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Abstract

Current position weight matrices and sequence logos may not be sufficient for
accurately modeling transcription factor binding sites recognized by a mixture of
homodimer and heterodimer complexes. To address this issue, we developed
forkedTF, an R-library that allows the creation of Forked-Position Weight Matrices
(FPWM) and Forked-Sequence Logos (F-Logos), which better capture the
heterogeneity of TF binding affinities based on interactions and dimerization with
other TFs. Furthermore, we have enhanced the standard PWM format by
incorporating additional information on co-factor binding and DNA methylation.
Precomputed FPWM and F-Logos are made available in the MethMotif 2024
database, thereby providing ready-to-use resources for analyzing TF binding
dynamics. Finally, forkedTF is designed to support the TRANSFAC format, which is
compatible with most third-party bioinformatics tools that utilize PWMs. The forkedTF
R-library is open source and can be accessed on GitHub at

https://github.com/benoukraflab/forked TF.


https://doi.org/10.1101/2024.07.16.603695
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.16.603695; this version posted July 19, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

INTRODUCTION

Position weight matrices (PWM) (1) and sequence logos (2) have become standard
tools to model and visualize transcription factor binding sites (TFBS) on the
aggregation of DNA sequences that are known to be recognized by a given
transcription factor (TF). Initially, DNA binding sequences were characterized
through in vitro studies such as gel-shift assays and, later, SELEX, which outputs up
to 20 DNA sequence variants bound by a specific TF. Advances in high-throughput
technologies have enabled the genome-scale characterization of TFBS sequences in
an in vivo context, particularly through the use of Chromatin Immunoprecipitation of a
TF of interest, followed by deep sequencing of the bound DNA loci (ChIP-Seq).
ChiP-seq experiments and their derivates (3) aim to characterize TF binding in the
natural cellular context, including chromatin modifications and the occurrence of
transcription co-factors.

It is widely recognized that many TFs bind to DNA as dimers, such as those
containing Leucine Zippers. Depending on the cellular context, these complexes can
be composed of either two similar proteins (homodimer) or two distinct proteins
(heterodimer). Therefore, ChlP-seq assays capture the entire collection of dimer
combinations present in the cell. However, aggregating the heterogeneous DNA-
bound sequences into a single PWM or sequence logo results in a bipartite or dyad
motif consisting of a conserved part (binding sites of the TF of interest) and a
degenerated part (aggregation of the binding sites of the main TF partners). As a
result, current PWMs and sequence logos poorly model TF dimer binding affinities
since the corresponding PWM segments are often noisy. To address this issue, we
developed forkedTF, an R-library that enables the generation of Forked-Position

Weight Matrices (FPMW) and Forked-Sequence Logos (F-Logos), which better
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depict the sequence affinity of a TF of interest along with those of a segregated list of

partners.

MATERIALS AND METHODS

Overview of forkedTF workflow

The forkedTF package consists of four main functions, which can be used
sequentially: miniCofactorReport, createFPWM, plotFPWM and write. FPWM. The
first step aims to identify the main co-binding partners of a transcription factor in a
particular cell line using the function miniCofactorReport, a TFregulomeR API (4) that
extracts the relevant ChiP-seq and DNA methylation data from the MethMotif (5, 6)
and GTRD databases (7). The resulting report contains a list of co-binding partners
of the TF of interest, along with detailed information on TF co-localization, motif
usage, and DNA-binding motif methylation profile. Using this report, users can select
the optimal fork position to generate a Forked-Position Weight Matrix (FPWM) object
using the createFPWM function. This object can be visualized as a Forked-
Sequence Logo (F-Logo) using the plotFPWM function and exported as a

TRANSFAC-compatible format file using the write. FPWM function (Figure 1).

