

1 **Inhibition of CD226 Co-Stimulation Suppresses Diabetes Development in the NOD Mouse**
2 **by Augmenting Tregs and Diminishing Effector T Cell Function**

3 **Running Title:** Anti-CD226 mAb Blockade Inhibits Diabetes

4

5 Matthew E. Brown^{*1,2}, Puchong Thirawatananond^{*1,2}, Leeana D. Peters^{1,2}, Elizabeth J. Kern^{1,2},
6 Sonali Vijay^{1,2}, Lindsey K. Sachs^{1,2}, Amanda L. Posgai^{1,2}, Maigan A. Brusko^{1,2}, Melanie R.
7 Shapiro^{1,2}, Clayton E. Mathews^{1,2}, Rhonda Bacher^{1,3}, Todd M. Brusko^{1,2,4,5}

8 *Indicates equal contributions to the manuscript

9

10 ¹Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL 32610

11 ²Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine,
12 University of Florida, Gainesville, FL 32610

13 ³Department of Biostatistics, College of Public Health and Health Professions, University of
14 Florida, Gainesville, FL 32610

15 ⁴Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610

16 ⁵Department of Biochemistry and Molecular Biology, College of Medicine, University of
17 Florida, Gainesville, FL 32610

18

19 Correspondence to: Todd M. Brusko, Ph.D., Department of Pathology, Immunology and
20 Laboratory Medicine, College of Medicine, University of Florida, 1275 Center Drive,
21 Biomedical Sciences Building J589, Box 100275, Gainesville, FL 32610. E-mail address:
22 tbrusko@ufl.edu. TEL: (352) 273-9255. FAX: (352) 273-9339.

23 **Word Count: 7,751, Figures: 7, Supplementary Figures: 13, Supplementary Tables: 5**

24 **Abstract:**

25 Aims/hypothesis: Immunotherapeutics targeting T cells are crucial for inhibiting autoimmune
26 disease progression proximal to disease onset in type 1 diabetes. A growing number of T cell-
27 directed therapeutics have demonstrated partial therapeutic efficacy, with anti-CD3 (α -CD3)
28 representing the only regulatory agency-approved drug capable of slowing disease progression
29 through a mechanism involving the induction of partial T cell exhaustion. There is an
30 outstanding need to augment the durability and effectiveness of T cell targeting by directly
31 restraining proinflammatory T helper type 1 (Th1) and type 1 cytotoxic CD8⁺ T cell (Tc1)
32 subsets, while simultaneously augmenting regulatory T cell (Treg) activity. Here, we present a
33 novel strategy for reducing diabetes incidence in the NOD mouse model using a blocking
34 monoclonal antibody targeting the type 1 diabetes-risk associated T cell co-stimulatory receptor,
35 CD226.

36 Methods: Female NOD mice were treated with anti-CD226 between 7-8 weeks of age and then
37 monitored for diabetes incidence and therapeutic mechanism of action.

38 Results: Compared to isotype-treated controls, anti-CD226 treated NOD mice showed reduced
39 insulitis severity at 12 weeks and decreased disease incidence at 30 weeks. Flow cytometric
40 analysis performed five weeks post-treatment demonstrated reduced proliferation of CD4⁺ and
41 CD8⁺ effector memory T cells in spleens of anti-CD226 treated mice. Phenotyping of pancreatic
42 Tregs revealed increased CD25 expression and STAT5 phosphorylation following anti-CD226,
43 with splenic Tregs displaying augmented suppression of CD4⁺ T cell responders *in vitro*. Anti-
44 CD226 treated mice exhibited reduced frequencies of islet-specific glucose-6-phosphatase
45 catalytic subunit related protein (IGRP)-reactive CD8⁺ T cells in the pancreas, using both *ex vivo*
46 tetramer staining and single-cell T cell receptor sequencing (scTCR-seq) approaches. ⁵¹Cr-

47 release assays demonstrated reduced cell-mediated lysis of beta-cells by anti-CD226-treated
48 autoreactive cytotoxic T lymphocytes.
49 Conclusions/interpretation: CD226 blockade reduces T cell cytotoxicity and improves Treg
50 function, representing a targeted and rational approach for restoring immune regulation in type 1
51 diabetes.

52

53 **Keywords:** CD226, disease prevention, monoclonal antibody, NOD mouse, type 1 diabetes

54

55 **Abbreviations:**

APCs	Antigen-presenting cells
ATG	Anti-thymocyte globulin
CITE-Seq	Cellular indexing of transcriptomes and epitopes
CML	Cell-mediated lysis
CPM	Counts per minute
CTV	CellTrace™ Violet
DGE	Differential gene expression
DI	Division index
EAE	Experimental allergic encephalomyelitis
FC	Fold change
FMO	Fluorescence-minus one
gMFI	Geometric mean fluorescence intensity
HPCs	Hematopoietic progenitor cells
IGRP	Islet-specific glucose-6-phosphatase catalytic

	subunit-related protein
InsA	Insulin A chain
iTreg	Induced regulatory T cell
KO	Knockout
logFC	Log fold-change
mAbs	Monoclonal antibodies
MS	Multiple sclerosis
NBGLM	Negative binomial generalized linear models
pANN	Proportion of artificial nearest neighbors
pLN	Pancreatic-draining lymph nodes
QL	Quasi-likelihood
RA	Rheumatoid arthritis
scRNA-seq	Single-cell RNA sequencing
scTCR-seq	Single-cell T cell receptor sequencing
SLE	Systematic lupus erythematosus
Tc1	Type 1 CD8 ⁺
T _{CM}	T central memory
T _{conv}	Conventional CD4 ⁺ T cell
T _{EM}	T effector memory
Th1	T helper type 1
Treg	Regulatory T cell
Tresp	Responder T cell
T _{RM}	T resident memory

tTregs

Thymic Tregs

UMAP

Uniform Manifold Approximation and Projection

UMI

Unique molecular identifier

57 **Research in Context:**

58 What is already known about this subject?

59 • The co-stimulatory receptor CD226 is upregulated upon activation and is highly
60 expressed on NK cell subsets, myeloid cells, and effector T cells.

61 • A single nucleotide polymorphism in CD226 (*rs763361*; C>T) results in a Gly307Ser
62 missense mutation linked to genetic susceptibility for type 1 diabetes.

63 • Global knockout of *Cd226* and conditional *Cd226* knockout in FoxP3⁺ Tregs reduced
64 insulitis severity and diabetes incidence in NOD mice, indicating a crucial role for
65 CD226 in disease pathogenesis.

66 What is the key question?

67 • Can CD226 blockade reduce T cell cytotoxicity and improve Treg function to diminish
68 diabetes incidence in NOD mice?

69 What are the new findings?

70 • Anti-CD226 treatment reduced insulitis, decreased disease incidence, and inhibited
71 splenic CD4⁺ and CD8⁺ effector memory T cell proliferation.

72 • Pancreatic Tregs from anti-CD226 treated mice exhibited increased CD25 expression;
73 splenic Tregs displayed augmented STAT5 phosphorylation and suppressive capacity *in*
74 *vitro*.

75 • Anti-CD226 treatment reduced IGRP-specific pancreatic CD8⁺ T cell frequencies, and
76 reduced autoreactive CD8⁺ T cell-mediated lysis of beta-cells *in vitro*.

77 How might this impact on clinical practice in the foreseeable future?

78 • CD226 blockade could reduce autoreactive T cell cytotoxicity, enhance Treg function,
79 and slow disease progression in high-risk or recent-onset type 1 diabetes cases.

80

81 **Introduction:**

82 The activation and proliferation of autoreactive T cells with specificity for pancreatic islet beta-
83 cell antigens and modified peptide epitopes represent a hallmark histopathological feature of type
84 1 diabetes [1]. This lymphocytic infiltration is thought to drive the autoimmune destruction of
85 these insulin-producing cells through both direct and indirect mechanisms [2]. Identifying
86 strategies to suppress these autoreactive T cells is critical to establishing durable immune
87 tolerance. Monoclonal antibodies (mAbs) represent a viable therapeutic option for treating type 1
88 diabetes. Teplizumab (anti-CD3) has recently received regulatory approval as the first disease-
89 modifying therapy for stage 2 type 1 diabetes [3, 4], and mAbs have been used for the treatment
90 of other autoimmune diseases, such as anti-CD20 for rheumatoid arthritis (RA) and anti-JAK1
91 for Crohn's disease [5, 6].

92 The co-stimulatory receptor CD226 is expressed on several immune cell subsets,
93 including natural killer (NK) cells, myeloid cells, and T cells, with the CD8⁺ T cell subset having
94 the highest surface expression of CD226 [7, 8]. After binding its ligand CD155 and self-
95 dimerization, CD226 contributes to immune activation through the phosphorylation of its
96 immunoreceptor tyrosine tail (ITT)-like motif, which propagates Ras/MAPK signaling, leading
97 to the transcription of pro-inflammatory genes, including *IFNG* and *IL17A* [9-11]. This signaling
98 cascade in T cells is thought to promote the differentiation of the pro-inflammatory Th1 and
99 Th17 subsets and impede differentiation into the anti-inflammatory Th2 and induced regulatory
100 T cell (iTreg) subsets [12, 13].

101 Genetic susceptibility for several human autoimmune diseases, including type 1 diabetes,
102 celiac disease, RA, and multiple sclerosis (MS), has been associated with a single nucleotide
103 polymorphism (SNP) in *CD226* (*rs763361*; C>T), which results in a missense mutation leading

104 to a Gly³⁰⁷ to Ser³⁰⁷ amino acid substitution [14]. This SNP is proximally located to two
105 phosphorylation sites within the ITT-like motif (Tyr³²² and Ser³²⁹), and Ser³⁰⁷ has been
106 implicated in augmenting phosphorylation of downstream signaling elements such as ERK in
107 human CD4⁺ T cells [15-18]. Importantly, *Cd226* is located within the *Idd21.1* risk locus (Chr.
108 18) of the NOD mouse and is orthologous to human *CD226* [19]; therefore, the NOD mouse is
109 an ideal model to study the impact of blocking anti-CD226 mAbs on disease progression.

110 Previous work by our laboratory has shown that the global knockout (KO) of *Cd226* in
111 the NOD mouse model reduced the severity of insulitis and the frequency of diabetes incidence,
112 indicating a crucial role of CD226 in disease pathogenesis in this model [20]. The association of
113 CD226 with autoimmunity has been further highlighted by Wang *et al.*, who identified that
114 deletion of *Cd226* alleviated inflammation severity in an experimental allergic encephalomyelitis
115 (EAE) mouse model of MS [21], as well as Zhang *et al.*, who demonstrated an anti-CD226
116 blocking mAb (clone LeoA1) reduced incidence of EAE [22]. Using adoptive transfer studies,
117 we have previously reported that CD226-expressing CD4⁺ T cells substantially contribute to
118 diabetes progression in the NOD [20], with a Treg-specific conditional KO of *Cd226*
119 demonstrating that CD226-expressing Tregs more readily destabilize into a pro-inflammatory
120 “ex-Treg” phenotype, further driving diabetes progression [23]. Thus, we investigated whether
121 employing a blocking mAb targeting CD226 to selectively inhibit inflammatory T cell activation
122 could reduce autoreactivity.

123 Using the NOD mouse model of type 1 diabetes, we conducted an *in vivo* intervention
124 study and *ex vivo* and *in vitro* mechanistic studies of an anti-CD226 blocking mAb. We
125 investigated the differential impacts of CD226 blockade on conventional CD4⁺ T cell (Tconv),

126 Treg, and CD8⁺ T cell compartments and how those effects may contribute to protection from
127 disease to inform future translational efforts in human trials.

128 **Materials & Methods:**

129 **Animals**

130 Female NOD/ShiLtJ (NOD; RRID: IMSR_JAX:001976) mice were purchased from The Jackson
131 Laboratory (Bar Harbor, ME, USA) for *in vivo* intervention studies and *ex vivo* mechanistic
132 studies. Female NOD/ShiLt-Tg(*Foxp3*-EGFP/cre)1cJbs/J (NOD-*Foxp3*^{EGFP}; RRID:
133 IMSR_JAX:008694) transgenic mice were used for Treg suppression studies [24]. Chromium-
134 release assays were accomplished using cells from NOD/ShiLtJ-*Tcra*-AI4.*Tcrb*-AI4.*Thy1a*.*Rag1*
135 ^{-/-} mice (NOD-AI4; [25]). Animals treated with mAbs were housed in animal biosafety level 2
136 (aBSL-2) containment, whereas all others were housed in animal biosafety level 1 (aBSL-1)
137 containment. All animals were housed in specific pathogen-free facilities at the University of
138 Florida, with food and water available *ad libitum*. All studies were conducted in accordance with
139 protocols approved by the University of Florida Institutional Animal Care and Use Committee
140 (UF IACUC) and in accordance with the *Guide for Care and Use of Laboratory Animals* [26].

141

142 **Preparation of Single-Cell Suspensions**

143 Isolation of cells from relevant tissues, including the spleen, thymus, pancreatic-draining lymph
144 nodes (pLN), and pancreas, was necessary for *in vitro* and *ex vivo* assessment of the mAb
145 mechanism of action. For all tissues except the pancreas, homogenous single-cell suspensions
146 were generated by mechanically dissociating organs and filtering through a 70 μ m membrane
147 filter. Cell suspensions were washed with complete RPMI [cRPMI; RPMI 1640 media Phenol
148 Red with L-Glutamine 139 (Lonza, Basel, CH-BS, Switzerland), 5mM HEPES (Gibco,
149 Waltham, MA, USA), 5 mM MEM 140 Non-Essential Amino Acids (NEAA; Gibco), 2mM
150 Glutamax (Gibco), 50 μ g/mL penicillin 141 (Gibco), 50 μ g/mL streptomycin (Gibco), 20 mM

151 sodium pyruvate (Gibco), 50 mM 2-mercaptoethanol (Sigma-Aldrich, St. Louis, MO, USA), 20
152 mM sodium hydroxide (Sigma-Aldrich) and 10% FBS (Genesee Scientific, El Cajon, CA, USA)]
153 and pelleted by centrifugation (350 x g for 7 min). Pancreas tissues were minced into 1 mm
154 pieces and incubated in cRPMI media with 1 mg/mL collagenase IV (Gibco) for 18 minutes at
155 37°C. After digestion, pancreas suspensions were washed with cRPMI and strained through a 40
156 µm filter. Lysis of red blood cells (RBC) was accomplished by resuspension of cell pellets in
157 ACK Lysing Buffer (Gibco) for 5 minutes at 4°C before quenching in 1x Phosphate Buffered
158 Saline (PBS; Gibco). Cell viability was quantified by staining with Acridine Orange/Propidium
159 Iodide at a 1:1 dilution in a Cellometer slide before reading on an Auto2000 Cellometer
160 (Nexcelom Biosciences, Lawrence, MA, USA).

161

162 **Administration of Anti-CD226 and Isotype Control mAbs**

163 Blocking mAb against CD226 (BioLegend, San Diego, CA, USA; clone 480.1, RRID:
164 AB_2876467) and its corresponding rat IgG2a isotype control (BioLegend; RRID:
165 AB_11147167) were obtained in a low-endotoxin, azide-free formulation. mAbs were diluted in
166 PBS (Gibco) to 1.33 µg/µL for intraperitoneal (i.p.) administration. Mice received three 200 µg
167 doses of mAb at 49, 53, and 56 days of age and were monitored daily for potential reactions.

168

169 **Anti-CD226 mAb Blockade Validation**

170 For *in vitro* validation, NOD-*Foxp3*^{EGFP} splenocytes were resuspended at 0.5 x 10⁶ cells/mL and
171 incubated with 20 µg/mL IgG2a isotype control (BioLegend) or anti-CD226 mAb (BioLegend)
172 for 30 minutes in cRPMI at 37°C. Cells were stained with Live/DeadTM Near-IR viability dye
173 (Invitrogen, Waltham, MA, USA) per the manufacturer's protocol. Then, Fc receptors were

174 blocked with $\text{F}\ddot{\text{a}}$ -CD16/CD32 (BD Pharmingen, Franklin Lakes, NJ, USA; RRID: AB_394656)
175 for 5 minutes at 4°C to prevent non-specific binding before extracellular staining with an
176 antibody cocktail consisting of anti-mouse CD4-PerCP-Cy5.5 and CD8 $\text{F}\ddot{\text{a}}$ -BV711, and a
177 fluorophore-conjugated anti-CD226 mAb (clone TX42.1) for 30 min at 23°C (clone, RRID,
178 concentration, and manufacturer information provided in **Table S1**). Data were collected on an
179 Aurora 5L (16UV-16V-14B-10YG-8R) spectral flow cytometer (Cytek, Freemont, CA, USA)
180 and analyzed using FlowJo software (TreeStar; version 10.6.1).

