

Gene expression responses to environmental cues shed light on components of the migratory syndrome in butterflies

Daria Shipilina^{1*} | Lars Höök¹ | Karin Näsvall^{1†} |
Venkat Talla¹ | Aleix Palahí¹ | Elenia Parkes¹ |
Roger Vila² | Gerard Talavera³ | Niclas Backström¹

¹Evolutionary Biology Program,
Department of Ecology and Genetics (IEG),
Uppsala University, Norbyvägen 18D,
SE-752 36 Uppsala, Sweden

²Institut de Biología Evolutiva (CSIC-Univ.
Pompeu Fabra), Passeig Martí de la
Barceloneta 37-49, 08003 Barcelona, Spain

³Institut Botànic de Barcelona (IBB),
CSIC-CMCNB, Passeig del Migdia s/n,
08038 Barcelona, Spain

Correspondence
Evolutionary Biology Program, Department
of Ecology and Genetics (IEG), Uppsala
University, Norbyvägen 18D, SE-752 36
Uppsala, Sweden
Email: daria.shipilina@ebc.uu.se

Present address
†Wellcome Genome Campus, Hinxton,
Cambridgeshire, CB10 1SA, UK

Funding information

Migration is a complex behavior involving the synchronisation of many physiological and behavioral processes. Environmental cues must thus be interpreted to make decisions regarding resource allocation between, for example, migration or reproduction. In butterflies, the lack of host plants to sustain a new generation may indicate the need to migrate. Here, we used the painted lady butterfly (*Vanessa cardui*) as a model to characterize gene expression variation in response to host plant availability. Assessment of the response to host plant availability in adult female butterflies revealed significant modifications in gene expression, particularly within hormonal pathways (ecdysone oxidase and juvenile hormone esterase). We therefore hypothesize that tuning the ecdysone pathway may play a crucial role in regulating the timing of migration and reproduction in adult female painted lady butterflies. In addition, our analysis revealed significant enrichment of genes associated with lipid, carbohydrate, and vitamin biosynthesis, as well as the immune response. As environmental acquisition occurs throughout the life cycle, we also tracked gene expression responses to two other environmental cues across

major developmental stages. Differences in both larval crowding and host plant availability during development resulted in significant changes in the expression of genes involved in development, reproduction and metabolism, particularly at the instar V larval stage. In summary, our results offer novel insights into how environmental cues affect expression profiles in migratory insects and highlight candidate genes that may underpin the migratory syndrome in the painted lady butterfly.

KEY WORDS

butterfly migration, environmental cues, migratory syndrome, gene expression, *Vanessa cardui*

34 1 | INTRODUCTION

35 Animals are recurrently facing challenges to optimize resource allocation and individual decisions can have consider-
36 able downstream consequences on both survival and reproductive output (1,2). Migration is one example of a be-
37 havioral response to seasonal shifts in the environment, essentially allowing migratory organisms to avoid temporary
38 unfavorable environmental conditions (3,4). Migratory movements have been characterized in detail in many different
39 groups of organisms, however vertebrates have traditionally received most of the attention, while the understanding
40 of invertebrate migration is limited to a few model species (5–7). Recent advances in tracking migratory movements
41 in insects, for example via pollen metabarcoding and isotope-based geolocation of natal origins (e.g. 8–10), have
42 revealed that they are capable of traversing remarkable distances. Migratory behavior is a complex trait involving
43 decisions in initiating, maintaining and terminating migratory movements. Phenotypic plasticity in response to envi-
44 ronmental cues is critical for making optimal decisions. Therefore, one of the crucial aspects for understanding the
45 genetic basis of migration is pinpointing gene regulatory networks leading to the initiation of the migratory syndrome
46 as a response to the environment (11). While environmental cues play a vital role in triggering behavioral switches, the
47 underlying mechanisms of their interpretation and processing, as well as the responses on the molecular level, have
48 only been studied in a few migratory insects e.g., the migratory locust (*Locusta migratoria*) and the monarch butterfly
49 (*Danaus plexippus*) (12,13).

50 Upon sensing environmental cues, migratory insects commonly face scenarios demanding trade-offs between
51 alternative resource allocations and physiological responses (14–16). The key trade-off characterizing the migratory
52 syndrome, or the initial impulse to migrate, in insects is termed the oogenesis-flight syndrome and refers to the delayed
53 investment in reproduction in favor of migration (17,18). Different migratory insect species exhibit significant variation
54 in their physiological and behavioral integration of the oogenesis-flight syndrome. The syndrome varies from complete
55 reproductive arrest during migration in for example the boll weevil (19) and the beet webworm (20), to the expression
56 of the syndrome in certain generations like in the monarch butterfly (21), to an absence of reproductive arrest in
57 several species, for example in the beet armyworm (22) and the codling moth (23), where females can migrate with
58 fertilized and developed eggs (reviewed in 16). Most of the evidence for the oogenesis-flight syndrome is primarily
59 based on phenotypic observations (18,24) and, while physiological and behavioral changes have been described in

60 some detail, characterization of the genetic underpinnings of the trade-offs have predominantly been focused on
61 reproductive arrest (25,26). Therefore, more detailed investigations are needed to enhance our understanding of this
62 complex phenomenon.

63 Accurate perception of environmental cues is essential for the expression of the migratory syndrome, both in
64 adult individuals and during ontogenesis (27). Among others, two environmental cues perceived during development
65 have been shown to be associated with variation in propensity to migrate: rearing density and periodic starvation.
66 High density during early developmental stages, for example, can lead to a predominant investment in migration,
67 likely as a strategy to disperse from areas where competition with conspecifics is high. The desert locust (*Schistocerca*
68 *gregaria*) is a notable example of this phenomenon, exhibiting a density-dependent phase polyphenism that triggers
69 a transition from a benign, solitary phase to a more gregarious, highly migratory phase (12,28,29). In Lepidoptera,
70 density-dependent migration has also been observed in the fall armyworm *Spodoptera frugiperda*; (30), and larval
71 density has been associated with outbreaks in the agricultural pest, beet webworm (*Loxostege sticticalis* (20)). Food
72 availability and quality has also been linked to the oogenesis-flight syndrome in insects, where limited resources during
73 development predominantly manifest in reduced body size, fat storage, fecundity and investment in reproduction.
74 Food availability should therefore have a major influence on migration capacity/propensity and, hence, the trade-off
75 between reproduction and migration (31–33).

76 The painted lady butterfly (*Vanessa cardui*) is an emerging model species for studying the genomic basis of multi-
77 generational long-distance migration (34–36). In addition to performing the longest individual migratory flight dis-
78 tances of any Lepidoptera (8,37–39), *V. cardui* is completely lacking diapause, which highlights the recurrent balance
79 between reproduction and migration as a key adaptation in the species. Delayed onset of reproduction suggestive of
80 an oogenesis-flight syndrome has been observed in *V. cardui* (40), but evidences are mixed (41) and considerable inter-
81 individual differences in migration distance have been observed (10). Recently developed genomic resources (35,36)
82 make it possible to investigate the genetic underpinnings of migratory behavior in this species. Until now, however,
83 very few attempts have been made to characterize the components of the migratory syndrome and its dependence on
84 environmental cues. Spearheading work using methylation and chromatin accessibility data has pinpointed candidate
85 pathways that are likely involved in sensory perception of environmental cues (42,43), but analyses that investigate
86 potential associations with transcription profiles of specific genes or gene categories have not been performed.

87 Given the complex nature of genetic regulation underlying the migratory behavior, it is advantageous to conduct
88 separate experiments targeting various environmental cues. Here, we make a first attempt to investigate the tran-
89 scriptomic response to two environmental cues that can be associated with investment in reproduction or migration
90 in butterflies: larval density and host plant availability for egg laying and as a food source. The main aims were to i)
91 characterize transcriptomic responses to these environmental cues across developmental stages and in adult females,
92 ii) identify developmental time points at which the environmental cues trigger a difference in gene expression, iii)
93 identify candidate genes that might be involved in the trade-off between reproduction and migration.

94 2 | MATERIALS AND METHODS

95 2.1 | Experimental setup

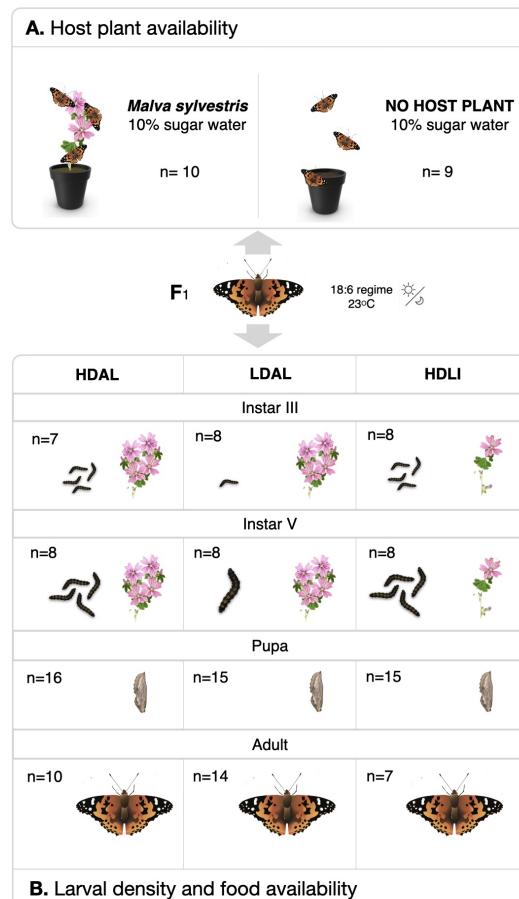
96 Painted lady (*Vanessa cardui*) butterfly females were collected in Catalonia, Spain, and individually housed in cages
97 for egg laying at 23°C under an 18:6-hour light:dark regime. The butterflies were provided with host plants (*Malva*
98 *sylvestris*) for egg laying and a 10% sugar water solution as a food source. The F1 offspring were raised individually
99 with *ad libitum* access to food plants (*M. sylvestris*), and were subsequently divided into experimental groups under

100 controlled environmental conditions (Figure 1).

