

Competition and interdependence define multifaceted interactions of symbiotic *Nostoc* sp. and *Agrobacterium* sp. under inorganic carbon limitation

Jonna E. Teikari^{1,2,3} David A. Russo⁴, Markus Heuser⁵, Otto Baumann⁶, Julie A. Z. Zedler⁷, Anton Liaimer⁸, Elke Dittmann⁵

¹ Environmental Soil Science, Department of Agricultural Sciences, P.O. Box 56 (Viikinkaari 9), FI-00014 University of Helsinki, Finland

² Department of Microbiology, P.O. Box 56 (Viikinkaari 9), FI-00014 University of Helsinki, Finland

³ Institute for Atmospheric and Earth System Research, P.O. Box 56 (Viikinkaari 9), FI-00014 University of Helsinki, Finland

⁴ Bioorganic Analytics, Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany

⁵ Department of Microbiology, University of Potsdam, 14476 Potsdam, Germany

⁶ Department of Zoophysiology, University of Potsdam, 14476 Potsdam, Germany

⁷ Synthetic Biology of Photosynthetic Organisms, Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany

⁸ Department of Arctic and Marine Biology, University of Tromsø, 9037 Tromsø, Norway

Keywords: phototroph-heterotroph interactions, mixed biofilms, cyanobacteria, carbon-concentrating mechanism, TEM

ORC IDs:

Elke Dittmann: 0000-0002-7549-7918

Jonna Teikari: 0000-0002-5797-7432

Corresponding author:

Prof. Dr. E. Dittmann
Institute of Biochemistry and Biology
Karl-Liebknecht-Str. 24/25
14476 Potsdam-Golm
Germany

Co-author details:

Markus Heuser: mheuser@uni-potsdam.de
Elke Dittmann: editt@uni-potsdam.de
Otto Baumann: obaumann@uni-potsdam.de

Anton Liaimer: anton.liaimer@uit.no
David A. Russo: david.russo@uni-jena.de
Julie A. Z. Zedler: julie.zedler@uni-jena.de
Jonna E. Teikari: jonna.teikari@helsinki.fi

Data availability statement: The authors confirm that sequencing data supporting the findings of the study are publicly available in the NCBI database [SRA accession numbers SRR24556967 and SRR24556966 and project numbers PJNA599284 and PRJNA599316]. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD052511.

Funding statement: The study was supported by Academy of Finland grant No. 332215 to JT, DFG Project No. 406260942 (cryo-TEM) to Petra Wendler and DFG Project No. 239748522- SFB 1127 to DAR, JAZZ and ED.

Conflict of interest disclosure: None of the authors has declared a conflict of interest.

Ethics approval statement: There are no ethical issues related to our manuscript.

CRedit: ED and JET designed the work, JET, DAR, MH, OB conducted experiments, JET, DAR, MH and JAZZ analyzed data, AL provided resources, all co-authors contributed to the discussion and writing of the manuscript.

Summary

Cyanobacteria of the *Nostoc* genus are capable of forming symbiotic relationships with plants, thus transitioning to a heterotrophic lifestyle in return for providing bioavailable nitrogen to the host. The diazotrophic photoautotrophs also serve as a hub for specialized heterotrophic bacterial communities whose physiological contributions are poorly understood. By comparing the axenic strain *Nostoc punctiforme* PCC 73102 and the related strains *Nostoc* sp. KVJ2 and KVJ3, which still maintain their heterotrophic microbiome, we were able to demonstrate an almost obligate dependence of the cyanobacteria on the heterotrophic partners under carbon-limiting conditions. Detailed analysis of the intimate bilateral relationship between *N. punctiforme* and the isolate *Agrobacterium tumefaciens* Het4 using shotgun proteomics and microscopy uncovered a complex partnership characterized, among other traits, by competition for iron and facilitation for carbon. Although competitive interactions with *A. tumefaciens* Het4 compromise nitrogen fixation and stimulate the degradation of cyanophycin, mutualistic dependency prevails under inorganic carbon limitation. Both the absence of the high affinity bicarbonate uptake transporter SbtA and the prevalent extracarboxysomal localization of the carbon-fixing enzyme RubisCO, as detected by immunofluorescence microscopy, suggest that a weak carbon concentrating mechanism in *N. punctiforme* enforces a dependence on heterotrophic bacteria. Further, immunofluorescence, electron microscopic and proteomic analyses reveal a pronounced extracellular recycling of proteins under N- and C-limiting conditions. Our study shows that the pivotal influence of heterotrophic bacteria on symbiotic *Nostoc* strains should be considered when analyzing these cyanobacteria, especially in the free-living state. This work also sheds new light on how *Nostoc* benefits from the organic carbon provided by plant hosts.

1 **Introduction**

2 Cyanobacteria are capable of maintaining a wide range of symbiotic relationships with eukaryotic
3 hosts such as plants, fungi and protists (Rai et al., 2000). Plant-associated *Nostoc* species play an
4 essential role in terrestrial ecosystems, most importantly due to their ability to fix atmospheric
5 nitrogen and further fuel the ecosystem by transferring newly assimilated nitrogen directly to their
6 host plant (Rousk et al., 2013). In such epiphytic or endophytic symbioses, *Nostoc* releases most of
7 the fixed nitrogen, mainly in the form of ammonia, to the host (Meeks, 1998; DeLuca et al., 2008;
8 Larmola et al., 2014). In return, the plant provides the cyanobacteria shelter and, more importantly,
9 organic carbon (Chapman and Margulis, 1998).

10 The ecology of the terrestrial and symbiotic *Nostoc* is generally well characterized. A complex
11 lifestyle is maintained by large genomes that encode structures and physiological traits for specialized
12 cells: nitrogen-fixing heterocysts, resting cells, akinetes and motile filaments, known as hormogonia,
13 which have a great importance in the formation of the plant symbiosis (Meeks and Elhai, 2002; Risser,
14 2023). *Nostoc* are also a rich source of bioactive natural products that have versatile but partially
15 unknown roles in inter- and intraspecific communication within their ecosystem (Liaimer, 2011;
16 Liaimer et al., 2015; D'Agostino, 2023) .

17 Although cyanobacteria are photoautotrophic organisms, and thus generally considered independent
18 of organic carbon sources, many of them are, in fact, facultative heterotrophs and dependent on the
19 organic carbon supply from their ecosystem (Pelroy et al., 1972; Yu et al., 2009). In symbiosis with
20 plants they take advantage of a heterotrophic lifestyle (Adams and Duggan, 2008) to alleviate more
21 energy for nitrogen fixation. Organic carbon is typically transported in small molecules such as
22 glucose, but recent findings have shown that symbiotic *Nostoc* sp. have acquired a set of beneficial
23 genes to transport and degrade more complex carbon sources, such as cell wall components (Khamar
24 et al., 2010; Warshan et al., 2017). The accumulation of beneficial genes over the course of evolution

25 suggests plasticity in the carbon acquisition strategies, and the ability to utilize complex carbon
26 sources may increase the fitness of cyanobacteria in plant symbiosis (Warshan et al., 2017; Warshan
27 et al., 2018b).

