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Abstract 
 
Leveraging the use of multiplex multi-omic networks, key insights into genetic and epigenetic mechanisms 
supporting biofuel production have been uncovered. Here, we introduce RWRtoolkit, a multiplex generation, 
exploration, and statistical package built for R and command line users. RWRtoolkit enables the efficient 
exploration of large and highly complex biological networks generated from custom experimental data and/or 
from publicly available datasets, and is species agnostic. A range of functions can be used to find topological 
distances between biological entities, determine relationships within sets of interest, search for topological 
context around sets of interest, and statistically evaluate the strength of relationships within and between sets. 
The command-line interface is designed for parallelisation on high performance cluster systems, which enables 
high throughput analysis such as permutation testing. Several tools in the package have also been made available 
for use in reproducible workflows via the KBase web application.  
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1. Background 
 
Biological studies are increasingly pursuing and obtaining data on larger scales and at multiple levels in the 
molecular hierarchy of the study system. One approach for dealing with the multiplicity of data in modern 
biology is to represent the relationships in the data as a network [1]. Each entity in a dataset (e.g., each gene) 
becomes a node, and an edge between two nodes represents a relationship that has been measured or predicted 
between those nodes (e.g., their co-expression in a population, sharing of common protein domains, similarity 
of methylation state, etc.). Once in network form, a great variety of network analysis methods become available 
[2,3]. Genes that are strongly connected to each other are topologically more likely to be functionally relevant to 
each other than more distal or loosely connected genes in the network. Machine learning algorithms can be used 
to efficiently explore entire networks and find such relationships with respect to a set of starting genes, often 
called seeds or anchors. This approach is particularly useful for exploring the functional context around sets of 
genes, such as those produced from GWAS, QTL mapping, differential expression analysis or case/control 
proteomics. 
 
To analyze a set of genes in a network context, one requires the underlying network itself, and an algorithm that 
traverses that network. The underlying network may be as simple as a single-layer of nodes and edges generated 
from one experimental dataset that predicts relationships between genes, such as co/predictive expression 
relationship determined from RNA-seq results [4,5]. If further data types are available,  (e.g., Protein-Protein 
Interactions [PPI]) a multi-layer network can be generated where edges in each layer represent different types of 
relationships between genes. A multi-layer network potentially fills in relationship gaps that exist in any given 
single layer, and enables simultaneous exploration of multi-omic data since one can traverse the network from 
gene to gene using edges from all layers. Edge weights, if they exist, can be used to influence the traversal. When 
relationships between specific genes are present in multiple layers, a multi-layer network presents multiple lines-
of-evidence (LOE) that those genes are functionally related [6]. 
 
Commonly the multiple layers of input networks are aggregated into a single layer by summing or averaging 
multiple edges between the same pair of nodes into one composite edge. The result is a single adjacency matrix 
representation of the data, also known as a monoplex network. The aggregated network is a summarization of 
the input layers, and as such has lost the unique topological information carried by each layer. A more recent 
innovation, known as Multiplex networks, maintains the topological separation of each input layer through the 
use of a supra-adjacency matrix (Fig. 1), while still allowing for simultaneous exploration of all layers. The 
predictive ability of a multiplex network is often greater than the equivalent aggregated monoplex network 
[7,8], but the supra-adjacency matrix is more difficult to build and adds an extra level of complexity to network 
exploration algorithms. 
 
A wide variety of algorithms exist for ranking genes according to their topological connectivity to the seed 
(candidate) genes in the underlying network. One simple approach, known as neighbor voting[9], scores each 
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gene by counting their outgoing edges that directly connect to the seeds. However, by only looking at 
immediate connections to the seeds, the influence and importance of genes farther away is ignored. More 
advanced propagation approaches, such as diffusion and random walk with restart (RWR) use the entire 
network topology to score and rank every node, and have been shown to be generally superior in their ability to 
find true positive relationships [10–12]. A Random Walk can be described conceptually as a “walker” which 
proceeds to wander outwards from a starting seed gene, choosing which edge to take with a probability equal to 
1/d where d is the degree of the current gene (d is the out-degree for directed networks). Over multiple 
iterations, the walker explores the network in this manner so the proportion of time spent at each gene forms a 
probability distribution that represents how accessible every gene in the network is when starting from the seed 
gene(s). With RWR, at each iteration the walker teleports back to the starting point with restart probability r to 
prevent the walker from wandering too far in the global topology, or getting stuck in various topological 
structures. 
 
Here we introduce RWRtoolkit, an R package with a corresponding set of command line tools that enables the 
easy construction of multiplex networks from any set of data layers, followed by analysis of candidate gene sets 
within the networks using the Random Walk with Restart (RWR) algorithm. RWRtoolkit wraps the 
RandomWalkRestartMH R package [8], which provides the core functionality to generate multiplex networks 
from a set of input network layers, and implements the Random Walk Restart algorithm on a supra-adjacency 
matrix. Once a multiplex network has been generated, the RWRtoolkit provides commands to rank all genes in 
the overall network according to their connectivity to a set of seed genes, use cross-validation to assess the 
network’s predictive ability or determine the functional similarity of a set of genes, and find shortest paths 
between sets of seed genes. RWRtoolkit provides as output detailed tables of ranked genes as well as statistics of 
predictive accuracy (AUROC, AUPRC, etc.), plots, and network visualizations of the multi-omic 
neighborhood around the seed genes. Furthermore, RWRtoolkit commands can be run from the command-
line interface, which enables high throughput parallelised analysis (such as permutation testing) on compute 
clusters. 
 
To date, multi-omic networks have been made publicly available in a range of model species: AraNet, 
PopGenie, StringDB, YeastNet. However these networks are often aggregated into a single layer rather than 
multiplexed, and it is difficult or impossible for the user to customize their choice of input layers or include 
custom layers generated from their own experimental results or algorithms. RWRtoolkit enables robust 
network analysis of multi-omic data for any species, allowing researchers to use their own datasets and networks 
and/or pre-existing networks. We demonstrate this by generating a custom Arabidopsis thaliana multiplex 
network and using it to analyze gene sets from a novel GWAS study and a published gene knockout study [13]. 
RWRtoolkit is available with installation instructions, user guide and sample data at 
http://github.com/dkainer/RWRtoolkit [14]. Finally, RWRtoolkit, together with a comprehensive 
Arabidopsis multiplex network, has been integrated into the US Department of Energy’s KBase platform that 
facilitates reproducible workflows for biological analysis [15]. 
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2. Data Description 
We created the RWRtoolkit R package as a collection of functions for easy network-based functional analysis 
using random walks on multiplex networks (Fig. 2). The package provides functions for multiplex network 
generation, running random walks starting from given seed sets, validation functions for seed sets as well as 
network layers, and general multiplex network statistics. These functions are made available via a cross-platform 
R package and command-line interface commands. We have provided multiple tutorials in the R vignette 
format for users to explore at their own leisure. Our methods were generated with gene relationships as a focus, 
but these random walk methods can be applicable to any data type in network format. Example methods can be 
seen in Table 1 and example input and output can be seen in supplementary tables 1-18.  
 

2.1  Multiplex Generation 

RWRtoolkit usage typically starts with the RWR_make_multiplex command, which handles the creation of 
the multiplex network. It requires a descriptor file (known as an “flist”) that lists the full path to each network 
layer to be included in the multiplex.  Each network layer’s file must be formatted as a simple delimited edge list 
with a column for the source genes, a column for the target genes, and an optional weight column (see 
Supplementary Tables 1, 2, and 3 for file examples). The generated multiplex network is automatically saved 
as an Rdata object containing the individual layers as igraph [16,17] networks, the multiplex transition matrices, 
and network metadata. This Rdata object is used as input for most downstream commands. 
 

