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Abstract

Leveraging the use of multiplex multi-omic networks, key insights into genetic and epigenetic mechanisms
supporting biofuel production have been uncovered. Here, we introduce RWRtoolkit, a multiplex generation,
exploration, and statistical package built for R and command line users. RWR toolkit enables the efficient
exploration of large and highly complex biological networks generated from custom experimental data and/or
from publicly available datasets, and is species agnostic. A range of functions can be used to find topological
distances between biological entities, determine relationships within sets of interest, search for topological
context around sets of interest, and statistically evaluate the strength of relationships within and between sets.
The command-line interface is designed for parallelisation on high performance cluster systems, which enables
high throughput analysis such as permutation testing. Several tools in the package have also been made available

for use in reproducible workflows via the KBase web application.
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1.  Background

Biological studies are increasingly pursuing and obtaining data on larger scales and at multiple levels in the
molecular hierarchy of the study system. One approach for dealing with the multiplicity of data in modern
biology is to represent the relationships in the data as a network [1]. Each entity in a dataset (e.g., each gene)
becomes a node, and an edge between two nodes represents a relationship that has been measured or predicted
between those nodes (e.g., their co-expression in a population, sharing of common protein domains, similarity
of methylation state, etc.). Once in network form, a great variety of network analysis methods become available
[2,3]. Genes that are strongly connected to each other are topologically more likely to be functionally relevant to
each other than more distal or loosely connected genes in the network. Machine learning algorithms can be used
to efficiently explore entire networks and find such relationships with respect to a set of starting genes, often
called seeds or anchors. This approach is particularly useful for exploring the functional context around sets of
genes, such as those produced from GWAS, QTL mapping, differential expression analysis or case/control

proteomics.

To analyze a set of genes in a network context, one requires the underlying network itself, and an algorithm that
traverses that network. The underlying network may be as simple as a single-layer of nodes and edges generated
from one experimental dataset that predicts relationships between genes, such as co/predictive expression
relationship determined from RNA-seq results [4,5]. If further data types are available, (e.g., Protein-Protein
Interactions [PPI]) a multi-layer network can be generated where edges in each layer represent different types of
relationships between genes. A multi-layer network potentially fills in relationship gaps that exist in any given
single layer, and enables simultaneous exploration of multi-omic data since one can traverse the network from
gene to gene using edges from all layers. Edge weights, if they exist, can be used to influence the traversal. When
relationships between specific genes are present in multiple layers, a multi-layer network presents multiple lines-

of-evidence (LOE) that those genes are functionally related [6].

Commonly the multiple layers of input networks are aggregated into a single layer by summing or averaging
multiple edges between the same pair of nodes into one composite edge. The result is a single adjacency matrix
representation of the data, also known as a monoplex network. The aggregated network is a summarization of
the input layers, and as such has lost the unique topological information carried by each layer. A more recent
innovation, known as Multiplex networks, maintains the topological separation of each input layer through the
use of a supra-adjacency matrix (Fig. 1), while still allowing for simultaneous exploration of all layers. The
predictive ability of a multiplex network is often greater than the equivalent aggregated monoplex network
[7,8], but the supra-adjacency matrix is more difficult to build and adds an extra level of complexity to network

exploration algorithms.

A wide variety of algorithms exist for ranking genes according to their topological connectivity to the seed

(candidate) genes in the underlying network. One simple approach, known as neighbor voting[9], scores each
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gene by counting their outgoing edges that directly connect to the seeds. However, by only looking at
immediate connections to the seeds, the influence and importance of genes farther away is ignored. More
advanced propagation approaches, such as diffusion and random walk with restart (RWR) use the entire
network topology to score and rank every node, and have been shown to be generally superior in their ability to
find true positive relationships [10-12]. A Random Walk can be described conceptually as a “walker” which
proceeds to wander outwards from a starting seed gene, choosing which edge to take with a probability equal to
1/d where d is the degree of the current gene (d is the out-degree for directed networks). Over multiple
iterations, the walker explores the network in this manner so the proportion of time spent at each gene forms a
probability distribution that represents how accessible every gene in the network is when starting from the seed
gene(s). With RWR, at each iteration the walker teleports back to the starting point with restart probability » to
prevent the walker from wandering too far in the global topology, or getting stuck in various topological

structures.

Here we introduce RWR toolkit, an R package with a corresponding set of command line tools that enables the
easy construction of multiplex networks from any set of data layers, followed by analysis of candidate gene sets
within the networks using the Random Walk with Restart (RWR) algorithm. RWRtoolkit wraps the
RandomWalkRestartMH R package [8], which provides the core functionality to generate multiplex networks
from a set of input network layers, and implements the Random Walk Restart algorithm on a supra-adjacency
matrix. Once a multiplex network has been generated, the RWRtoolkit provides commands to rank all genes in
the overall network according to their connectivity to a set of seed genes, use cross-validation to assess the
network’s predictive ability or determine the functional similarity of a set of genes, and find shortest paths
between sets of seed genes. RWR toolkit provides as output detailed tables of ranked genes as well as statistics of
predictive accuracy (AUROC, AUPRC, etc.), plots, and network visualizations of the multi-omic
neighborhood around the seed genes. Furthermore, RWRtoolkit commands can be run from the command-
line interface, which enables high throughput parallelised analysis (such as permutation testing) on compute

clusters.

To date, multi-omic networks have been made publicly available in a range of model species: AraNet,
PopGenie, StringDB, YeastNet. However these networks are often aggregated into a single layer rather than
multiplexed, and it is difficult or impossible for the user to customize their choice of input layers or include
custom layers generated from their own experimental results or algorithms. RWR toolkit enables robust
network analysis of multi-omic data for any species, allowing researchers to use their own datasets and networks
and/or pre-existing networks. We demonstrate this by generating a custom Arabidopsis thaliana multiplex
network and using it to analyze gene sets from a novel GWAS study and a published gene knockout study [13].
RWRtoolkit is available with installation instructions, user guide and sample data at
http://github.com/dkainer/R WRtoolkit [14]. Finally, RWR toolkit, together with a comprehensive
Arabidopsis multiplex network, has been integrated into the US Department of Energy’s KBase platform that

facilitates reproducible workflows for biological analysis [15].
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2. Data Description

We created the RWRtoolkit R package as a collection of functions for easy network-based functional analysis
using random walks on multiplex networks (Fig. 2). The package provides functions for multiplex network
generation, running random walks starting from given seed sets, validation functions for seed sets as well as
network layers, and general multiplex network statistics. These functions are made available via a cross-platform
R package and command-line interface commands. We have provided multiple tutorials in the R vignette
format for users to explore at their own leisure. Our methods were generated with gene relationships as a focus,
but these random walk methods can be applicable to any data type in network format. Example methods can be

seen in Table 1 and example input and output can be seen in supplementary tables 1-18.

2.1 Multiplex Generation

RWRtoolkit usage typically starts with the RIWR_make_multiplex command, which handles the creation of
the multiplex network. It requires a descriptor file (known as an “flist”) that lists the full path to each network
layer to be included in the multiplex. Each network layer’s file must be formatted as a simple delimited edge list
with a column for the source genes, a column for the target genes, and an optional weight column (see
Supplementary Tables 1, 2, and 3 for file examples). The generated multiplex network is automatically saved
as an Rdata object containing the individual layers as igraph [16,17] networks, the multiplex transition matrices,

and network metadata. This Rdata object is used as input for most downstream commands.