28 In contrast, free-living *Nostoc* colonies, sometimes forming biofilms that may reach centimeters in
29 diameter, rely on their own photosynthetic capacity and the availability of atmospheric CO₂ which
30 may become scarce in dense biofilms and large colonies. To cope better in low CO₂ conditions,
31 cyanobacteria have developed an effective carbon concentrating mechanism (CCM), that elevates
32 CO₂ near carboxysome-encapsulated RubisCO, the key enzyme involved in carbon fixation (Burnap
33 et al., 2015). In marine and freshwater ecosystems, which are often C-limited *in situ* (Hein and
34 SandJensen, 1997; Wilhelm et al., 2020), CO₂ is also provided in exchange for dissolved organic
35 carbon by the respiratory activities of heterotrophic bacteria tightly associated with cyanobacteria
36 (Lee et al., 2017). *Nostoc*-associated microbiomes have so far been studied for *Nostoc flagelliforme*
37 and *Nostoc commune*, which form gelatinous colonies in soil, and for spherical *Nostoc* colonies in
38 freshwater ecosystems (Yue et al., 2016; Aguilar et al., 2019). While a pronounced habitat specificity
39 was observed, the functional role of the bacteria in the *Nostoc* cyanosphere was not explicitly
40 addressed. Therefore, the extent to which heterotrophic bacteria modulate the physiology of
41 diazotrophic cyanobacteria remains largely unstudied. Notably, symbiotic *Nostoc* strains are difficult,
42 sometimes impossible, to maintain as axenic isolates indicating intricate dependencies which are not
43 yet understood (Heck et al., 2016; Warshan et al., 2018a).

44 Here we specifically compared the influence of the heterotrophic microbiome on the growth of *Nostoc*
45 at different inorganic carbon concentrations. We selected three symbiotic *Nostoc* species: axenic
46 *Nostoc punctiforme* PCC 73102, and non-axenic *Nostoc* sp. KVJ2 and *Nostoc* sp. KVJ3 (Liaimer et
47 al., 2016). Despite having a similar genetic repository for carbon acquisition, axenic cyanobacteria
48 were unable to proliferate under inorganic carbon limitation, while non-axenic cyanobacteria thrived.

49 Systematic investigation of the interaction between *N. punctiforme* PCC 73102 and the representative
50 isolate *Agrobacterium tumefaciens* Het4 revealed a multifaceted relationship combining competition
51 and facilitation for nutrients. The comparative analysis also provided insights into the weak carbon
52 concentrating mechanism of *N. punctiforme* which could foster the dependency relationships between
53 the partners. Our study sheds new light on the limited autonomy of *Nostoc* strains and highlights the
54 importance of the heterotrophic bacterial community for maintaining a vital ecosystem.

55

56 **Results**

57 *Heterotrophic microbiome drastically enhances the vitality of* *N. punctiforme* PCC 73102

58 Three *Nostoc* strains PCC 73102, KVJ2 and KVJ3 were grown on plates of BG11₀ medium without
59 a nitrogen source containing low, medium, or high carbonate concentrations. In case of low carbon
60 conditions, Na₂CO₃ was omitted while medium concentrations correspond to the standard amount of
61 Na₂CO₃ found in BG11₀. For high carbonate conditions, Na₂CO₃ was added tenfold the amount of
62 standard BG11₀ medium. The growth was followed for eight days on three independent replicate
63 plates. Low and medium carbonate concentrations did not promote the growth of PCC 73102,
64 whereas the highest availability of carbonate enabled fast growth of the strain (Figure 1A). In contrast
65 to axenic PCC 73102, strains KVJ2 and KVJ3, both carrying the associated microbiomes, grew
66 surprisingly well even at low carbonate levels, and showed virtually no difference in growth between
67 limiting and high carbonate concentrations. The dependence of PCC 73102 on very high carbonate
68 concentrations indicated a weak CCM of the strain (Figure. 1A).

69 To evaluate the adaptation strategies of the three studied *Nostoc* strains to niches with different
70 inorganic carbon concentrations, the genetic repertoire of CCM-related genes was examined (Shibata
71 et al., 2001; So and Espie, 2005; Sandrini et al., 2014). While the genome sequences of strain PCC
72 73102 and KVJ2 were publicly available in databases (GCA_000020025.1 and SAMN07173937),

73 the sequence of strain KVJ3 was determined in the course of this study (PRJNA599284). All strains
74 encoded the complete ATP-dependent bicarbonate uptake system BCT1 and BicA, along with
75 NAD(P)H dehydrogenase complexes (Table S1), which are important for the proper functioning of
76 the bicarbonate uptake system (Shibata et al., 2001). However, the high-affinity bicarbonate uptake
77 transporter SbtA and the associated SbtB protein were absent from the genomes of all studied strains,
78 suggesting a poor capability to cope with low levels of inorganic carbon, similar to the bloom-forming
79 cyanobacterium *Microcystis* (Sandrini et al., 2014). Since all strains harbored the same set of genes
80 encoding high- and low-affinity bicarbonate transporters, the vitality of the studied *Nostoc*
81 cyanobacteria under inorganic carbon deficiency and their readiness to initiate plant symbiosis cannot
82 be explained by a different genetic repertoire of CCM-related genes.

83 The genetic similarity in carbon acquisition and assimilation led us to anticipate that the heterotrophic
84 bacterial communities play an important role in the vitality of free-living cyanobacteria under carbon
85 limitation by providing CO₂ and potentially other metabolites to the associated cyanobacteria. Thus,
86 we studied the microbiomes of non-axenic strains KVJ2 and KVJ3 in more detail. Qualitative
87 sequencing of 16S rRNA gene amplicons spanning the V3-V4 regions showed that both strains were
88 heavily colonized by Proteobacteria (Figure 1B, Figure S1). The microbiome of KVJ2 was more
89 consistent, mainly comprising Rhizobiales, while the microbiome of KVJ3 had greater diversity, with
90 additional presence of Sphingomonadales, Rhodospirillales and Acidobacteria.

