

1 **Intravenous BCG induces a more potent airway and lung immune response than intradermal BCG**
2 **in SIV-infected macaques¹.**

3 Running title: IV BCG induces robust immunity in SIV-infected macaques

4

5 Solomon Jauro^{*,†,2}, Erica C. Larson^{*,†}, Janelle L. Gleim^{*}, Brendon M. Wahlberg^{*}, Mark A. Rodgers^{*}, Julia
6 C. Chehab^{*}, Alondra E. Lopez-Velazques[†], Cassaundra L. Ameel^{*}, Jaime A. Tomko^{*}, Jennifer L. Sakal^{*},
7 Todd DeMarco[§], H. Jake Borish^{*}, Pauline Maiello^{*}, E. Lake Potter[¶], Mario Roederer[¶], Philana Ling
8 Lin^{†,||}, JoAnne L. Flynn^{*,†}, Charles A. Scanga^{*,†,2}.

9

10 *Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine,
11 Pittsburgh, PA, USA.

12 [†]Center for Vaccine Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA.

13 [‡]Department of Biology, University of Puerto Rico – Humacao Campus, Puerto Rico, USA.

14 [§]Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.

15 [¶]Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National
16 Institutes of Health (NIH), Bethesda, MD, USA.

17 ^{||}Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical
18 Center, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA.

19

20 ¹ This work was funded by NIH R01 AI155345 (Scanga). Dr. Erica Larson was supported by NIH K01
21 OD033539. SIV assays were supported by the NIH NIAID DAIDS Nonhuman Primate Core Virology
22 Laboratory for AIDS Vaccine Research and Development Contract # HHSN272201800003C (DeMarco).
23 Award P51OD011107 from the Office of Research Infrastructure Program, NIH supports the Primate Assay
24 Laboratory of the California National Primate Research Center, which supplied the SIVmac239. Award
25 UC7AI180311 from NIAID supports the operation of The University of Pittsburgh Regional
26 Biocontainment Laboratory (RBL) within the Center for Vaccine Research (CVR).

27

28 ²Corresponding Authors:

29 Email: s_jauro@pitt.edu, scangaca@pitt.edu

30

31 **Abstract:**

32 Tuberculosis (TB), caused by *Mycobacterium tuberculosis* (Mtb), is one of the leading causes of death
33 due to an infectious agent. Coinfection with HIV exacerbates Mtb infection outcomes in people living
34 with HIV (PLWH). Bacillus Calmette-Guérin (BCG), the only approved TB vaccine, is effective in
35 infants, but its efficacy in adolescents and adults is limited. Here, we investigated the immune responses
36 elicited by BCG administered via intravenous (IV) or intradermal (ID) routes in Simian
37 Immunodeficiency Virus (SIV)-infected Mauritian cynomolgus macaques (MCM) without the
38 confounding effects of Mtb challenge. We assessed the impact of vaccination on T cell responses in the
39 airway, blood, and tissues (lung, thoracic lymph nodes, and spleen), as well as the expression of
40 cytokines, cytotoxic molecules, and key transcription factors. Our results showed that IV BCG induces a
41 robust and sustained immune response, including tissue-resident memory T (T_{RM}) cells in lungs,
42 polyfunctional CD4+ and CD8 $\alpha\beta$ + T cells expressing multiple cytokines, and CD8 $\alpha\beta$ + T cells and NK
43 cells expressing cytotoxic effectors in airways. We also detected higher levels of mycobacteria-specific
44 IgG and IgM in the airways of IV BCG-vaccinated MCM. Although IV BCG vaccination resulted in an
45 influx of T_{RM} cells in lungs of MCM with controlled SIV replication, MCM with high plasma SIV RNA
46 ($>10^5$ copies/mL) typically displayed reduced T cell responses, suggesting that uncontrolled SIV or HIV
47 replication would have a detrimental effect on IV BCG-induced protection against Mtb.

48

49 **Introduction:**

50 Tuberculosis (TB) remains a major infectious cause of mortality globally. Over one-fourth of the world's
51 population is estimated to be or have been infected with *Mycobacterium tuberculosis* (Mtb), the causative
52 agent of TB, and over 10 million new cases of active TB are reported yearly. In 2022, TB resulted in the
53 death of 1.6 million people (1). TB disease is exacerbated in people living with HIV (PLWH), with
54 morbidity rates 15 – 21 times higher than HIV-naïve individuals (2). PLWH have a higher likelihood of
55 progression from latent to active TB as well as higher mortality rates, contributing to one out of three
56 deaths in PLWH (1, 3). This grave effect of TB in PLWH correlates with the extent to which HIV
57 infection depletes CD4+ T cells, an important cell type in host immunity against Mtb. CD4+ T cells are
58 considered important for TB protection as HIV-mediated depletion of these cells results in rapid TB
59 progression in PLWH (4, 5). However, even in some PLWH with normal CD4+ T cell levels (500-1500
60 cells/mm³), TB progression is more rapid than in HIV-naïve individuals (6). This may result from HIV-
61 related factors that affect immunity, including impairment of anti-mycobacterial innate immunity by type
62 I interferon (7, 8), immune suppression due to Treg/Th17 imbalances (9), interference of B cell signaling
63 and memory formation (10), and inhibition of TNF-mediated macrophage activation and death (11, 12). A
64 safe and effective TB vaccine would greatly reduce the risk of TB and mortality in PLWH and would
65 significantly improve global health. Yet, HIV impairment of vaccine-elicited responses is not completely
66 understood.

67 Bacillus Calmette-Guérin (BCG) is the only licensed vaccine for TB and was developed over a
68 century ago. BCG is delivered intradermally (ID) to infants worldwide and is effective against severe TB
69 in children, but its efficacy diminishes into adulthood (1). Many studies are focused on improving BCG
70 efficacy. Clinical studies of BCG revaccination and protein subunit vaccines that examined sustained
71 Quantiferon-TB conversion or prevention of latent TB progression to active TB demonstrated moderate
72 vaccine efficacy of 30-50% in HIV-naïve subjects (13, 14). In nonhuman primates (NHP), BCG boosted
73 with Mtb proteins improved T cell responses in the lungs but did not enhance protection from Mtb
74 challenge (15). However, a study of BCG vaccination delivered by different routes in rhesus macaques
75 revealed the intravenous (IV) route to be the most protective, conferring 90% protection from TB (16).

76 Despite these encouraging results, BCG, being a live attenuated vaccine, has the potential to cause disease
77 in immunocompromised individuals. The risk of disseminated BCG in infants infected with HIV is
78 significantly higher than in infants who are HIV-naïve (17), prompting safety concerns for BCG as a
79 vaccine for immunocompromised persons (18). Nonetheless, we recently showed that IV BCG in
80 macaques chronically infected with simian immunodeficiency virus (SIV), an NHP surrogate for HIV,
81 was safe (at least with anti-BCG drug treatment post-vaccination), immunogenic, and protective (19).

82 Understanding vaccine-elicited immune responses that correlate with TB protection is critical for
83 rational vaccine development. Several features have been associated with TB protection in IV BCG-
84 vaccinated, SIV-naïve macaques, including an influx of mycobacterial-specific T cells into the airways
85 and expansion of T_{RM} cells in lung tissue (16, 20), elevation of mycobacterial-specific antibodies in
86 circulation and in airway (21), and distinct transcriptional profiles in circulating PBMC (22). In a
87 correlates analysis across a dose range of IV BCG, CD4 T cells expressing different combinations of
88 IFN γ , TNF and/or IL-17 as well as the number of NK cells in airways were correlates of protection
89 independent of BCG dose (20). In our study of IV BCG in SIV-infected macaques (16), TB protection
90 tended to occur in animals with lower plasma viremia and higher levels of CD4+ T cells in the airways
91 before Mtb challenge. Although we were able to assess vaccine responses in blood and airway, all
92 animals underwent Mtb challenge, thereby complicating assessment of immune responses within tissues.
93 Here, we evaluated immune responses to BCG in macaques chronically infected with SIV following
94 vaccination delivered either IV or the standard ID route, and BCG responses in tissues were analysed
95 without subsequent Mtb challenge. We used our well-characterized Mauritian cynomolgus macaque
96 (MCM) model of SIV/Mtb coinfection (23-28) and infected the animals with SIV for 16 weeks before IV
97 or ID BCG vaccination. Blood and airway cells were serially sampled, and animals were necropsied 5
98 months after vaccination to compare the immune response within various tissues between ID and IV BCG
99 in SIV-infected MCM. We show that vaccination of SIV-infected macaques with IV BCG elicited an
100 influx of CD4+, CD4+CD8 α +, CD8 $\alpha\alpha$ +, CD8 $\alpha\beta$ +, and V γ 9+ $\gamma\delta$, V γ 9- $\gamma\delta$ T cells, and cytokine-producing
101 CD4+ and CD8 $\alpha\beta$ + T cells into the airways. Airway immune responses by IV BCG were mostly
102 recapitulated in lung tissues with an expansion of CD8 $\alpha\alpha$ +, CD8 $\alpha\beta$ +, and $\gamma\delta$ + tissue-resident T cells.

103

104 **Materials and Methods**

105 **Animals:**

106 Eleven (11) male Mauritius cynomolgus macaques (MCM) (*Macaca fascicularis*, 4-10 years old)
107 were procured from Bioculture US (Immokalee, FL). Major histocompatibility complex (MHC)
108 haplotypes, which were determined by MiSeq sequencing of PBMC at the Genomic Servies Core of the
109 Wisconsin National Primate Research Center, and 8 the 11 MCM shared at least one copy of the M1
110 MHC haplotype. The MCM were screened for Mtb, as well as herpes B virus, SIV, SRV, and STLV, and
111 housed at the University of Pittsburgh. All experimental procedures were conducted according to the
112 ethical regulations of the University of Pittsburgh Institutional Animal Care and Use Committee
113 (IACUC), and complied with the standards outlined in the Animal Welfare Act, the “Guide for the Care
114 and Use of Laboratory Animals (8th Edition)”, and “The Weatherall Report”. The University is fully
115 accredited by AAALAC (accreditation number 000496), and its OLAW animal welfare assurance number
116 is D16-00118. The IACUC reviewed and approved the study protocols 21048970 and 24044961. All
117 veterinary procedures were performed under ketamine sedation. The MCM were monitored twice daily
118 for any health issues.

119

120 **SIV infection:**

121 All MCM were infected intravenously with a 3×10^3 tissue culture infectious dose (TCID₅₀) of
122 SIVmac239 which was grown in rhesus PBMC (Primate Assay Laboratory of the California National
123 Primate Research Center, University of California, Davis CA). Plasma virus level was serially monitored
124 by qPCR, as detailed below.

125

126 **BCG vaccination:**

127 Sixteen weeks after SIV infection, the MCM were randomly allocated into two vaccination groups: IV
128 BCG (n=5), and ID BCG (n=6) (Figure 1a). Animals were vaccinated with BCG Danish Strain 1331,
129 which was expanded at Colorado State University following the Aeras protocol (29). The BCG was

130 prepared for injection by suspending in phosphate-buffered saline (PBS) containing 0.05% Tween 80
131 (Sigma-Aldrich) to prevent the inoculum from clumping. For ID inoculations, the upper arm was shaved
132 and disinfected with chlorhexidine followed by isopropanol, and the standard human dose of 5×10^5 CFU
133 was injected into the dermis in a volume of 1 mL. For IV inoculation, the saphenous vein was used to
134 inject 5×10^7 CFU in 1 mL total volume, the dose we showed previously to confer high-order protection in
135 SIV-infected MCM (17). To reduce the risk of BCG dissemination in these SIV-infected animals, the IV
136 BCG-vaccinated MCM were treated with an anti-BCG drug regimen (isoniazid, 15mg/kg; rifampicin,
137 20mg/kg; ethambutol, 55mg/kg (HRE)) given by mouth daily for 8 weeks starting 3 weeks after
138 vaccination, as done previously (17).

