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Abstract

There are a large number of fluorine (F)-containing compounds in approved drugs,
and F substitution is a common method in drug discovery and development. However,
F is difficult to form traditional hydrogen bonds and typical halogen bonds. As a
result, accurate prediction of the activity after F substitution is still impossible using
traditional drug design methods, whereas artificial intelligence driven activity
prediction might offer a solution. Although more and more machine learning and deep
learning models are being applied, there is currently no model specifically designed to
study the effect of F on bioactivities. In this study, we developed a specialized deep
learning model, F-CPI, to predict the effect of introducing F on drug activity, and
tested its performance on a carefully constructed dataset. Comparison with traditional
machine learning models and popular CPI task models demonstrated the superiority
and necessity of F-CPI, achieving an accuracy of approximately 89% and a precision
of approximately 67%. In the end, we utilized F-CPI for the structural optimization of
hit compounds against SARS-CoV-2 3CLre. Impressively, in one case, the
introduction of only one F atom resulted in a more than 100-fold increase in activity
(ICs0: 22.99 nM vs. 28190 nM). Therefore, we believe that F-CPI is a helpful and

effective tool in the context of drug discovery and design.
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1. Introduction

Fluorine (F) is of great importance in drug discovery and development. Fluorine
(F) has a wide range of applications in pharmaceutical chemistry [1-6]. Due to its
unique properties such as small atomic radius (1.47 A) and strong electronegativity, F
is commonly used to replace -H or -OH to improve various physicochemical
properties of drug molecules [7, 8]. Since the first F-substituted drug,
fluhydrocortisone, was launched in 1955, the introduction of F into drug molecules
has been widely used and has shown a growing trend. For example, among the top 10
best-selling small molecule drugs in 2022, 5 contain F (Figure 1). Therefore,

introducing F is of great importance in lead optimization.
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Figure 1 5 drugs containing F among the 10 best-selling small molecule drugs of
2022 (some drugs are in combination form and all components contain Fluorine). (a)
Nirmatrelvir. (b) Emtricitabine (left) and Bictegravir (right). (c) Dolutegravir. (d)

Elexacaftor (left) and Tezacaftor (right). (¢) Enzalulutamide.

F has a significant impact on the physicochemical properties of drug molecules.
The introduction of F will change the charge distribution of drug molecules,
significantly affecting the acidity and alkalinity of its neighboring groups, thereby
affecting the pKa value of the compound. The introduction of F also enhances the

lipophilicity of drug molecules, thereby enhancing their cell membrane permeability.


https://doi.org/10.1101/2024.07.17.602844
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.17.602844; this version posted July 17, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Mono-F substitution typically exhibits weak hydrophobicity, while di-F substitutions
exhibits strong hydrophobicity due to addition effect [9, 10]. In addition, C-F bonds
are short and difficult to polarize, making them less prone to breakage. Introducing F
at easily metabolizable sites can effectively improve the metabolic properties of

compounds.
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Figure 2 F substitution increases the binding affinity between compounds and target

proteins. R represents the substituent group.

F substitution can affect the activity of compounds. F substitution can enhance the
binding affinity between compounds and targets (Figure 2). Our previous study
indicated that 9.19% of compounds can increase their activity by at least an order of
magnitude after replacing -CHz with -CF3 [11]. F is difficult to form traditional
hydrogen bonds and typical halogen bonds. As a result, accurate prediction of the
activity after F substitution is still impossible using traditional drug design methods,

while artificial intelligence driven activity prediction might become a solution.
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Compound-Protein Interaction by artificial intelligence to predict the activities of the
compounds. Identifying compound-protein interactions (CPI) plays an important role
in predicting the activity of compounds. Traditional methods for solving CPI tasks
mainly rely on virtual screening based on physical modeling of the structures of
compounds and proteins [12, 13]. These methods have been widely applied over the
past few decades, but are often limited due to the difficulty in obtaining the 3D
structure of proteins and the small size of molecular datasets. To address this issue, a
large number of machine learning methods [14, 15] have emerged in recent years,
such as Support Vector Machines (SVM) and Random Forests (RF). These methods
do not rely on the 3D structure of proteins; thus, they have stronger generality and
have achieved certain success in CPI tasks. With the rise of deep learning and the
development of Graphics Processing Units (GPUs), more choices are available when
faced with CPI tasks, from Multi-Layer Perceptron (MLP) [16], Recurrent Neural
Networks (RNN) [17, 18], Convolutional Neural Networks (CNN) [19, 20], to the
recently proposed Transformer with strong parallel capabilities [21-23], and Graph
Neural Networks (GNN) [24, 25] that can better utilize molecular graph features. At
the same time, traditional work models the CPI task as a binary classification problem,
predicting whether a drug can bind a specific protein or not. Some new work [26]
models the CPI task as a regression problem, attempting to predict the strength of the

binding affinity.

The Effect of F Substitution on Drug Molecules. Identifying compound-protein
interaction after F substitution (CPI-FS), is a subset of CPI tasks. In CPI-FS, F
substitution refers to replacing a hydrogen atom in the original compound with a
fluorine atom. The direct solution is to predict the binding affinity of compounds
before and after F substitution, and calculate the activity changes. However, the
activity cliff problem greatly increases the difficulty of model prediction[27]. The
main challenges currently faced by this task are: (1) No publicly available dataset; (2)
On this issue, the potential of deep learning has not been fully realized. In response to

the above challenges, we have compiled a dataset, and proposed a general paradigm
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called Fluoro-substitution Compound-Protein Interaction Model (F-CPI) for solving
CPI-FS tasks and introduce several prevailing deep learning methods. The
best-performing model achieves approximately 67% precision, 89% accuracy, and
43% recall. In the end, we applied F-CPI to the structural optimization of hit
compounds against SARS-CoV-2 3CLr™. Impressively, in one case, the introduction
of only one F atom, the activity increased by more than two orders of magnitude (ICso:

22.99 nM vs. 28190 nM).

