

1 ASM AAC: Short report

2 **Antiparasitic effect of peptoids against *Cryptosporidium parvum***

3 Bridget Lamont^a, Bruce M Russell^{a,b*}, Rossarin Suwanarusk^a, Josefine Eilsø Nielsen^{c,d}, Kristian
4 Sørensen^d, Deborah Yung^a, Annelise E. Barron^d, Daniel Pletzer^a, Morad-Remy Muhsin-Sharaafaldine^{a*}

5 ^aDepartment of Microbiology and Immunology, University of Otago, Dunedin, New Zealand

6 ^bDepartment of Parasitology and Entomology, Faculty of Public Health, Mahidol University, Bangkok,
7 Thailand

8 ^cDepartment of Science and Environment, Roskilde University, 4000 Roskilde, Denmark

9 ^dDepartment of Bioengineering, Stanford University, School of Medicine, Stanford, CA 94305, USA

10

11 *Correspondence

12 morad.remy@gmail.com

13 b.russell@otago.ac.nz

14 **Cryptosporidiosis, caused by *Cryptosporidium parvum*, poses significant health risks, particularly
15 for children and immunocompromised individuals. Current treatments are ineffective in these
16 vulnerable groups. This study explores the antiparasitic effects of against *C. parvum*. Out of 14
17 synthetic peptidomimetics (peptoids) screened, TM9 and TM19 exhibited potent anti-
18 cryptosporidial activity without harming host cells. These findings suggest that peptoids could be a
19 promising new therapeutic avenue for cryptosporidiosis, warranting further investigation.**

20 Cryptosporidiosis, caused by the intestinal protozoan parasite *Cryptosporidium parvum*, causes
21 diarrheal disease in humans and other mammals [1, 2]. This disease can result in life long symptoms
22 and loss of life, particularly in children under five years of age or those who are
23 immunocompromised [3, 4]. Despite its severe clinical manifestation for these groups, research into
24 this parasite continues to be neglected and is made more difficult by the absence of an optimal *in
vitro* continuous culture of the parasite. Furthermore, there are only two approved drugs to treat
26 cryptosporidiosis in humans, nitazoxanide and paromomycin; however, neither of these drugs are
27 effective in neonate infants or HIV-AIDs comorbidities [5, 6]. There is a pressing need for new and
28 improved therapeutics for cryptosporidiosis. A common strategy for drug discovery involves
29 investigating conserved drug targets identified in other Apicomplexan parasites, such as *Plasmodium*
30 spp. However, inhibitors of these targets often encounter resistance, a prevalent and increasing issue
31 with many therapeutics. Therefore, novel approaches are essential. [7]. Peptoids, synthetic mimetics
32 of antimicrobial peptides, have shown potent inhibitory effects against a broad spectrum of bacterial
33 and viral pathogens. Unlike traditional antimicrobials, peptoids are less prone to the rapid
34 development of resistance, making them a promising avenue for novel therapeutic development [8,
35 9]. To date few studies have investigated the use of peptoids in parasites, all in *Leishmania* species
36 [10-12]. In this study we investigate the antiparasitic effect of synthetic peptoids against *C. parvum*.

37 *Cryptosporidium parvum* oocysts obtained from the *Cryptosporidium* production laboratory
38 (University of Arizona, USA) were kept in penicillin (100 U/mL) and streptomycin (100 µg/mL;
39 ThermoFisher Scientific #15140122) in Phosphate-Buffered Saline (PBS, pH 7.2 (ThermoFisher
40 Scientific #21600010)) at 4°C for no longer than four months. HCT-8, a human ileocecal
41 adenocarcinoma cell line (ATCC # CCL-225) used as host cells, was gifted from the Guildford Lab

42 (University of Otago, New Zealand). A library of 14 peptoids was synthesized by the Barron Lab
43 (Stanford University, USA) and provided by the Pletzer Lab (University of Otago, New Zealand).