91 Four different colony types of heterotrophic bacteria monocultures were isolated from KVJ3 (Het1-
92 4) and three from KVJ2 (Het5-7) using R2A agar plates. Phylogenetic analysis of 16S rRNA gene
93 sequences revealed that four isolates (Het1, 2, 4, 5 and 6) belonged to the *Rhizobium/Agrobacterium*
94 group (Alphaproteobacteria), with Het1 and Het2 representing the same species (Figure S2). Thus,
95 Het2 was omitted from further analysis. Het3 represented *Achromobacter* (Betaproteobacteria) genus
96 whereas *Paenibacillus* sp. Het7, belonging to Firmicutes, was the only isolate beyond Proteobacteria.

97 The isolation method used here showed clear selectivity towards *Rhizobium/Agrobacterium* and
98 omitted Sphingomonadales and Acidobacteria, even though their abundance was evident based on
99 the 16S rRNA amplicon metagenomic data. Notably, closely related strains of the
100 *Rhizobium/Agrobacterium* group were also isolated after incidental laboratory contamination of the
101 axenic strain PCC 73102 and isolated strains were included in the phylogenetic analysis as strains
102 Het8 and Het9 (Figure S1).

103 Next, we tested the growth-promoting effects of the isolated heterotrophic bacteria on PCC 73102 by
104 mixing axenic PCC 73102 with each of the isolates under BG11₀ conditions. The growth was
105 followed for eight days at medium carbonate concentration. Isolates Het1, 3, 4 and 8 strongly
106 supported the growth of the cyanobacterium, and Het7 supported growth to some extent (Figure S2A).
107 In co-cultures with Het5 and Het6, axenic cyanobacteria did not show signs of elevated growth, which
108 points towards a great functional diversity of associated heterotrophic bacteria of the
109 *Rhizobium/Agrobacterium* group.

110 The bacterial isolate *A. tumefaciens* Het4 (hereafter Het4) was selected to further understand the
111 benefits of the microbial community for the cyanobacterium. This choice was based on the ability of
112 Het4 to maintain physical interaction with PCC 73102 (Figure S2B) and to strongly enhance the
113 growth of the cyanobacterium. The impact of the Het4 co-cultivation on growth of PCC 73102 was
114 analyzed in replicate experiments for low, medium and high carbonate concentration and quantified
115 by digital image analysis. A pronounced growth promotion effect was particularly evident under
116 medium carbonate conditions in BG11₀ (Figure 1C and S3). In contrast, the opposite effect was found
117 at high carbonate concentrations. While PCC 73102 grew faster under these conditions, the Het4
118 interaction had a negative effect on growth. These reciprocal growth effects indicate that Het4 can
119 counteract C-limitation in particular, but that the interaction is not solely mutualistic (Figure S3).
120 Next, we sequenced the genome of isolate Het4. Analysis of amino acid identity (AAI) showed closest

121 relatedness of the newly isolated strain to the *Agrobacterium* complex, which includes the well-
122 known plant pathogen *Agrobacterium tumefaciens* str. C58 (Figure S4). Similar to strain C58 (Wood
123 et al., 2001), the recently sequenced Het4 consisted of a circular chromosome (2.9 Mbp), a linear
124 chromosome (2.1 Mbp), a cryptic plasmid (0.4 Mbp) and a tumor-inducing plasmid (0.37 Mbp). Het4
125 showed a very broad potential for the utilization of sugars, sugar alcohols and aromatic compounds
126 as described for the reference strain C58. Further, Het4 carried the *nos* operon, which is required for
127 the final step of the full denitrification pathway, and C58 is capable to directly ammonify nitrate and
128 nitrite. Neither Het4 nor C58 had known pathways for nitrogen or carbon fixation.

129 *Heterotrophic bacteria modulate the physiology of N. punctiforme PCC 73102*

130 To gain a better understanding of the interaction between Het4 and the cyanobacterium, the PCC
131 73102 proteome was compared in the presence and absence of Het4 using a shotgun proteomic
132 approach. To this end, samples for endoproteome analysis were collected after eight days of
133 cultivation on BG11₀ agar plates with and without Het4. In total, 4078 proteins were identified in the
134 PCC 73102 monoculture and 4062 were identified in co-culture with Het4. 4023 proteins were
135 identified in both conditions and, in the presence of Het4, 123 proteins were significantly upregulated
136 and 117 proteins were downregulated (FC ≤ -2 & ≥ 2 and adjusted p-value < 0.05) (Figure S5 and
137 Dataset S1). Remarkably, amongst the set of upregulated proteins, 17 phycobilisome subunits were
138 identified (Figure S5 and Dataset S1). This supports the morphological differences observed in mono-
139 and co-culture where PCC 73102 exhibits strong bleaching when grown in low/medium inorganic
140 carbon concentrations in the absence of Het4 (Figure 1A, C).

141 Given the ability of Het4 to complement the weak CCM of PCC 73102, we were anticipating an N
142 for C exchange between the diazotrophic cyanobacterium and Het4. Therefore, we first investigated
143 protein categories representing carbon fixation, the carbon concentrating mechanism and nitrogen
144 fixation. While the large and small subunit of RubisCO and phosphoribulokinase (Npun_F2752) were

145 only slightly upregulated in the co-culture, we found a pronounced upregulation of three carbonic
146 anhydrases (CAs) (Npun_F1420, Npun_R4176, Npun_F3687), one bicarbonate transporter
147 (Npun_R2356), and one CO₂ uptake transporter (Npun_F3690) (Figure 2). This observation supports
148 the hypothesis that Het4 indeed provides CO₂ to the cyanobacterium, especially because the strongest
149 upregulation was observed for the predicted periplasmic CA (Npun_F3687) (Figure 2). In contrast,
150 proteins involved in N-fixation behaved somewhat contrary to our assumptions. While the
151 nitrogenase NifH itself was slightly upregulated in co-culture, accessory proteins such as the iron-
152 molybdenum cofactor biosynthesis proteins NifN and NifE, and the stabilizing protein NifW, were
153 clearly down-regulated. Even more surprising was the strongly reduced expression of heterocyst
154 glycolipid biosynthesis proteins (Npun_R0038-R0043) pointing to a downregulation of heterocyst
155 formation and N-fixation. The unexpected nature of these findings raises some questions on the
156 nitrogen source under the given diazotrophic conditions. Notably, we observed an upregulation of
157 two cyanophycinases (Npun_F1821 and Npun_R0196) suggesting that the potential impairment of
158 nitrogen fixation is at least partially compensated by the utilization of nitrogen storage compounds
159 (Figure 2).

