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Abstract

Large language models (LLMs) have made substantial
strides, but their use in reliably tackling issues within
specialized domains, particularly in interdisciplinary
areas like pharmaceutical sciences, is hindered by data
heterogeneity, knowledge complexity, unique objectives,
and a spectrum of constraint conditions. In this area,
diverse modalities such as nucleic acids, proteins,
molecular structures, and natural language are often
involved. We designed a specialized token set and
introduced a new Mixture-of-Experts (MoEs) pre-
training and fine-tuning strategy to unify these
modalities in one model. With this strategy, we've
created a multi-modal mixture-of-experts foundational
model for pharmaceutical sciences, named SciMind.
This model has undergone extensive pre-training on
publicly accessible datasets including nucleic acid
sequences, protein sequences, molecular structure
strings, and biomedical texts, and delivers good
performance on biomedical text comprehension,
promoter prediction, protein function prediction,
molecular description, and molecular generation.

1 Introduction

Large language models (LLMs) have made
substantial strides, providing a versatile, task-
agnostic base for a variety of applications[1], [2],
[3]. However, their use in reliably tackling issues
within specialized domains, particularly in
interdisciplinary areas like pharmaceutical sciences,
is hindered by several obstacles. These include data
heterogeneity, knowledge complexity, unique
objectives, and a spectrum of constraint conditions,
which block the creation of groundbreaking
applications[4], [5], [6]. This research aims to lay
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Figure 1: An overview of the four modalities in
pharmaceutical sciences. The three traditional
modalities, including nucleic acids (DNA/RNA),
proteins, and small molecules, are typically
modeled independently. Recent advancements
have been made in the realm of cross-modal
modeling, as indicated by the solid lines. However,
there is a gap domain. In recent times, the natural
language modality has surfaced as a highly
promising method to describe nucleotide
sequences, small molecules, and proteins, and it is
swiftly garnering attention.

the groundwork for a large-scale model within the
pharmaceutical sciences. In this area, four diverse
modalities including nucleic acids, proteins,
molecular structures, and natural language are
involved. Of them, nucleic acids, proteins and
molecular structures are the common modalities
modeled by the pharmaceutical science community.
Predicting the properties of a molecule or a
protein[7], [8], [9], designing and optimizing for
new ones[10], [11], [12], and understanding how
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Figure 2: SciMind multi-modal model overview. A, there are four modalities in SciMind, and different modality
was designated with different tokens to represent their sequences; B, based on llama-2-7B, 16 experts are split
using restricted K-Means clustering according to the feedforward layer weights. A routing layer is added before
the feedforward layer of the original model, and domain data is used to pretrain or fine-tune the routing layer to
achieve the selection of different experts for different tokens.

they interact with each other [13], [14], [15] are
common tasks and have made great progress. For
example, AlphaFold3 and RosettaFold All-Atom
models can even predict all interactions among
these modalities.

However, a gap exists between these interactions
and biological functions. While binding is common
between proteins and molecules, the effects it may
cause are rare and often expressed in natural
language  after  experimentation, = making
standardization for modeling challenging. The
effects a molecule can cause by binding to a protein
are diverse, including competitive inhibition, non-
competitive inhibition, agonizing, antagonizing,
allosteric  regulation, covalent modification,
transport, and chelation, among others[16]. These
effects are interconnected yet distinct from one
another. Modeling each effect separately requires
standardization and a separate classification or
regression model, often leading to a loss of
semantic meaning in the labels. In contrast, natural
language descriptions provide an abstract and
meaningful form of labeling for data, capable of
conveying rich information.

Recent advancements in LLMs have propelled the
development of cross-modal models between
language and other modalities[4], [17], [17], [18],

[19], [20]. These models, which include language-
molecule, language-protein, and language-nucleic
acids modalities, extend our capabilities to predict
molecule functions, generate or optimize
molecules with flexible constraints, annotate
protein functions, and create or optimize proteins.
However, their modality fusion is limited to two
modalities.

In the field of pharmaceutical sciences, multiple
modalities can be integrated, as depicted in Figure
1. If a model capable of managing all these
modalities exists, then all biomedical text
knowledge could be stored in a richly informative
format. To address this, we've developed a
specialized token set designed to individually
tokenize different modalities. We also introduce a
novel pre-training and fine-tuning strategy that
harnesses the benefits of large-parameter models
while minimizing their costs. This strategy, based
on previous work MoEfication[21], involves two
key components: (1) splitting the parameters of
Feed-Forward Networks (FFNs) into multiple
functional partitions called experts, and (2)
building expert routers to determine which experts
will be used for each input. By adopting a selective
unequal number of expert activation strategy on
different tokens, this approach enables data from
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different modalities to choose the most appropriate
processing path. This approach not only results in a
sparser model architecture, thereby reducing
inference costs, but also circumvents modal
alignment and potential performance decreases due
to model size reduction. The main contributions of
our work are as follows:

1) We've created a multi-modal mixture-of-expert
foundational large model for pharmaceutical
sciences, named SciMind. This model has
undergone extensive pre-training on publicly
accessible datasets including nucleic acids,
protein sequences, molecular structures strings,
and biomedical texts, and could be fine-tuned
for downstream tasks involving all modalities
in pharmaceutical sciences.