139

140 **Sampling blood and airways:**

141 Whole blood was collected by venipuncture. PBMC were isolated using Ficoll-Paque PLUS
142 gradient separation (GE Healthcare Biosciences) and cryopreserved in RPMI 1640/fetal bovine serum
143 (FBS) containing 10% DMSO in liquid nitrogen. Bronchoalveolar lavage (BAL) was done by instilling
144 and recovering warmed PBS (4 x 10 mL washes) under direct visualization using a pediatric
145 bronchoscope. The recovered BAL fluid (BALF) was pelleted to collect the cells and a 15 mL aliquot of
146 BALF was cryopreserved. The cells were resuspended into ELISpot media (RPMI 1640, 10% heat-
147 inactivated human albumin, 1% L-glutamine, and 1% HEPES), counted, and apportioned for flow
148 cytometric staining.

149

150 **PET-CT:**

151 PET-CT imaging using radiolabeled 2-deoxy-2-¹⁸Fluoro-D-glucose (FDG) was conducted within
152 3 days of necropsy. A MultiScan LFER-150 PET-CT scanner (Mediso Medical Imaging Systems,
153 Budapest, Hungary) was used, as detailed previously (30, 31). Co-registered PET-CT images were
154 analyzed using OsiriX MD software (v 12.5.2, Pixmeo, Geneva, Switzerland) to measure the total FDG
155 avidity of the lungs, thoracic lymph nodes (32). Total FDG avidity correlates with overall inflammation.

156

157 **IV CD45 staining for tissue-resident cells:**

158 To differentiate T_{RM} cells from intravascular cells, IV anti-CD45 antibody staining was
159 performed as previously described (16, 33, 34). Briefly, 5 minutes before euthanasia, animals were
160 maximally bled and then slowly infused intravenously with 5 mL of purified Alexa Fluor 488-conjugated
161 αCD45 antibody to achieve a dose of 100 µg/kg. For the ID BCG vaccination group, 5 of 6 macaques
162 were injected IV with anti-CD45 antibodies. When harvested tissues were analyzed by flow cytometry,
163 CD45 immune cells present in parenchyma were unstained, while those in the vascular were positively
164 stained with anti-CD45 antibody.

165

166 **Necropsy and tissue processing:**

167 Five months after vaccination, animals were humanely euthanized and necropsied to collect lung
168 tissue, thoracic and peripheral lymph nodes, liver, and spleen. Each tissue sample was divided and a
169 portion was fixed in neutral-buffered formalin for histopathology, with the remainder homogenized to
170 yield a single cell suspension, as previously described (24). To detect any viable BCG, serial dilutions of
171 this homogenate were plated onto 7H11 agar and incubated at 37°C, 5% CO₂ for three weeks. Single cell
172 suspensions were portioned immediately for flow cytometric staining with the remainder cryopreserved in
173 RPMI 1640/FBS containing 10% DMSO in liquid nitrogen. Formalin-fixed tissue was embedded in
174 paraffin, sectioned, and stained with hematoxylin and eosin for microscopic examination.

175

176 **SIV plasma viremia:**

177 The number of SIV RNA copies per milliliter was measured using a two-step real-time qPCR
178 assay. Viral RNA was extracted from 500 µL of plasma using an automated sample preparation platform
179 QIAasympo SP (Qiagen, Hilden, Germany), along with a Virus/Pathogen DSP midi kit and the
180 *cellfree500* protocol (Qiagen). The extracted RNA was annealed to a reverse primer specific to the gag
181 gene of SIVmac239 (5'- CAC TAG GTG TCT CTG CAC TAT CTG TTT TG -3'), then reverse
182 transcribed to obtain cDNA using SuperScriptTM III Reverse Transcriptase (Thermo Fisher Scientific,
183 Waltham, MA) along with RNase Out. The resulting cDNA was treated with RNase H and combined

184 with a custom 4x TaqMan™ Gene Expression Master Mix (Thermo Fisher Scientific) containing primers
185 and a fluorescently labeled hydrolysis probe specific for the gag gene of SIVmac239 (forward primer 5'-
186 GTC TGC GTC ATC TGG TGC ATT C -3', reverse primer 5'- CAC TAG GTG TCT CTG CAC TAT
187 CTG TTT TG -3', probe 5'- /56-FAM/CTT CCT CAG TGT GTT TCA CTT TCT CTT CTG
188 CG/3BHQ_1/ -3'). The qPCR was performed using a StepOnePlus™ or QuantStudio 3 Real-Time PCR
189 System (Thermo Fisher Scientific). To determine the SIV gag RNA copies per reaction, quantification
190 cycle data and a serial dilution of a well-characterized custom RNA transcript containing a 730 bp
191 sequence of the SIV gag gene were used. The mean RNA copies per mL were calculated by adjusting for
192 the dilution factor. The limit of quantification (LOQ) was determined based on the exact binomial
193 confidence boundaries and the percent detection of the target RNA concentration, which is approximately
194 62 copies per mL.

195

196 **Multiparameter flow cytometry:**

197 Cells from BAL, PBMC, and tissue collected at necropsy were stained for flow cytometric
198 analysis. BAL and necropsy tissue were stained promptly upon collection, while cryopreserved PBMC
199 were stained as a batch. Cells were seeded at 1×10^6 cells/well in a 96-well plate in ELISpot media, then
200 stimulated with either Mtb H37Rv whole cell lysate (WCL, 20 μ L/mL; BEI Resources) or PDBu and
201 ionomycin (P&I) for 6 hours at 37°C. After 2 hours of incubation, Golgi Plug (BD Biosciences, Cat no.
202 555029) was added at 8 μ g/mL, incubated for an additional 4 hours, and washed twice with PBS.
203 Live/Dead stain was added and incubated for 10 minutes at room temperature in the dark, then washed
204 twice with PBS. A cocktail of the surface stain (Supplemental Table 1) supplemented with BD Horizon™
205 Brilliant Stain buffer (BD Biosciences, Cat no. 566349) was added to each well (50 μ L/well). After 20
206 minutes of incubation at 4°C, the cells were washed twice and permeabilized for intracellular staining
207 (ICS) with BD Cytofix/Cytoperm™ (BD Biosciences, Cat no. 554722) for 10 minutes at room
208 temperature. For intranuclear staining (INS) of transcription factors (necropsy samples only), 1x True-
209 Nuclear™ (BD Biosciences, Cat. No. 424401) was added and incubated for 45 minutes. The cells were

210 then washed twice with 1x perm wash for ICS or True-Nuclear™ 1x Fix Perm wash buffer for INS.
211 Staining was done with 50 μ L/well of the ICS and INS antibody cocktails (Supplemental Table 1) for 20
212 and 30 minutes, respectively. This was followed by washing twice and resuspending the stained cells in
213 150 μ L of FACS buffer. Samples were run on a BD Cytek Aurora and analyzed using FlowJo Software
214 for Mac OS (v10.8.1). Detailed gating strategies are shown in Supplemental Figure 3a-d.

215

216 **Plasma and BAL antibody ELISA:**

217 Plasma and 10-12 fold concentrated BALF were used to measure IgG and IgM titers to Mtb
218 H37Rv WCL and lipoarabinomannan (LAM), as previously described (16). Briefly, 1 μ g of WCL and
219 LAM were coated onto 96-well Costar® Assay plate (Nunc). Coated plates were blocked with PBS/10%
220 FBS for two hours at room temperature and washed with PBS/0.05% Tween 20. Concentrated BALF or
221 plasma 1:5 serially diluted (8 dilutions/sample) were then incubated for two hours at 37 °C and washed.
222 Then 100 μ L/well of HRP-conjugated goat anti-monkey IgG h+1 (50 ng/ml; Bethyl Laboratories, Inc.), or
223 IgM chain (0.1 μ g/ml; Rockland Immunochemicals Inc.) was added and the plates incubated for 2 hours
224 at room temperature. Plates were developed with 100 μ L/well Ultra TMB® substrate (Invitrogen) and
225 fixed with 100 μ L/well 2N sulfuric acid. Plates were read at 450 nm using a Spectramax190 microplate
226 reader (Molecular Devices) and presented as endpoint titers for IgG or midpoint titers for IgM when
227 samples did not titer to a cut-off. Endpoint titers are reported as the reciprocal of the last dilution with an
228 optical density (OD) above the detection limit or twice the OD of an empty well.

229

230 **Statistical analysis:**

231 All the data were transformed as $\log_{10}(x + 1)$. Longitudinal BAL, PBMC, and SIV viremia data
232 were analyzed using a mixed model fit using the Restricted Maximum Likelihood (REML) with the
233 Geisser-Greenhouse correction. Individual animals were considered a random variable. Fixed effect tests
234 were used to evaluate the differences between different time points, vaccine route, or vaccine route versus
235 time points. All results from pairwise comparisons of interest (comparisons among time points within

236 vaccine group and comparison between IV BCG vs ID BCG within time points) were reported as
237 uncorrected Fisher's Least Significant Difference (LSD) p-values. Shapiro-Wilk test was used to test data
238 for normality. Comparisons between IV BCG and ID BCG were made using the unpaired t-test for
239 normally distributed data or the Mann-Whitney test for nonparametric data. Bivariate relationships were
240 assessed using Pearson's correlation coefficient (r). All tests conducted in the study were two-sided, and
241 statistical significance was determined at a significance level of $P < 0.05$. P -values ranging from 0.05 to
242 0.10 were deemed indicative of a trend. GraphPad Prism 10 for MacOS (Version 10.0.2) was used for
243 statistical analyses.

244

245 **Results**

246 **IV BCG transiently increases plasma SIV viremia.**

247 The study was designed to compare immune responses to IV or ID BCG in SIV-infected MCM
248 without the confounding variable of Mtb challenge. Animals were infected with 3,000 TCID₅₀
249 SIVmac239 for 16 weeks and then randomized into two groups to be vaccinated with BCG by either the
250 IV route (n=5) or the ID (n=6) route (Figure 1a). Animals in the IV BCG group were treated for two
251 months with HRE, an anti-BCG drug combination, starting 3 weeks after vaccination to reduce the risk of
252 BCGosis in these immunocompromised animals (19). Plasma viremia peaked within 2 weeks of SIV
253 infection, then spontaneously fell to the viral set-point unique to each animal (Figure 1b). Animals with
254 plasma viremia set points above 10⁵ copies/ml were considered to be “non-controllers”, indicating an
255 inability to naturally control SIV replication (35-37). Two animals in each vaccination group were non-
256 controllers by 14 weeks post-SIV infection (pre-BCG) (Figure 1b, non-controllers marked with star
257 symbols). The median viremia at 14 weeks (pre-vaccination) was higher in the IV BCG group (Figure 1b,
258 bottom panel). ID BCG vaccination did not significantly affect plasma viremia (Figure 1b, top panel),
259 although SIV replication transiently increased in one animal 3 weeks after ID BCG. In contrast, IV BCG
260 elicited a significant increase in plasma viremia in all animals within 2 weeks, which spontaneously
261 returned to the approximate pre-BCG setpoints in most animals over the next 10 weeks (Figure 1b,
262 bottom panel), as seen previously (19).

263 **IV BCG elicits more T cells in the airway.**

264 Immune responses in the airway are associated with IV BCG-elicited protection against Mtb
265 infection (16, 34). Analysis of BAL samples taken 4 and 15 weeks after SIV infection (before
266 vaccination) revealed no significant difference in total leukocyte and T cell counts from pre-SIV levels
267 (Figure 2a, b). However, CD4+ T cells were significantly reduced and CD4+CD8α+ T cells were
268 modestly reduced 4 weeks after SIV infection in both groups (Figure 2b). Both cell populations returned
269 to pre-SIV levels prior to BCG vaccination, except in animals with high viremia (Figure 2b). B cells and
270 CD11b-CD11c+ (likely dendritic cells) were also significantly depleted in the ID BCG groups following
271 SIV infection (Supplemental Figure 1a).

272 Following IV BCG vaccination, animals exhibited modest increases in leukocyte count and
273 significant increases in T, B, and NK cells in the airways. These cell counts remained unchanged in the
274 ID-vaccinated animals (Figure 2a, Supplemental Figure 1a). Notably, IV BCG, but not ID BCG, induced
275 significant increases in CD8αβ+, CD8αα+, Vγ9+γδ, and Vγ9-γδ T cells and modest increases in CD4+,
276 and CD4+CD8α+ T cells 4 weeks after vaccination (Figure 2b, and Table 1). These cell types returned to
277 pre-BCG levels by 18 weeks post-vaccination, except Vγ9-γδ T cells which remained elevated (Figure 2a,
278 2b, and Table 1). There was no correlation between airway CD4+ T cell levels with SIV viremia in either
279 group (Data not shown). Thus, we show IV BCG but not ID BCG elicits an influx of T cells into the
280 airway of SIV-infected MCM.