2.2  Multiplex RWR Applications 

2.2.1 Network Layer and Multiplex Statistics 
The contents of a multiplex network affect the outcomes of RWR analyses. The RWR_netstats command lets 
the user evaluate individual network layers or the contents of an entire multiplex network containing many 
layers, using a variety of options for calculating network metrics as well as functions for multiplex network 
evaluation. Basic statistics (basic_statistics)  for individual layers can be calculated, as well as more complex 
relationships such as jaccard or overlap scores for inter-layer similarities (pairwise_between_mpo_layer), 
multiplex layer to reference network (multiplex_layers_to_refnet), and single network to network similarities 
(net_to_net_similarity). During a random walk, the tau parameter affects the probability of the walker visiting 
each specific layer, allowing the user to bias the walk to certain layers of higher importance. Users can supply 
their own tau, or use the calculate_tau function to return a tau value for each layer.  
 
2.2.2 Evaluating multiplex networks and gene sets using cross-validation 
The predictive ability of a multiplex network can be determined using cross validation of gold standard or 
reference gene sets with the RWR_CV command. A gold standard gene set typically contains genes that are 
known to be functionally related (e.g.,  all are members of one biosynthetic pathway, all are annotated with the 
same GO/KEGG term, etc.). The hypothesis is that gold standard genes purposely left out from the seed set 
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should be found with relatively high precision (i.e., highly ranked by RWR) if the underlying networks are 
indeed functionally predictive. The RWR_CV command allows the user to provide a gold standard gene set 
and use k-fold, leave-one-out, or singleton cross validation to score the ability to find the left out gene(s). 
 
RWR_CV produces output files containing the RWR score and rank of each gene in the multiplex (as 
described by RWR_LOE, for each fold), mean rank of each gene across all folds, evaluation metrics based on 
the ranks of the left-out genes for each fold, and an evaluation summary file. Evaluation metrics, such as 
AUPRC and AUROC, can output as plots as well.  File descriptions and examples can be found in 
Supplemental Tables  13-16 .  
 
2.2.3 Ranking Genes Using Multiple Lines of Evidence (LOE) 
The RWR_LOE command uses RWR to rank all genes in the multiplex network with respect to a gene-set of 
interest (seed genes), which provides multi-omic biological context for the seeds. The ranks and scores of all 
genes can be output to a file.  A second gene set can be provided in order to evaluate the topological relationship 
between two sets of genes. When a second gene set is provided, those genes are flagged within the ranked 
output.  The network context around the top ranked genes can be easily visualized via an integrated connection 
to Cytoscape [18] using the RCy3 [19] R package. 
 
2.2.4 Extracting The Shortest Paths Between Genes 
In a network there can exist many unique paths between two particular nodes. Obtaining the shortest paths 
between any two given nodes within a network can provide crucial insight to a network’s topology or the 
relationship between those nodes. RWR_ShortestPaths calculates the pairwise shortest paths between source 
and target gene sets, and returns them as a series of edges that form the shortest path, the layers in which those 
edges exist, edge weights, and normalized edge weights.  
 
2.2.5 Network Aggregation Functions 
Two methods of network aggregation are provided to merge the layers of a multiplex network into a single 
monoplex network. The merged_with_all_layers function aggregates all layers maintaining multiple edges 
between nodes. The merged_with_all_edgecounts function aggregates all layers of the multiplex, but instead 
edge weight is calculated as the sum of all shared edges within the multiplex network.  
 

3. Results 
We used RWRtoolkit to explore genetic relationships in two promising biofuel crops: switchgrass (Panicum 
virgatum) and pennycress (Thlaspi arvense). Since large scale multi-omic pennycress and switchgrass data are 
not yet available, we generated a multiplex network from varied data layers available for Arabidopsis thaliana, a 
model species which is in the same family as pennycress (Table 2). 
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3.1 Multiplex network validation using RWR and cross validation (RWR_CV) 

We ran RWR_CV using k-fold (k=5) on each of 25 MAPMAN-derived [20] gene sets to validate the predictive 
ability of the multiplex network. This resulted in an average AUROC of 0.91 across all gene sets and folds, 
indicating a strong overall ability to find the left-out genes from a functional group and rank them highly. 
Conversely, when we performed the same analysis on 1000 randomly rewired multiplexes using command-line 
RWR_CV , the overall average AUROC was 0.49 (where AUROC of 0.50 is considered the equivalent of 
random). A comparison of AUROC densities for an individual MAPMAN gene set and all sets in total are 
illustrated in figures 3a and 3b (respectively). Individual RWR_CV comparison statistics for each MAPMAN 
gene set can be found in Table 3. 
 

3.2 Identifying Genes Contributing to switchgrass Well-Watered Shoot Biomass Using RWRtoolkit 
and KBase  

Identifying genetic variants, genes, and biological pathways controlling plant biomass can prioritize gene targets  
for improving biofuel feedstocks. To this end, we performed a genome-wide association study (GWAS) for 
well-watered shoot biomass dry weight (Table 4, Supplementary Fig 2.) in the tetraploid bioenergy feedstock 
switchgrass (Panicum virgatum). Two GWAS models (BLINK and FarmCPU) identified 22 unique significant 
single nucleotide polymorphisms (SNPs) associated with well-watered shoot biomass at an FDR < 0.2. These 
were mapped to a total of 38 unique switchgrass genes based on genomic proximity. 
 
We next wanted to understand the biological context among our Switchgrass well-watered shoot biomass gene 
set. However, there are limited publicly available networks that describe gene-gene relationships in switchgrass 
[21,22], so we mapped the 38 switchgrass GWAS genes to 32 Arabidopsis (Arabidopsis thaliana) orthologs 
using Phytozome [23]. For a greater understanding of the functional context of these GWAS results we 
leveraged our Arabidopsis multiplex network consisting of nine distinct lines of biological evidence to explore 
the relationships among these orthologs (Fig. 4A).  
 
RWR_CV and RWR_LOE functionality and the Arabidopsis multiplex network were incorporated into the 
DOE Systems Biology Knowledgebase (KBase [15]) interface (Fig. 4B-C). Using the visualization derived from 
the KBase tools, we first removed three orthologs (AT1G12640, AT1G47310, AT3G14470) that were not 
connected to any other GWAS genes, nor to the top 200 genes ranked by RWR_CV with 5-fold cross 
validation (Fig. 4B). We then used the remaining 29 GWAS gene orthologs as seeds for the RWR_LOE 
application to help generate a framework for a conceptual model depicting the top candidate genes from 
GWAS and their functional context derived from other high ranking genes  (Fig. 4D). Here, we focus our 
discussion on two genes identified by shoot biomass GWAS and their relevant RWR_LOE connections.  
 
Both BLINK and FarmCPU GWAS models identified the SNP Chr02K_40684207 as significant, with FDR-
adjusted p-values of 1.00E-5 and 8.38E-13, respectively (Table 4, Supplementary Fig. 2). This SNP is located 
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in the switchgrass gene Pavir.2KG286800, which is orthologous to the Arabidopsis gene SPHINGOID LCB 
DESATURASE 2 (SLD2, AT2G46210.1) (Table 4). SLD2 plays a crucial role in sphingolipid biosynthesis by 
catalyzing the desaturation of long-chain bases (LCBs) at position 8 [24]. RWR_LOE analysis revealed 
interactions between SLD2 and SPHINGOID LCB DESATURASE 1 (SLD1, AT3G61580) and DES-1-LIKE 
(AT4G04930), which are delta 8 and delta 4 desaturases through the PPI layer (Fig. 4D), as well as AGL18, a 
MADS-domain transcription factor (AT3G57390) through the coexpression layer.  
 