160 In the search for possible reasons for the partial downregulation of N-fixation, we were particularly
161 struck by the upregulation of flavodoxin (Npun_R6154), which was the top hit among the upregulated
162 proteins and is a marker for iron limitation (Sandmann et al., 1990) (Figure S5). Flavodoxins function
163 analogously to ferredoxins as electron transfer proteins, but unlike ferredoxins are not dependent on
164 iron. The parallel downregulation of two of the ferredoxins (Npun_R0334 and Npun_R0380)
165 suggests a functional replacement of ferredoxins by flavodoxin in co-culture due to iron deficiency
166 (Figure 2). This hypothesis was further fueled by the observed upregulation of the cryptic siderophore
167 cluster PKS4 (Npun_R3414-Npun_R3453) (Liaimer et al., 2011) and its TonB-dependent
168 siderophore receptor (Npun_R3454) (Figure 2B). These data point to a competition for iron between
169 PCC 73102 and Het4. As adverse effects of iron-limitation on nitrogen fixation are well known

170 (Larson et al., 2018), this competition may account for the preferential use of stored nitrogen over
171 nitrogen fixation. The comparative proteomic study also revealed further evidence of negative
172 interactions between the strains. For example, a number of stress markers were over-accumulating in
173 the co-culture, in particular proteins of the cold shock protein family CsbD (Npun_R6532,
174 Npun_F0469 and Npun_R0959), but also markers for osmotic stress such as a sucrose synthase (SusA
175 and SusB) and chaperones of the GroES family (Npun_R6237 and Npun_R1726) (Figure 2). These
176 findings only make it more astonishing that, overall, the dominant interaction is the mutualistic
177 growth promotion of PCC 73102. Under standard BG11₀ growth conditions, and without
178 heterotrophic support, PCC 73102 shows severe signs of starvation evident by phycobiliprotein
179 degradation. However, if the C-limitation is compensated by high carbonate, the negative effects of
180 the co-cultivation dominate (Figure S3).

181 *Phenotypic response to inorganic carbon limitation in N. punctiforme PCC 73102 in mono- and co-*
182 *cultures*

183 Given that the strong dependence of the cyanobacterium on heterotrophs can primarily be explained
184 by a weak CCM, we initiated phenotypic studies on the subcellular localization of RubisCO using
185 immunofluorescence microscopy (IFM) and transmission electron microscopy (TEM).
186 IFM with an antibody against the RubisCO subunit RbcL revealed a pronounced phenotypic
187 variability in the subcellular localization of RbcL at all studied conditions. Three different
188 localizations of the studied enzyme were observed: intracellular, membrane-near and extracellular
189 RbcL (Figure 3). Overall, we found little evidence for carboxysomal localization of RubisCO. To
190 exclude methodological bias, we also labelled the carboxysomes with a CcmK antibody and the small
191 subunit of RubisCO with an RbcS antibody. While the typical carboxysomal structures were observed
192 with the CcmK antibody, RbcS was mostly detected near the membrane thereby closely resembling
193 the RbcL pattern (Figure S6). Even though RubisCO may be less accessible to the antibody in the

194 carboxysomes, it can be clearly stated that large amounts of RubisCO are localized outside the
195 carboxysome in PCC 73102 under the conditions tested. Control experiments with an anti-GFP
196 antibody showed no signals at any of the above sites (Figure S7), confirming the specificity of the
197 RbcL signal. In axenic cultures, RbcL was found mainly in the cytoplasm of the cells as well as near
198 the cell membrane, but extracellular RbcL was also identified to some extent (Figure 3A and B, upper
199 panel). In co-cultures with Het4, RbcL was more commonly detected in the extracellular sheath and,
200 at lower amount, intracellularly (Figure 3A and B, lower panel). Interestingly, phenotypic plasticity
201 of RbcL localization was also seen among filaments located next to each other, indicating strong
202 heterogeneity within the culture under nitrogen deficiency (Figure 3A).

203 To confirm the extracellular accumulation of RubisCO, we performed a second proteomic study in
204 which we characterized the extracellular proteome of PCC 73102 using the recently described
205 EXCRETE method (Russo et al., 2024). In total, 2970 proteins were identified in the PCC 73102
206 monoculture and 3085 were identified in co-culture with Het4. 2896 proteins were identified in both
207 conditions. Overall, the large number of proteins identified in the exoproteome under BG11₀
208 conditions, and the major overlap with the endoproteome, indicated a possible lysis of part of the
209 PCC 73102 cells (Figure S8 and Dataset S2). Specifically, RubisCO was detected among the ten most
210 abundant proteins in the medium, both in mono- and co-culture with Het4 along with further abundant
211 intracellular proteins such as phycobilisome subunits and the periplasmic carbonic anhydrase (Fig.
212 S8). The strong extracellular accumulation of RubisCO is apparently specific for N- and C-limiting
213 conditions, since a recently published exoproteomic study of PCC 73102 showed that under N- and
214 C-replete conditions predicted extracellular proteins were enriched, but not RubisCO (Russo et al.,
215 2024). To evaluate whether the exoproteomic difference between nitrogen deplete (BG11₀) and
216 nitrogen replete (BG11) conditions is also reflected in the extracellular localization of RubisCO
217 detected by IFM, we also transferred mono- and co-cultures from BG11₀ conditions to BG11
218 conditions and evaluated them by IFM after eleven days (Figure S9). Indeed, the apparent proportion

219 of external RbcL decreased, while the intracellular RbcL content in vegetative cells increased thereby
220 supporting the findings of the exoproteomic analyses (Figure S9 and Russo et al., 2024). This
221 phenomenon suggests that RubisCO is primarily accumulating outside the cells under inorganic
222 carbon and nitrogen deficiency.

223 Notably, RubisCO was not differentially accumulating in the exoproteome of the mono- and co-
224 culture with Het4 (Figure S8 and Dataset S2). We assume that part of the extracellular RubisCO
225 which sticks to the cell-bound mucus layer especially in the co-culture (Figure 3A) is not enriched by
226 the exoproteomic method used here but remains in the cellular pool. Nonetheless, the characterization
227 of the exoproteome provides further evidence that *N. punctiforme* suffers from starvation under
228 standard BG11₀ growth conditions and may sacrifice cells and proteins including RubisCO to increase
229 the viability of the community.