2) SciMind achieves state-of-the-art performance
on benchmarks of molecular captioning and
molecular generation by description.

2 Related works

In this section, we will provide a concise overview
of the related work on cross-modal models in the
field of pharmaceutical sciences.

2.1 Cross Language-Molecule Modalities

The pioneering work of MolT5 has paved the way
for research in molecular captioning and generation
by description, introducing the ChEBI benchmark
dataset for this purpose[18]. Subsequent models
such as MoSu[22], MolXPT[23], BioT5[24], and
Mol-instruction[25] have expanded the scope of
tasks to include numeric molecular property
prediction. However, the scarcity of language-
molecule pair datasets remains a challenge. To
address this, the PubchemSTM[19] and L+M-
24[26] datasets have been introduced, leading to
improvements in molecular retrieval and editing
constrained by language.

2.2 Cross Language-Protein Modalities

ProteinDT[27] and Mol-Instruction[25] are
examples of multi-modal frameworks that leverage
semantically related text for protein annotation and
design. BioTranslator[28], a cross-modal model, is
specifically designed for annotating biological
entities such as gene expression vectors, protein
networks, and protein sequences based on user-
provided text. Building on the blip2 framework,
Mistral and ESM2 have been used to create
FAPM]29], which has achieved state-of-the-art
results in protein functional Go Terms prediction

and demonstrates strong generalization to proteins
with few homologs.

3 SciMind

In this section, we will detail the design and
training of our multi-modal mixture-of-experts
model, SciMind. The overview of the pre-training
is illustrated in Figure 2. Unlike existing models,
our focus is on integrating all modalities into a
single model. To this end, we have designed
specialized token sets for each modality. However,
each modality has a different level of complexity
and requires a different number of parameters to
avoid overfitting. To leverage the many open-
source pretrained language models, we have
chosen to construct a Mixture-of-Experts model by
splitting the pretrained LLAMA-2-7B model into
16 experts at each of the feedforward layers.

3.1 Pre-training Corpus

The pre-training corpus includes only single
modality data, which are general text, nucleic acids
sequences, protein amino acid sequences, and
molecule SMILES (Simplified Molecular-Input
Line-Entry System) strings. The details of the
corpus are provided in Appendix A.

3.2 Tokenization

In previous work on cross-language modalities
with nucleic acids, molecules, and proteins, the
token set was often inherited from NLP methods
such as SentencePiece[30]. However, given the
different modalities and their unique next-token
distributions, we have chosen to tokenize the
sequences from nucleic acids, molecules, and
proteins by characters, with different brackets used
to distinguish characters in different modalities
(Figure 2a).

3.3 Mixture-of-Experts

Based on the LLAMA-2-7B model, we have split
16 experts using restricted K-Means clustering
according to the feedforward layer weights (Figure
2b). A routing layer has been added before the
feedforward layer of the original model, and
different modality data are fed to pretrain or fine-
tune the routing layer to achieve the selection of
different experts for different tokens. Considering
the propensity to overfit on nucleic acids, protein
sequences, and molecule SMILES strings, and our
desire to preserve the original language capabilities,
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BioLinkBERT GPT3.5

Tasks Entitytype No.entities EvaluationMetrics Large (few-shots) SciMind
Name Entity Recognition

BCS5CDR Disease Disease 19,665 Flentity-level 0.940 0.603 0.957
BC5CDR Chem Chemical 12,694 Flentity-level 0.864 0.518 0.881
NCBI Disease Disease 6881 Flentity-level 0.888 0.505 0.855
BC2GM Chemical 79,842 Flentity-level 0.852 0.375 0.898
JNLPBA Gene 20,703 MicroF1 0.801 0.413 0.842
Relation Extraction

Chemprot Protein-chemical 10,031 MicroF1 0.800 0.342 0.861
DDI Chemical-chemical 4,920 MicroF1 0.834 0.516 0.844
GAD Gene-disease 5330 MicroF1 0.849 0.524 0.805
Question Answering

PubMedQA Yes/No/Maybe 1000 Accuracy 0.722 0.765 0.796
BioASQ Summary 885 Accuracy 0.948 0.886 0.950

Table 1: Performances on pharmaceutical sciences domain knowledge comprehension and extraction. The

metrics of BioLinkBERT-Large and ChatGPT(few-shots) are taken from the original papers.

we adopted a selective expert activation strategy.
For text tokens, we engaged 8 out of the 16 experts.
Conversely, for tokens corresponding to other
modalities, we restricted the activation to merely 2
out of the 16 experts.