281

282 **IV BCG elicits more robust airway T cell responses than ID BCG.**

283 We evaluated the ability of CD4+ and CD8αβ+ T cells in the airways to produce cytokines,
284 focusing on those involved in T1 (IFNγ, IL-2, TNF) and T17 (IFNγ, IL-2, IL-17, TNF) responses due to
285 their important roles in TB protection (20, 38, 39). Cytokine responses were assessed after *ex vivo*
286 restimulation with Mtb WCL to measure mycobacterial-specific responses. The number of antigen-
287 specific CD4+ T cells in the airways producing T1- and T17-related cytokines significantly increased 4
288 weeks after BCG, regardless of vaccine route (Figure 3a). T1 CD4+ T cell responses remained

289 significantly elevated up to 18 weeks in only the IV BCG group, while T17 responses remained elevated
290 in both IV- and ID-vaccinated groups (Figure 3a). In contrast, only ID BCG elicited significant T1 and
291 T17 responses in airway CD8 $\alpha\beta$ + T cells by 4 weeks post-vaccination. However, by 18 weeks after
292 vaccination, T1 and T17 CD8 $\alpha\beta$ + T cells were significantly increased in IV-vaccinated animals, while
293 those responses were waning in the ID-vaccinated animals (Figure 3b). In summary, BCG vaccination by
294 both the ID and IV routes elicited cytokine responses in airway CD4+ T cells by 4 weeks, but CD8 $\alpha\beta$ + T
295 cell responses were delayed following IV BCG. IV BCG resulted in more sustained CD4+ and CD8 $\alpha\beta$ +
296 T cell responses than ID BCG.

297

298 **Only IV BCG induces an influx of cytotoxic CD8 $\alpha\beta$ + and NK cells in airways.**

299 We next evaluated production of the cytotoxic effector granzyme B (GzmB) and granzyme K
300 (GzmK) by CD8 $\alpha\beta$ + T cells and NK cells recovered from the airways. Cytotoxic effector may contribute
301 to Mtb protection by lysing infected cells and/or intracellular killing of bacteria (40-42). SIV infection
302 significantly increased both GzmB+ and GzmK+ CD8 $\alpha\beta$ + T cells in both groups (Figure 4a), but did not
303 affect the number of NK cells producing granzymes (Figure 4b). Following vaccination, IV BCG, but not
304 ID BCG, elicited an additional and significant boost in CD8 $\alpha\beta$ + T cells producing GzmB or GzmK, with
305 GzmB+ cells remaining modestly elevated 18 weeks after vaccination. IV BCG also significantly
306 increased the number of NK cells producing either GzmB or GzmK, but returned to pre-vaccination levels
307 18 weeks after BCG (Figure 4b and Table 1). These data demonstrate that IV BCG induces an early
308 influx of cytotoxic effectors from CD8 $\alpha\beta$ + T cells and NK in the airways.

309

310 **Transient changes in circulating immune populations following vaccination.**

311 PBMC were analyzed by flow cytometry to assess effects of BCG vaccination on circulating cell
312 populations. Following SIV infection, the number of CD4+ and V γ 9+ γ 8 T cells were significantly
313 depleted in the IV BCG and ID BCG groups, respectively, prior to vaccination (Supplemental Figure 1c).
314 Surprisingly, IV BCG vaccination induced a significant depletion in the number of NK, B cells, CD4+

315 and CD4+CD8α+ T cells by 4 weeks post-vaccination, while V γ 9+ γ δ T cells were depleted 4 weeks after
316 ID BCG-vaccination. These cell types returned to their pre-BCG levels by 18 weeks post-vaccination,
317 although a significant decrease in NK cells remained at this late time point in ID-vaccinated animals
318 (Supplemental Figure 1b, 1c).

319

320 **IV BCG induces mycobacterial-specific antibody response in plasma and airways.**

321 We used ELISAs to measure WCL- and LAM-specific antibodies in plasma and BALF after
322 BCG vaccination. IgG and IgM levels were associated with Mtb protection in IV BCG-vaccinated
323 macaques (16, 19, 21, 43). Here, we observed a significant increase in plasma IgG specific for WCL and
324 LAM following both ID and IV BCG by 4 weeks (Figure 5a, top panels). However, LAM-specific IgG in
325 plasma returned to pre-BCG levels in both IV and ID BCG macaques by 18 weeks post-vaccination,
326 while WCL-specific IgG returned to pre-BCG levels only in the ID BCG group (Figure 5a). Both IV and
327 ID BCG elicited significant WCL-specific IgM in plasma, but only IV BCG induced significant LAM-
328 specific IgM 4 weeks post-vaccination (Figure 5a, bottom panels). By 18 weeks after BCG, the IgM
329 responses remained significant in the IV- compared to the ID-vaccinated group (Figure 5a, Table 2).

330 In airways, IV BCG, but not ID BCG, elicited a significant increase in WCL-specific IgG and
331 IgM while LAM-specific IgG and IgM responses were significant in both IV and ID BCG 4 weeks after
332 vaccination (Figure 5b). However, both WCL- and LAM-specific antibodies declined to pre-BCG levels
333 by 18 weeks after vaccination. (Figure 5b). Comparing each time point between IV and ID BCG showed
334 that IV BCG elicited higher levels of LAM- and WCL-specific IgG in the airways at 4 weeks post-BCG
335 than ID BCG. However, by 18 weeks after BCG vaccination, only LAM-specific IgG and IgM were
336 significant in the airway of IV BCG compared to ID BCG (Table 2).

337 **IV BCG induces robust immune responses in lung tissue.**

338 We interrogated immune responses across various tissues in BCG-vaccinated SIV⁺ MCM
339 without the confounding variable of Mtb challenge, something that was not possible in our previous study
340 in which all SIV⁺, BCG-vaccinated animals underwent Mtb challenge (19). Here, we compared T cell
341 responses in lungs, thoracic lymph nodes, and spleen five months after vaccination. Since T_{RM} cells were
342 associated with IV BCG-elicited protection (16), we included anti-CD69 antibody, a canonical marker of
343 T_{RM} cells and activation (33), in our flow panels (Supplemental Table 1). To differentiate T_{RM} immune
344 cells from those in circulation, fluorescently-labeled anti-CD45 antibody was administered just prior to
345 euthanasia (16, 34). This analysis revealed significantly more T_{RM} cells in lungs of animals that received
346 IV BCG compared to ID BCG (Figure 6a). Of the other T_{RM} cell subsets identified, there were
347 significantly more CD8 $\alpha\beta$ +, CD8 $\alpha\alpha$ +, and $\gamma\delta$ + T cells in lung tissue of IV BCG-vaccinated animals
348 (Figure 6b). CD4+ and CD4+CD8 α + T cell numbers did not differ significantly between the groups, most
349 likely due to the low CD4+ T cell numbers in the MCM with higher SIV viral levels (Figure 6b). Indeed,
350 CD4+ T cells in lung were modestly inversely correlated with SIV plasma viremia in both ID and IV
351 BCG MCM (Data not shown). T_{RM} cell subset numbers in thoracic lymph node were similar in animals
352 vaccinated with either ID or IV BCG (Supplemental Figure 2a), and the number of CD4+ and
353 CD8 α +CD4+ T cells in thoracic lymph nodes appeared independent of SIV viremia level (Supplemental
354 Figure 2a).

355

356 **IV BCG induces higher CD4+ T cell cytokines but not CD8 $\alpha\beta$ + T cells and NK cells cytotoxic
357 effectors in lung tissue.**

358 We stimulated lung, thoracic lymph nodes, and spleen with WCL to assess production of
359 cytokines associated with T1 (IFN γ , IL-2, TNF) and T17 (IFN γ , IL-2, IL-17, TNF) responses from CD4+
360 and CD8 $\alpha\beta$ + T cells. The number of CD4+ T cells producing a combination of T1- and T17-associated
361 cytokines in the lung were higher in animals vaccinated via IV BCG than ID BCG, but not in the thoracic
362 lymph node (Figure 7a, 7b, and Supplemental Figure 2b, 2c). MCM with high SIV viremia had lower

363 numbers of responding CD4+ T cells. CD8 $\alpha\beta$ + T cells from all three sites produced some combination of
364 T1 and T17 cytokines at similar levels in both IV- and ID-vaccinated animals (Figure 7a, 7b, and
365 Supplemental Figure 2b, 2c).

366 We measured the number of CD8 $\alpha\beta$ + T cells and NK cells producing granulysin, GzmB, GzmK,
367 or perforin in lung, thoracic lymph nodes, and spleen. Our data revealed similar numbers of CD8 $\alpha\beta$ + T
368 cells and NK cells producing these cytotoxic effectors in lung and thoracic lymph nodes regardless of
369 vaccination group (Supplemental Figure 2d-g). In the spleen, there were significantly more CD8 $\alpha\beta$ + T
370 cells producing GzmK and a trend towards more CD8ab+ T cells producing GzmB in IV- than ID-
371 vaccinated animals (Data not shown), but NK cells producing cytotoxic effector show no significant
372 difference in number in all the tissues (Supplemental Figure 2d-g).

373 There was no apparent effect of plasma SIV viremia on granulysin-, GzmB-, GzmK-, or perforin-
374 producing CD8 $\alpha\beta$ + T cells in the lung. However, spleens of IV BCG animals with higher plasma SIV
375 viremia had the lowest GzmB-, GzmK-, or perforin-producing NK cells (Data not shown).

376 The transcription factors Foxp3, ROR γ T, and T-bet are associated with regulatory T cells, T17
377 cells, and T1 cells, respectively (44, 45). The number of CD4+ and CD8 $\alpha\beta$ + T cells expressing Foxp3,
378 ROR γ T, or T-bet did not differ in lung, thoracic lymph node, or spleen between animals vaccinated by the
379 IV or ID route (Data not shown).

380 In summary, our data show that IV BCG induces robust and sustained T helper and cytotoxic T
381 cell response in the airways of SIV+ MCM. Notably, even 5 months after vaccination, IV BCG-
382 vaccinated animals had higher numbers of T_{RM} cells in the lungs compared to ID BCG-vaccinated
383 animals.

384

385 **Discussion:**

386 PLWH are at increased risk from Mtb and a safe, effective TB vaccine for this population would
387 be enormously beneficial. In SIV-naïve rhesus macaques, IV BCG vaccination provided superior
388 protection from TB compared to ID BCG and correlated with mycobacterial-specific T cells in the

389 airways and T_{RM} cells in lung tissue, mycobacterial-specific antibodies, and distinct transcriptional
390 signatures (16, 20, 21, 46). We recently showed that IV BCG was also highly protective in MCM with
391 preexisting SIV infection (19). Fully characterizing the immune responses induced by IV BCG in SIV+
392 macaques is important to further develop or learn from this vaccine strategy. However, it is difficult to
393 differentiate immune responses in tissues induced by BCG from those induced by Mtb after vaccinated
394 macaques are challenged with Mtb. Here, we investigated cellular and humoral immune responses to IV
395 BCG in SIV-infected MCM in the blood, airways, and tissues without the confounding factor of Mtb
396 challenge. We compared those to the responses induced by ID BCG in SIV-infected MCM as this route is
397 used currently to vaccinate against TB. Our data demonstrate that in many ways the two vaccination
398 routes induce similar immune responses in SIV+ macaques, but several features were unique to IV BCG-
399 vaccinated animals, including some not investigated previously.