181

182 **T Cell Proliferation Assays**

183 Whole splenocytes isolated from 8- to 12-week-old female NOD mice were labeled with 5 μM
184 CellTrace™ Violet (CTV; Thermo Fisher, Waltham, MA, USA) as recommended by the
185 manufacturer's protocol. Following proliferation dye staining, cells were resuspended at 0.5×10^6
186 cells/mL and incubated with 20 $\mu\text{g/mL}$ IgG2a isotype control (BioLegend) or anti-CD226 mAb
187 (BioLegend) for 30 minutes in cRPMI at 37°C. 0.25×10^6 cells were stimulated with either plate-
188 bound $\text{F}\ddot{\text{a}}$ -CD3 (BioLegend; RRID: AB_11149115; 2 $\mu\text{g/mL}$) and plate-bound $\text{F}\ddot{\text{a}}$ -CD28
189 (BioLegend; RRID: AB_11147170; 1 $\mu\text{g/mL}$) or plate-bound $\text{F}\ddot{\text{a}}$ -CD3 (BioLegend; 2 $\mu\text{g/mL}$) and
190 plate-bound CD155-Fc (BioLegend; 1 $\mu\text{g/mL}$). Following 96 hours of culture, supernatants were
191 stored at -20°C for ELISA described below, and cells underwent viability staining and $\text{F}\ddot{\text{a}}$ -
192 CD16/CD32 blocking, as described above, followed by surface staining with anti-mouse CD4-
193 PerCP-Cy5.5 and CD8 $\text{F}\ddot{\text{a}}$ -BV711 for 30 min at 23°C (**Table S1**). Data were collected on a
194 Cytek™ Aurora 5L spectral flow cytometer. The detailed gating strategy is shown in **Figure S1**.
195 The proliferation of CD4 $^+$ and CD8 $^+$ T cells was established by the division index (DI) method
196 using proliferation modeling on FlowJo software (TreeStar; version 10.6.1).

197

198 **ELISA**

199 To determine whether anti-CD226 mAb blockade modulates secretion of the pro-inflammatory
200 IFN- γ or anti-inflammatory IL-10 cytokines, ELISAs were performed on culture supernatants
201 from the *in vitro* T cell proliferation assay described above. Briefly, culture supernatants were
202 diluted 1:2 for IL-10 and 1:100 for IFN- γ , and ELISAs were performed using the Mouse IL-10
203 and Mouse IFN- γ OptEIA Kits (BD Biosciences) according to the manufacturer's protocol.
204 Colorimetric analyses were performed in duplicate at 450 nm with a λ correction at 570 nm on a
205 SpectraMax M5 microplate reader (Molecular Devices, San Jose, CA, USA).

206

207 **Flow Cytometry**

208 1-2 \times 10⁶ cells from each tissue were used for flow cytometry and were stained with
209 Live/DeadTM Near-IR viability dye. Cells were blocked with Φ -CD16/CD32 (BD Pharmingen)
210 and Brilliant Stain Buffer (BD Biosciences) for 5 minutes at 4°C before extracellular staining
211 with an antibody cocktail consisting of anti-mouse CD4-PerCP-Cy5.5, CD8-BV711, CD25-
212 Alexa Fluor 700, CD44-PE, CD62L-APC, and CD226-BV650 for 30 minutes at 23°C (**Table**
213 **S1**). Next, cells were fixed and permeabilized using the eBioScienceTM FOXP3 Transcription
214 Factor Staining Buffer Set (Invitrogen) according to the manufacturer's instructions.
215 Permeabilized cells were stained with anti-mouse Foxp3-Alexa Fluor 488, Helios-Pacific Blue,
216 and Ki-67-PE-Cy-7 antibodies overnight at 4°C (**Table S1**). Data were collected on a CytekTM
217 Aurora 5L spectral flow cytometer and analyzed using FlowJo software (TreeStar; version
218 10.6.1). Gating strategies were determined using fluorescence-minus one (FMO) and unstained
219 controls. Detailed gating strategies for Tregs and T cell memory subsets are shown in **Figure S2**.

220

221 **Anti-CD226 mAb Blockade Persistence**

222 To assess the *in vivo* persistence of anti-CD226 mAb, 1-2 x 10⁶ splenocytes underwent
223 viability staining and F^- -CD16/CD32 blocking, as previously described, before surface staining
224 with anti-mouse CD4-PerCP-Cy5.5, CD8-BV711, NKp46-Alexa Fluor 647, and anti-rat IgG2a-
225 FITC for 30 minutes at 23°C (**Table S1**). Flow cytometry data were collected and analyzed as
226 described above. The gating strategy to assess anti-CD226 mAb persistence is shown in **Figure**
227 **S3**.

228

229 **Histology**

230 Pancreata were collected from 12-week-old mice at necropsy and fixed overnight in a buffered
231 10% formalin solution. Samples underwent paraffin-embedding, and three sections (250 μm
232 steps) were obtained for H&E staining. Digital whole-slide scans of pancreas sections were
233 obtained using an Aperio CS Scanner (Leica Biosystems, Wetzlar, Germany). Two blinded
234 observers completed insulitis scoring for at least 45 islets per mouse (with one islet defined as
235 >10 endocrine cells) according to previously published guidelines [27].

236

237 **Intervention Study**

238 Beginning at seven weeks of age, concurrent with the initiation of mAb administration, blood
239 glucose levels of female NOD mice were monitored weekly until 30 weeks of age, using an
240 AlphaTrak™ glucometer (Zoetis, Parsippany, NJ, USA) to measure samples obtained from a tail
241 vein bleed. Mice with blood glucose ≥ 250 mg/dL were retested the following day, and those
242 with two consecutive blood glucose levels ≥ 250 mg/dL were diagnosed with diabetes. Body

243 mass measurements were recorded weekly to monitor for possible impacts of treatment on the
244 growth and overall health of the animals. Mice were humanely euthanized by CO₂ asphyxiation
245 and cervical dislocation at diabetes onset or study conclusion.

246

247 **pSTAT5 Phosflow Assay**

248 To determine whether mAb blockade alters the JAK2-STAT5 pathway in Tregs, we quantified
249 phosphorylated STAT5 (pSTAT5) levels following stimulation with recombinant human IL-2
250 (rhIL-2; Roche, Basel, CH-BS, Switzerland; [28]). Single-cell suspensions of splenocytes were
251 obtained from 12-week-old NOD mice five weeks after *in vivo* treatment with IgG2a isotype
252 control or anti-CD226 mAb, as described above. Cells were plated at 1 x 10⁶ cells/mL cRPMI.
253 They were stimulated with 10 IU/mL of rhIL-2 for 0, 15, or 60 minutes before immediately
254 fixing cells with warmed CytoFix Buffer (BD Biosciences) for 10 minutes at 37°C. Following
255 fixation, cells underwent viability staining, as described above, before permeabilizing cells for
256 30 minutes at 4°C with chilled Perm Buffer III (BD Biosciences). Following Fc blocking with
257 anti-CD16/32, cells were stained with anti-mouse CD4-PE-Cy7, CD8-BV711, Foxp3-AF488,
258 and pSTAT5-AF647 overnight at 4°C (**Table S1**). Flow cytometry data were collected and
259 analyzed as described above.

260

261 **Suppression Assays**

262 To assess the potential impact of anti-CD226 mAb blockade on the suppressive capacity of
263 mouse Tregs, we conducted *in vitro* suppression assays [29] using serial dilutions of fresh
264 splenic Tregs with irradiated autologous whole splenocytes and autologous CD4⁺ Tconv that
265 respectively served as antigen-presenting cells (APCs) and responder T cells (Tresp). Briefly,

266 whole splenocytes were isolated from 8- to 12-week-old female NOD-*Foxp3*^{EGFP} mice. The
267 splenocyte suspension was split so that half of the cells received ¹³⁷Cs gamma irradiation at a
268 dosage of 3000 cGray, after which cells were concentrated at 1.0 x 10⁶ cells/mL cRPMI, and
269 50,000 cells were added to each well of a 96-well U-bottom plate to provide APC-mediated
270 stimulation alongside soluble $\text{\textcircled{z}}$ -CD3 (BioLegend; 0.5 $\mu\text{g/mL}$) and $\text{\textcircled{z}}$ -CD28 (BioLegend; 0.5
271 $\mu\text{g/mL}$).

272 Concurrently, Treg and Tconv cells were isolated from the remaining splenocytes by
273 enriching for CD4⁺ T cells using the EasySep™ Mouse CD4⁺ T Cell Isolation Kit (StemCell,
274 Vancouver, BC, Canada) according to the manufacturer's instructions. CD4⁺ T cell-enriched
275 splenocytes were stained with anti-CD4-PE-Cy7 (**Table S1**) to allow for both Foxp3⁺ Treg and
276 Foxp3⁻ Tconv isolation by sorting for CD4⁺GFP⁺ and CD4⁺GFP⁻ cells, respectively, using a
277 FACSMelody™ Cell Sorter (Becton Dickinson, Franklin Lakes, NJ, USA; **Figure S4**).
278 Following isolation, Tconv were labeled with CTV, as described above, concentrated at 1 x 10⁶
279 cells/mL cRPMI, and 50,000 cells were added to each well. Before co-culture, Tregs were split
280 and incubated at a concentration of 1 x 10⁶ cells/mL cRPMI for 30 minutes at 37°C in cRPMI
281 with 10 $\mu\text{g/mL}$ anti-CD226 mAb (BioLegend) or IgG2a isotype control (BioLegend). After
282 incubation, cells were washed with cRPMI to remove any unbound mAb, then co-cultured with
283 the autologous Tconv at the following Treg:Tresp ratios: 1:1, 1:2, 1:4, 1:8, 0:1. Following 72
284 hours of co-culture, cells underwent viability dye staining, Fc blocking with anti-CD16/32,
285 surface staining with anti-mouse CD4-PerCP-Cy5.5, and flow cytometry data collection as
286 previously described (**Table S1**). The detailed gating strategy is shown in **Figure S5**. Percent
287 suppression of CD4⁺GFP⁻ Tresp was established by the Division Index (DI) method using
288 proliferation modeling on FlowJo (TreeStar; version 10.6.1).

289

290 **IGRP₂₀₆₋₂₁₄ Tetramer Staining**

291 Single-cell suspensions obtained from collagenase-digested pancreas from female NOD mice
292 were assessed for frequency of islet-specific glucose-6-phosphatase catalytic subunit-related
293 protein (IGRP)₂₀₆₋₂₁₄ reactive CD8⁺ T cells, five weeks following treatment with IgG2a isotype
294 control or anti-CD226 mAb *in vivo*. Cells underwent viability dye staining and Fc blocking
295 before concurrent surface antibody (anti-mouse CD4-PerCP-Cy5.5 and CD8-BV711; **Table S1**)
296 and tetramer staining (10 nM IGRP₂₀₆₋₂₁₄-BUV395 tetramer) for 1 hour at 37°C in the presence
297 of 75 nM dasatinib [30]. Flow cytometry data were collected and analyzed as described above
298 with a detailed gating strategy shown in **Figure S6**.

299

300 **Chromium-Release Assay**

301 To evaluate whether anti-CD226 mAb blockade could sufficiently reduce the cytotoxicity of
302 autoreactive CD8⁺ T cells and subsequently decrease pancreatic beta-cell killing, chromium-
303 release assays were performed in the format previously described by Chen et al. [31]. Briefly,
304 whole splenocytes isolated from 3- to 4-week-old NOD-AI4 mice, reported to possess
305 diabetogenic insulin-reactive CD8⁺ T cells [32], were concentrated at 5 x 10⁶ cells/mL in cRPMI
306 and incubated with either IgG2a isotype control or anti-CD226 mAb (BioLegend; 20 µg/mL) for
307 30 minutes at 37°C. After incubation, splenocytes were diluted to a concentration of 2 x 10⁶
308 cells/mL cRPMI and activated over three days in the presence of 0.1 µM AI4 mimotope
309 (YFIENYEL; GenScript, Piscataway, NJ, USA) and Teceleukin rhIL-2 at a concentration of 25
310 IU/mL cRPMI to selectively expand CD8⁺ T cells. Following activation, autoreactive CD8⁺ T
311 cells were transferred into complete DMEM media (cDMEM; Dulbecco's Modification of

312 Eagle's Medium (DMEM; Lonza), 5 mM HEPES (Gibco), 5 mM MEM NEAA (Gibco), 50
313 µg/mL penicillin 141 (Gibco), 50 µg/mL streptomycin (Gibco), 0.02% Bovine Serum Albumin
314 (BSA; Sigma-Aldrich), and 10% FBS (Genesee Scientific)) and were added to flat-bottom 96
315 wells containing pre-seeded $^{51}\text{CrNa}_2\text{O}_4$ -labeled (1.8×10^5 Bq/well; Revvity, Waltham, MA,
316 USA) murine NIT-1 pancreatic beta-cells (RRID: CVCL_3561; [33]) at the following
317 effector:target cell ratios: 0:1, 1:1, 2:1, 5:1, 10:1, 25:1. Following 16 hours of co-culture,
318 supernatants were removed and transferred to 6x50 mm lime glass tubes. Lysates of adherent
319 cells were collected using a 2% SDS wash and transferred into separate tubes. ^{51}Cr activity,
320 measured in counts per minute (CPM), was assessed for both fractions on a Wizard 1470
321 automatic gamma counter (Revvity). The specific lysis of NIT-1 cells was calculated as follows:

$$322 \% \text{ Specific Lysis} = \text{Experimental} \left(\frac{(\text{CPM of Supernatant})}{(\text{CPM of Supernatant}) + (\text{CPM of Lysate})} \right) - \text{Spontaneous} \left(\frac{(\text{CPM of Supernatant})}{(\text{CPM of Supernatant}) + (\text{CPM of Lysate})} \right)$$

323

324 Single Cell Sequencing

325 Single-cell suspensions from the pancreas and pLN were obtained from 12-week-old female
326 NOD mice following treatment with IgG2a isotype control (pLN: n=3; pancreas: n=3) or anti-
327 CD226 mAb (pLN: n=5; pancreas: n=2) to prepare sequencing libraries on the 10x Genomics
328 platform. CD3 $^+$ T cells were enriched within each sample using the Mouse T cell EasySepTM kit
329 (StemCell) per the manufacturer's instructions. Each sample underwent Fc blocking with anti-
330 CD16/32 for 10 minutes at 4°C before staining with oligonucleotide-tagged antibodies for CD4,
331 CD8 α , CD44, CD62L, and TIGIT (clone and DNA barcode information provided in **Table S2**)
332 for 30 minutes at 4°C. Following staining, cells were washed three times with PBS + 1.0% BSA
333 before loading 5,000 CD3 $^+$ enriched cells onto a Chromium Next GEM Chip K (10x Genomics,
334 Pleasanton, CA, USA) to generate Gel Beads in-Emulsions (GEMs) using a 10x Chromium

335 Controller (10x Genomics). Gene expression, V(D)J, and feature barcode libraries were
336 generated using the Chromium Next GEM Single Cell 5' v2 and Chromium Single Cell Mouse T
337 Cell Receptor (TCR) Amplification Kits (10x Genomics). All libraries were sequenced using the
338 NovaSeq XPlus Illumina platform with a minimum sequencing depth of >19,214 reads/cell for
339 gene expression (GEX) libraries, >5,271 reads/cell for V(D)J libraries, and >6,053 reads/cell for
340 feature barcode (FB) libraries.

341

342 **Pre-processing of 10x Genomics Sequencing Data**

343 The Cell Ranger (version 3.0.0, 10x Genomics) multi-pipeline was used to generate raw feature-
344 barcode matrices by processing raw sequencing reads from GEX and FB libraries as well as
345 annotated full-length transcripts (contigs) by processing the raw sequencing reads of V(D)J
346 libraries. Briefly, GEX sequencing reads were aligned to a reference genome (mm10-2020-A)
347 using STAR [34]. Confidently mapped reads sharing the same unique molecular identified
348 (UMI), 10x barcode, and feature were collapsed, with the number of reads per feature saved in
349 the raw FB matrix. Contigs with V(D)J segment labels were aligned to a reference genome
350 (GRCm38-alts-ensembl-7.0.0) to identify complementarity-determining region 3 (CDR3)
351 sequences. Productive contigs sharing the same UMI and barcode were saved as filtered contig
352 annotations.

353

354 **Quality Control of scRNA-seq and CITE-Seq Data**

355 Raw FB matrices of cells sequenced from each tissue were imported into R (version 4.3.1) using
356 the Read10X function in the Seurat package (version 5.0.1). Live cell-containing droplets were
357 distinguished using gene (80 – 2,000) and protein library size (1.0 – 3.0) as well as mitochondrial

358 content (<15%). CITE-seq data were normalized using the denoised and scaled by background
359 (dsb) method with the DSBNormalizeProtein function, without isotype controls, in the dsb
360 package (version 1.0.3). To remove variation in our single cell RNA sequencing (scRNA-seq)
361 depth between cells across each sample, we performed normalization and variance stabilization
362 using residuals from negative binomial regression with the proportion of mitochondrial genes as
363 a covariate, as described by Choudhary *et al.* [35], using the SCTtransform (SCT) version 2
364 function in Seurat with the glmGamPoi method [36]. A principal component analysis (PCA)
365 dimensionality reduction was run on each sample, and the number of statistically significant
366 principal components (PCs) was identified. Using generated artificial doublets integrated into the
367 data set at a proportion of 0.25, the proportion of artificial nearest neighbors (pANN) was
368 determined for each PC neighborhood size (pK). Cells with the highest pANN values were
369 identified as predicted doublets and were removed from each sample using the doubletFinder
370 function in the DoubletFinder package (version 2.0.4).