44 The library of 14 peptoids were diluted to five concentrations (5, 10, 20, 40 and 80 μ g/mL) in RPMI
45 1640, no phenol red media (ThermoFisher Scientific #11835030) plus 3% horse serum (ThermoFisher
46 Scientific #26050070). *C. parvum* sporozoites were released from the oocysts by pre-treating the
47 oocysts with 1:4 dilution of household bleach for 10 minutes on ice, followed by incubating in 0.75%
48 sodium taurocholate (Sapphire Bioscience #16214) for 45 minutes at 37°C. Parasites were added to
49 confluent HCT-8 monolayers in 96-well plates at a concentration of 2×10^4 oocysts per well and left
50 to invade. After 3 hours, the media was removed and fresh media containing the peptoid was added
51 and incubated for a further 45 hours. Each of the peptoid treated assay plates were harvested and
52 stained at two timepoints; 3-hour (baseline control) and 48-hour (final efficacy). Plate wells were
53 fixed with 4% paraformaldehyde (VWR Chemicals #28794.295) in PBS for 10 minutes at room
54 temperature, permeabilised with 0.25% Triton X-100 (Merk #SLBP6453V) in PBS for 10 minutes at
55 37°C and blocked with 1% bovine serum albumin (Roche #3853143) in PBS for 1 hour at room
56 temperature. The wells were then stained with 2 μ g/mL Vicia Villosa-Fluorescein isothiocyanate
57 (VVL-FITC; Vector Laboratories) in 1% BSA in PBS for 1 hour at room temperature in the dark, which
58 stains the parasitophorous vacuoles (PV) of the parasite. This was followed by nuclei staining of the
59 host cells with 2 μ g/mL Hoechst 33342 in Milli-Q® water for 15 minutes at room temperature in the
60 dark. Between each stain the wells were washed with 0.1% Tween-20 (Merk #SLBZ8563) in PBS three
61 times. The wells were then imaged on an Evos FL Auto 2 Imaging system microscope (Thermo
62 Scientific Invitrogen EVOS) at 20 \times magnification covering 35% of each well from the centre. The
63 experiments were done in triplicate with three independent repeats and the doses were expanded
64 for lead peptoids. The inhibitory concentrations were calculated using the ICEstimator version 1.2
65 (<http://antimalarial-icestimator.net/>).

66 Of the 14 peptoids screened, eight showed evident cytotoxicity to the host cell monolayer. TM9 and
67 TM19 had the best antiparasitic effect, with minimal host toxicity and were selected for further
68 investigation. We determined the IC₅₀ and IC₉₀ values as 21 μ g/mL and 26 μ g/mL, respectively, for
69 TM9 and 27 μ g/mL and 50 μ g/mL, respectively, for TM19 (Figure 1).

70 The two lead peptoids TM9 and TM19 are structurally almost identical, with TM19 containing one
71 additional lysine-like residue. TM9 and TM19 self-assemble, predominantly into ellipsoidal core-shell
72 micelles, which has been found to play an important role in their antimicrobial activity in a study on
73 *ESCAPE* pathogens [13]. Bromination of these peptoids may have enhanced their anti-parasitic
74 activity, as halogenation, particularly with chlorine or bromine, has been shown to increase the
75 antimicrobial effects of peptoids [14]. The mechanism of action for peptoids against bacteria such as
76 *Escherichia coli*, is suggested to be damage to the bacterial cell membrane [15] or membrane
77 permeabilization followed by intracellular flocculation of biomacromolecules including ribosomes
78 [16]. A similar mechanism is inferred for viruses such as Herpes Simplex Virus 1 and SARS-CoV-2
79 where peptoids, including TM9(MXB-9), affected the viral envelope [9]. Additionally, TM9 has been
80 shown to disrupt the viral envelopes of Zika and chikungunya viruses [17] while the reported anti-
81 hepatitis B virus effects of TM19 are also likely due to disruption of the viral envelope [18]. In the
82 case of *Leishmania*, the only other parasite examined for its susceptibility to peptoids, it was shown
83 that these compounds (notably TM9) preferentially target the promastigote membrane, which is
84 composed of polysaccharide lipophosphoglycan, while not affecting the host cell membrane that
85 carries phosphatidylcholine and sphingomyelin on its outer surface [12]. It is, therefore, reasonable
86 to suggest that a similar mechanism may be occurring with *Cryptosporidium parvum*, wherein the
87 peptoids might damage the parasitophorous vacuole. However, electron microscopy studies are

88 warranted to validate this theory. Given the complexity of the parasite's life cycle, it is also essential
89 to test peptoids on different life cycle stages, including invasion, merozoite egress, and gamete
90 formation. Nonetheless, we have demonstrated, for the first time, that peptoids can exhibit anti-
91 cryptosporidial activity and, with some modifications, present a promising option for new and
92 improved treatment for cryptosporidiosis

93 **Acknowledgements:**

94 BL, BR, RS, and RM were supported by a 2021 University of Otago Research Grant and a 2021 MBIE
95 Science Whitinga Fellowship.