2.2 Multiplex RWR Applications

2.2.1 Network Layer and Multiplex Statistics

The contents of a multiplex network affect the outcomes of RWR analyses. The R WR_netstats command lets
the user evaluate individual network layers or the contents of an entire multiplex network containing many
layers, using a variety of options for calculating network metrics as well as functions for multiplex network
evaluation. Basic statistics (basic_statistics) for individual layers can be calculated, as well as more complex
relationships such as jaccard or overlap scores for inter-layer similarities (pairwise_between_mpo_layer),
multiplex layer to reference network (multiplex_layers_to_refnet), and single network to network similarities
(net_to_net_similarity). During a random walk, the tau parameter affects the probability of the walker visiting
each specific layer, allowing the user to bias the walk to certain layers of higher importance. Users can supply

their own tau, or use the calculate_tau function to return a tau value for each layer.

2.2.2 Evaluating multiplex networks and gene sets using cross-validation

The predictive ability of a multiplex network can be determined using cross validation of gold standard or
reference gene sets with the R /WR_CV command. A gold standard gene set typically contains genes that are
known to be functionally related (e.g., all are members of one biosynthetic pathway, all are annotated with the

same GO/KEGG term, etc.). The hypothesis is that gold standard genes purposely left out from the seed set
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should be found with relatively high precision (i.e., highly ranked by RWR) if the underlying networks are
indeed functionally predictive. The RWWR_CV command allows the user to provide a gold standard gene set

and use k-fold, leave-one-out, or singleton cross validation to score the ability to find the left out gene(s).

RWR_CV produces output files containing the RWR score and rank of each gene in the multiplex (as
described by R WR_LOE, for each fold), mean rank of each gene across all folds, evaluation metrics based on
the ranks of the left-out genes for each fold, and an evaluation summary file. Evaluation metrics, such as
AUPRC and AUROC, can output as plots as well. File descriptions and examples can be found in
Supplemental Tables 13-16.

2.2.3 Ranking Genes Using Multiple Lines of Evidence (LOE)

The RWR_LOE command uses RWR to rank all genes in the multiplex network with respect to a gene-set of
interest (seed genes), which provides multi-omic biological context for the seeds. The ranks and scores of all
genes can be output to a file. A second gene set can be provided in order to evaluate the topological relationship
between two sets of genes. When a second gene set is provided, those genes are flagged within the ranked
output. The network context around the top ranked genes can be easily visualized via an integrated connection

to Cytoscape [18] using the RCy3 [19] R package.

2.2.4 Extracting The Shortest Paths Between Genes

In a network there can exist many unique paths between two particular nodes. Obtaining the shortest paths
between any two given nodes within a network can provide crucial insight to a network’s topology or the
relationship between those nodes. RWR_ShortestPaths calculates the pairwise shortest paths between source
and target gene sets, and returns them as a series of edges that form the shortest path, the layers in which those

edges exist, edge weights, and normalized edge weights.

2.2.5 Network Aggregation Functions

Two methods of network aggregation are provided to merge the layers of a multiplex network into a single
monoplex network. The merged_with_all_layers function aggregates all layers maintaining multiple edges
between nodes. The merged_with_all_edgecounts function aggregates all layers of the multiplex, but instead

edge weight is calculated as the sum of all shared edges within the multiplex network.

3.  Results

We used RWRtoolkit to explore genetic relationships in two promising biofuel crops: switchgrass (Panicum
virgatum) and pennycress (7hlaspi arvense). Since large scale multi-omic pennycress and switchgrass data are
not yet available, we generated a multiplex network from varied data layers available for Arabidopsis thaliana, a

model species which is in the same family as pennycress (Table 2).
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3.1 Multiplex network validation using RWR and cross validation (RIWR_CV)

We ran RIWR_CV using k-fold (k=5) on each of 25 MAPMAN-derived [20] gene sets to validate the predictive
ability of the multiplex network. This resulted in an average AUROC of 0.91 across all gene sets and folds,
indicating a strong overall ability to find the left-out genes from a functional group and rank them highly.
Conversely, when we performed the same analysis on 1000 randomly rewired multiplexes using command-line
RWR_CV, the overall average AUROC was 0.49 (where AUROC of 0.50 is considered the equivalent of
random). A comparison of AUROC densities for an individual MAPMAN gene set and all sets in total are
illustrated in figures 3a and 3b (respectively). Individual R W R_CV comparison statistics for each MAPMAN

gene set can be found in Table 3.

3.2 Identifying Genes Contributing to switchgrass Well-Watered Shoot Biomass Using RWRtoolkit
and KBase

Identifying genetic variants, genes, and biological pathways controlling plant biomass can prioritize gene targets
for improving biofuel feedstocks. To this end, we performed a genome-wide association study (GWAS) for
well-watered shoot biomass dry weight (Table 4, Supplementary Fig 2.) in the tetraploid bioenergy feedstock
switchgrass (Panicum virgatum). Two GWAS models (BLINK and FarmCPU) identified 22 unique significant
single nucleotide polymorphisms (SNPs) associated with well-watered shoot biomass at an FDR < 0.2. These

were mapped to a total of 38 unique switchgrass genes based on genomic proximity.

We next wanted to understand the biological context among our Switchgrass well-watered shoot biomass gene
set. However, there are limited publicly available networks that describe gene-gene relationships in switchgrass
[21,22], so we mapped the 38 switchgrass GWAS genes to 32 Arabidopsis (4rabidopsis thaliana) orthologs
using Phytozome [23]. For a greater understanding of the functional context of these GWAS results we
leveraged our Arabidopsis multiplex network consisting of nine distinct lines of biological evidence to explore

the relationships among these orthologs (Fig. 4A).

RWR_CVand RWR_LOE functionality and the Arabidopsis multiplex network were incorporated into the
DOE Systems Biology Knowledgebase (KBase [15]) interface (Fig. 4B-C). Using the visualization derived from
the KBase tools, we first removed three orthologs (AT1G12640, AT1G47310, AT3G14470) that were not
connected to any other GWAS genes, nor to the top 200 genes ranked by R WR_CV with S-fold cross
validation (Fig. 4B). We then used the remaining 29 GWAS gene orthologs as seeds for the RIWR_LOE
application to help generate a framework for a conceptual model depicting the top candidate genes from
GWAS and their functional context derived from other high ranking genes (Fig. 4D). Here, we focus our
discussion on two genes identified by shoot biomass GWAS and their relevant R W R_LOE connections.

Both BLINK and FarmCPU GWAS models identified the SNP Chr02K_40684207 as significant, with FDR-
adjusted p-values of 1.00E-5 and 8.38E-13, respectively (Table 4, Supplementary Fig. 2). This SNP is located
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in the switchgrass gene Pavir.2KG286800, which is orthologous to the Arabidopsis gene SPHINGOID LCB
DESATURASE 2(SLD2, AT2G46210.1) (Table 4). SLD2 plays a crucial role in sphingolipid biosynthesis by
catalyzing the desaturation of long-chain bases (LCBs) at position 8 [24]. RIWWR_LOE analysis revealed
interactions between SLD2 and SPHINGOID LCB DESATURASE 1 (SLD1, AT3G61580) and DES-1-LIKE
(AT4G04930), which are delta 8 and delta 4 desaturases through the PPI layer (Fig. 4D), as well as AGL18, a
MADS-domain transcription factor (AT3G57390) through the coexpression layer.

Additionally, the BLINK GWAS model identified Chr02K_43638064 as significant (FDR-adjusted p-value
1.02E-06, Table 4). The nearest gene to this SNP is Pavir.2KG303000, which is orthologous to AT5G16560.1,
or KANADII (KAN1). KANI is a transcription factor (TF) with a significant role in adaxial-abaxial (top and
bottom) polarity in leaves and the proper development of the shoot apical meristem (SAM) via auxin signaling
through interactions with auxin-related genes [25]. Previous work implicated KAN in a growth-defense
tradeoff regime in Arabidopsis thaliana through jasmonic acid (JA) signaling [26]. The authors reported that
JA activates KANI which suppresses auxin biosynthesis, transport, and signaling, ultimately inhibiting growth
[26]. Importantly, this suggests that SNPs affecting KAN1 may alter growth and biomass phenotypes. To gain a
more comprehensive understanding of the mechanisms involved in this regulatory network, we examined the
genes connected to KANI in the KBase R W R_LOE Narrative.