101 Two separate experiments were carried out to analyze the transcriptomic response to different environmental
102 cues. The first experiment was designed to investigate the potential influence of the presence or absence of the host
103 plants for egg laying on gene expression profiles in adult females (Figure 1A). The second experiment was designed to
104 characterize the effects of larval density and food availability on gene expression profiles during development (larval
105 instars III and V, and pupae) and after emergence (imagines, both sexes) (Figure 1B).

106 2.2 | Host plant availability effects on gene expression profiles in adult females

107 Twenty newly emerged adult F1 females were marked individually and released into one of two large cages (80 x 80 x
108 50 cm), 10 in each cage. One cage contained an abundance of host plants (nine 15 x 15 cm pots with *M. sylvestris*) for
109 egg laying, while the other cage lacked host plants (Figure 1A) and both cages contained 10 free-flying males. Both
110 experimental groups were provided with 10% sugar water as adult food, and the temperature and light regime were
111 the same as for rearing larvae (23°C and an 18:6-hour light-dark regime). In the morning five days after emergence,
112 around the expected time for first mating / reproductive maturity (40,41), five females from each respective treatment
113 group were snap frozen in liquid nitrogen.


114 2.3 | Crowding and food availability effects on expression profiles across developmental 115 stages

116 In the second experiment, five newly mated F1 females were placed in individual cages containing *M. sylvestris* for egg
117 laying. The eggs (F2) laid by each female were collected and divided into three treatment groups (Figure 1): LDAL (low
118 density, *ad libitum* food), HDAL (high density, *ad libitum* food), and HDLI (high density, limited food) (Figure 1B). In the
119 LD (low-density) condition, larvae were individually reared in 1-liter flasks, while in the HD (high-density) treatment,
120 10 larvae were kept together in a single 1-liter flask. Both density treatment groups had *ad libitum* access to food (*M.*
121 *sylvestris*), which was replaced daily. In the LI (limited resource) treatment group, the food was replaced every other
122 day, creating a mild starvation regime. Individuals in this treatment group were reared in groups of 10 (high density).
123 This setup allowed us to contrast treatments with different food availabilities (HDAL versus HDLI) and larval rearing
124 densities (HDAL versus LDAL) separately (Figure 1).

125 Samples were collected at four developmental stages: larva (instar III and instar V), pupa, and adult. Larvae
126 were harvested on the day they entered the respective larval stage, pupae were sexed and collected one day after
127 pupation, and adults were harvested in the morning on the day of emergence. Prior to RNA extraction, individuals
128 were snap frozen in liquid nitrogen and stored at -80°C. Note that larvae of this species cannot be easily sexed, and
129 these cohorts therefore can constitute a mix of males and females. Pupae and adults were sexed and divided into
130 sex-specific cohorts. For each treatment and cohort, one individual among the offspring of each of the five different
131 F1 females was selected for sequencing (Figure 1).

132 2.4 | RNA extraction and sequencing

133 Two types of tissues were used for RNA extractions; heads (including antennae) and abdomens (the 6th - 8th body
134 segments). The number of samples for each treatment/cohort are provided in Figure 1 and Supplementary Table
135 1). Tissues were homogenized using a micro-pestle in guanidine-isothiocyanate lysis buffer, followed by mixing with
136 QiaShredder (Qiagen). RNA extractions were performed using the RNeasy Mini Kit (Qiagen) following the recom-

FIGURE 1 Setup of the two experiments conducted on offspring of wild-caught *Vanessa cardui* females (F1 in the center). Numbers of sequenced individuals are provided for each treatment and cohort. A) The host plant availability experiment, where recently emerged females were divided in two experimental groups with or without access to *Malva sylvestris* for egg laying. B) The setup of the larval density and food availability experiment for different developmental stages. Here, F2 offspring from five different F1 females were divided into three cohorts where the environmental conditions varied. HDAL = high density (10 larvae / flask) and *ad libitum* food, LDAL = low density (1 larva / flask) and *ad libitum* food, HDLI = low density (1 larva / flask) and limited food (fed every other day).

137 mended guidelines by the manufacturer. RNA integrity and fragment lengths were assessed using 1% agarose gel
 138 electrophoresis, followed by measurements of the concentration using NanoDrop (ThermoFisher) and Qubit (Ther-
 139 moFisher). Sequencing libraries were prepared using the Illumina TruSeq Stranded mRNA polyA selection kit and
 140 sequenced by the National Genomics Infrastructure (NGI) in Stockholm. Sequencing was conducted on two lanes of
 141 one S4 flow cell on the NovaSeq S6000 platform, generating 150 bp paired-end reads.

142 2.5 | Differential expression analysis

143 For all steps of the read processing, from adapter filtering to read mapping and transcript quantification, the Nextflow
144 nf-core (44) pipeline rnaseq v3.8.1 was applied (45). In brief, raw sequencing reads were trimmed using Cutadapt
145 v.3.4 (46) as implemented Trim Galore! v0.6.7. STAR v2.7.10a (47) was used for mapping the reads to a previously
146 published genome assembly (36). Read quantification was carried out using salmon v1.5.2 (48), and gene expression
147 levels were measured in transcripts per million reads (TPM) values. Differential expression analyses were conducted
148 in R v4.2.1 using DESeq2 v1.28.0 (49).

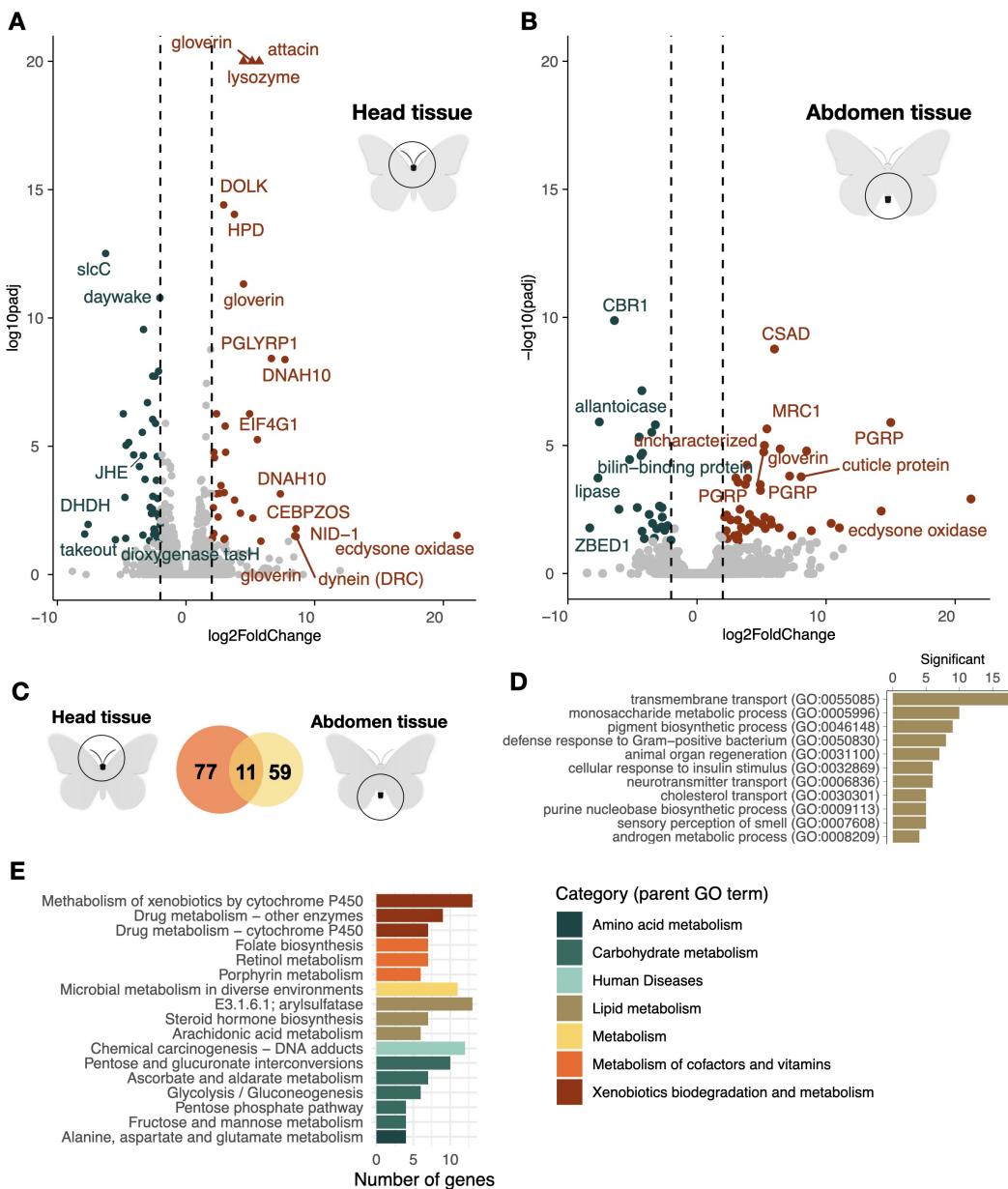
149 To assess differential expression between the cohorts of adult individuals with or without access to host plants
150 for egg laying, we employed the Wald test in the DESeq2. Our experimental design incorporated the correction for
151 potential family effects, with treatment as the primary variable (~family+treatment). Due to incomplete family assign-
152 ment for some samples, we utilized PCA analysis to recover the missing assignments. Additionally, we applied the
153 Wald test for differential expression analysis in adult individuals subjected to environmental stressors: food limitation
154 and larval crowding. Here, we also accounted for the potential effect of sex since both males and females were used
155 in the analysis (~family+sex+treatment).