96 1. Guerrant, R.L., *Cryptosporidiosis: an emerging, highly infectious threat*. Emerging infectious
97 diseases, 1997. **3**(1): p. 51.

98 2. O'Leary, J.K., R.D. Sleator, and B. Lucey, *Cryptosporidium spp. diagnosis and research in the*
99 *21(st) century*. Food Waterborne Parasitol, 2021. **24**: p. e00131.

100 3. Khalil, I.A., et al., *Morbidity, mortality, and long-term consequences associated with*
101 *diarrhoea from Cryptosporidium infection in children younger than 5 years: a meta-analyses*
102 *study*. The Lancet Global Health, 2018. **6**(7): p. e758-e768.

103 4. O'connor, R.M., et al., *Cryptosporidiosis in patients with HIV/AIDS*. Aids, 2011. **25**(5): p. 549-
104 560.

105 5. Clinton White Jr, A., et al., *Paromomycin for cryptosporidiosis in AIDS: a prospective, double-*
106 *blind trial*. Journal of Infectious Diseases, 1994. **170**(2): p. 419-424.

107 6. Amadi, B., et al., *High dose prolonged treatment with nitazoxanide is not effective for*
108 *cryptosporidiosis in HIV positive Zambian children: a randomised controlled trial*. BMC
109 infectious diseases, 2009. **9**: p. 1-7.

110 7. Hasan, M.M., et al., *Spontaneous selection of Cryptosporidium drug resistance in a calf model*
111 *of infection*. Antimicrobial agents and chemotherapy, 2021. **65**(6): p. 10.1128/aac. 00023-21.

112 8. Kapoor, R., et al., *Efficacy of antimicrobial peptoids against Mycobacterium tuberculosis*.
113 Antimicrobial agents and chemotherapy, 2011. **55**(6): p. 3058-3062.

114 9. Diamond, G., et al., *Potent antiviral activity against HSV-1 and SARS-CoV-2 by antimicrobial*
115 *peptoids*. Pharmaceuticals, 2021. **14**(4): p. 304.

116 10. Previdi, D., et al., *Synthesis and antileishmanial activity of some functionalized peptoids*.
117 Journal of the Brazilian Chemical Society, 2019. **30**: p. 1334-1340.

118 11. Bolt, H., et al., *Enlarging the chemical space of anti-leishmanials: A structure-activity*
119 *relationship study of peptoids against Leishmania mexicana, a causative agent of cutaneous*
120 *leishmaniasis*. MedChemComm, 2016. **7**(5): p. 799-805.

121 12. Kumar, V., et al., *Membrane-acting biomimetic peptoids against visceral leishmaniasis*. FEBS
122 Open Bio, 2023. **13**(3): p. 519-531.

123 13. Nielsen, J.E., et al., *Self-Assembly of Antimicrobial Peptoids Impacts Their Biological Effects on*
124 *ESKAPE Bacterial Pathogens*. ACS Infect Dis, 2022. **8**(3): p. 533-545.

125 14. Molchanova, N., et al., *Halogenation as a tool to tune antimicrobial activity of peptoids*.
126 Scientific reports, 2020. **10**(1): p. 14805.

127 15. Mojsoska, B., et al., *Peptoids successfully inhibit the growth of gram negative E. coli causing*
128 *substantial membrane damage*. Scientific Reports, 2017. **7**(1): p. 42332.