Visualizations of the lines of evidence around KA4N1 and within multiplex network revealed protein-protein
interactions (PPI-6merged, Table 2) between products of KANI and PHAVOLUTA (PHV), PHABULOSA
(PHB), and WUSCHEL-RELATED HOMEOBOX 9 (W OX9; Fig. 4D) [27]. KANI was also connected to
PHV, PHB, ASYMMETRIC LEAVES 2 (A452) and PIN-FORMED 1 (PINI) through TF regulatory
interactions (Regulation-ATRM, described in Table 2). Additionally, the results of R IWR_LOE exhibited a
machine learning-predicted epigenetic relationship (Predictive CG Methylation, Table 2) between KANI and
WOX9. Together, the output of RIWR_CVand RIWR_LOE identified shoot apical meristem development,
long-chain fatty acid modifications, and homeodomain transcription factors as strong candidates affecting

shoot biomass.

3.3 Predicting the Functional Effects of Gene Edits

Next, we applied RWR toolkit to explore biological pathways surrounding two distinct genetically modified
lines of pennycress (Thlaspi arvense). Pennycress is a cover crop in the Brassicaceae family with great potential to
produce biodiesel and sustainable aviation fuel through large seed yields containing high volumes of long-chain
fatty-acids. Jarvis et al. [13] recently demonstrated that pennycress lines with dual knockout of genes FAE1 and
FAD2 produced seeds with 91% oleic acid content (significantly improved from 12% wild type accumulation),
but at the cost of significantly reduced seed yield and stunted plant growth. Interestingly, the authors found
that an alternative dual knockout of FAEZ and ROD1 accumulated up to 60% oleic acid with no obvious
growth deficit. Here we used RWRtoolkit with an Arabidopsis multiplex network to investigate the difference
in functional context between the FAEI and FAD2 knockouts (FAE1/FAD?2) and the FAEI and RODI
knockouts (FAE1/ROD]I).
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We ran R WR_LOE for each knockout pair separately and noted that many of the top 200 ranked genes from
the FAE1/RODI run remained very highly ranked in the FAEI/FAD2 run. However, some of the top 200 genes
tell drastically in ranking, indicating that they were no longer part of the same functional context after swapping
RODI1 for FADZ2 in the LOE runs (Illustrated in Supplemental Figure 3). Such “differentially ranked” genes
can be considered as candidates driving functional changes that result in the phenotypic differences observed

between the two dual knockout lines.

Using the set differential methodology to illustrate these differential rank differences, Gene Ontology
enrichment of the intersection of the top 200 ranked genes from the FAEI/FAD2 seeds and the FAEI/RODI
seeds (i.c., genes ranked highly by R WR_LOE for both knockout pairs) exhibited enrichment for fatty acid

biosynthesis, fatty acid metabolic process, and sphingolipid metabolic process. Genes ranked highly by
RWR_LOE for EAEI/RODI but not for FAEI/FAD?2 showed three terms enriched: seed oil biogenesis,
response to freezing, and lipid storage. The genes ranked highly by R WR_LOE for FAEI/FADZ2 but not for
FAE1/RODI, however, showed enrichment for multiple GO BP and KEGG terms beyond those expected for
lipids, including photoinhibition, regulation of circadian rhythm, and chloroplast rRNA processing.

4, Discussion

Here, we demonstrate that RWRtoolkit enables the discovery of gene-to-gene relationships not previously
apparent within a monoplex network topology, as well as gene-to-gene relationships across the broader
multiplex surrounding a gene set of interest. Using the RWRtoolkit package, users can create and validate
multiplex biological networks encoding multiple lines of evidence. Importantly, RWRtoolkit is agnostic to
organism, tissue or condition. The user may explore biological pathways in non-model organisms by either
using orthologs and available networks from model organisms as demonstrated in the present work by building
custom networks from experimental data, or a combination of both approaches. In addition to obtaining
topologically relevant gene-to-gene relationships from the multiplex networks, users can identify the lines of
evidence driving these interactions (e.g., co-expression, protein-protein interactions, etc.) using Cytoscape or
KBase. Additionally, peta/exascale-complexity networks derived from Al-based methods can be used as layers
within the multiplex to identify relationships for poorly-annotated genes, including proteins of unknown

function.

RWRtoolkit was designed as a user-friendly package for researchers familiar with R software and command line
interfaces. Users who want to generate custom multiplex networks and use the entire suite of functions in

RWRtoolkit can find the open-source code and vignettes on GitHub. For users who prefer a point-and-click
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graphical user interface or have limited bioinformatic experience, we have included RIWR_LOE and RWR_CV

as applications within KBase and provided pre-assembled Arabidopsis thaliana multiplex networks.

RWRtoolkit explores topological connectivity between seed genes and other genes based on multiple lines of
evidence. In doing so, RWRtoolkit facilitates interpretation of a gene set outside of gene set enrichment
analysis, with the goal of expanding the biological context of genes in a gene set which may not have been
previously studied in the same experimental context. Moreover, the biological context between any group of

genes is explainable based on the various types of biological evidence present in a multiplex network.

4.1 Multiplex Network Validation

First, we showed the predictive capacity of our Arabidopsis multiplex network by demonstrating that
MAPMAN gene sets were highly interconnected when using network layers from data sources distinct from
MAPMAN. By using ontology-derived, “gold standard” gene sets of interrelated genes from random walk
exploration of a multiplex, we can ensure that our multiplex networks represent true biological connections,
rather than random connections. Moreover, our Arabidopsis multiplex significantly outperformed recall of
MAPMAN gene sets compared to permutations of randomly connected networks, indicating that this is a valid
way to test whether a multiplex network contains biologically meaningful edges. We then demonstrated these
applications in a real-world biological context using genesets derived from GWAS results and a gene editing

experiment.

4.2 Well Watered Shoot Biomass GWAS Results
We applied the KBase R WR_LOE application to functionally contextualize GWAS results from the bioenergy

feedstock switchgrass, as GWAS results for complex traits are often difficult to interpret because significant
SNPs can map to a set of genes with largely uncharacterized relationships. R WR_LOE captured connections
surrounding both sphingolipid production and a regulatory subnetwork of cell differentiation and specification
that likely affects vascular development in the SAM. In addition, the interactions captured by RWR-LOE led to
the development of a conceptual model framework highlighting these findings (Fig. 4 D).

