

1 Metacommunity theory and metabarcoding reveal the 2 environmental, spatial, and biotic drivers of meiofaunal 3 communities in sandy beaches 4

5 **Author list and affiliations**

6 Jan-Niklas Macher^{a,b*}, Maximilian Pichler^c, Simon Creer^d, Alejandro Martínez^e, Diego
7 Fontaneto^{e,f}, Willem Renema^{a,g}

8
9 a: Naturalis Biodiversity Center, Marine Biodiversity, Darwinweg 2, 2333 CR Leiden, The
10 Netherlands

11 b: Department of Environmental Biology, Institute of Environmental Sciences (CML), Leiden
12 University, 12 Einsteinweg 2, 2333 CC Leiden, The Netherlands

13 c: Theoretical Ecology, University of Regensburg, Universitätsstr. 31, 93053 Regensburg,
14 Germany

15 d: Molecular Ecology and Evolution Group, School of Natural and Environmental Sciences,
16 Bangor University, Bangor, Gwynedd, UK

17 e: National Research Council of Italy (CNR), Water Research Institute (IRSA), Largo Tonolli
18 50, 28922, Verbania Pallanza, Italy

19 f: National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133 Palermo, Italy

20 g: Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science
21 Park 904, 1098 XH Amsterdam, the Netherlands
22

23 **Abstract**

24 Sandy beaches are important ecosystems providing coastal protection and recreation, but
25 they face significant threats from human activities and sea level rise. They are inhabited by
26 meiofauna, small benthic invertebrates that are highly abundant and diverse, but are
27 commonly understudied biotic components of beach ecosystems. Here, we investigate the
28 factors shaping meiofaunal metacommunities by employing Generalised Dissimilarity
29 Modelling (GDM) and Joint Species Distribution Modelling (JSDM) to study community
30 turnover and assembly processes. We analysed over 550 meiofauna samples from a >650
31 km stretch of the southern North Sea coastline using a metabarcoding approach. Our
32 findings reveal that environmental factors, especially Distance from Low Tide and Sediment
33 Grain Size, are important drivers of meiofauna community turnover. This highlights the
34 influence of the gradient from marine to terrestrial habitats and sediment conditions. Spatial
35 factors, which indicate dispersal limitations, also significantly impact community composition,
36 challenging the view that marine meiofauna have broad geographic distributions. The JSDM
37 results show that species sorting by environmental conditions is the dominant process in
38 community assembly with increasing environmental differences between sampling sites, but
39 that biotic associations, or similar environmental preferences, are a major driver of
40 community assembly at sites with similar environmental conditions. Further, we find that
41 spatial factors also significantly influence community assembly across the study region. By
42 facilitating the inference of ecological niches for a high number of meiofaunal taxa, JSDM
43 provides a powerful framework for understanding the ecology of these animals. Our results
44 highlight the importance of considering environmental gradients and dispersal limitations in

45 meiofauna and beach ecosystem research, and future research should aim at adding
46 information on functional traits and biotic interactions under varying environmental conditions
47 to understand meiofauna community dynamics and resilience.

48 **Introduction**

49 Sandy beaches are globally common ecosystems offering crucial ecological services such
50 as coastal protection, recreation, and supporting fisheries ^{1–3}. These ecosystems face
51 threats from “coastal squeeze”, resulting from human activities onshore and offshore, as well
52 as sea level rise ^{4–6}. At the same time, they are the least studied coastal ecosystems ^{7,8}.
53 Sandy beaches harbour diverse communities of flora and fauna ^{9–11}. Among these,
54 meiofauna, small benthic invertebrates ranging in size from about 40 µm to 1 mm ¹², play a
55 vital role by connecting primary producers to higher trophic levels ^{13–16}. Meiofauna reach
56 densities of a million specimens per m² ^{17,18}, and their known sensitivity to environmental
57 changes also makes them potentially valuable bioindicators ^{19–21}. Despite their ecological
58 importance, a thorough understanding and study of beach meiofauna communities remains
59 challenging due to difficulties in morphological identification and a lack of ecological
60 knowledge ²². The advent of metabarcoding, a molecular technique that enables
61 amplification and identification of many species from environmental samples, has changed
62 meiofauna research by offering a cost-effective and efficient method of understanding
63 meiofaunal biodiversity ^{23–25}, especially when combined with morpho-taxonomic approaches
64 ²⁶.

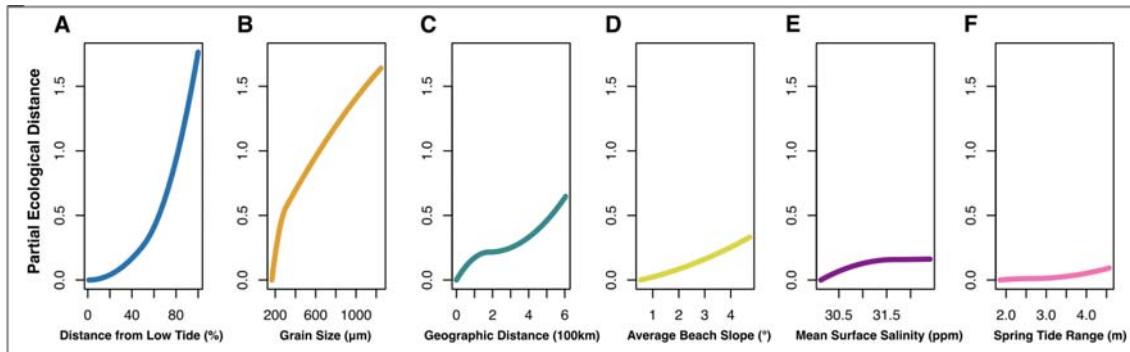
65 Past research has revealed a high meiofaunal species richness and notable differences in
66 diversity within and across beaches ^{9,17,27–30}. Key factors like sediment composition ^{1,31} and
67 energy levels across the intertidal zone have been identified as important in shaping
68 meiofaunal communities ^{32–35}. Furthermore, the type and state of a beach, whether it's
69 reflective with a steeper slope and coarser sediment, or dissipative with a gentler slope and
70 finer sediment, impact meiofauna community composition and diversity ^{28,32,36,37}.
71 Traditionally, marine meiofauna species were thought to have a very wide geographic
72 distribution despite limited dispersal capabilities ^{38–40} (the “meiofauna paradox”), but this has
73 been shown to partly stem from insufficient taxonomic resolution ^{41,42}. Many meiofaunal taxa
74 are actually limited in dispersal ^{39,43}, which shapes communities and diversity on smaller and
75 larger scales ^{34,44–46}. Similarly, biological interactions such as predation and competition
76 between meiofaunal species can significantly influence communities ^{14,47,48}.

77 Despite these insights, the understanding of meiofaunal metacommunities remains limited.
78 Metacommunity theory, which incorporates spatial processes and community ecology, offers
79 a framework for studying the interplay between environmental factors, regional processes,
80 and biotic interactions in structuring communities ⁴⁹. Most studies on meiofauna have
81 emphasised species sorting, which describes the process where species are filtered based
82 on their realised ecological niches, as the most influential factor in metacommunity
83 assembly, although dispersal limitations also play an important role ⁵⁰. However, the
84 application of metacommunity theory to marine and coastal meiofauna is limited. As recently
85 highlighted in a review on major open questions in meiofauna research ⁵¹, there is a need for
86 studies on spatial processes, environmental effects, and interaction in meiofauna
87 communities.

88 In this study, we use Generalised Dissimilarity Modelling (GDM) to investigate how spatial
89 and environmental factors influence community turnover in beach meiofauna (the 'external
90 structure' of metacommunities⁵²), and subsequently apply Joint Species Distribution
91 Modelling (JSDM)^{53,54} to study the processes driving assembly of communities, and gain
92 deeper insights into ecological niches of species (the 'internal structure' of metacommunities
93⁵²). JSMDs provide a powerful approach for inferring assembly processes shaping
94 communities⁵⁵⁻⁵⁸ and were recently enhanced to allow rapid analyses of hundreds of
95 species and samples obtained from metabarcoding datasets^{59,60}. By providing a framework
96 to analyse how environmental and spatial factors, as well as biotic interactions, influence
97 communities, JSMDs can not only test existing hypotheses but also generate new, testable
98 hypotheses about the drivers of community assembly. Here, we apply JSMDs to an
99 extensive meiofauna metabarcoding dataset comprising over 550 samples from a stretch of
100 >650 km of coastline of the southern North Sea.

101 We hypothesise that beach meiofauna metacommunities are primarily shaped by species
102 sorting through environmental factors such as Sediment Grain Size and morphodynamic
103 conditions, with spatial effects and species interactions playing a secondary role. By utilising
104 GDM and the JSMD framework, our study helps understand community assembly processes
105 and ecological niches of beach meiofauna. A better understanding of these processes and
106 the availability of detailed information on the ecological niches of meiofauna will facilitate
107 further research by identifying the key factors that shape biodiversity in beach ecosystems.

