the primers used for promoter amplification, and the
341 frequency of T1 individuals showing expression pattern predicted from scRNA-seq dataset and the available
342 generation of the reporter seeds are listed in Supplementary Table S4. The generated promoter:*erVenus-YFP*
343 constructs were transformed into Col-0 and the reporter expression was examined in T1 generation unless
344 otherwise stated. The *pTET5:erRFP* was transformed in *HS-dCRE;35S-lox-erYFP*.

345 Mutant analysis

346 In this study, Col-0 was used as wildtype. The *3pap1C* triple mutant was received from authors reported the
347 mutant¹⁹. The rest of the mutants were ordered from Nottingham Arabidopsis Stock Centre (NASC): *apk1a*
348 (GK-430G06), *at4g30460* (SALK_140721), *anac087* (SALK_079821), *myb3r-3* (SALK_143357C), *myb3r-5*
349 (SALK_205058C), *nac055* (SALK_014331C), *myb112* (SALK_017020C), *anac046* (SALK_107861C), *at4g21620*
350 (SALK_099390C). The mutants ordered from NASC were genotyped and homozygous lines were selected for
351 seed propagation. All the mutants and Col-0 were freshly propagated for phenotyping.

352 The mutant phenotypes were examined utilizing 14-day-old seedlings except for *3pap1C* which were 16-day-
353 old. The phenotyping of *3pap1C* were repeated four times. The phenotype of the other mutants was repeated
354 twice.

355 Lineage tracing analysis

356 For lineage tracing analysis, we generated transgenic plants in which *er-YFP* sectors can be activated upon
357 heat-shock based on previously generated line¹¹. We backcrossed *HS-dCRE;35S-lox-GUS* line with Col-0 and
358 established the F3 line which was homozygous for *HS-dCRE* without *35S-lox-GUS* construct (*HS-dCRE*) based
359 on selection markers (hygromycin for *HS-dCRE* and Basta for *35S-lox-GUS*). The *35S-lox-erYFP* construct was
360 transformed into the *HS-dCRE* seedlings; the T3 line homozygous for *35S-lox-erYFP* construct (*HS-dCRE;35S-*
361 *lox-erYFP*) were established based on the selection marker (Basta). T3 or T4 seedlings were utilized for
362 analysis. *pTET5:erRFP* was transformed into *HS-dCRE;35S-lox-erYFP* and were analysed at T2 generation.

363 For clone induction, 7-day-old seedlings grown on 1/2GM plates were utilized. After removing excess water
364 from plates, one or two plates were placed in a plastic bag. We sealed the plastic bag with plastic tape to
365 avoid water leakage and submerged the bag in 37°C water for 20 min. We retrieved plates from the plastic
366 bag and horizontally kept the plates at 4°C for 30 min. The plates were moved to the growth chamber. One
367 day later, the sector induction was examined under a fluorescence stereo microscope. For sector analysis at
368 five weeks after the induction, the seedlings were moved to soil. For sector analysis with hormone treatment,
369 seedlings were transferred to 1/2GM plates supplemented with hormone.

370 Chemical treatment

371 For hormone treatment, salicylic acid (SA, Sigma-Aldrich), methyl jasmonate (JA, Sigma-Aldrich), and abscisic
372 acid (ABA, Duchefa) were dissolved in DMSO (SA and JA) or ethanol (ABA) to prepare 100 mM stock solution.
373 The stock solution was stored at -20 °C. To examine gene expression upon treatment, the homozygous T3
374 reporter lines were first grown on 1/2 GM plates for 10 days, then were transferred to 1/2 GM plates
375 supplemented with 5 µM SA, 10 µM JA or 10 µM ABA, or 1/2 GM plates contained an equal volume of DMSO
376 or ethanol as a control (called Mock in the experiments). The seedlings were treated for 2 days.

377 For lineage tracing analysis with hormone treatment, 7-day-old seedlings grown on 1/2 GM plates were
378 utilized to induce clones upon heat as described above. One day later, the seedlings were transferred to 1/2
379 GM plates supplemented with 5 µM SA, 10 µM JA or 10 µM ABA, or 1/2 GM plates contained an equal volume
380 of DMSO or ethanol as a control (Mock). The seedlings were grown for 20 days.

381 The 17-β-oestradiol (EST, a synthetic derivative of oestrogen, Sigma-Aldrich) was prepared as 20 mM stock
382 in DMSO and the stock solution was stored at -20°C. The 13-day-old *p35S: XVE>>CKX7⁶⁰* seedlings were
383 transferred to the 1/2 GM plate containing 5 µM EST or equal amount of DMSO(Mock) for 1 day.

384 Fluorescence marker fixation, vibratome sectioning and confocal imaging

385 The protocol was modified from published paper¹¹. To examine fluorescence reporter expression, samples
386 were fixed in 4% paraformaldehyde (PFA, Sigma-Aldrich) in 1×phosphate-buffered saline (PBS, pH 7.2)
387 supplemented with 0.1% triton under vacuum for 1h, then washed twice with 1xPBS. Roots were embedded

388 into 5% agarose in 1xPBS, followed by vibratome sectioning. The 200 μ m thick slices were kept in 1xPBS
389 supplemented with 1 μ l/ml SR2200 (Renaissance Chemicals) to stain cell wall. To stain lignin, the agarose
390 slices were put into ClearSee⁵¹ supplemented with 1 μ l/ml SR2200 and 50 μ g/ml Basic Fuchsin (Sigma-
391 Aldrich)⁵². The cross sections were mounted with 1xPBS or ClearSee and imaged with Leica SP8 Stellaris
392 confocal microscope (Leica) under 20x or 63 \times objectives with Leica Las AF software. All the confocal images
393 were taken with sequential scan mode. For *p35S:XVE>>CKX7*⁵⁰, the sections were stained with 1 μ g/ml
394 calcofluor white (Sigma-Aldrich) in 1xPBS. To visualize reporter gene expression, the settings were adjusted
395 individually for each reporter line. However, when fluorescent signal intensities were compared within an
396 experiment, identical settings were used. For the setting to visualize cell wall staining, signals were adjusted
397 for each cross section individually.

398 GUS staining, material fixation, microtome sectioning and light microscopy

399 The GUS staining protocol was modified from published paper⁵³. Samples were kept in 90% acetone on ice
400 for 30 min. After the incubation, the samples were washed twice with 0.05 M sodium phosphate buffer (pH
401 7.2). Then the samples were submerged into GUS solution (0.05 M sodium phosphate buffer (pH 7.2), 1.5 mM
402 ferrocyanide, 1.5 mM ferricyanide, 1 mM X-glucuronic acid and 0.1% Triton X-100) and kept at room
403 temperature under vacuum for 1h. The samples were incubated at 37 °C until the desired GUS signals were
404 detected.

405 Samples for microtome sectioning were fixed in 1% glutaraldehyde and 4% formaldehyde in 0.05 M sodium
406 phosphate (pH 7.2) for overnight and washed with 0.05 M sodium phosphate twice. To gradually dehydrate,
407 the samples were kept in 10%, 30%, 50%, 70%, 96% and 100% ethanol for 30 min in each step. The 30 min
408 incubation with 100% ethanol was repeated one more time. The samples were transferred to a 1:1 (v/v)
409 solution of 100% ethanol and solution A (Leica Historesin Embedding kit) and kept for 1h, followed by the
410 incubation in solution A overnight. The samples were aligned in chambers and embedded with a 14:1 (v/v)
411 solution of solution A and the hardener.

412 The cross sections of embedded samples were made with Leica JUNG RM2055 microtome. The sections were
413 acquired around 0.5 cm below the root-hypocotyl junction. The thickness of the sections was 10 μ m for GUS
414 reporter lines or otherwise 5 μ m. The cross sections of GUS reporter lines were staining with 0.05% (w/v)
415 ruthenium red (Sigma-Aldrich); the cross sections without GUS signals were additionally stained with 0.05%
416 (w/v) toluidine blue (Sigma-Aldrich). The sections were imaged with Leica 2500 microscope under 20 \times and
417 40 \times objectives.

418 CBB staining

419 The protocol was modified from published paper³³. Thirty-day-old plants were collected in 15 mL CELLSTAR
420 tube (Greiner Bio-One) with CBB solution (45% methanol, 10% acetic acid, and 0.25% CBB R250) and boiled
421 in water bath for 3 min, followed by wash with 1xPBS three times. The roots within 1 cm below the root-
422 hypocotyl junction were embedded in 5% agarose and sectioned by vibratome with 100 μ m thickness. The
423 sections were mounted with water and imaged with Leica 2500 microscope.

424 Wounding experiment

425 We used 17-day-old seedlings for the cutting experiment. Roots within 5 mm from the root-hypocotyl
426 junction were longitudinally injured with a razor blade under a dissection stereo microscope. We defined the
427 superficial cut as the ablation of the phellem and phellogen. Only cross sections with the superficial cut were
428 used for analysis.

429 Quantification and statistical analysis

430 For mutant phenotype quantification, number of secondary vessels, and sieve element, vasculature diameter
431 and cellular fluorescence signal intensity were manually measured by FIJI ImageJ v1.52⁵⁴. All the plots for
432 visualizing the quantification results were produced by ggplot2 package⁵⁵ in RStudio (<https://www.rstudio.com/>) with the program R v4.0.2 (<https://www.r-project.org/>). For boxplots, the boxes in the box-and-
433 whisker plots represent median values and interquartile range, the whiskers indicate the total range. The
434 black dots indicate measurements from individual roots. For each reporter line, fluorescence signal
435 intensities were measured in cell1 to cell4 (Supplementary Fig. 5b). We defined signal 'positive' cells as cells
436 in cell2, 3, 4 whose signal intensities were higher than maximum signal intensity in cell1 of mock-treated
437 roots. The proportion of signal positive cells in cell2, 3, and 4 was visualized by bar charts.
438

439 For mutant phenotype analysis, the normality distributions of each type of quantification were tested with
440 Shapiro-Wilk normality test. Significant differences were examined by two-tailed Wilcoxon test, except for
441 number of sieve element, of which significant test was performed by two-tailed *t*-test. For fluorescence signal
442 analysis, the Fisher's exact test was performed.