Step 1: miniCofactorReport()

The function miniCofactorReport interrogates the TFregulomeR data compendium to
retrieve ChlP-seq and DNA methylation records in a cell-specific manner. As input,
miniCofactorReport requires the ID of a TF of interest and a cell type. Then, the
function queries all available ChIP-seq datasets within a specific cell type to identify
the TF of interest's partners. The function GenomicRanges (8) is then used to
compute the intersection of ChlP-seq peak signals for each pair of TFs to detect co-
binding. All PWMs within ChlP-seq peak intersections (+/- 100 bp region surrounding
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the main TFBS) are computed using MEME-ChIP (9). Next, DNA methylation is
profiled for these intersected DNA loci and mapped to the binding motif. Each pair of
TFs are then ranked by co-binding frequency, which is defined as the fraction of the
number of loci bound by the reference TF that are co-bound by the cofactor. The
user can provide a co-binding threshold for the report, which is set to 5% by default.
Additionally, the over-representation of co-binding events is assessed by adjusted p-
values computed using the extractEnrichment function from the ReMap package

(https://github.com/remap-cisreg/ReMapEnrich).

Given the nature of the analysis, which involves large datasets of ChlP-seq and DNA
methylation, users have the option to run the query online (on the Digital Research

Alliance of Canada) or locally with TFregulomeR (4).

Step 2: createFPWM()

The createFPWM function generates an FPWM object. It requires the ID of the TF of
interest, the cell type of interest, and a list of co-factors obtained by
miniCofactorReport, along with the chosen fork position, as inputs. The FPWM

object is actually a list of PWMs for each TF of interest co-factor.

Step 3: plotFPWM()

FPWM objects can be visualized using the plotFPWM function, which generates a
PDF vector image containing a forked logo. In this logo, positions preceding the fork
correspond to the core motif of the reference TF, which is connected via a fork with
sequence logos corresponding to the binding partners. The sequence logos show
the methylation levels for each cytosine in a CpG context located within the binding
site. The proportion of binding overlap between the TF of interest and each binding

partner is displayed on top of each forked arrow as a percentage.
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Step 4: writeFPWM()

FPWM objects can be stored as a series of TRANSFAC files or a TRANSFAC-like
file (i.e. FPWMtransfac - Supplementary Figure 1) for further analysis using the
function writeFPWM. In our suggested FPWMtransfac format, the metadata section
contains several variables, including the ID of the main TF labelled “parentLogo” and
the IDs of the partner TFs labelled “leafLogos.” Information regarding the overlap
percentage, the number of base pairs in the overlap, and the total number of

overlapping peaks are recorded in the “overlappingScore,” “numberOfBasePairs,”
and “numberOfOverlappingPeaks” fields, respectively. Each comma-separated value
in those fields corresponds to the TF in the same order as appeared in leafLogos
(i.e., the first value in the “overlappingScore” field corresponds to the first TF in
leafLogos, the second value to the second TF, and continuing to the nth value). The
comma-separated value fields follow the same pattern for the nucleotide frequency
matrix. The positions preceding the fork position correspond to the reference TF
shown in the “parentLogo” field, whereas the values following the fork position

correspond to the binding partners ordered as listed in the “leafLogos” field (Figure

2).

Of note, because standard TRANSFAC matrices are derived from a set of DNA
sequences of the same length, the sum of all the nucleotide counts remains the

same for every row.

However, this is not the case for FPWMs, where binding sequences are split
between the main TFBS and TFBS belonging to co-factors. This specificity of FPWM
may lead to some incompatibility with current scanning PWM algorithms. To
overcome this potential issue, we have implemented three different matrix formats:

(i) Count matrix, which records raw counts from the intersection of peaks; (ii)
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Probability matrix, where counts in rows are divided by the sum of the elements in
these rows (i.e., the sum of elements in rows always equals 1); and (iii) Scaled
Count matrix, where counts are scaled with respect to the highest value among the

sum of elements for each row (Supplementary Figure 2).