371

372 **Sample Integration and Clustering and Differential Gene Expression Analysis**

373 To perform an integrative analysis of shared T cell phenotypes across each organ, samples from
374 each mouse were combined into lists (Pancreas: 3x Isotype, 2x anti-CD226 mAb; pLN: 3x
375 Isotype, 5x anti-CD226 mAb) to select 3150 integration features not including TCR α/β variable
376 genes and ribosomal genes before using the SelectIntegrationFeatures function in Seurat. Using
377 the Seurat v4 integration workflow, the SCTtransform residuals for each integration feature were
378 used to create integrated Seurat objects for each organ. Cells with related transcriptomic profiles
379 from each organ were clustered using the first 30 PCs in the integrated assay. Briefly, the
380 FindNeighbors function in Seurat was used to generate a nearest neighbor graph before

381 identifying clusters by the Louvain method of community detection with a resolution of 1.0,
382 using the FindClusters function in Seurat. Differential gene expression (DGE) between clusters
383 was evaluated on the RNA assay using a Wilcoxon Rank Sum test. Faster implementation was
384 achieved using the Presto package (v. 1.0.0), executed with the FindAllMarkers function in
385 Seurat. Clusters with gene expression profiles suggestive of other immune subsets besides T cells
386 (e.g., B lymphocytes, eosinophils), apoptotic cells, or epithelial cells were excluded from the
387 dataset using the subset function in Seurat. Following the exclusion of cellular debris and
388 contaminating subsets, cells were re-clustered, as described above, based on the first 13 PCs with
389 a resolution of 0.77 for the pancreas and the first 10 PCs with a resolution of 0.7 for the pLN.
390 This yielded 15 T cell clusters from the pancreas with 17,617 cells and 12 from the pLN with
391 54,229 cells. Differentially expressed genes between treatment conditions within clusters were
392 assessed using the Wilcoxon Rank Sum test with Bonferroni correction with $p_{\text{val_adj}} \leq 0.05$
393 (pLN: **Table S3**; pancreas: **Table S4**). Cell cluster annotations were assigned using *a priori*
394 knowledge and relevant literature based on differential gene expression between clusters (**Table**
395 **S5**).

396

397 **Differential Abundance Analysis**

398 To identify differences in T cell cluster abundance between treatment conditions, we performed a
399 differential abundance (DA) analysis for both the pancreas and pLN [37, 38]. Briefly, the edgeR
400 package (version 3.42.4) was used to fit negative binomial generalized linear models (NB GLM).
401 Quasi-likelihood (QL) dispersions were calculated from GLM deviances before P-values were
402 determined using the glmQLFTest function in the edgeR package. The log fold-change (logFC)

403 was determined based on the DA of anti-CD226 mAb-treated mice normalized to isotype-treated
404 mice.

405

406 **TCR Repertoire Analysis & Mapping of IGRP-Reactive Clonotypes**

407 To evaluate differences in TCR repertoires between treatment conditions, the scRepertoire
408 package (version 2.0.0) was used to analyze V(D)J libraries. Briefly, clones were assembled by
409 associating contigs with single-cell barcodes using the combineTCR function before merging the
410 clonal information with the processed scRNA-seq data using the combineExpression function.

411 To identify IGRP-reactive T cells, the TCR- α and TCR- β CDR3 sequences were compared to
412 the CDR3 sequences of NOD IGRP₂₀₆₋₁₂₄-specific CD8⁺ T cells previously described by
413 Kasmani *et al.* [39] using the Biostrings package (version 2.68.1). CDR3 sequences within one
414 amino acid mismatch of either the TCR- α or TCR- β chain of the previously published sequences
415 were mapped as IGRP-reactive.

416

417 **Data Visualization and Statistical Analysis**

418 Single-cell data were processed and visualized using the following R packages: Seurat [40], dsb
419 [41], DoubletFinder [42], Presto [43], edgeR [44], SingleCellExperiment (version 1.22.0; [45]),
420 scRepertoire [46], Biostrings [47], DittoSeq (version 1.12.2; [48]), and EnhancedVolcano
421 (version 1.18.0; [49]). Statistical analyses were performed using GraphPad Prism software
422 (version 9.2.0; San Diego, CA, USA) for all other data. Unless otherwise stated, flow cytometric
423 data were analyzed by two-way ANOVA, and ELISA data were analyzed by one-way ANOVA,
424 with Bonferroni's post hoc test for multiple testing correction. *In vitro* suppression and
425 chromium-release assay curves were also analyzed by two-way ANOVA with Bonferroni's post

426 hoc test for multiple testing correction, with AUC values compared using paired t-tests [50]. A
427 chi-square test was used to compare insulitis severity, and a Fisher's Exact test was used to
428 identify differences in IGRP-reactive pancreatic CD8⁺ T cells by TCR-seq. The log-rank
429 (Mantel-Cox) test was used to identify significant differences in disease incidence between
430 treatment groups and calculate a hazard ratio (HR). P-values ≤ 0.05 were considered significant.

431 **Results:**

432 **Validation and Persistence of Anti-CD226 Blocking mAb**

433 We validated the binding of rat IgG1-mouse CD226 blocking mAb (clone 480.1) by assessing the
434 accessibility of CD226 on T cells using a fluorophore-conjugated anti-CD226 mAb (clone
435 TX42.1) with spectral flow cytometry following *in vitro* and *in vivo* experiments. We observed
436 significantly reduced accessibility of CD226 on CD8⁺ T cells (**Figure S7A-F**), CD4⁺ Tregs
437 (**Figure 7G-L**), and CD4⁺ Tconv (**Figure S7M-R**) following anti-CD226 blockade relative to
438 IgG2a isotype control, in splenocytes treated *in vitro* at a saturating concentration as well as
439 during *ex vivo* analysis of splenic and pancreatic T cells of mice treated five weeks prior. Our *ex*
440 *vivo* analysis also identified increased levels of rat IgG2a on splenic CD8⁺ T cells and NK cells
441 of anti-CD226 treated mice (**Figure S8A-B**), suggesting the anti-CD226 blocking mAb persists
442 for at least five weeks *in vivo*.

443

444 **CD226 Blockade Inhibits T Cell Proliferation and Promotes an Immunoregulatory
445 Cytokine Profile**

446 We sought to determine whether mAb blockade of CD226 signaling altered the proliferation of
447 murine CD4⁺ or CD8⁺ T cells. We observed significant decreases in proliferation for CD4⁺ T
448 cells blocked with anti-CD226 following either IgG1-CD3/IgG1-CD28 (0.81-fold, p=0.0125) or IgG1-
449 CD3/CD155-Fc (0.73-fold, p=0.048) *in vitro* stimulation relative to the IgG2a isotype control
450 condition (**Figure 1A-B**). Similarly, CD8⁺ T cell proliferation was also significantly reduced in
451 anti-CD226 versus isotype control treated cells following either IgG1-CD3/IgG1-CD28 (0.59-fold,
452 p=0.0015) or IgG1-CD3/CD155-Fc (0.40-fold, p=0.0028) stimulation (**Figure 1C-D**). To further
453 determine whether CD226 blockade alters cytokine production, we quantified IFN- γ and IL-10

454 production by ELISA in the proliferation assay supernatants following 48 hours of either α -
455 CD3/ α -CD28 or α -CD3/CD155-Fc co-stimulation (**Figure S9**). We observed significant
456 decreases in IFN- γ production (0.59-fold, $p=0.025$) and increased IL-10 production (1.20-fold,
457 $p=0.0040$) following α -CD3/CD155-Fc stimulation in anti-CD226 treated cells relative to the
458 isotype control condition (**Figure 1E-F**).

459 To ascertain the impact of anti-CD226 on T cell proliferation *in vivo*, we assessed the
460 proliferation marker, Ki-67, in isolated splenocytes five weeks post-treatment with mAb or
461 isotype control. Interestingly, anti-CD226 blockade was associated with decreased Ki-67
462 expression in the T effector memory (T_{EM} ; $CD44^+CD62L^-$) subsets of $CD4^+$ Tconv (0.87-fold,
463 $p=0.030$; **Figure 1G-H**), $CD4^+$ Treg (0.92-fold, $p=0.0225$; **Figure 1I-J**) and $CD8^+$ T cells (0.78-
464 fold, $p=0.0018$; **Figure 1K-L**). Next, we assessed the effect of anti-CD226 blockade on $CD4^+$
465 and $CD8^+$ T cell frequencies across various immune and type 1 diabetes-relevant tissues five
466 weeks after treatment (**Figure 2A**). While anti-CD226 did not significantly alter the frequencies
467 of $CD4^+$ and $CD8^+$ T cells in the pancreas (**Figure 2B-C**) or thymus (**Figure 2D-E**), we
468 identified decreased frequencies of $CD8^+$ T cells in the spleen (0.79-fold, $p=0.0098$; **Figure 2F-**
469 **G**) and pLN (0.89-fold, $p=0.014$, **Figure 2H-I**) of mice treated with anti-CD226. Altogether,
470 these data indicate that inhibition of co-stimulation through CD226 promotes a shift in cytokine
471 production toward immunoregulation and constrains the proliferation of both $CD4^+$ and $CD8^+$ T
472 cells, especially in the T_{EM} compartment.

473

474 **CD226 Blockade Decreases Pancreatic Inflammation and Reduces Diabetes Incidence**

475 To evaluate the *in vivo* safety and efficacy of anti-CD226 to combat the development of
476 autoimmune diabetes, we performed an intervention study using female NOD mice treated with

477 either IgG2a isotype control or anti-CD226 mAb between 7-8 weeks of age (**Figure 3A**). There
478 were no significant differences between treatment groups for weight gain during the study
479 (**Figure S10**), and no adverse complications were observed due to mAb treatment.

480 To understand how CD226 blockade may regulate immune infiltration in the context of
481 autoimmune diabetes pathogenesis, we conducted a histological examination of H&E-stained
482 pancreatic tissue sections from 12-week-old female NOD mice five weeks after administration of
483 either IgG2a isotype control or anti-CD226 mAb (**Figure 3A-B**). We observed a reduced
484 severity of insulitis in the anti-CD226 treated group (0.84-fold, $p=0.0002$, **Figure 3C**). Crucially,
485 we observed that NOD mice treated with anti-CD226 had a significantly reduced disease
486 incidence (Hazard Ratio=0.41, $p=0.015$) relative to mice treated with the isotype control (**Figure**
487 **3D**).

488

489 **CD226 Blockade Augments Treg Suppressive Capacity**

490 We next sought to understand the mechanism of protection afforded by anti-CD226 treatment.
491 Our previous work in NOD mice and primary human T cells showed that CD226 signaling
492 antagonized Treg stability and functionality [8, 23, 51], which are necessary for regulating
493 immune tolerance. One aspect critical to the function of Tregs is adequate IL-2 receptor (IL-2R)
494 signaling, with previous work by Permanyer *et al.* demonstrating that a partial loss of IL-2R
495 signaling impairs the Treg lineage stability and suppressive function required to inhibit
496 autoimmunity [52]. Therefore, we assessed whether CD226 blockade impacted Tregs *in vivo*,
497 using flow cytometry to examine the expression of the high-affinity IL-2R γ -chain (CD25) on
498 $\text{Foxp3}^+\text{Helios}^+$ thymic Tregs (tTregs) across a variety of NOD tissues (**Figure 4A-H**). We
499 identified significantly higher expression of CD25 on tTregs of anti-CD226 treated mice in all

500 organs examined, including the thymus (1.12-fold, $p=0.0014$; **Figure 4A, 4E**), spleen (1.10-fold,
501 $p=0.015$; **Figure 4B, 4F**), pLN (1.05-fold, $p=0.015$; **Figure 4C, 4G**), and pancreas (2.05-fold,
502 $p=0.0073$; **Figure 4D, 4H**) as compared to isotype-treated mice. To validate this finding, we
503 measured IL-2-induced STAT5 phosphorylation in Tregs using splenocytes from mice
504 administered anti-CD226 or IgG2A five weeks prior. We observed that Tregs from anti-CD226
505 treated animals demonstrated greater phosphorylation of STAT5 after 60 minutes of co-culture
506 with rhIL-2 (1.39-fold, $p=0.0007$; **Figure 4I-L**). To understand how CD226 blockade may
507 impact Treg functionality, we performed *in vitro* suppression assays and observed that NOD
508 Tregs pre-treated *in vitro* with anti-CD226 demonstrated significantly increased suppression of
509 CD4⁺ Tconv responders compared to Tregs pre-treated with the isotype control (**Figure 4M-O**).
510 These findings suggest that anti-CD226 may augment Treg activation and suppressive capacity.

511

512 **CD226 Blockade Reduces Effector T Cell Cytotoxicity**

513 The autoimmune destruction of pancreatic beta-cells by cytotoxic CD8⁺ T cells is a hallmark of
514 type 1 diabetes pathogenesis and an important target for therapeutic interventions [53]. Our prior
515 work in *Cd226* KO NOD mice demonstrated that diabetes protection was associated with
516 reduced TCR affinity of pancreatic CD8⁺ T cells specific for the type 1 diabetes autoantigen,
517 IGRP [20]. Thus, we quantified the frequency of IGRP reactive CD8⁺ T cells in the pancreata of
518 12-week-old female NOD mice five weeks after administration of either IgG2a isotype control or
519 anti-CD226 mAb. Using IGRP₂₀₆₋₂₁₄ tetramer staining (**Figure 5A-B**), we identified that NOD
520 mice treated with anti-CD226 had a significantly reduced frequency of IGRP-reactive CD8⁺ T
521 cells (0.50-fold, $p=0.0317$) infiltrating the pancreas. To further determine whether anti-CD226
522 mAb can directly influence the cytotoxic activity of CD8⁺ T cells to protect pancreatic beta-cells,

523 we utilized an *in vitro* model of cell-mediated lysis (CML) (**Figure 5C**) leveraging the murine
524 AI4 (V α 8/V β 2)-autoreactive CD8 $^{+}$ T cell clone, which recognizes a peptide derived from the
525 insulin A chain (InsA₁₄₋₂₀) in the context of H-2D b [32]. We observed that treatment of AI4-
526 CD8 $^{+}$ T cells with anti-CD226 before antigen-specific activation reduced specific lysis of the
527 murine NIT-1 pancreatic beta-cell line compared to NIT-1 cells co-cultured with isotype control-
528 treated AI4-CD8 $^{+}$ T cells (**Figure 5D-E**). These data suggest that anti-CD226 may limit
529 autoreactive effector T cell frequency and cytotoxicity within the target organ, collectively
530 contributing toward reduced beta-cell destruction.

531

532 **CD226 Blockade Modulates Expression of Genes Associated with T cell Activation**

533 To determine the transcriptional networks underlying the above-described phenotypic and
534 functional changes induced by anti-CD226 blockade, we used scRNA-seq to characterize gene
535 expression profiles in T cells isolated from the pLN and pancreas of anti-CD226 and isotype
536 control-treated NOD mice (**Figure 6A**). Within the 12 pLN T cell clusters identified (**Figure**
537 **6B**), we observed increased expression of genes associated with migration, chemotaxis, and
538 tissue retention (**Figure 6C** and **Table S3**), including *Cxcr4* (CD4 $^{+}$ naïve, CD8 $^{+}$ naïve, CD8 $^{+}$ T
539 resident memory (T_{RM}), CD8 $^{+}$ cycling), *Il16* (CD8 $^{+}$ naïve, T_{CM}, CD8 $^{+}$ cycling), and *Cd69* (CD4 $^{+}$
540 naïve, CD4 $^{+}$ T_{EM}, CD8 $^{+}$ naïve, CD8 $^{+}$ T_{CM}) among mice treated with anti-CD226, compared to the
541 isotype control. We also observed increased expression of cytokine receptors, *Il7r* (CD8 $^{+}$ naïve,
542 T_{CM}, T_{RM}, cycling and CD4 $^{+}$ naïve, T_{CM}, T_{EM}) and *Ifngr1* (CD8 $^{+}$ T_{CM}, T_{RM}, cycling and CD4 $^{+}$
543 T_{CM}), as well as the transcription factor *Stat1* (CD8 $^{+}$ naïve, T_{CM}, T_{RM}, cycling and CD4 $^{+}$ naïve,
544 T_{CM}, T_{EM}, resting) in anti-CD226 treated mice. None of these genes were differentially expressed
545 in Treg, $\gamma\delta$ T cell, or activated CD8 $^{+}$ T cell clusters. Across most of the 15 pancreas T cell

546 clusters identified (**Figure 6D**), we observed increased transcription of *Cdk8*, encoding for
547 cyclin-dependent kinase 8 and *Il31ra*, which encodes IL-31Ra, known to be involved in Th2
548 responses, as well as decreases in *Dock2*, which is associated with both T cell activation and
549 trafficking through regulating the actin cytoskeleton (**Figure 6E** and **Table S4**), in mice treated
550 with anti-CD226. The anti-CD226 group also exhibited reduced expression of *Il7r* (CD4⁺ naïve,
551 cycling), *Txnip* (CD4⁺ cycling), *Cd69* (CD8⁺ T_{EM}), and *Ifngr1* (Th2). Additionally, we observed
552 increases in *Smad7* (CD4⁺ T_{EM}, T_{CM}, tTreg and CD8⁺ naïve) following anti-CD226 treatment.
553 Together, these data indicate that anti-CD226 treatment decreased the expression of genes
554 associated with activation and increased the expression of genes related to migration. While we
555 did not observe any significant differences in T cell cluster abundance in the pancreas (**Figure**
556 **S11** and **Table S5**), we saw a reduced abundance of the CD8⁺ T_{CM} and CD8⁺ cycling clusters in
557 the pLN (**Figure S12** and **Table S5**) among mice treated with anti-CD226, suggesting the
558 reduced frequency of circulating CD8⁺ T cells observed by flow (**Figure 2**) may be associated
559 with reductions in activated T cells.