443 DATA AND MATERIALS AVAILABILITY

444 The data can be accessed via a freely accessible on-line browser tool (<https://www.single-cell.be/plant>) The
445 transcriptome data is deposited in the online tool and raw data can be accessed at NCBI with GEO number:
446 GSE270140. All other data are either in the main paper or the Supplement. Material requests should be
447 directed to the corresponding authors.

448 ACKNOWLEDGEMENT

449 We thank Jos Wendrich for helping the sample processing of single-cell RNA sequencing and Kevin Verstaen
450 for helping data processing in VIB; Ykä Helariutta, Sofia Otero, Paweł Roszak for providing published seeds;
451 Xixi Zhang, Jennifer López Ortiz, Tiina Blomster, Tonni Grube Anderson and Ryohei Thomas Nakano
452 providing suggestions to the manuscript; Dominique C Bergmann for providing the pFAMA-GUS made by
453 Anne Vatén during her post-doctoral period; Kenneth Birnbaum for providing suggestion for protoplast
454 isolation and data analysis; special thanks to Mikko Herpola and Miki Iida for laboratory management and
455 Light Microscopy Unit (LMU), University of Helsinki, for providing the confocal microscopy equipment and
456 technical assistance.

457 This work was supported by the Research Council of Finland (grant numbers 316544 and 346141 to M.L.,
458 H.I., M.M., S.M., L.Y., B.W., X.W. and A.P.M.), European Research Council (ERC-CoG CORKtheCAMBIA
459 agreement 819422 to M.L., H.I., L.Y., B.W., X.W. and A.P.M.), University of Helsinki (Doctoral Programme in
460 Plant Biology to M.L.), an EMBO Postdoctoral Fellowship (ALTF 128-2020 to H.I.), the Japan Society for the
461 Promotion of Science (Overseas Research Fellowships to H.I.), and the European Research Council (ERC StG
462 TORPEDO; 714055 and ERC CoG PIPELINES; 101043257 to T.E. and B.D.R.).

463 CONTRIBUTIONS

464 A.P.M. conceived the project; A.P.M., M.L. and H.I. designed the experiments; B.D.R. supervised the single
465 cell RNA-seq data analysis; M.L., H.I. and M.M. performed the experiments; T.E. performed the sequencing
466 data analysis; S.M. integrated the dataset to Cella model; L.Y., A.V. and X.W. helped with cloning; B.W.
467 helped with reporter analysis. A.P.M., M.L., H.I. and B.D.R. wrote the paper with input from all authors.

468 COMPETING INTERESTS STATEMENT

469 Authors declare that they have no competing interests.

470

471 REFERENCES

472 1. Evert, R. F. *Esau's Plant Anatomy: Meristems, Cells, and Tissues of the Plant Body: Their*
473 *Structure, Function, and Development.* (John Wiley & Sons, 2006).

474 2. Serra, O., Mähönen, A. P., Hetherington, A. J. & Ragni, L. The Making of Plant Armor: The
475 Periderm. *Annu. Rev. Plant Biol.* 73, 405–432 (2022).

476 3. Wang, X., Mäkilä, R. & Mähönen, A. P. From procambium patterning to cambium activation
477 and maintenance in the *Arabidopsis* root. *Curr. Opin. Plant Biol.* 75, 102404 (2023).

478 4. Chaffey, N., Cholewa, E., Regan, S. & Sundberg, B. Secondary xylem development in
479 *Arabidopsis*: a model for wood formation. *Physiol. Plant.* 114, 594–600 (2002).

480 5. Słupianek, A., Dolblasz, A. & Sokołowska, K. Xylem Parenchyma—Role and Relevance in
481 Wood Functioning in Trees. *Plants* 10, 1247 (2021).

482 6. Birnbaum, K. D. Power in Numbers: Single-Cell RNA-Seq Strategies to Dissect Complex
483 Tissues. *Annu. Rev. Genet.* 52, 203–221 (2018).

484 7. Ke, Y., Minne, M., Eekhout, T. & De Rybel, B. Single Cell RNA-Sequencing in *Arabidopsis* Root
485 Tissues. *Methods Mol. Biol. Clifton NJ* 2698, 41–56 (2023).

486 8. Grones, C. *et al.* Best practices for the execution, analysis, and data storage of plant single-
487 cell/nucleus transcriptomics. *Plant Cell* 36, 812–828 (2024).

488 9. Becht, E. *et al.* Dimensionality reduction for visualizing single-cell data using UMAP. *Nat.*
489 *Biotechnol.* 37, 38–44 (2019).

490 10. Kubo, M. *et al.* Transcription switches for protoxylem and metaxylem vessel formation.
491 *Genes Dev.* 19, 1855–1860 (2005).

492 11. Smetana, O. *et al.* High levels of auxin signalling define the stem-cell organizer of the vascular
493 cambium. *Nature* 565, 485–489 (2019).

494 12. Mitsuda, N. *et al.* NAC Transcription Factors, NST1 and NST3, Are Key Regulators of the
495 Formation of Secondary Walls in Woody Tissues of *Arabidopsis*. *Plant Cell* 19, 270–280 (2007).

496 13. González-Grandío, E. *et al.* Abscisic acid signaling is controlled by a BRANCHED1/HD-ZIP I
497 cascade in *Arabidopsis* axillary buds. *Proc. Natl. Acad. Sci.* 114, E245–E254 (2017).

498 14. Bonke, M., Thitamadee, S., Mähönen, A. P., Hauser, M.-T. & Helariutta, Y. APL regulates
499 vascular tissue identity in *Arabidopsis*. *Nature* 426, 181–186 (2003).

500 15. Truernit, E. & Sauer, N. The promoter of the *Arabidopsis thaliana* SUC2 sucrose-H⁺
501 symporter gene directs expression of β-glucuronidase to the phloem: Evidence for phloem loading and
502 unloading by SUC2. *Planta* 196, 564–570 (1995).

503 16. Xiao, W. *et al.* Pluripotent Pericycle Cells Trigger Different Growth Outputs by Integrating
504 Developmental Cues into Distinct Regulatory Modules. *Curr. Biol.* 30, 4384–4398.e5 (2020).

505 17. Miyashima, S. *et al.* Mobile PEAR transcription factors integrate positional cues to prime
506 cambial growth. *Nature* 565, 490–494 (2019).

507 18. Roszak, P. *et al.* Cell-by-cell dissection of phloem development links a maturation gradient to
508 cell specialization. *Science* 374, eaba5531 (2021).

509 19. Otero, S. *et al.* A root phloem pole cell atlas reveals common transcriptional states in
510 protophloem-adjacent cells. *Nat. Plants* 8, 954–970 (2022).

511 20. Furuta, K. M. *et al.* Arabidopsis NAC45/86 direct sieve element morphogenesis culminating in
512 enucleation. *Science* 345, 933–937 (2014).

513 21. Takei, K. *et al.* AtIPT3 is a Key Determinant of Nitrate-Dependent Cytokinin Biosynthesis in
514 Arabidopsis. *Plant Cell Physiol.* 45, 1053–1062 (2004).

515 22. Chickarmane, V. S., Gordon, S. P., Tarr, P. T., Heisler, M. G. & Meyerowitz, E. M. Cytokinin
516 signaling as a positional cue for patterning the apical–basal axis of the growing Arabidopsis shoot meristem.
517 *Proc. Natl. Acad. Sci.* 109, 4002–4007 (2012).

518 23. Schlereth, A. *et al.* MONOPTEROS controls embryonic root initiation by regulating a mobile
519 transcription factor. *Nature* 464, 913–916 (2010).

520 24. De Rybel, B., Mähönen, A. P., Helariutta, Y. & Weijers, D. Plant vascular development: from
521 early specification to differentiation. *Nat. Rev. Mol. Cell Biol.* 17, 30–40 (2016).

522 25. Su, C. *et al.* Cella: 3D data visualization for plant single-cell transcriptomics in Blender.
523 *Physiol. Plant.* 175, e14068 (2023).

524 26. Fraser, C. M. & Chapple, C. The Phenylpropanoid Pathway in Arabidopsis. *Arab. Book* 2011,
525 (2011).

526 27. Smith, R. A. *et al.* Neighboring Parenchyma Cells Contribute to Arabidopsis Xylem
527 Lignification, while Lignification of Interfascicular Fibers Is Cell Autonomous. *Plant Cell* 25, 3988–3999
528 (2013).

529 28. Andréasson, E., Jørgensen, L. B., Höglund, A.-S., Rask, L. & Meijer, J. Different Myrosinase
530 and Idioblast Distribution in Arabidopsis and Brassica napus. *Plant Physiol.* 127, 1750–1763 (2001).

531 29. Kissen, R., Rossiter, J. T. & Bones, A. M. The ‘mustard oil bomb’: not so easy to assemble?!

532 Localization, expression and distribution of the components of the myrosinase enzyme system. *Phytochem. Rev.* 8, 69–86 (2009).

533 30. Li, M. & Sack, F. D. Myrosin Idioblast Cell Fate and Development Are Regulated by the
534 Arabidopsis Transcription Factor FAMA, the Auxin Pathway, and Vesicular Trafficking. *Plant Cell* 26, 4053–
535 4066 (2014).

536 31. Shirakawa, M. *et al.* FAMA Is an Essential Component for the Differentiation of Two Distinct
537 Cell Types, Myrosin Cells and Guard Cells, in Arabidopsis. *Plant Cell* 26, 4039–4052 (2014).

538 32. Barth, C. & Jander, G. Arabidopsis myrosinases TGG1 and TGG2 have redundant function in
539 glucosinolate breakdown and insect defense. *Plant J.* 46, 549–562 (2006).

540 33. Ueda, H. *et al.* AtVAM3 is Required for Normal Specification of Idioblasts, Myrosin Cells.
541 *Plant Cell Physiol.* 47, 164–175 (2006).