Comparative motif enrichment analysis

To perform the computations at the basis of panels B to F of Figure 4, we used

several tools from the RSAT suite (10) on the web server https://rsat.france-

bioinformatique.fr/metazoa/:

1) We have used fetch-sequences to extract 101bp-long sequences flanking the
centers of the peaks resulting from the intersection of the JUND ChIP-seq peak set
with the ATF2 (JUNDXATF2) or FOSL2 (JUNDXFOSL2) peak sets, in the HEPG2

cell line.

2) We have run matrix-quality (11) to compute the best scores of the three reference
count matrices (previously generated with MEME-ChIP using all JUND peaks,
JUNDXATF2 peaks, and JUNDXFOSL2 peaks, respectively), on the HEPG2
JUNDXATF2 and JUNDxFOSL2 peak sets, which were gathered to generate the
score distributions shown in Figure 4B. We ran this analysis with a background
model consisting of a Markov model of order two computed on GRCh37 Homo
sapiens upstream non-coding sequences, together with pseudo frequencies set to
0.01. The matrix columns were randomly permuted five times to generate the
negative control curve. The theoretical curve was computed directly from the

background Markov model.

3) We have used matrix-scan (https://rsat.france-bioinformatigue.fr/metazoa/matrix-

scan_form.cqi) to scan the JUNDXATF2 and JUNDXFOSL2 peak sequence sets with
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the same three reference count matrices, with the option quick, a p-value threshold
set to 0.01, a background Markov model of order 1, and the pseudo frequency

parameter set to 0.01.

Of note, as a convention, we use ‘X’ to represent intersections of peaks and ‘+' to

represent intersections of motifs, as illustrated below:

e JUNDXATF2 (or JUNDxXFOSL?2) is the intersection between the JUND peak
set and the ATF2 (or FOSL2) peak set.

e JUND+ATF2 (or JUND+FOSL2) represents a specific (bi-partite) matrix or
motif discovered in the set of peaks obtained by computing the intersection
between the JUND peak set and the ATF2 (or FOSL2) peak set using MEME-

ChiP.

RESULTS

Application of forkedTF to JUND binding in HepG2 cells.

As an illustration of improvements made by forkedTF, we have performed an
analysis of the transcription factor JUND in the HepG2 cell line. First,
MiniCofactorReport was used to identify the following five co-factors of JUND: ATF7,
ATF2, JUN, FOSL2 and FOS (Figure 2A, Supplementary Figure 3). In HepG2, we
observe that the JUND global binding motif is highly conserved within the five last
base pairs; however, the preceding bases (positions 1 to 6) are highly degenerated.
Interestingly, the MiniCofactorReport results show that none of the JUND dimerized
motifs present the observed degeneration before position seven. In addition, it can
be noticed that the nucleotides in positions 7 to 11 are highly consistent across all
binding partners, suggesting that these final five base pairs correspond to the JUND

core motif.
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In contrast, the variable motif sequences observed before position seven support the
fact that they belong to distinct binding partners and can be categorized into two
main groups. The first group is characterized by a double spacer in positions 5 and 6
for JUND dimerized with ATF7, ATF2 and JUN. The second motif set, which is
associated with JUND and FOSL2 or FOS, displays a single spacer at position 6.
This spacer difference causes a bias in sequence alignment during the motif
discovery process. It leads to a low informative PWM in the portion accounting for
the TF partner when the motif is built with all JUND peaks. This example illustrates
how forkedTF can systematically refine degenerated PWMs of a TF of interest built
with a mixture of partners that require distinct spacer sizes for DNA binding.
Additionally, when the co-factors are ranked based on the p-adjusted values (g-
values) resulting from the enrichment test, the order remains the same for these five

co-binding partners.

Finally, in this example, forkedTF mapped the methylation levels computed from
WGBS data on the binding motif of JUND and its co-factors, shown as bar plots on
the corresponding cytosines. We can observe that all sequences have low DNA

methylation levels (Figure 2B).

FPWM models co-factor binding sites appropriately and improves

transcription factor binding prediction.