108 **Results**


109 **Bioinformatics and OTU annotation**

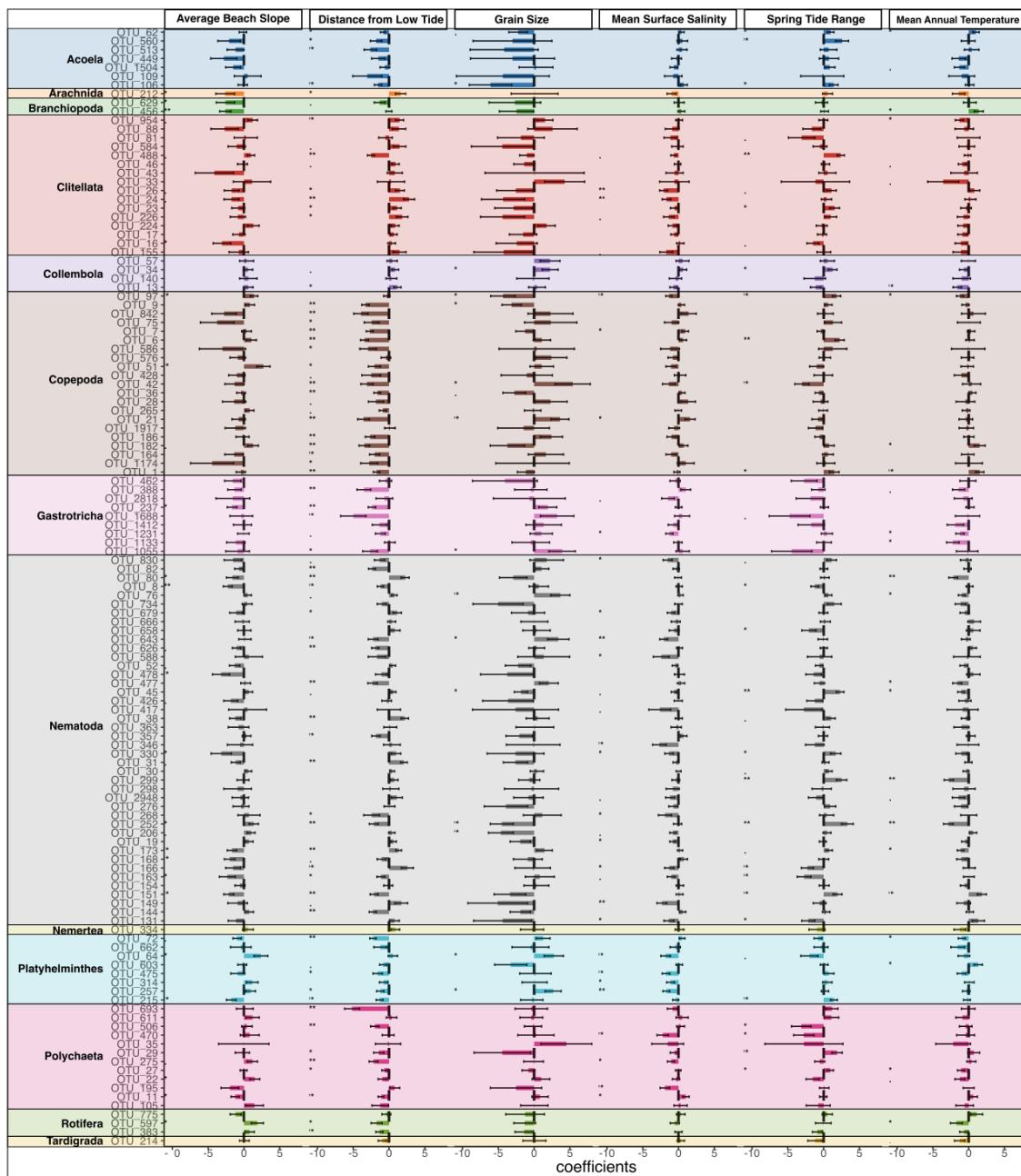
110 Following bioinformatic processing with APSCALE and quality filtering, we retained
111 14,822,456 mitochondrial cytochrome c oxidase I (COI) sequences and 566 Operative
112 Taxonomic Units (OTUs). Following taxonomic annotation using NCBI GenBank and
113 meiofauna reference barcodes reported in²⁶, we retained 11,029,442 sequences of 127
114 OTUs. Of these, 42 were Nematoda, 21 Copepoda, 16 Clitellata, 12 Polychaeta, 9
115 Gastrotricha, 8 Platyhelminthes, 7 Acoela, 4 Collembola, 3 Rotifera, 2 Branchiopoda, 1
116 Nemertea, 1 Tardigrada, and 1 Arachnida.

117 **Generalised Dissimilarity Models**

118 The GDM explained 43.2% of the deviance, indicating the proportion of variation in
119 community turnover accounted for by the model. The null deviance was 2223.6, and the
120 GDM deviance was 1262.2. The intercept value was 0.9. The most influential predictor was
121 Distance from low tide with a sum of I-spline coefficients of 1.8, with the strongest change
122 occurring at distances corresponding to the high tide line (Figure 1 A). This was followed by
123 Grain Size (sum of coefficients: 1.6), with the strongest change occurring between 100 and
124 400 µm (Figure 1 B). The third most influential factor was Geographic Distance (sum of
125 coefficients: 0.7), with a strong change in community turnover at distances between 0 and
126 100km, a less pronounced change between distances of 100 to 400 km, followed by a
127 stronger change up to 600 km (Figure 1 C). This was followed by Average Beach Slope
128 (sum of coefficients: 0.3), with community turnover linearly increasing from flat to steep

129 slopes (Figure 1 D), and Mean Surface Salinity (sum of coefficients: 0.2), which influenced
130 community turnover mostly between 30 and 31 ppm (Figure 1 E). Spring Tide Range (sum of
131 coefficients: 0.1) influenced community turnover mostly at higher ranges above 3.5 metres
132 (Figure 1 F). Mean Annual Temperature showed a sum of coefficient of 0.0 and did not
133 significantly influence community turnover.

134

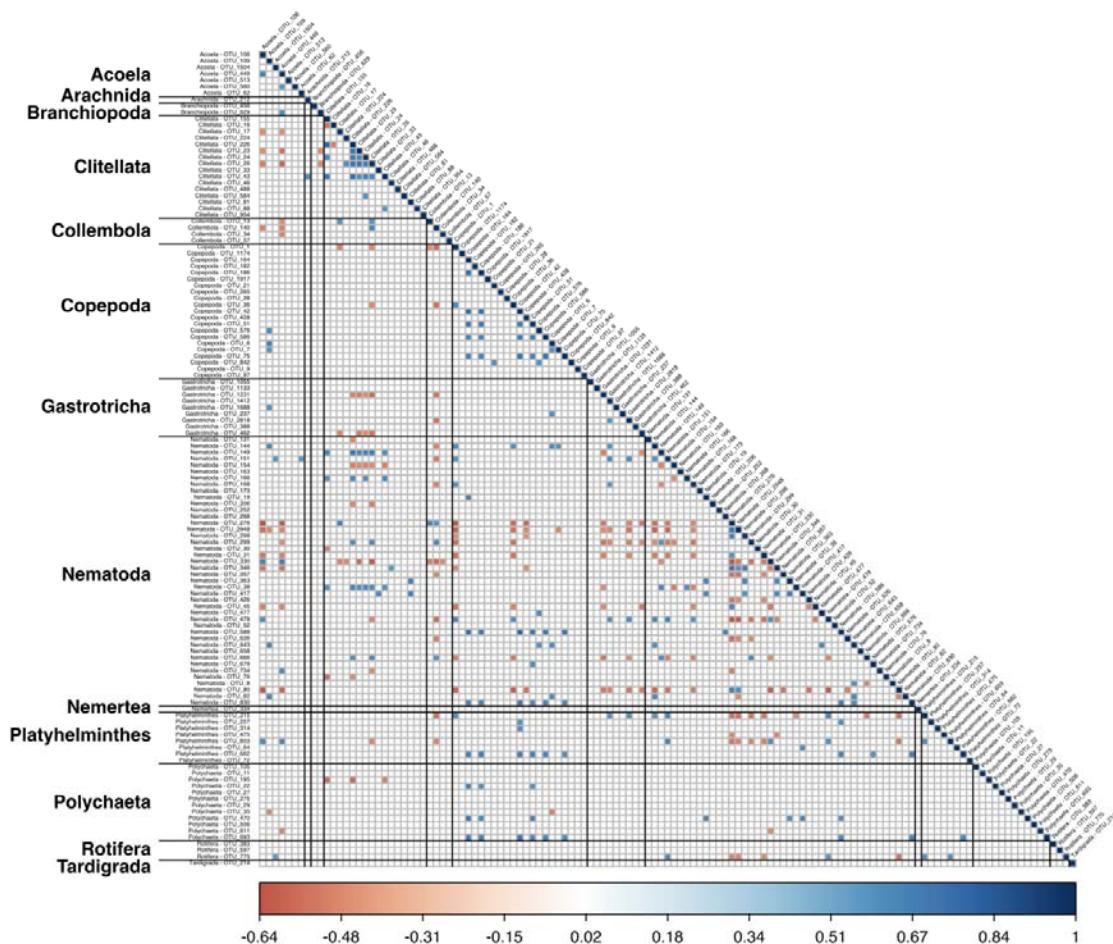

135 **Figure 1:** I-splines (partial ecological distance) from generalised dissimilarity modelling
136 (GDM). The slope of the partial ecological distance indicates the rate of compositional
137 turnover and how it changes with increasing variable values. A) Distance from Low Tide, B)
138 Sediment Grain Size, C) Geographic Distance, D) Average Beach Slope, E) Mean Surface
139 Salinity, F) Spring Tide Range.

140 **Scalable Joint Species Distribution Models**

141 The sJSDM model resulted in a log likelihood of -5470.78 and an R^2 value of 0.41.

142 **Estimated ecological niches**

143 The distance of the sampling site from the low tide level was the most influential factor on
144 OTU prevalence and inferred realised ecological niches. OTUs from Acoela, Branchiopoda,
145 Copepoda, Gastrotricha, Platyhelminthes, Polychaeta, Rotifera, and Tardigrada were more
146 prevalent closer to the low tide level, indicating a realised ecological niche in more marine
147 conditions. In contrast, OTUs from Arachnida, Clitellata, and Collembola showed higher
148 prevalence further away from low tide, indicating a realised ecological niche in more
149 terrestrial conditions. Nematoda OTUs had mixed responses, with some showing higher
150 prevalence in marine and others in more terrestrial conditions. Most OTUs exhibited a
151 negative relationship with increasing Beach Slope, although this effect was not significant in
152 most cases. Similarly, more OTUs showed a negative relationship with increasing Salinity.
153 Grain size, Spring Tide Range, and Mean Annual Temperature had mixed effects on OTU
154 prevalence, generally lacking significance (Figure 2).


155

156 **Figure 2:** Estimated ecological niches of meiofauna OTUs. Horizontal bars show the
 157 magnitudes, directions, and standard errors of the coefficients of each of the six
 158 environmental covariates for each meiofaunal OTU, sorted by meiofaunal group. All
 159 covariates were normalised before fitting. Colours indicate meiofaunal groups. Asterisks
 160 indicate significance of the effect .