Sphingolipids are integral to various cellular, developmental, and stress-related processes [28]. Though the SNP
associated with SLD2 was identified by two GWAS models, SLD2 knockout experiments in 4. thaliana
showed no phenotype growth defects under normal conditions [24]. However, double mutants of s/d1 sld2
exhibited altered growth phenotypes under cold stress conditions accompanied by changes in the distribution
of complex sphingolipids such as glucosyl-ceramide (GluCer) and GIPCs [24]. These findings suggest an
ambiguous role for SLD2 in shoot biomass accumulation. However, AGL18, which was connected to SLD2 via
coexpression, is essential in regulating the transition from vegetative to reproductive growth in plants [29]
suggesting its involvement in shoot biomass development. Notably, the additional context provided by
RWR_LOE highlights a connection between SLD2 and shoot biomass accumulation, a relationship that was

not apparent from the GWAS results alone.
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With respect to the SAM, the abaxial-adaxial regulatory network involved in shoot patterning and vascular
development is primarily controlled by the KANADI TFs as well as the the Class IIl Homeodomain Leucine-
Zipper (HD-ZIP IIT) TFs, PHB and PHV [30]. KANI engages in both direct protein-protein interactions with
PHB and PHV and influences their transcriptional activities antagonistically to preserve the required
abaxial/adaxial boundary in apical meristem establishment and leaf development [31,32]. 452 is an important
LOB-domain containing an adaxial regulator required for symmetrical leaf expansion [33]. 452 and KANI are
mutual transcriptional repressors controlling the lateral expansion and flatness of leaves which is fundamental
to proper vegetative growth in the SAM [34]. Similarly, WOX9is a WUS homeobox-containing TF required
for growth and maintenance of the vegetative SAM, in part through maintaining the population of
undifferentiated stem cells [35]. KANI engages in a protein-protein interaction with WOX?9, likely to balance
stem cell maintenance and cell fate/identity during vascular development in the SAM [27,36]. The methylation
state of KANI was found to be an important predictor of the methylation state of 770OX9, suggesting an
epigenetic relationship between these regulators in the SAM. KANTI also regulates key auxin-transport genes,
such as PIN1, to orchestrate organ patterning and vascular development in the SAM. Specifically, KAN1
directly inhibits PN by binding to a specific site downstream of PIN1, effectively restricting auxin flow by
PINI repression [31]. Additionally, the protein products of WOX9, PHB, and PHV were all shown to interact
via a protein-protein interaction layer of the multiplex, further indicating a tightly interconnected regulatory

network among these genes.

RWR_LOE significantly enhances traditional GWAS by uncovering additional topological
connections within a multiplex (or monoplex) that would otherwise remain unknown. This approach
enabled us to construct a conceptual model that includes a network of genetic influences on shoot
biomass, which would not be possible with the GWAS results alone. We demonstrated how users can
leverage the capabilities of R WR_LOE across a network to reveal mechanistic interactions and

interpretations surrounding a user-defined gene set.

4.3 Exploring Dual Knockouts with RIWR_LOE

We used RWRtoolkit with multi-omic Arabidopsis networks to understand the functional difference between
FAE1/RODI and FAE1/FAD2 knockout plants from pennycress gene editing experiments. Using R /WR_LOE,
we aimed to explain the observed phenotypic differences between these genotypes based on differential
network connectivity. The genes found in common in the top 200 ranks for both £F4E1/RODI and
FAE1/FAD2 RWR_LOE runs exhibited enrichment for fatty acid biosynthesis-related GO and KEGG terms,
which was expected given the well-described function of the three targeted genes in fatty acid biosynthesis and
modification. The FAE1/RODI specific subnetwork (i.e., genes not found in the FAE1/FAD2 run) did not
capture any obvious function beyond additional terms related to fatty acid synthesis and storage. However, the
enriched GO and KEGG terms for the FAE1/FAD2 subnetwork suggest impacts to the growth and
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development of the plant, and are possibly affected in a regulatory manner when FAE1 and FAD2 are knocked
out, but not when FAEI and RODI are knocked out. AT2G33800 (EAMB3113), rank 160 in the FAEI/FAD2
run, is annotated with the enriched GO BP term “chloroplast rRNA processing,” and has been shown to
express a reduction in growth compared to wild type [37], offering a potential explanation as to why there exists
growth reduction in the FAE1/FADZ2 knockout line.

To better understand the connectivity between FAEI and FAD2 to EMB3113, we used R WR_ShortestPaths to
explore the connections between these genes of interest. FAE1is connected to EALB3113 through AT2G34315
via a GeneAtlas co-expression edge, and from AT2G34315 to AT3G61920 viaa DUO computed similarity (an
advanced correlation metric) [38] edge. Finally, it connects EMB3113 from AT3G61920, also via the DUO
similarity metric (Fig S D). FAD2 connects to EMB3113 via a PEN (Predictive Expression Network) edge with
ATI1G09750.

Interestingly, AT2G34315 acts as an avirulence induced gene (4/G1)[39] and AT3G61920 encodes a PADRE
protein that exhibits downregulation when exposed to Pst DC3000 AvrRPS4 [40]. Therefore, genes within this
path may suggest a connection between the growth/defense tradeoft in plant development. AT1G09750, the
connecting gene between FAD2 and EMB3113, encodes a metabolic enzyme with roles in hydrotropic response
signal transduction and osmotic equilibrium maintenance [41]. Additionally, AT1G09750 has been quantified
as being expressed during active growth and growth arrest developmental stages of Arabidopsis hypocotyls.
Given AT1G09750’s role during active growth stages of development, we can begin to paint a more

comprehensive picture as to why these pleiotropic effects occurred.

Using RWRtoolkit’s RIWR_LOE and RWR_ShortestPaths tunctionality to explore the surrounding network
topology of these knockout gene pairs, we start to gain some insights as to why the FAE1/FEAD?2 dual knockout

showed deleterious effects upon the growth of pennycress.

While the present manuscript focuses on gene-gene homogeneous networks, users could expand RWR toolkit
to include additional omic data such as metabolite-metabolite networks as well as heterogeneous networks
(phenotype-gene, phenotype-metabolite, etc.). The focus of RWRtoolkit is intended to be applied to biological
networks, but given that networks are domain agnostic and can signify any entity to entity relationship
(including social networks, transportation networks, etc.), RWRtoolkit’s algorithms could be applied to any

network data to identify highly ranked nodes using random walk with restart.

Together, we show that RWRtoolkit is an easy-to-use software package and KBase application that facilitates
biological interpretation of experimental data sets using network analyses. We hope this package will provide
another useful tool for researchers to interpret functional context from newly derived experimental data in

order to accelerate scientific discovery.
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5.  Methods

5.1 Multiplex Construction and Layers

We constructed our comprehensive Arabidopsis thaliana multiplex consisting of 9 layers, defined in Table 2.
All input networks were converted to be unweighted, and the multiplex constructed with a delta value of 0.5.
The multiplex and its corresponding information can be found on GitHub (Comprehensive Multiplex,

https://github.com/dkainer/R WRtoolkit-data/tree/main).

5.2. Network Validation

To ensure that our multiplex network was well constructed, we used RIWR_CV with a series of well curated
genes known to be highly connected within a biological system. These highly connected gene sets were derived
from shared MAPMAN terms [20]. In order to ensure the validity of our multiplex network, we ran kfold cross
validation (k=5) for each MAPMAN derived gene set. We compared the outputs of RIWWR_CV with another
RWR_CV run using the same gene sets but on 1000 randomly rewired multiplexes with the same number of

nodes and edges maintained in each layer.

5.3. GWAS

5.3.1 SNP Variant Calling and Filtering

Variant calling methods for the SNPs were described previously [42]. Briefly, Illumina HiSeq X10 and Illumina
NovaSeq 6000 paired-end sequencing at Department of Energy Joint Genome Institute and the HudsonAlpha
Institute for Biotechnology were used for whole genome re-sequencing of the 260 P. virgatum genotypes. The
median sequencing depth was 59x. The raw SNP dataset was filtered down to 4,458,778 SNPs for GWAS and
all other downstream analyses: SNPs with more than 10% missing genotypes, genotypes with more than 10%
missing SNPs, SNPs with severe departure from Hardy Weinberg Equilibrium (SNPs with HWE p-value < 1E-
50), and SNPs with minor allele frequency < 0.05, SNPs with LD r2 >=0.07 were removed.

5.3.2 Phenotyping

The aboveground shoot dry biomass was measured on 1442 P. virgatum plants (298 unique genotypes) grown
under well-watered conditions in a greenhouse in multiple batches. Phenotypic outliers in the dataset were
removed using the Median Absolute Deviation (MAD) method [43] with a MAD distance of 6 used as a
threshold for removing outliers. Best Linear Unbiased Predictors (BLUPs) [44] of each genotype were obtained

by running a linear model with genotypes as the random effect and the Batch as the fixed effect (covariate).