2. Materials and methods

2.1 Data Set of —F/-H Compounds. For comparing the effect of the F substitution on
bioactivity, a data set was curated from ChEMBL, which is composed of matched
molecular pair with bioactivity (one molecule with —F and the other with -H, while
the rest of the paired molecular structures are exactly the same). The activities (Kj, Ka,
ICso, ECs0) are converted into negative logarithm units. The average will be used if
multiple experiments are available for a compound against a target.

2.2 Overview

We consider CPI-FS tasks as binary classification problems based on compound and
protein data, as shown in Figure 3. F-CPI aims to learn a mapping function that takes
the protein features, original compound features, and F-substituted compound features
as inputs and provides a binary prediction of 0 or 1, indicating whether there is a

significant change in drug activity against the protein after F-substitution

(i.e. ApKi>=0.5).
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Figure 3 Identifying compound-protein interaction after F-substitution as binary

classification problems.

We propose a universal model pattern Fluoro-substitution Compound-Protein
Interaction Model (F-CPI) to solve the CPI-FS problem, as shown in Figure 4. The
model consists of two encoders and one interactive decoding module. The encoders
are used to extract high-dimensional hidden features of compounds and proteins, and
the encoders are also responsible for fusing features from different modalities on the
input side, such as molecular sequence features and molecular fingerprints. The fusion
decoding module is used to simulate the interaction between compounds and proteins,
and it fuses the features of compounds and proteins in an appropriate way to obtain
the output result. It is worth mentioning that for the compound encoder, we adopted
weight sharing technology to share the same encoder, which achieved better results in

the experiment.
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Figure 4 The overall framework of F-CPI. As shown on the left of the figure, the
overlapping dialog box represents the parallel processing of F-substitution compound
and the original compound in the preprocessing stage. In the compound encoding
stage, we adopted weight sharing technology and used the same encoder for feature

extraction and fusion.

2.3 Sequence-based Fluoro-substitution Compound-Protein Interaction Model
(F-CPI (S))

We have designed a model called Sequence-based Fluoro-Substitution
Compound-Protein Interaction Model (F-CPI (S)) based on sequence features. This
model conforms to our proposed general pattern. We introduced sequence features of
SMILES strings and amino acid sequences, and used sequence encoders for feature
extraction. We use one layer for the compound encoder and three layers for the

protein encoder with self-attention encoding layers. Finally, we obtain the higher-level

feature maps X0 e RN, X e RM1 and X, e RV ,where N, N_, N, denote the

original compound, F-substituted compound, and protein sequence lengths,
respectively.
Sequence encoder For representing the SMILES sequence of a compound, we can

treat each character as a word in a sentence. After passing through a learnable word


https://doi.org/10.1101/2024.07.17.602844
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.17.602844; this version posted July 17, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

embedding layer, the entire sequence is embedded into matrix X’ <R™, where N

denotes the length of the sequence, M denotes the length of each word vector, and 0
represents the input of the first layer of the encoder. The Transformer [28] with
self-attention mechanism can capture global information of the sequence and optimize
local information. Due to its ability to fully utilize the parallel computing power of
GPUs and reasonable structure, it has been widely applied and used in recent years in
the field of drug chemistry for extracting sequence information using Transformer
encoder. In this article, we also adopt a Transformer encoder based on the
self-attention mechanism to extract sequence features of proteins or compounds.

A classic self-attention mechanism is based on the following formulas:

T

QlKl
Jd,

where Q, K, V represent query, key, value, obtained from w.x! , wx. ,

seq seq

Attention (Q',K', V" = soft max( wW!

W, X!, respectively. Where W e R*'**'* denotes an unbiased linear layer, 1€(0,L),

where L denotes the number of layers in the model. After one self-attention
calculation on the sequence, it goes through a fully connected layer and dropout layer,
followed by residual connection and layer normalization to obtain the output of the
self-attention layer. To obtain the final result, we also need to pass the output of the

self-attention layer through a Feedforward Neural Network (FFN):

X" = FFN(LN(X' + dropout(linear(Attention(Q',K', V'")))))

where FFN() consists of two linear layers, an activation function, a dropout layer, a
layer normalization layer, and a residual connection.

h' = FFN (h) = LN (h + dropout (W,,, Re LU(W,_h)))

Where Wi € R4 W, e R are set as default settings, LN()

representing layer normalization, and the dropout is set to 0.1.

After repeating the above steps for several times, we finally obtain the representation

matrix X“ eR™? for sequence features.

seq
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Sequence decoder To better simulate the compound-protein interaction and
comprehensively utilize the features of the entire sequence, we use the cross-attention
mechanism for decoding. In the decoder layer, we use the feature vectors of two
compounds as query, and the protein feature vectors as key and value for cross
attention calculation

X" = FFN(Attention(W, X2, W, X,

W, X))
X" = FFN(Attention(W, X35, W, X, ., W, X[ )

sub cpd?
Where xr° and xr denotes the representation map of the interactions between the

original compound and the F-substituted compound with proteins, respectively.
Subsequently, perform forward and backward cross attention calculations on the two

representation map, and use the difference as a representation of the entire interaction

X

fuse

X® = FFN(Attention(W, X", W, X, W, X"?))

gap ori ? sub? v* ¥ su

X" = FFN(Attention(W, X2, W, X", W, X"))

gap sub ? ori ? v**ori

= FFN(pooling(X{,) ) — pooling(X{)))

fuse gap

Where pooling() is the mean pooling function, which performs mean pooling
operation on Xy € RS2 along the first dimension to obtain Xgap'eR“S”-

Focal-loss In the constructed data set, there is a significant imbalance between
positive and negative samples, as well as an imbalance in the difficulty level of
sample prediction. To solve this problem, we adopt the focal loss method [29], which
adjusts the contribution of each sample to the loss function to solve the problem of
imbalanced positive and negative samples and imbalanced difficult and easy samples.
For a general cross-entropy loss function:
E:{ ~log(p), if y=1
—log(l-p), if y=0
where y denotes the sample label and p denotes the probability value output by the

model. Focal loss is proposed as follows:

pL) —od=p)logp). if y=1
—(1-o)p’log(l—p), if y=0
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where o €(0,) is used to adjust the contribution of positive and negative samples to

the loss function, and 7y is used to adjust the contribution of difficult and easy

samples to the loss function. High confidence samples are considered easy samples
and their weight is reduced, while low confidence samples are considered difficult
samples and their weight is increased, aiming to make the model focus on difficult
samples.