560

561 **CD226 Blockade Regulates T Cell Clonal Expansion**

562 Co-stimulatory signaling through CD226 enhances T effector function and cytotoxicity [54], and
563 in settings of cancer, CD226 signaling has been leveraged to promote clonal expansion of anti-
564 tumor CD8⁺ T cells [55]. To evaluate how anti-CD226 blockade might regulate autoreactive T
565 cell clonal expansion in autoimmune diabetes, we performed single-cell TCR sequencing
566 (scTCR-seq) to annotate and quantify TCR clonality in the pancreas and pLN of anti-CD226
567 versus isotype-treated NOD mice. The most extensive degree of clonal expansion in the pancreas
568 was localized in an activated CD8⁺ cluster (**Figure 7A**), with those expanded activated CD8⁺ T

569 cell clones demonstrating reduced expression of the pro-inflammatory associated genes, *Gzma*
570 ($\log_2\text{FC}$: -53.7, FDR-adjusted $p=8.65e^{-11}$; [56]) and *Xcl1* ($\log_2\text{FC}$: -82.7, FDR-adjusted $p=5.45e^{-5}$;
571 [57]) in anti-CD226 mAb relative to isotype treated mice (**Figure 7B**). Although we observed
572 greater amounts of “medium” ($0.001 < X < 0.01$) and reduced levels of “small” ($1e^{-4} < X <$
573 0.001) expanded clone cutoffs following anti-CD226 treatment (**Figure 7C**), we did not observe
574 any significant differences in the overall abundance of small and medium expanded clones by
575 cell cluster (**Figure 7D-F**). Using previously reported CDR3 sequences [39], we found that most
576 IGRP₂₀₆₋₂₁₈-reactive T cells were localized to the activated CD8⁺ T cell cluster (**Figure 7G**).
577 Notably, there was a significantly reduced frequency of IGRP-reactive T cells in the activated
578 CD8⁺ T cell cluster in the pancreas from the anti-CD226 treatment group compared to isotype-
579 treated mice (0.61-fold, $p=0.022$, **Figure 7H**). Upon examining the impacts of anti-CD226 on
580 clonal expansion in the pLN, we did not observe any significant differences compared to isotype-
581 treated mice (**Figure S13**), suggesting that the effects of anti-CD226 on T cell priming in the
582 pLN may be more apparent at the site of inflammation in the pancreas, where autoreactive T
583 cells are undergoing proliferation [58].

584 **Discussion:**

585 Treatment of pre-diabetic NOD mice with an anti-CD226 blocking mAb resulted in significant
586 prevention of autoimmune diabetes and insulitis, representing an important advance toward the
587 translation of new drug candidates targeting this pathway for the treatment of human type 1
588 diabetes. This builds on prior knowledge of *CD226* as a candidate risk gene [59], as well as our
589 prior work using global and Treg-specific KO NOD mouse strains where we have previously
590 reported that CD226 plays a significant role in the development of spontaneous autoimmune
591 diabetes by controlling peripheral T cell activation [20] as well as Treg function and stability
592 [23]. Furthermore, our human studies have revealed that CD226⁺ Tregs demonstrate increased
593 IFN- γ production and decreased lineage stability [8]. In contrast, isolation and *ex vivo* expansion
594 of CD226⁻ Tregs yields a more lineage-stable and suppressive Treg population [51]. Given these
595 findings and to advance the translation of new drug candidates for the prevention and treatment
596 of human type 1 diabetes, we investigated whether mAb-mediated blockade of CD226 could
597 reduce diabetes incidence in NOD mice by reducing effector T cell co-stimulatory signaling and
598 improving Treg functionality.

599 CD226 co-stimulation is known to contribute to both T cell activation and proliferation
600 [17], and we confirmed that *in vitro* blockade with anti-CD226 mAb reduced both $\text{IgG}_1\text{-CD3}/\text{IgG}_1\text{-}$
601 CD28 and $\text{IgG}_1\text{-CD3}/\text{CD155-Fc}$ stimulated T cell proliferation. Moreover, upon *ex vivo* analysis of
602 splenocytes from anti-CD226-treated NOD mice, we identified reduced proliferative capacity of
603 both CD4⁺ and CD8⁺ T cells in the T_{EM} compartment compared to the isotype control-treated
604 group. Our previous work has shown that human CD4⁺ T_{EM} have the highest expression of
605 CD226 compared to other CD4⁺ T cell subsets [8]; therefore, a potential explanation for this
606 finding is that anti-CD226 may preferentially suppress T_{EM} compared to naïve T cells.

607 Considering that the expansion of insulin-specific CD4⁺ T_{EM} has been correlated with insulin
608 autoantibody-positivity in recent-onset stage 3 type 1 diabetes [60], along with the known
609 propensity of CD8⁺ T_{EM} to have substantial cytotoxic function [61], our findings support
610 pharmacotherapeutic targeting of CD226 signaling as a means to constrain activation of
611 diabetogenic effector T cell subsets.

612 Interestingly, while anti-CD226 clone 480.1 is only thought to participate in blocking
613 CD226 interactions [62], we did observe slight reductions in CD8⁺ T cell frequencies in the
614 spleen and pLN. Previous work by our lab has shown that *Cd226* KO NOD mice have impaired
615 thymocyte development [20]. However, we observed no differences in CD4⁺ nor CD8⁺
616 thymocyte frequencies as a result of anti-CD226 mAb treatment, which may be due to the timing
617 of treatment in relation to thymic development. Hence, the reduced CD8⁺ T cell frequencies
618 observed likely reflect the noted impacts on T cell proliferation, resulting from impeded co-
619 stimulatory signaling (signal 2) and downstream T cell activation. Indeed, anti-CD226 appears to
620 limit T cell activation during pro-inflammatory conditions, as evidenced by a reduction in
621 pancreatic T cell transcription of genes associated with activation and lymphocyte trafficking,
622 such as *Cd69* and *Dock2* [63-65]. Importantly, we observed reduced expression of *Dock2* in the
623 activated cluster that contains putative IGRP-reactive CD8⁺ T cells. While we did not observe
624 any significant differences in the abundance of pancreatic Th1 and Th2 clusters at this particular
625 time point, we note a trend towards reduced pancreatic Th1 abundance and, interestingly,
626 increased expression of the Th2-associated gene, *Il31ra*, in anti-CD226 treated mice, suggesting
627 that CD226 blockade may be altering T cell polarization [66].

628 Beyond serving as a marker of activation, CD69 expression has also been associated
629 with increased CD8⁺ T cell tissue residency [67, 68], where we observed increased expression of

630 *Cxcr4* and *Cd69* in naïve CD4⁺, naïve CD8⁺, and CD8⁺ T_{CM} clusters from the pLN of anti-
631 CD226-treated mice, suggesting anti-CD226 mAb may be inducing retention of T cells in
632 secondary lymphatics. While we did not observe any differences in T cell cluster abundance in
633 the pancreas, we noted significant reductions in the abundance of CD8⁺ cycling and CD8⁺ T_{CM}
634 cells in the pLN of anti-CD226 versus isotype-treated mice. CD226 is involved in platelet and
635 monocyte adhesion to endothelial cells [69, 70]; therefore, anti-CD226 may contribute to
636 changes in T cell migratory capacity by limiting adhesion.

637 Previous work by Johnston et al. has demonstrated that the blockade of CD226 in a
638 BALB/c model of colorectal carcinoma reduced IFN- γ -producing CD8⁺ frequencies and
639 subsequently accelerated tumor growth [71]. In autoimmunity, CD226 blockade and *Cd226* KO
640 in a C57BL/6 model of EAE by Zhang et al. showed increased production of IL-10 and
641 diminished production of both IFN- γ and IL-17, leading to improved EAE outcomes [22]. We
642 similarly observed an association between reduced CD226 activity and a more
643 immunoregulatory phenotype, with anti-CD226 mAb treated cells demonstrating decreased IFN-
644 γ and increased IL-10 production *in vitro*. Notably, CD226 blockade may be altering the
645 expression of genes influenced by the IFN pathway *in vivo*, as evidenced by increased pancreatic
646 T cell expression of *Cdk8*, which encodes cyclin-dependent kinase 8, in the anti-CD226 mAb
647 treatment group. *Cdk8* is reported to phosphorylate the Ser⁷²⁷ residue of STAT1 and modulate
648 IFN- γ responsive gene expression [72]. Furthermore, we observed increased *Ifngr1* transcription
649 in pLN T cells yet decreased *Ifngr1* transcription in pancreatic T cells of anti-CD226 treated
650 mice, suggesting that at this particular time point, anti-CD226 mAb is inducing a more
651 immunoregulatory phenotype in the target organ, perhaps, by limiting the migration of IFN γ R1⁺
652 T cells.

653 Compared to healthy controls, HLA-A*02-01 individuals with type 1 diabetes have been
654 reported to possess expanded populations of circulating IGRP-reactive memory CD8⁺ T cells
655 with a distinct *TRA* motif [73]. IGRP-reactive CD8⁺ T cells have previously been shown to be
656 involved in pancreatic beta-cell destruction and inflammatory cytokine production [74].
657 Therefore, diminishing cell-mediated destruction of pancreatic beta-cells by autoreactive CD8⁺ T
658 cells is a key objective for immunotherapies seeking to restore immune tolerance in type 1
659 diabetes [53, 75]. We have previously reported that *Cd226* KO reduces IGRP-reactive pancreatic
660 CD8⁺ T cells in NOD mice [20]. Importantly, herein we observed decreased IGRP-reactive CD8⁺
661 T cells with anti-CD226 treatment by flow-based MHC tetramer staining and scTCR-seq, as well
662 as reductions in CML killing when insulin-specific CD8⁺ T cells were treated with anti-CD226
663 mAb before co-culture with NIT-1 target beta-cells. These findings support that anti-CD226
664 treatment may reduce autoreactivity by limiting co-stimulatory signaling and, subsequently, the
665 clonal expansion and cytotoxicity of autoreactive T cells.

666 Beyond limiting the cytotoxic and pro-inflammatory potential of effector T cells, we also
667 identified that anti-CD226 treatment promoted immunoregulatory changes in the Treg
668 compartment. Importantly, we observed greater expression of *Smad7* in the tTreg cluster in the
669 pLN of anti-CD226 treated mice, where the upregulation of *Smad7* has been implicated in the
670 inhibition of PD-L2/PD-1 [76] and TGF- β [77] signaling and associated with chronic infection
671 and autoimmunity [78]. However, long-term increases in Treg and decreases in Th17
672 frequencies, alongside upregulation of *Smad7*, in an *Echinococcus multilocularis* (EM) model of
673 chronic infection [79] have also been observed, suggesting that anti-CD226 may be modulating
674 Treg activity. Moreover, phosphorylation of the regulatory transcription factor, FOXO1, is
675 thought to be mediated by PI3K signaling downstream of CD226 [80]. Ouyang et al. have shown

676 that $\text{Foxo1}^{-/-}\text{Foxo3}^{-/-}$ mice have impaired FoxP3^+ Treg development and function [81]. Therefore,
677 we hypothesized that the blockade of CD226 signaling would augment Treg functionality.

678 Accordingly, to examine whether anti-CD226 may regulate Treg stability and
679 functionality *in vivo*, we performed *ex vivo* phenotyping of Tregs in the spleen, thymus, pLN,
680 and pancreas from anti-CD226 and isotype control-treated Foxp3-GFP Treg reporter NOD mice.
681 While we did not observe significant differences in Treg frequency, anti-CD226 treated mice
682 exhibited increased CD25 expression on Tregs in all organs examined, suggesting that anti-
683 CD226 may increase Treg fitness by bolstering IL2R avidity for IL-2. This was further supported
684 by phospho-flow cytometry indicating that Tregs isolated from mice treated with anti-CD226
685 have increased pSTAT5-signaling following stimulation with IL-2 *ex vivo*. Likewise, we have
686 previously observed that CD226⁻ human Tregs demonstrate greater CD25 expression following
687 *ex vivo* expansion [51], potentially indicating that less CD226 signaling results in CD25
688 upregulation or persistence. Previous studies have identified that Tregs exhibiting higher IL-2
689 avidity demonstrate improved lineage stability and function [82, 83]. Thus, we interrogated
690 whether anti-CD226 blockade could improve Treg suppressive capacity.

691 Using *in vitro* suppression assays, we observed that pre-treatment of Tregs with anti-
692 CD226 improved their suppressive capacity by reducing CD4^+ Tresp proliferation after four days
693 of co-culture. This finding is significant as the impairment of Treg suppressive function allows
694 for the proliferation of autoreactive T cells and, subsequently, the pathogenesis of autoimmune
695 diseases such as type 1 diabetes [84, 85], where these autoreactive T cells contribute to cell-
696 mediated killing of pancreatic beta-cells. Overall, the reductions in CD8^+ cytotoxicity and
697 improvements in Treg suppressive capacity conferred by anti-CD226 treatment suggest that

698 CD226 blockade may enable a shift away from cytotoxicity and towards immunoregulation in
699 the T cell compartment.

700 Antibody-based immunotherapeutics represent a popular approach for treating many
701 autoimmune diseases [86]. In the context of type 1 diabetes, a low dose of polyclonal anti-
702 thymocyte globulin (ATG) may act by depleting T cells and inducing exhaustion, and has been
703 shown to preserve beta-cell function in new-onset patients [87-89]. Furthermore, monoclonal
704 antibodies can also inhibit the activation of specific immune cell subsets. For example, rituximab
705 (α -CD20) is used to treat RA and systematic lupus erythematosus (SLE) by depleting B cells [6,
706 90], whereas teplizumab (α -CD3) is thought to suppress autoreactivity in type 1 diabetes by
707 inducing exhaustion in T cells and augmenting Treg activation [91, 92]. Beta-cell replacement
708 therapies have sought to restore the endogenous control of blood glucose; however, combining
709 beta-cell replacement with immunotherapy may improve engraftment and promote beta-cell
710 longevity by delaying antigen-specific killing mediated by T cells [53]. Given that activated T
711 cells express CD226 at greater levels, we propose that anti-CD226 mAb may preferentially
712 suppress the activity of autoreactive cells to preserve endogenous or transferred beta-cells.

713 Beyond the important immunoregulatory shifts observed following treatment, anti-
714 CD226 mAb was well-tolerated in mice with no observed adverse effects. Nevertheless, while
715 CD226 is known to be most highly expressed on effector T cells, CD226 is also expressed on
716 many other cell subsets, including NK cells, innate lymphoid subsets, monocyte/macrophages,
717 dendritic cells, IL-10-producing Tr1-like T cells, hematopoietic progenitor cells, endothelial
718 cells, and platelets. Thus, anti-CD226 mAb would need to be carefully titrated to avoid
719 disrupting critical processes such as the clearance of pathogens and tumors as well as blood
720 clotting [17, 69, 70, 93-96]. In addition to safety studies, further investigations should determine

721 the potential impact of CD226 genetic variants on treatment response to anti-CD226 mAb
722 blockade as a consideration for precision medicine approaches.

723 Our study supports the therapeutic potential of anti-CD226 mAb to reduce spontaneous
724 diabetes incidence and insulitis in the NOD mouse. Although it is possible that disease
725 prevention in the NOD mouse model may not directly translate to clinical efficacy in human type
726 1 diabetes [97], our data demonstrate that anti-CD226 has an immunoregulatory effect on T cells
727 by bolstering Treg and limiting effector function. Altogether, our results support the continued
728 investigation of the CD226:TIGIT signaling axis in immune tolerance. Indeed, studies
729 investigating TIGIT-Immunoglobulin fusion proteins as an additional approach to modulate
730 CD226:TIGIT signaling and restore immune tolerance are ongoing in our laboratory. In
731 summary, these findings present a novel strategy using anti-CD226 mAb as a deliverable
732 biologic to augment Treg function, diminish effector T cell cytotoxicity, and reduce spontaneous
733 diabetes incidence in the NOD mouse model.