542 34. Staswick, P. E. The Tryptophan Conjugates of Jasmonic and Indole-3-Acetic Acids Are
543 Endogenous Auxin Inhibitors. *Plant Physiol.* 150, 1310–1321 (2009).

544 35. Rivas-San Vicente, M. & Plasencia, J. Salicylic acid beyond defence: its role in plant growth
545 and development. *J. Exp. Bot.* 62, 3321–3338 (2011).

547 36. Agustí, J. & Blázquez, M. A. Plant vascular development: mechanisms and environmental
548 regulation. *Cell. Mol. Life Sci.* 77, 3711–3728 (2020).

549 37. Yamada, K., Hara-Nishimura, I. & Nishimura, M. Unique Defense Strategy by the Endoplasmic
550 Reticulum Body in Plants. *Plant Cell Physiol.* 52, 2039–2049 (2011).

551 38. Farmer, E. E., Gao, Y.-Q., Lenzoni, G., Wolfender, J.-L. & Wu, Q. Wound- and
552 mechanostimulated electrical signals control hormone responses. *New Phytol.* 227, 1037–1050 (2020).

553 39. Wybouw, B., Zhang, X. & Mähönen, A. P. Vascular cambium stem cells: past, present and
554 future. *New Phytol.* 243, 851–865 (2024).

555 40. Zhou, W. *et al.* A Jasmonate Signaling Network Activates Root Stem Cells and Promotes
556 Regeneration. *Cell* 177, 942–956.e14 (2019).

557 41. Rüscher, D. *et al.* Auxin signaling and vascular cambium formation enable storage
558 metabolism in cassava tuberous roots. *J. Exp. Bot.* 72, 3688–3703 (2021).

559 42. Plunkert, M. L., Martínez-Gómez, J., Madrigal, Y., Hernández, A. I. & Tribble, C. M. Tuber, or
560 not tuber: Molecular and morphological basis of underground storage organ development. *Curr. Opin.*
561 *Plant Biol.* 80, 102544 (2024).

562 43. Dong, T. *et al.* RNA-Seq and iTRAQ reveal multiple pathways involved in storage root
563 formation and development in sweet potato (*Ipomoea batatas* L.). *BMC Plant Biol.* 19, 136 (2019).

564 44. Bargmann, B. O. & Birnbaum, K. D. Fluorescence activated cell sorting of plant protoplasts.
565 *JoVE J. Vis. Exp.* e1673 (2010).

566 45. McCarthy, D. J., Campbell, K. R., Lun, A. T. L. & Wills, Q. F. Scater: pre-processing, quality
567 control, normalization and visualization of single-cell RNA-seq data in R. *Bioinformatics* 33, 1179–1186
568 (2017).

569 46. Hao, Y. *et al.* Integrated analysis of multimodal single-cell data. *Cell* 184, 3573–3587.e29
570 (2021).

571 47. Wu, T. *et al.* clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. *The*
572 *Innovation* 2, 100141 (2021).

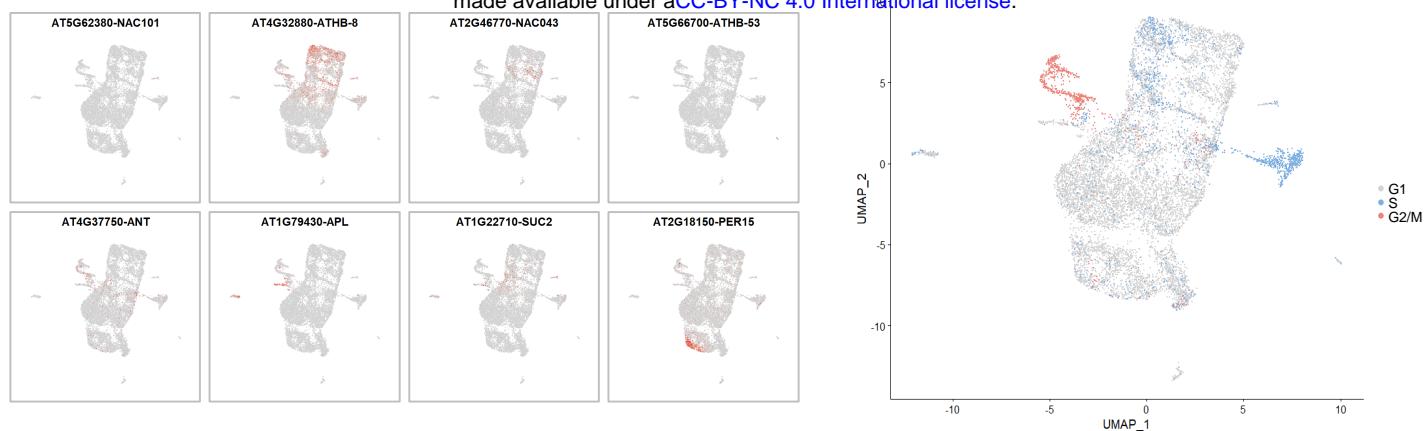
573 48. Siligato, R. *et al.* MultiSite Gateway-Compatible Cell Type-Specific Gene-Inducible System for
574 Plants. *Plant Physiol.* 170, 627–641 (2016).

575 49. Wang, X. *et al.* An inducible genome editing system for plants. *Nat. Plants* 6, 766–772 (2020).

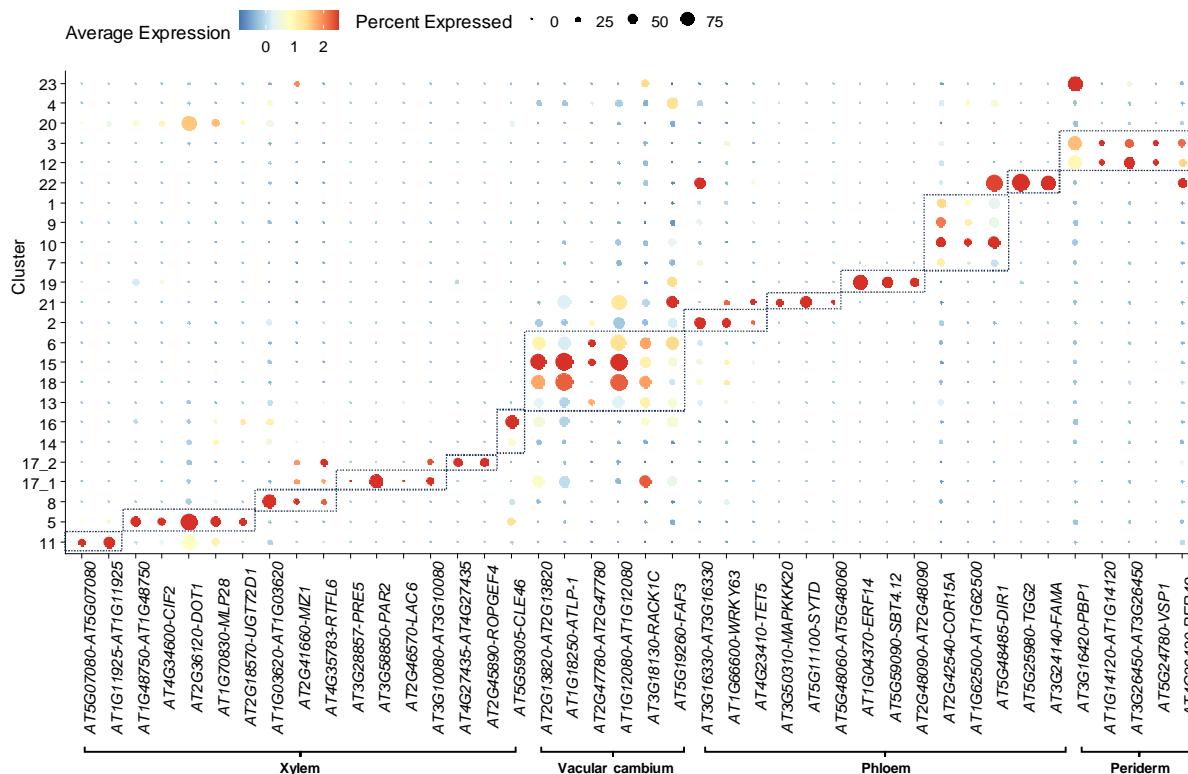
576 50. Ye, L. *et al.* Cytokinins initiate secondary growth in the *Arabidopsis* root through a set of LBD
577 genes. *Curr. Biol.* 31, 3365–3373.e7 (2021).

578 51. Kurihara, D., Mizuta, Y., Sato, Y. & Higashiyama, T. ClearSee: a rapid optical clearing reagent
579 for whole-plant fluorescence imaging. *Development* 142, 4168–4179 (2015).

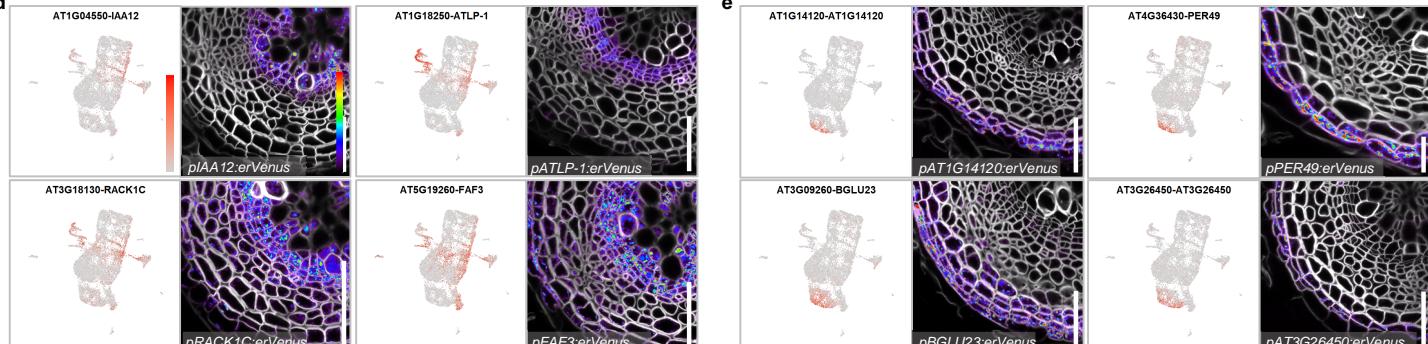
580 52. Ursache, R., Andersen, T. G., Marhavý, P. & Geldner, N. A protocol for combining fluorescent
581 proteins with histological stains for diverse cell wall components. *Plant J.* 93, 399–412 (2018).