Auxiliary tasks To improve the performance of the model, we additionally design an
auxiliary task module. The auxiliary task is a task set in addition to the main task,
which is related to the main task. The auxiliary task guides the model's learning
direction during the gradient descent process by setting an additional loss function,
thereby enhancing the model's learning ability and helping the model achieve better
performance on the main task [6]. We choose to predict the reaction activity values of
the original compound and the F-substituted compound to the same protein as our
sub-task. Due to the different indicator type of the compounds in the dataset, i.c., K,

ICso, ECso, etc., we need to introduce seven types of drug indicator features and

encode them into one-hot vectors for word embedding, resulting in X, , € R™*. For
the input of the encoder, the original compound X‘C);‘d , the F-substituted compound

Xsub

oa » and the protein varo

XPY)

ori

0™ =project(FFN(X,,

Osub = prOjCCt(FFN(Xind Xls):g'))

Where | represents concatenation operation, xr cr">» and xr <¢Rr"> are obtained
ori sub

from X" and XP"° through a linear layer (512x256) to ensure that the size of the

output of the encoder is fixed. 0™ and 0™ denote the predicted drug activity

values of the model for the original compound and F-substituted compound,
respectively.

We choose the MSE function as the loss function for predicting activity values
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B MSE(Oori , Oori') + MSE(Osub , 0sub')

£ aux
2

Where o* and o™ denote the ground truth of the drug activity values of the

original compound and F-substituted compound, respectively. The overall loss of our
final model is:

L=L_..+BL..

In the ablation experiment, we will discuss the selection of (.

Pre-trained word embedding Given a sequence, a common approach is to use a
trainable simple word embedding layer during model training to embed tokens into a
suitable vector space. In order to better explore the inherent high-dimensional
information of proteins and compounds and further improve model performance, we
introduce existing sequence-based pre-training models chemBERTa [30] and TAPE
[31] to replace our word embedding layer. chemBERTa is a molecule pre-training
model based on BERT [32], chemBERTa provides multiple pre-trained models, and
the model used in this article is trained on PubChem77M (77 million) dataset. It
trained with hidden size 384, dropout rate 0.1, the number of multi-head of attention
is 12, and has 3 hidden layers. TAPE is a protein pre-training model trained on the
Pfam dataset (31 million). the model used in this article based on BERT with hidden
size 768, dropout rate 0.1, the number of multi-head of attention is 12, and has 12
hidden layers. we adopt the pre-training word embedding strategy by treating the
entire pre-trained model as the word embedding layer of F-CPI(S) and further training
it within the model. Tape and chemBERTa provide different embedding methods,
such as full sequence embedding, pooling embedding, and mean embedding. For our
proposed model F-CPI(S), we adopt the full sequence embedding. Two pre-trained

word embedding layers take protein and compound sequences as inputs and output

X er™™ and X

N, x384 ; : :
e ap ER as word embedding representations, respectively.

Where N denotes the length of the protein sequence, N, denotes the length of the

compound sequence. Finally, we use a linear layer to map the lengths of the
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compound output and protein output to a unified length of 512. We compared the
effects of two word embedding methods in the result section, named F-CPI(S) and

F-CPI(S-emb) respectively.

2.4 Graph-based fluoro-substitution compound-protein interaction model (F-CPI
(G))

Due to the high degree of fit between compound structure and graph structure, Graph
neural network (GNN) has been used for feature extraction of compounds in an
increasing number of research works and has achieved certain success. Meanwhile,
with the gradual improvement of protein 3D structural databases, in order to better
utilize protein 3D structural information, some studies [33] attempt to convert
structural information into protein contact maps, indirectly introducing structural
features into the model through GNN.

Inspired by this, we designed a graph-based model called Graph-based
Fluoro-Substitution Compound-Protein Interaction Model (F-CPI (G)).

Compound input For compounds, we consider the atoms in a molecule as nodes, and
the bonds between atoms as edges. We convert the original SMILES strings into node
set V and edge set E using the RDKit [34] library. V contains all the atoms in the
molecule, and we process atom features as follows:

(1) Atom types,

(2) Hybridization types,

(3) Atom degrees indicating the number of bonded neighboring atoms,

(4) Whether an atom is part of an aromatic ring or not,

(5) Formal charge,

(6) Chiral type,

(7) Implicit valence for atoms.

For the above atom features, they can be considered as 7 one-hot vectors. We
introduce seven word embedding layers to individually embed these features, and then

concatenate them into a vector with a length of 512 as the initial atom feature
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X, eR""?, where N_ represents the number of atoms in the compound. The edge
set of the graph is represented by the adjacency matrix A_eR™"™, which indicates the

connectivity information between nodes (atoms) in the molecule. a,; =1 represents

the existence of a chemical bond between the i-th and j-th atoms.

Protein input Considering amino acids as nodes and embed them by their types and

obtain x eR™?. N, represents the number of amino acids in the protein. To

represent the connectivity information between nodes, we introduce a protein contact
map. For a protein with a length of L, its contact map is a square matrix C=f{c, }.