156 Differential gene expression across developmental stages was assessed using the likelihood ratio test mode of
157 DESeq2 (model = "LRT"), which allows for analysis of time course experiments. This test compared the fit of a full
158 model (~family+devstage+treatment+treatment:devstage) with a reduced model that excluded the interactive effect
159 between the treatment and developmental stage ("devstage") variables. This analysis aimed to evaluate whether the
160 effect of the treatment on gene expression differed across developmental stages. The same model was applied to
161 both head and abdomen tissues, and the analysis included the treatments food availability (HDAL versus HDLI) and
162 rearing density (HDAL versus LDAL).

163 For further analysis, candidate genes were selected based on the criteria of an adjusted *p*-value < 0.05 (Benjamini
164 and Hochberg to control FDR) and a \log_2 (fold change) > 2. The GeneOverlap package (50) was used to assess
165 the significance of overlaps between candidate gene sets in different tissues. Since tests using LRT typically result
166 in larger gene sets, clusterProfiler v3.17 (51) was applied to identify functional clusters within all sets of candidate
167 genes across the four ontogenetic stages, using parameters (consensusCluster = TRUE, groupDifference = 2) on *rlog*-
168 transformed data. Regularized log (*rlog*) transformation was used for stabilizing variance and normalizing the count
169 data. In the case of the head tissue, where 745 candidate genes were identified, more stringent clustering parameters
170 were employed with a group difference of 3. Functional information for differentially expressed genes was collected
171 both by using previous annotations (35,36) and by BLAST searches against the entire nucleotide database (52). Data
172 was summarized in corresponding supplementary tables, when two annotations were available the one from the most
173 similar ortholog was chosen.

174 To assess if certain functional categories were overrepresented in the gene sets with significant differential ex-
175 pression, we conducted two types of enrichment analyses, Gene Ontology (GO) terms and KEGG pathways, utilizing
176 previously obtained functional annotations. Enrichment analysis of GO terms (biological processes category) was per-
177 formed using the TopGO package (53), employing the "weight01" algorithm, with a significance threshold of *p* < 0.01.
178 The enrichment analysis of KEGG terms was performed using the enricher module of clusterProfiler (51).

179 **3 | RESULTS**180 **3.1 | Gene expression patterns in response to host plant availability in adult females**


181 To understand how the presence or absence of host plants for egg laying affects transcriptional responses in recently
182 emerged female imagines, we analyzed gene expression in head and abdominal tissues (Figure 2). The rationale behind
183 choosing those particular tissues was that signaling cascades should be initiated in the head based on sensory percep-
184 tion of the environmental cues and that this may manifest in temporal differences in investment in reproduction and
185 migration, which might be picked up by gene expression differences in the abdomen (where the gonads are located).
186 In total, abdominal tissue was analysed in 10 individuals (five for each treatment) and head tissue in 9 individuals (five
187 and four individuals from the treatments with and without access to host plants for egg laying, respectively). In the
188 head, we found that 88 genes were significantly differentially expressed ($p < 0.05$ after FDR adjustment) between
189 treatment groups. Of those, 34 genes (0.3% of all genes analysed) had higher and 44 had lower expression (0.4%) in
190 the treatment with access to host plants compared to the treatment without host plants (Figure 2A). In the abdomen,
191 the corresponding numbers were 70 differentially expressed genes; 44 (0.4%) with higher and 26 (0.2%) with lower
192 expression in the treatment with access to host plants (Figure 2B). A list of the top significantly differentially expressed
193 genes ($p < 0.01$) and their putative functions is provided in Supplementary Table 2.

194 We found that significantly differentially expressed genes encompassed a diverse range of functional categories
195 (Figure 2A, B), including immune genes (gloverin, attacin, cytochrome p450, peptidoglycan recognition proteins),
196 metabolic genes (lipase), and genes involved in endoskeleton formation (cuticle protein) (Figure 2, Supplementary
197 Table 2). Of particular interest was the ecdysone oxidase gene, which exhibited a remarkable change in expression
198 in both head and abdomen in the individuals that had access to host plants for egg laying (Figure 2A, B; Note that
199 DESeq2 may sometimes exaggerate outliers (54)).

200 Among the genes that were differentially expressed between the adult female treatment groups, 11 genes were
201 found in both tissues (Figure 2C). To gain further insights into the associations between functions of differentially
202 expressed genes and increase statistical power, we combined the results from both tissues for GO term enrichment
203 test. Significantly overrepresented GO terms encompassed transmembrane transport, various metabolic processes
204 (including ecdysone biosynthesis), and defense response (Figure 2D, Supplementary Table 3). Consistent with this
205 finding, the analysis of overrepresented KEGG pathways revealed enrichment of different metabolic pathways, in
206 particular lipid, carbohydrate, vitamin, and xenobiotic metabolism (Figure 2E, Supplementary Table 4).

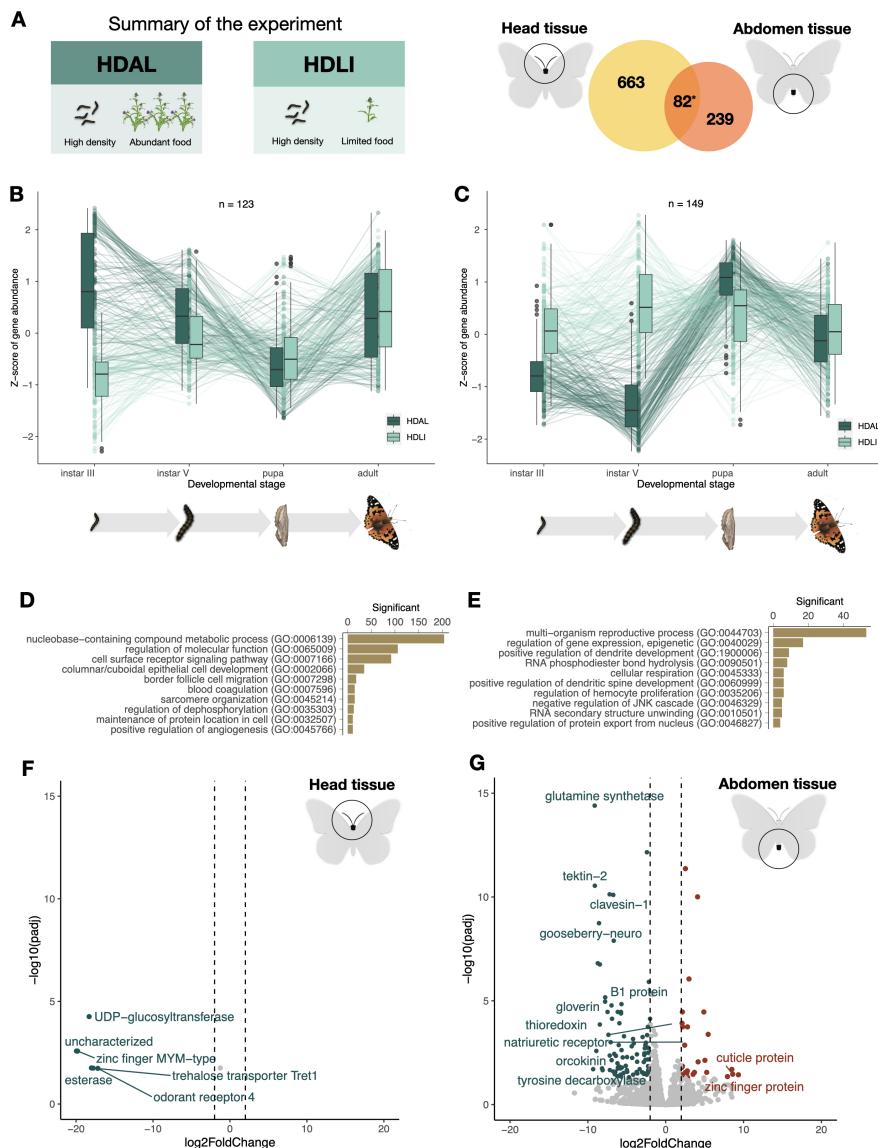
207 **3.2 | Gene expression variation associated with food availability during development**