5.3.3 GWAS

Association of the SNPs in the genome with the phenotypic trait (BLUPs) were calculated using GAPIT
version 3 R package [45] with the following GWAS models: MLM [46], MLMM [47], FarmCPU [48], and
BLINK [49]. The SNPs from the association test that passed the FDR threshold of 0.2 were considered
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significant. The significant SNPs were mapped to the two nearest Panicum virgatum genes, upstream and

downstream using Version 5.1 snpEff annotation [15].

5.4: Exploring Genes of Interest using KBase apps

In order to make RWRtoolkit accessible to users with limited bioinformatic experience, we developed two
RWRtoolkit applications within KBase [15] to allow users to input Arabidopsis gene sets. Using the code base
of RWR_make_multiplex, we assembled 9 multiplex network objects (located at
https://github.com/dkainer/RWR toolkit-data), which were imported into KBase. We first built a KBase
application to explore using the RIWR_CV function of RWRtoolkit (Find Gene Set Interconnectivity using
Cross Validation with RV Rtools CV). We then developed the next application using the R WR_LOE function
of RWRroolkit (Find Functional Context using Lines of Evidence with R W Rtools LOE) to allow users to explore
functional Arabidopsis gene-gene linkages from a user’s gene set based on multiple lines of evidence from a
random walk exploration of genes within a multiplex network starting from this gene set. Finally, we used

RWR_LOE embedded within the app to provide a rank-ordered list of genes explored from the user’s gene set.

5.5 Exploring Gene Edits with RIWR_LOE

5.5.1: Differential Ranking Between Two Gene Sets

We ran RWR_LOE two separate times: first with a seed gene set containing FAEI (AT4G34520) and RODI
(AT3G15820), then with a seed gene set containing FAET and FADZ2 (AT3G12120). Each individual run
produced rankings for all 26,605 genes in the multiplex network. We extracted the top 200 ranked genes from
running RWR_ LOE on the FAE1/RODI gene pair, and contrasted those to the ranks obtained for those 200
genes when running R WR_LOE on the FAEI/FADZ2 gene pair.

5.5.2: Cytoscape Set Differential

As in the differential ranking analysis, R WR_LOE was run using seeds FAEI and FAD2, and then using FAE1
and ROD as seeds for a separate ranking analysis. Here, the subnetworks containing the seeds and the top 200
ranked genes were extracted by using the cyto parameter (--cyto 200), generating two separate networks in
Cytoscape, named FAEI.FAD2, and FAEI.RODI. By subtracting the FAEL. RODI network from the
FAE1.FAD2 network using the difference method in Cytoscape, we obtained edges unique only to the
FAE1/FAD2 RWR_LOE rankings, resulting in the £4D2 specific network. Conversely, by subtracting the
FAE1.FAD2 network from the FAEI1. RODI network, we obtained edges unique only to FAE1/RODI
RWR_LOE rankings, resulting in a RODI specific network. Nodes shared by both networks were obtained via

the intersect method in Cytoscape, creating the intersection subnetwork.
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5.5.3: GO Enrichments

Gene set enrichment was run to assess biological functionality for all three distinct subnetworks using ClueGO,
obtained from the Cytoscape App Store [50,51]. For each individual network (F4D2 and RODI specific
networks and the intersection network), all gene nodes within each network were loaded into the Load Marker
List(s) section and enriched using ClueGO in Functional Analysis mode within the Load Marker List section.

The GO Biological Process and KEGG Ongologies/Pathways were selected within the ClueGO settings.

5.6: RWR Shortest Paths

To extract shortest paths between the source genes (FAE1, FAD?2) and the target gene (EMB3113), we ran
RWR_ShortestPaths supplying the source gene set and the target gene set with the cyto parameter as true (--cyto
TRUE). The output file contains an edge list with additional metadata for each edge, comprising the shortest

paths from all nodes in the source gene set to all nodes in the target gene set .

Availability of source code and requirements
e RWRtoolkit Source Code available at: https://github.com/dkainer/R WRtoolkit
® RIWR LOEand RWR_CV are available as web applications (Find Functional Context using Lines of
Evidence with RWRtools LOE and Find Gene Set Interconnectivity using Cross Validation with
RWRtools CV) through KBase, found at https://www.kbase.us/

Data Availability
® DPre-Assembled Arabidopsis Networks are available at: https://github.com/dkainer/R WRtoolkit-data.
e Well-Watered Shoot Biomass GWAS Results can be found in Table 3.
® KBase Narrative is publicly available at: https://narrative.kbase.us/narrative/165213.
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Figure 1. Aggregated monoplex network vs Multiplex network. In this example there are three small
input network layers (L1, L2, L3), with a union set of nodes of size n=4, with which to generate a multi-layer
network. A. In the aggregated approach the layers are merged into one. If multiple edges occur between any pair
of nodes, their weights are aggregated to produce the final adjacency matrix of size n x n. B. In the multiplex
approach each layer is kept separate via a supra-adjacency matrix of size (n x L) X (n x L) where L is the number
of layers. Nodes that are common across layers are connected by virtual edges (red arrows). The diagonal blocks
of the supra-adjacency matrix represent the standard adjacency matrices within each individual layer.
Connectivity between layers is represented in the oft-diagonal blocks, with virtual edges coloured in gray. Note
that layer L3 (blue) does not contain node ‘b’, so there are no inter-layer virtual edges from L1-L3 or L2-L3 for
node ‘b’.
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Figure 2. A general workflow for using the RWRtoolkit. A. Illustration of how a user can generate
several network layers from different omics data sources, which become input to the RWRtoolkit workflow.
Once the user has networks in the correct format, they can then refer to them via a flist file and use
RWR_make_multiplex to turn them into a homogeneous multiplex network (e.g., multiple layers of gene-to-
gene relationships). This multiplex is wrapped in an RData object that is saved for future use. B. A
demonstration of how the user can now execute a variety of multi-omic analyses, most of which require the
RData object as input. A set of genes of interest (gene set) from discovery studies such as GWAS or differential
expression analysis can be used as input to multiple tools. These tools output a variety of files that show how
functionally connected the genes in the gene set are to each other, or to a second gene set of interest, or to all the
other genes in the multiplex. Some resulting networks can be automatically visualized in Cytoscape via the

RCy3 R package (Gustavsen, 2019). Figure uses illustrations created with BioRender.com.
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Figure 3. A comparison of the mean AUROC scores from the kfold output of RWR_CV using the
true Comprehensive Multiplex (blue) and 1000 randomly rewired multiplex networks (red). A.
Ilustration of a comparison of AUROC density across 5 folds using an individual set of genes curated for
Jasmonate signaling obtained from MAPMAN. The true comprehensive multiplex (blue) has a mean AUROC
across 5 folds of 0.993 whereas the 1000 rewired multiplexes have an average mean AUROC across 5 folds of
0.498. B. Depiction of a comparison of AUROC density across 5 folds using an individual set of genes curated
for Heat Stress signaling obtained from MAPMAN. The True comprehensive multiplex has a mean AUROC
across 5 folds of 0.766. The average mean AUROC across 5 folds for the 1000 rewired multiplexes is 0.467. C.
Ilustration of a comparison of the average AUROC density across 25 gold standard gene sets generated from
shared MAPMAN terms including Jasmonate and Heat Stress signaling. The true Comprehensive Multiplex
has an overall average mean AUROC of 0.91 across all 25 gold standard gene sets, whereas the 1000 rewired
multiplex networks have an overall average AUROC of 0.489 across all 25 gold standard gene sets, illustrating
that the true Comprehensive Multiplex has meaningful biological connections compared to the completely