230 To gain further insight into ultrastructural differences within cyanobacterial cultures and between
231 axenic and co-cultures under inorganic carbon limitation, we used TEM. Interestingly, there was
232 structural heterogeneity with respect to the capsular sheath (CPS) among PCC 73102 filaments within
233 and between axenic and co-cultures (Figure 4). The presence of the capsular sheath varied, with some
234 filaments showing no detectable sheath, while others had a relatively electron-lucent or compacted
235 sheath that was up to 2 μ m thick. We had the impression that the capsular sheath of PCC 73102 was
236 more prominent in co-cultures. In addition, we observed small electron-dense granular particles
237 outside the PCC 73102 cells, often associated with the outer surface of the capsular sheath, and these
238 particles were present at far larger amount in co-cultures (Figure 4B). Sheathed cells contained an
239 increased number of small electron-dense granular particles outside the cells. The presence of external
240 RbcL in the granular particles was confirmed by pre-embedding immunogold TEM (Figure 5). In co-
241 cultures, large amounts of extracellular RbcL could be detected in the periphery of the cyanobacterial

242 sheath, similar to the IFM studies under the same conditions (Figure 3 and 5). Control experiments
243 with an anti-GFP antibody showed no signals at any of the above sites (Figure. S10)

244

245 **Discussion**

246 The present study not only provides detailed insights into the intimate relationship of the symbiotic
247 strain *N. punctiforme* PCC 73102 and its natural heterotrophic partner *Agrobacterium tumefaciens*
248 Het4, but also demonstrates the limited autonomy of the diazotrophic photoautotrophic
249 cyanobacterium under N- and C-deficient conditions. We showed that a combined C and N limitation
250 enforces an almost obligate dependence of PCC 73102 on heterotrophic partners. It is particularly
251 remarkable that C limitation manifests itself already at the commonly used inorganic carbon
252 concentrations of the BG11₀ standard medium. Under these conditions, the axenic strain PCC 73102
253 shows clear signs of bleaching and a pronounced accumulation of intracellular proteins in the
254 exoproteome, that likely results from starvation and cell lysis.

255 The fact that the dependence on heterotrophic bacteria can be abolished by addition of high carbonate
256 concentrations (Figure 1A) indicates a weak CCM in *N. punctiforme* compared to model
257 cyanobacteria such as *Synechocystis* sp. PCC 6803. In the search for causes, we discovered
258 differences in the genetic repertoire of bicarbonate uptake transporters, in particular a lack of the gene
259 encoding the high-affinity uptake transporter SbtA. Furthermore, we detected a predominantly
260 extracarboxysomal localization of RubisCO, often in the cytoplasmic membrane region. Both
261 findings are similar to what is known for the bloom-forming freshwater cyanobacterium *Microcystis*
262 *aeruginosa* PCC 7806 (Barchewitz et al., 2019). *N. punctiforme* and *Microcystis* are among the many
263 cyanobacteria that are very difficult to axenize and maintain as axenic strains (Heck et al., 2016;
264 Alvarenga et al., 2017; Warshan et al., 2018a). Notably, the Pasteur Culture Collection recommends
265 the addition of NaHCO₃ to standard BG11/BG11₀ medium for both *Microcystis* and *N. punctiforme*
266 for axenic maintenance (<https://catalogue-crbip.pasteur.fr/>). It is tempting to speculate that these

267 cyanobacteria are more specialized than unicellular model cyanobacteria on utilizing respiratory CO₂
268 from heterotrophic bacteria and are therefore less dependent on a strong CCM in nature. The
269 cytoplasmic membrane localization of RubisCO may facilitate the intimate inorganic carbon supply.
270 This hypothesis is supported by the proteomic findings in the present study. In particular, the
271 activation of carbonic anhydrases and bicarbonate or CO₂ transporters in co-cultures with Het4 is
272 striking. The benefits of this inorganic carbon feeding by Het4 are clearly evident through growth
273 promotion, even against the background of negative interactions, including competition for iron
274 (Figure 6).

275 In addition to its dependence on inorganic carbon supply by heterotrophic partners, a pronounced
276 phenotypic plasticity of the PCC 73102 filaments is also noteworthy in the present study. This
277 plasticity was observed with regard to the extent and nature of the extracellular sheath as well as
278 with regard to the subcellular localization of RubisCO and the accumulation of RubisCO-containing
279 extracellular granules. The extracellular sheath of microalgae is commonly referred to as the
280 phycosphere and provides a nutrient-rich microscale interface favoring phototroph-heterotroph
281 interactions (Seymour et al., 2017). The plasticity may reflect a division of the population into
282 filaments specializing on cooperation with Het4 and those that thrive independently of it. Division
283 of labor and cheating on resources are common phenomena in mono- and multispecies biofilms and
284 may also contribute to versatility and resilience of the *Nostoc* population (van Gestel et al., 2015;
285 Martin et al., 2020). As we have no global proteomic insight into the differences between the
286 distinct filament types, we can only speculate about traits favoring cooperation. The increased
287 accumulation of RubisCO-containing extracellular granules around sheathed filaments in the co-
288 culture may indicate a major role of protein recycling for the cooperation between PCC 73102 and
289 Het4. The denitrification potential of Het4 may contribute to the N recycling process. Notably, an
290 enrichment of denitrifying heterotrophic bacteria was also observed in diazotrophic freshwater
291 cyanobacteria of the genus *Dolichospermum* under N-limitation (Pascault et al., 2021).

292

293 The extracellular mucus layer may also be one of the reasons for the specificity of *Nostoc* interactions
294 with its heterotrophic microbiome. Even though we have studied only two field strains, the observed
295 major differences in their heterotrophic communities support a host specificity in principle. Previous
296 studies have suggested that Rhizobiales generally play important roles in plant-cyanobacterium
297 consortia, and our data strongly support these findings (de Vries and de Vries, 2022). Yet, the impact
298 of *Rhizobium/Agrobacterium* on PCC 73102 was clearly strain-specific as the closely related Het6
299 isolate did not show signs of growth promotion (Figure S2). The bilateral selectivity of the growth
300 promotion indicates that variable functional traits, that are not part of the species' core genome, may
301 be crucial for the interaction.

302

303

304 Conclusion

305 The present study sheds new light on the dependence of symbiotic cyanobacteria of the genus *Nostoc*
306 on respiratory activities of associated heterotrophic bacteria. This dependence is likely enforced by a
307 weak CCM and is promoted by a physical interaction around the pronounced sheath of the
308 cyanobacteria. Symbiotic *Nostoc* strains apparently rely on partners for the supply of carbon, either
309 heterotrophic bacteria in free-living *Nostoc* colonies that provide CO₂ or plant hosts that provide
310 organic carbon. Although the mutualistic interactions of *Nostoc* and *Agrobacterium* have been
311 observed mainly under N and C deficiency, it can be assumed that they play a major role in many
312 habitats and strongly influence the vitality of *Nostoc* colonies. Understanding the interdependencies
313 is not only important for assessing the role of phototroph-heterotroph interactions in nutrient cycles,
314 but also central for the biotechnological exploitation of *Nostoc* strains.

315 Materials and methods

316 *Strains and growth conditions*

317 Axenic *Nostoc punctiforme* PCC 73102 (hereafter PCC 73102) was obtained from the Pasteur Culture
318 Collection and maintained in liquid BG11₀ medium under continuous illumination of 25 μmol
319 photons $\text{m}^{-2}\text{s}^{-1}$ at 23°C. *Nostoc* sp. KVJ2 (hereafter KVJ2) and *Nostoc* sp. KVJ3 (hereafter KVJ3)
320 were isolated from Northern Norway as described previously (Liaimer et al., 2016) and since then
321 cultivated diazotrophically in BG11₀ medium under continuous light of 25 μmol photons $\text{m}^{-2}\text{s}^{-1}$ at
322 23°C. Heterotrophic bacteria (Het1-6) were isolated from the strains KVJ2 and KVJ3 by plating the
323 culture on R2A agar plates and purified over several cultivation cycles at 23°C.

