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Abstract 

Current position weight matrices and sequence logos may not be sufficient for 

accurately modeling transcription factor binding sites recognized by a mixture of 

homodimer and heterodimer complexes. To address this issue, we developed 

forkedTF, an R-library that allows the creation of Forked-Position Weight Matrices 

(FPWM) and Forked-Sequence Logos (F-Logos), which better capture the 

heterogeneity of TF binding affinities based on interactions and dimerization with 

other TFs. Furthermore, we have enhanced the standard PWM format by 

incorporating additional information on co-factor binding and DNA methylation. 

Precomputed FPWM and F-Logos are made available in the MethMotif 2024 

database, thereby providing ready-to-use resources for analyzing TF binding 

dynamics. Finally, forkedTF is designed to support the TRANSFAC format, which is 

compatible with most third-party bioinformatics tools that utilize PWMs. The forkedTF 

R-library is open source and can be accessed on GitHub at 

https://github.com/benoukraflab/forkedTF.  
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INTRODUCTION 

Position weight matrices (PWM) (1) and sequence logos (2) have become standard 

tools to model and visualize transcription factor binding sites (TFBS) on the 

aggregation of DNA sequences that are known to be recognized by a given 

transcription factor (TF). Initially, DNA binding sequences were characterized 

through in vitro studies such as gel-shift assays and, later, SELEX, which outputs up 

to 20 DNA sequence variants bound by a specific TF. Advances in high-throughput 

technologies have enabled the genome-scale characterization of TFBS sequences in 

an in vivo context, particularly through the use of Chromatin Immunoprecipitation of a 

TF of interest, followed by deep sequencing of the bound DNA loci (ChIP-Seq). 

ChIP-seq experiments and their derivates (3) aim to characterize TF binding in the 

natural cellular context, including chromatin modifications and the occurrence of 

transcription co-factors. 

It is widely recognized that many TFs bind to DNA as dimers, such as those 

containing Leucine Zippers. Depending on the cellular context, these complexes can 

be composed of either two similar proteins (homodimer) or two distinct proteins 

(heterodimer). Therefore, ChIP-seq assays capture the entire collection of dimer 

combinations present in the cell. However, aggregating the heterogeneous DNA-

bound sequences into a single PWM or sequence logo results in a bipartite or dyad 

motif consisting of a conserved part (binding sites of the TF of interest) and a 

degenerated part (aggregation of the binding sites of the main TF partners). As a 

result, current PWMs and sequence logos poorly model TF dimer binding affinities 

since the corresponding PWM segments are often noisy. To address this issue, we 

developed forkedTF, an R-library that enables the generation of Forked-Position 

Weight Matrices (FPMW) and Forked-Sequence Logos (F-Logos), which better 
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depict the sequence affinity of a TF of interest along with those of a segregated list of 

partners. 

 

MATERIALS AND METHODS 

Overview of forkedTF workflow 

The forkedTF package consists of four main functions, which can be used 

sequentially: miniCofactorReport, createFPWM, plotFPWM and write.FPWM. The 

first step aims to identify the main co-binding partners of a transcription factor in a 

particular cell line using the function miniCofactorReport, a TFregulomeR API (4) that 

extracts the relevant ChIP-seq and DNA methylation data from the MethMotif (5, 6) 

and GTRD databases (7). The resulting report contains a list of co-binding partners 

of the TF of interest, along with detailed information on TF co-localization, motif 

usage, and DNA-binding motif methylation profile. Using this report, users can select 

the optimal fork position to generate a Forked-Position Weight Matrix (FPWM) object 

using the createFPWM function. This object can be visualized as a Forked-

Sequence Logo (F-Logo) using the plotFPWM function and exported as a 

TRANSFAC-compatible format file using the write.FPWM function (Figure 1). 