Additionally, the BLINK GWAS model identified Chr02K_43638064 as significant (FDR-adjusted p-value 
1.02E-06, Table 4). The nearest gene to this SNP is Pavir.2KG303000, which is orthologous to AT5G16560.1, 
or KANADI1 (KAN1). KAN1 is a transcription factor (TF) with a significant role in adaxial-abaxial (top and 
bottom) polarity in leaves and the proper development of the shoot apical meristem (SAM) via auxin signaling 
through interactions with auxin-related genes [25]. Previous work implicated KAN1 in a growth-defense 
tradeoff regime in Arabidopsis thaliana through jasmonic acid (JA) signaling [26]. The authors reported that 
JA activates KAN1 which suppresses auxin biosynthesis, transport, and signaling, ultimately inhibiting growth 
[26]. Importantly, this suggests that SNPs affecting KAN1 may alter growth and biomass phenotypes. To gain a 
more comprehensive understanding of the mechanisms involved in this regulatory network, we examined the 
genes connected to KAN1 in the KBase RWR_LOE Narrative. 
 
Visualizations of the lines of evidence around KAN1 and within multiplex network revealed protein-protein 
interactions (PPI-6merged, Table 2) between products of KAN1 and PHAVOLUTA (PHV), PHABULOSA 
(PHB), and WUSCHEL-RELATED HOMEOBOX 9 (WOX9; Fig. 4D) [27]. KAN1 was also connected to 
PHV, PHB, ASYMMETRIC LEAVES 2 (AS2) and PIN-FORMED 1 (PIN1) through TF regulatory 
interactions (Regulation-ATRM, described in Table 2). Additionally, the results of RWR_LOE exhibited a 
machine learning-predicted epigenetic relationship (Predictive CG Methylation, Table 2) between KAN1 and 
WOX9. Together, the output of RWR_CV and RWR_LOE identified shoot apical meristem development, 
long-chain fatty acid modifications, and homeodomain transcription factors as strong candidates affecting 
shoot biomass. 

3.3 Predicting the Functional Effects of Gene Edits  

Next, we applied RWRtoolkit to explore biological pathways surrounding two distinct genetically modified 
lines of pennycress (Thlaspi arvense). Pennycress is a cover crop in the Brassicaceae family with great potential to 
produce biodiesel and sustainable aviation fuel through large seed yields containing high volumes of long-chain 
fatty-acids. Jarvis et al. [13] recently demonstrated that pennycress lines with dual knockout of genes FAE1 and 
FAD2 produced seeds with 91% oleic acid content (significantly improved from 12% wild type accumulation), 
but at the cost of significantly reduced seed yield and stunted plant growth. Interestingly, the authors found 
that an alternative dual knockout of FAE1 and ROD1 accumulated up to 60% oleic acid with no obvious 
growth deficit. Here we used RWRtoolkit with an Arabidopsis multiplex network to investigate the difference 
in functional context between the  FAE1 and FAD2 knockouts (FAE1/FAD2) and the FAE1 and ROD1 
knockouts (FAE1/ROD1).  
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We ran RWR_LOE for each knockout pair separately and noted that many of the top 200 ranked genes from 
the FAE1/ROD1 run remained very highly ranked in the FAE1/FAD2 run. However, some of the top 200 genes 
fell drastically in ranking, indicating that they were no longer part of the same functional context after swapping 
ROD1 for FAD2 in the LOE runs (Illustrated in Supplemental Figure 3). Such “differentially ranked” genes 
can be considered as candidates driving functional changes that result in the  phenotypic differences observed 
between the two dual knockout lines.  
 
Using the set differential methodology to illustrate these differential rank differences, Gene Ontology 
enrichment of the intersection of the top 200 ranked genes from the FAE1/FAD2 seeds and the FAE1/ROD1 
seeds (i.e., genes ranked highly by RWR_LOE for both knockout pairs) exhibited enrichment for fatty acid 
biosynthesis, fatty acid metabolic process, and sphingolipid metabolic process. Genes ranked highly by 
RWR_LOE for FAE1/ROD1 but not for FAE1/FAD2  showed three terms enriched: seed oil biogenesis, 
response to freezing, and lipid storage. The genes ranked highly by RWR_LOE for FAE1/FAD2 but not for 
FAE1/ROD1, however, showed enrichment for multiple GO BP and KEGG terms beyond those expected for 
lipids, including photoinhibition, regulation of circadian rhythm, and chloroplast rRNA processing.   
 
 

4. Discussion 
 
Here, we demonstrate that RWRtoolkit enables the discovery of gene-to-gene relationships not previously 
apparent within a monoplex network topology, as well as gene-to-gene relationships across the broader 
multiplex surrounding a gene set of interest. Using the RWRtoolkit package, users can create and validate 
multiplex biological networks encoding multiple lines of evidence. Importantly, RWRtoolkit is agnostic to 
organism, tissue or condition. The user may explore biological pathways in non-model organisms by either 
using orthologs and available networks from model organisms as demonstrated in the present work by building 
custom networks from experimental data, or a combination of both approaches. In addition to obtaining 
topologically relevant gene-to-gene relationships from the multiplex networks, users can identify the lines of 
evidence driving these interactions (e.g., co-expression, protein-protein interactions, etc.) using Cytoscape or 
KBase. Additionally, peta/exascale-complexity networks derived from AI-based methods can be used as layers 
within the multiplex to identify relationships for poorly-annotated genes, including proteins of unknown 
function.  
 
RWRtoolkit was designed as a user-friendly package for researchers familiar with R software and command line 
interfaces. Users who want to generate custom multiplex networks and use the entire suite of functions in 
RWRtoolkit can find the open-source code and vignettes on GitHub. For users who prefer a point-and-click 
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graphical user interface or have limited bioinformatic experience, we have included RWR_LOE and RWR_CV 
as applications within KBase and provided pre-assembled Arabidopsis thaliana multiplex networks. 
 
RWRtoolkit explores topological connectivity between seed genes and other genes based on multiple lines of 
evidence. In doing so, RWRtoolkit facilitates interpretation of a gene set outside of gene set enrichment 
analysis, with the goal of expanding the biological context of genes in a gene set which may not have been 
previously studied in the same experimental context. Moreover, the biological context between any group of 
genes is explainable based on the various types of biological evidence present in a multiplex network.   

4.1  Multiplex Network Validation 

First, we showed the predictive capacity of our Arabidopsis multiplex network by demonstrating that 
MAPMAN gene sets were highly interconnected when using network layers from data sources distinct from 
MAPMAN.  By using ontology-derived, “gold standard” gene sets of interrelated genes from random walk 
exploration of a multiplex, we can ensure that our multiplex networks represent true biological connections, 
rather than random connections. Moreover, our Arabidopsis multiplex significantly outperformed recall of 
MAPMAN gene sets compared to permutations of randomly connected networks, indicating that this is a valid 
way to test whether a multiplex network contains biologically meaningful edges. We then demonstrated these 
applications in a real-world biological context using genesets derived from GWAS results and a gene editing 
experiment.  

4.2  Well Watered Shoot Biomass GWAS Results 

We applied the KBase RWR_LOE application to functionally contextualize GWAS results from the bioenergy 
feedstock switchgrass, as GWAS results for complex traits are often difficult to interpret because significant 
SNPs can map to a set of genes with largely uncharacterized relationships. RWR_LOE captured connections 
surrounding both sphingolipid production and a regulatory subnetwork of cell differentiation and specification 
that likely affects vascular development in the SAM. In addition, the interactions captured by RWR-LOE led to 
the development of a conceptual model framework highlighting these findings (Fig. 4 D). 
 