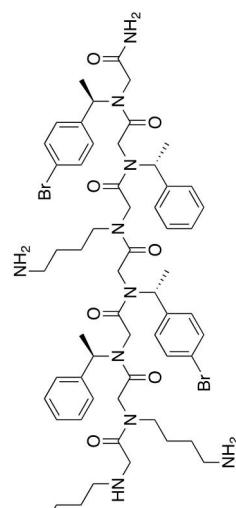
129 16. Chongsiriwatana, N.P., et al., *Intracellular biomass flocculation as a key mechanism of rapid*
130 *bacterial killing by cationic, amphipathic antimicrobial peptides and peptoids*. Sci Rep, 2017.
131 **7**(1): p. 16718.

132 17. Tate, P.M., et al., *Peptidomimetic Oligomers Targeting Membrane Phosphatidylserine Exhibit*
133 *Broad Antiviral Activity*. ACS Infect Dis, 2023. **9**(8): p. 1508-1522.

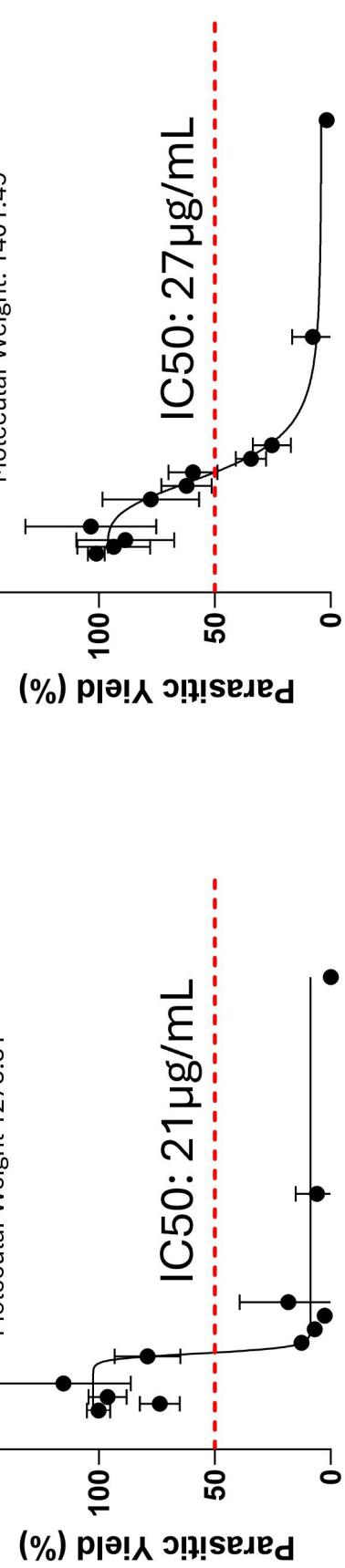
134 18. Murayama, A., et al., *Antiviral effect of peptoids on hepatitis B virus infection in cell culture*.
135 Antiviral Res, 2024. **223**: p. 105821.

136

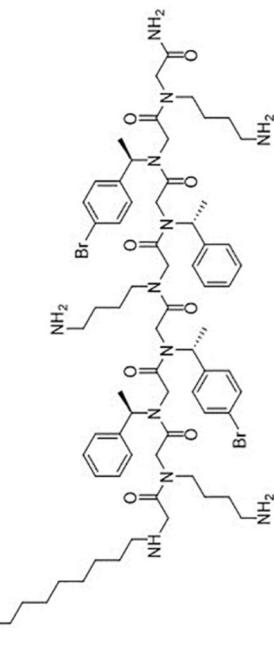
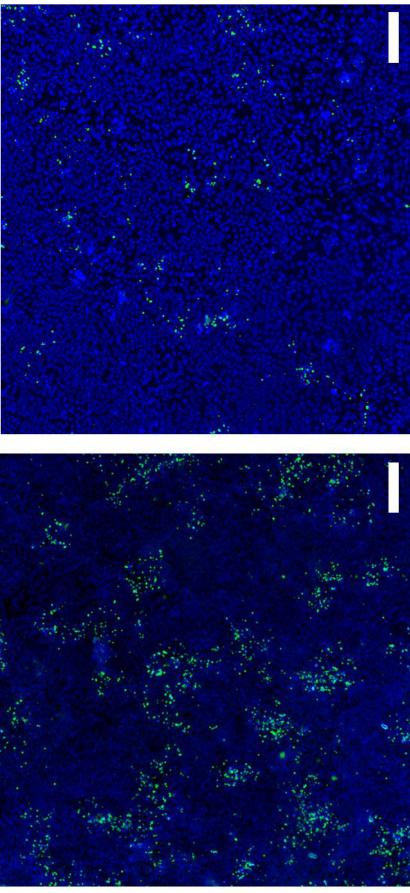
137