1, ifd _<8A,
C — p-q
P40, otherwise.

Where &, denotes the Euclidean distance between the two C, atoms of the p-th

and g-th residues. Generally, if SM is less than 8A, two residues are defined as in

contact. We use the contact map as the adjacency matrix input to the GNN.

AlphaFold [35] can predict protein structures with atomic-level precision. We
obtained most of the predicted 3D protein structures from the AlphaFold database
(https://alphafold.ebi.ac.uk/). For a small number of samples not included in the
AlphaFold database, we used the RoseTTA-fold [36] model to predict protein
structures and submitted our requests through the online version of Robetta

(https://robetta.bakerlab.org/).

Encoder using Graph Convolutional Networks (GCN) We use GCN [37] as the
encoder for proteins and compounds. For a given graph structure, the aggregation
process is as follows:

XM = FFN(D’%AD’%X“U

where D denotes the degree matrix of the adjacency matrix, and 1 denotes the GCN

layer number.
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Encoder using Graph Attention Networks (GAT) As a comparison, we introduce
GAT [38] as the encoder for proteins and compounds. The similarity between queries
and keys is calculated using the dot product method. For a given graph structure:

KQ(I)K(I)T

X™Y = FFN(soft max( \/d_ W
k

~

1 _ ~lgrl e
whereQ =X W, , K'= XIWIi , V! :XIWVI ) A={a}
. _ 1, if a,, =1

pq 1 . _
-10°, ifa =0
It is worth mentioning that in classical GAT, when a, =0, there is usually a,, =-10",

which may lead to the model overly focusing on local information and ignoring global
information. This article smoothed it to enable the model to have higher attention to
amino acid residues that are close in distance while accessing global information.

Graph readout We adopted a mean-weighted readout approach to obtain a
high-dimensional representation of the entire graph structure. For the output of the

last layer X" , which can be seen as a set of node features

X =& g0 xP P e Ry, we have:
_ (L)y _ (L)
X, = readout(X") = mean(x"")

After applying the graph neural network to extract features from compounds and

proteins, followed by readout, we finally obtain X eR™"?, X

1x512 ! 1x512
eR™7, X, ,eR™7.

Decoder In the decoding stage, we adopt a decoding method based on concatenation

fusion. We concatenate the three outputs X X

epd ? wa and X - of the encoders

along the last dimension, and then pass them through a FFN, followed by a linear

layer for dimension reduction, resulting in X, . € R"" . The formula is as follows:

fuse

sub
chd

X e =Droj ect(FFN(XOri

cpd

lero ))

Where project() denotes a linear layer applied to (1536x512).

Finally, we use a classifier (linear layer) to obtain X ,6€R"  for binary
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classification loss calculation. F-CPI (G) also adopts focal loss function and auxiliary
task method.

Auxiliary tasks We designed auxiliary tasks suitable for F-CPI (G). Due to the
different decoder structure from F-CPI (S), we adopted a concatenating approach to
design the auxiliary task module

0" = project(FFN(X,, WX )

pro“ > pro

chd X ori

cpd

0™ = project(FFN(X,, WX )

pro“ ™ pro

sub
W aX

cpd

512x192 512x192
where Weq €R ) Wi, €R )

2.5 Multimodal Fluoro-Substitution Compound-Protein Interaction Model
(F-CPI (M))

Furthermore, we propose a dedicated model called Multimodal Fluoro-Substitution
Compound-Protein Interaction Model (F-CPI (M)) for predicting the activity of
F-substituted compounds. Under the general pattern mentioned earlier, we combine
multi-modal inputs to ensure satisfactory performance of the model.

Multimodal compound Encoder In the compound encoder, we handle both sequence

features and Morgan fingerprint features of the compounds in parallel.

For sequence features, we embed them into a matrix X! eR™! using a custom

vocabulary and a learnable word embedding layer. N denotes the length of the
SMILES string, d denotes the feature length (usually set as 512). Then a layer of
self-attention based transformer encoder was used, which is the same as the F-CPI (S)
model. Differently, F-CPI (M) sets a mean pooling layer at the end of the encoder,

resulting in X eR"™"”.

For Morgan fingerprint features, we extract features using a linear layer and a FFN to

obtain X, eR"". Then, we concatenate X and X, and pass them through a

mor ?

FFN and a linear layer for fusion and dimension reduction, resulting in X_, e R"".

The parameters of the original compound encoder and F-substituted compound

encoder are shared.
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Morgan fingerprint Morgan fingerprint, which is a characteristic representation
method used in chemoinformatics to describe molecules [39], it takes into account the
topological distance between atoms and the connectivity degree. It generates a binary
vector representation by iteratively combining each atom with its neighboring atoms,
effectively capturing the local information of molecules. Due to its ability to specify
the length, it has been widely used in machine learning. In this study, we introduce
Morgan fingerprint as a chemical descriptor for drug molecules in machine
learning-based methods, enabling the model to have predictive capability.
Furthermore, in F-CPI (M), we fuse the Morgan fingerprint features with the sequence
features of compounds, achieving improved performance. The radius of Morgan
fingerprint in this study is set to 4.

Multimodal Protein Encoder In the protein encoder, we integrate a sequence
encoder based on pre-trained word embedding methods and a PSSM matrix obtained
from sequence alignment. We adopt the TAPE model as the pre-training word
embedding layer to embed the amino acid sequences into vector representations.
Unlike F-CPI (S), we chose the mean-pooling word embedding method provided by

TAPE to obtain x,  eR"™, followed by a linear layer and FFN to finally obtain

' 1x512
X eR™*“.