324 Effects of inorganic carbon concentrations on the growth of cyanobacteria were studied in three
325 different carbonate concentrations: low (BG11₀ without added Na₂CO₃), medium (BG11₀) and high
326 (BG11₀ enriched with 10x higher Na₂CO₃ than in standard BG11₀). Concentration of the sodium ions
327 in low bicarbonate medium was adjusted by NaCl. Prior to the experiment, PCC 73102, KVJ2 and
328 KVJ3 cyanobacteria were washed twice using low carbonate BG11₀ medium, resuspended in same
329 medium (OD750=4.4) and a volume of 10 μL each was dropped onto three agar plates in three
330 biological replicates. To study the growth promotion of heterotrophic bacteria, heterotrophic bacteria
331 were washed and resuspended in a similar concentration as cyanobacteria (final OD600 = 2.2) and
332 10 μL of the bacteria were added on the top of the cyanobacterial drop (physical interaction) at 23°C.

333

334 *Cultivation in liquid cultures*

335 Prior to the experiment, PCC 73102 was washed twice using BG11₀ medium and resuspended in 20
336 mL BG11₀. The washed cells were split into two flasks, each containing 10 mL cell suspension. In
337 parallel, a single colony of Het4 was picked from a R2A (CL01.1, Carl Roth, Karlsruhe, Germany)
338 plate, transferred to 4 mL LB medium (X968.4, Carl Roth, Karlsruhe, Germany) and incubated at 28
339 °C, 210 rpm shaking for 14 h. The cells were harvested, washed twice with BG11₀ medium,
340 resuspended in 2 mL BG11₀ medium (OD600 = 2.3) and added to one of the PCC 73102 cultures.

341 Both cultures were then kept under continuous illumination of 40 μ E without shaking for 7 days at
342 23°C. Samples for immunofluorescence microscopy were taken on day 1, day 4 and day 7 by
343 aseptically removing 1 mL cell suspension and replenishing to the original volume with fresh
344 medium. Cells were fixed as described below and stored at -20°C in PBS (140 mM NaCl, 2.7 mM
345 KCl, 8.0 mM Na₂HPO₄, 1.8 mM KH₂PO₄, pH = 7.5) with 10% w/v glycerol.
346 On day 7, 5 mL of each culture was washed twice with BG11 medium and resuspended in 10 mL
347 BG11 medium while replenishing the lost volume with BG11₀ medium. All four cultures were then
348 kept under the same conditions as before for another 7 days. Again, samples were taken, fixed and
349 stored on day 8, day 11 and day 14 as described above.
350

351 *DNA sequencing*

352 For Sanger sequencing of the heterotrophic bacterial isolates and for Illumina MiSeq 16S rRNA gene
353 amplicon sequencing, the total DNA from KVJ3 and KVJ2 cultures were isolated using a DNA
354 Isolation Kit for Cells and Tissues (Sigma-Aldrich, Taufkirchen, Germany). Universal primers 27F
355 and 1492R were used in the amplification and Sanger sequencing of single bacterial isolates at LGC
356 Genomics GmbH, Berlin, Germany. V3 and V4 regions of the 16S rRNA gene were PCR amplified
357 and 16S rRNA gene amplicons were sequenced by Illumina MiSeq platform at the Institute of
358 Biology, University of Helsinki, Finland. High-quality reads between 10-471 bp with unambiguities
359 were analyzed using Mothur v1.39.5 (Schloss et al., 2009) and aligned against the Silva database
360 (Release 138) (Quast et al., 2013) with kmer size of 8. Maximum-likelihood phylogenetic tree with
361 bootstrapping of 100 iterations was constructed using the MEGA X software (Tamura et al., 2021).
362 For the whole genome PacBio and Illumina hybrid sequencing, high-molecular weight DNA was
363 isolated from KVJ3 and *Agrobacterium tumefaciens* Het4 using phenol-chloroform extraction. Cells
364 were broken using lysozyme in buffer containing 50 mM Tris-HCl, 100 mM EDTA, 0.1 M NaCl
365 (pH=7) at 37 °C for one hour. Proteinase K and RNAase were added on the cells and incubation was

366 continued at 56 °C for 2 hours. DNA was extracted and purified with phenol and chloroform and
367 precipitated with 70% ethanol in the presence of 0.1 M of NaCl. DNA was dissolved in TE buffer
368 and sequenced at the Institute of Biology, University of Helsinki, Finland. PacBio RSII reads were
369 assembled using HGAP3 implemented in SMRT portal with a default genome size of 6 Mbp and
370 circulated using Gap4. Illumina MiSeq reads were filtered by cutadapt v 1.14, m=100, q=25 (Martin,
371 2011) and genome was polished using bwa v0.7.12-r1039 (Li and Durbin, 2009) and Pilon v1.16
372 (Walker et al., 2014) with default parameters. Newly sequenced genomes were annotated using NCBI
373 prokaryotic genome annotation pipeline (PGAP) (Tatusova et al., 2016).

374

375 High-quality reads were mapped using BWA-MEM (v0.7.17.1) (Li and Durbin, 2009). Reads <20
376 bp, secondary aligned reads and PCR duplicates were removed using BAM filter (v0.5.9) (Li et al.,
377 2009) and features were called using featureCounts (v1.6.4) (Liao et al., 2014) with paired-end mode
378 and exclusion of chimeric structures. Reads mapped to Het4 genome were removed from the
379 differential gene expression analysis. DESeq2 (v1.28.1) (Love et al., 2014) with rlog transformation
380 was used to call the differentially expressed (DE) genes.

381

382 *Preparation of endoproteome and exoproteome fractions*

383

384 To obtain the exoproteome fraction, cultures were centrifuged for 10 min at 5000 × g. The
385 supernatant was removed, centrifuged again for 10 min at 10 000 × g and transferred to a fresh
386 microcentrifuge tube. Pre-cultures for the preparation of endoproteomics co-cultivation plates were
387 grown and washed as described above. Subsequently, three 50 µL droplets of either PCC 73102
388 were spotted on freshly prepared BG110 plates. For the cocultivation plates, 50 µL of Het4 were
389 gently dropped onto the PCC 73102 spots. Plates were incubated for 16d under the same conditions
390 as described above. Endoproteome fractions were obtained by scraping culture spots from their

391 respective agar plates and then resuspending the biomass in 300 μ L of lysis buffer (25 mM Tris-
392 HCl, 5% (w/v) glycerol, 1% (v/v) Triton X-100, 1% (w/v) sodium deoxycholate, 0.1% (w/v)
393 sodium dodecyl sulfate (SDS) and 1 mM EDTA). Zirconium oxide beads (diameter 0.15 mm) were
394 added to the cell suspension and cells were broken in a Bullet Blender Storm 24 (Next Advance)
395 with three cycles of 5 min. Cell lysates were centrifuged at 10 000 \times g for 10 min and the resulting
396 supernatant transferred for further analysis. The protein content of all samples was determined with
397 a PierceTM BCA assay kit (Thermo Fisher Scientific).