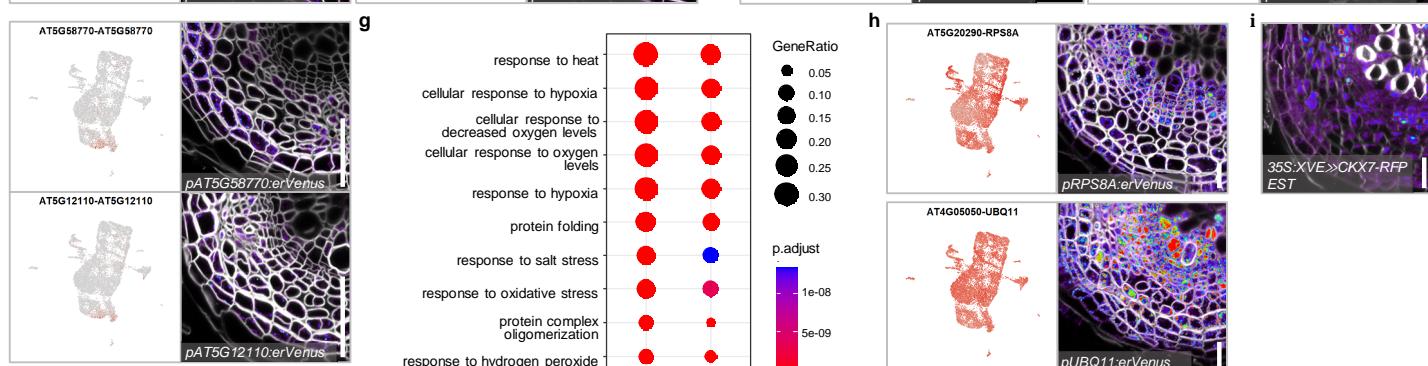

582 53. Idänheimo, N. *et al.* The *Arabidopsis thaliana* cysteine-rich receptor-like kinases CRK6 and
583 CRK7 protect against apoplastic oxidative stress. *Biochem. Biophys. Res. Commun.* 445, 457–462 (2014).

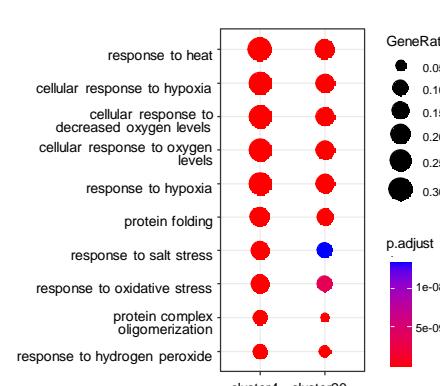
584 54. Schindelin, J. *et al.* Fiji: an open-source platform for biological-image analysis. *Nat. Methods*
585 9, 676–682 (2012).

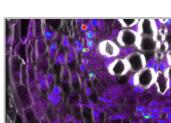
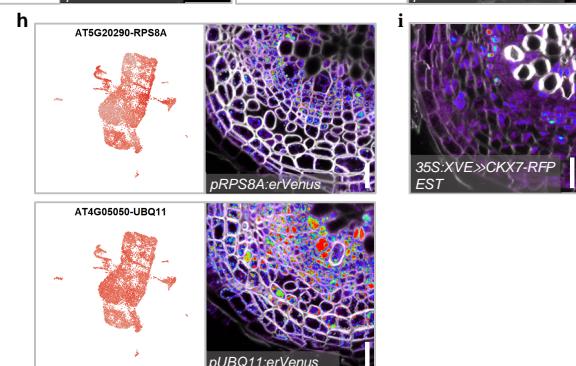

586 55. Wickham, H. *ggplot2*. *WIREs Comput. Stat.* 3, 180–185 (2011).