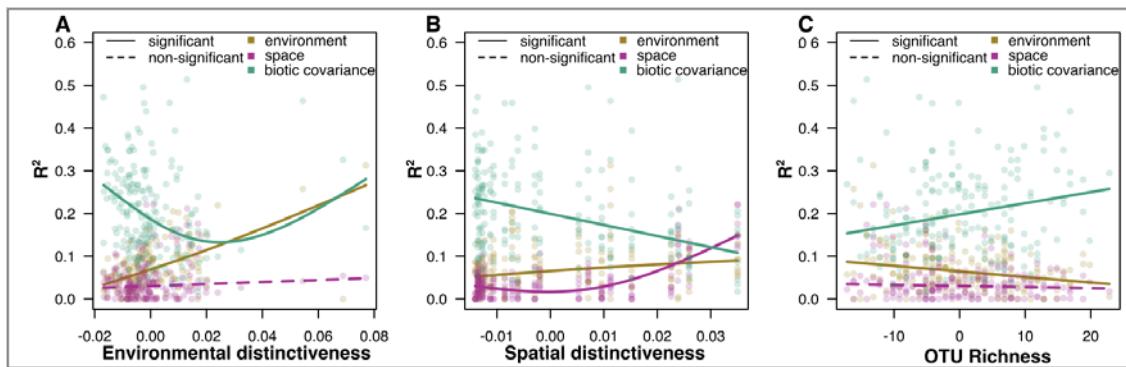
161 **Biotic associations**

162 Analyses of biotic associations focusing on the top 2.5% of positive and negative
 163 correlations revealed many associations between meiofaunal OTUs. For brevity, only the
 164 most obvious results are described here. For details, please see Figure 3. Clitellata OTUs
 165 showed mostly positive correlations with other Clitellata, negative correlations with Acoela

166 OTUs, and mixed correlations with Nematoda OTUs. Copepoda OTUs were mostly
167 positively correlated with other Copepoda, Polychaeta, and Platyhelminthes OTUs, and
168 showed mixed correlations with Nematoda OTUs. Nematoda OTUs showed both positive
169 and negative correlations within their group and most other meiofauna groups, but mostly
170 negative correlations with Gastrotricha OTUs (Figure 3).

171
172 **Figure 3:** Biotic associations of OTUs by meiofaunal group, filtered to the 2.5% most
173 negative and positive covariances. Colours indicate the magnitude of the correlation,
174 according to the scale bar, from -0.64 to +1.00.

175 **The role of environmental distinctiveness for community assembly**

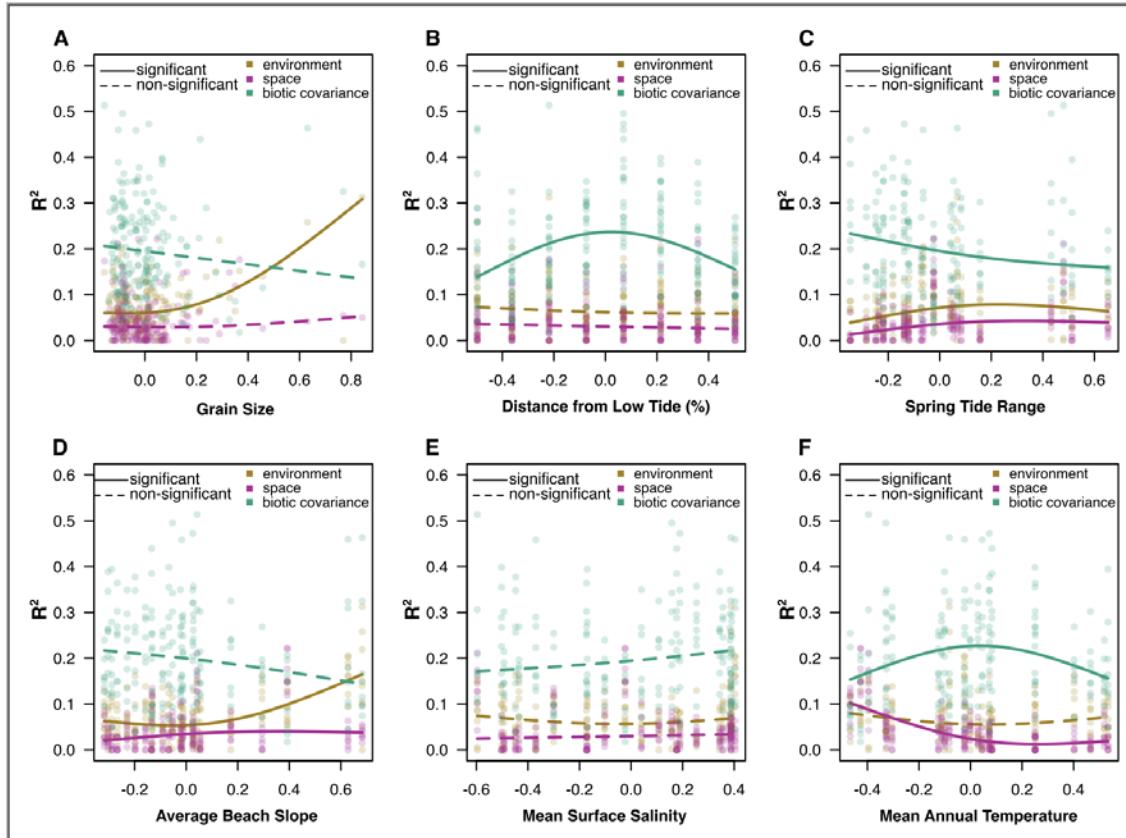

176 The JSMD analyses of drivers of community assembly showed that as the environmental
177 distinctiveness of sampling sites increased, the R^2 explained by the environmental
178 component rose significantly and linearly from low to high environmental distinctiveness,
179 indicating stronger species sorting due to environmental differences in sampling sites. The
180 biotic covariance component showed a strong non-linear response with increasing
181 environmental distinctiveness, dropping from low to medium levels, before increasing
182 towards high levels of environmental distinctiveness. This indicates that biotic interactions or
183 similar environmental preferences of meiofaunal OTUs are more important both at low and
184 at high levels of environmental distinctiveness of sampling sites (Figure 4 A).

185 **The role of spatial distinctiveness for community assembly**

186 With increasing spatial distinctiveness of sampling sites, the R^2 explained by the spatial
187 component increased significantly from medium to high levels, indicating stronger dispersal
188 barriers between sampling sites that are further apart. At the same time, the environmental
189 component also increased slightly with increasing spatial distinctiveness. The biotic
190 covariance component decreased significantly from low to high levels of spatial
191 distinctiveness (Figure 4 B).

192 **The role of OTU richness for community assembly**

193 With increasing OTU richness per sampling site, the R^2 explained by biotic covariance
194 showed an increase from low to high OTU richness, indicating stronger biotic associations of
195 OTUs. At the same time, the environmental component decreased significantly with
196 increasing OTU richness (Figure 4 C).



197
198 **Figure 4:** Correlation of the importance of assembly processes to environmental predictors.
199 Quantile regressions correlating the importance of the three assembly mechanisms
200 environment (yellow), space (purple), and biotic covariance (green), measured by the share
201 of absolute partial R^2 values, per sampling site against A) environmental distinctiveness, B)
202 spatial distinctiveness, C) OTU Richness. Significant effects ($p < 0.05$) are shown as
203 continuous lines, non-significant effects are shown as dashed lines.

204 **Influence of individual environmental covariates on community assembly**

205 The R^2 for the environmental component increased significantly ($p < 0.05$) with increasing
206 Grain Size, indicating that coarser sediments play an important role in meiofauna community
207 assembly (Figure 5A). With increasing Distance from Low Tide, only the biotic association
208 component showed a strong nonlinear relationship, peaking at intermediate distances from
209 low tide (Figure 5B). With increasing Spring Tide Range, we found a significant, but minor
210 increase in the R^2 value of the environmental component, particularly between low and
211 medium values. The spatial component also increased, but explained less than the
212 environmental component. The biotic association component declined significantly from low
213 to high Spring Tide Range values (Figure 5C). With increasing Beach Slope, the
214 environmental component increased significantly from intermediate to high values. The
215 spatial component showed a slight increase (Figure 5D). Mean Surface Salinity did not
216 significantly change the environmental, spatial or biotic covariance component (Figure 5E).

217 For the Mean Annual Temperature, we found a decrease in the spatial component from low
218 to intermediate levels of Annual Temperature. The biotic association component showed a
219 non-linear relationship with increasing temperature, with lowest values at low and high
220 temperatures and a peak at intermediate levels (Figure 5F).

221
222 **Figure 5:** Correlation of the importance of assembly processes to the six environmental
223 covariates. Quantile regressions correlating the importance of the three assembly
224 mechanisms environment (yellow), space (purple), and biotic covariance (green), measured
225 by the share of absolute partial R^2 values, per sampling site against (A) Grain Size, (B)
226 Distance from Low Tide, (C) Spring Tide Range, (D) Average Beach Slope, (E) Mean
227 Surface Salinity, (F) Mean Annual Temperature. Significant effects ($p < 0.05$) are shown as
228 continuous lines, non-significant effects are shown as dashed lines.

229 **Discussion**

230 We studied the processes shaping sandy beach meiofauna metacommunities and
231 hypothesised that species sorting is primarily driven by environmental conditions due to the
232 strong gradient from marine to terrestrial habitats on beaches, and to a lesser extent by
233 spatial factors and biotic interactions. We applied Generalised Dissimilarity Modeling (GDM)
234 to study the external structure of the beach meiofauna community, i.e., the community
235 turnover as a result of environmental and spatial factors, and Joint Species Distribution
236 Modeling (JSDM) to study the internal structure of the metacommunity, i.e., the
237 environmental, spatial, and biotic drivers of community assembly. Our results support that
238 species sorting is a key process in beach meiofauna community assembly, as both GDM

239 and JSBM analyses revealed that environmental factors are major drivers of community
240 turnover and assembly. This finding aligns with the species sorting aspect of metacommunity
241 theory and confirms common findings that meiofauna are strongly influenced by the physical
242 factors of their habitat^{1,28,32,33,61}.

243 **Community turnover**

244 The GDM results show that, in line with our expectations, the environment is the major driver
245 of community turnover in sandy beaches, with the Distance from Low Tide line being the
246 main factor. The strongest change in community turnover is found at a Distance from Low
247 Tide that corresponds to the high tide level, indicating that the transition from mostly marine
248 to mostly terrestrial conditions, which includes major changes in salinity, humidity, and
249 temperature, is the main driver of community turnover. This corresponds to previous findings
250 on beach invertebrate communities, which found a clear differentiation of communities from
251 supralittoral and intertidal areas of the beach⁶². The second most important environmental
252 factor was Sediment Grain Size, which is in line with previous studies that found major
253 impacts of grain size on meiofauna communities^{28,32,63}, as grain size affects habitat structure
254 by influencing, among others, interstitial space availability and sediment oxygenation.