400 In our previous work using SIV-naïve rhesus macaques, IV BCG induced a robust T cell influx
401 into airways, especially CD4+, CD8ab+, and nonconventional (Vg9+ gd and MAIT) T cells (16). We also
402 showed a significant influx of these T cell subsets in SIV+ MCM after IV BCG vaccination (19). Here,
403 we directly compared IV and ID BCG in SIV+ MCM and observed more CD4+ and CD8ab+ T cells in
404 airways following IV vaccination. We also detected an increased influx of Vg9+ and Vg9- gd T cells into
405 the airway following IV but not ID BCG as seen previously in SIV-naïve rhesus macaques (16, 47). We
406 noted that more B and NK cells accumulated in the airways of the IV BCG-vaccinated, SIV-infected
407 MCM. This is consistent with our previous study in SIV+ MCM (19) as well as our study in SIV-naïve
408 rhesus macaques (16). The latter study is particularly notable as the number of NK cells in the airways
409 correlated with IV BCG-induced protection from Mtb (20). Thus, a key feature that differentiates IV BCG
410 from ID BCG is a significant influx into airways of diverse lymphocyte populations which have all been
411 shown to be associated with controlling Mtb in humans (48).

412 We also assessed the functionality of the cells that migrated to the airways in response to IV or ID
413 vaccination. Both routes induced polyfunctional CD4+ T cells that produced T1- and T17-associated
414 cytokines by 4 weeks. However, this response was more sustained in IV BCG-vaccinated animals, with
415 significant elevation over 5 months. Polyfunctional T cells correlate with protection or improved outcome

416 from Mtb in both humans and NHP (16, 20, 49-51), and we previously reported their induction following
417 IV BCG vaccination in SIV+ MCM (19). In particular, Th1 and Th17 responses have been associated
418 with protection from Mtb elicited by BCG delivered IV (20, 52) or intrabronchially (38). We showed here
419 that CD8 $\alpha\beta$ + T cell producing T1- and T17-related cytokines appeared in airways by 4 weeks after ID
420 BCG but then waned over time. In contrast, T1- and T17- CD8 $\alpha\beta$ + T cells were initially low following
421 IV BCG but increased significantly by 18 weeks post-vaccination. Further, only IV BCG boosted the
422 number of NK and CD8 $\alpha\beta$ + T cells producing either GzmB or GzmK cytotoxic effector which had not
423 been previously investigated. The protective efficacy of IV BCG may be related to the quality of the
424 lymphocytes in the airways as well as the durability of those responses following vaccination.

425 Previous studies have shown that Mtb-specific antibody is associated with BCG-induced
426 protection against Mtb in both SIV+ and SIV-naïve macaque (16, 19, 20, 52). Here, we demonstrated that
427 IV BCG induces higher levels of mycobacterial-specific IgG and IgM in both the airways and plasma of
428 SIV+ MCM than ID BCG. These antibodies were higher 4 weeks after vaccination than 18 weeks after
429 vaccination and followed the kinetics of the B cells recovered from BAL. We previously reported
430 increased mycobacterial-specific antibodies in both BAL and plasma from SIV+ MCM 12 weeks after IV
431 BCG but did not assess other post-vaccination time points (19). These current results suggest that IV
432 BCG recruits B cells to the airways and induces a robust IgG and IgM response a few weeks after
433 vaccination which then subside. Since IV BCG-elicited IgM is associated with protection in rhesus
434 macaques (21), it is likely that this humoral response remains primed to react quickly to Mtb challenge.

435 T_{RM} cells in the lung have been associated with protection from TB in mice (53) as well as in IV
436 BCG-vaccinated macaques (16). In our previous study of IV BCG in SIV+ MCM (19), all animals
437 underwent Mtb challenge and so we could not characterize vaccine-associated immune responses within
438 tissues. The design of the current study did not include Mtb challenge and made it possible to evaluate
439 T_{RM} cells within tissues in response to ID and IV BCG in SIV+ MCM. The use of intravascular anti-
440 CD45 antibody (34) ensured that we analyzed tissue-resident, rather than circulating, immune cells. Our
441 data revealed that even at 5 months post-vaccination, there were significantly more T_{RM} cells in lungs of

442 SIV+ IV BCG-vaccinated macaques, compared to those vaccinated ID. These T_{RM} cells consisted of
443 diverse T cell subsets, including CD4+, CD8 $\alpha\beta+$, CD8 $\alpha\alpha+$, CD8 α +CD4+, and $\gamma\delta+$. In contrast, the
444 number of T_{RM} cells in thoracic lymph nodes and spleen were similar between ID- and IV-vaccinated
445 MCM, suggesting that IV BCG selectively promotes the accumulation and retention of T cells in lung
446 tissue. Interestingly, the production of T1 and T17 cytokines, cytotoxic molecules, and transcription
447 factors by these lung T cells did not differ between MCM vaccinated with ID or IV BCG, although the
448 numbers of cells producing these effectors was increased in IV vaccinated animals. These data suggest
449 that IV BCG confers protection, at least in part, by increasing the number of mycobacteria-specific T_{RM}
450 cells in the lung rather than by inducing unique T cell responses. We previously showed a high numbers
451 of polyfunctional CD4+ and CD8 $\alpha\beta+$ T cell in lungs of SIV-naïve macaques 4 weeks after IV BCG
452 vaccination (16). It is notable that, here, we evaluated lung-resident T cells 5 months post-BCG and
453 observed higher numbers in IV BCG-vaccinated SIV+ animals which suggests that the increase in lung
454 T_{RM} cells following IV BCG is quite durable. We speculate that IV BCG results in extensive T cell
455 priming in lymph nodes and spleen and promotes their recruitment and retention in the lung, perhaps due
456 to the persistence of BCG antigens following IV vaccination. This is supported by our previous finding in
457 SIV-naïve macaques that viable BCG, albeit in low numbers, could be cultured from more organs 1
458 month after vaccination by the IV route compared to the ID route (16).

459 IV BCG induced a transient spike in SIV viremia following vaccination, as we reported
460 previously (19). However, the current study was limited by a larger-than-expected number of animals
461 with persistently high SIV viremia. Although the four non-controllers were distributed evenly between
462 both experimental groups, it limited our ability to compare rigorously the immune responses in animals
463 vaccinated by the IV and ID routes. These SIV non-controllers exhibited low numbers of CD4+ and
464 CD4+CD8 $\alpha+$ T cells in blood and BAL as we seen previously (19, 25). These animals also had fewer
465 CD4+ T_{RM} cells in lung tissue. Other cell types and antibody responses appeared unaffected by SIV viral
466 loads. MCM with higher SIV loads were not protected from Mtb challenge (19), suggesting a detrimental
467 effect of high viremia on the protective efficacy of IV BCG. Consequently, only three of five IV-

468 vaccinated animals exhibited SIV control in our current study and, based on previous data (19), would
469 have been likely to prevent TB.

470 In summary, the data presented here demonstrate clearly that BCG delivered to SIV+ macaques
471 by the IV route leads to significantly higher numbers of lymphocyte populations in the airways, higher
472 levels of mycobacterial-specific IgG and IgM, and more T_{RM} cells in the lung compared to ID
473 vaccination. These findings inform potential mechanisms underlying the protection conferred by IV BCG
474 in SIV+ MCM and provide valuable insights into vaccine design for PLWH.

475

476 **Acknowledgements:**

477 We are very grateful to the veterinary, laboratory, and analytical teams in the TB Research Group
478 at the University of Pittsburgh for their dedicated work. We also thank Drs. Robert Seder and Patricia
479 Darrah (VRC, NIAID, NIH) for helpful discussions.

480

481
482 **References:**

- 483 1. WHO. 2022. *Global tuberculosis report 2022*, Geneva: World Health Organization
- 484 2. WHO. 2021. *Global TB Report 2021* Geneva: World Health Organization
- 485 3. Miner MD, Hatherill M, Mave V, Gray GE, Nachman S, Read SW, White RG, Hesseling
486 A, Cobelens F, Patel S. 2022. Developing tuberculosis vaccines for people with HIV:
487 consensus statements from an international expert panel. *The Lancet HIV*
- 488 4. Geldmacher C, Zumla A, Hoelscher M. 2012. Interaction between HIV and
489 Mycobacterium tuberculosis: HIV-1-induced CD4 T-cell depletion and the development
490 of active tuberculosis. *Curr Opin HIV AIDS* 7: 268-75
- 491 5. Amelio P, Portevin D, Hella J, Reither K, Kamwela L, Lweno O, Tumbo A, Geoffrey L,
492 Ohmiki K, Ding S, Pantaleo G, Daubenberger C, Perreau M. 2019. HIV Infection
493 Functionally Impairs Mycobacterium tuberculosis-Specific CD4 and CD8 T-Cell
494 Responses. *J Virol* 93
- 495 6. Esmail H, Riou C, du Bruyn E, Lai RP-J, Harley YX, Meintjes G, Wilkinson KA,
496 Wilkinson RJ. 2018. The immune response to Mycobacterium tuberculosis in HIV-1-
497 coinfected persons. *Annual review of immunology* 36: 603-38
- 498 7. Zhang L, Jiang X, Pfau D, Ling Y, Nathan CF. 2021. Type I interferon signaling
499 mediates Mycobacterium tuberculosis-induced macrophage death. *Journal of
500 Experimental Medicine* 218
- 501 8. Sandler NG, Bosinger SE, Estes JD, Zhu RTR, Tharp GK, Boritz E, Levin D,
502 Wijeyesinghe S, Makamdop KN, del Prete GQ, Hill BJ, Timmer JK, Reiss E, Yarden G,
503 Darko S, Contijoch E, Todd JP, Silvestri G, Nason M, Norgren Jr RB, Keele BF, Rao S,

504 Langer JA, Lifson JD, Schreiber G, Douek DC. 2014. Type I interferon responses in
505 rhesus macaques prevent SIV infection and slow disease progression. *Nature* 511: 601-5
506 9. Li Y, Sun W. 2018. Effects of Th17/Treg cell imbalance on HIV replication in patients
507 with AIDS complicated with tuberculosis. *Experimental and Therapeutic Medicine* 15:
508 2879-83
509 10. Kaw S, Ananth S, Tsopoulidis N, Morath K, Coban BM, Hohenberger R, Bulut OC,
510 Klein F, Stolp B, Fackler OT. 2020. HIV-1 infection of CD4 T cells impairs antigen-
511 specific B cell function. *Embo j* 39: e105594
512 11. Larson EC, Ellis-Connell A, Rodgers MA, Balgeman AJ, Moriarty RV, Ameel CL,
513 Baranowski TM, Tomko JA, Causgrove CM, Maiello P, O'Connor SL, Scanga CA. 2021.
514 Pre-existing Simian Immunodeficiency Virus Infection Increases Expression of T Cell
515 Markers Associated with Activation during Early Mycobacterium tuberculosis
516 Coinfection and Impairs TNF Responses in Granulomas. *J Immunol* 207: 175-88
517 12. Wong K, Nguyen J, Blair L, Banjanin M, Grewal B, Bowman S, Boyd H, Gerstner G,
518 Cho HJ, Panfilov D, Tam CK, Aguilar D, Venketaraman V. 2020. Pathogenesis of
519 Human Immunodeficiency Virus-Mycobacterium tuberculosis Co-Infection. *J Clin Med*
520 9
521 13. Nemes E, Geldenhuys H, Rozot V, Rutkowski KT, Ratangee F, Bilek N, Mabwe S,
522 Makhetha L, Erasmus M, Toefy A. 2018. Prevention of M. tuberculosis infection with
523 H4: IC31 vaccine or BCG revaccination. *New England Journal of Medicine* 379: 138-49
524 14. Tait DR, Hatherill M, Van Der Meeren O, Ginsberg AM, Van Brakel E, Salaun B, Scriba
525 TJ, Akite EJ, Ayles HM, Bollaerts A, Demoitié MA, Diacon A, Evans TG, Gillard P,
526 Hellström E, Innes JC, Lempicki M, Malahleha M, Martinson N, Mesia Vela D,
527 Muyoyeta M, Nduba V, Pascal TG, Tameris M, Thienemann F, Wilkinson RJ, Roman F.
528 2019. Final Analysis of a Trial of M72/AS01(E) Vaccine to Prevent Tuberculosis. *N Engl
529 J Med* 381: 2429-39
530 15. Darrah PA, DiFazio RM, Maiello P, Gideon HP, Myers AJ, Rodgers MA, Hackney JA,
531 Lindenstrom T, Evans T, Scanga CA, Prikhodko V, Andersen P, Lin PL, Laddy D,
532 Roederer M, Seder RA, Flynn JL. 2019. Boosting BCG with proteins or rAd5 does not
533 enhance protection against tuberculosis in rhesus macaques. *NPJ Vaccines* 4: 21
534 16. Darrah PA, Zeppa JJ, Maiello P, Hackney JA, Wadsworth MH, 2nd, Hughes TK, Pokkali
535 S, Swanson PA, 2nd, Grant NL, Rodgers MA, Kamath M, Causgrove CM, Laddy DJ,
536 Bonavia A, Casimiro D, Lin PL, Klein E, White AG, Scanga CA, Shalek AK, Roederer
537 M, Flynn JL, Seder RA. 2020. Prevention of tuberculosis in macaques after intravenous
538 BCG immunization. *Nature* 577: 95-102
539 17. Hesselink AC, Marais BJ, Gie RP, Schaaf HS, Fine PE, Godfrey-Faussett P, Beyers N.
540 2007. The risk of disseminated Bacille Calmette-Guerin (BCG) disease in HIV-infected
541 children. *Vaccine* 25: 14-8
542 18. World Health O. 2018. BCG vaccine: WHO position paper, February 2018 -
543 Recommendations. *Vaccine* 36: 3408-10
544 19. Larson EC, Ellis-Connell AL, Rodgers MA, Gubernat AK, Gleim JL, Moriarty RV,
545 Balgeman AJ, Ameel CL, Jauro S, Tomko JA, Kracinovsky KB, Maiello P, Borish HJ,
546 White AG, Klein E, Bucsan AN, Darrah PA, Roederer M, Lin PL, Flynn JL,
547 O'Connor SL, Scanga CA. 2023. Intravenous Bacille Calmette-Guérin vaccination
548 protects simian immunodeficiency virus-infected macaques from tuberculosis. *Nature
549 Microbiology*
550 20. Darrah PA, Zeppa JJ, Wang C, Irvine EB, Bucsan AN, Rodgers MA, Pokkali S, Hackney
551 JA, Kamath M, White AG. 2023. Airway T cells are a correlate of iv Bacille Calmette-