Additionally, we incorporate PSSM-400 [40] as a high-level protein feature, denoted

as  Xpey € R . After passing through a linear layer and an FFN, we obtain

X c RIXSIZ

PSSM

Finally, we concatenate x| . and X,

»su » and fuse and reduce their dimensionality

through a FFN and a linear layer, ultimately obtaining X eR™” as the

high-dimensional feature map of the protein.

PSSM-400 In previous studies, Position-Specific Scoring Matric (PSSM), which
contain protein evolution information, have been widely used in predicting protein
secondary structures. For a protein sequence of length N, the corresponding PSSM

matrix is PeR™* . Each entry represents the likelihood of an amino acid mutating
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into one of the 20 amino acids. In order to map the irregular matric into a fixed-length
vector and adapt them to machine learning, normalizing the matrix values between 0

and 1 using the formula

- p;; - min
" max—min

Where max and min represent the maximum and minimum values in PSSM,
respectively. Then, sum the vectors corresponding to the same type of amino acid in

the sequence, resulting in 20 vectors of length 20. These vectors are then concatenated

to obtain a protein PSSM-400 vector X, € R** . Our PSSM matrices are obtained

through the psi-blast alignment algorithm on the Swissport database, with an
algorithm E-value of 0.01, 3 iterations, and default parameters for other settings.

Decoder In the decoding stage, we use the same decoding method based on
concatenation fusion as the F-CPI (G) model, along with focal loss function and

auxiliary tasks method.

2.6 Traditional Machine Learning Algorithms

Traditional machine learning typically performs well on small sample datasets, while
using naive machine learning in pharmaceutical chemistry often yields good results
[41, 42]. To compare with our proposed model, we selected Support Vector Machine
(SVM) and Random Forest (RF). For machine learning methods, we utilized the
existing sklearn package. Since these methods require fixed-length input vectors, we
used the Morgan fingerprint with a radius of 4 as the compound feature, resulting in a
vector of length 384. For proteins, we used the PSSM-400 encoding method to
represent the amino acid sequence as a vector of length 400. Finally, we concatenated
the two compound feature vectors and the protein feature vector obtained above,
resulting in a final input vector of length 1168 for the machine learning model. For
each approach, the model hyperparameters were optimized as follows: (a) SVM,
optimization of the kernel coefficient (y) and regularization parameter (C), y =

[0.00001, 0.0001, 0.001, 0.01, or 0.1] and C = [1, 10, 100, 1000];(b) RF, number of
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decision trees (t), t =100, 500, 1000,10000].

3. Results
This article proposes a general pattern for predicting the activity changes of
compounds after F-substitution, and designs three distinctive deep learning models,
while conducting reasonable feature engineering to introduce machine learning
methods. In this section, we compared the performance of various methods using
different evaluation metrics on a specially constructed dataset. Finally, taking the best
performing F-CPI (M) as an example, ablation experiments were conducted to
investigate the contribution of each module of the model to the task.
Datasets
A total of 222,336 pairs of compound-protein reactions that can be paired were
collected through online databases and previous papers, resulting in 111,168 samples.
Each sample consists of

(1) original and F-substituted drug compound SMILES strings

(2) protein amino acid sequences

(3) types of drug activity indicator

(4) logarithmic activity values for the reactions of each compound with the
protein

(5) the difference between the two values
The dataset includes 2,503 proteins, 73,787 compounds, and 7 types of activity
measurements. We divided the training set, validation set, and test set in a 9:1:1 ratio.
Activity cliff refers to a situation where two structurally similar molecules exhibit
significantly different activity values. In general, it is considered an activity cliff when
the difference in logarithmic activity value for two structurally similar molecules
exceeds 2 (equivalent to a difference of 100-fold in activity). Inspired by this, we
define a significant improvement as a difference in logarithmic activity of 0.5 or
greater (approximately 3.16-fold increase) when introducing fluorine into drug
molecules. Based on this criterion, we created 14,679 positive samples and 96,489

negative samples.
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Evaluation metrics
We use three common evaluation metrics to assess the results of binary classification

predictions: accuracy, precision, and recall. They are defined as follows:

TP+TN

Accuracy =

TP+ TN +FP+FN

.. TP

precision = ——

TP + FP

recall = L
TP +FN

Here, TP, TN, FP, and FN represent true positives, true negatives, false positives, and
false negatives, respectively.

Setting

We conducted experiments using PyTorch toolkit in Python. We also utilized the
powerful computing capabilities of NVIDIA RTX3090. The model was trained using
the ADAM optimizer for 500 epochs, with a learning rate of 0.3 and a warm-up of
2000 steps. The batch size during training was set to 144, and the gradient
accumulation size was set to 2. A dropout of 0.1 was used to mitigate overfitting, and
early stop technique was employed to prevent overfitting, the strategy is to stop
training when the accuracy of the model does not improve for 100 consecutive epochs
on the validation set.

3.1 F-CPI outperforms other methods

Since there is no prior work on predicting changes in drug activity after F-substitution
using machine learning or deep learning, we compared the performance of
mainstream machine learning methods and deep learning techniques in this task as

comprehensively as possible on the constructed dataset, as shown in Table 1.

Table 1 Comparison of performance between several machine learning and deep

learning methods

Methods ACC(%) RECALL(%) PRE(%)

SVM 86.39 26.74 45.59
RF 87.39 22.75 59.31
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SVM(p-emb) 87.17 38.44 53.87
RF(p-emb) 87.30 22.68 58.33
F-CPI (GCN) 86 27.17 4731
F-CPI (GAT) 86.4 36.30 50.31
F-CPI (S) 87.46 22.68 60.16
F-CPI (S-emb) 88.23 23.12 70.25
F-CPI (M) 89.46 43.59 67.27

Note: p-emb represents pre-trained embedding, S-emb represents pre-trained

embedding & sequence-base. Bold font indicates the best result.