random connections found across the 1000 rewired multiplex networks.
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Figure 4. Exploring switchgrass GWAS results using Arabidopsis multiplex networks in KBase using
RWRtoolkit. A. Workflow diagram. Switchgrass GWAS models identify significant single nucleotide
polymorphism (SNP) associations with well-watered shoot biomass dry weight, and these SNPs are assigned to
the two nearest Switchgrass genes. Switchgrass genes are converted to Arabidopsis orthologs, which are used as
seeds in Arabidopsis multiplex networks. KBase apps were used to explore highly interconnected genes and
identify functional context of the GWAS genes using a 9-layer multiplex, including 3 network layers (DUO Co-
Evolution, iRF Predictive Expression, and iRF Predictive CG Methylation) derived from high-performance
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computing using models with petascale or exascale-level combinatorial complexity. Figure created using
Biorender.com. B. Using KBase, R WR-CV identified three seed genes (inset, red box) that were unconnected
from the top 200 ranked genes. Seed genes (Arabidopsis orthologs from GWAS results) are displayed as purple
nodes, and teal to light blue nodes are color scaled based on R W R-LOE ranks. Edge colors indicate the line of
evidence from which each gene-gene relationship was derived. C. Visualization of KBase R WR-LOE top 200
ranks output using orthologs of genes that were highly interconnected based on R WR-CV (“filtered genes”).
Inset: Magnified view of network. When hovering over a gene, users can view Gene Ontology (GO), knockout
phenotype and MAPMAN annotations for that gene. D. Framework for a conceptual model of Switchgrass
well-watered shoot biomass with GWAS genes (red) and top 200 ranked genes by R WR-LOE (black). Genes
from GWAS and R WR-LOE ranks implicated shoot apical meristem development, homeodomain
transcription factors involved in transcriptional repression, and sphingolipid/ceramide synthesis. Figure made

with BioRender.com.
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Figure 5. Top-ranked genes identify overlapping and distinct biological processes in pennycress from
alternative knockout gene pairs. A. An illustration of the outcomes of using two knockout gene pairs
(FAEI/FAD2 and FAE1/RODI) as seed genes for separate R WWR_LOE runs. Genes under further investigation
were either high ranking (top 200) for one knockout pair but not the other (blue), or high ranking for both
(yellow) B. ClueGO enrichment of the three venn sets. Nodes are enrichment terms and edges represent term to
term similarity defined by a corrected Cohen’s kappa statistic. C. The union of networks formed by the
FAE1.EAD2 top 200 genes and the FAEL. RODI top 200 genes. From left to right: the FAD2 specific
subnetwork, the intersection subnetwork (i.e., genes common to both FAEL FAD2 and FAE1.RODI), and the
ROD1 specific subnetwork. Genes (nodes) are colorized by their corresponding ClueGO enrichments. D.
RWR Shortest paths between the FAEI/FAD2 gene set and EMB3113. The shortest paths found from the
FAD2 to EMB3113 uses edges from the predictive expression network while the path from FAEI to EMB3113
uses edges from the gene atlas and duo network. In cases where edges exist on multiple layers, multiple labeled

edges will exist between the two nodes.
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TABLES:

Command | R Script Shell Script
Assumes RWRtoolkit has been installed and Relative paths assume the scripts are run from within
“example_data” has been set as working directory: the ‘inst" directory of the downloaded github

repository or the main directory of the already
library(RWRtoolkit)

extdata.dir <- system.file(package="RWRtoolkit")
setwd(extdata.dir)

installed R package directory

Make RWR_make_multiplex(flist='./example_data/flist.ts | Rscript ./scripts/run_make_multiplex.R --
hluhqﬂex v') flist ./example_data/flist.tsv
Netstats RWR_netstats( Rscript ./scripts/run_netstats.R \
data = --data
' ./example_data/string_interactions.Rdata", ./example_data/string_interactions.Rdata \
outdir = './netstats_output’, --outdir ./netstats_output \
network_1 = --network_1
' ./example_data/netstat/combined_score-random- ./example_data/netstat/combined_score-
gold.tsv', random-gold.tsv \
network_2 = --network_2
' ./example_data/netstat/combined_score-random- ./example_data/netstat/combined_score-
test.tsv', random-test.tsv\
basic_statistics = T, --basic_statistics \
scoring_metric = "both", --pairwise_between_mpo_layer \
pairwise_between_mpo_layer = T, --multiplex_layers_to_refnet \
multiplex_layers_to_refnet =T, --net_to_net_similarity \
net_to_net_similarity =T, --calculate_tau_for_mpo \
calculate_tau_for_mpo = T , --calculate_exclusivity_for_mpo
calculate_exclusivity_for_mpo = T --verbose
)
Network RWR_network_aggregation( Rscript ./scripts/run_network_aggregation.R
Aggregation | | data = ] ] ] ‘ \
./example_data/string_interactions.Rdata’, --data
outdir = './netstats_networks"', ./example_data/string_interactions.Rdata \
merged_with_all_edges = T, --outdir ./netstats_networks \
merged_with_edgecounts = T --merged_with_all_edges \
) --merged_with_edgecounts
LOE RWR_LOE ( Rscript ./scripts/run_loe.R \
data = --data
' ./example_data/string_interactions.Rdata’, ./example_data/string_interactions.Rdata \
seed_geneset= './example_data/genesetl.tsv', --seed_geneset ./example_data/genesetl.tsv
outdir = './loe_output_dir' \

) --outdir ./loe_output_dir
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CV RWR_CV ( Rscript ./scripts/run_cv.R \
data = --data
' ./example_data/string_interactions.Rdata’, ./example_data/string_interactions.Rdata \
geneset_path= './example_data/genesetl.tsv', --geneset ./example_data/genesetl.tsv \
method="kfold", --method kfold \
folds=3, --folds 3 \
outdir = './cv_kfold_output_dir' --outdir ./cv_kfold_output_dir
)
Shortest RWR_ShortestPaths( Rscript ./scripts/run_shortestpaths.R \
Daths data = --data
' ./example_data/string_interactions.Rdata’, ./example_data/string_interactions.Rdata \
source_geneset= './example_data/genesetl.tsv', --source_geneset
target_geneset="'./example_data/geneset2.tsv', ./example_data/genesetl.tsv \
outdir="'./shortest_paths_output' --target_geneset
) ./example_data/geneset2.tsv \
--outdir ./shortest_paths_output

Table 1. RWRtoolkit Execution Commands. Examples of how to call each of the RWRtoolkit functions
from either an R environment or a command line environment.

Network Layer Description Nodes Edges

CoEvolution-DUO Gene A connects to Gene B if a SNP in or near Gene A is correlated with a 2283 13514

SNP in or near Gene B using the DUO metric. [38]

Coexpression Gene-Atlas Coexpression network obtained from AtGenie.org. [52] 7683 84959

Knockout Similarity Gene A connects to Gene B if the phenotypic effect of knocking out GeneA | 1841 94952

is similar to the phenotypic effect of knocking out GeneB. [53]

PPI—Gmerged GeneA connects to GeneB if their protein products have been shown to 19191 317787
bind to interact with each other, typically through experimental evidence.
The PPI-6merged network is the union of 6 different A.thaliana PPI
networks: AraNet2 LC, AraNet2 HT [54], AraPPInet2 0.60 [55],
BIOGRID 4.3.194 physical [56], AtPIN [57], and Mentha. [58]