208 To complement the analysis in adult females, we focused on investigating differential gene expression across devel-
209 opmental stages in experimental cohorts exposed to environments that varied in food availability and rearing density.
210 Again, we focused on the head and abdomen for the same reasons as indicated above. For the contrast between
211 experimental groups with differences in food availability during development (HDAL versus HDL), the likelihood
212 ratio tests revealed 745 and 321 significantly differentially expressed genes (FDR-adjusted p -value < 0.05) in the head
213 and abdomen, respectively. Notably, the two sets of genes with differential expression in the two respective tissues
214 demonstrated a high degree of overlap (Jaccard index = 0.1, p -value = 9.6×10^{-30} ; Figure 3A). To check which stages
215 contributed the most to the overall differences in expression patterns between treatment groups, we performed a
216 clustering analysis which groups genes based on the expression patterns across developmental stages, facilitating the
217 identification of genes with similar profiles and potential functional relationships. In head tissue, the most prominent

FIGURE 2 Volcano plots illustrating the relative levels of gene expression in the head (A) and abdomen (B) of adult females (x-axis; \log_2 fold change) in the two treatment groups with and without access to host plants for egg laying. Genes with a fold change difference $> |2|$ and FDR-adjusted p -value < 0.05 are depicted in dark orange (significantly higher expression in the treatment with host plants) and teal (significantly higher expression in the treatment without host plants), respectively, while non-significant genes are illustrated by grey dots. Only selected outlier gene names are shown. Outlier genes with \log_2 fold change values exceeding y-limit are shown by triangles, exact values provided in the supplement. (C) Venn diagram showing the number of overlapping and unique differentially expressed genes between the two tissues (head = orange, abdomen = yellow). (D) Bar plot showing the counts of the enriched (FDR-adjusted $p < 0.01$) gene ontologies for the significantly differentially expressed genes between the treatment groups for both tissues combined. (E) Bar plot illustrating the numbers of significantly differentially expressed genes enriched for KEGG pathways, both tissues combined. The higher hierarchical grouping is indicated by bar colors (legend to the right).

218 cluster comprised 123 genes (16.5% of the differentially expressed genes in this tissue; Figure 3B). The majority of
219 expression differences within this cluster were observed in instar III larvae. Similarly, in the abdominal tissue, 149
220 genes (46.4% of the differentially expressed genes) formed a distinct cluster. Genes within this cluster predominantly
221 showed differential expression in instar V larvae (Figure 3C).

222 The GO term analysis for differentially expressed genes in head tissue revealed both a general enrichment of
223 functions related to metabolic processes and regulation and more specifically enrichment of functions associated
224 with epithelial cell development, sarcomere organization, angiogenesis regulation and blood coagulation (Figure 3D,
225 Supplementary Table 5). Differentially expressed genes in abdominal tissue were predominantly associated with re-
226 productive processes, and neural and immune cell development (Figure 3E, Supplementary Table 6). In addition, a
227 joint KEGG pathway analysis of both tissues unveiled that functions associated with ribosome biogenesis (ko03008)
228 and aflatoxin biosynthesis (ko00254) were overrepresented.


229 The expression trajectories across developmental stages show that the influence of the environmental factors
230 on gene expression differences between experimental groups, in general, appears to diminish at the pupal and adult
231 stages. To investigate how environmental cues experienced during development are manifested in recently emerged
232 imagines in more detail, we compared differences in gene expression between adult individuals that had experienced
233 different environmental conditions during development specifically (Figure 3 F, G). In head tissue, only six genes ($p <$
234 0.05) showed significantly differential expression; *Tret1*, odorant receptor, UDP-glucosyltransferase, esterase and zinc-
235 finger MYM (Supplementary Table 7). These genes were downregulated in response to limited food treatment. In the
236 abdominal tissue, 189 ($p < 0.05$) genes were found to be differentially expressed between treatment groups. Among
237 the most prominent outliers were cuticle protein (upregulated in response to limited food source), gloverin, glutamine
238 synthetase, tektin, clavesin, gooseberry-neuro, orcokinin and tyrosine (downregulated in response to limited food
239 source) (outliers are listed in Supplementary Table 7).

240 3.3 | Gene expression variation associated with rearing density during development

241 To complement the analysis of gene expression variation associated with food plant availability during development,
242 we also compared treatment groups that were reared at different densities (10 larvae versus 1 larva per flask, HDAL
243 versus LDAL). In this comparison, we found a large number of genes differentially expressed in both the head (222
244 genes) and abdomen (372). There was also significant overlap between the tissues, i.e. a higher proportion of genes
245 were differentially expressed in both tissues than expected by chance (Jaccard Index = 0.2, p -value = 1.2×10^{-80} ;
246 Figure 4A).

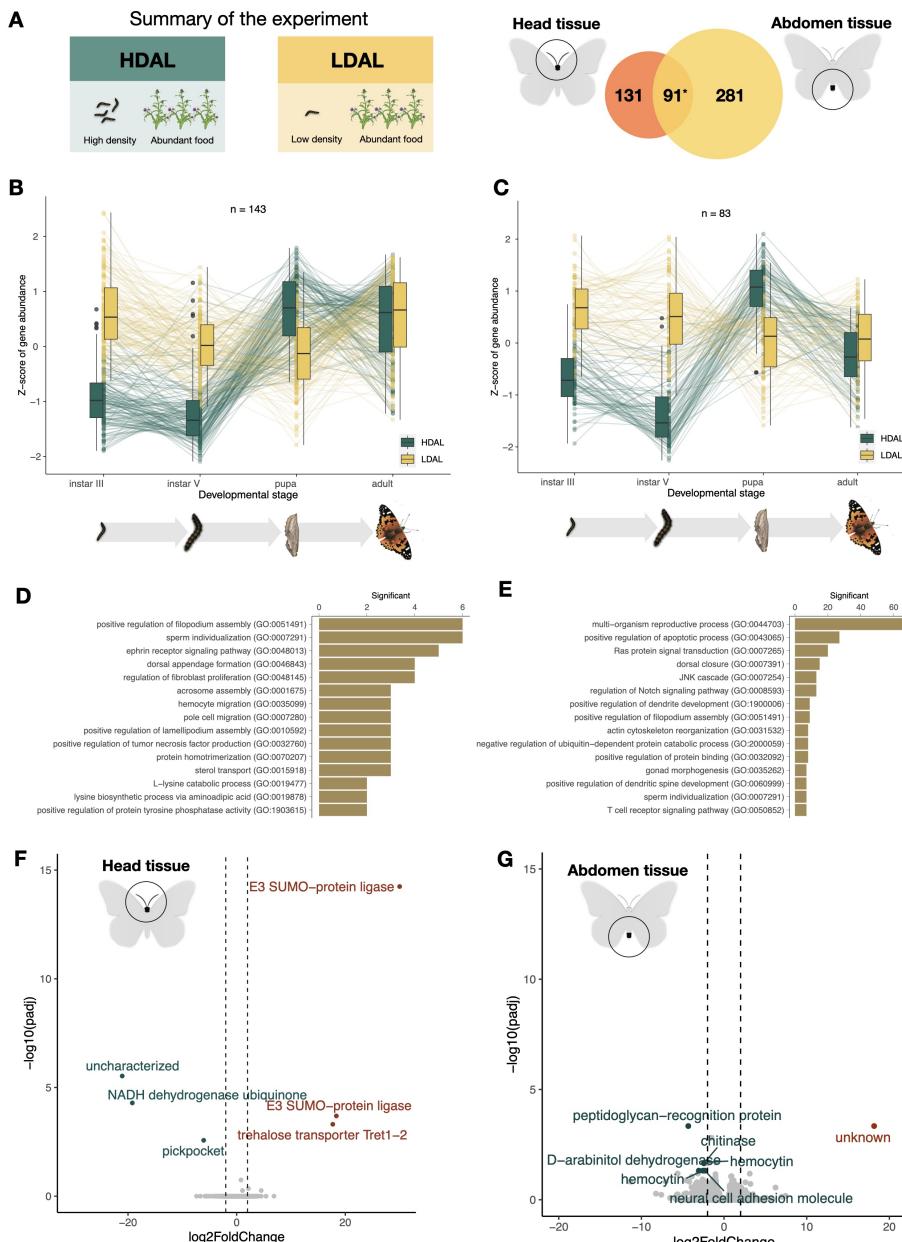
247 To investigate the temporal trajectories of differences in expression patterns between treatment groups during
248 development, we again performed a clustering analysis based on the expression patterns across the different devel-
249 opmental stages. In head tissue, the two main clusters contained 143 (38.4% of the differentially expressed genes in
250 this tissue; Figure 4B) and 69 (18.5%; Supplementary Figure 1) genes, respectively. Visual inspection clearly showed
251 that expression differences in instar III and V larvae were driving the overall patterns within these clusters (Figure 4B).
252 In the abdominal tissue, 83 genes (37.4% of the differentially expressed genes in this tissue) formed a distinct cluster
253 (Figure 4C). Again, this cluster was mainly distinguished by considerable differences in gene expression in the larval
254 stages (Figure 4C).