255 The spatial factor, i.e., the distance between sampling sites, was the third most important
256 variable, showing that dispersal limitations play a role in beach meiofauna in the study
257 region. Previous studies on dispersal of meiofauna in marine systems found strong
258 differences between taxonomic groups^{64,65}, with higher local endemicity of e.g. Copepoda⁶⁶,
259 and less pronounced biogeographic structure for Nematoda⁶⁷. To our knowledge, while the
260 dispersal of intertidal meiofauna has been studied (e.g.^{68,69}), there is no such study for
261 supralittoral meiofauna, which would be important to understand beach meiofauna
262 communities holistically. The fourth important factor for community turnover was Beach
263 Slope, which reflects the morphodynamic conditions on a beach and, a factor known to be
264 important in shaping communities⁷⁰. In our study area, however, it seems that this factor is
265 less important, or its effects are overshadowed by other environmental factors, potentially
266 because most beaches in the study area are of an intermediate or dissipative type. These
267 differences might be more pronounced between reflective and dissipative beaches.

268 The remaining environmental factors, Mean Surface Salinity and Spring Tide Range, played
269 minor roles in driving community turnover. The strongest change in community turnover
270 attributed to salinity was found between low and medium salinity levels, which is in line with
271 findings showing that many meiofauna species are sensitive to changes in salinity^{71,72}.
272 Spring Tide Range, in contrast, influenced community turnover only at high Spring Tide
273 Range, indicating that the higher energy levels connected to higher Spring Tide Ranges are
274 not very influential in the study area, despite generally being regarded as an important factor
275 in beach ecology³⁵. Mean Annual Temperature did not influence community turnover in the
276 study area, potentially indicating that there are relatively homogeneous meteorological
277 conditions across the study area. However, temperature differences might play a role on a
278 smaller scale, e.g. due to different currents, beach geomorphology, influx of coastal
279 groundwater, or different sunlight reflection on beaches depending on grain size, seasonality
280 and exposure times⁷³.

281 **Community assembly processes**

282 The JSBM results revealed more complex patterns. Our results show that environmental
283 factors strongly influence community assembly, especially in sites with distinct environmental
284 conditions. This finding supports our hypothesis that species sorting is an important driver of
285 meiofauna community assembly, confirming the assumptions of Leibold et al.⁵². However,
286 we also observe that in samples from similar environmental conditions, biotic interactions
287 between meiofauna or similar environmental preferences play a more important role, while
288 increasing environmental differences filter species according to their realised ecological
289 niches. This underscores the importance of considering both biotic and abiotic factors when
290 studying beach meiofauna communities and their response to the environmental conditions.

291 Of the individual environmental variables, grain size emerged as the most influential factor
292 driving community assembly, consistent with the GDM results showing its strong impact on
293 community turnover. The optimum grain size for intertidal meiofauna in our study area,
294 where the environment is not a limiting factor for most meiofauna, appears to be at the lower
295 end of the spectrum. Since the median grain size in our dataset was 300 µm, this supports
296 the assumption that an optimum grain size for interstitial fauna, with an ideal balance of
297 interstitial space, water retention, oxygenation, and organic content retention, lies between
298 200 and 400 µm⁷⁰.
299

300 Unexpectedly, the importance of the environmental component in community assembly did
301 not increase with distance from the low tide line, despite being a primary driver of community
302 turnover in the GDM analyses, and also emerging as a major factor in the analysis of
303 realised ecological niche per OTU. Instead, the biotic association component was most
304 influential at intermediate distances from low tide, corresponding to the area of the high tide
305 line. This suggests that strong community turnover might result from the exclusion of taxa at
306 the marine-terrestrial intersection and the co-occurrence of meiofaunal species in these
307 distinct habitats, that might overshadow any environmental effects. A more detailed study of
308 within-beach diversity patterns, including a higher number of environmental variables
309 measured across the intertidal zone, such as pH, salinity, and organic content of the
310 sediment, might allow deeper insights of the drivers of the observed pattern.

311 We found that steeper slopes were more influential in defining community assembly, which
312 indicates that energy levels and habitat stability differ significantly between steep and less
313 steep beaches, thereby leading to increased species sorting. Beach Slope influences
314 community assembly due to strong morphodynamic influences, with steeper slopes serving
315 as stronger environmental filters for meiofauna^{1,28,70,74}, and the optimum for meiofauna is
316 thought to be found in intermediate conditions⁷⁰. We found that for Spring Tide Range, the
317 strongest change in explanatory power of the environmental component was found between
318 low and medium ranges, suggesting that the change in hydrodynamic forces between and
319 medium ranges is most important for filtering meiofauna.

320
321 Salinity did not significantly influence community assembly, even though the GDM analyses
322 indicated a minor influence on community turnover, potentially indicating that other
323 environmental factors overshadow the effect of salinity on community assembly. Other

324 studies found a strong influence of salinity on meiofauna^{72,75,76}, and we suggest that smaller
325 scale changes in salinity across the intertidal zone might be more influential in shaping
326 communities^{77,78}. Mean Annual Temperature mainly affected the biotic associations,
327 indicating more species co-occur at intermediate temperatures, which we interpret as
328 reflecting similar realised ecological niches and thereby higher co-occurrence. That the
329 spatial component was more important at low Annual Temperature seems plausible, as the
330 lowest temperatures are found in the northern range of our study area, which are also
331 furthest away from the other sampling sites.

332

333 **Spatial factors and biotic association**

334 While species sorting was the dominant factor, spatial factors also played a significant role in
335 community assembly and indicated dispersal limitations with greater distances between
336 sampling sites. The observed spatial structure suggests that while meiofauna can disperse
337 across beaches, the dispersal is insufficient to entirely homogenise communities over the
338 approximately 650 km of coastline included in our study. This finding further challenges the
339 traditional view that meiofauna have broad geographic distributions and underscores the
340 importance of considering dispersal limitations in future meiofauna studies^{39,79}. However,
341 our results also indicated an interaction between spatial and environmental factors, with
342 spatially unique sites being environmentally more distinct. This is plausible, as some
343 sampling sites towards the northern limit of our study area were also among the sites with
344 the coarsest grain size and steepest Beach Slope, while the southernmost sampling sites
345 were among the ones with the shallowest Beach Slope. Since this is inevitable in natural
346 ecosystems, we highlight the need for running controlled experiments to understand the
347 interplay between local and regional processes and environment, e.g., by running controlled
348 field experiments^{80,81} in different geographic areas to gain a better understanding of the
349 interaction of spatial and environmental factors.

350

351 Our JSBM results highlighted that biotic associations play an important role in community
352 assembly, especially in environmentally similar sites. We found that taxa known to occur in
353 the same habitat exhibit the strongest co-occurrence, such as Copepoda, Platyhelminthes,
354 and Polychaeta, which are primarily marine taxa. The decrease in biotic associations with
355 increasing environmental distinctiveness supports the idea that species interactions in beach
356 ecosystems are more pronounced in homogeneous environments⁸², where niche
357 differentiation and competitive exclusion can occur. However, we note that without sufficient
358 information on the ecological traits of most meiofaunal species, the nature of these
359 interactions remains speculative. Moreover, biotic associations in JSBM can also arise from
missing environmental predictors⁸³.

360

Implications for Future Research

361

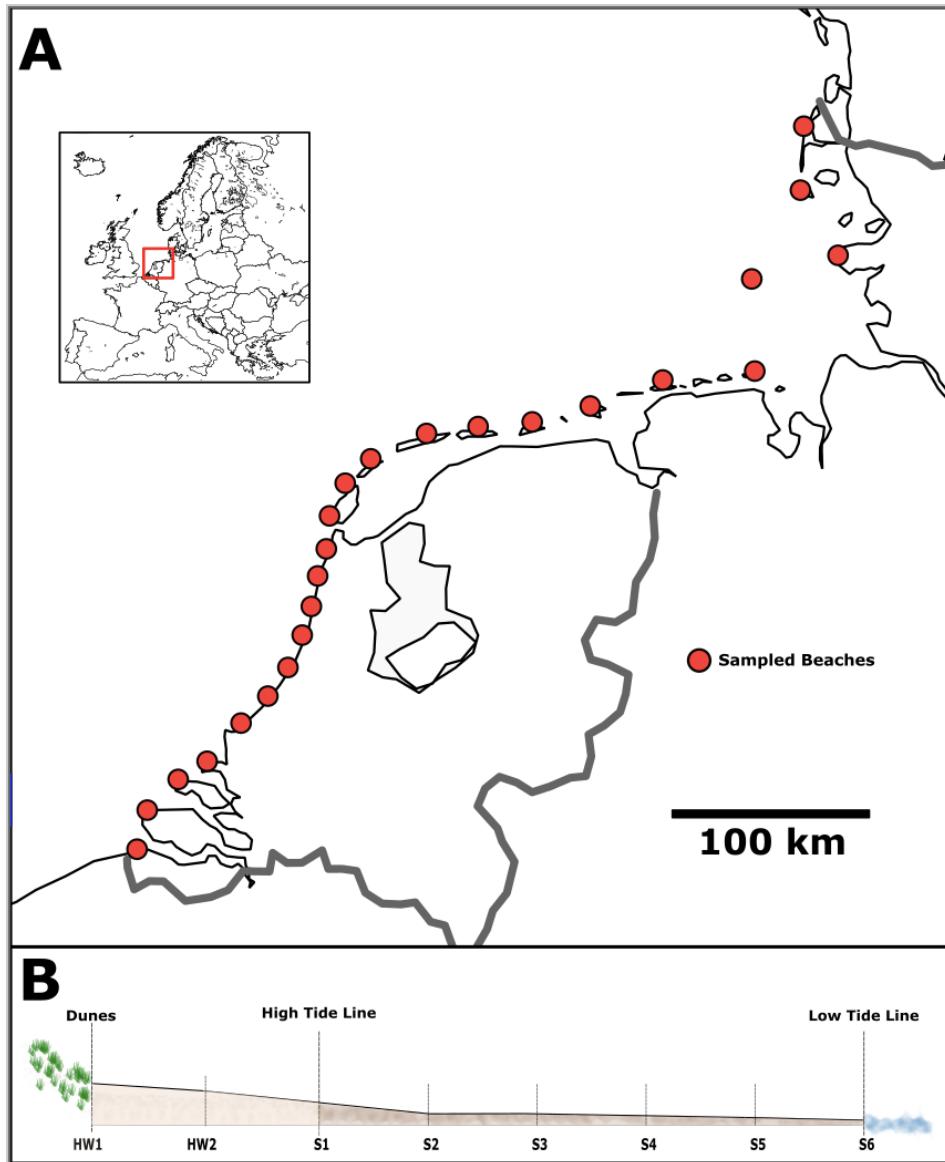
362 Our study provides deeper insights into the realised ecological niches of sandy beach
363 meiofauna and the factors shaping their communities. Future research should aim to
364 investigate a broad range of meiofaunal taxa to understand their traits, as a combination of
365 morphological, physiological, and behavioural traits will help link traits with the ecological
366 roles of species. Previous studies on selected taxa have highlighted the importance of biotic
interactions among meiofauna species^{14,47,48}. Metabarcoding and JSBM analyses facilitate

367 the study of meiofauna niches through high-throughput sequencing, but more studies on
368 selected species are necessary to verify results and understand interactions. Specifically,
369 research should focus on how factors such as body size, feeding type, reproductive strategy,
370 and the interaction of species and traits influence meiofauna distribution along the marine-to-
371 terrestrial gradient and across large geographic scales.