PEN-Diversity Gene A connects to Gene B if the expression vector of Gene A is an 19975 145407
important predictor of the expression vector of Gene B in an iRF model,

where all other genes’ expression are included as covariates. [5,59]



https://paperpile.com/c/yz0KN4/VkUI
https://paperpile.com/c/yz0KN4/jy64
https://paperpile.com/c/yz0KN4/qdBD
https://paperpile.com/c/yz0KN4/WjIZ
https://paperpile.com/c/yz0KN4/VN3Q
https://paperpile.com/c/yz0KN4/UgHy
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Network Layer Description Nodes Edges
Predictive CG Gene A connects to Gene B if the CG methylation vector of Gene A is an 13314 71287
Methylation important predictor of the CG methylation vector of Gene B in an iRF

model, where all other genes” CG methylation states are included as

covariates. [5,59]

Regulation— ATRM Gene A connects to Gene B if Gene A is a Transcription Factor (TF) thatis | 789 1359
shown to interact with Gene B (which may or may not be a TF). This
dataset contains literature mined and manually curated TF regulatory

interactions for A.thaliana [60]

Regulation—Plantregmap This network contains computationally predicted TF-Target relationships 16014 167851

based on motifs, binding sites, ChipSeq data [61]

Metabolic- AraCyc Gene A connects to Gene B if they are both enzymatic and are linked by a 2857 21524

common substrate or product. [62]

Table 2. Multiplex Network Layers. A list of all network layers within the Comprehensive Multiplex
Network.


https://paperpile.com/c/yz0KN4/ikoB+ahbV
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Geneset Rewired 1000 Average | Rewired 1000 std Comprehensive net average | Comprehensive net std
AUROC AUROC AUROC AUROC
Abscisic acid 4.989E-01 7.728E-02 8.710E-01 6.954E-02
Auxin 4.809E-01 4.295E-02 8.416E-01 3.975E-02
Brassinosteroids 4.891E-01 9.982E-02 9.393E-01 4.638E-02
Cell Wall Synthesis 5.008E-01 5.545E-02 9.815E-01 1.271E-02
CHO metabolism 4.968E-01 4.084E-02 9.388E-01 3.067E-02
Coldstress 5.008E-01 1.751E-01 9.812E-01 1.868E-02
Cytokinin 4.949E-01 1.269E-01 9.055E-01 7.550E-02
Drought salt 4.984E-01 8.276E-02 8.687E-01 3.908E-02
Ethylene 4.797E-01 6.081E-02 8.773E-01 4.811E-02
Ethylene and EREBP | 4.929E-01 4.050E-02 9.248E-01 7.183E-03
Fatty Acid 4.912E-01 5.462E-02 9.318E-01 4.245E-02
Flavonoids 5.018E-01 7.089E-02 9.478E-01 2.879E-02
Gibberelin 4.776E-01 9.544E-02 8.496E-01 9.136E-02
Glucosinolates 4.987E-01 7.306E-02 9.394E-01 3.609E-02
Heat stress 4.665E-01 3.903E-02 7.662E-01 3.477E-02
HeatshockTFs 4.657E-01 3.859E-02 7.688E-01 5.851E-02
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Isoprenoids 4.990E-01 5.616E-02 9.847E-01 1.511E-02
Jasmonate 4.975E-01 1.207E-01 9.928E-01 7.937E-03
Lignin Biosynthesis 5.026E-01 1.099E-01 9.990E-01 3.110E-04
Major CHO 4.899E-01 5.873E-02 9.135E-01 4.158E-02
Phenylpropanoids 5.007E-01 7.702E-02 9.970E-01 2.329E-03
PS Light Reaction 4.528E-01 4.627E-02 8.414E-01 3.272E-02
PS Light Reaction II 4.582E-01 7.547E-02 9.024E-01 1.358E-02
Salicylic Acid 5.006E-01 1.498E-01 8.992E-01 1.078E-01

Table 3. Multiplex AUROC Comparison. This table contains the mean values and standard
deviation of AUROC for RIWR_CV Kfold cross validation for 25 curated gene sets which all share the
same MAPMAN term. The average and standard deviation values for the rewired networks are
averages and standard deviations across 1000 iterations of the R /W R_CV Kfold Cross Validation in
which the edges of each network were rewired for each iteration. Conversely, the average and standard

deviation values for the Comprehensive network alone are those pertaining only to the average values
across the single R WR_CV Kfold Cross Validation (k=5).

GWAS Chr Pos Pvalue MAF nob | FDR_Pv | Effect DISTA | locusName Phytozome
Methods Orig s alue NCE Arabidopsis
ortholog
BLINK 02K 62843430 1.19E-13 | 2.30E-01 259 | 5.32E-07 | 4.77E-01 9199 Pavir.2KG520800 | AT4G33925.1
BLINK 02K 62843430 1.19E-13 | 2.30E-01 259 | 5.32E-07 | 4.77E-01 6514 Pavir.2KG520900 | AT1G24625.1

BLINK 02K 43638064 4.59E-13 | 1.93E-01 259 | 1.02E-06 | -4.77E-01 | -20510 Pavir.2KG303000 | AT5G16560.1



https://doi.org/10.1101/2024.07.17.603975
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.17.603975; this version posted July 19, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

BLINK 02K 43638064 4.59E-13 | 1.93E-01 259 | 1.02E-06 | -4.77E-01 | -32665 Pavir.2KG303302 | AT5G16550.1
BLINK 01N 58593942 2.53E-12 | 1.68E-01 259 | 3.75E-06 | 5.04E-01 -2241 Pavir.ING459600 | AT1G32450.1
BLINK 01N 58593942 2.53E-12 | 1.68E-01 259 | 3.75E-06 | 5.04E-01 5266 Pavir.ING459619

BLINK 08N 12302907 7.48E-12 | 5.02E-02 259 | 8.34E-06 | -7.39E-01 | -1715 Pavir.8NG064200 | AT3G47570.1
BLINK 08N 12302907 7.48E-12 | S.02E-02 259 | 8.34E-06 | -7.39E-01 [ 2805 Pavir.8NG064201

BLINK 02K 40684207 1.12E-11 | 1.89E-01 259 | 1.00E-05 | -5.13E-01 | -6514 Pavir.2KG285100 | AT2G46210.1
BLINK 02K 40684207 1.12E-11 | 1.89E-01 259 | 1.00E-05 | -5.13E-01 | O Pavir.2KG286800 | AT2G46210.1
BLINK 01K 46049518 2.84E-10 | 7.14E-02 259 | 2.11E-04 | -6.48E-01 | -12057 Pavir.1KG445700 | AT1G12640.1
BLINK 01K 46049518 2.84E-10 | 7.14E-02 259 | 2.11E-04 | -6.48E-01 | -12057 Pavir.1KG445700 | AT1G12640.1
BLINK 01K 46049518 2.84E-10 | 7.14E-02 259 | 2.11E-04 | -6.48E-01 | -12057 Pavir.1KG445700 | AT1G12640.1
BLINK 01K 46049518 2.84E-10 | 7.14E-02 259 | 2.11E-04 | -6.48E-01 | 12139 Pavir.1KG445800 | AT5G19700.1
BLINK 06N 36174982 1.19E-09 | 2.07E-01 259 | 7.60E-04 | -3.82E-01 | -4398 Pavir.6NG117300 | AT1G60140.1
BLINK 06N 36174982 1.19E-09 | 2.07E-01 259 | 7.60E-04 | -3.82E-01 | -6348 Pavir.6NG117506 | AT1G23890.2
FarmCPU 02K 40684207 1.88E-19 | 1.89E-01 259 | 8.38E-13 | -5.33E-01 | -6514 Pavir.2KG285100 | AT2G46210.1
FarmCPU 02K 40684207 1.88E-19 | 1.89E-01 259 | 8.38E-13 | -5.33E-01 | O Pavir.2KG286800 | AT2G46210.1
FarmCPU 08N 12302907 5.39E-16 | 5.02E-02 259 | 1.20E-09 | -6.31E-01 | -1715 Pavir.8NG064200 | AT3G47570.1
FarmCPU 08N 12302907 5.39E-16 | 5.02E-02 259 | 1.20E-09 | -6.31E-01 [ 2805 Pavir.8NG064201
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FarmCPU 08K 12795029 6.62E-14 | 1.22E-01 259 | 9.83E-08 | 4.36E-01 -5583 Pavir.8KG108500 | AT2G37990.1