Step 1: miniCofactorReport() 

The function miniCofactorReport interrogates the TFregulomeR data compendium to 

retrieve ChIP-seq and DNA methylation records in a cell-specific manner. As input, 

miniCofactorReport requires the ID of a TF of interest and a cell type. Then, the 

function queries all available ChIP-seq datasets within a specific cell type to identify 

the TF of interest’s partners. The function GenomicRanges (8) is then used to 

compute the intersection of ChIP-seq peak signals for each pair of TFs to detect co-

binding. All PWMs within ChIP-seq peak intersections (+/- 100 bp region surrounding 
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the main TFBS) are computed using MEME-ChIP (9). Next, DNA methylation is 

profiled for these intersected DNA loci and mapped to the binding motif. Each pair of 

TFs are then ranked by co-binding frequency, which is defined as the fraction of the 

number of loci bound by the reference TF that are co-bound by the cofactor. The 

user can provide a co-binding threshold for the report, which is set to 5% by default. 

Additionally, the over-representation of co-binding events is assessed by adjusted p-

values computed using the extractEnrichment function from the ReMap package 

(https://github.com/remap-cisreg/ReMapEnrich). 

Given the nature of the analysis, which involves large datasets of ChIP-seq and DNA 

methylation, users have the option to run the query online (on the Digital Research 

Alliance of Canada) or locally with TFregulomeR (4). 

Step 2: createFPWM() 

The createFPWM function generates an FPWM object. It requires the ID of the TF of 

interest, the cell type of interest, and a list of co-factors obtained by 

miniCofactorReport, along with the chosen fork position, as inputs. The FPWM 

object is actually a list of PWMs for each TF of interest co-factor. 

Step 3: plotFPWM() 

FPWM objects can be visualized using the plotFPWM function, which generates a 

PDF vector image containing a forked logo. In this logo, positions preceding the fork 

correspond to the core motif of the reference TF, which is connected via a fork with 

sequence logos corresponding to the binding partners. The sequence logos show 

the methylation levels for each cytosine in a CpG context located within the binding 

site. The proportion of binding overlap between the TF of interest and each binding 

partner is displayed on top of each forked arrow as a percentage. 
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Step 4: writeFPWM() 

FPWM objects can be stored as a series of TRANSFAC files or a TRANSFAC-like 

file (i.e. FPWMtransfac - Supplementary Figure 1) for further analysis using the 

function writeFPWM. In our suggested FPWMtransfac format, the metadata section 

contains several variables, including the ID of the main TF labelled “parentLogo” and 

the IDs of the partner TFs labelled “leafLogos.” Information regarding the overlap 

percentage, the number of base pairs in the overlap, and the total number of 

overlapping peaks are recorded in the “overlappingScore,” “numberOfBasePairs,” 

and “numberOfOverlappingPeaks” fields, respectively. Each comma-separated value 

in those fields corresponds to the TF in the same order as appeared in leafLogos 

(i.e., the first value in the “overlappingScore” field corresponds to the first TF in 

leafLogos, the second value to the second TF, and continuing to the nth value). The 

comma-separated value fields follow the same pattern for the nucleotide frequency 

matrix. The positions preceding the fork position correspond to the reference TF 

shown in the “parentLogo” field, whereas the values following the fork position 

correspond to the binding partners ordered as listed in the “leafLogos” field (Figure 

2). 

Of note, because standard TRANSFAC matrices are derived from a set of DNA 

sequences of the same length, the sum of all the nucleotide counts remains the 

same for every row. 

However, this is not the case for FPWMs, where binding sequences are split 

between the main TFBS and TFBS belonging to co-factors. This specificity of FPWM 

may lead to some incompatibility with current scanning PWM algorithms. To 

overcome this potential issue, we have implemented three different matrix formats: 

(i) Count matrix, which records raw counts from the intersection of peaks; (ii) 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 19, 2024. ; https://doi.org/10.1101/2024.07.16.603695doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.16.603695
http://creativecommons.org/licenses/by-nc/4.0/


7 
 

Probability matrix, where counts in rows are divided by the sum of the elements in 

these rows (i.e., the sum of elements in rows always equals 1); and (iii) Scaled 

Count matrix, where counts are scaled with respect to the highest value among the 

sum of elements for each row (Supplementary Figure 2). 