734 **Acknowledgments:**

735 We thank Thinzar Myint and members of the Brusko Laboratory at the University of Florida
736 Diabetes Institute for discussions and technical assistance. We also appreciate the IGRP₂₀₄₋₂₁₄₋
737 BUV395 tetramers, kindly provided by Brian Fife and Justin Spanier (University of Minnesota).
738 We thank Brandy Roldan-Martinez and Heather Bonanno (University of Florida) for mouse
739 breeding and husbandry. We also thank the UF Molecular Pathology Core for pancreata
740 processing and the UF Center for Immunology and Transplantation (CIT) for spectral flow
741 cytometer and cell sorter access.

742 **Funding:**

743 Funding was provided by the National Institutes of Health through the support of grants to TMB
744 (NIH R01 DK106191) and PT (NIH F30 DK128945) and RB (NIH R35 GM146895). Additional
745 support was provided by the Diabetes Research Connection (DRC 45) and the JDRF (now
746 known as Breakthrough T1D) to MRS (3-PDF-2022-1137-A-N), and the American Diabetes
747 Association (ADA) to LDP (11-23-PDF-78).

748

749 **Data Availability Statement:**

750 The single-cell sequencing data generated for this study can be found in the GEO repository,
751 with the accession number GSE254403 or upon request.

752

753 **Duality of Interest:**

754 The authors declare that the research was conducted without any commercial or financial
755 relationships that could be construed as a potential conflict of interest.

756

757 **Author Contributions:**

758 **MEB:** Conceptualization, Methodology, Investigation, Writing – Original Draft, Visualization,
759 Formal Analysis, Software, Data Curation, Supervision, Project Administration. **PT:**
760 Conceptualization, Methodology, Investigation, Writing – Review & Editing, Visualization,
761 Funding Acquisition, Supervision, Project Administration. **LDP:** Investigation, Software,
762 Writing – Review & Editing, Funding Acquisition. **EJK, SV, LKS:** Investigation, Writing –
763 Review & Editing. **ALP:** Writing – Review & Editing. **MAB:** Methodology, Investigation,
764 Writing – Review & Editing. **MRS:** Conceptualization, Methodology, Writing – Review &
765 Editing, Funding Acquisition, Supervision. **CEM:** Methodology, Writing – Review & Editing,
766 Resources. **RB:** Writing – Review & Editing, Formal Analysis, Validation, Data Curation. **TMB:**
767 Conceptualization, Methodology, Writing – Review & Editing, Funding Acquisition,
768 Supervision, Project Administration. **TMB** is the guarantor of this work and, as such, has full
769 access to all of the data in the study and takes responsibility for the integrity of the data and the
770 accuracy of the data analysis. All authors contributed to the article and approved the submitted
771 version.

772 **Figures:**

773 **Figure 1. Anti-CD226 mAb Blockade Inhibits CD4⁺ and CD8⁺ T Cell Proliferation and**
774 **Promotes IL-10 Production.** Proliferation of **(A-B)** CD4⁺ and **(C-D)** CD8⁺ T cells within
775 CellTrace Violet-labeled whole splenocytes was assessed by flow cytometry following *in vitro*
776 incubation with either IgG2a isotype control (blues) or anti-CD226 mAb (reds) and subsequent
777 stimulation. **(A, C)** Representative dye dilution plots depicting proliferation of cells treated with
778 isotype control or anti-CD226 mAb following either no stimulation (grey) or 96 hours of plate-
779 bound IgG_1 -CD3/ IgG_1 -CD28 (darker blue/red) or IgG_1 -CD3/CD155-Fc stimulation (lighter blue/red),
780 with **(B, D)** paired dot plots showing division indices for each treatment and stimulation
781 condition (biological n=10/condition). To assess the impact of anti-CD226 blockade on cytokine
782 secretion, NOD splenocytes were incubated with anti-CD226 mAb or IgG2a isotype control,
783 then stimulated for 48 hours *in vitro* with IgG_1 -CD3/ IgG_1 -CD28 or IgG_1 -CD3/CD155-Fc. Cell culture
784 supernatants were analyzed by ELISA, and box and whisker plots show the fold-change in the
785 production of **(E)** IFN- γ and **(F)** IL-10 by anti-CD226 treated relative to IgG2a treated
786 splenocytes (biological n=8/condition). Five weeks after *in vivo* isotype control (blue) or anti-
787 CD226 mAb (red) treatment of NOD mice, the proliferation (percent Ki67⁺) of naïve (CD44⁻
788 CD62L⁺), T central memory (T_{CM}; CD44⁺CD62L⁺), and T effector memory (T_{EM}; CD44⁺CD62L⁻
789) subsets of **(G-H)** CD4⁺ Tconv, **(I-J)** CD4⁺ Treg, and **(K-L)** CD8⁺ T cells was assessed from
790 splenocytes by flow cytometry as shown in **(G, I, K)** representative histograms and **(H, J, L)**
791 violin plots (biological n=10/condition). Significant P-values are reported for paired samples
792 using **(B, D, H, J, L)** two-way ANOVA or **(E, F)** one-way ANOVA, each with Bonferroni
793 correction for multiple comparisons.

794

795 **Figure 2. Treatment of NOD mice with anti-CD226 Reduces CD8⁺ Frequencies in Spleen**
796 **and pLN.** (A) Experimental scheme depicting the treatment of female NOD mice with anti-
797 CD226 mAb (red) or isotype control (blue) with tissues harvested five weeks later for flow
798 cytometric assessment (created using BioRender). Representative histograms and violin plots
799 show the frequencies of CD4⁺ and CD8⁺ T cells in the (B-C) pancreas (n=5/treatment group), as
800 well as the (D-E) thymus, (F-G) spleen, (H-I) and pancreatic-draining lymph nodes (pLN)
801 (n=10/treatment group). Significant P-values are reported for two-way ANOVA with Bonferroni
802 correction for multiple comparisons.

803

804 **Figure 3. Treatment of NOD Mice With anti-CD226 mAb Reduces Spontaneous Diabetes**
805 **Incidence.**

806 (A) Experimental scheme: insulitis severity and diabetes incidence were assessed in female NOD
807 mice following treatment with IgG2a isotype control or anti-CD226 mAb (BioRender). (B)
808 Representative images show H&E stained pancreas sections from 12-week-old mice five weeks
809 after treatment. Islets are indicated with yellow arrows. (C) Stacked bar graphs show islets
810 categorized by insulitis score (0-3) for each treatment condition (figure reports total number of
811 islets evaluated from biological $n=10$ mice, isotype; $n=8$, anti-CD226). Significant P-value
812 reported for Chi-Square Test. (D) Impact of anti-CD226 mAb (red) treatment on the incidence of
813 autoimmune diabetes as compared to isotype control (blue) (n=25/treatment group). Significant
814 P-value reported for Log-Rank (Mantel-Cox) test.

815

816 **Figure 4. Anti-CD226 mAb Blockade Augments Treg Suppressive Capacity.** CD25
817 expression was measured by flow cytometry in various tissues from female NOD mice five

818 weeks after treatment with either IgG2a isotype control (blue) or α -CD226 mAb (red). (A-D)
819 Representative histograms and (E-H) violin plots show the geometric mean fluorescence
820 intensity (gMFI) of CD25 on Foxp3⁺Helios⁺ tTregs in the (A, E) thymus, (B, F) spleen, and (C,
821 (G) pancreatic-draining lymph nodes (pLN) (n=10/treatment group), as well as (D, H) pancreas
822 (n=5/treatment group). Significant P-values are reported for unpaired t-tests. (I-L)
823 Phosphorylation of STAT5 (pSTAT5) following *in vitro* IL-2 stimulation was measured by flow
824 cytometry in whole splenocytes obtained from 12-week-old female NOD mice, five weeks after
825 treatment with either IgG2a isotype control (blue) or α -CD226 mAb (red). Representative
826 histograms show staining for pSTAT5 in CD4⁺Foxp3⁺ Tregs following (I) 0, (J) 15, or (K) 60
827 minutes of stimulation of IL-2 with (L) pSTAT5⁺ Treg frequencies over 60 minutes of IL-2
828 stimulation (n=4/condition). Significant P-values are reported for two-way ANOVA with
829 Bonferroni correction for multiple comparisons. (M) Representative dye dilution plot shows the
830 proliferation of CTV labeled CD4⁺ T responders (Tresp) in an *in vitro* suppression assay at the
831 1:2 Treg:Tresp ratio following Treg incubation with IgG2a isotype control (blue) or α -CD226
832 mAb (red). (N) Percent suppression of CD4⁺ Tresp was determined using the division index
833 method at each Treg:Tresp ratio (n=6/condition, significant P-values reported for two-way
834 ANOVA with Bonferroni correction), with additional comparisons made using (O) area under
835 the curve (AUC) values for each suppression curve (paired t-test).

836

837 **Figure 5. Anti-CD226 mAb Blockade Diminishes T Cell Cytotoxicity.**

838 CD8⁺ IGRP-reactive T cells were quantified using IGRP₂₀₆₋₂₁₄ tetramer staining in lymphocytes
839 isolated from the pancreases of 12-week-old female NOD mice five weeks after treatment with
840 isotype control (blue) or anti-CD226 (red). (A) Representative flow cytometric contour plots and

841 (B) violin plots show the frequency of IGRP tetramer⁺ CD8⁺ T cells (n=5/treatment group).
842 Significant P-value reported for unpaired t-test. (C) Experimental scheme depicting CML assay
843 to assess the effect of CD226 blockade on the cytotoxic activity of autoreactive AI4-mouse
844 lymphocytes killing NIT-1 pancreatic beta-cells, as measured by ⁵¹Cr-release (created with
845 BioRender). (D) Percent specific lysis at each Effector:Target cell (E:T) ratio (n=4/condition,
846 significant P-values reported for two-way ANOVA with Bonferroni correction for multiple
847 comparisons) with (E) AUC values (paired t-test).

848

849 **Figure 6. Anti-CD226 mAb Blockade Reduces Expression of T cell Activation Genes.** To
850 identify differentially expressed genes as a result of anti-CD226 blockade, (A) scRNA-
851 seq/CITE-seq was performed on CD3⁺ T cells isolated from the (B-C) pLN (n=3 isotype, n=5
852 anti-CD226 mAb) and (D-E) pancreas (n=3 isotype, n=2 anti-CD226) of 12-week-old female
853 NOD mice, five weeks after anti-CD226 or isotype administration. (A) Experimental scheme
854 (created with BioRender). (B, D) Uniform Manifold Approximation and Projection (UMAP)
855 plots annotated with distinct T cell clustering for each organ assessed (pLN = 54,229 cells;
856 pancreas = 17,617 cells). (C, E) Heatmaps show aggregated gene expression Z-scores (pLN:
857 *Il7r*, *Cxcr4*, *Il16*, *Ccr7*, *Ifngr1*, *Stat1*, *Cd69*; pancreas: *Cdk8*, *Il31ra*, *Il7r*, *Txnip*, *Smad7*, *Cd69*,
858 *Tagap*, *Ifngr1*, *Dock2*) by cluster and treatment condition.

859

860 **Figure 7. Anti-CD226 mAb Blockade Alters T Cell Clonal Expansion in the Pancreas.** To
861 determine the impact of anti-CD226 blockade on T cell clonal expansion, TCR-seq data was
862 merged with corresponding scRNA-seq data on T cells isolated from 12-week-old female NOD
863 pancreas five weeks after treatment with IgG2a isotype control or anti-CD226 mAb. (A) The

864 degree of clonal expansion within each cluster was assessed by overlaying the proportion of each
865 clonotype (Medium: $0.001 < X < 0.01$ (orange), Small: $1e^{-4} < X < 0.001$ (pink), Rare: $0 < X <$
866 $1e^{-4}$ (purple), NA: no CDR3 sequence for cell barcode (gray)) onto a UMAP projection of T
867 cells. **(B)** Volcano plot shows differentially expressed genes of small and medium expanded
868 clones in the highly expanded cluster of activated CD8⁺ T cells. Genes with Log₂ fold change
869 (FC) < 10 and Log₁₀ P-value > 1.3 are shown in gray (not significant, NS). Genes with Log₂ FC
870 > 10 but Log₁₀ P-value > 1.3 are shown in green. Genes with Log₂ FC < 10 but Log₁₀ P-value <
871 1.3 are shown in blue. Six genes were identified as having significant differential expression
872 (Log₁₀ P-value < 1.3 and Log₂ FC > 10) shown in red with annotations. Stacked bar plots show
873 that **(C)** while there is an increased frequency of medium-expanded clones following α -CD226,
874 the distributions of clonal expansion by cluster in mice treated with **(D)** isotype **(E)** or anti-
875 CD226 remain **(F)** unchanged when comparing the overall distribution of small and medium
876 clones by cluster. **(G)** UMAP plots split by treatment condition (isotype = 10,077 cells; anti-
877 CD226 = 7,540 cells) show T cells containing CDR3 sequences within one amino acid of
878 previously published IGRP-reactive clones, annotated as IGRP-reactive (pink) or having any
879 other reactivity (purple). **(H)** Stacked bar plots show the frequency of IGRP-reactive clones
880 within the activated CD8⁺ T cell cluster between isotype (n=3) or anti-CD226 treated mice (n=2)
881 with the total number of activated CD8⁺ T cells per treatment group shown below. Significant P-
882 value reported for Fisher's Exact Test.

883 **References:**

884 [1] Rodriguez-Calvo T, Johnson JD, Overbergh L, Dunne JL (2021) Neoepitopes in Type 1
885 Diabetes: Etiological Insights, Biomarkers and Therapeutic Targets. *Front Immunol* 12: 667989.
886 10.3389/fimmu.2021.667989

887 [2] Atkinson MA, Eisenbarth GS, Michels AW (2014) Type 1 diabetes. *Lancet* 383(9911):
888 69-82. 10.1016/S0140-6736(13)60591-7

889 [3] Herold KC, Bundy BN, Long SA, et al. (2019) An Anti-CD3 Antibody, Teplizumab, in
890 Relatives at Risk for Type 1 Diabetes. *N Engl J Med* 381(7): 603-613. 10.1056/NEJMoa1902226

891 [4] Herold KC, Gitelman SE, Ehlers MR, et al. (2013) Teplizumab (anti-CD3 mAb)
892 treatment preserves C-peptide responses in patients with new-onset type 1 diabetes in a
893 randomized controlled trial: metabolic and immunologic features at baseline identify a subgroup
894 of responders. *Diabetes* 62(11): 3766-3774. 10.2337/db13-0345

895 [5] Loftus EV, Panés J, Lacerda AP, et al. (2023) Upadacitinib Induction and Maintenance
896 Therapy for Crohn's Disease. *N Engl J Med* 388(21): 1966-1980. 10.1056/NEJMoa2212728

897 [6] Korhonen R, Moilanen E (2010) Anti-CD20 antibody rituximab in the treatment of
898 rheumatoid arthritis. *Basic Clin Pharmacol Toxicol* 106(1): 13-21. 10.1111/j.1742-
899 7843.2009.00452.x

900 [7] Ayano M, Tsukamoto H, Kohno K, et al. (2015) Increased CD226 Expression on CD8+
901 T Cells Is Associated with Upregulated Cytokine Production and Endothelial Cell Injury in
902 Patients with Systemic Sclerosis. *J Immunol* 195(3): 892-900. 10.4049/jimmunol.1403046

903 [8] Fuhrman CA, Yeh WI, Seay HR, et al. (2015) Divergent Phenotypes of Human
904 Regulatory T Cells Expressing the Receptors TIGIT and CD226. *J Immunol* 195(1): 145-155.
905 10.4049/jimmunol.1402381

906 [9] Hou S, Ge K, Zheng X, Wei H, Sun R, Tian Z (2014) CD226 protein is involved in
907 immune synapse formation and triggers Natural Killer (NK) cell activation via its first
908 extracellular domain. *J Biol Chem* 289(10): 6969-6977. 10.1074/jbc.M113.498253

909 [10] Lozano E, Dominguez-Villar M, Kuchroo V, Hafler DA (2012) The TIGIT/CD226 axis
910 regulates human T cell function. *J Immunol* 188(8): 3869-3875. 10.4049/jimmunol.1103627

911 [11] Zhang Z, Wu N, Lu Y, Davidson D, Colonna M, Veillette A (2015) DNAM-1 controls
912 NK cell activation via an ITT-like motif. *J Exp Med* 212(12): 2165-2182. 10.1084/jem.20150792

913 [12] Lozano E, Joller N, Cao Y, Kuchroo VK, Hafler DA (2013) The CD226/CD155
914 interaction regulates the proinflammatory (Th1/Th17)/anti-inflammatory (Th2) balance in
915 humans. *J Immunol* 191(7): 3673-3680. 10.4049/jimmunol.1300945