398

399 *Proteomic analysis*

400

401 Sample preparation for proteomic analysis was done according to the EXCRETE workflow (Russo
402 *et al.*, 2024). Briefly, the equivalent of 10 μ g of protein was harvested from the supernatant and
403 transferred to 2 mL microcentrifuge tubes. NaCl and SDS were added to a final concentration of 10
404 mM and 1% (w/v) and samples were reduced with 5 mM TCEP and alkylated with 5.5 mM CAA.
405 Protein aggregation was induced by adding LC-MS grade ethanol to a final concentration of 50%
406 (v/v) followed by SiMAG-Carboxyl magnetic particles (product no. 1201, Chemicell) to a final
407 concentration of 0.5 μ g μ L⁻¹. Samples were incubated for 10 min with shaking at 1000 rpm and,
408 subsequently, magnetic particles were separated on a magnetic rack and washed, on-magnet, 3 times
409 with 80% (v/v) ethanol. Protein digestion was done overnight at 37°C on-bead in 100 μ L of 25 mM
410 ammonium bicarbonate containing 0.5 μ g of MS grade Trypsin/LysC (Promega) (enzyme/protein
411 ratio of 1:20 (w/w)). Following protein digestion, magnetic particles were separated for 60 s and
412 supernatants were recovered. Peptide purification and desalting, LC-MS analysis and raw data
413 processing were done as previously described (Russo *et al.*, 2024). For protein identification a protein
414 group was considered identified when it was present in at least 70% of the replicates with a minimum
415 of three replicates. Missing values were imputed using the k-nearest neighbors' algorithm. Proteins

416 were annotated using EggNOG v5.0 (Huerta-Cepas *et al.*, 2019), PsortB v3.0 (Yu *et al.*, 2010),
417 SignalP 6.0 (Teufel *et al.*, 2022) and UniProtKB (The UniProt Consortium, 2023). Data analysis and
418 visualization were performed using custom scripts in R (4.3.0) with packages ggrepel (0.9.5), ggplot2
419 (3.5.1), viridis (0.6.5), readxl (1.4.3) and gplots (3.1.3.1). Differential protein analysis was done using
420 a Student's two-sample unpaired t-test with permutation-based multiple test correction with a cutoff
421 criterion of fold change = 2 and adjusted p-value < 0.05.

422

423 *Immunofluorescence microscopy*

424

425 Cells were harvested by centrifugation and washed twice in freshly prepared PBS. Washed cells were
426 resuspended in 4% w/v paraformaldehyde in PBS (J61899.AK, Thermo Fisher, Hennigsdorf,
427 Germany), incubated for 10 min at RT, washed two more times with PBS, resuspended in ultra-pure
428 water and subsequently spread on 2H coverslips (01-0012/2, Langenbrinck, Emmendingen,
429 Germany) to air-dry until sufficient attachment was achieved without completely desiccating the
430 cells. All following steps were carried out in a humidifier.

431 The specimens were washed once with PBS for 5 min, then permeabilized using 2 mg/mL of
432 lysozyme (0663-10G, VWR, Darmstadt, Germany) in PBS with 0.3% w/v Triton-X 100 (PBS-TX)
433 for 30 min at RT, washed twice in PBS-TX for 3 min, blocked using 1% w/v Polyvinylpyrrolidone
434 K30 (4607.1, Carl Roth, Karlsruhe, Germany) in PBS with 0.3% w/v Tween-20 (PBS-T) for 1h at
435 4°C and washed twice in PBS-T for 3 min.

436 For antibody labeling, the specimen was incubated for 1h at RT with primary antibodies (rabbit anti-
437 rbcL large subunit, form I polyclonal antibody, AS03 037A, Agrisera, Vännas, Sweden; for negative
438 controls: rabbit anti-GFP N-terminal polyclonal antibody, Sigma-Aldrich, G1544) diluted to 4 µg/ml
439 in PBS-T, and washed twice in PBS-T for 3 min.

440 Secondary antibodies (goat anti-rabbit IgG Alexa Fluor 488, A-11008, Thermo Fisher, Hennigsdorf,
441 Germany) were diluted 1:200 in PBS-T and applied by incubation for 1h at 4°C in the dark. After two
442 final washes in PBS-T, specimens were air-dried and mounted on slides using ProLong Glass
443 (P36980, Thermo Fisher, Hennigsdorf, Germany). Slides were imaged using a Zeiss LSM780 (Carl
444 Zeiss Microscopy, Jena, Germany) laser scanning confocal microscope equipped with a Plan-
445 Apochromat 63x/1.40 oil immersion lens. Alexa Fluor 488 was excited at 488 nm and detected at 493
446 to 550 nm, whereas autofluorescence was excited at 633 nm, and detected between 647 and 687 nm.
447

448 *Electron microscopy*

449 Cells from 2 mL of PCC 73102 culture were collected, washed, and fixed by 2.5% glutaraldehyde,
450 2.0% formaldehyde in 0.1 M Na-cacodylate buffer, pH 7.4 similarly as described earlier (Barchewitz
451 et al., 2019). Subsequently, samples were overlaid by a thin layer of 1 % low-melting agarose,
452 dehydrated in a graded EtOH series and acetone and embedded in low viscosity resin (Agar Scientific,
453 Stansted, Essex, UK). Ultrathin sections stained with uranyl acetate and lead citrate were examined
454 in a Talos F200C transmission electron microscope (Thermo Fisher Scientific, Waltham, MA, USA),
455 operated at 200 kV.