255 The gene ontology enrichment analysis of functional roles of differentially expressed genes in these clusters
256 revealed that the most enriched functional category was regulation of filopodia assembly in the head (Figure 4D).
257 We also found an enrichment of ontology terms related to sperm maturation, ephrin signaling, and several other
258 functional categories (Figure 4D, Supplementary Table 8). In the abdomen, there was a significant enrichment of

FIGURE 3 A summary of the results from the comparison between experimental groups with access to different amounts of food plants during development. (A) Summary of the experiment and a Venn diagram showing the number of differentially expressed genes in each respective tissue (left = head, right = abdomen) and the number of genes differentially expressed in both tissues (center). The star indicates that the number of overlapping genes was significantly higher than expected by chance. (B) and (C) Box plots showing the temporal patterns of differential expression across ontogenetic stages in the head (B) and abdomen (C). Outliers are indicated with circles, and temporal trends of gene expression levels for specific genes are illustrated with lines. (D) and (E) The top 10 most significantly overrepresented GO terms ($p < 0.01$) for differentially expressed genes in the head (D) and abdomen (E). (F) and (G) Volcano plots showing the relative levels of gene expression in the adult individuals for the head (F) and abdomen (G). Genes that are significantly differentially expressed and meet the threshold (FDR-adjusted p -value < 0.05 , \log_2 fold change difference $< |2|$) are highlighted. Dark orange marks genes that are upregulated in adults in the food limitation treatment [HDLI], while teal marks genes that are upregulated in the treatment where larvae had access to unlimited food [HDAL].

259 GO terms associated with reproductive processes, including functions such as egg formation, egg laying, and mating
260 development (Figure 4E, Supplementary Table 9). In addition, there were several enriched terms associated with signal
261 transduction like ephrin signaling, Ras signal transduction (involved in cell growth, division, and differentiation), Notch
262 Signaling (associated with neurogenesis) and JNK signaling (regulation of ubiquitin-dependent processes).

263 Analogous to the analysis based on food plant availability, we compared differences in gene expression between
264 recently emerged females that had experienced different levels of crowding during development (Figure 4 F, G, Sup-
265 plementary Table 10). In this comparison, six genes showed significant differences in expression level in head tissue,
266 of which functional information was available for five (Figure 4F). We found that two copies of the SUMO ligase and
267 a trehalose transporter were significantly higher expressed in the low density (LDAL) compared to the high density
268 treatment group (HDAL). The genes pickpocket and NADH dehydrogenase, in contrast, had a significantly higher
269 expression in the HDAL than in the LDAL treatment group. In the abdominal tissue, the peptidoglycan recognition
270 protein (PGRP), chitinase, hemocytin, D-arabinitol, and NCAM were significantly overexpressed in the LDAL treatment
271 group compared to HDAL, while no genes with known functions had higher expression in HDAL.


272 4 | DISCUSSION

273 4.1 | Transcriptomic response to availability of host plants in adult female butterflies

274 The ability of individuals to switch between migration and reproduction is a key adaptation for migratory insects
275 in general, and for long-distance migrants in particular (17–19). This capability can also be considered part of the
276 migratory syndrome, which includes a suite of traits that facilitate migration (55). This study addresses the need
277 to investigate the molecular mechanisms underlying the migration-reproduction trade-off, focusing on one of the
278 environmental triggers for initiating or terminating migratory behavior in butterflies—the presence and abundance of
279 host plants for egg-laying (40,56). We identified three major functional categories of genes activated in response to
280 this treatment: hormonal regulation, metabolic regulation, and immunity. Below, we discuss these categories in detail
281 and their connections to reproduction and migration.

282 Hormonal regulation has been shown to be important in controlling reproductive and migratory physiology and
283 having a central role in the trade-off between reproduction and migration in butterflies (57). Similarly, our results
284 from the analysis of gene expression variation associated with host plant availability for egg laying in adult females *V.*
285 *cardui* underscore the importance of hormonal regulation for the plastic response to host plant abundance – i.e. we
286 found significant changes in the expression of multiple genes regulating developmental hormones. Here, ecdysone
287 oxidase stood out with a striking difference in expression level between experimental groups. Ecdysone is a steroid
288 hormone crucial for numerous biological processes in metamorphic insects during major developmental transitions,
289 including the maturation of oocytes and control of oviposition (58–60). Ecdysone oxidase in turn regulates the levels
290 of active ecdysone by converting it to 3-dehydroecdysone and vice versa, thereby controlling the availability of active
291 hormones through a rapid feedback mechanism. We propose that increased expression of ecdysone oxidase, triggered
292 by the availability of host plants, modulates these hormone levels, enhancing reproductive investment (61).

293 Beyond ecdysone, other hormonal regulation pathways like juvenile hormone (JH) significantly contribute to the
294 reproductive-migratory trade-off, as seen in monarch butterflies (25,62). Additionally, genes involved in JH synthesis
295 were notably overexpressed in migrating hoverflies compared to sedentary ones (68). Similar patterns were observed
296 in our study with genes such as juvenile hormone esterase (JHE; regulation of juvenile hormone levels; (62,64), and
297 daywake and takeout genes (encoding juvenile hormone binding proteins), *nrf-6* (neuropeptide and hormone receptor),
298 and cytochrome-P450 (control of ecdysone biosynthesis; (65)), suggesting a complex interplay of gene regulation and

FIGURE 4 A summary of the results from the comparison between experimental groups, which were reared at different densities during development. (A) Summary of the experiment and a Venn diagram showing the number of differentially expressed genes in each respective tissue (left = head, right = abdomen) and the number of genes with significantly different expression in both tissues (center). The star indicates that the number of overlapping genes was significantly higher than expected by chance. (B) and (C) Box plots showing the temporal patterns of differential expression across ontogenetic stages in the head (B) and abdomen (C). Outliers are indicated with circles, and temporal trends of gene expression levels for specific genes are illustrated with lines. (D) and (E) The top 10 most significantly overrepresented GO terms ($p < 0.01$) for differentially expressed genes in the head (D) and abdomen (E), respectively. (F) and (G) Volcano plots showing the relative levels of gene expression in the adult female individuals for the head (F) and abdomen (G). Genes that are significantly differentially expressed and meet the threshold (FDR-adjusted p -value < 0.05 , \log_2 fold change difference $< |2|$) are highlighted. Dark orange marks genes that are upregulated in adults in low density treatment [LDAL], while teal spots mark genes that are upregulated in the treatment where larvae had access to unlimited food [HDAL].

299 hormonal crosstalk crucial for adapting to environmental cues. We have also shown previously, using chromatin
300 accessibility profiling, that *JHE* likely is upregulated in adult female butterflies with access to host plants for egg
301 laying (43). Taken together, our observations corroborate that the ecdysone pathway and the regulation of juvenile
302 hormone play pivotal roles in the plastic responses to environmental cues in insects in general (66,67) and that they
303 may constitute key components in the trade-off between migration and reproduction in butterflies in particular.

304 The role of immunity in migratory syndrome is multifaceted, suggesting energy may be redirected from immune
305 functions to aid migration or enhanced in response to varied pathogens (68,69). Our study revealed a strong immune
306 response in adult females exposed to environments without host plants, evidenced by a large number of upregulated
307 genes. Functional data from a diverse range of candidate genes identified in our study, allows us to speculate on the
308 exact pathways of this response. Notably, multiple peptidoglycan-recognition proteins (PGRPs) may guide the recogni-
309 tion of various pathogens (70), initiating the TOLL-signaling pathway and leading to the production of antimicrobial
310 peptides such as attacin (71), gloverin (72), lysozyme (73), and cecropin (74). Although we cannot establish causality
311 between expression differences of immune genes and investment in reproduction or migration, immune gene evo-
312 lution has been shown to be dynamic in migratory species in general (68) and may be of particular importance in *V.*
313 *cardui* where several immune genes are uniquely present in multi-copy arrays (35).

314 In addition to immune response adjustments, efficient utilization of energy is of ultimate importance in migratory
315 species. In insects, fat serves as the most efficient source for storage of energy (75,76) and lipids are indeed the main
316 fuel for flight (77). Corroborating that, we observed that pathways associated with metabolism have critical roles in
317 resource allocation trade-offs (71), we found that host plant availability variation resulted in differential expression of
318 multiple genes associated with lipid and carbohydrate metabolism, for example, dihydrodiol dehydrogenase (DHDH)
319 and doliol kinase (*DOLK*) genes (79).

320 Our study highlights the central role of hormonal regulation, metabolism, and immunity in butterflies' response to
321 host plant availability. Although our data and approaches do not allow us to establish a causative association between
322 host plant availability and investment in reproduction or migration per se, the gene expression analysis revealed a set
323 of candidate genes that can be used to investigate the molecular underpinnings of the reproduction-migration trade-
324 off in more detail. These findings may extend beyond the classical oogenesis-flight syndrome, suggesting broader
325 applicability in understanding synchronization between reproduction and migration. The next step will be to target
326 key genes in the regulatory pathways detected here, with a particular focus on the ecdysone pathway. It should be
327 noted that the trade-off between reproduction and migration in adult butterflies is likely not exclusively dictated by
328 environmental cues encountered after emergence. As a complementary step, we therefore explored how differences
329 in food plant availability and crowding affect the expression profiles across ontogenetic stages, from larvae to imagines.

330 4.2 | Effects on gene expression by differences in food plant availability and rearing 331 density during development

332 Both crowding and food resource availability have been shown to impact the timing of development and morphology
333 of migratory insects, which in turn directly affect the flight response norms and migration propensity (80,81). Insect
334 individuals experiencing starvation in general exhibit delayed development (33), prolonged larval stages and reduced
335 body sizes (81), and these effects have also previously been observed in *V. cardui* (82). Similarly, negative associations
336 between larval density and developmental rates have been established (28). This evidence arises from direct measure-
337 ment of resulting phenotypic traits, while molecular mechanisms involved in the responses are less studied (but see
338 e.g. 30). In our study, transcriptomic signatures of the response to periodic starvation and larval crowding confirmed
339 differences in the activation of developmental genes and pathways in multiple organ systems. Differentially expressed

340 genes were associated with ontology terms such as epithelial cell and dendrite development, sarcomere organization,
341 angiogenesis, and hemocyte proliferation.