F-CPI (M) has achieved excellent performance in accuracy and recall, while F-CPI
(S-emb) has achieved excellent performance in precision. In specific application
scenarios, pharmaceutical chemists need to conduct wet experiments on F-substituted
compounds to verify the results, and also need to perform a series of synthesis steps to
obtain the F-substituted molecules. Under the influence of experimental costs, we
believe that the precision (In the F-substitution cases, the proportion of compounds
with observed increased activity to compounds predicted with increased activity) of
prediction is more important than the recall rate. Our goal is to achieve the highest
possible accuracy while maintaining a certain recall rate. But compared to F-CPI (M),
although F-CPI (S-emb) is 0.58% higher in precision, it is 1.33% and 20.32% lower in
accuracy and recall, respectively, indicating that F-CPI (M) has better overall
performance.

It is worth mentioning that the proportion of positive and negative samples in the test
set is close to 1 to 7. In such a large proportion, the performance of the model can
help pharmaceutical chemists screen out a large number of invalid substitutions and
ensure that the results have a certain level of confidence, which has practical
significance. Specific applications can be found in case studies.

For machine learning, good feature engineering has a significant impact on the

model's performance. Molecular fingerprinting is a widely used and verified feature
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engineering method in molecular machine learning, which even surpasses deep
learning methods in certain specific tasks such as activity cliffs. However, there is no
unified paradigm for protein feature engineering. Although we have tried to use more
comprehensive PSSM matrices for processing, in order to further demonstrate the
advantages of F-CPI, we replaced the proposed protein PSSM-400 feature vectors
with pre-trained word embedding vectors based on the TAPE pre-training model as
inputs for traditional machine learning methods, named p-emb. The results are shown
in rows 3-4 of the table, and it can be seen that there is indeed an improvement in the
results for SVM, but there is still a certain gap compared to F-CPI in various
indicators.

For F-CPI (G), the results are shown in rows 5-6 of the table. GAT has improved
accuracy by 1.21%, recall by 7.29%, and precision by 5.68% compared to GCN,
which we attribute to the effectiveness of attention mechanism and attention mask
smoothing operation. However, both methods do not have advantages compared to
traditional machine learning methods.

For F-CPI (S), the introduction of pre-trained word embedding improved the accuracy

of the model by 1.01%, recall by 2.06%, and precision by 11.48% (Table 2).

3.2 F-CPI outperforms other CPI models on dataset filtered by ICso

As mentioned earlier, there are some models for regression prediction of
compound-protein binding affinity for traditional CPI tasks. To further evaluate the
performance of F-CPI in predicting drug activity after F-substitution and demonstrate
the necessity of an F-substitution specific model, we compared the performance of
F-CPI and several other CPI models on regression and F-substitution tasks on a

dataset filtered with ICs¢ as shown below.

Table 2 Comparison of performance between several CPI models for regression on

dataset filtered by ICso

Methods ACC(%) RECALL(%) PRE(%) MSE
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DeepDTA 83.21 29.21 43.46 0.46
GraphDTA (GIN) 85.94 34.58 57.43 0.36
GraphDTA (GAT) 84.4 16.24 48.44 0.45
GraphDTA (GAT&GCN)  86.29 40.09 58.10 0.36
GraphDTA (GCN) 86.75 35.77 62.34 0.37
F-CPI (M) 89.65 44.71 79.16 0.42

Note: Bold font indicates the best result.

Due to the traditional CPI model processing only one type of drug activity indicator,
such as ICso, Ki or Kd [19, 24]. In order to better compare, we constructed a new
dataset based on the original dataset filtered by ICso. It contains 1965 proteins, 42406
compounds, and a total of 48387 fluoride substituted control groups. In the end, we
obtained a training set of size 39694, a validation set of size 4346, and a testing set of
size 4347.

We introduced two popular CPI models DeepDTA [19] and GraphDTA [24] for
comparison, and implement the following strategies to compare with F-CPIL: (1)
Extract all compound protein complexes from the training and validation sets, predict
drug activity values, and select epoch and hyperparameters based on the performance
of the validation set. (2) On the test set, a control group contains two pairs of
compound-protein complex, then use the trained model to predict the activity values
of the two pairs of complexes separately. The final prediction of this model is whether
the improvement in activity after F-substitution is greater than 0.5 (logarithmic
activity), and the accuracy, precision, and recall are calculated based on this. As
shown in Table 2, F-CPI achieved the best performance in accuracy, precision, and
recall. We also compared the auxiliary task MSE loss of the F-CPI model with other
models, and the results showed that although predicting drug activity is a strategy for
auxiliary its main tasks for F-CPI, it can still defeat some models that prioritize
activity prediction as their main task. This means that F-CPI also has a good ability to

handle traditional CPI problems and is proficient in F-substitution issues on this basis.
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Compared with the suboptimal GraphDTA (GAT&GCN), the accuracy has increased
by 3.36%, the recall has increased by 4.62%, and the precision has increased by
21.06%. The overall performance has significantly improved, which proves the
necessity of a dedicated model for F-substitution problems.

4. Ablation study

In this section, we selected the F-CPI (M) with the best overall performance for
ablation experiments to demonstrate the effectiveness of each module and study their
contribution to the CPI-FS task.

4.1 Modules effect study

Table 3 Study of individual model components or method

Methods ACC(%) RECALL(%) PRE(%)
w/o pssm-400  89.43 43.81 66.93
w/0 morgan 88.21 28.06 65.35
w/o focal loss  89.17 40.21 66.83
w/o aux-task 87.99 32.84 60.68
base 89.46 43.59 67.27

Note: W/o morgan means that morgan fingerprint features are not fused in the encoder,

while aux-task represents auxiliary task. Bold font indicates the best result.