We used transcription factor binding predictions to test FPWM's ability to model
JUND and its co-factors binding. After generating the FPWM for JUND and its
partners in HepG2, we exported the results into the TRANSFAC format for the
JUND+ATF2 and the JUND+FOSL2 motifs. These motifs were chosen because they
represent the two distinctive sequences JUND can bind in HepG2 (double spacer

and single spacer, respectively) (Figure 3). We extracted the genomic sequences
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corresponding to overlapping JUND and ATF2 peaks, as well as overlapping JUND
and FOSL2 peaks. First, we evaluated the FPWMs of JUND, JUND+ATF2 and
JUND+FOSL2 through cross-validation of their score distributions in each
overlapping peak set (Figure 4B). More precisely, we compared the scores of an
empirical distribution (red curve) against a permuted distribution (blue curve) and a
theoretical (gray curve) across a dynamic range of weighted thresholds. Notice that
the JUND+ATF2 motif empirical distribution curve (red) has the largest difference
from the permuted curve (blue) in the JUND peaks overlapping ATF2 peaks dataset
(JUNDXATF2 peak), implying that the JUND+ATF2 motif best model binding in
JUND+ATF2 DNA sequences. Similar results can be observed for the JUND+FOSL2
motif in JUND peaks overlapping with FOSL2 peaks. Next, we evaluated the
performance of co-factor motifs to predict binding sites. We observed that the
JUND+ATF2 motif can predict a high number of binding sites in the DNA sequence
of JUND peaks overlapping with ATF2 peaks (Figure 4C). This JUND+ATF2 binding
strikingly contrasts with the low number of predicted binding sites obtained with the
JUND+FOSL2 motif. The JUND motif calculated from all of the ChIP-seq peaks in
HepG2 has a moderate performance. The reverse was observed when predicting
binding in JUND peaks overlapping with FOSL2 peaks, where the JUND+FOSL2 has
the best performance, and JUND+ATF2 has the worst prediction power (Figure 4D).
In addition to obtaining a higher number of predicted binding sites, a better prediction
was also achieved. This can be attributed to the use of a specific co-factor motif in
their respective overlapping peak sequences, which is translated into more
significant predictions, as can be observed in the p-values of (Figure 4E and 4F),
particularly at the centers of the peaks, where the binding site is more likely to be

present. Similar results were observed in other datasets, whereby motifs built from

10
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FPWMs outperform those constructed from PWMs in predicting binding sites
(Supplementary Figure 4). Altogether, our results show that FPWM better model TF

binding affinities of binding partners than PWMs.

forkedTF allows the detection of methylated DNA binding preferences in a co-

factor specific way.

Just like how a motif recognized by a TF may change depending on its co-binding
partner, the ability of a TF to bind to methylated DNA may be modulated by its
binding with a co-factor. We witness this modulation in the subset of DNA sequences
bound by CEBPB and CEBPD complexes in K562 cells (Figure 5). We can observe
sequence conservation across all partners in the first six bases. However, although
position six retains cytosine, hypermethylation is present in the binding motif when
CEBPB and CEBPD are bound together. This methylation signature and the
emergence of a CpG dinucleotide in the motif appear only when building a FPWM

focusing on the signal corresponding to CEBPB+CEBPD co-binding.
Integration of forkedTF results within MethMotif.

The results obtained with forkedTF for all 97 Human leucine zipper TFs are now
integrated into the MethMotif 2024 database. This extension includes the
implementation of pre-computed FPWM, leveraging the advancements made by
forkedTF in modeling the interactions between transcription factors and their co-
factors. This information is available on MethMotif enhanced TF cards, and includes
several new elements designed to provide a more detailed and nuanced
understanding of transcription factor binding dynamics in the context of DNA
methylation. Firstly, the incorporation of FPWM enables the modeling of transcription

factor binding specificities when interacting with different co-factors. This addition

11
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allows for more accurate predictions of how TFs bind to DNA, reflecting the complex

interplay between TFs binding partners and DNA methylation.