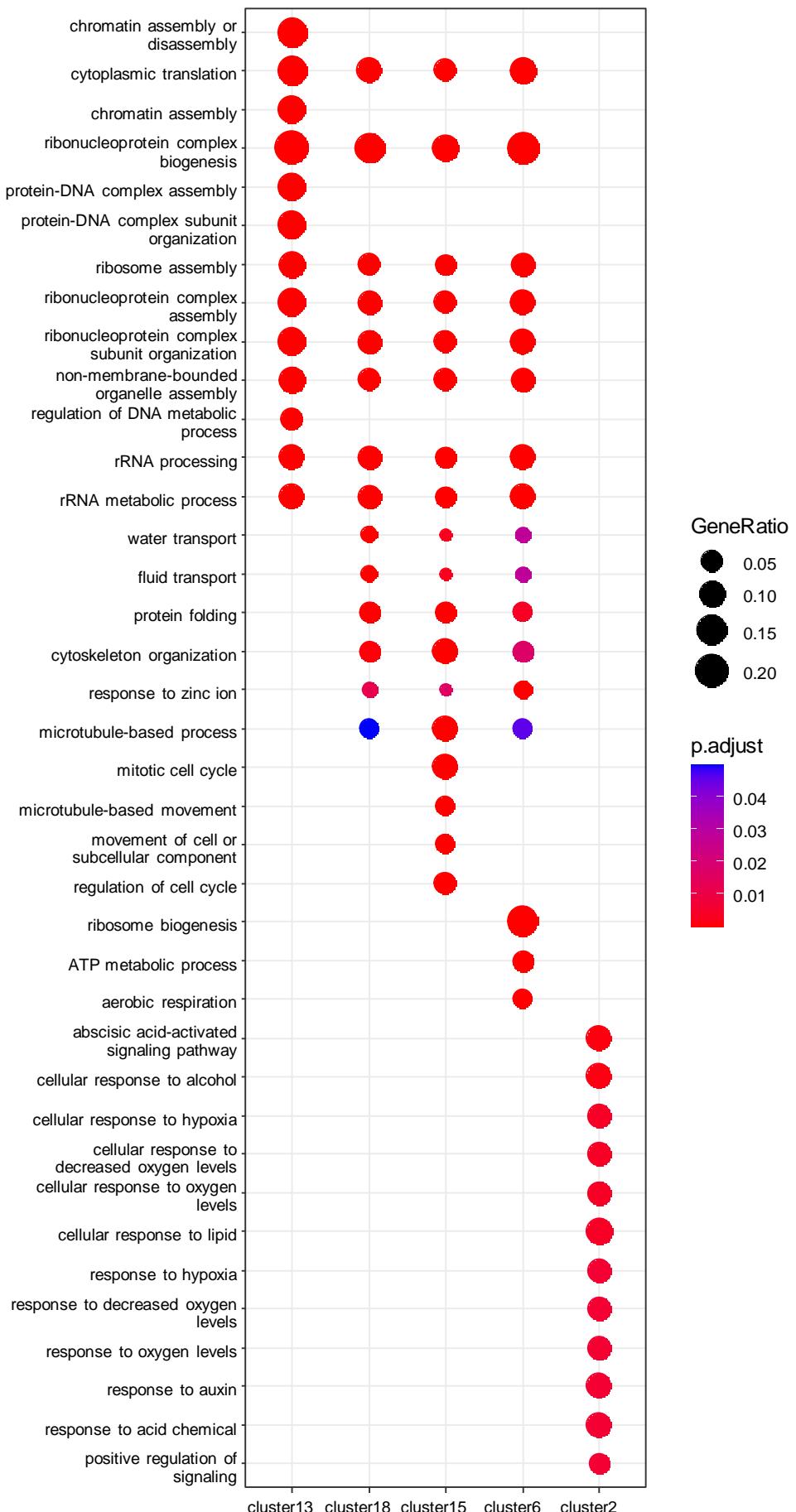
587


a

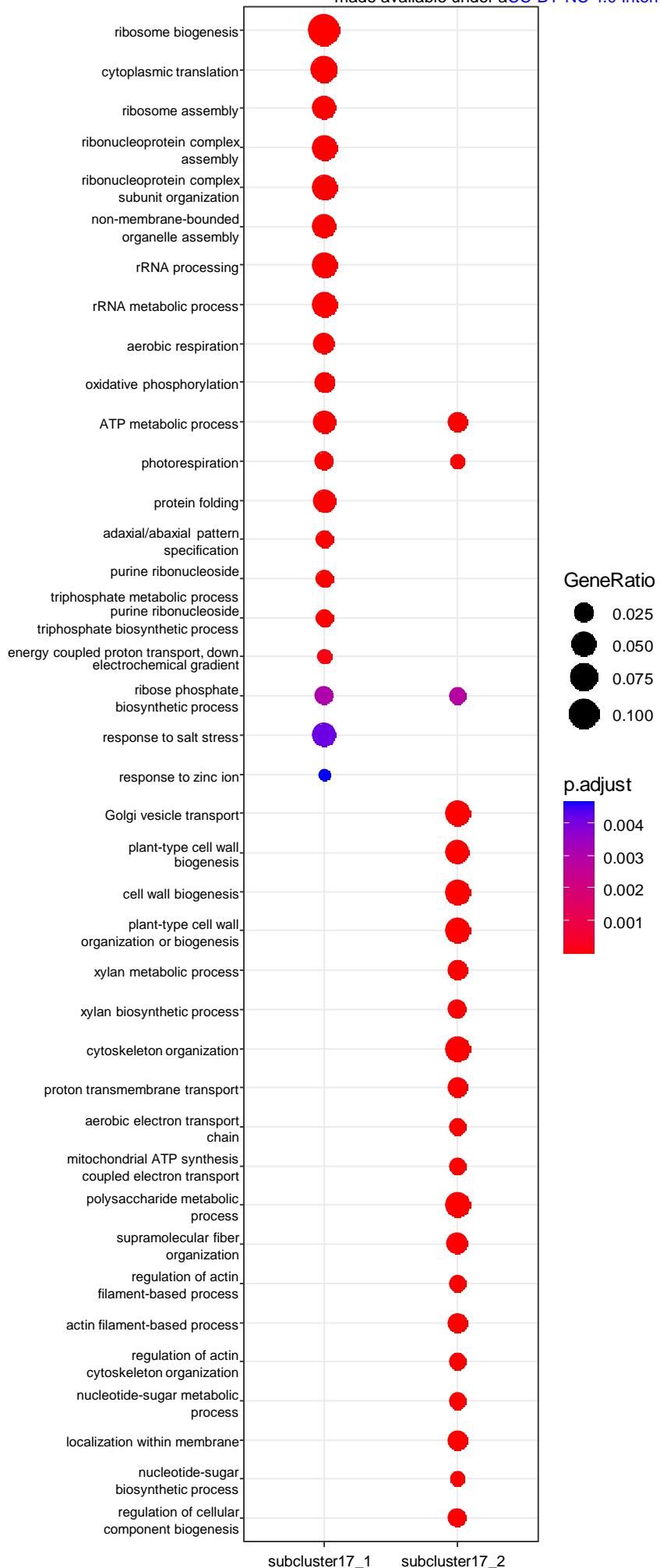

c

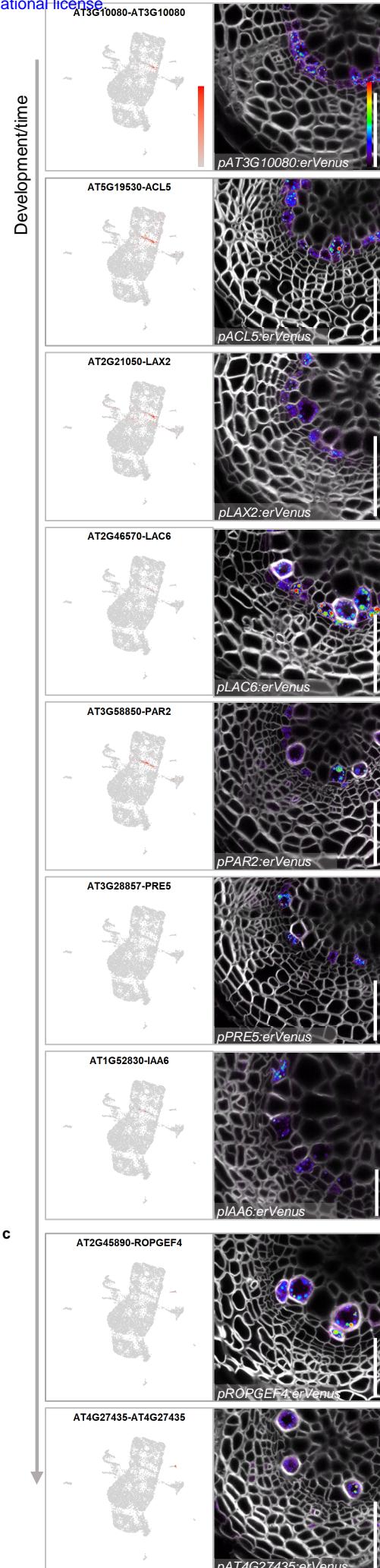

d



f

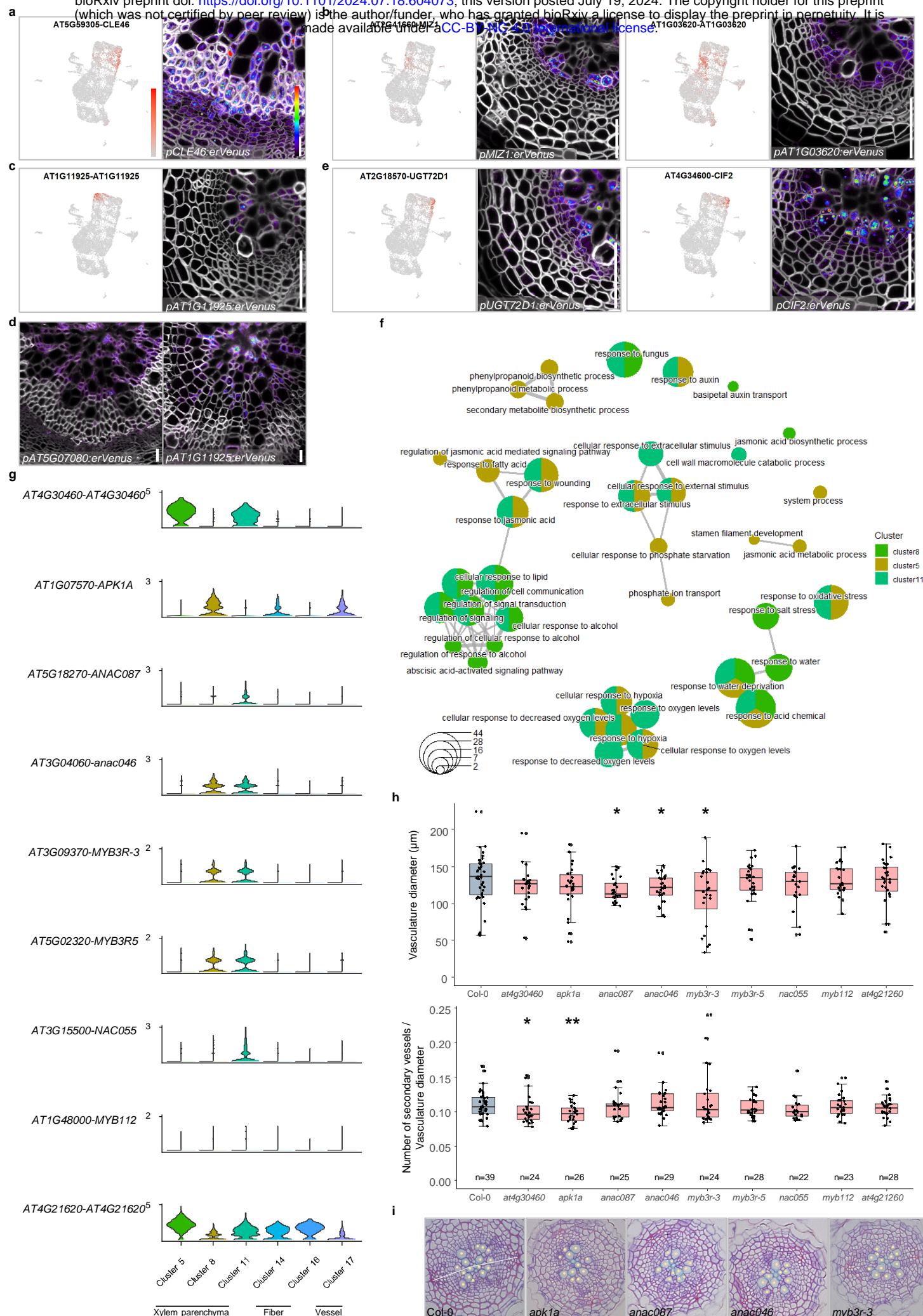

g

h

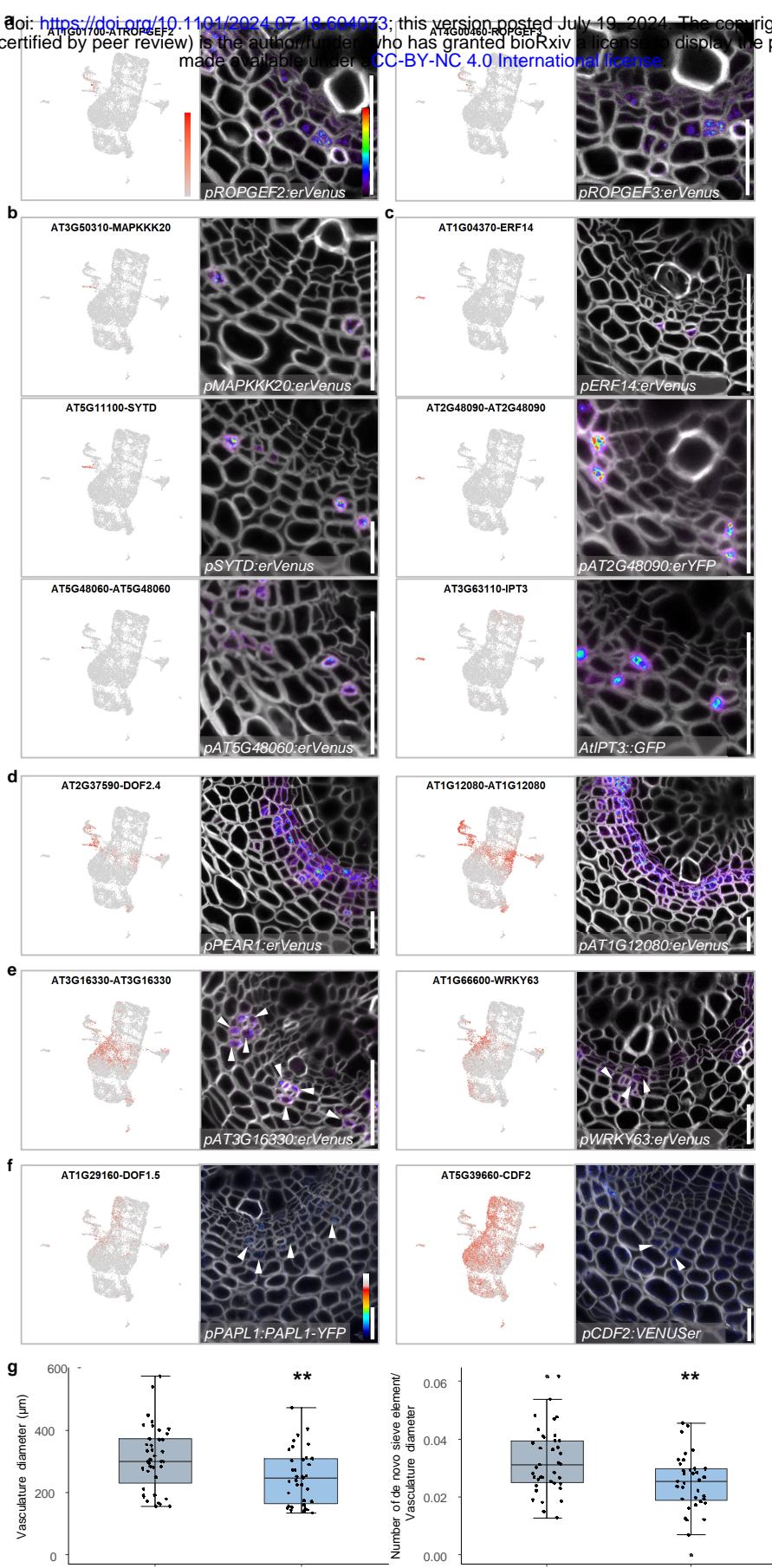

a, UMAP plots of known tissue-specifically expressed genes (*NAC101*, *ATHB8*, *NAC043*, *ATHB53*, *ANT*, *APL*, *SUC2*, and *PER15*). **b**, Predicted classification of each cell in either G2/M, S or G1 phase in UMAP. Cell cycle list from Zhang et al, 2019 was utilized. **c**, Dotplot of expression of representative marker genes used for cluster annotation and data validation. Size or colour of dots represents the percentage of cells expressing a given gene or the scaled average expression level, respectively. Box with dotted line represents tissue types. **d**, UMAP plots of genes (*IAA12*, *ATLP-1*, *RACK1C* and *FAF3*) highly detected in vascular cambium clusters and confocal cross-sections of their transcriptional reporter lines. **e**, UMAP plots of genes (*AT1G14120*, *PER49*, *BGLU23* and *AT3G26450*) highly detected in periderm clusters and confocal cross-sections of their transcriptional reporter lines. **f**, UMAP plots of genes (*AT5G58770* and *AT5G12110*) highly detected in cluster 4 and 20, and confocal cross-sections of their transcriptional reporter lines. **g**, Gene Ontology (GO) enrichment analysis and comparison of differentially expressed gene (DEG)s of cluster 4 and 20. Top 10 enriched biological processes are shown. Dot size represents percentage of DEGs in a