Sphingolipids are integral to various cellular, developmental, and stress-related processes [28]. Though the SNP 
associated with SLD2 was identified by two GWAS models,  SLD2 knockout experiments in A. thaliana 
showed no phenotype growth defects under normal conditions [24]. However, double mutants of sld1 sld2 
exhibited altered growth phenotypes under cold stress conditions accompanied by changes in the distribution 
of complex sphingolipids such as glucosyl-ceramide (GluCer) and GIPCs [24]. These findings suggest an 
ambiguous role for SLD2 in shoot biomass accumulation. However, AGL18, which was connected to SLD2 via 
coexpression, is essential in regulating the transition from vegetative to reproductive growth in plants [29] 
suggesting its involvement in shoot biomass development. Notably, the additional context provided by 
RWR_LOE highlights a connection between SLD2 and shoot biomass accumulation, a relationship that was 
not apparent from the GWAS results alone.  
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With respect to the SAM, the abaxial-adaxial regulatory network involved in shoot patterning and vascular 
development is primarily controlled by the KANADI TFs as well as the  the Class III Homeodomain Leucine-
Zipper (HD-ZIP III) TFs, PHB and PHV [30]. KAN1 engages in both direct protein-protein interactions with 
PHB and PHV and influences their transcriptional activities antagonistically to preserve the required 
abaxial/adaxial boundary in apical meristem establishment and leaf development [31,32]. AS2 is an important 
LOB-domain containing an adaxial regulator required for symmetrical leaf expansion [33]. AS2 and KAN1 are 
mutual transcriptional repressors controlling the lateral expansion and flatness of leaves which is fundamental 
to proper vegetative growth in the SAM [34]. Similarly, WOX9 is a WUS homeobox-containing TF required 
for growth and maintenance of the vegetative SAM, in part through maintaining the population of 
undifferentiated stem cells [35]. KAN1 engages in a protein-protein interaction with WOX9 , likely to balance 
stem cell maintenance and cell fate/identity during vascular development in the SAM  [27,36]. The methylation 
state of KAN1 was found to be an important predictor of the methylation state of WOX9, suggesting an 
epigenetic relationship between these regulators in the SAM. KAN1 also regulates key auxin-transport genes, 
such as PIN1, to orchestrate organ patterning and vascular development in the SAM. Specifically, KAN1 
directly inhibits PIN1 by binding to a specific site downstream of PIN1, effectively restricting auxin flow by 
PIN1 repression [31]. Additionally, the protein products of WOX9, PHB, and PHV were all shown to interact 
via a protein-protein interaction layer of the multiplex, further indicating a tightly interconnected regulatory 
network among these genes. 
 
RWR_LOE significantly enhances traditional GWAS by uncovering additional topological 
connections within a multiplex (or monoplex) that would otherwise remain unknown. This approach 
enabled us to construct a conceptual model that includes a network of genetic influences on shoot 
biomass, which would not be possible with the GWAS results alone. We demonstrated how users can 
leverage the capabilities of RWR_LOE across a network to reveal mechanistic interactions and 
interpretations surrounding a user-defined gene set. 
 

4.3  Exploring  Dual Knockouts with RWR_LOE 

 
We used RWRtoolkit with multi-omic Arabidopsis networks to understand the functional difference between 
FAE1/ROD1 and FAE1/FAD2 knockout plants from pennycress gene editing experiments. Using RWR_LOE, 
we aimed to explain the observed phenotypic differences between these  genotypes based on differential 
network connectivity. The genes found in common in the top 200 ranks for both FAE1/ROD1 and 
FAE1/FAD2 RWR_LOE runs exhibited enrichment for fatty acid biosynthesis-related GO and KEGG terms, 
which was expected given the well-described function of the three targeted genes in fatty acid biosynthesis and 
modification. The FAE1/ROD1 specific subnetwork (i.e., genes not found in the FAE1/FAD2 run) did not 
capture any obvious function beyond additional terms related to fatty acid synthesis and storage. However, the 
enriched GO and KEGG terms for the FAE1/FAD2 subnetwork suggest impacts to the growth and 
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development of the plant, and are possibly affected in a regulatory manner when FAE1 and FAD2 are knocked 
out, but not when FAE1 and ROD1 are knocked out. AT2G33800 (EMB3113), rank 160  in the FAE1/FAD2 
run, is annotated with the enriched GO BP term “chloroplast rRNA processing,” and has been shown to 
express a reduction in growth compared to wild type [37], offering a potential explanation as to why there exists 
growth reduction in the FAE1/FAD2 knockout line.  
 
To better understand the connectivity between FAE1 and FAD2 to EMB3113, we used RWR_ShortestPaths to 
explore the connections between these genes of interest. FAE1is connected to EMB3113 through AT2G34315 
via a GeneAtlas co-expression edge, and from AT2G34315 to AT3G61920 via a DUO computed similarity (an 
advanced correlation metric) [38] edge. Finally, it connects EMB3113 from AT3G61920, also via the DUO 
similarity metric (Fig 5 D). FAD2 connects to EMB3113 via a PEN (Predictive Expression Network) edge with 
AT1G09750.  
 
Interestingly, AT2G34315 acts as an avirulence induced gene (AIG1)[39] and AT3G61920 encodes a PADRE 
protein that exhibits downregulation when exposed to Pst DC3000 AvrRPS4 [40]. Therefore, genes within this 
path may suggest a connection between the growth/defense tradeoff in plant development. AT1G09750, the 
connecting gene between FAD2 and EMB3113, encodes a metabolic enzyme with roles in hydrotropic response 
signal transduction and osmotic equilibrium maintenance [41]. Additionally, AT1G09750 has been quantified 
as being expressed during active growth and growth arrest developmental stages of Arabidopsis hypocotyls. 
Given AT1G09750’s role during active growth stages of development, we can begin to paint a more 
comprehensive picture as to why these pleiotropic effects occurred.  
 
Using RWRtoolkit’s RWR_LOE and RWR_ShortestPaths functionality to explore the surrounding network 
topology of these knockout gene pairs, we start to gain some insights as to why the FAE1/FAD2 dual knockout 
showed deleterious effects upon the growth of pennycress. 
 
While the present manuscript focuses on gene-gene homogeneous networks, users could expand RWRtoolkit 
to include additional omic data such as metabolite-metabolite networks as well as heterogeneous networks 
(phenotype-gene, phenotype-metabolite, etc.). The focus of RWRtoolkit is intended to be applied to biological 
networks, but given that networks are domain agnostic and can signify any entity to entity relationship 
(including social networks, transportation networks, etc.), RWRtoolkit’s algorithms could be applied to any 
network data to identify highly ranked nodes using random walk with restart.  
 
Together, we show that RWRtoolkit is an easy-to-use software package and KBase application that facilitates 
biological interpretation of experimental data sets using network analyses. We hope this package will provide 
another useful tool for researchers to interpret functional context from newly derived experimental data in 
order to accelerate scientific discovery.   
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5. Methods 

5.1 Multiplex Construction and Layers  

We constructed our comprehensive Arabidopsis thaliana multiplex consisting of 9 layers, defined in Table 2. 
All input networks were converted to be unweighted, and the multiplex constructed with a delta value of 0.5. 
The multiplex and its corresponding information can be found on GitHub (Comprehensive Multiplex, 
https://github.com/dkainer/RWRtoolkit-data/tree/main).  

5.2. Network Validation 

To ensure that our multiplex network was well constructed, we used RWR_CV with a series of well curated 
genes known to be highly connected within a biological system. These highly connected gene sets were derived 
from shared MAPMAN terms [20]. In order to ensure the validity of our multiplex network, we ran kfold cross 
validation (k=5) for each MAPMAN derived gene set. We compared the outputs of RWR_CV with another 
RWR_CV run using the same gene sets but on 1000 randomly rewired multiplexes with the same number of 
nodes and edges maintained in each layer. 

5.3. GWAS  

 
5.3.1  SNP Variant Calling and Filtering  
Variant calling methods for the SNPs were described previously [42]. Briefly, Illumina HiSeq X10 and Illumina 
NovaSeq 6000 paired-end sequencing at Department of Energy Joint Genome Institute and the HudsonAlpha 
Institute for Biotechnology were used for whole genome re-sequencing of the 260 P. virgatum genotypes. The 
median sequencing depth was 59x. The raw SNP dataset was filtered down to 4,458,778 SNPs for GWAS and 
all other downstream analyses: SNPs with more than 10% missing genotypes, genotypes with more than 10% 
missing SNPs, SNPs with severe departure from Hardy Weinberg Equilibrium (SNPs with HWE p-value < 1E-
50), and SNPs with minor allele frequency < 0.05, SNPs with LD r2 >=0.07 were removed. 
 