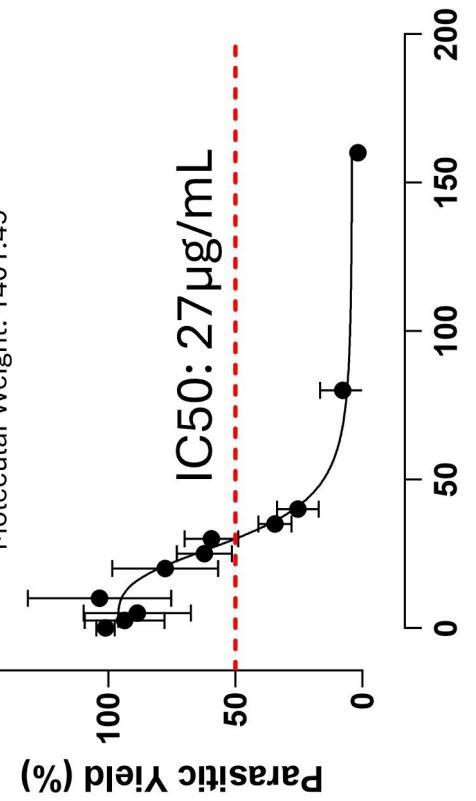

138

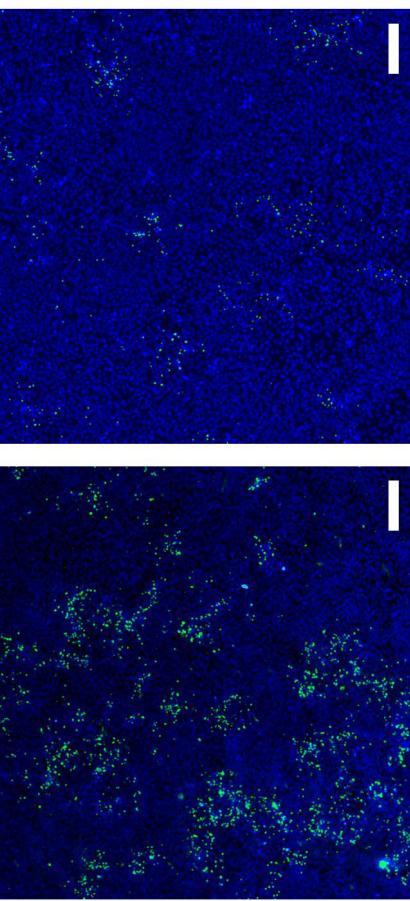
139 **Figure 1:** Structures and inhibitory concentration curves for lead peptoids targeting *Cryptosporidium*
140 *parvum*. Chemical structures and Inhibitory concentration curves for TM9 (A) and TM19 (B). *C.*
141 *parvum* infected HCT-8 cells were treated with concentrations of the peptoid ranging from 2.5 μ g/mL
142 to 160 μ g/mL. At 48 hours post infection the wells were fluorescently stained with VVL-FITC and
143 Hoechst 33342. The stained wells were then imaged using an Evos FL Auto 2 Imaging System
144 Microscope and the parasitic yield was determined using Image J. The percentage parasitic yield was
145 determined by normalising to the 0 μ g/mL control well (PBS). Results are pooled from three
146 independent experiments. Representative images of *C. parvum* infected HCT-8 cells not treated with
147 peptoid (0 μ g/mL) and treated with 25 μ g/mL of TM9 or 40 μ g/mL of TM19. Photos taken at 20 X
148 magnification. Scale bar = 100 μ m.


A

B



TM19


Chemical Formula: $C_{64}H_{92}Br_2N_{10}O_7$
Exact Mass: 1270.55
Molecular Weight: 1273.31


0 µg/mL 25 µg/mL

Chemical Formula: $C_{70}H_{104}Br_2N_{12}O_8$
Exact Mass: 1398.65
Molecular Weight: 1401.49

0 µg/mL 40 µg/mL