916 [13] Liu T, Zhang D, Zhang Y, et al. (2018) Blocking CD226 Promotes Allogeneic Transplant
917 Immune Tolerance and Improves Skin Graft Survival by Increasing the Frequency of Regulatory
918 T Cells in a Murine Model. *Cell Physiol Biochem* 45(6): 2338-2350. 10.1159/000488182

919 [14] Qiu ZX, Zhang K, Qiu XS, Zhou M, Li WM (2013) CD226 Gly307Ser association with
920 multiple autoimmune diseases: a meta-analysis. *Hum Immunol* 74(2): 249-255.
921 10.1016/j.humimm.2012.10.009

922 [15] Shapiro MR, Thirawatananond P, Peters L, et al. (2021) De-coding genetic risk variants
923 in type 1 diabetes. *Immunol Cell Biol* 99(5): 496-508. 10.1111/imcb.12438

924 [16] Gaud G, Roncagalli R, Chaoui K, et al. (2018) The costimulatory molecule CD226
925 signals through VAV1 to amplify TCR signals and promote IL-17 production by CD4. *Sci
926 Signal* 11(538). 10.1126/scisignal.aar3083

927 [17] Shibuya K, Shirakawa J, Kameyama T, et al. (2003) CD226 (DNAM-1) is involved in
928 lymphocyte function-associated antigen 1 costimulatory signal for naive T cell differentiation
929 and proliferation. *J Exp Med* 198(12): 1829-1839. 10.1084/jem.20030958

930 [18] Shirakawa J, Shibuya K, Shibuya A (2005) Requirement of the serine at residue 329 for
931 lipid raft recruitment of DNAM-1 (CD226). *Int Immunol* 17(3): 217-223.
932 10.1093/intimm/dxh199

933 [19] Hollis-Moffatt JE, Hook SM, Merriman TR (2005) Colocalization of mouse autoimmune
934 diabetes loci Idd21.1 and Idd21.2 with IDDM6 (human) and Iddm3 (rat). *Diabetes* 54(9): 2820-
935 2825. 10.2337/diabetes.54.9.2820

936 [20] Shapiro MR, Yeh WI, Longfield JR, et al. (2020) CD226 Deletion Reduces Type 1
937 Diabetes in the NOD Mouse by Impairing Thymocyte Development and Peripheral T Cell
938 Activation. *Front Immunol* 11: 2180. 10.3389/fimmu.2020.02180

939 [21] Wang N, Yi H, Fang L, et al. (2020) CD226 Attenuates Treg Proliferation via Akt and
940 Erk Signaling in an EAE Model. *Front Immunol* 11: 1883. 10.3389/fimmu.2020.01883

941 [22] Zhang R, Zeng H, Zhang Y, et al. (2016) CD226 ligation protects against EAE by
942 promoting IL-10 expression via regulation of CD4+ T cell differentiation. *Oncotarget* 7(15):
943 19251-19264. 10.18632/oncotarget.7834

944 [23] Thirawatananond P, Brown ME, Sachs LK, et al. (2023) Treg-Specific CD226 Deletion
945 Reduces Diabetes Incidence in NOD Mice by Improving Regulatory T-Cell Stability. *Diabetes*
946 72(11): 1629-1640. 10.2337/db23-0307

947 [24] Zhou X, Jeker LT, Fife BT, Zhu S, Anderson MS, McManus MT, Bluestone JA (2008)
948 Selective miRNA disruption in T reg cells leads to uncontrolled autoimmunity. *J Exp Med*
949 205(9): 1983-1991. 10.1084/jem.20080707

950 [25] Whitener RL, Gallo Knight L, Li J, et al. (2017) The Type 1 Diabetes-Resistance Locus
951 Idd22 Controls Trafficking of Autoreactive CTLs into the Pancreatic Islets of NOD Mice. *The
952 Journal of Immunology* 199(12). 10.4049/jimmunol.1602037

953 [26] National Research Council . Committee for the Update of the Guide for the C, Use of
954 Laboratory A, Institute for Laboratory Animal R, National Academies P (2011) Guide for the
955 care and use of laboratory animals. 8th edn. National Academies Press, Washington, D.C.

956 [27] Xue S, Posgai A, Wasserfall C, et al. (2015) Combination Therapy Reverses
957 Hyperglycemia in NOD Mice With Established Type 1 Diabetes. *Diabetes* 64(11): 3873-3884.
958 10.2337/db15-0164

959 [28] Antov A, Yang L, Vig M, Baltimore D, Van Parijs L (2003) Essential role for STAT5
960 signaling in CD25+CD4+ regulatory T cell homeostasis and the maintenance of self-tolerance. *J
961 Immunol* 171(7): 3435-3441. 10.4049/jimmunol.171.7.3435

962 [29] You S, Chen C, Lee WH, Brusko T, Atkinson M, Liu CP (2004) Presence of diabetes-
963 inhibiting, glutamic acid decarboxylase-specific, IL-10-dependent, regulatory T cells in naive
964 nonobese diabetic mice. *J Immunol* 173(11): 6777-6785. 10.4049/jimmunol.173.11.6777

965 [30] Lissina A, Ladell K, Skowera A, et al. (2009) Protein kinase inhibitors substantially
966 improve the physical detection of T-cells with peptide-MHC tetramers. *J Immunol Methods*
967 340(1): 11-24. 10.1016/j.jim.2008.09.014

968 [31] Chen J, Grieshaber S, Mathews CE (2011) Methods to assess beta cell death mediated by
969 cytotoxic T lymphocytes. *J Vis Exp*(52). 10.3791/2724

970 [32] Lamont D, Mukherjee G, Kumar PR, et al. (2014) Compensatory mechanisms allow
971 undersized anchor-deficient class I MHC ligands to mediate pathogenic autoreactive T cell
972 responses. *J Immunol* 193(5): 2135-2146. 10.4049/jimmunol.1400997

973 [33] Hamaguchi K, Gaskins HR, Leiter EH (1991) NIT-1, a pancreatic beta-cell line
974 established from a transgenic NOD/Lt mouse. *Diabetes* 40(7): 842-849. 10.2337/diab.40.7.842
975 [34] Dobin A, Davis CA, Schlesinger F, et al. (2013) STAR: ultrafast universal RNA-seq
976 aligner. *Bioinformatics* 29(1): 15-21. 10.1093/bioinformatics/bts635
977 [35] Choudhary S, Satija R (2022) Comparison and evaluation of statistical error models for
978 scRNA-seq. *Genome Biol* 23(1): 27. 10.1186/s13059-021-02584-9
979 [36] Ahlmann-Eltze C, Huber W (2021) glmGamPoi: fitting Gamma-Poisson generalized
980 linear models on single cell count data. *Bioinformatics* 36(24): 5701-5702.
981 10.1093/bioinformatics/btaa1009
982 [37] Pijuan-Sala B, Griffiths JA, Guibentif C, et al. (2019) A single-cell molecular map of
983 mouse gastrulation and early organogenesis. *Nature* 566(7745): 490-495. 10.1038/s41586-019-
984 0933-9
985 [38] Lun ATL, Richard AC, Marioni JC (2017) Testing for differential abundance in mass
986 cytometry data. *Nat Methods* 14(7): 707-709. 10.1038/nmeth.4295
987 [39] Kasmani MY, Ciecko AE, Brown AK, Petrova G, Gorski J, Chen YG, Cui W (2022)
988 Autoreactive CD8 T cells in NOD mice exhibit phenotypic heterogeneity but restricted TCR
989 gene usage. *Life Sci Alliance* 5(10). 10.26508/lسا.202201503
990 [40] Hao Y, Stuart T, Kowalski MH, et al. (2023) Dictionary learning for integrative,
991 multimodal and scalable single-cell analysis. *Nat Biotechnol*. 10.1038/s41587-023-01767-y
992 [41] Mulè MP, Martins AJ, Tsang JS (2022) Normalizing and denoising protein expression
993 data from droplet-based single cell profiling. *Nat Commun* 13(1): 2099. 10.1038/s41467-022-
994 29356-8
995 [42] McGinnis CS, Murrow LM, Gartner ZJ (2019) DoubletFinder: Doublet Detection in
996 Single-Cell RNA Sequencing Data Using Artificial Nearest Neighbors. *Cell Syst* 8(4): 329-
997 337.e324. 10.1016/j.cels.2019.03.003
998 [43] Korsunsky I, Nathan A, Millard N, Raychaudhuri S (2019) Presto scales Wilcoxon and
999 auROC analyses to millions of observations. In, *BioRxiv*
1000 [44] Chen Y, Lun AT, Smyth GK (2016) From reads to genes to pathways: differential
1001 expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood
1002 pipeline. *F1000Res* 5: 1438. 10.12688/f1000research.8987.2
1003 [45] Amezquita RA, Lun ATL, Becht E, et al. (2020) Orchestrating single-cell analysis with
1004 Bioconductor. *Nat Methods* 17(2): 137-145. 10.1038/s41592-019-0654-x
1005 [46] Borcherding N, Bormann NL, Kraus G (2020) scRepertoire: An R-based toolkit for
1006 single-cell immune receptor analysis. *F1000Res* 9: 47. 10.12688/f1000research.22139.2
1007 [47] Pages H, Aboyoun P, Gentleman R, DebRoy S (2024) Biostrings: Efficient manipulation
1008 of biological strings. In, *R package version 2.70.2*
1009 [48] Bunis DG, Andrews J, Fragiadakis GK, Burt TD, Sirota M (2021) dittoSeq: universal
1010 user-friendly single-cell and bulk RNA sequencing visualization toolkit. *Bioinformatics* 36(22-
1011 23): 5535-5536. 10.1093/bioinformatics/btaa1011
1012 [49] Blighe K, Rana S, Lewis M (2023) EnhancedVolcano: Publication-ready volcano plots
1013 with enhanced colouring and labeling. In, *R package version 1.20.0*
1014 [50] Akimova T, Levine MH, Beier UH, Hancock WW (2016) Standardization, Evaluation,
1015 and Area-Under-Curve Analysis of Human and Murine Treg Suppressive Function. *Methods*
1016 *Mol Biol* 1371: 43-78. 10.1007/978-1-4939-3139-2_4
1017 [51] Brown ME, Peters LD, Hanbali SR, et al. (2022) Human CD4+ CD25+ CD226- Tregs
1018 Demonstrate Increased Purity, Lineage Stability, and Suppressive Capacity Versus

1019 CD4+ CD25+ CD127lo/- Tregs for Adoptive Cell Therapy. *Front Immunol* 13: 873560.
1020 10.3389/fimmu.2022.873560

1021 [52] Permanyer M, Bošnjak B, Glage S, et al. (2021) Efficient IL-2R signaling differentially
1022 affects the stability, function, and composition of the regulatory T-cell pool. *Cell Mol Immunol*
1023 18(2): 398-414. 10.1038/s41423-020-00599-z

1024 [53] Brusko TM, Russ HA, Stabler CL (2021) Strategies for durable β cell replacement in
1025 type 1 diabetes. *Science* 373(6554): 516-522. 10.1126/science.abh1657

1026 [54] Tahara-Hanaoka S, Shibuya K, Onoda Y, et al. (2004) Functional characterization of
1027 DNAM-1 (CD226) interaction with its ligands PVR (CD155) and nectin-2 (PRR-2/CD112). *Int*
1028 *Immunol* 16(4): 533-538. 10.1093/intimm/dxh059

1029 [55] Banta KL, Xu X, Chitre AS, et al. (2022) Mechanistic convergence of the TIGIT and PD-
1030 1 inhibitory pathways necessitates co-blockade to optimize anti-tumor CD8. *Immunity* 55(3):
1031 512-526.e519. 10.1016/j.jimmuni.2022.02.005

1032 [56] Anthony DA, Andrews DM, Watt SV, Trapani JA, Smyth MJ (2010) Functional
1033 dissection of the granzyme family: cell death and inflammation. *Immunol Rev* 235(1): 73-92.
1034 10.1111/j.0105-2896.2010.00907.x

1035 [57] Tamura R, Yoshihara K, Nakaoka H, et al. (2020) XCL1 expression correlates with CD8-
1036 positive T cells infiltration and PD-L1 expression in squamous cell carcinoma arising from
1037 mature cystic teratoma of the ovary. *Oncogene* 39(17): 3541-3554. 10.1038/s41388-020-1237-0

1038 [58] Seay HR, Yusko E, Rothweiler SJ, et al. (2016) Tissue distribution and clonal diversity of
1039 the T and B cell repertoire in type 1 diabetes. *JCI Insight* 1(20): e88242.
1040 10.1172/jci.insight.88242

1041 [59] Chiou J, Geusz RJ, Okino ML, et al. (2021) Interpreting type 1 diabetes risk with
1042 genetics and single-cell epigenomics. *Nature* 594(7863): 398-402. 10.1038/s41586-021-03552-w

1043 [60] Spanier JA, Sahli NL, Wilson JC, et al. (2017) Increased Effector Memory Insulin-
1044 Specific CD4+ T Cells Correlate with Insulin Autoantibodies in Patients With Recent-Onset
1045 Type 1 Diabetes. *Diabetes* 66(12): 3051-3060. 10.2337/db17-0666

1046 [61] Knörck A, Schäfer G, Alansary D, Richter J, Thurner L, Hoth M, Schwarz EC (2022)
1047 Cytotoxic Efficiency of Human CD8+ T Cell Memory Subtypes. *Front Immunol* 13: 838484.
1048 10.3389/fimmu.2022.838484

1049 [62] Gilfillan S, Chan CJ, Cella M, et al. (2008) DNAM-1 promotes activation of cytotoxic
1050 lymphocytes by nonprofessional antigen-presenting cells and tumors. *J Exp Med* 205(13): 2965-
1051 2973. 10.1084/jem.20081752

1052 [63] Magnuson AM, Thurber GM, Kohler RH, Weissleder R, Mathis D, Benoist C (2015)
1053 Population dynamics of islet-infiltrating cells in autoimmune diabetes. *Proc Natl Acad Sci U S A*
1054 112(5): 1511-1516. 10.1073/pnas.1423769112

1055 [64] Basu R, Whitlock BM, Husson J, et al. (2016) Cytotoxic T Cells Use Mechanical Force
1056 to Potentiate Target Cell Killing. *Cell* 165(1): 100-110. 10.1016/j.cell.2016.01.021

1057 [65] Kunimura K, Urano T, Fukui Y (2020) DOCK family proteins: key players in immune
1058 surveillance mechanisms. *Int Immunol* 32(1): 5-15. 10.1093/intimm/dxz067

1059 [66] Kuzumi A, Yoshizaki A, Matsuda KM, et al. (2021) Interleukin-31 promotes fibrosis and
1060 T helper 2 polarization in systemic sclerosis. *Nat Commun* 12(1): 5947. 10.1038/s41467-021-
1061 26099-w

1062 [67] Aboumrad E, Madec AM, Thivolet C (2007) The CXCR4/CXCL12 (SDF-1) signalling
1063 pathway protects non-obese diabetic mouse from autoimmune diabetes. *Clin Exp Immunol*
1064 148(3): 432-439. 10.1111/j.1365-2249.2007.03370.x

1065 [68] Walsh DA, Borges da Silva H, Beura LK, Peng C, Hamilton SE, Masopust D, Jameson
1066 SC (2019) The Functional Requirement for CD69 in Establishment of Resident Memory CD8. *J*
1067 *Immunol* 203(4): 946-955. 10.4049/jimmunol.1900052

1068 [69] Kojima H, Kanada H, Shimizu S, et al. (2003) CD226 mediates platelet and
1069 megakaryocytic cell adhesion to vascular endothelial cells. *J Biol Chem* 278(38): 36748-36753.
1070 10.1074/jbc.M300702200

1071 [70] Chen L, Xie X, Zhang X, Jia W, Jian J, Song C, Jin B (2003) The expression, regulation
1072 and adhesion function of a novel CD molecule, CD226, on human endothelial cells. *Life Sci*
1073 73(18): 2373-2382. 10.1016/s0024-3205(03)00606-4

1074 [71] Johnston RJ, Comps-Agrar L, Hackney J, et al. (2014) The immunoreceptor TIGIT
1075 regulates antitumor and antiviral CD8(+) T cell effector function. *Cancer Cell* 26(6): 923-937.
1076 10.1016/j.ccr.2014.10.018

1077 [72] Bancerek J, Poss ZC, Steinparzer I, et al. (2013) CDK8 kinase phosphorylates
1078 transcription factor STAT1 to selectively regulate the interferon response. *Immunity* 38(2): 250-
1079 262. 10.1016/j.immuni.2012.10.017

1080 [73] Fuchs YF, Eugster A, Dietz S, et al. (2017) CD8+ T cells specific for the islet
1081 autoantigen IGRP are restricted in their T cell receptor chain usage. *Sci Rep* 7: 44661.
1082 10.1038/srep44661

1083 [74] Unger WW, Pearson T, Abreu JR, et al. (2012) Islet-specific CTL cloned from a type 1
1084 diabetes patient cause beta-cell destruction after engraftment into HLA-A2 transgenic
1085 NOD/scid/IL2RG null mice. *PLoS One* 7(11): e49213. 10.1371/journal.pone.0049213