Within each motif card, users will find F-Logos, which are graphical representations
illustrating both the core and variant motifs that TFs recognize under different
conditions. Additionally, the motif cards provide a standard TRANSFAC file, which
includes comprehensive details on the core motif as well as its leaf motifs, offering a
detailed view of the TF binding preferences. Moreover, the FPWM TRANSFAC
format is included, providing the specific data format needed to apply FPWM in

various bioinformatic analyses (Supplementary Figure 5).

DISCUSSION

In this manuscript, we highlight the crucial role of modeling partner-specific TFBS
and showcase how forkedTF can identify the various DNA binding motifs that a TF
can recognize in the presence of different binding partners. This approach generates
accurate models of TF binding affinity, significantly enhancing the bioinformatic
prediction of their binding sites. Additionally, forkedTF allows users to investigate the
binding partners for all the available ChlP-seq datasets in a particular cell type,
which has the possibility of uncovering novel TF-TF interactions. Moreover, we
demonstrate that integrating an additional layer of epigenetic information, specifically
DNA methylation, enables the identification of methyl-specific binding dimers. For
instance, we show that the transcription factor CEBPB binds to a methylated DNA

motif only when paired with the partner CEBPD.

While forkedTF relies on TFregulomeR to characterize co-factors, it can be easily

adapted to create forked-PWM based on other approaches, such as PWM

12


https://doi.org/10.1101/2024.07.16.603695
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.16.603695; this version posted July 19, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

clustering, dyad motif discovery (12), or co-factor motif discovery. This flexibility is

due to forkedTF’s ability to produce outputs in standard TRANSFAC format.

The effectiveness of this method relies entirely on the availability of public ChiP-seq
datasets. The five cell lines documented with the highest number of TF ChlP-seq
data sets available are HepG2 with 651, K562 with 628, A549 with 243 and
GM12878 with 188 ChIP-seq datasets. Hence, we are still facing a very low
coverage of the binding of the 1,600 TF in human tissues (13). Nonetheless, even
though our bioinformatic predictions are based on incomplete data, we were able to
address a recurrent issue of sequence degeneration in PWM. As new datasets are
continuously deposited in these repositories, predictions made by forkedTF will

progressively improve, thereby enhancing our understanding of TF cooperativity.

Our method relies on co-binding, which means observing two TFs binding at the
same genomic loci on many occasions across the genome. While there is evidence
of heterodimerization for many of the TF pairs considered above, e.g. JUN+ATF2,
JUND+FOS and CEBPB+CEBPD, this might not be true for other dimer pairs. TF
binding close to one another in the same region to regulate the same genes may
display similar results. Hence, users should be cautious not to interpret this as a

confirmation of physical interaction between the two TFs.

It is now well-established that DNA methylation plays a critical role in orchestrating
TF binding (14). Integrating DNA methylation patterns with DNA binding motifs has
become a crucial step in enhancing our understanding of the dynamic interactions
between TFs and their binding sites. This integration provides deeper insights into
the regulatory mechanisms of chromatin structure and gene expression. While our
forkedTF-MethMotif framework effectively illustrates the influence of DNA

methylation on TF binding, tools that comprehensively scan and predict binding sites
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by incorporating this epigenetic information are still in the early stages of
development (15, 16). We anticipate expanding our framework to integrate these
aspects into a more robust model for transcription factor binding prediction in the

future.

DATA AVAILABILITY

The forkedTF package (encoded in R) and a user manual, along with all the scripts
used in the reported analyses, are available on GitHub

(https://github.com/benoukraflab/forkedTF).
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FIGURE LEGENDS

Figure 1. forkedTF workflow for generating FPWM objects, FPWM files, and F-
Logo plots.