3.4 Pretraining

We employed the Huawei MindSpore training
framework for pre-training purposes on Huawei
Ascend 910 Al chips. Prior to inputting the
processed data into the model, an extra step was
taken to expedite the training process. This
involved converting the data format into the
MindRecord format. The Ascend Al framework
offers a variety of parallel training modes, efficient
memory reuse, and features like automatic mixed
precision. These capabilities significantly enhance
the training of large-scale models. For further
acceleration, we utilized the MindFormer operator

answering, SciMind surpassed the previous state-
of-the-art model, BioLinkBert-Large, in eight tasks.

4.2 DNA promoter prediction

Predicting gene function is vital for comprehending
intricate  biological processes. This involves
forecasting functional elements and interaction
modalities in both coding regions and non-coding
sequences that govern gene transcription.
Promoters, integral elements in the non-coding
regions of genes, regulate gene transcription by
managing RNA polymerase binding and initiation.
Therefore, the precise prediction of promoter sites
is essential for understanding gene expression and
genetic regulatory networks.

We evaluated the performance of SciMind using
the benchmark data set by DeePromoter. The
results presented in Table 2 indicate that SciMind's

during the training process. Method Precision Recall MCC
Organism
. DeePromoter 0.93 0.95 0.88
4 Experiments and Results Human TATA
SciMind 0.92 091 0.84
4.1 Domain Knowledge comprehension DeePromoter  0.97 095 0.92
i Human non-TATA
GPT3.5, whep utilizing few—shot prompts, tend.s to SciMind 0.96 097 0.94
struggle with understanding pharmaceutical
. . . DeePromoter 0.92 0.95 0.87
domain k'nowledge., 'partlcularly in tasks sgch 88 \ioce TATA o
name entity recognition and relation extraction. In SciMind 0.90 0.96 0.83
. . e
light of previous research, we eYaluated SciMind's DeePromoter  0.91 090 0.82
performance on domain knowledge = Mouse non-TATA
SciMind 0.92 0.96 0.87

comprehension benchmarks. As illustrated in Table
1, across ten tasks encompassing name entity
recognition, relation extraction, and question

Table 2: Performances on prompt DNA promoter
prediction.
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Benchmark  Model BLEU-21 BLEU-4%t ROUGE-11 ROUGE-21 ROUGE-L1 METEOR 1}
MolT5-Large*  0.594 0.508 0.654 0.510 0.594 0.614

ChEBI Mistral-7B 0.604 0.521 0.658 0.522 0.597 0.634
SciMind 0.626 0.560 0.679 0.532 0.629 0.657
MolT5-Large”  0.736 0.532 0.758 0.564 0.544 0.722
Mistral-7B* 0.749 0.543 0.771 0.574 0.555 0.729

L+M-24 )
Meditron-7B*  0.752 0.547 0.780 0.588 0.563 0.737
SciMind* 0.757 0.550 0.782 0.584 0.563 0.748

Table 3: Performances on molecular captioning. The metrics value of methods annotated with * are taken from
the original paper. And the metrics value of methods annotated with # are taken from the contest leaderboard
(https://www.codabench.org/competitions/2914), where SciMind ranked No.1. Other metrics values are evaluated

following the process of previous work.

predictive performance is on par with DeePromoter
in this task. Moreover, SciMind exhibits a slight
edge in predicting data with non-TATA promoters.
These promoters are more prevalent in certain
organisms and types of genes, and they can be
involved in more complex regulatory processes.

4.3 Molecular captioning

The objective of the molecule captioning task is to
provide a structural or biological functional
description for a given molecule. In our approach,
we represent molecules using SMILES strings,
thereby transforming the task into a seq2seq
translation problem. This problem is well-suited for
processing by large language models. We have two
benchmark datasets with varying sizes. The ChEBI
dataset is annotated by humans, while the L+M-24
dataset is summarized by ChatGPT. A notable
difference is that some ChEBI data includes
descriptions identifying the core structures of
molecules.

As shown in Table 3, our Mixture-of-Experts-based
SciMind model achieves state-of-the-art (SOTA)
performance on most of the metrics in both
benchmark datasets.

4.4 Molecular generation

Molecular generation is the reverse task of
molecule captioning. Given a natural language
description of the desired molecule, the goal is to
generate a molecule that matches the description.
The results in Table 4 demonstrate that our
Mixture-of-Experts-based SciMind achieves state-
SOTA performance on most metrics across both
benchmarks.