372 Controlled field and mesocosm experiments are needed to isolate specific variables and test
373 the relationships between environmental and spatial factors in community assembly.
374 Although replicating natural beach conditions while manipulating variables like sediment
375 type, salinity, and slope is challenging due to the dynamic nature of littoral ecosystems, such
376 experiments can validate findings and enhance understanding of meiofauna responses to
377 different environmental conditions ⁸⁴⁻⁸⁷. For example, experiments with selected pairs of
378 species or communities could test the hypothesis that species interactions are more
379 significant near the high tide line than in other zones due to unique environmental conditions,
380 but could also test whether interactions are more important under harsher environmental
381 conditions and increasing stress, as has been suggested for sandy beach macrofauna ⁸⁸.

382 Moreover, more studies on dispersal limitations in various meiofaunal groups are needed to
383 understand dispersal mechanisms and colonisation dynamics. Identifying the factors that
384 limit dispersal is crucial for informing conservation strategies. Hypotheses regarding the
385 significance of geographic and environmental barriers in limiting meiofauna dispersal could
386 be tested by tracking dispersal events of specific species over varying geographic scales
387 ^{79,89}. For example, providing specific habitat conditions at different intervals from source
388 populations ⁴⁶ and using connected micro-or mesocosms separated by areas with potentially
389 adverse or facilitating environmental conditions could test these ideas. Finally, molecular
390 methods enable the rapid analysis of hundreds of samples. While they need rigorous testing
391 and verification ⁹⁰⁻⁹², they are powerful tools in combination with statistical methods such as
392 JSDM, facilitating analyses of larger and more complex datasets. For beach ecosystems and
393 meiofauna communities, this enables more comprehensive studies of biodiversity across the
394 entire beach ecosystem, and could help determine the often hidden biodiversity of beach
395 animals and their ecology, but can also help address ecological questions such as to which
396 extent beaches can be considered closed or semi-closed ecosystems, as suggested by
397 McLachlan et al. ⁹³.

398 **Conclusion**


399 Our study supports the hypothesis that beach meiofauna metacommunities are primarily
400 shaped by environmental conditions, with spatial effects and biotic associations also playing
401 important roles. The findings deepen the ecological understanding of processes shaping
402 these metacommunities and highlight the need for further research on species interactions
403 and functional traits driving assembly processes. By integrating high-throughput sequencing
404 data with statistical modeling, JSDM analyses offer a framework to understand complex
405 relationships between environmental variables, spatial factors, and biotic interactions,
406 providing insights into biodiversity in sandy beach ecosystems and beyond.

407 **Material & Methods**

408 **Sampling and environmental variable measurement**

409 We collected meiofauna from 24 sea-facing, unsheltered sandy beaches of the southern
410 North Sea, covering 650 km of coastline between Zeeland (southern Netherlands) and Sylt
411 (northern Germany). Sampling took place during the summers of 2021 and 2022 (See
412 Supplementary Table 1 for coordinates and Fig. 6A for a map of sampling sites).

413 Samples were taken during daytime and at maximum low tide. We sampled along three
414 parallel transects per beach, each with eight sampling sites. The first sample was taken at
415 the foot of the dunes, the second sample halfway between the dunes and the high-tide line,
416 and six samples were equidistantly spaced from the high-tide line to the low-tide line (see
417 Fig. 6B). Sampling followed established protocols for the intertidal zone of sandy beaches,
418 including the measurement of beach width from high tide line to low tide line, measuring of
419 the beach slope (in degrees), wave period (in seconds) and breaker height (in metres)³⁵.
420 The tidal range was extracted from online databases (www.tide-forecast.com), and we
421 calculated the Relative Tide Range (RTR) index for each beach³⁵. Furthermore, we
422 assessed the beach state (reflective, intermediate, dissipative)¹. At each sampling site, we
423 collected two sediment cores using sterile plastic syringes: One core of 5 cm diameter and a
424 length of 10 cm (volume ≈200 ml), and a second core of 1 cm diameter and a length of 10
425 cm (volume ≈8 ml). The small sediment core was immediately transferred to a 50 ml Falcon
426 tube and the large sediment core was transferred to a sterile 1l plastic bottle. We extracted
427 meiofauna from the large sediment core (≈200 ml) directly on the beach, using the MgCl₂
428 decantation method⁹⁴. We added 500 ml of isosmotic MgCl₂ solution to the sediment, which
429 anaesthetizes meiofauna and allows their separation from the sediment by decantation. After
430 5 minutes, the sediment in the MgCl₂ solution was carefully swirled ten times, and the
431 supernatant containing meiofauna was decanted through a 1 mm and 41 µm sieve cascade,
432 as commonly done in beach meiofauna studies^{95–97}. The meiofauna fraction retained on the
433 41 µm sieve was rinsed into sterile 15 ml Falcon tubes and preserved with 10 ml 96% EtOH.
434 All sampling equipment was thoroughly rinsed with ethanol after taking each sample to
435 prevent contamination. All samples were transported back to the Naturalis Biodiversity
436 Centre laboratory and stored at -20 °C until further processing. Sediment from the smaller
437 core was dried and the grain size was measured on a LS13320 Particle Size Analyzer
438 (Beckman-Coulter, USA) for the eight samples of the central transect per beach.

439
440 **Figure 6.** A) Map of the study area showing the 24 sampled beaches. The small map
441 indicates the location of the study area in Europe. B) Schematic view of a sampling transect
442 across a beach.

443 **DNA extraction, amplification and sequencing**

444 We extracted DNA from dried meiofauna samples after evaporating the ethanol at 50 °C
445 overnight in a sterile warming cabinet and transferring the dried samples to 2 ml Eppendorf
446 tubes. DNA extraction was performed using the Macherey Nagel NucleoSpin Soil kit
447 (Macherey Nagel, Düren, Germany) following the standard protocol including bead beating,
448 but with an additional overnight Proteinase K digestion step (50 µl 250 µg/ml ProtK, Thermo
449 Fisher Scientific, Waltham, USA) added to the lysis buffer provided with the kit to improve
450 cell lysis, as done in previous studies on meiofauna^{95,98}.

451 For community metabarcoding, we amplified meiofauna DNA using a two-step PCR protocol
452 with the widely-used LerayXT primers targeting a 313 base pair region of the mitochondrial
453 cytochrome c oxidase I (COI) gene of a broad range of Eukaryota^{99,100}. The first PCR
454 reaction contained 11.7 µl mQ water, 2 µl Qiagen CL buffer (10x; Qiagen, Hilden, Germany),
455 0.4 µl MgCl₂ (25 mM; Qiagen), 0.8 µl Bovine Serum Albumin (BSA, 10 mg/ml), 0.4 µl dNTPs
456 (2.5 mM), 0.2 µl Qiagen Taq (5U/µl), 1 µl of each nextera-tailed primer (10 pMol/µl), and 2.5
457 µl of DNA template. PCR amplification involved an initial denaturation at 96 °C for 3 minutes,
458 followed by 30 cycles of denaturation for 15 seconds at 96 °C, annealing at 50 °C for 30
459 seconds, and extension for 40 seconds at 72 °C, concluding with a final extension at 72 °C
460 for 5 minutes. We processed six negative controls (containing Milli-Q water instead of DNA
461 template; Milli-Q, Merck, Kenilworth, USA) alongside the samples to check for potential
462 contamination.

463 After the first PCR, samples were cleaned with AMPure beads (Beckman Coulter, Brea,
464 United States) at a 0.9:1 ratio according to the protocol to remove short fragments and
465 primer dimers. The second PCR involved amplification with individually tagged primers,
466 following the same protocol as above and using the PCR product from the first PCR as the
467 template, but reducing the PCR cycle number to 10. We measured DNA concentrations
468 using the FragmentAnalyzer (Agilent Technologies, Santa Clara, CA, USA) with the High
469 Sensitivity Kit and pooled samples equimolarly. The final library was cleaned with AMPure
470 beads as described above and sent for sequencing on three Illumina MiSeq runs (2 × 300 bp
471 read length) at Baseclear (Leiden, The Netherlands).

472 **Bioinformatic processing of community metabarcoding data**

473 We processed the raw metabarcoding reads using APSCALE¹⁰¹ with the following settings:
474 maximum differences in percentage: 20; minimum overlap: 50, minimum sequence length:
475 310 bp; maximum read length: 316 bp, minimum size to pool: 20 sequences. Sequences
476 were clustered into Operational Taxonomic Units (OTUs) with a sequence similarity
477 threshold of 97%. To account for potential low-level contamination or tag jumping common
478 on Illumina platforms¹⁰², we removed OTUs with an abundance of <0.03% of reads per
479 sample, following a common subsetting approach in metabarcoding studies^{103,104}. We
480 removed 11 samples with less than 3000 reads per sample during bioinformatic processing,
481 retaining samples for which 1 read corresponds to >0.03% of the total reads number. We
482 performed taxonomic assignment using NCBI GenBank expanded with meiofauna COI
483 barcodes generated as part of associated taxonomic workshops in Leiden²⁶. Taxonomic
484 ranks were assigned to OTUs using established identity thresholds: >97%: species, >95%:
485 genus, >90%: family, >85% order¹⁰⁵. Taxonomic annotation of the reads present in the six
486 negative controls (5,211 reads total) showed that only two OTUs (OTU222, *Navicula*,
487 diatom, with 2,728 reads; and OTU219, *Homo sapiens*, with 2,653 reads) were dominant in
488 negative controls, and these OTUs were subsequently excluded from the dataset. Further,
489 following¹⁰⁶, a strict read filtering was applied, by subtracting the sum of reads per OTU
490 present in negative controls from the reads per OTU in each sample. Merging the three
491 biological replicates per tidal level and beach resulted in 190 composite samples.