1086 [75] Ke Q, Kroger CJ, Clark M, Tisch RM (2020) Evolving Antibody Therapies for the
1087 Treatment of Type 1 Diabetes. *Front Immunol* 11: 624568. 10.3389/fimmu.2020.624568

1088 [76] Garo LP, Ajay AK, Fujiwara M, et al. (2019) Smad7 Controls Immunoregulatory
1089 PDL2/1-PD1 Signaling in Intestinal Inflammation and Autoimmunity. *Cell Rep* 28(13): 3353-
1090 3366.e3355. 10.1016/j.celrep.2019.07.065

1091 [77] Yan X, Liu Z, Chen Y (2009) Regulation of TGF-beta signaling by Smad7. *Acta*
1092 *Biochim Biophys Sin (Shanghai)* 41(4): 263-272. 10.1093/abbs/gmp018

1093 [78] Zhou G, Sun X, Qin Q, et al. (2018) Loss of Smad7 Promotes Inflammation in
1094 Rheumatoid Arthritis. *Front Immunol* 9: 2537. 10.3389/fimmu.2018.02537

1095 [79] Pang N, Zhang F, Ma X, et al. (2014) TGF- β /Smad signaling pathway regulates
1096 Th17/Treg balance during Echinococcus multilocularis infection. *Int Immunopharmacol* 20(1):
1097 248-257. 10.1016/j.intimp.2014.02.038

1098 [80] Du X, de Almeida P, Manieri N, et al. (2018) CD226 regulates natural killer cell
1099 antitumor responses via phosphorylation-mediated inactivation of transcription factor FOXO1.
1100 *Proc Natl Acad Sci U S A* 115(50): E11731-E11740. 10.1073/pnas.1814052115

1101 [81] Ouyang W, Beckett O, Ma Q, Paik JH, DePinho RA, Li MO (2010) Foxo proteins
1102 cooperatively control the differentiation of Foxp3+ regulatory T cells. *Nat Immunol* 11(7): 618-
1103 627. 10.1038/ni.1884

1104 [82] Toomer KH, Lui JB, Altman NH, Ban Y, Chen X, Malek TR (2019) Essential and non-
1105 overlapping IL-2R α -dependent processes for thymic development and peripheral homeostasis of
1106 regulatory T cells. *Nat Commun* 10(1): 1037. 10.1038/s41467-019-08960-1

1107 [83] Passerini L, Allan SE, Battaglia M, et al. (2008) STAT5-signaling cytokines regulate the
1108 expression of FOXP3 in CD4+CD25+ regulatory T cells and CD4+CD25- effector T cells. *Int*
1109 *Immunol* 20(3): 421-431. 10.1093/intimm/dxn002

1110 [84] Hull CM, Peakman M, Tree TIM (2017) Regulatory T cell dysfunction in type 1 diabetes:
1111 what's broken and how can we fix it? *Diabetologia* 60(10): 1839-1850. 10.1007/s00125-017-
1112 4377-1

1113 [85] Buckner JH (2010) Mechanisms of impaired regulation by CD4(+)CD25(+)FOXP3(+)
1114 regulatory T cells in human autoimmune diseases. *Nat Rev Immunol* 10(12): 849-859.
1115 10.1038/nri2889

1116 [86] Hafeez U, Gan HK, Scott AM (2018) Monoclonal antibodies as immunomodulatory
1117 therapy against cancer and autoimmune diseases. *Curr Opin Pharmacol* 41: 114-121.
1118 10.1016/j.coph.2018.05.010

1119 [87] Mohty M (2007) Mechanisms of action of antithymocyte globulin: T-cell depletion and
1120 beyond. *Leukemia* 21(7): 1387-1394. 10.1038/sj.leu.2404683

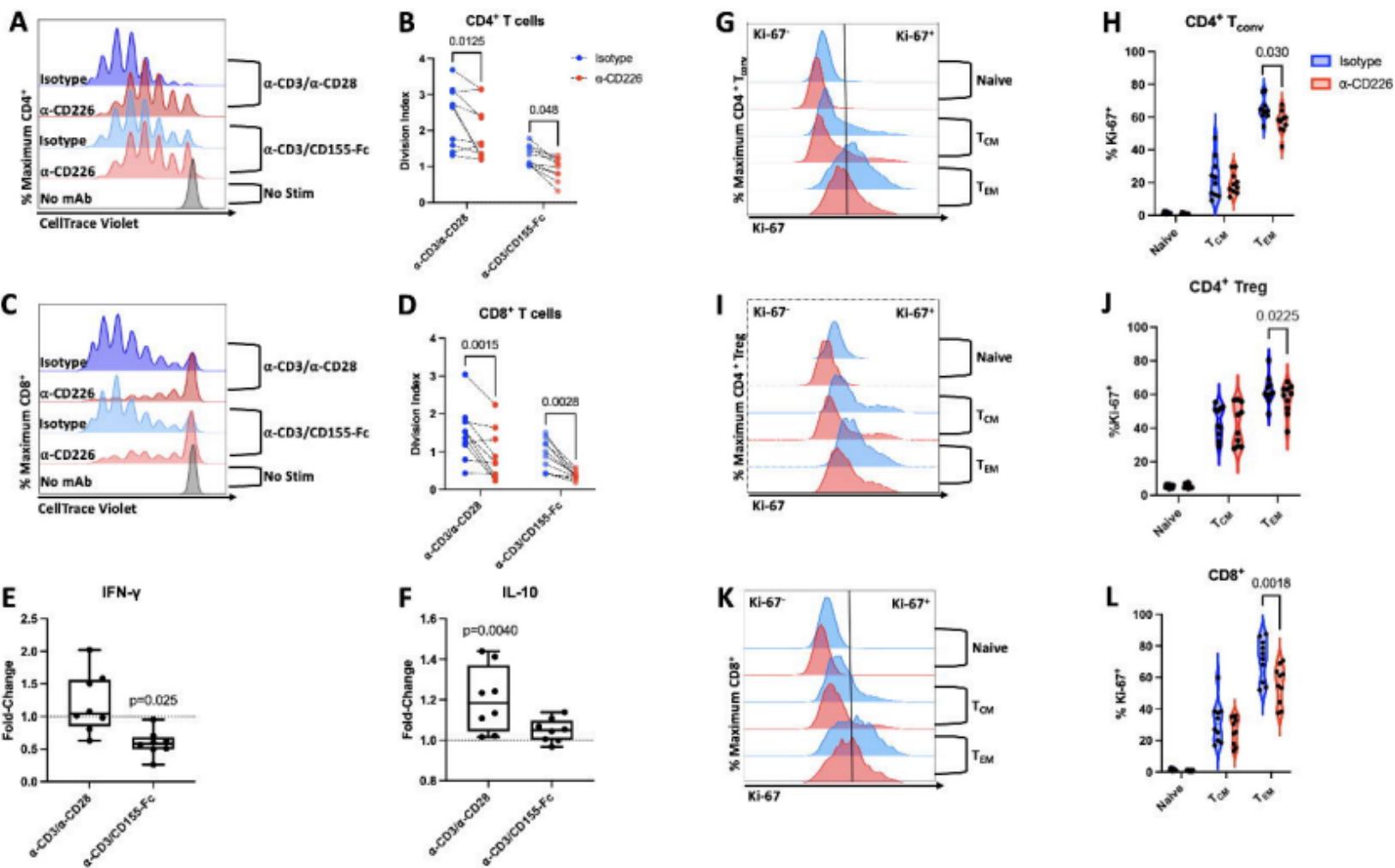
1121 [88] Haller MJ, Schatz DA, Skyler JS, et al. (2018) Low-Dose Anti-Thymocyte Globulin
1122 (ATG) Preserves β -Cell Function and Improves HbA1c, and Increases Regulatory to
1123 Conventional T-Cell Ratios in New-Onset Type 1 Diabetes: Two-Year Clinical Trial Data.
1124 *Diabetes Care* 41(9): 1917-1925. 10.2337/dc18-0494

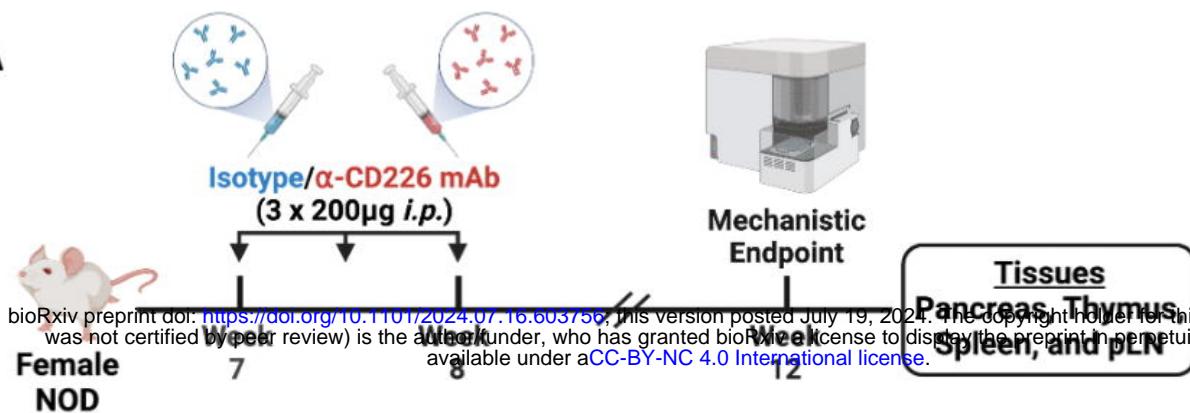
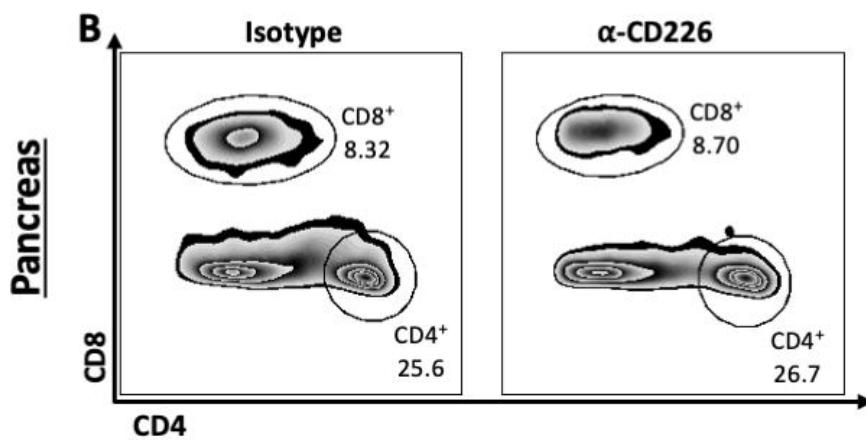
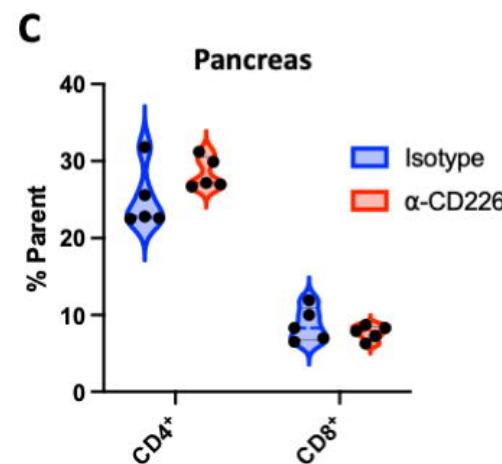
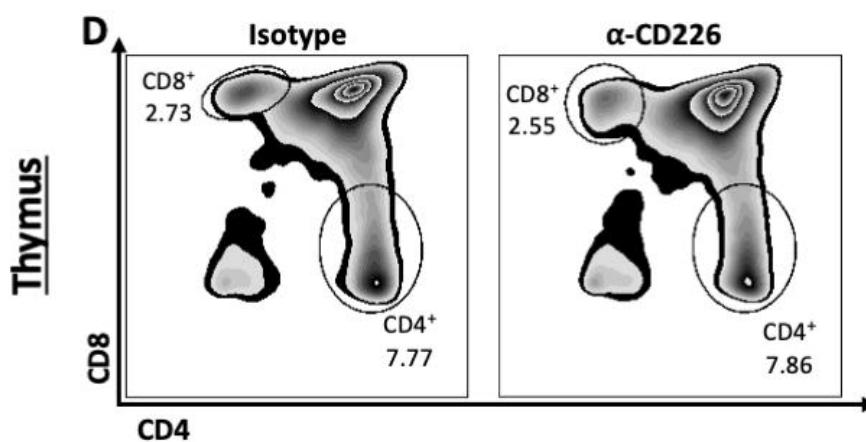
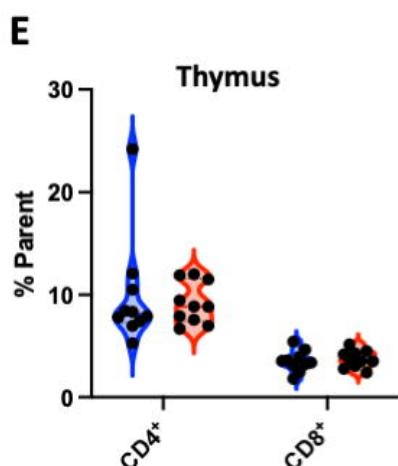
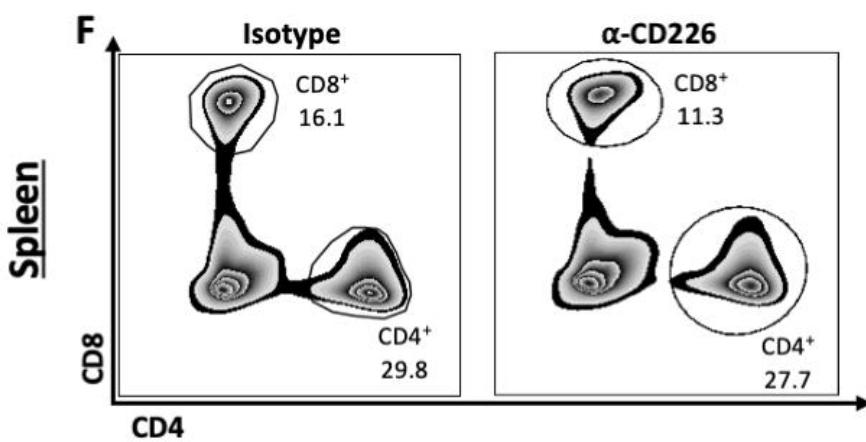
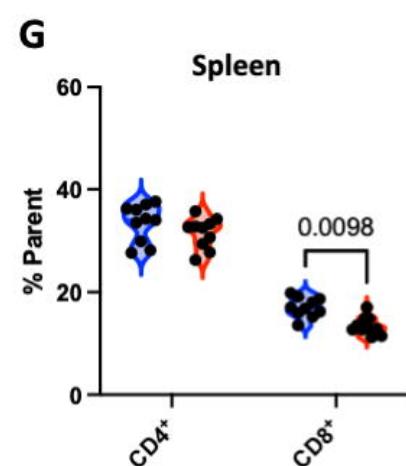
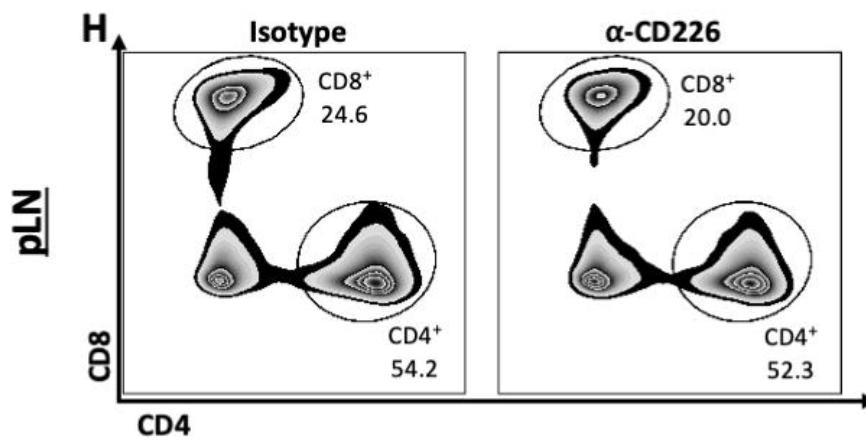
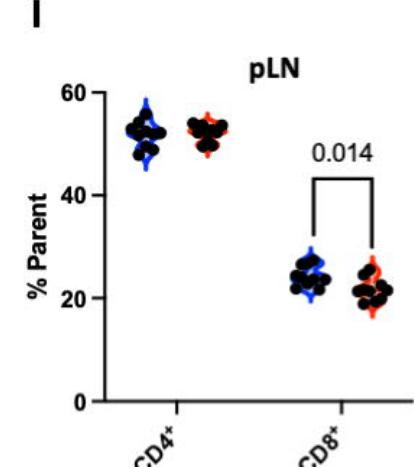
1125 [89] Jacobsen LM, Diggins K, Blanchfield L, et al. (2023) Responders to low-dose ATG
1126 induce CD4+ T cell exhaustion in type 1 diabetes. *JCI Insight* 8(16). 10.1172/jci.insight.161812