4.5 Protein-oriented prediction

We leverage the protein-oriented instruction
dataset from Mol-Instruction to fine-tune SciMind.
Figure 3 shows the Rouge-L metrics of five
methods across four tasks: protein function, general
description, catalytic activity, and domain/motif

Benchmark Model BLEU? Exact! Levenshtein | r%CTCS IFUT); rT"SrgTa“ Validity 1
MolT5-large* 0854 0311 1607 0.834 0.746  0.684  0.905

ChEBI Mistral-7B 0.850 0380  18.00 0.896 0.818 0757 0035
SciMind 0.863 0383 1599 0.885 0813 0762  0.992
MolT5-base*  0.664 0 46.51 0.746 0.637 0463  0.999
MolT5-large*  0.549 0 57.34 0.741 0.634 0385  0.991

L+M-24 Mistral- 7BF  0.699 0 44.44 0.756 0.676  0.486  0.994
Meditron.7B¢  0.676  0.0001  48.03 0.756 0.677 0487  0.995
SciMind* 0.707  0.0001  43.48 0.756 0.677 0488  0.997

Table 4: Molecular generation based on description. The metrics value of methods annotated with * are taken from
the original paper. And the metrics value of methods annotated with # are taken from the contest leaderboard
(https://www.codabench.org/competitions/3014), where SciMind ranked No.1. Other metrics values are

evaluated following the process of previous work.
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Figure 3: Performance on protein-oriented prediction

prediction. Compared to other single-modal
language models, SciMind achieves the best
performance on Rouge-L metrics across all four
tasks.

5 Conclusions and discussion

In this paper, we introduced SciMind, a unified pre-
training framework designed to include all the
modalities in pharmaceutical sciences. we've
designed a specialized token set and introduce a
new pre-training and fine-tuning strategy that
leverages the advantages of large-parameter
models while minimizing their expenses. This
strategy, supported by a prior expert allocation and
selection mechanism, allows data of different
modalities to choose the most suitable processing
path. This method not only leads to a sparser model
architecture, thus cutting down on inference costs,
but also avoids modal alignment and the potential
performance decrease due to model size reduction.
We've created a multi-modal mixture-of-expert
foundational large model for pharmaceutical
sciences, named SciMind. This model has
undergone extensive pre-training on publicly
accessible datasets including nucleic acids, protein
sequences, molecular structures strings, and
biomedical texts, and could be fine-tuned for
downstream tasks involving all modalities in
pharmaceutical ~sciences. The experimental
outcomes suggest that the SciMind model not only
delivers outstanding performance but also shows
high flexibility and interpretability in response to
prompt words, offering a sturdy base for its use in
pharmaceutical sciences.

Due to the lack of well-aligned multimodal data,
our model has not fully demonstrated its

advantages. In addition to molecular captioning
and generation by description, the inclusion of the
protein modality will make the interaction between
the language and small molecule modalities more
explainable and useful. This approach helps
accumulate more information and is a promising
direction to explore.
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A Pre-training Corpus Accordingly, we fine-tune and test our models
using either the pre-split datasets or by splitting the
DNA data data in the same manner as the original studies.

Our pretraining data for nucleic acid sequences is
derived from DNABERT S, which includes a
human genome dataset containing 2.75 billion
nucleotide bases. The multi-species genome
dataset includes genomes from 135 different
species, distributed across 6 categories and
containing a total of 32.49 billion nucleotide bases,
which is 12 times the size of the human genome
dataset. We use *| |* to separate the characters in
the nucleic acids, as shown in Figure 2a.

RNA data
This dataset is a subset of the RNAcentral active
fasta file, available at

https://ftp.ebi.ac.uk/pub/databases/RNAcentral/rel
eases/24.0/sequences/rnacentral _active.fasta.gz,
that has been converted to the parquet format. It
represents approximately 10% of the overall
dataset and contains 3,252,483 (3.2 million)
sequences, comprising a total of 2,642,703,990
(2.6 billion) bases. We use *| |* to separate the
characters in the nucleic acids, as shown in Figure
2a.

Protein data

Protein sequence databases, such as UniParc,
contain a wide variety of sequences from different
organisms. In our experiments, we follow the esm
work and used the 250 million sequences from the
UniParc database, which contains a total of 86
billion amino acids. These datasets are similar in
size to large text corpora that are commonly used
to train high-capacity neural network models for
natural language processing tasks. We use <| [> to
separate the characters in the protein sequences, as
shown in Figure 2a.

Molecule data

The  molecular data is taken  from
https://huggingface.co/datasets/kjappelbaum/chem
nlp iupac smiles, which contains 30 million
molecules' SMILES and their IUPAC names. We
use {| |} to separate the characters in the molecule
SMILES, as shown in Figure 2a.

B Finetuning corpus

All downstream tasks in this paper have been
benchmarked  against  previous studies.
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