given cluster involved in this biological process; dot color indicates P.adjust value of each biological process in a given cluster. The full list of GO terms of all the clusters are available in Supplementary Table S3. **h**, UMAP plots of genes (*RPS8A* and *UBQ11*) broadly and highly detected in all clusters and confocal cross-sections of their transcriptional reporter lines. **i**, Confocal microscopy of cross-section of 13-day-old 35S:XVE>>CKX7-RFP root grown with 5µM estrodiol (EST) for 1day. Cell wall stained with calcofluor was shown in grey. In **d-f**, for each gene, the UMAP plot was shown in left and cross section was shown in right. **d-f** and **h** show confocal cross-sections of 16-day-old roots. Cell walls stained with SR2200 were shown in grey. Relative expression levels of genes in UMAP and Venus-YFP or RFP signals in cross sections were shown according to the color map in **d**. Scale bars, 20 µm (**d-f, h,i**).


Supplementary Figure 2. GO term comparison among vascular cambium clusters.

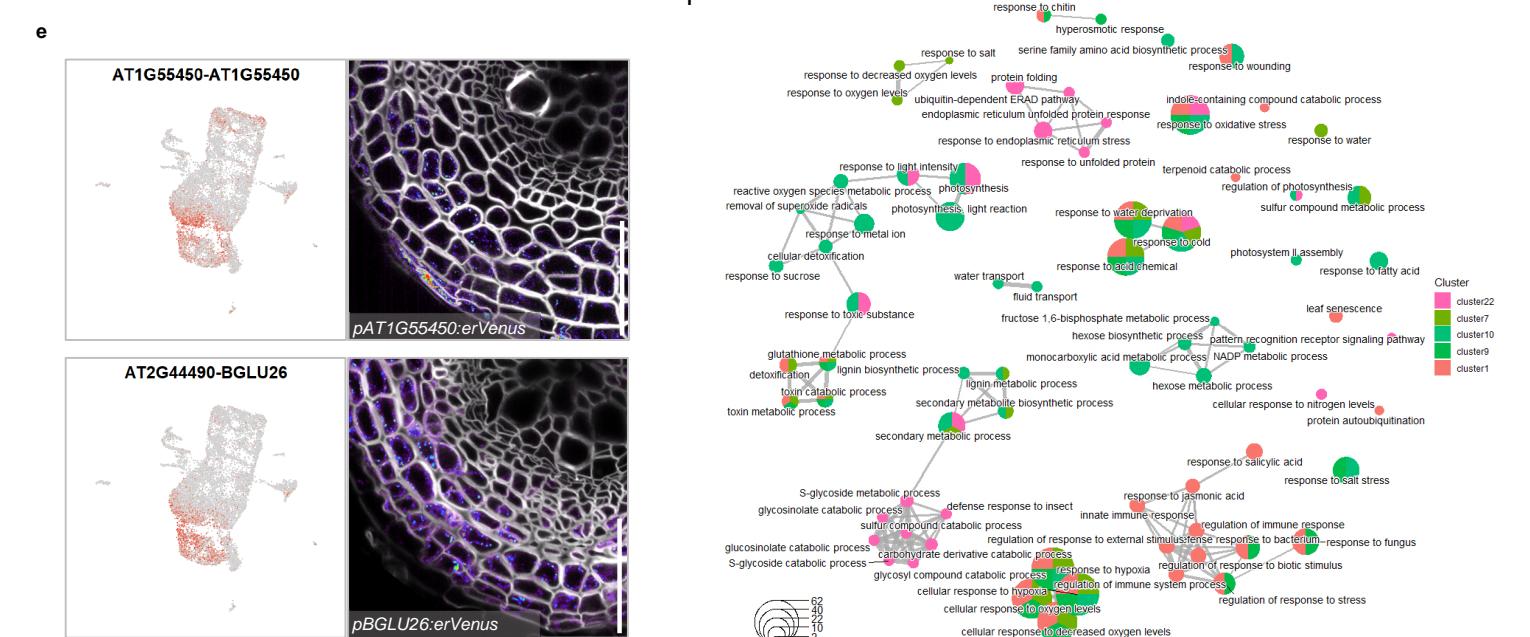
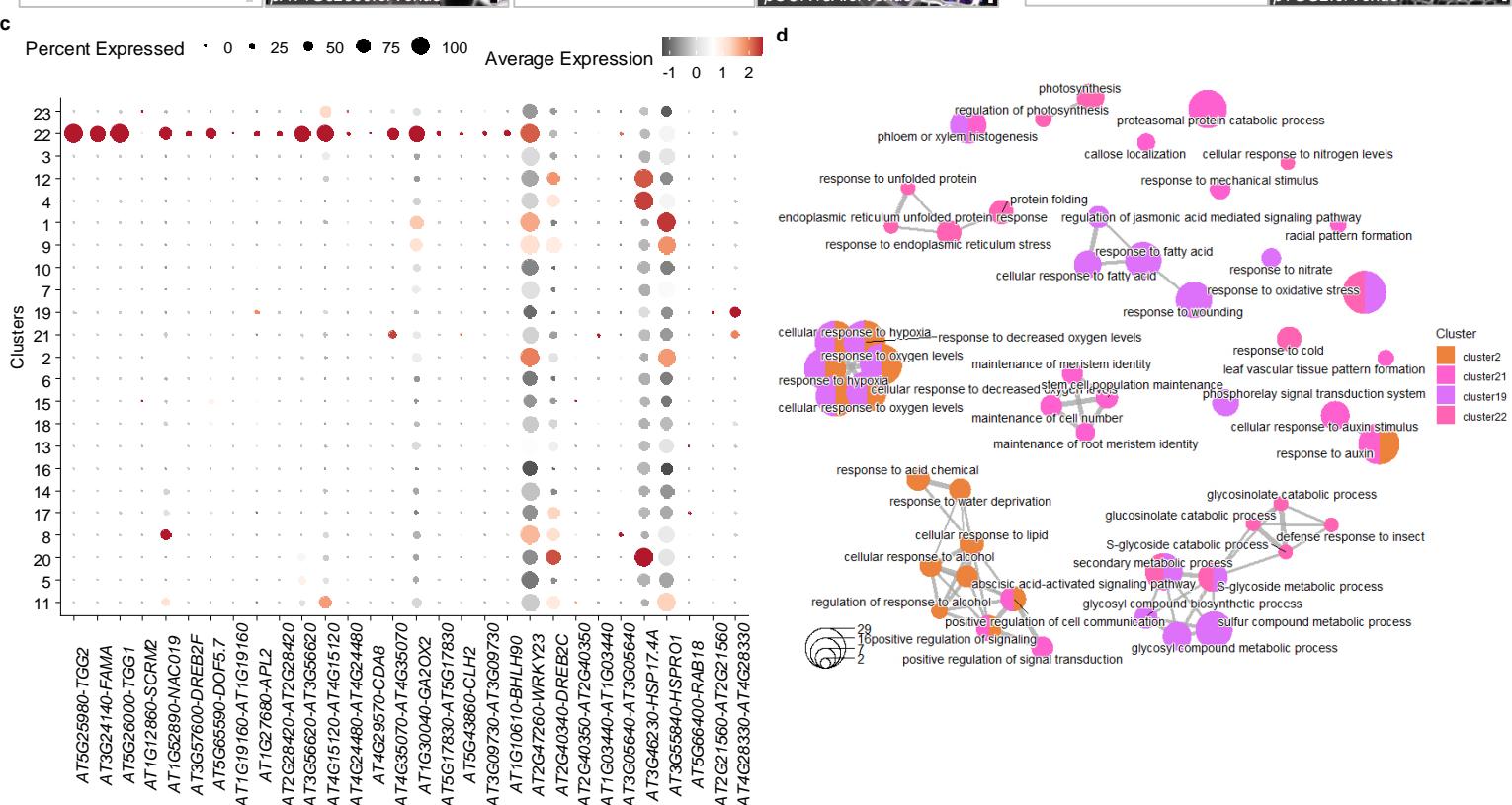
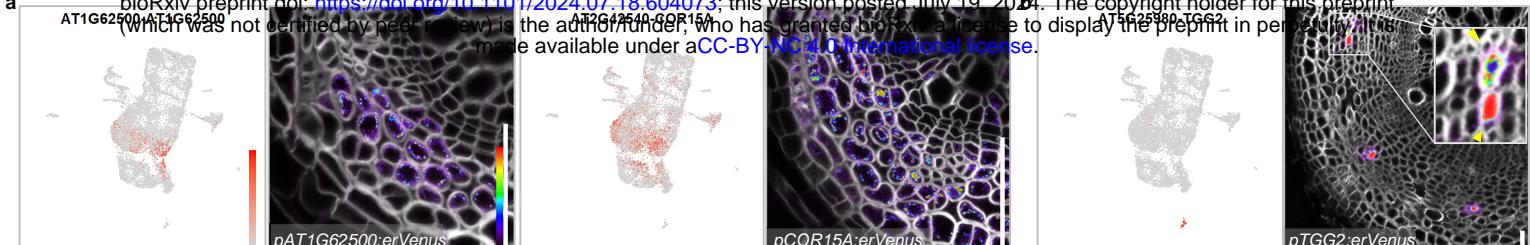
GO enrichment analysis and comparison among DEGs of cluster 2, 6, 13, 15 and 18. Top 12 enriched biological processes are shown. Dot size represents percentage of DEGs in a given cluster involved in the biological process; dot color indicates P.adjust value of each biological process in a given cluster. The full list of GO terms of all the clusters are available in Supplementary Table S3.