Comparative motif enrichment analysis 

To perform the computations at the basis of panels B to F of Figure 4, we used 

several tools from the RSAT suite (10) on the web server https://rsat.france-

bioinformatique.fr/metazoa/: 

1) We have used fetch-sequences to extract 101bp-long sequences flanking the 

centers of the peaks resulting from the intersection of the JUND ChIP-seq peak set 

with the ATF2 (JUNDxATF2) or FOSL2 (JUNDxFOSL2) peak sets, in the HEPG2 

cell line. 

2) We have run matrix-quality (11) to compute the best scores of the three reference 

count matrices (previously generated with MEME-ChIP using all JUND peaks, 

JUNDxATF2 peaks, and JUNDxFOSL2 peaks, respectively), on the HEPG2 

JUNDxATF2 and JUNDxFOSL2 peak sets, which were gathered to generate the 

score distributions shown in Figure 4B. We ran this analysis with a background 

model consisting of a Markov model of order two computed on GRCh37 Homo 

sapiens upstream non-coding sequences, together with pseudo frequencies set to 

0.01. The matrix columns were randomly permuted five times to generate the 

negative control curve. The theoretical curve was computed directly from the 

background Markov model. 

3) We have used matrix-scan (https://rsat.france-bioinformatique.fr/metazoa/matrix-

scan_form.cgi) to scan the JUNDxATF2 and JUNDxFOSL2 peak sequence sets with 
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the same three reference count matrices, with the option quick, a p-value threshold 

set to 0.01, a background Markov model of order 1, and the pseudo frequency 

parameter set to 0.01. 

Of note, as a convention, we use ‘x’ to represent intersections of peaks and ‘+’ to 

represent intersections of motifs, as illustrated below: 

• JUNDxATF2 (or JUNDxFOSL2) is the intersection between the JUND peak 

set and the ATF2 (or FOSL2) peak set. 

• JUND+ATF2 (or JUND+FOSL2) represents a specific (bi-partite) matrix or 

motif discovered in the set of peaks obtained by computing the intersection 

between the JUND peak set and the ATF2 (or FOSL2) peak set using MEME-

ChIP. 

RESULTS 

Application of forkedTF to JUND binding in HepG2 cells.  

As an illustration of improvements made by forkedTF, we have performed an 

analysis of the transcription factor JUND in the HepG2 cell line. First, 

MiniCofactorReport was used to identify the following five co-factors of JUND: ATF7, 

ATF2, JUN, FOSL2 and FOS (Figure 2A, Supplementary Figure 3). In HepG2, we 

observe that the JUND global binding motif is highly conserved within the five last 

base pairs; however, the preceding bases (positions 1 to 6) are highly degenerated. 

Interestingly, the MiniCofactorReport results show that none of the JUND dimerized 

motifs present the observed degeneration before position seven. In addition, it can 

be noticed that the nucleotides in positions 7 to 11 are highly consistent across all 

binding partners, suggesting that these final five base pairs correspond to the JUND 

core motif.  
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In contrast, the variable motif sequences observed before position seven support the 

fact that they belong to distinct binding partners and can be categorized into two 

main groups. The first group is characterized by a double spacer in positions 5 and 6 

for JUND dimerized with ATF7, ATF2 and JUN. The second motif set, which is 

associated with JUND and FOSL2 or FOS, displays a single spacer at position 6. 

This spacer difference causes a bias in sequence alignment during the motif 

discovery process. It leads to a low informative PWM in the portion accounting for 

the TF partner when the motif is built with all JUND peaks. This example illustrates 

how forkedTF can systematically refine degenerated PWMs of a TF of interest built 

with a mixture of partners that require distinct spacer sizes for DNA binding. 

Additionally, when the co-factors are ranked based on the p-adjusted values (q-

values) resulting from the enrichment test, the order remains the same for these five 

co-binding partners. 

Finally, in this example, forkedTF mapped the methylation levels computed from 

WGBS data on the binding motif of JUND and its co-factors, shown as bar plots on 

the corresponding cytosines. We can observe that all sequences have low DNA 

methylation levels (Figure 2B). 