Table 4 Performance of using different values of hyper-parameters for focal loss and

auxiliary task

Coefficient  Value ACC(%) RECALL(%) PRE(%)

0.3 87.39 15.76 64.65
0.4 89.46 43.59 67.27

o 0.5 89.32 44.92 65.59
0.6 89.05 46.02 63.32
0.7 88.91 47.72 61.89
0 89.57 35.13 74.65

Y

1 89.24 41.09 66.91
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3 89.3 42.86 66.44
5 89.46 43.59 67.27
0 87.99 32.84 60.68
0.1 89.08 41.90 65.25
0.3 89.62 42.78 69.00
b 0.5 89.24 41.97 66.43
0.7 89.46 43.59 67.27
1 89.30 42.12 66.82

Note: a and y are the coefficients of focal loss, and [ is the coefficient of auxiliary

task. Bold indicates the best result for each coefficient.

As shown in Table 3, in lines 1-2, the introduction of chemical prior features
improved the predictive performance of F-CPI (M), indicating the effectiveness of
multimodal fusion methods. Among them, the introduction of molecular Morgan
fingerprint significantly improved the recall of the model by 13.55%, accuracy by
1.34% and precision by 4.39%, while the introduction of PSSM-400 had a smaller
impact on performance. We attribute this to the complexity of proteins, which is
difficult to be well expressed through manual prior design. As shown in the first and
third rows of Table 1, the superiority of pre-trained embedding features compared to
PSSM-400 also supports the point of view.

As shown in the third row of Table 3, the introduction of focal loss improved the
accuracy of the model by 0.47%, recall by 1.69% and precision by 2.69%. As shown
in Tables 4, we further conducted parameter experiments on the coefficients o and y of
focal loss. With the decrease of a, the model achieved higher precision. This is
because a smaller a encourages the model to make more conservative predictions for
positive samples to improve the confidence of positive sample predictions, which is
what we expect. However, when o is too small, the model becomes overly
conservative, resulting in a sharp drop in recall while obtaining lower precision in

1.55%. This is because the model unreasonably amplifies the loss value of negative
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samples, resulting in an inability to learn the characteristics of positive samples well.
With the increase of vy, the overall performance of the model improves until y equals 5,
indicating that focusing more on difficult-to-distinguish samples can enhance model
performance. It is worth noting that when y=0, that is, not distinguishing between
easy and difficult samples, the predicted precision significantly improved, but recall
was significantly reduced. In order to obtain relatively balanced results and higher
accuracy, we did not use this parameter value.

As shown in the fourth row of Table 3, the introduction of the auxiliary task
significantly improved the precision of the model by 9.49%, recall by 11.49%,
accuracy by 1.85%. This indicates that the introduction of the auxiliary task of
regression prediction of activity can help the model better learn the features of
compound-protein interaction through the way of influencing gradient descent. We

also tested different f values in Table 4 and found that good results were obtained at

0.7.

4.2 Decoding strategy study

Table 5 Performance of using different decode method

Methods ACC(%) RECALL(%) PRE(%)
dot&sub 89.26 38.14 68.88
dot 88.37 30.49 65.40
add 87.80 35.13 58.46
concat 89.46 43.59 67.27

Note: sub represents subtraction operation, concat represents concatenation operation.

Bold font indicates the best result.

In order to better simulate compound-protein interactions in the decoder, we

attempted different decoding methods in the decoder
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X sub

com

X = project(FFN(X"

fuse com

X o))

X = FEN(XE, + X0 +X0)
Xie = FEN(X(,,, 0 X3 0 X))

Xg:j‘sub — FFN(xbub ° X;:’ro _ X()l’i ° X'pro)

where o represents the Hadamard product. We found that the concatenation method

achieved better overall performance with an accuracy of 89.33%, recall of 43.15%

and precision of 66.52%.

4.3 Pretrained embedding effect study
Table 6 Study of pretrained embedding

Methods ACC(%) RECALL(%) PRE(%) TIME(min)
w p-emb(both) 88.53 36.97 63.30 258

w/o p-emb(both) 89.37 43.37 66.70 2317

base 89.46 43.59 67.27 489

Note: both means that both the compound and the protein used (or not used)

pre-trained word embedding methods. Bold font indicates the best result.

In F-CPI (M), we use pre-trained embedding with FFN to extract protein sequence
features, while for compound sequence features, we use learnable word embedding
with self-attention encoder layers for feature extraction. In Table 6, we tested the
model's performance when pre-trained embedding was used for compounds and when
pre-trained word embeddings were not used for proteins. The pre-trained embedding
features of compounds are derived from chemBERTa. We also calculated the training
time under the same hyperparameters and found that although introducing pre-trained
compound embeddings only took half of the time, it significantly reduced the
accuracy of the model by 0.93%, recall by 6.62%, precision by 3.97%. On the other
hand, introducing protein pre-trained embeddings in F-CPI(M) not only significantly
reduced the training time by about 80% but also achieved better accuracy by 0.09%,

recall 0.22%, precision by 0.57% compared to the learnable word embedding layer.
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For this phenomenon, we attribute it to the complexity of protein structures.
Pre-trained embeddings can better extract their hidden high-dimensional features from
sequence features. However, for compounds, due to the high similarity between
original compounds and F-substituted compounds, pre-trained embedding methods
trained on large datasets cannot distinguish the small disturbances caused by
F-substitution well. In the pre-trained embedding layer, they focus too much on
similarity and lose some information, which is crucial for CPI-FS tasks. This is also
one of the reasons why directly using the regression CPI model described above

cannot achieve satisfactory results.

5. Case study

In the previous text, we validated the superiority of the F-CPI model in F-substitution
problems on the constructed dataset. In order to further explore the potential of the
model in practical applications, we designed a series of wet experiments to verify the

model's ability to assist in drug optimization decision-making.