492 Subsequently, OTUs that were assigned with less than 85% identity to a reference or
493 identified as non-meiofauna taxa were excluded from further analyses. We merged the three

494 replicates per tidal level per beach into one composite sample to account for potential
495 variability within tidal levels, resulting in 190 composite samples. Following this, we further
496 retained only OTUs that were present in at least 10 samples, following the recommendation
497 of Cai et al.¹⁰⁷, since sjSDM can be sensitive to false negative occurrences.
498

499 **Environmental variable selection and Generalised Dissimilarity Modelling**
500 We measured the following environmental variables: Grain Size (average per sample, in
501 μm), Distance from Low Tide Level (in percentage, with low tide = 0 and the sample closest
502 to the dunes = 100 percent), Beach Width (in metres), Salinity of the Surface Water (in ppm),
503 Spring Tide Range (in metres), Average Beach Slope (in degrees). Further, we obtained the
504 following variables from Bio-ORACLE v2 database containing marine data for modelling¹⁰⁸:
505 Mean Surface Water Temperature ($^{\circ}\text{C}$), Mean Surface Phosphate (mmol m^{-3}), Mean
506 Surface Nitrate (mmol m^{-3}), Surface Dissolved Oxygen (mmol m^{-3}), Mean Surface Salinity
507 (PSS). We also downloaded bioclimatic variables from the WorldClim 2 database¹⁰⁹, which
508 contains data for terrestrial environments: Annual Mean Temperature ($^{\circ}\text{C}$) and Annual
509 Precipitation (mm). All variables were extracted from the data layers using QGIS v. 3.36
510 (<http://qgis.org/>). We calculated pairwise correlation of the variables using the cor function in
511 R and removed variables that showed a correlation coefficient > 0.7 . Following this, the
512 following variables were left: Grain size, Distance from Low Tide, Beach width, Spring Tide
513 Range, Average Beach Slope, Mean Primary Production, Mean Surface Salinity, Average
514 Annual Temperature. We then used the collinearity diagnostic variance inflation factor,
515 implemented in the 'vifstep' function of the R package usdm¹¹⁰ with a threshold of 0.5, which
516 excluded the variables Mean Primary Production and Beach Width. The retained variables,
517 which all showed a VIF score < 2 , were Grain Size, Distance from Low Tide, Spring Tide
518 Range, Average Beach Slope, Mean Surface Salinity, and Average Annual Temperature.
519 We used the R package 'gdm'¹¹¹ to calculate the GDM based on a Jaccard distance matrix
520 of community similarity. The environmental variables were provided as predictors, and
521 geography, based on a distance matrix, was included in the calculations. The GDM plots
522 were generated with the plot function from the gdm package.
523

524 **Scalable joint species distribution models (sjSDM)**

525 We fitted the sjSDM model using the 'sjsdm' package v.1.0.5⁵³ in R. We modelled the
526 spatial relationships between sites as a polynomial of second order of the scaled coordinates
527 (trend surface model)^{112,113}. All OTUs were converted to presence/absence and fit with a
528 binomial model with probit link. We modelled the responses to environmental gradients as
529 linear responses, set the learning rate scheduler to 10, the reduce factor to 0.9 (optimizer
530 parameters that help with the convergence), and ran the model with 500 iterations. We
531 visualised the estimated effects of the six environmental covariables on OTU prevalence
532 using the model plot function in the sjsdm package, with OTUs coloured and sorted by
533 meiofaunal groups. Further, we plotted the biotic associations of OTUs (the estimated
534 variance-covariance matrix, normalised to a correlation matrix), sorted by meiofaunal
535 groups, by extracting the correlation coefficients per pair of OTUs from the sjSDM model
536 output and calculating pairwise correlation plots after filtering to the 2.5% most negative and
537 positive values. We used variation partitioning to calculate the importance of the three
538 assembly processes "environment", "space", and "biotic association" per sampling site and
539 per OTU, the internal structure⁵², and we regressed the individual sample R^2 values for
540 "environment", "space", and "biotic covariance" against the environmental distinctiveness of
541 samples using quantile regression (50% quantile) because of the non-normal distribution of

542 the R^2 values and potential outliers. We also tested the same processes against spatial
543 distinctiveness of samples, and also against OTU richness per sample. Furthermore, we
544 tested each environmental covariate individually.

545

546 **References**

547 1. McLachlan, A. & Defeo, O. *The Ecology of Sandy Shores*. (Academic Press, 2017).

548 2. Threats to sandy beach ecosystems: A review. *Estuar. Coast. Shelf Sci.* **81**, 1–12
549 (2009).

550 3. Schlacher, T. A., Maslo, B. & de Schipper, M. A. Global Coasts: A Baroque
551 Embarrassment of Riches. *Coasts* **2**, 278–301 (2022).

552 4. Gonçalves, S. C. & Ferreira, S. M. F. *Sandy Beaches as Endangered Ecosystems: Environmental Problems, Possible Assessment and Management Solutions*. (CRC
553 Press, 2022).

554 5. Schlacher, T. A. *et al.* Sandy beaches at the brink. *Divers. Distrib.* **13**, 556–560 (2007).

555 6. Defeo, O., McLachlan, A., Armitage, D., Elliott, M. & Pittman, J. Sandy beach social–
556 ecological systems at risk: regime shifts, collapses, and governance challenges. *Front.
557 Ecol. Environ.* **19**, 564–573 (2021).

558 7. Lercari, D. Sandy beaches: Publication features, thematic areas and collaborative
559 networks between 2009 and 2019. *Estuar. Coast. Shelf Sci.* **281**, 108211 (2023).

560 8. Costa, L. L., Zalmon, I. R., Fanini, L. & Barboza, C. A. de M. Editorial: Advances in
561 sandy beach ecology during the Anthropocene. *Front. Mar. Sci.* **10**, (2024).

562 9. Armonies, W. & Reise, K. Faunal diversity across a sandy shore. *Mar. Ecol. Prog. Ser.*
563 **196**, 49–57 (2000).

564 10. Clarisse, O., Du Preez D R D, C. A. P. & Campbell, E. E. Surf zone diatoms: A review of
565 the drivers, patterns and role in sandy beaches food chains. *Estuar. Coast. Shelf Sci.*
566 **150**, 24–35 (2014).

567 11. Laurino, I. R., Checon, H. H., Corte, G. N. & Turra, A. Does coastal armoring affect
568 biodiversity and its functional composition on sandy beaches? *Mar. Environ. Res.* **181**,

570 105760 (2022).

571 12. Giere, O. *Meiobenthology: The Microscopic Fauna in Aquatic Sediments*. (Springer

572 Science & Business Media, 2013).

573 13. Menn, I. Beach morphology and food web structure: comparison of an eroding and an

574 accreting sandy shore in the North Sea. *Helgol. Mar. Res.* **56**, 177–189 (2002).

575 14. Maria, T. F., Vanaverbeke, J., Esteves, A. M., De Troch, M. & Vanreusel, A. The

576 importance of biological interactions for the vertical distribution of nematodes in a

577 temperate ultra-dissipative sandy beach. *Estuar. Coast. Shelf Sci.* **97**, 114–126 (2012).

578 15. Schratzberger, M. & Ingels, J. Meiofauna matters: The roles of meiofauna in benthic

579 ecosystems. *J. Exp. Mar. Bio. Ecol.* **502**, 12–25 (2018).

580 16. van Der Heijden L, H. *et al.* Quantitative food web modeling unravels the importance of

581 the microphytobenthos-meiofauna pathway for a high trophic transfer by meiofauna in

582 soft-bottom intertidal food webs. *Ecol. Modell.* **430**, 109129 (2020).

583 17. Kotwicki, L., Troch, M. D., Urban-Malinga, B., Gheskire, T. & Węsławski, J. M.

584 Horizontal and vertical distribution of meiofauna on sandy beaches of the North Sea

585 (The Netherlands, Belgium, France). *Helgol. Mar. Res.* **59**, 255–264 (2005).

586 18. Albuquerque, E. F., Pinto, A. P. B., Perez, A. D. de Q. & Veloso, V. G. Spatial and

587 temporal changes in interstitial meiofauna on a sandy ocean beach of South America.

588 *Brazil. J. Oceanogr.* **55**, 121–131 (2007).

589 19. Zeppilli, D. *et al.* Is the meiofauna a good indicator for climate change and

590 anthropogenic impacts? *Mar. Biodivers.* **45**, 505–535 (2015).

591 20. Giere, O. & Schratzberger, M. *New Horizons in Meiobenthos Research: Profiles,*

592 *Patterns and Potentials*. (Springer Nature, 2023).

593 21. Leasi, F., Sevigny, J. L. & Hassett, B. T. Meiofauna as a valuable bioindicator of climate

594 change in the polar regions. *Ecol. Indic.* **121**, 107133 (2021).

595 22. Schmidt-Rhaesa, A. *Guide to the Identification of Marine Meiofauna*. (Verlag Dr.

596 Friedrich Pfeil, 2020).

597 23. The use of metabarcoding for meiofauna ecological patterns assessment. *Mar. Environ.*

598 *Res.* **140**, 160–168 (2018).

599 24. Gielings, R. *et al.* DNA Metabarcoding Methods for the Study of Marine Benthic
600 Meiofauna: A Review. *Front. Mar. Sci.* **8**, (2021).

601 25. Fonseca, G., Fontaneto, D. & Di Domenico, M. Addressing biodiversity shortfalls in
602 meiofauna. *J. Exp. Mar. Bio. Ecol.* **502**, 26–38 (2018).

603 26. Macher, J.-N. *et al.* Enhancing metabarcoding efficiency and ecological insights through
604 integrated taxonomy and DNA reference barcoding: a case study on beach meiofauna.
605 *bioRxiv* 2024.04.01.587521 (2024) doi:10.1101/2024.04.01.587521.