552 Guerin-mediated protection against tuberculosis in rhesus macaques. *Cell Host &*
553 *Microbe*
554 21. Irvine EB, O'Neil A, Darrah PA, Shin S, Choudhary A, Li W, Honnen W, Mehra S,
555 Kaushal D, Gideon HP, Flynn JL, Roederer M, Seder RA, Pinter A, Fortune S, Alter G.
556 2021. Robust IgM responses following intravenous vaccination with Bacille Calmette-
557 Guérin associate with prevention of *Mycobacterium tuberculosis* infection in macaques.
558 *Nat Immunol* 22: 1515-23
559 22. Liu YE, Darrah PA, Zeppa JJ, Kamath M, Laboune F, Douek DC, Maiello P, Roederer
560 M, Flynn JL, Seder RA, Khatri P. 2023. Blood transcriptional correlates of BCG-induced
561 protection against tuberculosis in rhesus macaques. *Cell Rep Med* 4: 101096
562 23. Aandahl EM, Michaësson J, Moretto WJ, Hecht FM, Nixon DF. 2004. Human CD4+
563 CD25+ regulatory T cells control T-cell responses to human immunodeficiency virus and
564 cytomegalovirus antigens. *J Virol* 78: 2454-9
565 24. Maiello P, DiFazio RM, Cadena AM, Rodgers MA, Lin PL, Scanga CA, Flynn JL. 2018.
566 Rhesus Macaques Are More Susceptible to Progressive Tuberculosis than Cynomolgus
567 Macaques: a Quantitative Comparison. *Infect Immun* 86
568 25. Larson EC, Ellis-Connell A, Rodgers MA, Balgeman AJ, Moriarty RV, Ameel CL,
569 Baranowski TM, Tomko JA, Causgrove CM, Maiello P. 2021. Pre-existing Simian
570 immunodeficiency virus infection increases expression of T cell markers associated with
571 activation during early *Mycobacterium tuberculosis* coinfection and impairs TNF
572 responses in granulomas. *The Journal of Immunology* 207: 175-88
573 26. Moriarty RV, Rodgers MA, Ellis AL, Balgeman AJ, Larson EC, Hopkins F, Chase MR,
574 Maiello P, Fortune SM, Scanga CA. 2022. Spontaneous Control of SIV Replication Does
575 Not Prevent T Cell Dysregulation and Bacterial Dissemination in Animals Co-Infected
576 with *M. tuberculosis*. *Microbiology Spectrum*: e01724-21
577 27. Rodgers MA, Ameel C, Ellis-Connell AL, Balgeman AJ, Maiello P, Barry GL, Friedrich
578 TC, Klein E, O'Connor SL, Scanga CA. 2018. Preexisting simian immunodeficiency
579 virus infection increases susceptibility to tuberculosis in Mauritian cynomolgus
580 macaques. *Infection and immunity* 86: e00565-18
581 28. Ellis-Connell AL, Kannal NM, Balgeman AJ, O'Connor SL. 2019. Characterization of
582 major histocompatibility complex-related molecule 1 sequence variants in non-human
583 primates. *Immunogenetics* 71: 109-21
584 29. Fitzpatrick M, Ho MM, Clark S, Dagg B, Khatri B, Lanni F, Williams A, Brennan M,
585 Laddy D, Walker B. 2019. Comparison of pellicle and shake flask-grown BCG strains by
586 quality control assays and protection studies. *Tuberculosis (Edinb)* 114: 47-53
587 30. Hartman AL, Nambulli S, McMillen CM, White AG, Tilston-Lunel NL, Albe JR, Cottle
588 E, Dunn MD, Frye LJ, Gilliland TH, Olsen EL, O'Malley KJ, Schwarz MM, Tomko JA,
589 Walker RC, Xia M, Hartman MS, Klein E, Scanga CA, Flynn JL, Klimstra WB, McElroy
590 AK, Reed DS, Duprex WP. 2020. SARS-CoV-2 infection of African green monkeys
591 results in mild respiratory disease discernible by PET/CT imaging and shedding of
592 infectious virus from both respiratory and gastrointestinal tracts. *PLoS Pathog* 16:
593 e1008903
594 31. Sarnyai Z, Nagy K, Patay G, Molnár M, Rosenqvist G, Tóth M, Takano A, Gulyás B,
595 Major P, Halldin C, Varrone A. 2019. Performance Evaluation of a High-Resolution
596 Nonhuman Primate PET/CT System. *J Nucl Med* 60: 1818-24
597 32. White AG, Maiello P, Coleman MT, Tomko JA, Frye LJ, Scanga CA, Lin PL, Flynn JL.
598 2017. Analysis of 18FDG PET/CT Imaging as a Tool for Studying *Mycobacterium*
599 tuberculosis Infection and Treatment in Non-human Primates. *J Vis Exp*

600 33. Kauffman KD, Sallin MA, Sakai S, Kamenyeva O, Kabat J, Weiner D, Suphin M,
601 Schimel D, Via L, Barry CE, 3rd, Wilder-Kofie T, Moore I, Moore R, Barber DL. 2018.
602 Defective positioning in granulomas but not lung-homing limits CD4 T-cell interactions
603 with *Mycobacterium tuberculosis*-infected macrophages in rhesus macaques. *Mucosal*
604 *Immunol* 11: 462-73

605 34. Potter EL, Gideon HP, Tkachev V, Fabozzi G, Chassiakos A, Petrovas C, Darrah PA, Lin
606 PL, Foulds KE, Kean LS. 2021. Measurement of leukocyte trafficking kinetics in
607 macaques by serial intravascular staining. *Science Translational Medicine* 13: eabb4582

608 35. Gonzalo-Gil E, Ikediobi U, Sutton RE. 2017. Focus: Infectious diseases: Mechanisms of
609 virologic control and clinical characteristics of HIV+ elite/viremic controllers. *The Yale*
610 *journal of biology and medicine* 90: 245

611 36. Tetali S, Bakshi S, Than S, Pahwa S, Abrams E, Romano J, Pahwa S. 1998. Plasma virus
612 load evaluation in relation to disease progression in HIV-infected children. *AIDS*
613 *research and human retroviruses* 14: 571-7

614 37. Smith SM, Holland B, Russo C, Dailey PJ, Marx PA, Connor RI. 1999. Retrospective
615 analysis of viral load and SIV antibody responses in rhesus macaques infected with
616 pathogenic SIV: predictive value for disease progression. *AIDS research and human*
617 *retroviruses* 15: 1691-701

618 38. Dijkman K, Sombroek CC, Vervenne RAW, Hofman SO, Boot C, Remarque EJ, Kocken
619 CHM, Ottenhoff THM, Kondova I, Khayum MA, Haanstra KG, Vierboom MPM,
620 Verreck FAW. 2019. Prevention of tuberculosis infection and disease by local BCG in
621 repeatedly exposed rhesus macaques. *Nat Med* 25: 255-62

622 39. Larsen SE, Williams BD, Rais M, Coler RN, Baldwin SL. 2022. It takes a village: the
623 multifaceted immune response to *Mycobacterium tuberculosis* infection and vaccine-
624 induced immunity. *Frontiers in Immunology* 13: 840225

625 40. Balin SJ, Pellegrini M, Klechovsky E, Won ST, Weiss DI, Choi AW, Hakimian J, Lu J,
626 Ochoa MT, Bloom BR. 2018. Human antimicrobial cytotoxic T lymphocytes, defined by
627 NK receptors and antimicrobial proteins, kill intracellular bacteria. *Science immunology*
628 3: eaat7668

629 41. Gideon HP, Hughes TK, Tzouanas CN, Wadsworth MH, 2nd, Tu AA, Gierahn TM,
630 Peters JM, Hopkins FF, Wei JR, Kummerlowe C, Grant NL, Nargan K, Phuah JY, Borish
631 HJ, Maiello P, White AG, Winchell CG, Nyquist SK, Ganchua SKC, Myers A, Patel KV,
632 Ameel CL, Cochran CT, Ibrahim S, Tomko JA, Frye LJ, Rosenberg JM, Shih A, Chao
633 M, Klein E, Scanga CA, Ordovas-Montanes J, Berger B, Mattila JT, Madansein R, Love
634 JC, Lin PL, Leslie A, Behar SM, Bryson B, Flynn JL, Fortune SM, Shalek AK. 2022.
635 Multimodal profiling of lung granulomas in macaques reveals cellular correlates of
636 tuberculosis control. *Immunity* 55: 827-46.e10

637 42. Busch M, Herzmann C, Kallert S, Zimmermann A, Höfer C, Mayer D, Zenk SF, Muche
638 R, Lange C, Bloom BR, Modlin RL, Stenger S. 2016. Lipoarabinomannan-Responsive
639 Polycytotoxic T Cells Are Associated with Protection in Human Tuberculosis. *Am J*
640 *Respir Crit Care Med* 194: 345-55

641 43. Coppola M, Arroyo L, van Meijgaarden KE, Franken KL, Geluk A, Barrera LF,
642 Ottenhoff TH. 2017. Differences in IgG responses against infection phase related
643 *Mycobacterium tuberculosis* (Mtb) specific antigens in individuals exposed or not to Mtb
644 correlate with control of TB infection and progression. *Tuberculosis* 106: 25-32

645 44. Chen Z, Lin F, Gao Y, Li Z, Zhang J, Xing Y, Deng Z, Yao Z, Tsun A, Li B. 2011.
646 FOXP3 and ROR γ t: transcriptional regulation of Treg and Th17. *Int Immunopharmacol*
647 11: 536-42