5.1 Deep learning models and algorithm applications
For a specific drug molecule, first, all hydrogen atoms of the molecule are
sequentially replaced with fluorine atoms to obtain n candidate molecules, which are

then combined with the original molecule and target protein to obtain n candidate

triplets (E ;,E . P) that match the input of the previous model, where n is the number

of hydrogen atoms in the original molecule. Then, model try to predict the candidate
triplets. Among the m positive samples provided by the model, we ranked them based
on the probability of the final binary vector output by the model, and selected the top
10 candidate molecules. Finally, we measured the difficulty of molecular
retrosynthesis and selected specific molecules for synthesis and wet experiments to
verify the model's judgment.

It is worth mentioning that the selected model is the w/o pssm version, which takes

into account the universality of the model, that is, some unknown proteins that have
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not appeared during training may fail in multiple sequence alignment. At the same
time, as shown in Table 3, the w/o pssm model has almost the same performance as
the original model. In order to further improve the model's ability in application, we
merged the test set from the previous testing process into the training set, retaining
only the validation set as the basis for selecting epochs for training. Finally, we
selected appropriate model parameters based on the highest recall criterion, in order to
obtain more choices and enable us to conduct the final experiment while considering
the difficulty and cost of reverse synthesis. We selected three pairs of compounds for

the experiment.

5.2 Assay protocol

A fluorescence-based enzyme inhibition assay in 96-well plate format was used to
assess the inhibition activity of SARS-CoV-2 3CLpro (6xHis). The hydrolytic rates of
Dabcyl-KNSTLQSGLRKE-Edans (DKE) were monitored in a 100 pL reaction
mixture. Briefly, the SARS-CoV-2 3CLpro (6xHis) was preincubated with analytes in
90 uL reaction buffer at 37 °C for 60 min. The reaction buffer included 1 x PBS, 1
mM EDTA. Then the hydrolytic reaction was proceeded for 20 min by the addition of
10 uL DKE. The final concentration of enzyme and DKE were 4 pg/mL and 20 uM,
respectively. The generated fluorescent signals (excitation/emission, 340 nm/490 nm)
were monitored by the microplate reader (SpectraMax® iD3, Molecular Devices,

Austria)[43-45].
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Figure 5 positive cases (a) (b) and negative case (c). The top of the case shows the
structural formula before and after F-substitution, and the bottom shows the results

measured in experiments.

5.3 Positive sample cases

As show in Figure 5, in case (a), we perform an F-substitution operation on
(1R,25,55)-3-((S)-2-acetamido-2-(3,5-dichloro-4-(2-(dimethylamino)ethoxy)phenyl)a
cetyl)-N-((S)-1-cyano-2-((S)-2-oxopyrrolidin-3-yl)ethyl)-6,6-dimethyl-3-azabicyclo[3.
1.0]hexane-2-carboxamide (1) to obtain
(1R,28,5S5)-N-((S)-1-cyano-2-((S)-2-oxopyrrolidin-3-yl)ethyl)-3-((S)-2-(3,5-dichloro-4
-(2-(dimethylamino)ethoxy)phenyl)-2-(2-fluoroacetamido)acetyl)-6,6-dimethyl-3-aza
bicyclo[3.1.0]hexane-2-carboxamide (2) (Figure S1-S2). After F-substitution, The
IC50 value decreased from 28.19 to 0.23. This significant increase in activity was
consistent with the model's prediction, which effectively verified the predictive ability
of the model (Table S1).

In case (b), we perform an F-substitution operation on
(8)-N-((S)-1-((3R,5'S)-5"-cyano-2-oxospiro[indoline-3,3'-pyrrolidin]-1'-yl)-4-methyl-1
-oxopentan-2-yl)-2-isobutyramido-N-methylpropanamide 3) to obtain
(8)-N-((S)-1-((3R,5'S)-5'-cyano-2-oxospiro[indoline-3,3'-pyrrolidin]-1'-yl)-4-methyl-1
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-oxopentan-2-yl)-2-(2-fluoro-2-methylpropanamido)-N-methylpropanamide 4)
(Figure S3-S4).
After F-substitution, The ICso value decreased from 29.80 to 24.34, indicating an

increase in drug activity, which is consistent with the model prediction (Table S1).

5.4 Negative sample cases

As show in Figure 5, in case (c), based on the previous selection principle, we
selected a pair of negative samples as a negative control, we perform an F-substitution
operation on
(8)-N-((S)-1-((3R,5'S)-5'-cyano-2-oxospiro[indoline-3,3'-pyrrolidin]-1'-yl)-3-cyclopro
pyl-1-oxopropan-2-yl)-2-(2,2-difluoroacetamido)-N-methylpropanamide (5) to obtain
(8)-N-((S)-1-((3R,5'S)-5'-cyano-2-oxospiro[indoline-3,3'-pyrrolidin]-1'-yl)-3-cyclopro
pyl-1-oxopropan-2-yl)-N-methyl-2-(2,2,2-trifluoroacetamido)propenamide (6) (Figure
S5-S6).

After F-substitution, The ICso value increased from 21.19 nM to 25.49 nM, indicating

a decrease in drug activity, which is consistent with the model prediction (Table S2).

Conclusion

In order to investigate the effect of F-substitution on activity changes, we compiled
the largest dataset currently containing 111,168 samples, designed a specialized model
pattern F-CPI, and compared multiple methods horizontally. We found that the F-CPI
model achieved satisfactory performance overall. In the end, we applied F-CPI to the
structural optimization of hit compounds against SARS-CoV-2 3CLP™. Impressively,
in one case, the introduction of only one F atom, the activity increased by more than
two orders of magnitude (ICso: 22.99 nM vs. 28190 nM). F-CPI has certain practical
significance and is expected to provide new ideas for the discovery of fluorinated

drugs.
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path of (4); Figure S5: The synthesis path of (5); Figure S6: The synthesis path of (6).
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