342 Gene expression profiles suggest that the food limitation treatment appeared to specifically affect neural development.
343 Neural development and sensing are of particular importance for migratory insects, as they can largely influence
344 the plasticity of the response to perceived environmental cues in adults (81). In our experiment, two candidate
345 genes—odorant receptor 4 and esterase (odorant degrading protein)—were activated in adult individuals who had not
346 experienced food stress as larvae, suggesting enhanced environmental sensing (84). Conversely, the downregulation
347 of the gooseberry-neuro (*GsbN*) transcription factor suggests alterations in central nervous system development (85).
348 We therefore consider these particular genes as key candidates for further investigation of how environmental cues
349 are translated into behavioral responses.

350 The larval density experiment triggered differential expression of genes related development of reproductive systems,
351 which is illustrated by ontology terms such as sperm individualization and gonad morphogenesis. Early changes
352 in reproductive functions are particularly noteworthy in the context of the trade-off between reproduction and migration
353 in the adult stage, a topic previously discussed in relation to the host plant experiment. These results underscore
354 the role of the male reproductive system as well. Our result is in line with observations in other lepidopterans, such
355 as that *Plodia interpunctella*, and *Mythimna separata*, which have been shown to have increased sperm production in
356 response to crowding (86).

357 Alterations in metabolism at the molecular level appear to be a consistent response to all environmental cues
358 tested in this study, as evidenced by the earlier-mentioned responses to host-plant presence in adult females, and
359 the impacts of crowding and food scarcity across developmental stages and in adults. Notably, in the context of the
360 starvation treatment, we identified over 200 differentially expressed genes associated with the 'compound metabolic
361 process'. On the individual gene level, we observed differential expression of the trehalose transporter (*Tret1*) in
362 adults who experienced starvation during development. Trehalose is the primary sugar found in insect hemolymph,
363 synthesized in the fat body and subsequently distributed by transporters (87). Alteration of expression of *Tret1* was
364 also directly linked to active migration in insects (63). Among other candidate genes differentially expressed in the
365 density experiment were the metabolic genes NADH dehydrogenase and several chitinases (86).

366 Since the analysis spanned multiple developmental stages, from larval instar III to recently emerged imagines, we
367 gained insights into the temporal variation in gene expression and identified critical developmental periods where
368 the effect was particularly pronounced. Notably, the most significant gene expression differences occurred during
369 the larval stages in both experiments, especially in larval instar V—the final stage for *V. cardui* and a critical time
370 point for responding to environmental cues before metamorphosis (89). Our findings highlight genes associated with
371 programmed cell death, such as E3-type small ubiquitin-like modifier (SUMO) (90), and show enrichment in the JNK
372 and Ras signaling pathways, essential for the tissue remodeling required during metamorphosis (91). In general, the
373 last larval stage is accompanied by considerable physiological changes and environmental shifts during this period can
374 therefore have particular importance for plastic responses (92).

375 5 | CONCLUSIONS

376 In a host plant experiment designed to trigger the trade-off between migration and reproduction, we observed sig-
377 natures of gene expression consistent with those expected for the oogenesis-flight syndrome and highlighted the
378 crucial role of hormonal regulation. By subjecting larvae to different environmental cues, food abundance and larval
379 crowding, we examined the early predisposition for migratory plasticity. This approach allowed us to closely track the

380 timing of cue perception throughout development. Our findings revealed the peak of this response during the last
381 larval stage, emphasizing the role of the genes involved in developmental regulation and metabolism. Furthermore,
382 this led us to identify candidate genes and pathways that jointly contribute to the migratory syndrome.

383 **DATA AVAILABILITY AND BENEFIT-SHARING**

384 Raw sequence data (RNA-seq) are available at the European Nucleotide Archive under XXXXXXXX. The scripts used
385 to generate the analyses presented in the paper are archived on GitHub in the following repository:
386 <https://github.com/orgs/EBC-butterfly-genomics-team>.

387 The benefit arising from the utilization of genetic resources in this study is provided through the sharing of the
388 analysis scripts and code, which are freely available and accessible to the research community, consistent with appli-
389 cable international and national regulations.

390 **AUTHOR CONTRIBUTIONS**

391 NB contributed to the conception and design of the study. Lab work was performed by EP and LH with assistance
392 from KN and AP. Formal analysis and visualization were performed by DS with assistance from VT. DS and NB wrote
393 the manuscript. GT provided samples. NB supervised the study. Funding acquisition was handled by NB, GT, and RV.
394 All authors reviewed and approved the final manuscript.

395 **CONFLICT OF INTEREST DISCLOSURE**

396 The authors declare that they have no conflicts of interest.

397 **ACKNOWLEDGEMENTS**

398 Acknowledgments This work was funded by a research grant from the Swedish Research Council FORMAS (grant #
399 2019-00670 to N.B.) and The Swedish Collegium for Advanced Science (Natural Sciences Programme, Knut and Alice
400 Wallenberg Foundation, Postdoc funding for D.S.). R.V. was supported by grant PID2022-139689NB-I00 (MICIU/
401 AEI/ 10.13039/501100011033 and ERDF, EU) and by grant 2021-SGR-00420 (Departament de Recerca i Univer-
402 sitats, Generalitat de Catalunya). G.T. was supported by grants PID2020-117739GA-I00 MCIN / AEI / 10.13039/
403 501100011033, LINKA20399 from the CSIC iLink program and 2021-SGR-01334 (Departament de Recerca i Uni-
404 versitats, Generalitat de Catalunya). The authors acknowledge support from the National Genomics Infrastructure
405 in Stockholm funded by Science for Life Laboratory, the Knut and Alice Wallenberg Foundation and the Swedish Re-
406 search Council, and SNIC/Uppsala Multidisciplinary Center for Advanced Computational Science for assistance with
407 massively parallel sequencing and access to the UPPMAX computational infrastructure. The computations were en-
408 abled by resources provided by the National Academic Infrastructure for Supercomputing in Sweden (NAIIS) and the
409 Swedish National Infrastructure for Computing (SNIC) in Uppsala, partially funded by the Swedish Research Council
410 through grant agreements no. 2022-06725 and no. 2018-05973. We thank Jesper Boman and all members of the
411 Backström lab for helpful discussions.

412 **Bibliography**

- 413 1. Bell, A. M. (2023). The evolution of decision-making mechanisms under competing demands. *Trends in Ecology & Evolution*.
- 414 2. Stearns, S. C. (1989). Trade-offs in life-history evolution. *Functional Ecology*, 3(3), 259.
- 415 3. Aidley, D. J. (Ed.). (1981). *Animal migration*. Cambridge: Cambridge University Press. (Seminar series).
- 416 4. Williams, C. B. (1958). *Insect migration*. London: Collins. (New Naturalist; vol. xiii).
- 417 5. Williams, C. B. (1930). *The migration of butterflies*. Edinburgh: Oliver & Boyd. (Biological Monographs and Manuals; vol. 8).
- 418 6. Satterfield, D. A., Sillett, T. S., Chapman, J. W., Altizer, S., & Marra, P. P. (2020). Seasonal insect migrations: massive, influential, and overlooked. *Frontiers in Ecology and the Environment*.
- 419 7. Dingle, H. (2014). *Migration: The biology of life on the move*. Oxford: Oxford University Press.
- 420 8. Suchan, T., Talavera, G., Sáez, L., Ronikier, M., & Vila, R. (2019). Pollen metabarcoding as a tool for tracking long-distance insect migrations. *Molecular Ecology Resources*, 19(1), 149–162.
- 421 9. Jia, X., Liu, S., Zheng, H., Li, B., Qi, Q., Wei, L., et al. (2015). Non-uniqueness of factors constraint on the codon usage in *Bombyx mori*. *BMC Genomics*, 16(1), 356.
- 422 10. Reich, M., Shipilina, D., Talla, V., Bahleman, F., Kébé, K., Berger, J., et al. (2023). Isotope geolocation and population genomics in *Vanessa cardui*: Short- and long-distance migrants are genetically undifferentiated. Preprint bioarxiv.
- 423 11. Liedvogel, M., Åkesson, S., & Bensch, S. (2011). The genetics of migration on the move. *Trends in Ecology & Evolution*, 26(11), 561–569.
- 424 12. Kang, L., Chen, X., Zhou, Y., Liu, B., Zheng, W., Li, R., et al. (2004). The analysis of large-scale gene expression correlated to the phase changes of the migratory locust. *Proceedings of the National Academy of Sciences*, 101(51), 17611–17615.
- 425 13. Merlin, C., & Liedvogel, M. (2019). The genetics and epigenetics of animal migration and orientation: Birds, butterflies and beyond. *Journal of Experimental Biology*, 222(1, SI).
- 426 14. Guerra, P. A. (2011). Evaluating the life-history trade-off between dispersal capability and reproduction in wing dimorphic insects: A meta-analysis. *Biological Reviews*, 86(4), 813–835.
- 427 15. Hanski, I., Saastamoinen, M., & Ovaskainen, O. (2006). Dispersal-related life-history trade-offs in a butterfly metapopulation. *Journal of Animal Ecology*, 75(1), 91–100.
- 428 16. Tigreros, N., & Davidowitz, G. (2019). Flight-fecundity tradeoffs in wing-monomorphic insects. *Advances in Insect Physiology*, 56, 1–41.
- 429 17. Johnson, C. G. (1963). Physiological factors in insect migration by flight. *Nature*, 198(4879), 423–427.
- 430 18. Rankin, M. A., McAnelly, M. L., & Bodenhamer, J. E. (1986). The oogenesis-flight syndrome revisited. In: Danthanarayana W, editor. *Insect flight*. Berlin, Heidelberg: Springer Berlin Heidelberg. p. 27–48. (Proceedings in Life Sciences).
- 431 19. Rankin, M. A., Hampton, E. N., & Summy, K. R. (1994). Investigations of the oogenesis-flight syndrome in *Anthrenus grandis* (Coleoptera: Curculionidae) using tethered flight tests. *Journal of Insect Behavior*, 7(6), 795–810.
- 432 20. Cheng, Y. X., Luo, L. Z., Jiang, X. F., & Sappington, T. W. (2012). Synchronized oviposition triggered by migratory flight intensifies larval outbreaks of beet webworm. *PLoS ONE*, 7(2), e31562.
- 433 21. Malcolm, S. B., Vargas, N. R., Rowe, L., Stevens, J., Armagost, J. E., & Johnson, A. C. (2018). Sequential partial migration across monarch generations in Michigan. *Animal Migration*, 5(1), 104–114.
- 434 22. Han, L. Z., Gu, H. N., Zhai, B. P., & Zhang, X. X. (2008). Reproduction-flight relationship in the beet armyworm, *Spodoptera exigua* (Lepidoptera: Noctuidae). *Environmental Entomology*, 37(2), 374–381.