648 45. Qu Y, Li D, Xiong H, Shi D. 2023. Transcriptional regulation on effector T cells in the
649 pathogenesis of psoriasis. *Eur J Med Res* 28: 182
650 46. Peters JM, Irvine EB, Rosenberg JM, Wadsworth MH, Hughes TK, Sutton M, Nyquist
651 SK, Bromley JD, Mondal R, Roederer M. 2023. Protective intravenous BCG vaccination
652 induces enhanced immune signaling in the airways. *bioRxiv*: 2023.07. 16.549208
653 47. Morrison AL, Sarfas C, Sibley L, Williams J, Mabbutt A, Dennis MJ, Lawrence S, White
654 AD, Bodman-Smith M, Sharpe SA. 2023. IV BCG Vaccination and Aerosol BCG
655 Revaccination Induce Mycobacteria-Responsive $\gamma\delta$ T Cells Associated with Protective
656 Efficacy against M. tb Challenge. *Vaccines (Basel)* 11
657 48. Roy Chowdhury R, Vallania F, Yang Q, Lopez Angel CJ, Darboe F, Penn-Nicholson A,
658 Rozot V, Nemes E, Malherbe ST, Ronacher K, Walzl G, Hanekom W, Davis MM,
659 Winter J, Chen X, Scriba TJ, Khatri P, Chien YH. 2018. A multi-cohort study of the
660 immune factors associated with M. tuberculosis infection outcomes. *Nature* 560: 644-8
661 49. Larson E, Ellis-Connell A, Rodgers M, Gubernat A, Gleim J, Moriarty R, Balgeman A,
662 Ameel C, Jauro S, Tomko J. 2023. Vaccination with intravenous BCG protects macaques
663 with pre-existing SIV infection from tuberculosis.
664 50. Qin S, Chen R, Jiang Y, Zhu H, Chen L, Chen Y, Shen M, Lin X. 2021. Multifunctional
665 T cell response in active pulmonary tuberculosis patients. *International
666 Immunopharmacology* 99: 107898
667 51. Caccamo N, Guggino G, Joosten SA, Gelsomino G, Di Carlo P, Titone L, Galati D,
668 Bocchino M, Matarese A, Salerno A. 2010. Multifunctional CD4+ T cells correlate with
669 active Mycobacterium tuberculosis infection. *European journal of immunology* 40: 2211-
670 20
671 52. Dijkman K, Sombroek CC, Vervenne RA, Hofman SO, Boot C, Remarque EJ, Kocken
672 CH, Ottenhoff TH, Kondova I, Khayum MA. 2019. Prevention of tuberculosis infection
673 and disease by local BCG in repeatedly exposed rhesus macaques. *Nature medicine* 25:
674 255-62
675 53. Sakai S, Kauffman KD, Schenkel JM, McBerry CC, Mayer-Barber KD, Masopust D,
676 Barber DL. 2014. Cutting edge: control of Mycobacterium tuberculosis infection by a
677 subset of lung parenchyma-homing CD4 T cells. *The Journal of Immunology* 192: 2965-
678 9

679

680

681

682

683

684

685

686

687

688

689 **Figure 1: Study design and SIV plasma viremia. a)** Study design indicating SIV infection, BCG
690 vaccination, HRE treatment, serial BAL and blood collection, and PET-CT time points. **b)** Quantification
691 of plasma viral copy equivalents over time in MCM vaccinated with ID BCG (top panel, purple; n=6) or
692 IV BCG (bottom panel, green; n=5). The horizontal dashed line represents the LOQ of ~62 copies/mL.
693 Plasma viral load of each group was assessed by comparing two weeks before BCG vaccination to two-
694 or 12-weeks after BCG vaccination using mixed-effects model with uncorrected Fisher's LSD p-values
695 reported. Each symbol represents an individual animal. SIV controllers and non-controllers (baseline >10⁵
696 copies/mL) are indicated by circles and stars, respectively.

697

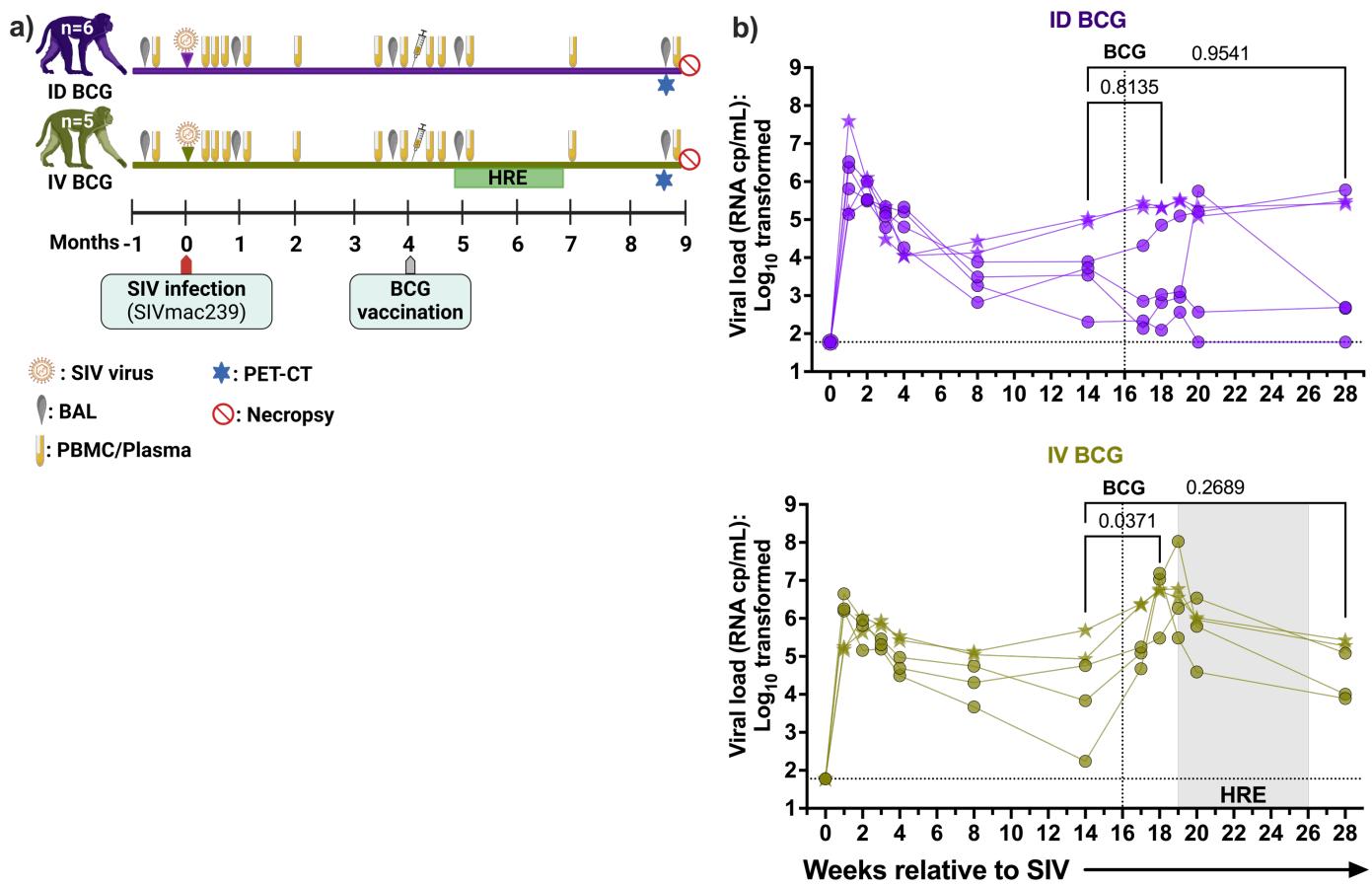
698 **Figure 2: Immune cell composition in airways during SIV infection and BCG vaccination. a)**
699 Numbers of total leukocytes and T cells in BAL. **b)** Numbers of T cell subsets in BAL. Each point
700 represents an individual BAL with SIV non-controllers indicated by stars. Mixed-effects model with
701 uncorrected Fisher's LSD p-values (Table 1) are shown.

702

703 **Figure 3: T cell cytokines in airways following BCG vaccination. a)** The number of CD4+ T cells
704 making mycobacterial-specific T1 and T17 responses in airways. **b)** The number of CD8αβ+ T cells
705 making mycobacterial-specific T1 and T17 responses in airways. SIV non-controllers are indicated by
706 stars. Mixed-effects model with uncorrected Fisher's LSD p-values between groups are reported in Table
707 1.

708

709 **Figure 4: CD8αβ+ T cells and NK cells cytotoxic effector in airways. a)** The number of CD8αβ+ T
710 cells producing GzmB or GzmK. **b)** The number of NK cells producing GzmB or GzmK. SIV non-
711 controllers are indicated by stars. Mixed-effects model with uncorrected Fisher's LSD p-values between
712 groups are shown Table 1.


713

714 **Figure 5: Mycobacteria-specific antibodies in BAL and plasma following BCG vaccination.** IgG and
715 IgM that bind WCL or LAM in plasma **(a)** and BALF **(b)**. SIV non-controllers are indicated by stars.
716 Mixed-effects model with uncorrected Fisher's LSD p-values in Table 2 represents group comparison.
717

718 **Figure 6: T_{RM} cell responses in lungs 20 weeks after BCG vaccination.** Tissue-resident T cells
719 (ivCD45-) are delineated from vascular-resident cells (ivCD45+). **a)** The number of tissue-resident T_{RM}
720 cells in lung tissue harvested 20 weeks after IV or ID BCG vaccination. **b)** The number of T_{RM} cell
721 subsets in lung tissue. SIV non-controllers are depicted by stars. Each symbol represents the mean value
722 from 3 lung lobes per animal. Mann-Whitney p-values are reported.
723

724 **Figure 7: Cytokines responses in lungs 20 weeks after BCG vaccination.** The number of CD4+ and
725 CD8αβ+ T cells in the lung that make any **a)** Th1- and T1-(IFN γ , IL-2, TNF), and, **b)** Th17- and T17-
726 (IFN γ , IL-2, IL-17, TNF) associated cytokines. SIV non-controllers are depicted by stars. Each symbol
727 represents the mean value from 3 lung lobes per animal. Mann-Whitney p-values are reported.
728
729
730
731
732
733
734
735
736
737
738
739
740