(A) The initial step involves identifying the main binding partners of a transcription
factor of interest using the miniCofactorReport function. This function utilizes a large
cell-specific dataset compendium from the MethMotif and GTRD databases, with the
option to integrate custom ChlIP-seq peak lists in bed format. The output report
provides information on the co-binding proportion, dimer motif usage, and DNA
methylation profile for each pair of TFs. (B) This report enables the user to identify
the portion of the motif corresponding to the main TF, which is crucial for setting the
fork position. The createFPWM function then generates a Forked-Position Weight
Matrix (FPWM) object. (C) This object can be exported in a standard TRANSFAC-
compatible format file or visualized as an F-Logo plot using the write. FPWM and

plot.FPWM functions, respectively.
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Figure 2. forkedTF analysis of JUND binding profile in HepG2 cell line.

(A) miniCofactorReport uses the TFregulomeR data compendium to find the main
binding partners of a TF of interest in a given cell type. Here, we show the output for
JUND as the main factor and its co-binding partners in HepG2. The top six co-factors
are shown, along with their percentage of peak overlap with JUND peaks (bar plot on
the left) and a motif logo calculated from the peak overlap (right) with the cytosine
DNA methylation on top (bars on top of the motif). The last five positions in the motif
are conserved across all binding partners (highlighted), suggesting that this is the
main TF’s core motif (JUND), while the rest of the position corresponds to the motif
of the binding partner. (B) A forkedLogo representation of the miniCofactorReport
results can be generated to illustrate the core motif of the main TF (left) forking into

six co-factor motif logos (right).

Figure 3. Building an FPWM object.

(A) FPWM objects are generated by analyzing co-binding events across a TF of
interest (here CEBPB) and its partners for dimerization (here ATF4 and CEBPD). By
default, PWMs for partners are generated from sequences that overlap with the main
TFBS. In contrast, PWM for the TF of interest, which is supposed to be conserved
across all the binding partners, is built from combining sequences that overlap ChiP-
seq binding sites from all co-binding partners. (B) TFregulomeR exports PWMs in
TRANSFAC format for intersected peak regions. Here, the core motif and variable
spacer are clearly present in the matrix. (C) TFregulomeR can also generate motifs
for the above PWMs. The motifs based on intersected matrices have less noise in
the classically degenerated section of the motif. The motif also captures the

dinucleotide spacers’ propensity to form CpGs.
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Figure 4. Comparative enrichment analysis for selected JUND heterodimer

motifs.

(A) MiniCofatorReport for two binding partners that yield distinctive spacer motifs.
When JUND is bound with ATF2, the TGA and TCA motif halves are separated by a
variable two-nucleotide spacer. When JUND is bound with FOSL2, the motif
halves are separated by a single nucleotide spacer. (B) Score distributions were
obtained when the JUNDXATF2 and JUNDXFOSL2 peaks with JunD, JUND+ATF2
and JUND+FOSL2 count matrices, respectively. The higher the separation between
the empirical curve (red), the theoretical curve (inferred from dinucleotide
frequencies, in grey) and the negative control curve (using randomly permuted
matrices, in blue), the more specific the particular matrix is to a set of
peaks. (C) Using the three different matrices, the number of predicted binding sites
in the JUNDXATF2 peaks. (D) Using the three different matrices, the number of
predicted binding sites in the JUNDxFOSL2 peaks. (E) P-value distribution of the
matrix-scan results using JUND and JUND+ATF2 matrices around the center of
JUNDXATF2 peaks. (F) P-value distribution of the matrix-scan results using JUND

and JUND+FOSL2 matrices around the center of JUNDXFOSL?2 peaks.

Figure 5. forkedTF of CEBPB in K562.

(A) miniCofactorReport of CEBPB in K562 cells with its top six co-binding partners.
(B) forkedLogo built with CEBPB and its main partners. We can observe that there is
sequence conservation across all partners in the first six bases. However, despite
the sequence conservation for the cytosine in position six, hypermethylation is
present in the binding motif when CEBPB and CEBPD are bound together. This
methylation signature and the emergence of a CpG dinucleotide in the motif cannot

be observed without the binding partner segregation.
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