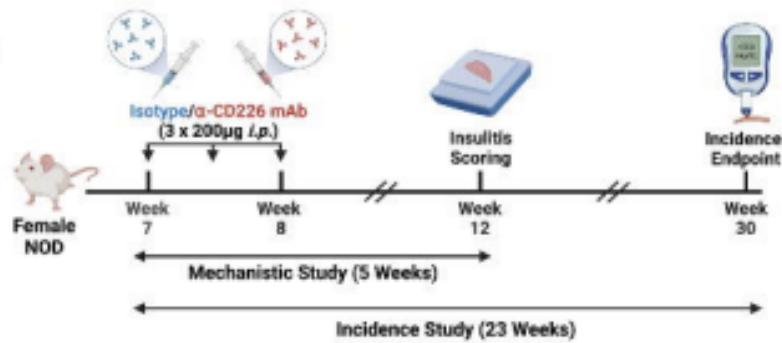
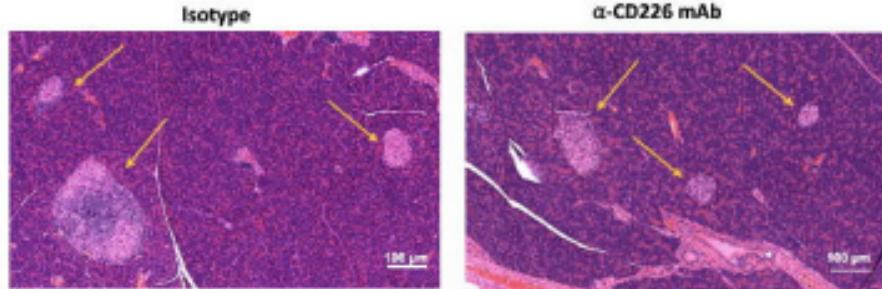
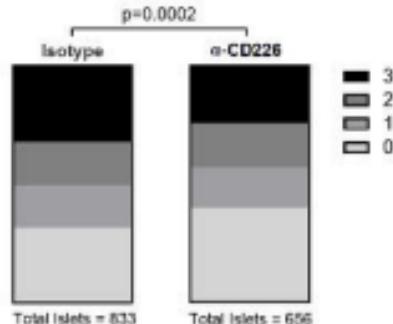
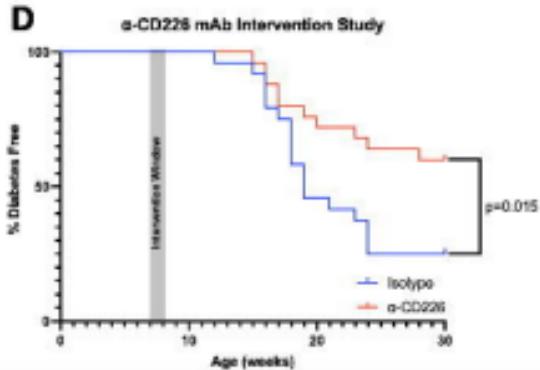
1127 [90] MacIsaac J, Siddiqui R, Jamula E, et al. (2018) Systematic review of rituximab for
1128 autoimmune diseases: a potential alternative to intravenous immune globulin. *Transfusion*
1129 58(11): 2729-2735. 10.1111/trf.14841

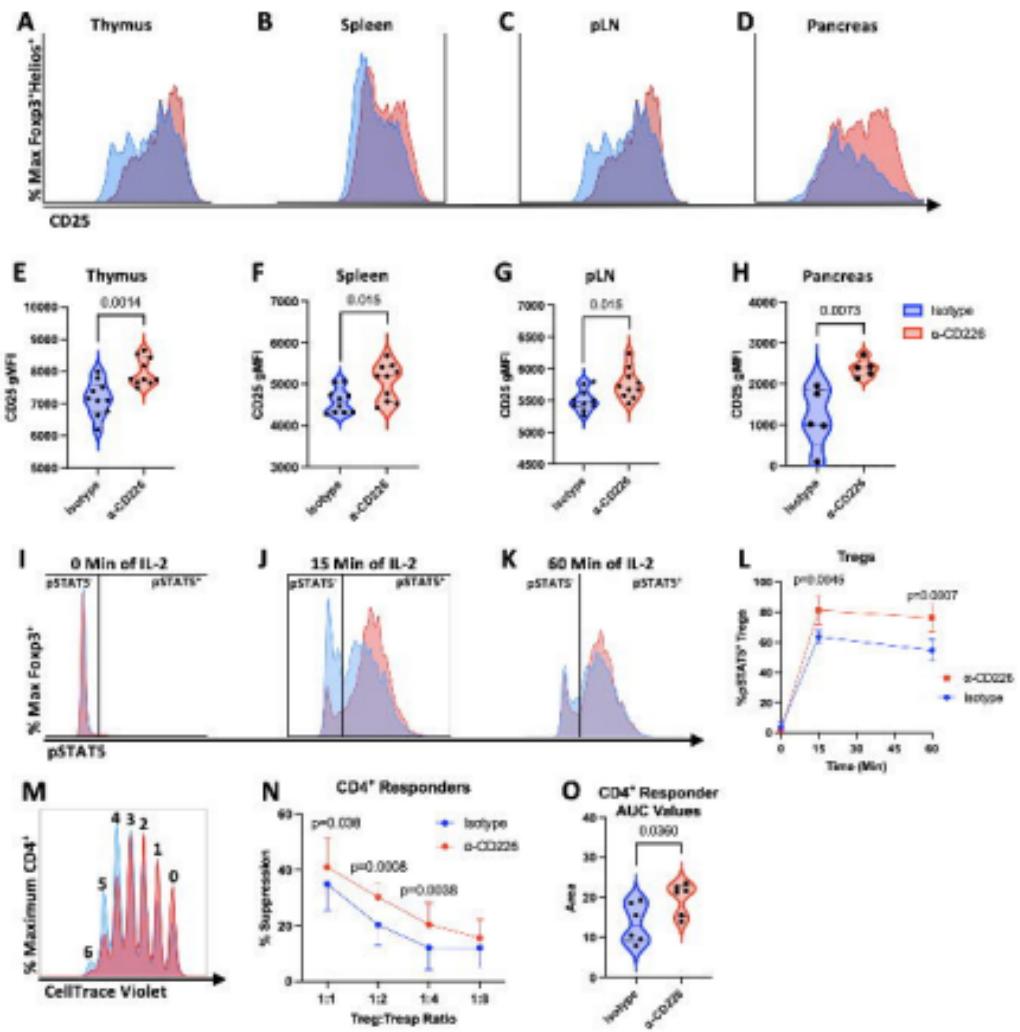
1130 [91] Long SA, Thorpe J, DeBerg HA, et al. (2016) Partial exhaustion of CD8 T cells and
1131 clinical response to teplizumab in new-onset type 1 diabetes. *Sci Immunol* 1(5).
1132 10.1126/sciimmunol.aai7793

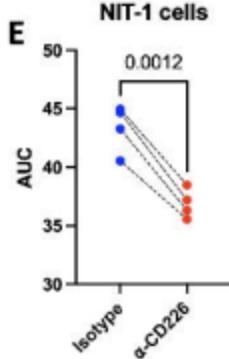
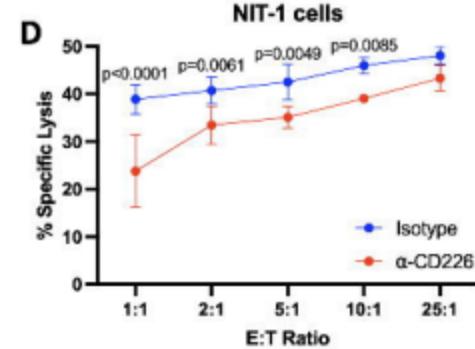
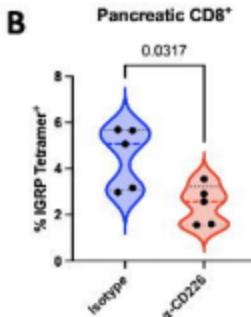
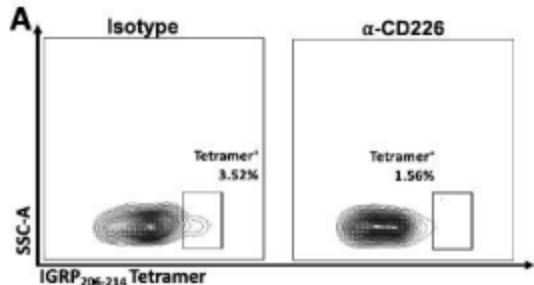
1133 [92] Long SA, Thorpe J, Herold KC, et al. (2017) Remodeling T cell compartments during
1134 anti-CD3 immunotherapy of type 1 diabetes. *Cell Immunol* 319: 3-9.
1135 10.1016/j.cellimm.2017.07.007

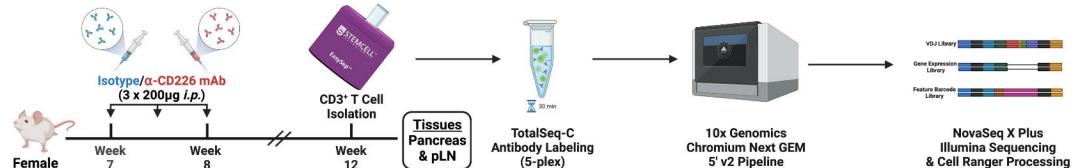
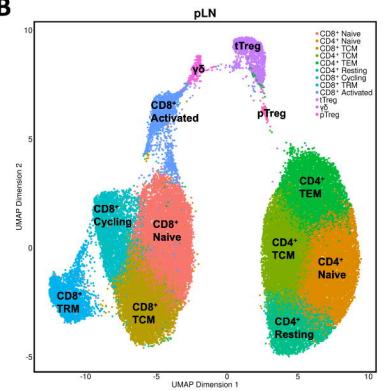
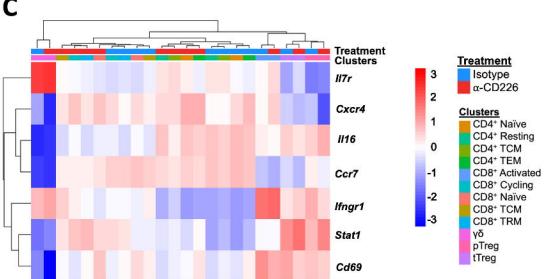
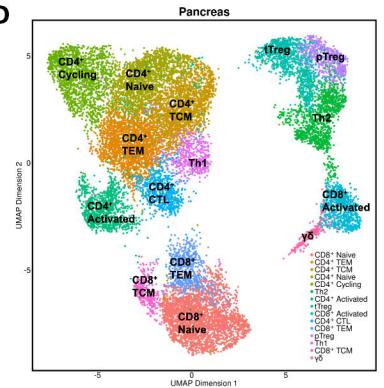
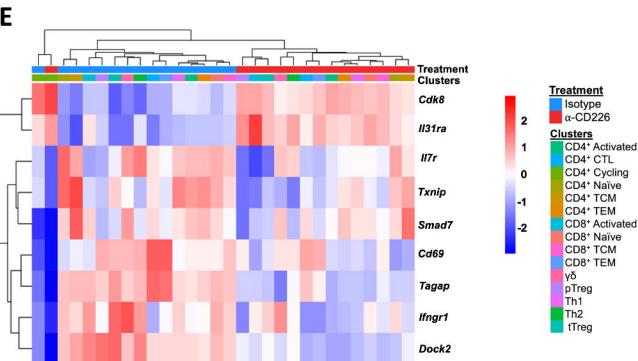

1136 [93] Burns GF, Triglia T, Werkmeister JA, Begley CG, Boyd AW (1985) TLiSA1, a human T
1137 lineage-specific activation antigen involved in the differentiation of cytotoxic T lymphocytes and
1138 anomalous killer cells from their precursors. *J Exp Med* 161(5): 1063-1078.
1139 10.1084/jem.161.5.1063

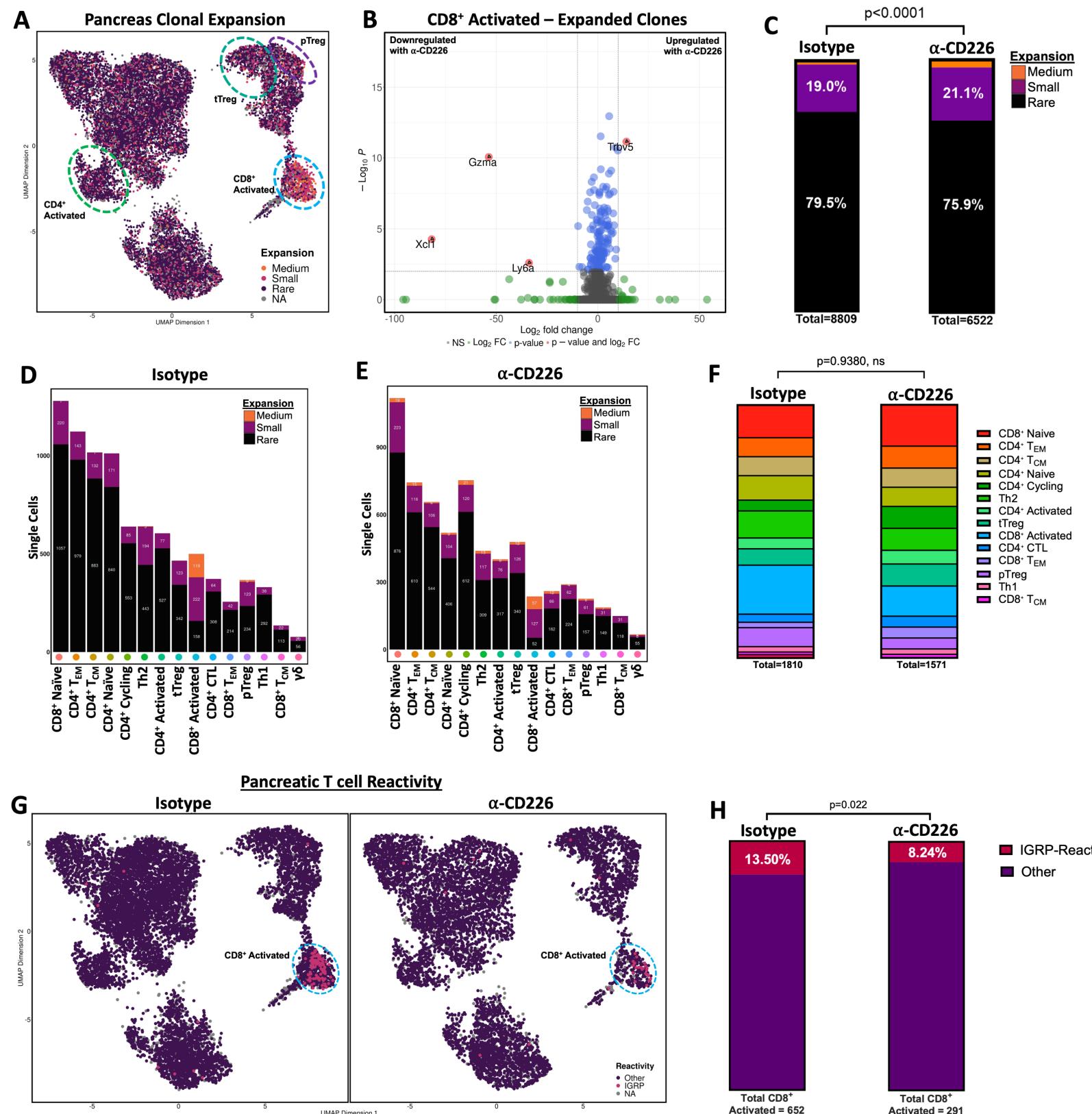









1140 [94] Scott JL, Dunn SM, Jin B, et al. (1989) Characterization of a novel membrane
1141 glycoprotein involved in platelet activation. *J Biol Chem* 264(23): 13475-13482





1142 [95] Reymond N, Imbert AM, Devilard E, et al. (2004) DNAM-1 and PVR regulate monocyte
1143 migration through endothelial junctions. *J Exp Med* 199(10): 1331-1341. 10.1084/jem.20032206


1144 [96] Ma D, Sun Y, Lin D, et al. (2005) CD226 is expressed on the megakaryocytic lineage
1145 from hematopoietic stem cells/progenitor cells and involved in its polyploidization. *Eur J
1146 Haematol* 74(3): 228-240. 10.1111/j.1600-0609.2004.00345.x





1147 [97] Aldrich VR, Hernandez-Rovira BB, Chandwani A, Abdulreda MH (2020) NOD Mice-
1148 Good Model for T1D but Not Without Limitations. *Cell Transplant* 29: 963689720939127.
1149 10.1177/0963689720939127


A**B****C****D****E****F****G****H****I**

A**B****C****D**

A**B****C****D****E**