741 **Figure 1**

742

743

744

745

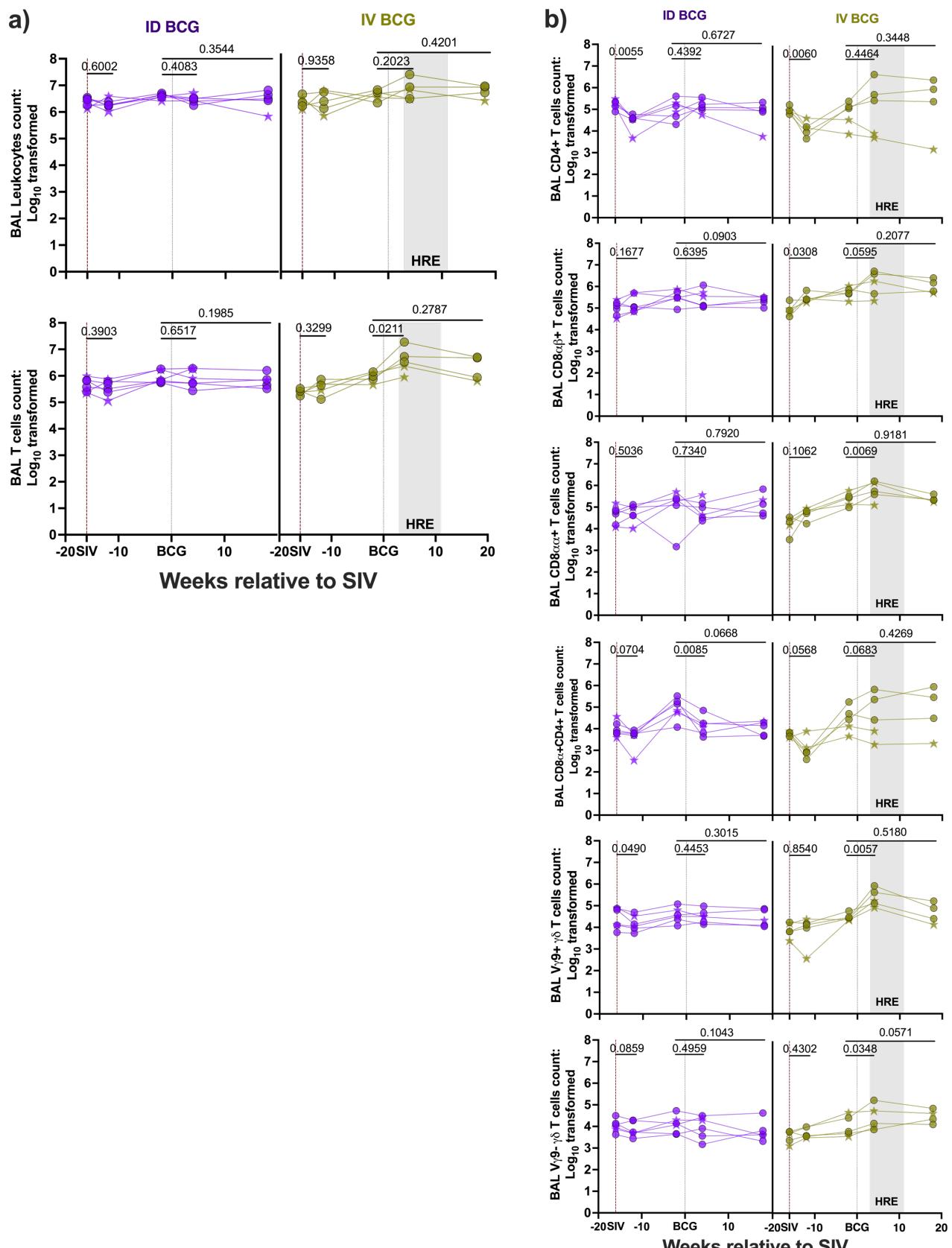
746

747

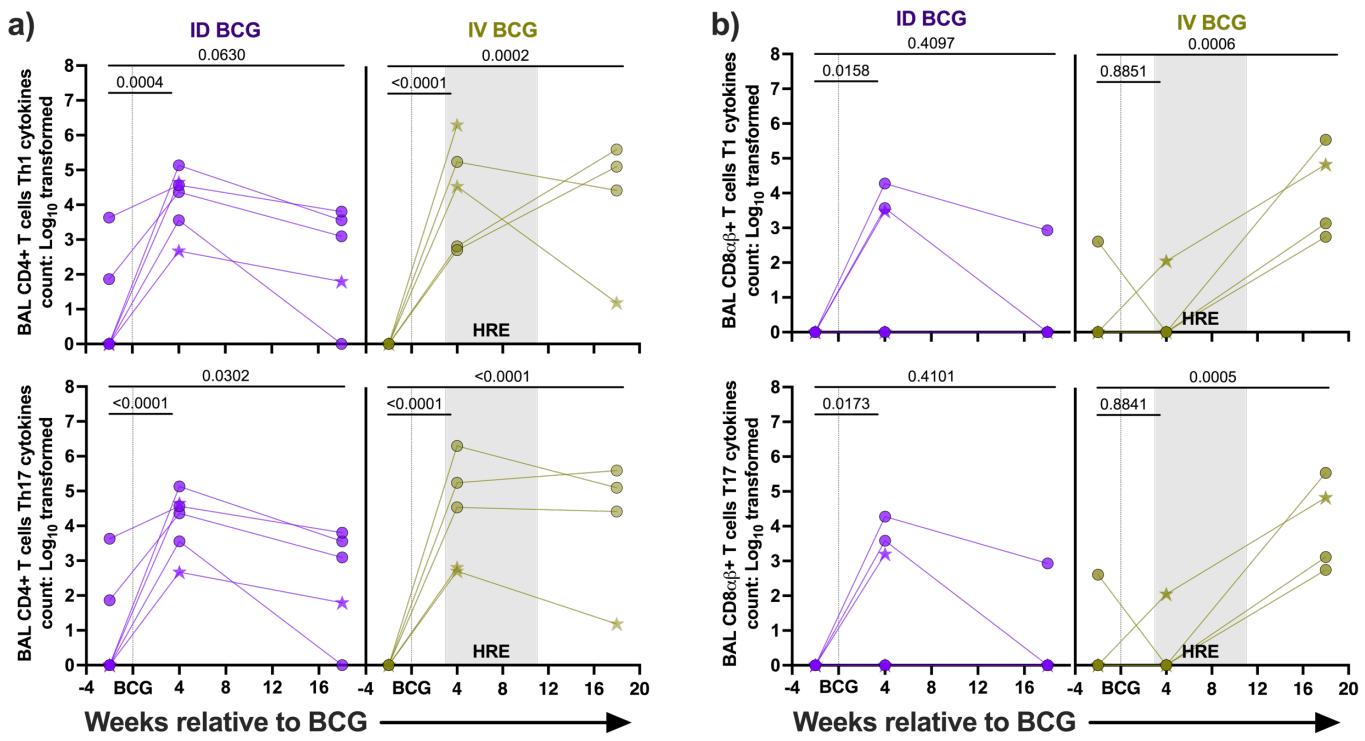
748

749

750

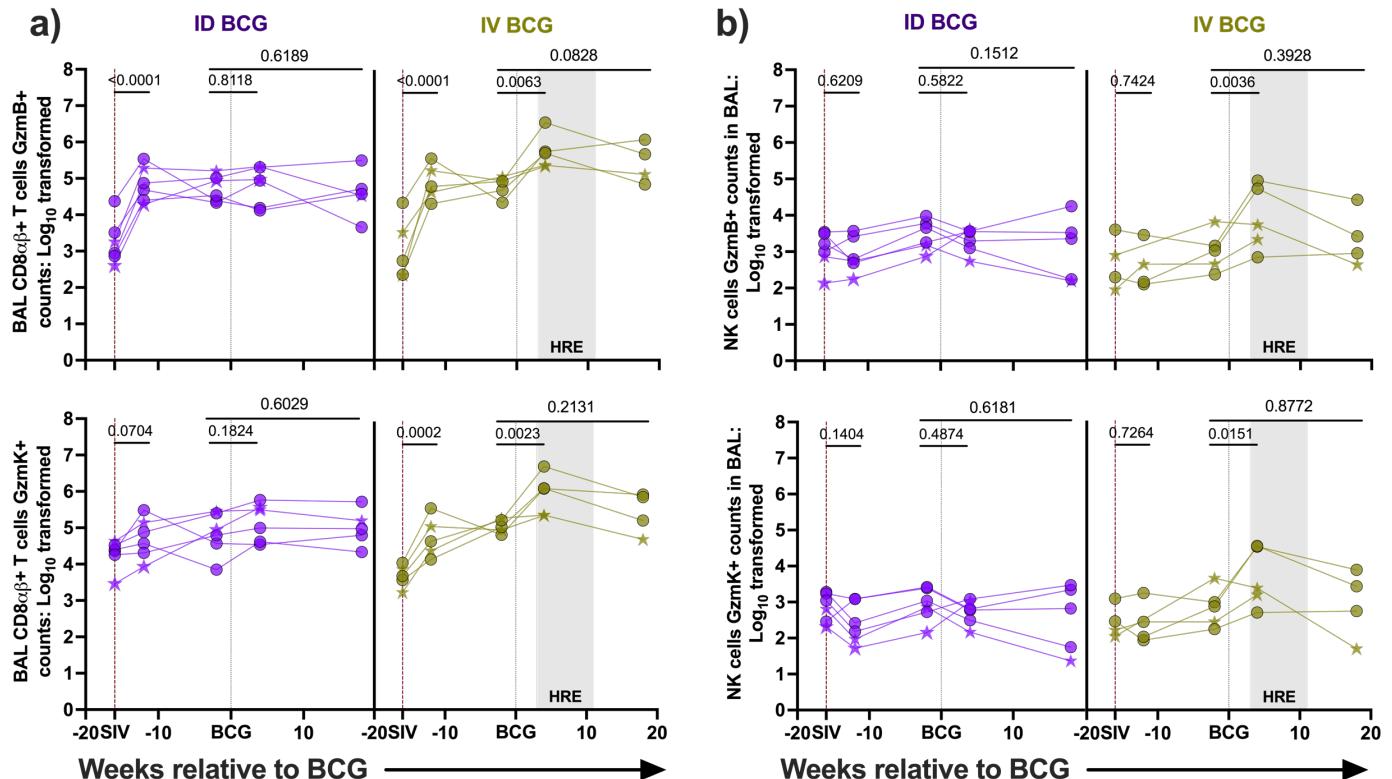

751

752

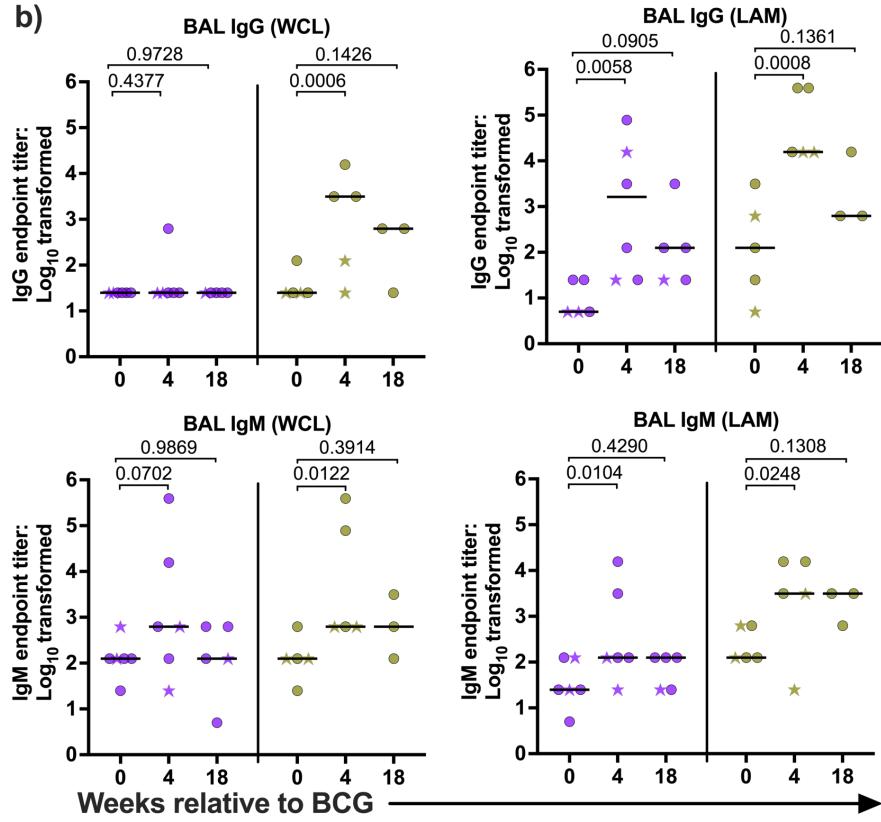
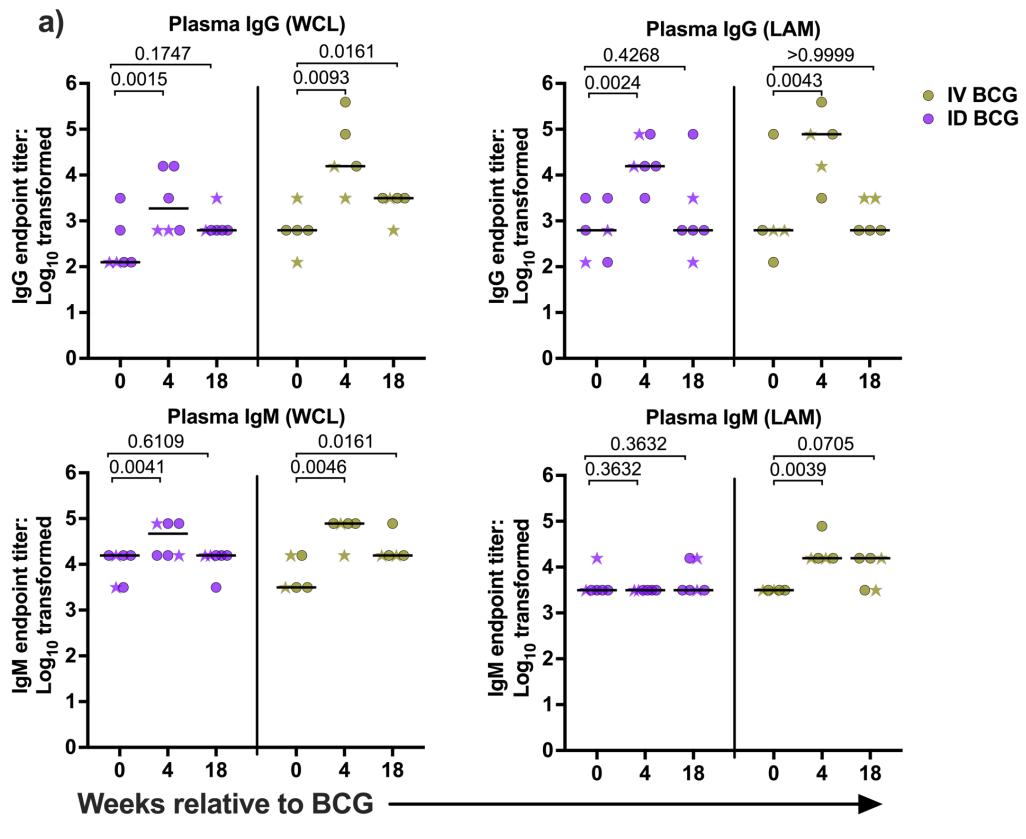