a

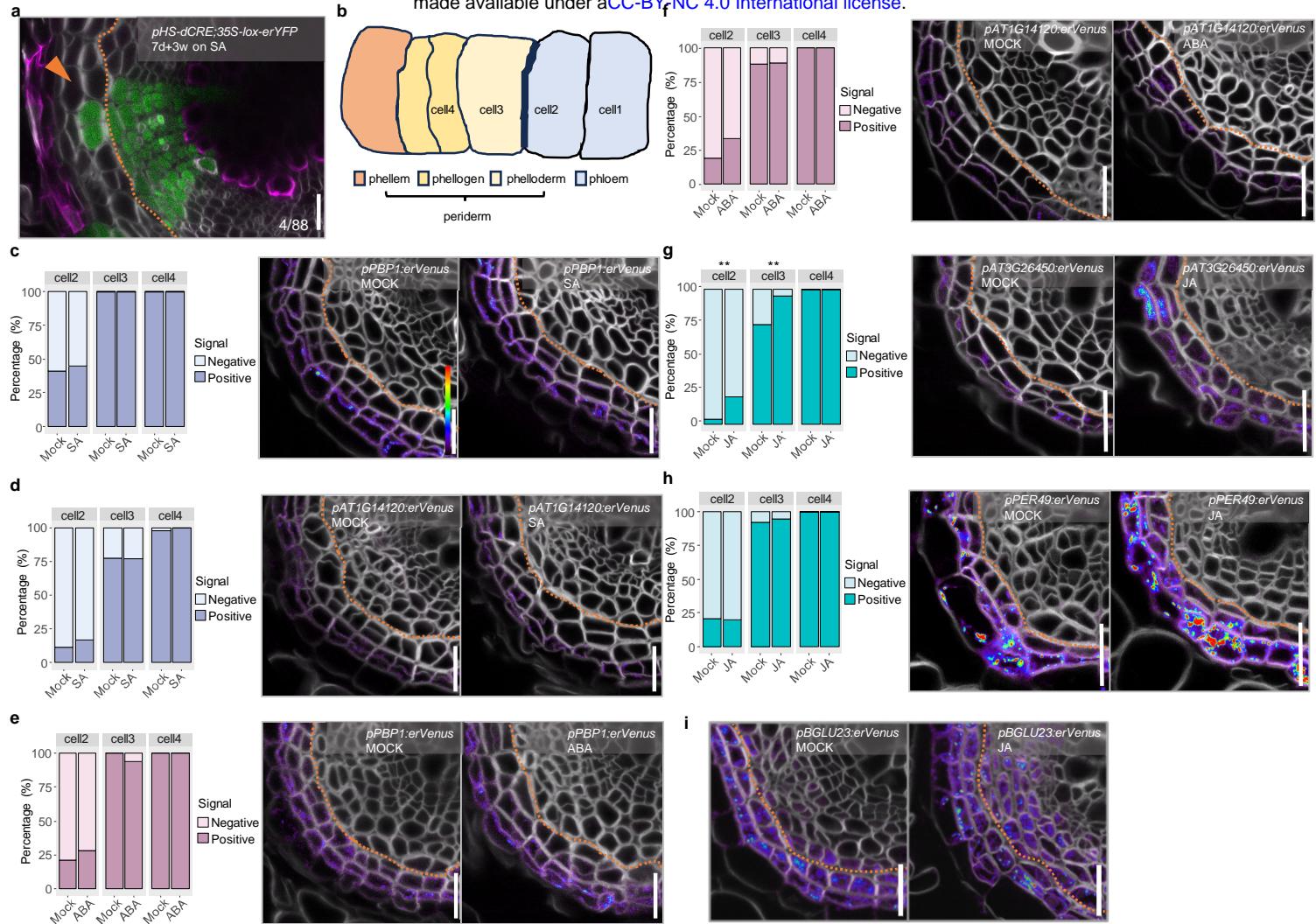
c



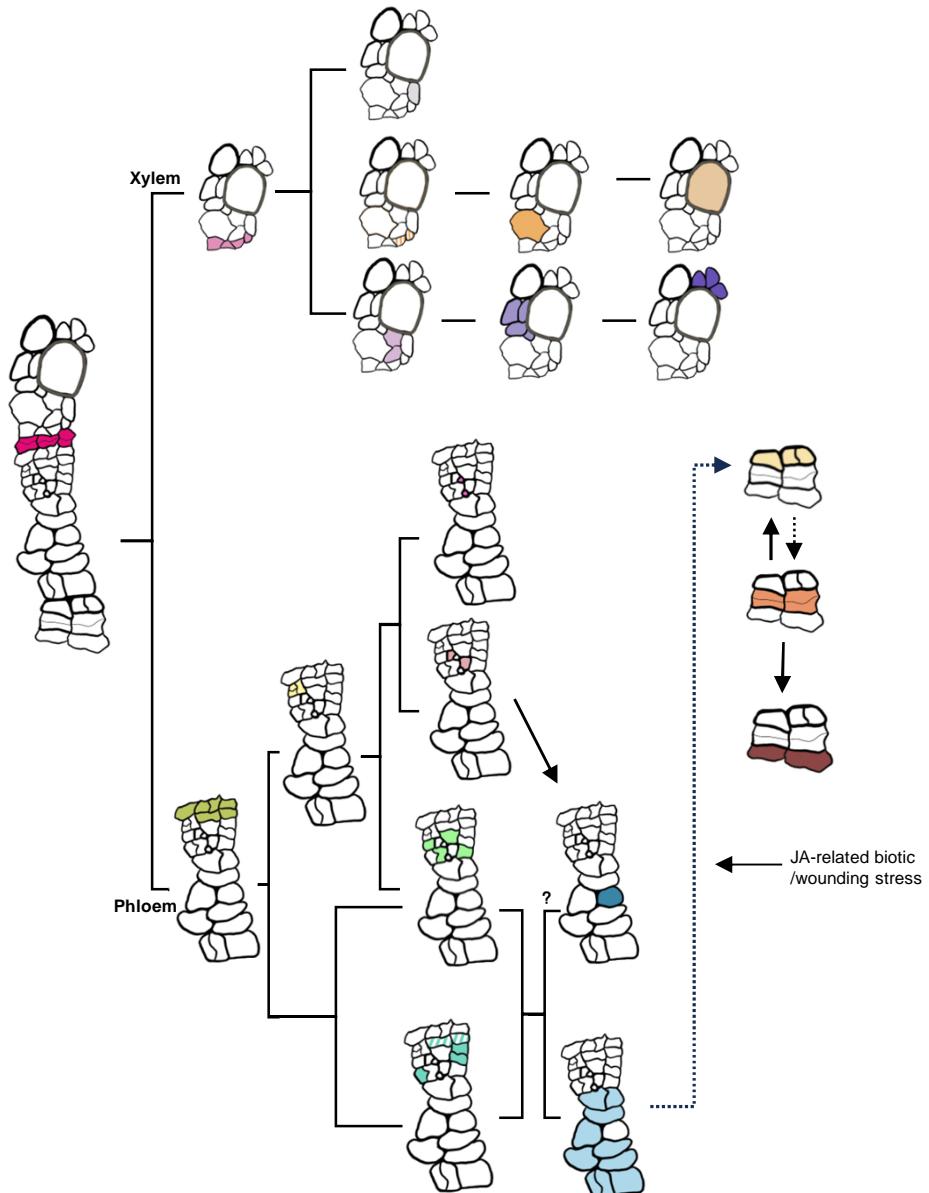
a, GO enrichment analysis and comparison of DEGs of subcluster 17_1 and 17_2. Dotplot shows top 20 enriched biological processes. Dot size represents percentage of DEGs in a given cluster involved in the biological process, dot color indicates P.adjust value of each biological process in a given cluster. The full list of GO terms of both subclusters are available in Supplementary Table S3. **b**, UMAP plots of genes (*AT3G10080*, *ACL5*, *LAX2*, *LAC6*, *PAR2*, *PRE5* and *IAA6*) specifically detected in vessel identity cell / expanding vessel cluster and confocal cross-sections of their transcriptional reporter lines. **c**, UMAP plots of genes (*ROPGEF4* and *AT4G27435*) specifically detected in late differentiating vessel cluster and confocal cross-section of their transcriptional reporter lines. In **b**, **c**, for each gene, the UMAP plot was shown in left and cross section of 16-day-old root was shown in right. Cell walls stained with SR2200 were shown in grey. Relative expression levels of genes in UMAP and Venus signals in cross sections were shown according to the colour map in **b**. Scale bars, 20 μ m (**b**, **c**).