606 27. Macher, J.-N. *et al.* Mitochondrial cytochrome c oxidase subunit I (COI) metabarcoding
607 of Foraminifera communities using taxon-specific primers. *PeerJ* **10**, e13952 (2022).

608 28. Germán Rodríguez, J. Community structure of intertidal meiofauna along a gradient of
609 morphodynamic states on an exposed North Sea beach. *Sarsia* (2007)
610 doi:10.1080/00364820310003307.

611 29. Maria, T. F., Vanaverbeke, J., Gingold, R., Esteves, A. M. & Vanreusel, A. Tidal
612 exposure or microhabitats: what determines sandy-beach nematode zonation? a case
613 study of a macrotidal ridge-and-runnel sandy beach in Belgium. *Marine Ecology* **34**,
614 (2012).

615 30. Armonies, W. Platyhelminth fauna of the Island of Sylt: a meta-analysis of distributional
616 patterns and description of 19 new species. *Mar. Biodivers.* **53**, 17 (2023).

617 31. Hulings, N. C. & Gray, J. S. Physical factors controlling abundance of meiofauna on tidal
618 and atidal beaches. *Mar. Biol.* **34**, 77–83 (1976).

619 32. Rodríguez, J. G., López, J. & Jaramill, E. Community structure of the intertidal
620 meiofauna along a gradient of morphodynamic sandy beach types in southern Chile.
621 http://rchn.biologiachile.cl/pdfs/2001/4/Rodriguez_et_al_2001.pdf.

622 33. Rodríguez, J. G., Lastra, M. & López, J. Meiofauna distribution along a gradient of
623 sandy beaches in northern Spain. *Estuar. Coast. Shelf Sci.* **58**, 63–69 (2003).

624 34. Kotwicki, L., Deidun, A., Grzelak, K. & Gianni, F. A preliminary comparative assessment
625 of the meiofaunal communities of Maltese pocket sandy beaches. *Estuar. Coast. Shelf*

626 *Sci.* **150**, 111–119 (2014).

627 35. McLachlan, A., Defeo, O. & Short, A. D. Characterising sandy beaches into major types
628 and states: Implications for ecologists and managers. *Estuar. Coast. Shelf Sci.* **215**,
629 152–160 (2018).

630 36. McLachlan, A. Studies on the psammolittoral meiofauna of Algoa Bay, South Africa. II.
631 The distribution, composition and biomass of the meiofauna and macrofauna. *Afr. Zool.*
632 doi:10.10520/aja00445096_2018.

633 37. Yamanaka, T., Raffaelli, D. & White, P. C. L. Physical determinants of intertidal
634 communities on dissipative beaches: Implications of sea-level rise. *Estuar. Coast. Shelf*
635 *Sci.* **88**, 267–278 (2010).

636 38. Derycke, S. *et al.* Phylogeography of the *Rhabditis* (*Pellioditis*) marina species complex:
637 evidence for long-distance dispersal, and for range expansions and restricted gene flow
638 in the northeast Atlantic. *Mol. Ecol.* **17**, 3306–3322 (2008).

639 39. Cerca, J., Purschke, G. & Struck, T. H. Marine connectivity dynamics: clarifying
640 cosmopolitan distributions of marine interstitial invertebrates and the meiofauna
641 paradox. *Mar. Biol.* **165**, 123 (2018).

642 40. Worsaae, K., Kerbl, A., Vang, Á. & Gonzalez, B. C. Broad North Atlantic distribution of a
643 meiobenthic annelid - against all odds. *Sci. Rep.* **9**, 15497 (2019).

644 41. Jörger, K. M., Norenburg, J. L., Wilson, N. G. & Schrödl, M. Barcoding against a
645 paradox? Combined molecular species delineations reveal multiple cryptic lineages in
646 elusive meiofaunal sea slugs. *BMC Evol. Biol.* **12**, 245 (2012).

647 42. Derycke, S. *et al.* Seasonal dynamics of population genetic structure in cryptic taxa of
648 the *Pellioditis* marina complex (Nematoda: Rhabditida). *Genetica* **128**, 307–321 (2006).

649 43. Fonseca, V. G. *et al.* Metagenetic analysis of patterns of distribution and diversity of
650 marine meiobenthic eukaryotes. *Glob. Ecol. Biogeogr.* **23**, 1293–1302 (2014).

651 44. Gingold, R., Ibarra-Obando, S. E. & Rocha-Olivares, A. Spatial aggregation patterns of
652 free-living marine nematodes in contrasting sandy beach micro-habitats. *J. Mar. Biol.*
653 *Assoc. U. K.* **91**, 615–622 (2011).

654 45. De Meester, N. *et al.* Active and species-specific dispersal behaviour in a marine
655 nematode cryptic species complex. *Mar. Ecol. Prog. Ser.* **600**, 71–83 (2018).

656 46. Derycke, S., Van Vynckt, R., Vanoverbeke, J., Vincx, M. & Moens, T. Colonization
657 patterns of Nematoda on decomposing algae in the estuarine environment: Community
658 assembly and genetic structure of the dominant species *Pellioditis marina*. *Limnol.*
659 *Oceanogr.* **52**, 992–1001 (2007).

660 47. Maria, T. F. *et al.* Is the vertical distribution of meiofauna similar in two contrasting
661 microhabitats? A case study of a macrotidal sandy beach. *J. Exp. Mar. Bio. Ecol.* **502**,
662 39–51 (2018).

663 48. Maghsoud, H., Weiss, A., Smith, J. P. S., 3rd, Litvaitis, M. K. & Fegley, S. R. Diagnostic
664 PCR can be used to illuminate meiofaunal diets and trophic relationships. *Invertebr.*
665 *Biol.* **133**, 121–127 (2014).

666 49. Leibold, M. A. *et al.* The metacommunity concept: a framework for multi-scale
667 community ecology. *Ecol. Lett.* **7**, 601–613 (2004).

668 50. Gansfort, B., Fontaneto, D. & Zhai, M. Meiofauna as a model to test paradigms of
669 ecological metacommunity theory. *Hydrobiologia* **847**, 2645–2663 (2020).

670 51. Martínez García, A. *et al.* Fundamental questions in meiofauna—how small but
671 ubiquitous animals can help to better understand Nature. *EcoEvoRxiv* (2023)
672 doi:10.32942/x2wp43.

673 52. Leibold, M. A. *et al.* The internal structure of metacommunities. *Oikos* (2022)
674 doi:10.1111/oik.08618.

675 53. Pichler, M. & Hartig, F. A new joint species distribution model for faster and more
676 accurate inference of species associations from big community data. *Methods Ecol.*
677 *Evol.* **12**, 2159–2173 (2021).

678 54. Ovaskainen, O., Hottola, J. & Siitonen, J. Modeling species co-occurrence by
679 multivariate logistic regression generates new hypotheses on fungal interactions.
680 *Ecology* **91**, 2514–2521 (2010).

681 55. Ovaskainen, O. & Abrego, N. *Joint Species Distribution Modelling: With Applications in*

682 R. (Cambridge University Press, 2020).

683 56. Tikhonov, G., Abrego, N., Dunson, D. & Ovaskainen, O. Using joint species distribution
684 models for evaluating how species-to-species associations depend on the
685 environmental context. *Methods in Ecology and Evolution* (2017) doi:10.1111/2041-
686 210X.12723.

687 57. Tikhonov, G. *et al.* Computationally efficient joint species distribution modeling of big
688 spatial data. *Ecology* **101**, e02929 (2020).

689 58. Seaton, F. M. *et al.* A diversity of diversities: Do complex environmental effects underpin
690 associations between below-ground and above-ground taxa? *J. Ecol.* (2024)
691 doi:10.1111/1365-2745.14324.

692 59. Cai, W. *et al.* Assembly processes inferred from eDNA surveys of a pond
693 metacommunity are consistent with known species ecologies. *bioRxiv*
694 2023.12.12.571176 (2024) doi:10.1101/2023.12.12.571176.

695 60. Hartig, F. *et al.* Novel community data in ecology—properties and prospects. *Trends Ecol.
696 Evol.* **39**, 280–293 (2024).

697 61. Di Domenico, M., da Cunha Lana, P. & Garraffoni, A. R. S. Distribution patterns of
698 interstitial polychaetes in sandy beaches of southern Brazil. *Mar. Ecol.* **30**, 47–62
699 (2009).

700 62. Costa, L. L., Soares-Gomes, A. & Zalmon, I. R. Sandy beach heterogeneity: intertidal
701 and supralittoral communities. in *Sandy beaches as endangered ecosystems* 1–25
702 (CRC Press, 2022).

703 63. Fegley, S. R. *et al.* Nourished, Exposed Beaches Exhibit Altered Sediment Structure
704 and Meiofaunal Communities. *Diversity* **12**, (2020).

705 64. Vanreusel, A., Arbizu, P. M. & Yasuhara, M. Marine Meiofauna Diversity and
706 Biogeography—Paradigms and Challenges. *New Horizons in Meiobenthos Research*
707 121–151 (2023).

708 65. Curini-Galletti, M. *et al.* Patterns of diversity in soft-bodied meiofauna: dispersal ability
709 and body size matter. *PLoS One* **7**, e33801 (2012).

710 66. Azovsky, A. I., Chertoprud, E. S., Garlitska, L. A., Mazei, Y. A. & Tikhonenkov, D. V.

711 Does size really matter in biogeography? Patterns and drivers of global distribution of

712 marine micro- and meiofauna. *J. Biogeogr.* **47**, 1180–1192 (2020).

713 67. Hillebrand, H. Strength, slope and variability of marine latitudinal gradients. *Mar. Ecol.*

714 *Prog. Ser.* **273**, 251–267 (2004).

715 68. Commito, J. A. & Tita, G. Differential dispersal rates in an intertidal meiofauna

716 assemblage. *J. Exp. Mar. Bio. Ecol.* **268**, 237–256 (2002).

717 69. Buys, B., Derycke, S., De Meester, N. & Moens, T. Colonization of macroalgal deposits

718 by estuarine nematodes through air and potential for rafting inside algal structures.

719 *PLoS One* **16**, e0246723 (2021).

720 70. McLachlan, A. & Turner, I. The Interstitial Environment of Sandy Beaches. *Mar. Ecol.*

721 **15**, 177–212 (1994).