454 23. Gu, H., Hughes, J., & Dorn, S. (2006). Trade-off between mobility and fitness in *Cydia pomonella* L. (Lepidoptera: Tortricidae). *Ecological Entomology*, 31(1), 68–74.

455 24. Oliveira, G. A., Baptista, D. L., Guimarães-Motta, H., Almeida, I. C., Masuda, H., & Atella, G. C. (2006). Flight-oogenesis syndrome in a blood-sucking bug: Biochemical aspects of lipid metabolism. *Archives of Insect Biochemistry and Physiology*, 62(4), 164–175.

456 25. Green, D. A., & Kronforst, M. R. (2019). Monarch butterflies use an environmentally sensitive, internal timer to control overwintering dynamics. *Molecular Ecology*, 28(16), 3642–3655.

457 26. Herman, W. S. (1981). Studies on the adult reproductive diapause of the monarch butterfly, *Danaus plexippus*. *Biological Bulletin*, 160(1), 89–106.

458 27. Angelo, M. J., & Slansky, F. Jr. (1984). Body building by insects: Trade-offs in resource allocation with particular reference to migratory species. *Florida Entomologist*, 67(1), 22.

459 28. Butler, C. G., & Innes, J. M. (1936). A comparison of the rate of metabolic activity in the solitary and migratory phases of *Locusta migratoria*. *Proceedings of the Royal Society of London Series B - Biological Sciences*, 119(814), 296–304.

460 29. Wang, S., Yang, H., Hu, Y., Zhang, C., & Fan, D. (2023). Multi-omics reveals the effect of population density on the phenotype, transcriptome and metabolome of *Mythimna separata*. *Insects*, 14(1), 68.

461 30. Boggs, C. L., & Freeman, K. D. (2005). Larval food limitation in butterflies: Effects on adult resource allocation and fitness. *Oecologia*, 144(3), 353–361.

462 31. Niitepöld, K. (2019). Effects of flight and food stress on energetics, reproduction, and lifespan in the butterfly *Melitaea cinxia*. *Oecologia*, 191(2), 271–283.

463 32. Chen, Y., & Ruberson, J. R. (2008). Starvation effects on larval development of beet armyworm (Lepidoptera: Noctuidae). *Journal of Entomological Science*, 43(2), 247–253.

464 33. García-Berro, A., Talla, V., Vila, R., Wai, H. K., Shipilina, D., Chan, K. G., et al. (2023). Migratory behaviour is positively associated with genetic diversity in butterflies. *Molecular Ecology*, 32(3), 560–574.

465 34. Shipilina, D., Näsvall, K., Höök, L., Vila, R., Talavera, G., & Backström, N. (2022). Linkage mapping and genome annotation give novel insights into gene family expansions and regional recombination rate variation in the painted lady (*Vanessa cardui*) butterfly. *Genomics*, 114(6), 110481.

466 35. Lohse, K., Wright, C., Talavera, G., García-Berro, A., Darwin Tree of Life Barcoding collective, Wellcome Sanger Institute Tree of Life programme, et al. (2021). The genome sequence of the painted lady, *Vanessa cardui* Linnaeus 1758. *Wellcome Open Research*, 6, 324.

467 36. Talavera, G., & Vila, R. (2016). Discovery of mass migration and breeding of the painted lady butterfly *Vanessa cardui* in the Sub-Saharan: the Europe-Africa migration revisited. *Biological Journal of the Linnean Society*.

468 37. Talavera, G., Bataille, C., Benyamin, D., Gascoigne-Pees, M., & Vila, R. (2018). Round-trip across the Sahara: Afrotropical painted lady butterflies recolonize the Mediterranean in early spring. *Biology Letters*, 14(6).

469 38. Stefanescu, C., Puig-Montserrat, X., Samraoui, B., Izquierdo, R., Ubach, A., & Arrizabalaga, A. (2017). Back to Africa: autumn migration of the painted lady butterfly *Vanessa cardui* is timed to coincide with an increase in resource availability: Autumn migration of *Vanessa cardui*. *Ecol Entomol*. 42(6):737–47

470 39. Stefanescu, C., Puig-Montserrat, X., Samraoui, B., Izquierdo, R., Ubach, A., & Arrizabalaga, A. (2017). Back to Africa: Autumn migration of the painted lady butterfly *Vanessa cardui* is timed to coincide with an increase in resource availability. *Ecological Entomology*, 42(6), 737–747.

471 40. Stefanescu, C., Ubach, A., & Wiklund, C. (2021). Timing of mating, reproductive status and resource availability in relation to migration in the painted lady butterfly. *Animal Behaviour*, 172, 145–153.

472 41. Wiklund, C., & Friberg, M. (2022). Testing the migration syndrome: Comparative fecundity of migratory and

497 non-migratory nymphaline butterflies. *Ecological Entomology*, 47(6), 1061–1067.

498 42. Boman, J., Zhu, Y., Höök, L., Vila, R., Talavera, G., & Backström, N. (2023). Environmental stress during larval
499 development induces DNA methylation shifts in the migratory painted lady butterfly (*Vanessa cardui*). *Molecular
500 Ecology*, 32(13), 3513–3523.

501 43. Näsvall, K., Shipilina, D., Vila, R., Talavera, G., & Backström, N. (2023). Resource availability affects activity profiles
502 of regulatory elements in a long-distance butterfly migrant. *Preprints Authorea*.

503 44. Ewels, P. A., Peltzer, A., Fillinger, S., Patel, H., Alneberg, J., Wilm, A., et al. (2020). The nf-core framework for
504 community-curated bioinformatics pipelines. *Nature Biotechnology*, 38(3), 276–278.

505 45. Harshil, P., Ewels, P., Peltzer, A., Botvinnik, O., Sturm, G., Moreno, D., et al. (2023). nf-core/rnaseq: nf-core/rnaseq
506 v3.12.0 - Osmium Octopus. Zenodo. Available from: <https://zenodo.org/record/1400710>

507 46. Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. *EMBnet.journal*,
508 17(1), 10.

509 47. Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., et al. (2013). STAR: ultrafast universal
510 RNA-seq aligner. *Bioinformatics*, 29(1), 15–21.

511 48. Patro, R., Duggal, G., Love, M. I., Irizarry, R. A., & Kingsford, C. (2017). Salmon provides fast and bias-aware
512 quantification of transcript expression. *Nature Methods*, 14(4), 417–419.

513 49. Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq
514 data with DESeq2. *Genome Biology*, 15(12), 550.

515 50. Shen, L. S. (2017). GeneOverlap. Bioconductor. Available from: <https://bioconductor.org/packages/GeneOverlap>

516 51. Wu, T., Hu, E., Xu, S., Chen, M., Guo, P., Dai, Z., et al. (2021). clusterProfiler 4.0: A universal enrichment tool for
517 interpreting omics data. *The Innovation*, 2(3), 100141.

518 52. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. *Journal
519 of Molecular Biology*, 215(3), 403–410.

520 53. Alexa, A., & Rahnenfuhrer, J. (2021). topGO: Enrichment analysis for gene ontology. Bioconductor version: Re-
521 lease (3.13). Available from: <https://bioconductor.org/packages/topGO>

522 54. Li, Y., Ge, X., Peng, F., Li, W., & Li, J. J. (2022). Exaggerated false positives by popular differential expression
523 methods when analyzing human population samples. *Genome Biology*, 23(1), 79.