5.3.2  Phenotyping 
The aboveground shoot dry biomass was measured on 1442 P. virgatum plants (298 unique genotypes) grown 
under well-watered conditions in a greenhouse in multiple batches. Phenotypic outliers in the dataset were 
removed using the Median Absolute Deviation (MAD) method [43] with a MAD distance of 6 used as a 
threshold for removing outliers. Best Linear Unbiased Predictors (BLUPs) [44] of each genotype were obtained 
by running a linear model with genotypes as the random effect and the Batch as the fixed effect (covariate).  
 
5.3.3  GWAS 
Association of the SNPs in the genome with the phenotypic trait (BLUPs) were calculated using GAPIT 
version 3 R package [45] with the following GWAS models: MLM [46], MLMM [47], FarmCPU [48], and 
BLINK [49]. The SNPs from the association test that passed the FDR threshold of 0.2 were considered 
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significant. The significant SNPs were mapped to the two nearest Panicum virgatum genes, upstream and 
downstream using Version 5.1 snpEff annotation [15].  
 
 

5.4: Exploring Genes of Interest using KBase apps 

 
In order to make RWRtoolkit accessible to users with limited bioinformatic experience, we developed two 
RWRtoolkit applications within KBase [15] to allow users to input Arabidopsis gene sets. Using the code base 
of RWR_make_multiplex, we assembled 9 multiplex network objects (located at 
https://github.com/dkainer/RWRtoolkit-data), which were imported into KBase. We first built a KBase 
application to explore using the RWR_CV function of RWRtoolkit (Find Gene Set Interconnectivity using 
Cross Validation with RWRtools CV). We then developed the next application using the RWR_LOE function 
of RWRtoolkit (Find Functional Context using Lines of Evidence with RWRtools LOE) to allow users to explore 
functional Arabidopsis gene-gene linkages from a user’s gene set based on multiple lines of evidence from a 
random walk exploration of genes within a multiplex network starting from this gene set. Finally, we used 
RWR_LOE embedded within the app to provide a rank-ordered list of genes explored from the user’s gene set.  
 

5.5 Exploring Gene Edits with RWR_LOE 

 
5.5.1: Differential Ranking Between Two Gene Sets 
 
We ran RWR_LOE two separate times: first with a seed gene set containing FAE1 (AT4G34520) and ROD1 
(AT3G15820), then with a seed gene set containing FAE1 and FAD2 (AT3G12120). Each individual run 
produced rankings for all 26,605 genes in the multiplex network. We extracted the top 200 ranked genes from 
running RWR_ LOE on the FAE1/ROD1 gene pair, and contrasted those to the ranks obtained for those 200 
genes when running RWR_LOE on the FAE1/FAD2 gene pair. 
 
5.5.2: Cytoscape Set Differential 
As in the differential ranking analysis, RWR_LOE was run using seeds FAE1 and FAD2, and then using FAE1 
and ROD1 as seeds for a separate ranking analysis. Here, the subnetworks containing the seeds and the top 200 
ranked genes were extracted by using the cyto parameter (--cyto 200), generating two separate networks in 
Cytoscape, named FAE1.FAD2, and FAE1.ROD1. By subtracting the FAE1.ROD1 network from the 
FAE1.FAD2 network using the difference method in Cytoscape, we obtained edges unique only to the 
FAE1/FAD2 RWR_LOE rankings, resulting in the FAD2 specific network. Conversely, by subtracting the 
FAE1.FAD2 network from the FAE1.ROD1 network, we obtained edges unique only to FAE1/ROD1 
RWR_LOE rankings, resulting in a ROD1 specific network. Nodes shared by both networks were obtained via 
the intersect method in Cytoscape, creating the intersection subnetwork. 
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5.5.3: GO Enrichments 
Gene set enrichment was run to assess biological functionality for all three distinct subnetworks using ClueGO, 
obtained from the Cytoscape App Store [50,51]. For each individual network (FAD2 and ROD1 specific 
networks and the intersection network), all gene nodes within each network were loaded into the Load Marker 
List(s) section and enriched using ClueGO in Functional Analysis mode within the Load Marker List section. 
The GO Biological Process and KEGG Ongologies/Pathways were selected within the ClueGO settings.  
 
5.6: RWR Shortest Paths 
To extract shortest paths between the source genes (FAE1, FAD2) and the target gene (EMB3113), we ran 
RWR_ShortestPaths supplying the source gene set and the target gene set with the cyto parameter as true (--cyto 
TRUE). The output file contains an edge list with additional metadata for each edge, comprising the shortest 
paths from all nodes in the source gene set to all nodes in the target gene set . 
 
Availability of source code and requirements 

● RWRtoolkit Source Code available at: https://github.com/dkainer/RWRtoolkit  
● RWR_LOE and RWR_CV are available as web applications (Find Functional Context using Lines of 

Evidence with RWRtools LOE  and Find Gene Set Interconnectivity using Cross Validation with 
RWRtools CV) through KBase, found at https://www.kbase.us/  
 
 

Data Availability 
● Pre-Assembled Arabidopsis Networks are available at: https://github.com/dkainer/RWRtoolkit-data. 
● Well-Watered Shoot Biomass GWAS Results can be found in Table 3. 
● KBase Narrative is publicly available at: https://narrative.kbase.us/narrative/165213.  
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FIGURES:  