FPWM models co-factor binding sites appropriately and improves 

transcription factor binding prediction. 

We used transcription factor binding predictions to test FPWM’s ability to model 

JUND and its co-factors binding. After generating the FPWM for JUND and its 

partners in HepG2, we exported the results into the TRANSFAC format for the 

JUND+ATF2 and the JUND+FOSL2 motifs. These motifs were chosen because they 

represent the two distinctive sequences JUND can bind in HepG2 (double spacer 

and single spacer, respectively) (Figure 3). We extracted the genomic sequences 
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corresponding to overlapping JUND and ATF2 peaks, as well as overlapping JUND 

and FOSL2 peaks. First, we evaluated the FPWMs of JUND, JUND+ATF2 and 

JUND+FOSL2 through cross-validation of their score distributions in each 

overlapping peak set (Figure 4B). More precisely, we compared the scores of an 

empirical distribution (red curve) against a permuted distribution (blue curve) and a 

theoretical (gray curve) across a dynamic range of weighted thresholds. Notice that 

the JUND+ATF2 motif empirical distribution curve (red) has the largest difference 

from the permuted curve (blue) in the JUND peaks overlapping ATF2 peaks dataset 

(JUNDxATF2 peak), implying that the JUND+ATF2 motif best model binding in 

JUND+ATF2 DNA sequences. Similar results can be observed for the JUND+FOSL2 

motif in JUND peaks overlapping with FOSL2 peaks. Next, we evaluated the 

performance of co-factor motifs to predict binding sites. We observed that the 

JUND+ATF2 motif can predict a high number of binding sites in the DNA sequence 

of JUND peaks overlapping with ATF2 peaks (Figure 4C). This JUND+ATF2 binding 

strikingly contrasts with the low number of predicted binding sites obtained with the 

JUND+FOSL2 motif. The JUND motif calculated from all of the ChIP-seq peaks in 

HepG2 has a moderate performance. The reverse was observed when predicting 

binding in JUND peaks overlapping with FOSL2 peaks, where the JUND+FOSL2 has 

the best performance, and JUND+ATF2 has the worst prediction power (Figure 4D). 

In addition to obtaining a higher number of predicted binding sites, a better prediction 

was also achieved. This can be attributed to the use of a specific co-factor motif in 

their respective overlapping peak sequences, which is translated into more 

significant predictions, as can be observed in the p-values of (Figure 4E and 4F), 

particularly at the centers of the peaks, where the binding site is more likely to be 

present. Similar results were observed in other datasets, whereby motifs built from 
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FPWMs outperform those constructed from PWMs in predicting binding sites 

(Supplementary Figure 4). Altogether, our results show that FPWM better model TF 

binding affinities of binding partners than PWMs. 

forkedTF allows the detection of methylated DNA binding preferences in a co-

factor specific way.  

Just like how a motif recognized by a TF may change depending on its co-binding 

partner, the ability of a TF to bind to methylated DNA may be modulated by its 

binding with a co-factor. We witness this modulation in the subset of DNA sequences 

bound by CEBPB and CEBPD complexes in K562 cells (Figure 5). We can observe 

sequence conservation across all partners in the first six bases. However, although 

position six retains cytosine, hypermethylation is present in the binding motif when 

CEBPB and CEBPD are bound together. This methylation signature and the 

emergence of a CpG dinucleotide in the motif appear only when building a FPWM 

focusing on the signal corresponding to CEBPB+CEBPD co-binding. 

Integration of forkedTF results within MethMotif.  

The results obtained with forkedTF for all 97 Human leucine zipper TFs are now 

integrated into the MethMotif 2024 database. This extension includes the 

implementation of pre-computed FPWM, leveraging the advancements made by 

forkedTF in modeling the interactions between transcription factors and their co-

factors. This information is available on MethMotif enhanced TF cards, and includes 

several new elements designed to provide a more detailed and nuanced 

understanding of transcription factor binding dynamics in the context of DNA 

methylation. Firstly, the incorporation of FPWM enables the modeling of transcription 

factor binding specificities when interacting with different co-factors. This addition 
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allows for more accurate predictions of how TFs bind to DNA, reflecting the complex 

interplay between TFs binding partners and DNA methylation. 