753

754

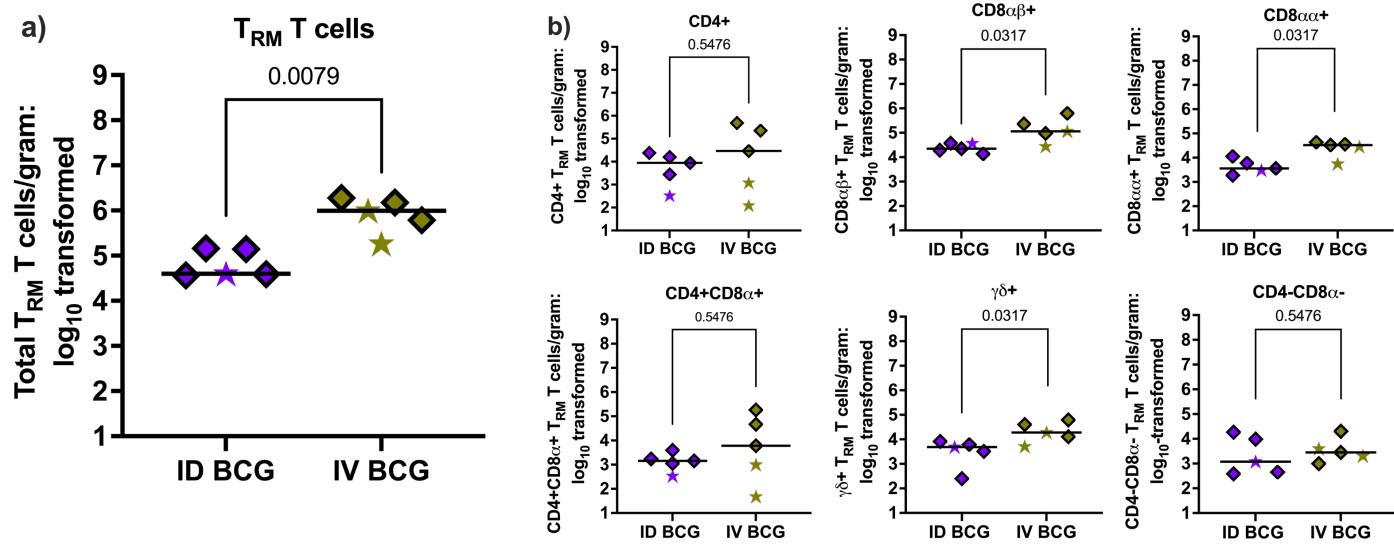
755 **Figure 2**


757 **Figure 3**

758

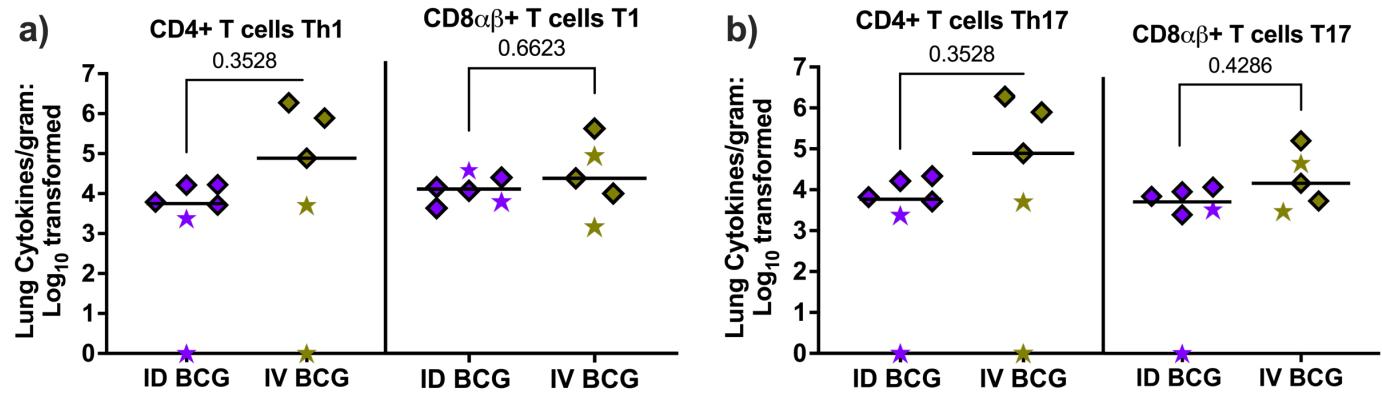


759

760 **Figure 4**


761

762 **Figure 5**

764


765 **Figure 6**

766

767

768 **Figure 7**

769

770

771

772

773

774

775

776

777 **Table 1:** Mixed model analysis comparing cellular immune response elicited by ID BCG versus IV BCG
 778 vaccination routes at different time points.

Cells	BCG ID vs. BCG IV		P-value	Mean Difference: BCG ID - BCG IV (95% CI)	
T cells subsets	CD4+	PreBCG	0.6362	ns	
	CD4+	4 week post BCG	0.9049	ns	
	CD4+	18 Weeks post BCG	0.5927	ns	
	CD8 $\alpha\beta$ +	PreBCG	0.2352	ns	
	CD8 $\alpha\beta$ +	4 week post BCG	0.0623	#	-0.6931 (-1.433 to 0.04675)
	CD8 $\alpha\beta$ +	18 Weeks post BCG	0.0147	*	-0.694 (-1.180 to -0.2082)
	CD8 $\alpha\alpha$ +	PreBCG	0.4007	ns	
	CD8 $\alpha\alpha$ +	4 week post BCG	0.0113	*	-0.8719 (-1.491 to -0.2524)
	CD8 $\alpha\alpha$ +	18 Weeks post BCG	0.3385	ns	
Th1 associated cytokines	CD8 α +CD4+	PreBCG	0.1738	ns	
	CD8 α +CD4+	4 week post BCG	0.441	ns	
	CD8 α +CD4+	18 Weeks post BCG	0.2789	ns	
	Vg9 $+\gamma\delta$	PreBCG	0.5546	ns	
	Vg9 $+\gamma\delta$	4 week post BCG	0.0053	**	-0.8599 (-1.374 to -0.3453)
	Vg9 $+\gamma\delta$	18 Weeks post BCG	0.4764	ns	
Th1 associated cytokines	Vg9 $-\gamma\delta$	PreBCG	0.8549	ns	
	Vg9 $-\gamma\delta$	4 week post BCG	0.2264	ns	
	Vg9 $-\gamma\delta$	18 Weeks post BCG	0.0359	*	-0.7162 (-1.370 to -0.0629)
	IFN γ	PreBCG	0.2809	ns	
Th1 associated cytokines	IFN γ	CD4+	0.8427	ns	
	IFN γ	4 weeks post BCG	0.0728	#	-1.716 (-3.602 to 0.1708)
	IFN γ	PreBCG	0.5155	ns	

	CD8αβ+	4 weeks post BCG	0.0737	#	1.478 (-0.1528 to 3.109)
		18 weeks post BCG	0.0006	***	-3.413 (-5.214 to -1.612)
Th17 associated cytokines	CD4+	PreBCG	0.2779	ns	
		4 weeks post BCG	0.8405	ns	
		18 weeks post BCG	0.0962	#	-1.543 (-3.381 to 0.2954)
	CD8αβ+	PreBCG	0.5117	ns	
		4 weeks post BCG	0.0799	#	1.433 (-0.1835 to 3.049)
		18 weeks post BCG	0.0006	***	-3.414 (-5.199 to -1.630)
CD8αβ+ T cells cytotoxic molecules	GzmB	PreBCG	0.8686	ns	
		4 weeks post BCG	0.0074	**	-0.9387 (-1.612 to -0.2649)
		18 weeks post BCG	0.0279	*	-0.8393 (-1.583 to -0.0958)
	GzmK	PreBCG	0.3898	ns	
		4 weeks post BCG	0.0109	*	-0.804 (-1.413 to -0.1947)
		18 weeks post BCG	0.1463	ns	
NK cells cytotoxic molecules	GzmB	PreBCG	0.2412	ns	
		4 weeks post BCG	0.1133	ns	
		18 weeks post BCG	0.5675	ns	
	GzmK	PreBCG	0.7972	ns	
		4 weeks post BCG	0.0173	*	-0.9372 (-1.700 to -0.1746)
		18 weeks post BCG	0.3412	ns	

779 ID and IV BCG were compared at each time point for each cell type. Fisher's LSD test p-values reported.

780 For p-values < 0.10, the mean difference of ID BCG - IV BCG is shown with 95% confidence interval.

781 The summary of p-value is presented; ns: not significant, #: 0.05 < p < 0.10, *: p < 0.05, **: p < 0.01 and

782 ***: p < 0.001. GzmB: Granzyme B and GzmK: Granzyme K

783

784 **Table 2:** Mixed model analysis comparing the humoral immune response elicited in the plasma and
 785 airways by ID BCG versus IV BCG at different time points.

Niche	Immunoglobulin	BCG ID vs. BCG IV	P-value	Mean Difference: BCG ID - BCG IV (95% CI)	
Plasma	IgG WCL	PreBCG	0.3107	ns	
		4 weeks post BCG	0.0421	*	-1.095 (-2.140 to 0.04976)
		18 weeks post BCG	0.04	*	-0.4427 (-0.8598 to -0.0255)
	IgM WCL	PreBCG	0.432	ns	
		4 weeks post BCG	0.3434	ns	
		18 weeks post BCG	0.1954	ns	
	IgG LAM	PreBCG	0.5487	ns	
		4 weeks post BCG	0.5161	ns	
		18 weeks post BCG	0.8804	ns	
BAL (airway)	IgM LAM	PreBCG	0.3632	ns	
		4 weeks post BCG	0.0039	**	-0.8388 (-1.227 to -0.4506)
		18 weeks post BCG	0.432	ns	
	IgG WCL	PreBCG	0.7060	ns	
		4 weeks post BCG	0.0016	**	-1.305 (-2.141 to -0.4682)
		18 weeks post BCG	0.1002	ns	
	IgM WCL	PreBCG	>0.9999	ns	
		4 weeks post BCG	0.3160	ns	
		18 weeks post BCG	0.4222	ns	
BAL (airway)	IgG LAM	PreBCG	0.0878	#	-1.180 (-2.466 to 0.1059)
		4 weeks post BCG	0.006	**	-1.841 (-3.099 to -0.5823)
		18 weeks post BCG	0.0222	*	-1.752 (-3.229 to -0.2744)
	IgM LAM	PreBCG	0.0727	#	-0.8621 (-1.810 to 0.08572)

	4 weeks post BCG	0.0975	#	0.7920 (-1.7840 to 0.1558)
	18 weeks post BCG	0.0240	*	-1.300 (-2.413 to -0.1864)

786 ID and IV BCG were compared at each time point for each cell type. Fisher's LSD test p-values reported.

787 For p-values < 0.10 , the mean difference of ID BCG - IV BCG is shown with 95% confidence interval.

788 The summary of p-value is presented; #: $0.05 < p < 0.10$, *: $p < 0.05$, **: $p < 0.01$ and ***: $p < 0.001$.

789 WCL: H37Rv whole cell lysate, LAM: Lipoarabinomannan.

790