722 71. Broman, E. *et al.* Salinity drives meiofaunal community structure dynamics across the

723 Baltic ecosystem. *Mol. Ecol.* **28**, 3813–3829 (2019).

724 72. Ingole, B. S. & Parulekar, A. H. Role of salinity in structuring the intertidal meiofauna of

725 a tropical estuarine beach: Field evidence. *Indian J. Mar. Sci.* (1998).

726 73. Kaminski, M. A. *et al.* Substrate temperature as a primary control on meiofaunal

727 populations in the intertidal zone: A dead zone attributed to elevated summer

728 temperatures in eastern Bahrain. *Regional Studies in Marine Science* **42**, 101611

729 (2021).

730 74. Gheskiere, T. *et al.* Nematodes from wave-dominated sandy beaches: diversity,

731 zonation patterns and testing of the isocommunities concept. *Estuar. Coast. Shelf Sci.*

732 **62**, 365–375 (2005).

733 75. Baia, E. & Rollnic M, V. V. Seasonality of pluviosity and saline intrusion drive meiofauna

734 and nematodes on an Amazon freshwater-oligohaline beach. *J. Sea Res.* **170**, 102022

735 (2021).

736 76. Lallias, D. *et al.* Environmental metabarcoding reveals heterogeneous drivers of

737 microbial eukaryote diversity in contrasting estuarine ecosystems. *ISME J.* **9**, 1208–

738 1221 (2015).

739 77. Gheskere, T. *et al.* The sandy beach meiofauna and free-living nematodes from De
740 Panne (Belgium). <https://biblio.naturalsciences.be/rbins-publications/bulletin-of-the->
741 royal-belgian-institute-of-natural-sciences-biologie/72-sup-2002/biologie-2002-72-
742 suppl_43-49.pdf (2002).

743 78. Schratzberger, M. & Warwick, R. M. Differential effects of various types of disturbances
744 on the structure of nematode assemblages: an experimental approach. *Mar. Ecol. Prog. Ser.* **181**, 227–236 (1999).

745 79. Boeckner, M. J., Sharma, J. & Proctor, H. C. Revisiting the meiofauna paradox:
746 dispersal and colonization of nematodes and other meiofaunal organisms in low- and
747 high-energy environments. *Hydrobiologia* **624**, 91–106 (2008).

748 80. Michaud, K. M., Emery, K. A., Dugan, J. E., Hubbard, D. M. & Miller, R. J. Wrack
749 resource use by intertidal consumers on sandy beaches. *Estuar. Coast. Shelf Sci.* **221**,
750 66–71 (2019).

751 81. Emery, K. A. *et al.* Habitat partitioning by mobile intertidal invertebrates of sandy
752 beaches shifts with the tides. *Ecosphere* **13**, (2022).

753 82. Defeo, O. & McLachlan, A. Patterns, processes and regulatory mechanisms in sandy
754 beach macrofauna: a multi-scale analysis. *Mar. Ecol. Prog. Ser.* **295**, 1–20 (2005).

755 83. Dormann, C. F. *et al.* Biotic interactions in species distribution modelling: 10 questions
756 to guide interpretation and avoid false conclusions. *Glob. Ecol. Biogeogr.* **27**, 1004–
757 1016 (2018).

758 84. Widbom, B. & Elmgren, R. Response of benthic meiofauna to nutrient enrichment of
759 experimental marine ecosystems. *Mar. Ecol. Prog. Ser.* **42**, 257–268 (1988).

760 85. Elarbaoui, S., Richard, M., Boufahja, F., Mahmoudi, E. & Thomas-Guyon, H. Effect of
761 crude oil exposure and dispersant application on meiofauna: an intertidal mesocosm
762 experiment. *Environ. Sci. Process. Impacts* **17**, 997–1004 (2015).

763 86. Wang, J., Zhou, H., Zhang, Z., Cong, B. & Xu, S. Effects of organic enrichment on
764 sandy beach meiofauna: A laboratory microcosm experiment. *J. Ocean Univ. China* **10**,

766 246–254 (2011).

767 87. Hockin, D. C. The Effects of Sediment Particle Diameter Upon the Meiobenthic
768 Copepod Community of an Intertidal Beach: A Field and a Laboratory Experiment. *J.*
769 *Anim. Ecol.* **51**, 555–572 (1982).

770 88. Costa, L. L., Fanini, L., Zalmon, I. R., Defeo, O. & McLachlan, A. Cumulative stressors
771 impact macrofauna differentially according to sandy beach type: A meta-analysis. *J.*
772 *Environ. Manage.* **307**, 114594 (2022).

773 89. Palmer, M. Dispersal of marine meiofauna. A review and conceptual model explaining
774 passive transport and active emergence with implications for recruitment. *Mar. Ecol.*
775 *Prog. Ser.* **48**, 81–91 (1988).

776 90. Blackman, R. C. *et al.* Advancing the use of molecular methods for routine freshwater
777 macroinvertebrate biomonitoring – the need for calibration experiments. *MBMG* **3**,
778 e34735 (2019).

779 91. van der Loos, L. M. & Nijland, R. Biases in bulk: DNA metabarcoding of marine
780 communities and the methodology involved. *Mol. Ecol.* **30**, 3270–3288 (2021).

781 92. Hakimzadeh, A. *et al.* A pile of pipelines: An overview of the bioinformatics software for
782 metabarcoding data analyses. *Mol. Ecol. Resour.* **24**, e13847 (2024).

783 93. McLachlan, A. Exposed sandy beaches as semi-closed ecosystems. *Mar. Environ. Res.*
784 **4**, 59–63 (1980).

785 94. Atherton, S. & Jondelius, U. Biodiversity between sand grains: Meiofauna composition
786 across southern and western Sweden assessed by metabarcoding. *Biodivers Data J* **8**,
787 e51813 (2020).

788 95. Martínez, A. *et al.* Human access impacts biodiversity of microscopic animals in sandy
789 beaches. *Communications Biology* **3**, 1–9 (2020).

790 96. Haenel, Q., Holovachov, O., Jondelius, U., Sundberg, P. & Bourlat, S. NGS-based
791 biodiversity and community structure analysis of meiofaunal eukaryotes in shell sand
792 from Hållö island, Smögen, and soft mud from Gullmarn Fjord, Sweden. *Biodiversity*
793 *Data Journal* **5**, e12731 (2017).

794 97. Castro, L. R. *et al.* Metabarcoding meiofauna biodiversity assessment in four beaches of
795 Northern Colombia: effects of sampling protocols and primer choice. *Hydrobiologia* **848**,
796 3407–3426 (2021).

797 98. Weigand, A. M. & Macher, J.-N. A DNA metabarcoding protocol for hyporheic
798 freshwater meiofauna: Evaluating highly degenerate COI primers and replication
799 strategy. *A DNA metabarcoding protocol for hyporheic freshwater meiofauna:*
800 *Evaluating highly degenerate COI primers and replication strategy* **2**, e26869 (2018).

801 99. Wangensteen, O. S., Palacín, C., Guardiola, M. & Turon, X. DNA metabarcoding of
802 littoral hard-bottom communities: high diversity and database gaps revealed by two
803 molecular markers. *PeerJ* **6**, e4705 (2018).

804 100. Collins, R. A. *et al.* Non-specific amplification compromises environmental DNA
805 metabarcoding with COI. *Methods in Ecology and Evolution* (2019) doi:10.1111/2041-
806 210X.13276.

807 101. Buchner, D., Macher, T.-H. & Leese, F. APSCALE: advanced pipeline for simple yet
808 comprehensive analyses of DNA metabarcoding data. *Bioinformatics* **38**, 4817–4819
809 (2022).

810 102. Schnell, I. B., Bohmann, K. & Gilbert, M. T. P. Tag jumps illuminated--reducing
811 sequence-to-sample misidentifications in metabarcoding studies. *Mol. Ecol. Resour.* **15**,
812 1289–1303 (2015).

813 103. Brasseur, M. V. *et al.* Exploring macroinvertebrate biodiversity in the dynamic southern
814 Balkan stream network of the Vjosa using preservative-based DNA metabarcoding.
815 *Aquat. Sci.* **85**, 51 (2023).

816 104. Hupało, K., Schmidt, S., Macher, T.-H., Weiss, M. & Leese, F. Fresh insights into
817 Mediterranean biodiversity: environmental DNA reveals spatio-temporal patterns of
818 stream invertebrate communities on Sicily. *Hydrobiologia* **849**, 155–173 (2021).

819 105. Macher, T.-H., Schütz, R., Yıldız, A., Beermann, A. J. & Leese, F. Evaluating five primer
820 pairs for environmental DNA metabarcoding of Central European fish species based on
821 mock communities. *Evaluating five primer pairs for environmental DNA metabarcoding*

822 *of Central European fish species based on mock communities* **7**, e103856 (2023).

823 106. Macher, T.-H., Schütz, R., Hörren, T., Beermann, A. J. & Leese, F. It's raining species:
824 Rainwash eDNA metabarcoding as a minimally invasive method to assess tree canopy
825 invertebrate diversity. *Environ. DNA* **5**, 3–11 (2023).

826 107. Cai, W. *et al.* Environmental DNA captures the internal structure of a pond
827 metacommunity. *bioRxiv* 2023.12.12.571176 (2023) doi:10.1101/2023.12.12.571176.

828 108. Assis, J. *et al.* Bio-ORACLE v2.0: Extending marine data layers for bioclimatic
829 modelling. *Glob. Ecol. Biogeogr.* **27**, 277–284 (2018).

830 109. Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces
831 for global land areas. *Int. J. Climatol.* **37**, 4302–4315 (2017).

832 110. usdm: Uncertainty Analysis for Species Distribution Models. *Comprehensive R Archive
833 Network (CRAN)* <https://cran.r-project.org/web/packages/usdm/index.html>.

834 111. Manion, G. *et al.* Package 'gdm'. *A toolkit with functions to fit, plot, and summarize
835 Generalized Dissimilarity Models: CRAN Repository* (2017).

836 112. Griffith, D. A. & Peres-Neto, P. R. Spatial modeling in ecology: the flexibility of
837 eigenfunction spatial analyses. *Ecology* **87**, 2603–2613 (2006).

838 113. Dormann, C. *et al.* Methods to account for spatial autocorrelation in the analysis of
839 species distributional data: a review. *Ecography* **30**, 609–628 (2007).