Within each motif card, users will find F-Logos, which are graphical representations 

illustrating both the core and variant motifs that TFs recognize under different 

conditions. Additionally, the motif cards provide a standard TRANSFAC file, which 

includes comprehensive details on the core motif as well as its leaf motifs, offering a 

detailed view of the TF binding preferences. Moreover, the FPWM TRANSFAC 

format is included, providing the specific data format needed to apply FPWM in 

various bioinformatic analyses (Supplementary Figure 5). 

DISCUSSION 

In this manuscript, we highlight the crucial role of modeling partner-specific TFBS 

and showcase how forkedTF can identify the various DNA binding motifs that a TF 

can recognize in the presence of different binding partners. This approach generates 

accurate models of TF binding affinity, significantly enhancing the bioinformatic 

prediction of their binding sites. Additionally, forkedTF allows users to investigate the 

binding partners for all the available ChIP-seq datasets in a particular cell type, 

which has the possibility of uncovering novel TF-TF interactions. Moreover, we 

demonstrate that integrating an additional layer of epigenetic information, specifically 

DNA methylation, enables the identification of methyl-specific binding dimers. For 

instance, we show that the transcription factor CEBPB binds to a methylated DNA 

motif only when paired with the partner CEBPD. 

While forkedTF relies on TFregulomeR to characterize co-factors, it can be easily 

adapted to create forked-PWM based on other approaches, such as PWM 
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clustering, dyad motif discovery (12), or co-factor motif discovery. This flexibility is 

due to forkedTF’s ability to produce outputs in standard TRANSFAC format. 

The effectiveness of this method relies entirely on the availability of public ChIP-seq 

datasets. The five cell lines documented with the highest number of TF ChIP-seq 

data sets available are HepG2 with 651, K562 with 628, A549 with 243 and 

GM12878 with 188 ChIP-seq datasets. Hence, we are still facing a very low 

coverage of the binding of the 1,600 TF in human tissues (13). Nonetheless, even 

though our bioinformatic predictions are based on incomplete data, we were able to 

address a recurrent issue of sequence degeneration in PWM. As new datasets are 

continuously deposited in these repositories, predictions made by forkedTF will 

progressively improve, thereby enhancing our understanding of TF cooperativity. 

Our method relies on co-binding, which means observing two TFs binding at the 

same genomic loci on many occasions across the genome. While there is evidence 

of heterodimerization for many of the TF pairs considered above, e.g. JUN+ATF2, 

JUND+FOS and CEBPB+CEBPD, this might not be true for other dimer pairs. TF 

binding close to one another in the same region to regulate the same genes may 

display similar results. Hence, users should be cautious not to interpret this as a 

confirmation of physical interaction between the two TFs. 

It is now well-established that DNA methylation plays a critical role in orchestrating 

TF binding (14). Integrating DNA methylation patterns with DNA binding motifs has 

become a crucial step in enhancing our understanding of the dynamic interactions 

between TFs and their binding sites. This integration provides deeper insights into 

the regulatory mechanisms of chromatin structure and gene expression. While our 

forkedTF-MethMotif framework effectively illustrates the influence of DNA 

methylation on TF binding, tools that comprehensively scan and predict binding sites 
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by incorporating this epigenetic information are still in the early stages of 

development (15, 16). We anticipate expanding our framework to integrate these 

aspects into a more robust model for transcription factor binding prediction in the 

future. 

DATA AVAILABILITY 

The forkedTF package (encoded in R) and a user manual, along with all the scripts 

used in the reported analyses, are available on GitHub 

(https://github.com/benoukraflab/forkedTF).  
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FIGURE LEGENDS 

Figure 1. forkedTF workflow for generating FPWM objects, FPWM files, and F-

Logo plots. 