FarmCPU 08K 12795029 6.62E-14 | 1.22E-01 259 | 9.83E-08 | 4.36E-01 8491 Pavir.8KG136900 | AT1G52190.1

FarmCPU 08K 12795029 6.62E-14 | 1.22E-01 259 | 9.83E-08 | 4.36E-01 8491 Pavir.8KG136900 | AT1G52190.1

FarmCPU 05K 47363351 4.04E-13 | 6.18E-02 259 | 4.51E-07 | -5.89E-01 | -4419 Pavir.5KG269007

FarmCPU 05K 47363351 4.04E-13 | 6.18E-02 259 | 4.51E-07 | -5.89E-01 [ 8439 Pavir.5KG523200

FarmCPU 03K 1996767 1.04E-10 | 1.68E-01 259 | 9.30E-05 | -3.02E-01 | 3444 Pavir.3KG025900

FarmCPU 03K 1996767 1.04E-10 | 1.68E-01 259 | 9.30E-05 | -3.02E-01 | -1626 Pavir.3KG041300 | AT3G44735.2

FarmCPU 0SN 51191444 2.12E-10 | 1.20E-01 259 | 1.58E-04 | 4.32E-01 13229 Pavir.5SNG411500 | AT2G33250.1

FarmCPU 0SN 51191444 2.12E-10 | 1.20E-01 259 | 1.58E-04 | 4.32E-01 13229 Pavir.SNG411500 | AT2G33250.1

FarmCPU 0SN 51191444 2.12E-10 | 1.20E-01 259 | 1.58E-04 | 4.32E-01 -14760 Pavir.SNG430240

FarmCPU 06K 14705578 9.72E-10 | 1.91E-01 259 | 6.19E-04 | 2.76E-01 -5601 Pavir.6KG187400 | AT1G16840.4

FarmCPU 06K 14705578 9.72E-10 | 1.91E-01 259 | 6.19E-04 | 2.76E-01 0 Pavir.6KG188500 | AT1G16860.1
FarmCPU 06K 14705578 9.72E-10 | 1.91E-01 259 | 6.19E-04 | 2.76E-01 0 Pavir.6KG188500 | AT1G16860.1
FarmCPU 06K 14705578 9.72E-10 | 1.91E-01 259 | 6.19E-04 | 2.76E-01 0 Pavir.6KG188500 | AT1G16860.1
FarmCPU 06K 14705578 9.72E-10 | 1.91E-01 259 | 6.19E-04 | 2.76E-01 0 Pavir.6KG188500 | AT1G16860.1

FarmCPU 09K 52780266 4.18E-09 | 1.85E-01 259 | 2.33E-03 | 6.12E-01 -9455 Pavir.9KG406700 | AT4G17910.1

FarmCPU 09K 52780266 4.18E-09 | 1.85E-01 259 | 2.33E-03 | 6.12E-01 -4933 Pavir.9KG406800 | AT2G02970.1
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FarmCPU 09K 52780266 4.18E-09 | 1.85E-01 259 | 2.33E-03 | 6.12E-01 -4933 Pavir.9KG406800 | AT2G02970.1

FarmCPU 01K 21997091 1.21E-08 | 3.44E-01 259 | 5.99E-03 | 2.92E-01 9147 Pavir.1KG276300 | AT5G43820.1
FarmCPU 01K 21997091 1.21E-08 | 3.44E-01 259 | 5.99E-03 | 2.92E-01 9147 Pavir.1KG276300 | AT5G43820.1
FarmCPU 01K 21997091 1.21E-08 | 3.44E-01 259 | 5.99E-03 | 2.92E-01 9147 Pavir.1KG276300 | AT5G43820.1

FarmCPU 01K 21997091 1.21E-08 | 3.44E-01 259 | 5.99E-03 | 2.92E-01 13972 Pavir.1KG277500 | AT5G24500.1

FarmCPU 01K 21997091 1.21E-08 | 3.44E-01 259 | 5.99E-03 | 2.92E-01 13972 Pavir.1KG277500 | AT5G24500.1

FarmCPU 01K 21997091 1.21E-08 | 3.44E-01 259 | 5.99E-03 | 2.92E-01 13972 Pavir.1KG277500 | AT5G24500.1

FarmCPU 05K 60634281 1.35E-08 | 5.79E-02 259 | 6.02E-03 | -3.57E-01 | -15923 Pavir.5KG758000 | AT2G41510.1

FarmCPU 05K 60634281 1.35E-08 | 5.79E-02 259 | 6.02E-03 | -3.57E-01 | -1975 Pavir.5KG758200 | AT1G50460.1

FarmCPU 02N 35440741 1.66E-08 | 1.20E-01 259 | 6.73E-03 | 2.84E-01 -4118 Pavir.2NG156300 | AT4G02780.1

FarmCPU 02N 35440741 1.66E-08 | 1.20E-01 259 | 6.73E-03 | 2.84E-01 16670 Pavir.2NG156400 | AT4G02780.1

FarmCPU 06K 39449007 2.35E-08 | 4.73E-01 259 | 8.71E-03 | -1.86E-01 | O Pavir.6KG295706

FarmCPU 06K 39449007 2.35E-08 | 4.73E-01 259 | 8.71E-03 | -1.86E-01 | 360 Pavir.6KG295800 | AT3G12050.1
FarmCPU 01K 39637992 7.01E-08 | 3.92E-01 259 | 2.40E-02 | -2.19E-01 | O Pavir.1KG366900 | AT1G25580.1
FarmCPU 01K 39637992 7.01E-08 | 3.92E-01 259 | 2.40E-02 | -2.19E-01 [ 3678 Pavir.1KG367100 | AT3G27540.1
FarmCPU 02N 6201763 1.62E-07 | 8.88E-02 259 | 5.17E-02 | -2.90E-01 | 24 Pavir.2NG060000 | AT3G09630.1
FarmCPU 02N 6201763 1.62E-07 | 8.88E-02 259 | 5.17E-02 | -2.90E-01 | 3414 Pavir.2NG060546 | AT3G14470.1
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FarmCPU 05K 15910143 1.99E-07 | 9.07E-02 259 | 5.92E-02 | -3.40E-01 | -4196 Pavir.5SKG216014

FarmCPU 05K 15910143 1.99E-07 | 9.07E-02 259 | 5.92E-02 | -3.40E-01 | -4196 Pavir.5SKG216014

FarmCPU 05K 15910143 1.99E-07 | 9.07E-02 259 | 5.92E-02 | -3.40E-01 | O Pavir.5KG216021 | AT3G62160.1

FarmCPU 09N 46512678 2.60E-07 | 1.91E-01 259 | 7.25E-02 | 2.14E-01 12848 Pavir.9NG277800

FarmCPU 09N 46512678 2.60E-07 | 1.91E-01 259 | 7.25E-02 | 2.14E-01 11217 Pavir.ING413642

FarmCPU 09K 6063075 6.81E-07 | 3.11E-01 259 | 1.79E-01 | 3.16E-01 -653 Pavir.9KG224800 | AT2G45490.1

FarmCPU 09K 6063075 6.81E-07 | 3.11E-01 259 | 1.79E-01 | 3.16E-01 -5059 Pavir.9KG224900 | AT1G47310.1

Table 4. Switchgrass GWAS Hits. All significant loci found from the well watered dry weight shoot biomass
GWAS.
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