Supplementary Figure 4. Analysis of xylem fiber and parenchyma clusters

a, UMAP plot of *CLE46* highly detected in differentiating fiber clusters and confocal cross-section of its transcriptional reporter line. **b**, UMAP plots of genes (*MIZ1* and *AT1G03620*) highly detected in young xylem parenchyma cells and confocal cross-sections of their transcriptional reporter lines. **c**, UMAP plot of *AT1G11925* highly detected in mature xylem parenchyma cells and confocal cross-sections of its transcriptional reporter line. **d**, Confocal cross-sections of transcriptional reporter lines (*AT5G07080* and *AT1G11925*). **e**, UMAP plots of genes (*UGT72D1* and *CIF2*) highly detected in maturing xylem parenchyma cells and confocal cross-sections of their transcriptional reporter lines. In **a-c** and **e**, for each gene, the UMAP plot was shown in left and cross section of 16-day-old (**b**, **c**, **e**) and 30-day-old (**a**, **d**) roots was shown in right. In cross sections of **a-e**, cell walls stained with SR2200 were shown in grey. Relative expression levels of genes in UMAP and Venus signals in cross sections were shown according to the colour map in **a**. **f**, GO enrichment analysis and comparison among DEGs of cluster 5, 8 and 11 shown with emapplot. The top 15 enriched biological processes were shown. Dot size represents the number of DEGs in a given cluster involved in the biological process, dot color of the cluster correlates to the cluster color in the UMAP. The edge represents the similarity between terms, shorter and thicker edge indicates higher similarity. The full list of GO terms of all clusters is available in Supplementary Table S3. **g**, Violin plots showing of genes highly expressed in xylem parenchyma clusters. The height and width of the plots represent the expression level and the proportion of cells showing expression, respectively. **h**, Quantification of vasculature diameter and ratio between secondary vessels and vasculature diameter in 14-day-old seedlings in which each gene shown in **g** was mutated. The boxes in the box-and-whisker plots represent median values and interquartile range, the whiskers indicate the total range. The black dots indicate measurements from individual roots. Shapiro-Wilk normality test followed by a two-tailed Wilcoxon test was utilized for statistic test between Col-0 and mutants. * $p<0.05$, ** $p<0.01$. The experiment was repeated twice; n indicated number of individuals analysed. **i**, Bright-field cross sections of 14-day-old wildtype (Col-0), *apk1a*, *anac087*, *anac046*, and *myb3r-3* single mutant roots. Yellow dots indicate secondary vessels. White line indicates the vasculature diameter based on primary xylem and two primary phloem poles. Scale bars, 20 μ m (**a-e**), 50 μ m (**i**).


Supplementary Figure 5. Analysis of phloem clusters.

a, UMAP plots of genes (*ROPGEF2* and *ROPGEF3*) highly detected in formative division phloem clusters and confocal cross-sections of their transcriptional reporter lines. **b**, UMAP plots of genes (*MAPKKK20*, *SYTD* and *AT5G48060*) specifically detected in differentiating sieve element cluster and confocal cross-sections of their transcriptional reporter lines. **c**, UMAP plots of genes (*ERF14*, *AT2G48090* and *IPT3*) specifically detected companion cell cluster and confocal cross-sections of their transcriptional reporter lines. **d**, UMAP plots of genes (*DOF2.4/PEAR1* and *AT1G12080*) highly detected in phloem-side cambium clusters and confocal cross-section of their transcriptional reporter lines. **e**, UMAP plots of genes (*AT3G16330* and *WRKY63*) highly detected in CPP cluster and confocal cross-sections of their transcriptional reporter lines. **f**, UMAP plots of *PAPL* genes (*DOF1.5/ PAPL1* and *CDF2*) and confocal cross-sections of their reporter lines. Note: expression of *CDF2* is broader than just cluster 2 in UMAP. Relative expression levels of Venus signals in cross sections were shown according to the colour map. In **e**, **f**, white arrowheads indicate CPP cells. In **a-f**, for each gene, the UMAP plot was shown in left and cross section was shown in right. **a-f** show confocal cross-sections of 16-day-old roots. Cell walls stained with SR2200 were shown in grey. Relative expression levels of genes in UMAP (**a-f**) and fluorescence signals in cross sections (**a-e**) were shown according to the colour map in **a**. **g**, Quantification of vasculature diameter and ratio between number of *de novo* sieve elements and vasculature diameter of 16-day-old wildtype and *3papIC* roots. The boxes in the box-and-whisker plots represent median values and interquartile range, the whiskers indicate the total range. The black dots indicate measurements from individual roots. Shapiro-Wilk normality test followed by a two-tailed Wilcoxon test was utilized for statistic test between Col-0 and *3papIC*. * $p<0.05$, ** $p<0.01$. The experiment was repeated four times, thirty-nine wildtype seedlings and thirty-five *3papIC* seedlings were examined in total. Scale bars, 20 μm (**a-f**).


Supplementary Figure 6. Analysis of mature phloem parenchyma clusters.

a, UMAP plots of genes (AT1G62500 and COR15A) highly detected in mature phloem parenchyma clusters and confocal cross-sections of their transcriptional reporter lines. **b**, UMAP plot of TGG2 specifically detected in MI cluster and confocal cross-section of its 30-day-old reporter line root. Yellow arrows point at the sieve elements adjacent to the MIs. **c**, Expression of potential MI differentiation regulators in our scRNA-seq data. Cluster 22 consists of the MI cells. Dot size represents the percentage of cells expressing a given gene; colour of the dot indicates the scaled average expression level. **d**, GO enrichment analysis and comparison among DEGs of cluster 2, 19, 21 and 22 shown with emapplot. The top 15 enriched biological processes were shown. **e**, UMAP plots of genes (AT1G55450 and BGLU26) highly detected in part of mature phloem parenchyma clusters and periderm clusters and confocal cross-sections of their transcriptional reporter lines. **f**, GO enrichment analysis and comparison among differentially DEGs of cluster 1, 7, 9, 10 and 22 shown with emapplot. The top 30 enriched biological processes were shown. **a** and **e** show confocal cross-sections of 16-day-old roots. In cross sections of **a**, **b**, **e**, cell walls stained with SR2200 were shown in grey. For each gene, the UMAP plot was shown in left and cross section was shown in right. Relative expression levels of genes in UMAP and Venus signals in cross sections were shown according to the color map in **a**. In **d** and **f**, dot size represents number of DEGs in given cluster involved in this biological process; dot color of the cluster correlates to the cluster color in the UMAP. The edge represents the similarity between terms and shorter and thicker edge indicates higher similarity. The full list of GO terms of all the clusters is available in Supplementary Table S3. Scale bars, 20 μ m (**a**, **b**, **e**).

Supplementary Figure 7. Obtaining periderm identity upon stress hormone treatment.

a, Cross-section of *pHS-dCRE;35S-lox-erYFP* root. Clones induced in 7-day-old seedlings were analyzed 3 weeks after growth on 1/2 GM plates supplemented with 10 μ M SA. The orange arrow indicates the transition sector. The fraction indicates 4 out of 88 sectors extended to the pheloderm. Lignin stained with basic fuchsin were shown in magenta. **b**, Schematic illustration of cell-number definition in a cell file for quantification. Cell1 and 2 are mature phloem parenchyma cells and cell3 and 4 are periderm cells. Cell2 is the most distal mature phloem parenchyma cell next to the periderm and cell 1 is the parenchyma cell proximally adjacent to cell2. Cell3 is the most proximal pheloderm cells next to the mature phloem parenchyma and cell 4 is the periderm cell distally adjacent to cell 3. **c**, **d**, Confocal cross-sections of 12-day-old *pPBP1:erVenus* (**c**) and *pAT1G14120:erVenus* (**d**) root grown without (MOCK) or with (SA) 10 μ M SA for 2 days and the ratio of signal positive cells in each numbered-cell defined in **b**. **e**, **f**, Confocal cross-sections of 12-day-old *pPBP1:erVenus* (**e**) and *pAT1G14120:erVenus* (**f**) root grown without (MOCK) or with (ABA) 10 μ M ABA for 2 days and the ratio of signal positive cells in each numbered-cell defined in **b**. **g**, Confocal cross-sections of 12-day-old *pAT3G26450:erVenus* (**g**) and *pPER49:erVenus* (**h**) roots grown without (MOCK) or with (JA) 10 μ M JA for 2 days and the ratio of signal positive cells in each numbered-cell defined in **b**. **i**, Confocal cross-sections of 12-day-old *pBGLU23:erVenus* roots grown without (MOCK) or with (JA) 10 μ M JA for 2 days. In **a**, **c-i**, orange dashed line indicates the clonal boundary of vascular tissue and periderm. In **c-h**, Fisher's test was performed. ** p <0.01. In cross sections of **c-i**, cell walls stained with SR2200 were shown in grey. Scale bars, 20 μ m (**c-i**).

Supplementary Figure 8. A detailed hierarchical cell fate determination map of the *Arabidopsis* root undergoing secondary growth.

Detailed schematic illustration of hierarchical cell fate determination in root secondary tissue. Color of the cell represents cell identity in Fig. 4a.