(A) The initial step involves identifying the main binding partners of a transcription 

factor of interest using the miniCofactorReport function. This function utilizes a large 

cell-specific dataset compendium from the MethMotif and GTRD databases, with the 

option to integrate custom ChIP-seq peak lists in bed format. The output report 

provides information on the co-binding proportion, dimer motif usage, and DNA 

methylation profile for each pair of TFs. (B) This report enables the user to identify 

the portion of the motif corresponding to the main TF, which is crucial for setting the 

fork position. The createFPWM function then generates a Forked-Position Weight 

Matrix (FPWM) object. (C) This object can be exported in a standard TRANSFAC-

compatible format file or visualized as an F-Logo plot using the write.FPWM and 

plot.FPWM functions, respectively. 
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Figure 2. forkedTF analysis of JUND binding profile in HepG2 cell line. 

(A) miniCofactorReport uses the TFregulomeR data compendium to find the main 

binding partners of a TF of interest in a given cell type. Here, we show the output for 

JUND as the main factor and its co-binding partners in HepG2. The top six co-factors 

are shown, along with their percentage of peak overlap with JUND peaks (bar plot on 

the left) and a motif logo calculated from the peak overlap (right) with the cytosine 

DNA methylation on top (bars on top of the motif). The last five positions in the motif 

are conserved across all binding partners (highlighted), suggesting that this is the 

main TF’s core motif (JUND), while the rest of the position corresponds to the motif 

of the binding partner. (B) A forkedLogo representation of the miniCofactorReport 

results can be generated to illustrate the core motif of the main TF (left) forking into 

six co-factor motif logos (right). 

Figure 3. Building an FPWM object. 

(A) FPWM objects are generated by analyzing co-binding events across a TF of 

interest (here CEBPB) and its partners for dimerization (here ATF4 and CEBPD). By 

default, PWMs for partners are generated from sequences that overlap with the main 

TFBS. In contrast, PWM for the TF of interest, which is supposed to be conserved 

across all the binding partners, is built from combining sequences that overlap ChIP-

seq binding sites from all co-binding partners. (B) TFregulomeR exports PWMs in 

TRANSFAC format for intersected peak regions. Here, the core motif and variable 

spacer are clearly present in the matrix. (C) TFregulomeR can also generate motifs 

for the above PWMs. The motifs based on intersected matrices have less noise in 

the classically degenerated section of the motif. The motif also captures the 

dinucleotide spacers’ propensity to form CpGs. 
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Figure 4. Comparative enrichment analysis for selected JUND heterodimer 

motifs. 

(A) MiniCofatorReport for two binding partners that yield distinctive spacer motifs. 

When JUND is bound with ATF2, the TGA and TCA motif halves are separated by a 

variable two-nucleotide spacer. When JUND is bound with FOSL2, the motif 

halves are separated by a single nucleotide spacer. (B) Score distributions were 

obtained when the JUNDxATF2 and JUNDxFOSL2 peaks with JunD, JUND+ATF2 

and JUND+FOSL2 count matrices, respectively. The higher the separation between 

the empirical curve (red), the theoretical curve (inferred from dinucleotide 

frequencies, in grey) and the negative control curve (using randomly permuted 

matrices, in blue), the more specific the particular matrix is to a set of 

peaks. (C) Using the three different matrices, the number of predicted binding sites 

in the JUNDxATF2 peaks. (D) Using the three different matrices, the number of 

predicted binding sites in the JUNDxFOSL2 peaks. (E) P-value distribution of the 

matrix-scan results using JUND and JUND+ATF2 matrices around the center of 

JUNDxATF2 peaks. (F) P-value distribution of the matrix-scan results using JUND 

and JUND+FOSL2 matrices around the center of JUNDxFOSL2 peaks. 

Figure 5. forkedTF of CEBPB in K562. 

(A) miniCofactorReport of CEBPB in K562 cells with its top six co-binding partners. 

(B) forkedLogo built with CEBPB and its main partners. We can observe that there is 

sequence conservation across all partners in the first six bases. However, despite 

the sequence conservation for the cytosine in position six, hypermethylation is 

present in the binding motif when CEBPB and CEBPD are bound together. This 

methylation signature and the emergence of a CpG dinucleotide in the motif cannot 

be observed without the binding partner segregation. 
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