 
Figure 1. Aggregated monoplex network vs Multiplex network. In this example there are three small 
input network layers (L1, L2, L3), with a union set of nodes of size n=4, with which to generate a multi-layer 
network. A. In the aggregated approach the layers are merged into one. If multiple edges occur between any pair 
of nodes, their weights are aggregated to produce the final adjacency matrix of size n x n. B. In the multiplex 
approach each layer is kept separate via a supra-adjacency matrix of size (n x L) X (n x L) where L is the number 
of layers. Nodes that are common across layers are connected by virtual edges (red arrows). The diagonal blocks 
of the supra-adjacency matrix represent the standard adjacency matrices within each individual layer. 
Connectivity between layers is represented in the off-diagonal blocks, with virtual edges coloured in gray. Note 
that layer L3 (blue) does not contain node ‘b’, so there are no inter-layer virtual edges from L1-L3 or L2-L3 for 
node ‘b’. 
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Figure 2. A general workflow for using the RWRtoolkit.  A. Illustration of  how a user can generate 
several network layers from different omics data sources, which become input to the RWRtoolkit workflow. 
Once the user has networks in the correct format, they can then refer to them via a flist file and use 
RWR_make_multiplex to turn them into a homogeneous multiplex network (e.g., multiple layers of gene-to-
gene relationships). This multiplex is wrapped in an RData object that is saved for future use.  B. A 
demonstration of  how the user can now execute a variety of multi-omic analyses, most of which require the 
RData object as input. A set of genes of interest (gene set) from discovery studies such as GWAS or differential 
expression analysis can be used as input to multiple tools. These tools output a variety of files that show how 
functionally connected the genes in the gene set are to each other, or to a second gene set of interest, or to all the 
other genes in the multiplex. Some resulting networks can be automatically visualized in Cytoscape via the 
RCy3 R package (Gustavsen, 2019). Figure uses illustrations created with BioRender.com.  
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Figure 3. A comparison of the mean AUROC scores from the kfold output of  RWR_CV using the 
true Comprehensive Multiplex (blue) and 1000 randomly rewired multiplex networks (red).  A.  
Illustration of a comparison of AUROC density across 5 folds using an individual set of genes curated for 
Jasmonate signaling obtained from MAPMAN. The true comprehensive multiplex (blue) has a mean AUROC 
across 5 folds of 0.993 whereas the 1000 rewired multiplexes have an average mean AUROC across 5 folds of 
0.498. B.  Depiction of  a comparison of AUROC density across 5 folds using an individual set of genes curated 
for Heat Stress signaling obtained from MAPMAN. The True comprehensive multiplex has a mean AUROC 
across 5 folds of 0.766. The average mean AUROC across 5 folds for the 1000 rewired multiplexes is 0.467. C. 
Illustration of a comparison of the average AUROC density across 25 gold standard gene sets generated from 
shared MAPMAN terms including Jasmonate and Heat Stress signaling. The true Comprehensive Multiplex 
has an overall average mean AUROC of 0.91 across all 25 gold standard gene sets, whereas the 1000 rewired 
multiplex networks have an overall average AUROC of 0.489 across all 25 gold standard gene sets, illustrating 
that the true Comprehensive Multiplex has meaningful biological connections compared to the completely 
random connections found across the 1000 rewired multiplex networks.  
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Figure 4. Exploring switchgrass GWAS results using Arabidopsis multiplex networks in KBase using 
RWRtoolkit. A. Workflow diagram. Switchgrass GWAS models identify significant single nucleotide 
polymorphism (SNP) associations with well-watered shoot biomass dry weight, and these SNPs are assigned to 
the two nearest Switchgrass genes. Switchgrass genes are converted to Arabidopsis orthologs, which are used as 
seeds in Arabidopsis multiplex networks. KBase apps were used to explore highly interconnected genes and 
identify functional context of the GWAS genes using a 9-layer multiplex, including 3 network layers (DUO Co-
Evolution, iRF Predictive Expression, and iRF Predictive CG Methylation) derived from high-performance 
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computing using models with petascale or exascale-level combinatorial complexity. Figure created using 
Biorender.com. B. Using KBase, RWR-CV identified three seed genes (inset, red box) that were unconnected 
from the top 200 ranked genes. Seed genes (Arabidopsis orthologs from GWAS results) are displayed as purple 
nodes, and teal to light blue nodes are color scaled based on RWR-LOE ranks. Edge colors indicate the line of 
evidence from which each gene-gene relationship was derived. C. Visualization of KBase RWR-LOE top 200 
ranks output using orthologs of genes that were highly interconnected based on RWR-CV (“filtered genes”). 
Inset: Magnified view of network. When hovering over a gene, users can view Gene Ontology (GO), knockout 
phenotype and MAPMAN annotations for that gene. D. Framework for a conceptual model of Switchgrass 
well-watered shoot biomass with GWAS genes (red) and top 200 ranked genes by RWR-LOE (black). Genes 
from GWAS and RWR-LOE ranks implicated shoot apical meristem development, homeodomain 
transcription factors involved in transcriptional repression, and sphingolipid/ceramide synthesis. Figure made 
with BioRender.com. 
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Figure 5. Top-ranked genes identify overlapping and distinct biological processes in pennycress from 
alternative knockout gene pairs. A. An illustration of the outcomes of using two knockout gene pairs 
(FAE1/FAD2 and FAE1/ROD1) as seed genes for separate RWR_LOE runs. Genes under further investigation 
were either high ranking (top 200) for one knockout pair but not the other (blue), or high ranking for both 
(yellow) B. ClueGO enrichment of the three venn sets. Nodes are enrichment terms and edges represent term to 
term similarity defined by a corrected Cohen’s kappa statistic. C. The union of networks formed by the 
FAE1.FAD2  top 200 genes and the FAE1.ROD1 top 200 genes. From left to right: the FAD2 specific 
subnetwork, the intersection subnetwork (i.e., genes common to both FAE1.FAD2 and FAE1.ROD1), and the 
ROD1 specific subnetwork. Genes (nodes) are colorized by their corresponding ClueGO enrichments. D. 
RWR Shortest paths between the FAE1/FAD2 gene set and EMB3113. The shortest paths found from the 
FAD2 to EMB3113 uses edges from the predictive expression network while the path from FAE1 to EMB3113  
uses edges from the gene atlas and duo network. In cases where edges exist on multiple layers, multiple labeled 
edges will exist between the two nodes.  
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TABLES:  

Command R Script 
  
Assumes RWRtoolkit has been installed and 
“example_data” has been set as working directory:  
  
library(RWRtoolkit) 
extdata.dir <- system.file(package="RWRtoolkit") 
setwd(extdata.dir) 

Shell Script 
  
Relative paths assume the scripts are run from within 
the `inst` directory of the downloaded github 
repository or the main directory of the already 
installed R package directory 

Make 
Multiplex 

RWR_make_multiplex(flist='./example_data/flist.ts
v') 

Rscript ./scripts/run_make_multiplex.R --
flist ./example_data/flist.tsv 
  

Netstats RWR_netstats( 
 data = 
'./example_data/string_interactions.Rdata', 
 outdir = './netstats_output', 
 network_1 = 
'./example_data/netstat/combined_score-random-
gold.tsv', 
 network_2 = 
'./example_data/netstat/combined_score-random-
test.tsv', 
 basic_statistics = T, 
 scoring_metric = "both", 
 pairwise_between_mpo_layer = T, 
 multiplex_layers_to_refnet = T, 
 net_to_net_similarity = T, 
 calculate_tau_for_mpo = T , 
 calculate_exclusivity_for_mpo = T 
) 
  

Rscript ./scripts/run_netstats.R \ 
  --data 
./example_data/string_interactions.Rdata \ 
  --outdir ./netstats_output \ 
  --network_1 
./example_data/netstat/combined_score-
random-gold.tsv \ 
  --network_2 
./example_data/netstat/combined_score-
random-test.tsv\ 
  --basic_statistics \ 
  --pairwise_between_mpo_layer \ 
  --multiplex_layers_to_refnet \ 
  --net_to_net_similarity \ 
  --calculate_tau_for_mpo \ 
  --calculate_exclusivity_for_mpo 
  --verbose 
  
  

Network 
Aggregation 

RWR_network_aggregation( 
 data = 
'./example_data/string_interactions.Rdata', 
 outdir = './netstats_networks', 
 merged_with_all_edges = T, 
 merged_with_edgecounts = T 
) 

Rscript ./scripts/run_network_aggregation.R 
\ 
  --data 
./example_data/string_interactions.Rdata \ 
  --outdir ./netstats_networks \ 
  --merged_with_all_edges \ 
  --merged_with_edgecounts 
  

LOE RWR_LOE( 
   data = 
'./example_data/string_interactions.Rdata', 
   seed_geneset= './example_data/geneset1.tsv', 
   outdir = './loe_output_dir' 
) 
  

Rscript ./scripts/run_loe.R \ 
  --data 
./example_data/string_interactions.Rdata \ 
  --seed_geneset ./example_data/geneset1.tsv 
\ 
  --outdir ./loe_output_dir 
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CV RWR_CV( 
  data = 
'./example_data/string_interactions.Rdata', 
  geneset_path= './example_data/geneset1.tsv', 
  method='kfold', 
  folds=3, 
  outdir = './cv_kfold_output_dir' 
) 
  

Rscript ./scripts/run_cv.R \ 
  --data 
./example_data/string_interactions.Rdata \ 
  --geneset ./example_data/geneset1.tsv \ 
  --method kfold \ 
  --folds 3 \ 
  --outdir ./cv_kfold_output_dir 
  

Shortest 
Paths 

RWR_ShortestPaths( 
  data =  
'./example_data/string_interactions.Rdata', 
  source_geneset= './example_data/geneset1.tsv', 
  target_geneset='./example_data/geneset2.tsv', 
  outdir='./shortest_paths_output' 
) 
  

Rscript ./scripts/run_shortestpaths.R \ 
   --data 
./example_data/string_interactions.Rdata  \ 
   --source_geneset 
./example_data/geneset1.tsv  \ 
   --target_geneset 
./example_data/geneset2.tsv  \ 
   --outdir ./shortest_paths_output 
  

Table 1. RWRtoolkit Execution Commands. Examples of how to call each of the RWRtoolkit functions 
from either an R environment or a command line environment.  
 