524 55. Dingle, H. (2001). The evolution of migratory syndromes in insects. In: Woiwood, I. P., Reynolds, D. R., & Thomas,
525 C. D., editors. *Insect movement: mechanisms and consequences*. Proceedings of the Royal Entomological Society's 20th
526 Symposium, London, UK, September 1999. 1st ed. UK: CABI Publishing. p. 159–181. Available from:
527 <http://www.cabidigitallibrary.org/doi/10.1079/9780851994567.0159>

528 56. Gamberale-Stille, G., Söderlind, L., Janz, N., & Nylin, S. (2014). Host plant choice in the comma butterfly-larval
529 choosiness may ameliorate effects of indiscriminate oviposition. *Insect Science*, 21(4), 499–506.

530 57. Rankin, M. A. (1991). Endocrine effects on migration. *American Zoologist*, 31(1), 217–230.

531 58. Niwa, R., & Niwa, Y. S. (2014). Enzymes for ecdysteroid biosynthesis: Their biological functions in insects and
532 beyond. *Bioscience, Biotechnology, and Biochemistry*, 78(8), 1283–1292.

533 59. Robbins, W. E., Kaplanis, J. N., Thompson, M. J., Shortino, T. J., Cohen, C. F., & Joyner, S. C. (1968). Ecdysones
534 and analogs: Effects on development and reproduction of insects. *Science*, 161(3846), 1158–1160.

535 60. Swevers, L., & Iatrou, K. (2003). The ecdysone regulatory cascade and ovarian development in lepidopteran
536 insects: Insights from the silkworm paradigm. *Insect Biochemistry and Molecular Biology*, 33(12), 1285–1297.

537 61. Cheng, D., Cheng, T., Yang, X., Zhang, Q., Fu, J., & Feng, T. (2018). The genome-wide transcriptional regulatory
538 landscape of ecdysone in the silkworm. *Epigenetics & Chromatin*, 11(1), 48.

539 62. Herman, W. S., & Tatar, M. (2001). Juvenile hormone regulation of longevity in the migratory monarch butterfly.

540 Proceedings of the Royal Society of London. Series B: Biological Sciences, 268(1485), 2509–2514.

541 63. Doyle, T., Jimenez-Guri, E., Hawkes, W. L. S., Massy, R., Mantica, F., Permanyer, J., et al. (2022). Genome-wide
542 transcriptomic changes reveal the genetic pathways involved in insect migration. *Molecular Ecology*, 31(16),
543 4332–4350.

544 64. Zhang, L., Cheng, L., Chapman, J. W., Sappington, T. W., Liu, J., Cheng, Y., et al. (2020). Juvenile hormone
545 regulates the shift from migrants to residents in adult oriental armyworm, *Mythimna separata*. *Scientific Reports*,
546 10(1), 11626.

547 65. Namiki, T., Niwa, R., Sakudoh, T., Shirai, K., Takeuchi, H., & Kataoka, H. (2005). Cytochrome P450 CYP307A1/Spook:
548 A regulator for ecdysone synthesis in insects. *Biochemical and Biophysical Research Communications*, 337(1),
549 367–374.

550 66. Dingle, H., & Winchell, R. (1997). Juvenile hormone as a mediator of plasticity in insect life histories. *Archives of*
551 *Insect Biochemistry and Physiology*, 35(4), 359–373.

552 67. Lafuente, E., & Beldade, P. (2019). Genomics of developmental plasticity in animals. *Frontiers in Genetics*, 10(JUL),
553 1–18.

554 68. O'Connor, E. A., Cornwallis, C. K., Hasselquist, D., Nilsson, J. Å., & Westerdahl, H. (2018). The evolution of
555 immunity in relation to colonization and migration. *Nature Ecology & Evolution*, 2(5), 841–849.

556 69. Shaw, A. K., Levet, M., & Binning, S. A. (2023). A unified evolutionary framework for understanding parasite
557 infection and host migratory behaviour. *Ecology Letters*, 26(11), 1987–2002.

558 70. Tong, D., Zhang, L., Wu, N., Xie, D., Fang, G., Coates, B. S., et al. (2022). The oriental armyworm genome yields
559 insights into the long-distance migration of noctuid moths. *Cell Reports*, 41(12), 111843.

560 71. Buonocore, F., Fausto, A. M., Della Pelle, G., Roncevic, T., Gerdol, M., & Picchietti, S. (2021). Attacins: A promising
561 class of insect antimicrobial peptides. *Antibiotics*, 10(2), 212.

562 72. Xu, X. X., Jin, F. L., Wang, Y. S., Freed, S., Hu, Q. B., & Ren, S. X. (2015). Molecular cloning and characterization
563 of gloverin from the diamondback moth, *Plutella xylostella* L. and its interaction with bacterial membrane. *World*
564 *Journal of Microbiology and Biotechnology*, 31(10), 1529–1541.

565 73. In Seok, B., & Yoe, S. M. (2005). Purification and cDNA cloning of lysozyme II from cabbage butterfly, *Artogeia*
566 *rapae* larvae. *Entomological Research*, 35(4), 207–211.

567 74. Lee, E., Shin, A., & Kim, Y. (2015). Anti-inflammatory activities of cecropin A and its mechanism of action. *Archives*
568 *of Insect Biochemistry and Physiology*, 88(1), 31–44.

569 75. Arrese, E. L., & Soulages, J. L. (2010). Insect fat body: Energy, metabolism, and regulation. *Annual Review of*
570 *Entomology*, 55(1), 207–225.

571 76. Beenakkers, A. M. T., Van Der Horst, D. J., & Van Marrewijk, W. J. A. (1981). Role of lipids in energy metabolism.
572 In: Downer, R. G. H., editor. *Energy metabolism in insects*. Boston, MA: Springer US. p. 53–100. Available from:
573 http://link.springer.com/10.1007/978-1-4615-9221-1_3

574 77. Brower, L. P., Fink, L. S., & Walford, P. (2006). Fueling the fall migration of the monarch butterfly. *Integrative and*
575 *Comparative Biology*, 46(6), 1123–1142.

576 78. Bhaumik, V., & Kunte, K. (2018). Female butterflies modulate investment in reproduction and flight in response
577 to monsoon-driven migrations. *Oikos*, 127(2), 285–296.

578 79. Jones, C. M., Papanicolaou, A., Mironidis, G. K., Vontas, J., Yang, Y., Lim, K. S., et al. (2015). Genome-wide
579 transcriptional signatures of migratory flight activity in a globally invasive insect pest. *Molecular Ecology*, 24(19),
580 4901–4911.

581 80. Bhavanam, S., & Trewick, S. A. (2022). Effects of population density on adult morphology and life-history traits of
582 female Mediterranean flour moth, *Ephestia kuehniella* (Lepidoptera: Pyralidae). *European Journal of Entomology*,

583 119, 191–200.

584 81. Zhang, D. W., Xiao, Z. J., Zeng, B. P., & Li, K., Tang, Y. L. (2019). Insect behavior and physiological adaptation
585 mechanisms under starvation stress. *Frontiers in Physiology*, 10, 163.

586 82. Kelly, L., & Debinski, D. M. (1999). Effects of larval food-limitation on *Vanessa cardui* Linnaeus (Lepidoptera:
587 Nymphalidae). *American Midland Naturalist*, 141(2), 315–322.

588 83. Bauerfeind, S. S., & Fischer, K. (2005). Effects of food stress and density in different life stages on reproduction
589 in a butterfly. *Oikos*, 111(3), 514–528.

590 84. Godoy, R., Machuca, J., Venthur, H., Quiroz, A., & Mutis, A. (2021). An overview of antennal esterases in Lepi-
591 doptera. *Frontiers in Physiology*, 12, 643281.

592 85. Bonneaud, N., Layalle, S., Colomb, S., Jourdan, C., Ghysen, A., Severac, D., et al. (2017). Control of nerve cord for-
593 mation by Engrailed and Gooseberry-Neuro: A multi-step, coordinated process. *Developmental Biology*, 432(2),
594 273–285.

595 86. Gage, M. J. G. (1995). Continuous variation in reproductive strategy as an adaptive response to population den-
596 sity in the moth *Plodia interpunctella*. *Proceedings of the Royal Society of London Series B: Biological Sciences*,
597 261(1360), 25–30.

598 87. Kikawada, T., Saito, A., Kanamori, Y., Nakahara, Y., Iwata, K., & Tanaka, D., et al. (2007). Trehalose transporter 1,
599 a facilitated and high-capacity trehalose transporter, allows exogenous trehalose uptake into cells. *Proceedings
600 of the National Academy of Sciences*, 104(28), 11585–11590.

601 88. Morimoto, J., Wenzel, M., Derous, D., Henry, Y., & Colinet, H. (2022). The transcriptomic signature of responses
602 to larval crowding in *Drosophila melanogaster*. *Insect Science*, 29(6), 1744–7917.

603 89. Truman, J. W., & Riddiford, L. M. (2019). The evolution of insect metamorphosis: A developmental and endocrine
604 view. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 374(1783), 20190070.

605 90. Enserink, J. M. (2015). Sumo and the cellular stress response. *Cell Division*, 10(1), 4.

606 91. Tettamanti, G., & Casartelli, M. (2019). Cell death during complete metamorphosis. *Philosophical Transactions of
607 the Royal Society B: Biological Sciences*, 374(1783), 20190065.

608 92. Mirth, C. K., Saunders, T. E., & Amourda, C. (2021). Growing up in a changing world: Environmental regulation of
609 development in insects. *Annual Review of Entomology*, 66(1), 81–99.