 
 
 

Network Layer Description Nodes Edges 

CoEvolution-DUO Gene A connects to Gene B if a SNP in or near Gene A is correlated with a 

SNP in or near Gene B using the DUO metric. [38] 

2283 13514 

Coexpression Gene-Atlas Coexpression network obtained from AtGenie.org. [52] 7683 84959 

Knockout Similarity Gene A connects to Gene B if the phenotypic effect of knocking out GeneA 

is similar to the phenotypic effect of knocking out GeneB. [53] 
1841 94952 

PPI-6merged GeneA connects to GeneB if their protein products have been shown to 

bind to interact with each other, typically through experimental evidence. 

The PPI-6merged network is the union of 6 different A.thaliana PPI 

networks: AraNet2 LC, AraNet2 HT  [54], AraPPInet2 0.60 [55], 

BIOGRID 4.3.194 physical [56], AtPIN [57], and Mentha. [58] 

19191 317787 

PEN-Diversity Gene A connects to Gene B if the expression vector of Gene A is an 

important predictor of the expression vector of Gene B in an iRF model, 

where all other genes’ expression are included as covariates. [5,59] 

19975 145407 
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Network Layer Description Nodes Edges 

Predictive CG 
Methylation 

Gene A connects to Gene B if the CG methylation vector of Gene A is an 

important predictor of the CG methylation vector of Gene B in an iRF 

model, where all other genes’ CG methylation states are included as 

covariates. [5,59] 

13314 71287 

Regulation-ATRM Gene A connects to Gene B if Gene A is a Transcription Factor (TF) that is 

shown to interact with Gene B (which may or may not be a TF). This 

dataset contains literature mined and manually curated TF regulatory 

interactions for A.thaliana [60] 

789 1359 

Regulation-Plantregmap This network contains computationally predicted TF-Target relationships 

based on motifs, binding sites, ChipSeq data  [61] 

16014 167851 

Metabolic-AraCyc Gene A connects to Gene B if they are both enzymatic and are linked by a 

common substrate or product. [62] 
2857 21524 

Table 2. Multiplex Network Layers. A list of all network layers within the Comprehensive Multiplex 
Network.  
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Geneset Rewired 1000 Average 
AUROC 

Rewired 1000 std 
AUROC 

Comprehensive net average 
AUROC 

Comprehensive net std 
AUROC 

Abscisic acid 4.989E-01 7.728E-02 8.710E-01 6.954E-02 

Auxin 4.809E-01 4.295E-02 8.416E-01 3.975E-02 

Brassinosteroids 4.891E-01 9.982E-02 9.393E-01 4.638E-02 

Cell Wall Synthesis 5.008E-01 5.545E-02 9.815E-01 1.271E-02 

CHO metabolism 4.968E-01 4.084E-02 9.388E-01 3.067E-02 

Coldstress 5.008E-01 1.751E-01 9.812E-01 1.868E-02 

Cytokinin 4.949E-01 1.269E-01 9.055E-01 7.550E-02 

Drought salt 4.984E-01 8.276E-02 8.687E-01 3.908E-02 

Ethylene 4.797E-01 6.081E-02 8.773E-01 4.811E-02 

Ethylene and EREBP 4.929E-01 4.050E-02 9.248E-01 7.183E-03 

Fatty Acid 4.912E-01 5.462E-02 9.318E-01 4.245E-02 

Flavonoids 5.018E-01 7.089E-02 9.478E-01 2.879E-02 

Gibberelin 4.776E-01 9.544E-02 8.496E-01 9.136E-02 

Glucosinolates 4.987E-01 7.306E-02 9.394E-01 3.609E-02 

Heat stress 4.665E-01 3.903E-02 7.662E-01 3.477E-02 

HeatshockTFs 4.657E-01 3.859E-02 7.688E-01 5.851E-02 
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Table 3. Multiplex AUROC Comparison. This table contains the mean values and standard 
deviation of AUROC for RWR_CV Kfold cross validation for 25 curated gene sets which all share the 
same MAPMAN term. The average and standard deviation values for the rewired networks are 
averages and standard deviations across 1000 iterations of the RWR_CV Kfold Cross Validation in 
which the edges of each network were rewired for each iteration. Conversely, the average and standard 
deviation values for the Comprehensive network alone are those pertaining only to the average values 
across the single RWR_CV Kfold Cross Validation (k=5).  
 
 
 
 

GWAS 
Methods 

Chr 
Orig 

Pos Pvalue MAF nob
s 

FDR_Pv
alue 

Effect DISTA
NCE 

locusName Phytozome 
Arabidopsis 
ortholog 

BLINK 02K 62843430 1.19E-13 2.30E-01 259 5.32E-07 4.77E-01 9199 Pavir.2KG520800 AT4G33925.1 

BLINK 02K 62843430 1.19E-13 2.30E-01 259 5.32E-07 4.77E-01 6514 Pavir.2KG520900 AT1G24625.1 

BLINK 02K 43638064 4.59E-13 1.93E-01 259 1.02E-06 -4.77E-01 -20510 Pavir.2KG303000 AT5G16560.1 

Isoprenoids 4.990E-01 5.616E-02 9.847E-01 1.511E-02 

Jasmonate 4.975E-01 1.207E-01 9.928E-01 7.937E-03 

Lignin Biosynthesis 5.026E-01 1.099E-01 9.990E-01 3.110E-04 

Major CHO 4.899E-01 5.873E-02 9.135E-01 4.158E-02 

Phenylpropanoids 5.007E-01 7.702E-02 9.970E-01 2.329E-03 

PS Light Reaction 4.528E-01 4.627E-02 8.414E-01 3.272E-02 

PS Light Reaction II 4.582E-01 7.547E-02 9.024E-01 1.358E-02 

Salicylic Acid 5.006E-01 1.498E-01 8.992E-01 1.078E-01 
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BLINK 02K 43638064 4.59E-13 1.93E-01 259 1.02E-06 -4.77E-01 -32665 Pavir.2KG303302 AT5G16550.1 

BLINK 01N 58593942 2.53E-12 1.68E-01 259 3.75E-06 5.04E-01 -2241 Pavir.1NG459600 AT1G32450.1 

BLINK 01N 58593942 2.53E-12 1.68E-01 259 3.75E-06 5.04E-01 5266 Pavir.1NG459619 

BLINK 08N 12302907 7.48E-12 5.02E-02 259 8.34E-06 -7.39E-01 -1715 Pavir.8NG064200 AT3G47570.1 

BLINK 08N 12302907 7.48E-12 5.02E-02 259 8.34E-06 -7.39E-01 2805 Pavir.8NG064201 

BLINK 02K 40684207 1.12E-11 1.89E-01 259 1.00E-05 -5.13E-01 -6514 Pavir.2KG285100 AT2G46210.1 

BLINK 02K 40684207 1.12E-11 1.89E-01 259 1.00E-05 -5.13E-01 0 Pavir.2KG286800 AT2G46210.1 

BLINK 01K 46049518 2.84E-10 7.14E-02 259 2.11E-04 -6.48E-01 -12057 Pavir.1KG445700 AT1G12640.1 

BLINK 01K 46049518 2.84E-10 7.14E-02 259 2.11E-04 -6.48E-01 -12057 Pavir.1KG445700 AT1G12640.1 

BLINK 01K 46049518 2.84E-10 7.14E-02 259 2.11E-04 -6.48E-01 -12057 Pavir.1KG445700 AT1G12640.1 

BLINK 01K 46049518 2.84E-10 7.14E-02 259 2.11E-04 -6.48E-01 12139 Pavir.1KG445800 AT5G19700.1 

BLINK 06N 36174982 1.19E-09 2.07E-01 259 7.60E-04 -3.82E-01 -4398 Pavir.6NG117300 AT1G60140.1 

BLINK 06N 36174982 1.19E-09 2.07E-01 259 7.60E-04 -3.82E-01 -6348 Pavir.6NG117506 AT1G23890.2 

FarmCPU 02K 40684207 1.88E-19 1.89E-01 259 8.38E-13 -5.33E-01 -6514 Pavir.2KG285100 AT2G46210.1 

FarmCPU 02K 40684207 1.88E-19 1.89E-01 259 8.38E-13 -5.33E-01 0 Pavir.2KG286800 AT2G46210.1 

FarmCPU 08N 12302907 5.39E-16 5.02E-02 259 1.20E-09 -6.31E-01 -1715 Pavir.8NG064200 AT3G47570.1 

FarmCPU 08N 12302907 5.39E-16 5.02E-02 259 1.20E-09 -6.31E-01 2805 Pavir.8NG064201 
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FarmCPU 08K 12795029 6.62E-14 1.22E-01 259 9.83E-08 4.36E-01 -5583 Pavir.8KG108500 AT2G37990.1 

FarmCPU 08K 12795029 6.62E-14 1.22E-01 259 9.83E-08 4.36E-01 8491 Pavir.8KG136900 AT1G52190.1 

FarmCPU 08K 12795029 6.62E-14 1.22E-01 259 9.83E-08 4.36E-01 8491 Pavir.8KG136900 AT1G52190.1 

FarmCPU 05K 47363351 4.04E-13 6.18E-02 259 4.51E-07 -5.89E-01 -4419 Pavir.5KG269007 

FarmCPU 05K 47363351 4.04E-13 6.18E-02 259 4.51E-07 -5.89E-01 8439 Pavir.5KG523200 

FarmCPU 03K 1996767 1.04E-10 1.68E-01 259 9.30E-05 -3.02E-01 3444 Pavir.3KG025900 

FarmCPU 03K 1996767 1.04E-10 1.68E-01 259 9.30E-05 -3.02E-01 -1626 Pavir.3KG041300 AT3G44735.2 

FarmCPU 05N 51191444 2.12E-10 1.20E-01 259 1.58E-04 4.32E-01 13229 Pavir.5NG411500 AT2G33250.1 

FarmCPU 05N 51191444 2.12E-10 1.20E-01 259 1.58E-04 4.32E-01 13229 Pavir.5NG411500 AT2G33250.1 

FarmCPU 05N 51191444 2.12E-10 1.20E-01 259 1.58E-04 4.32E-01 -14760 Pavir.5NG430240 

FarmCPU 06K 14705578 9.72E-10 1.91E-01 259 6.19E-04 2.76E-01 -5601 Pavir.6KG187400 AT1G16840.4 

FarmCPU 06K 14705578 9.72E-10 1.91E-01 259 6.19E-04 2.76E-01 0 Pavir.6KG188500 AT1G16860.1 

FarmCPU 06K 14705578 9.72E-10 1.91E-01 259 6.19E-04 2.76E-01 0 Pavir.6KG188500 AT1G16860.1 

FarmCPU 06K 14705578 9.72E-10 1.91E-01 259 6.19E-04 2.76E-01 0 Pavir.6KG188500 AT1G16860.1 

FarmCPU 06K 14705578 9.72E-10 1.91E-01 259 6.19E-04 2.76E-01 0 Pavir.6KG188500 AT1G16860.1 

FarmCPU 09K 52780266 4.18E-09 1.85E-01 259 2.33E-03 6.12E-01 -9455 Pavir.9KG406700 AT4G17910.1 

FarmCPU 09K 52780266 4.18E-09 1.85E-01 259 2.33E-03 6.12E-01 -4933 Pavir.9KG406800 AT2G02970.1 
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FarmCPU 09K 52780266 4.18E-09 1.85E-01 259 2.33E-03 6.12E-01 -4933 Pavir.9KG406800 AT2G02970.1 

FarmCPU 01K 21997091 1.21E-08 3.44E-01 259 5.99E-03 2.92E-01 9147 Pavir.1KG276300 AT5G43820.1 

FarmCPU 01K 21997091 1.21E-08 3.44E-01 259 5.99E-03 2.92E-01 9147 Pavir.1KG276300 AT5G43820.1 

FarmCPU 01K 21997091 1.21E-08 3.44E-01 259 5.99E-03 2.92E-01 9147 Pavir.1KG276300 AT5G43820.1 

FarmCPU 01K 21997091 1.21E-08 3.44E-01 259 5.99E-03 2.92E-01 13972 Pavir.1KG277500 AT5G24500.1 

FarmCPU 01K 21997091 1.21E-08 3.44E-01 259 5.99E-03 2.92E-01 13972 Pavir.1KG277500 AT5G24500.1 

FarmCPU 01K 21997091 1.21E-08 3.44E-01 259 5.99E-03 2.92E-01 13972 Pavir.1KG277500 AT5G24500.1 

FarmCPU 05K 60634281 1.35E-08 5.79E-02 259 6.02E-03 -3.57E-01 -15923 Pavir.5KG758000 AT2G41510.1 

FarmCPU 05K 60634281 1.35E-08 5.79E-02 259 6.02E-03 -3.57E-01 -1975 Pavir.5KG758200 AT1G50460.1 

FarmCPU 02N 35440741 1.66E-08 1.20E-01 259 6.73E-03 2.84E-01 -4118 Pavir.2NG156300 AT4G02780.1 

FarmCPU 02N 35440741 1.66E-08 1.20E-01 259 6.73E-03 2.84E-01 16670 Pavir.2NG156400 AT4G02780.1 

FarmCPU 06K 39449007 2.35E-08 4.73E-01 259 8.71E-03 -1.86E-01 0 Pavir.6KG295706 

FarmCPU 06K 39449007 2.35E-08 4.73E-01 259 8.71E-03 -1.86E-01 360 Pavir.6KG295800 AT3G12050.1 

FarmCPU 01K 39637992 7.01E-08 3.92E-01 259 2.40E-02 -2.19E-01 0 Pavir.1KG366900 AT1G25580.1 

FarmCPU 01K 39637992 7.01E-08 3.92E-01 259 2.40E-02 -2.19E-01 3678 Pavir.1KG367100 AT3G27540.1 

FarmCPU 02N 6201763 1.62E-07 8.88E-02 259 5.17E-02 -2.90E-01 24 Pavir.2NG060000 AT3G09630.1 

FarmCPU 02N 6201763 1.62E-07 8.88E-02 259 5.17E-02 -2.90E-01 3414 Pavir.2NG060546 AT3G14470.1 
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FarmCPU 05K 15910143 1.99E-07 9.07E-02 259 5.92E-02 -3.40E-01 -4196 Pavir.5KG216014 

FarmCPU 05K 15910143 1.99E-07 9.07E-02 259 5.92E-02 -3.40E-01 -4196 Pavir.5KG216014 

FarmCPU 05K 15910143 1.99E-07 9.07E-02 259 5.92E-02 -3.40E-01 0 Pavir.5KG216021 AT3G62160.1 

FarmCPU 09N 46512678 2.60E-07 1.91E-01 259 7.25E-02 2.14E-01 12848 Pavir.9NG277800 

FarmCPU 09N 46512678 2.60E-07 1.91E-01 259 7.25E-02 2.14E-01 11217 Pavir.9NG413642 

FarmCPU 09K 6063075 6.81E-07 3.11E-01 259 1.79E-01 3.16E-01 -653 Pavir.9KG224800 AT2G45490.1 

FarmCPU 09K 6063075 6.81E-07 3.11E-01 259 1.79E-01 3.16E-01 -5059 Pavir.9KG224900 AT1G47310.1 

 

Table 4. Switchgrass GWAS Hits. All significant loci found from the well watered dry weight shoot biomass 
GWAS.  
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