456 *Immunogold Electron Microscopy*

457 Cells were carefully removed from agar plates, resuspended in 1 mL PBS, and treated as described
458 previously in section “Immunofluorescence microscopy” until secondary antibody hybridization.
459 After washing in PBS, specimens were incubated for 60 min with 10-nm-gold-conjugated goat-anti-
460 rabbit IgG (Sigma-Aldrich, product number G7402), diluted 1:25 in PBS, and washed in PBS for 2 x
461 5 min. After a further 5-min-washing step in PBS supplemented with 0.5 M NaCl, specimens were
462 incubated for 5 min in 0.1 M Na-phosphate buffer (pH 7.3), post-fixed with phosphate-buffered 3%
463 glutaraldehyde for 30 min, washed in phosphate buffer for 5 min, and dehydrated in a graded EtOH

464 series and acetone. Coverslips were then embedded in Spurr low viscosity resin (Science Services,
465 Munich, Germany) as described in detail previously (Batsios et al., 2013). After polymerization,
466 coverslips were removed from the polymerized resin by several cycles of cooling (liquid N₂) and re-
467 warming to room temperature. Areas with bacteria were selected by phase contrast microscopy,
468 mounted (Batsios et al., 2013), sectioned on an ultramicrotome at a thickness of 90 nm, stained with
469 uranyl acetate for 5 min, and analyzed in a Talos F200C.

470 **Acknowledgements**

471 The study was supported by Academy of Finland grant No. 332215 to JET, DFG Project No.
472 406260942 (cryo-TEM) to Petra Wendler and DFG Project No. 239748522- SFB 1127 (DAR, JAZZ
473 and ED). We acknowledge the DNA Sequencing and Genomics Laboratory, Institute of
474 Biotechnology, University of Helsinki for sequencing. and Florian Meier and Denys Oliinyk, Jena
475 University Hospital, for assistance with the proteomic analysis.

476

477

478 **Figure legends**

479 **Figure 1** Growth of *Nostoc* sp. cyanobacteria is promoted by associated heterotrophic bacteria,
480 particularly under inorganic carbon-limited conditions. (A) Axenic *N. punctiforme* PCC 73102 was
481 unable to grow under low carbonate concentrations, whereas *Nostoc* sp. KVJ3 and KVJ2 thrived. (B)
482 Microbiome analysis using 16S rRNA amplicon sequencing revealed a diversity of heterotrophic
483 bacteria in *Nostoc* sp. KVJ2 and KVJ3 which were dominated by Alphaproteobacteria. (C) The isolate
484 *A.tumefaciens* Het4 promotes growth of *N. punctiforme* PCC 73102 under carbon-limited conditions.
485 See figure S3 for growth curves and digital image analysis.

486

487 **Figure 2** Heatmap illustrating the differential expression of selected proteins between *Nostoc*
488 *punctiforme* PCC 73102 monoculture and co-culture with *A. tumefaciens* Het4. Rows represent
489 individual proteins, while columns represent biological replicates of each condition. Proteins are
490 labelled with gene names (right) and grouped by predicted cellular function (left). Log2 protein
491 expression levels were transformed with a z-score normalization and represented with a color scale
492 that varies from yellow (most downregulated) to blue (most upregulated) relative to the mean
493 expression across all samples in each row. Hierarchical clustering was performed on samples and
494 dendograms indicate the similarity between them.

495

496 **Figure 3** Immunofluorescence microscopy (IFM) images showing subcellular localization of RbcL,
497 the large subunit of RubisCO, in *N. punctiforme* PCC 73012 monocultures and co-cultures with *A.*
498 *tumefaciens* Het4 under nitrogen-deplete (BG11₀) conditions. (A) shows overview micrographs
499 illustrating the phenotypic heterogeneity among filaments either with predominant extracellular (E)
500 or intracellular localization (I) of RubisCO. (B) depicts selected detail images showing subcellular
501 localization of RbcL in mono- and co-cultures. Three localization types, extracellular, near membrane
502 and cytosolic RbcL were found in both cultures with and without heterotrophic bacterium, however

503 extracellular RbcL was more abundant in co-cultures, especially under nitrogen-deplete conditions.

504 M = membrane-near RbcL, I = intracellular RbcL, E = extracellular RbcL H = heterocyst, AF =

505 autofluorescence, m = merged. Scale bar (A): 5 μ m; scale bar (B): 1 μ m

506

507 **Figure 4** Transmission electron microscopy (TEM) images of *N. punctiforme* PCC 73102 grown in

508 (A) monoculture or (B) co-culture with *A. tumefaciens* Het4 under nitrogen-deplete conditions. (A)

509 TEM images of axenic *N. punctiforme* PCC 73102 show heterogeneity in the polysaccharide capsule.

510 (B) TEM images of *N. punctiforme*-Het4 co-cultures show heterogeneity in the polysaccharide

511 capsule and an accumulation of granular material (highlighted by an asterisk) predominantly in the

512 periphery of the polysaccharide layer. CPS = capsular polysaccharides, H = heterocyst. Scale bar = 2

513 μ m

514

515 **Figure 5** Immunogold TEM images of (A) *N. punctiforme* PCC 73102 monoculture and (B) PCC

516 73102-Het4 co-culture samples incubated with antibody against RubisCO subunit RbcL.

517 Immunogold particles are visible at the periphery of the polysaccharide capsule (CPS) in both mono-

518 and co-culture (indicated by an asterisk), but they are much more abundant in the co-culture with

519 Het4. Scale bar: 1 μ m

520

521 **Figure 6** Model for the interaction between *N. punctiforme* PCC 73102 and *A. tumefaciens* Het4

522 under N- and C limiting conditions.

523

524 **References**

525 Adams, D.G., and Duggan, P.S. (2008) Cyanobacteria-bryophyte symbioses. *J Exp Bot* **59**: 1047-
526 1058.

527 Aguilar, P., Dorador, C., Vila, I., and Sommaruga, R. (2019) Bacterial communities associated with
528 spherical *Nostoc* macrocolonies. *Front Microbiol* **10**: 483.

529 Alvarenga, D.O., Fiore, M.F., and Varani, A.M. (2017) A metagenomic approach to cyanobacterial
530 genomics. *Front Microbiol* **8**: 809.

531 Barchewitz, T., Guljamow, A., Meissner, S., Timm, S., Henneberg, M., Baumann, O. et al. (2019)
532 Non-canonical localization of RubisCO under high light conditions in the toxic cyanobacterium
533 *Microcystis aeruginosa* PCC7806. *Environ Microbiol* **21**: 4836-4851.

534 Batsios, P., Baumann, O., Graf, R., and Meyer, I. (2013) Isolation of *Dictyostelium* nuclei for light
535 and electron microscopy. *Methods Mol Biol* **983**: 283-294.

536 Burnap, R.L., Hagemann, M., and Kaplan, A. (2015) Regulation of CO₂ concentrating mechanism in
537 cyanobacteria. *Life (Basel)* **5**: 348-371.

538 Chapman, M.J., and Margulis, L. (1998) Morphogenesis by symbiogenesis. *Int Microbiol* **1**: 319-326.

539 D'Agostino, P.M. (2023) Highlights of biosynthetic enzymes and natural products from symbiotic
540 cyanobacteria. *Nat Prod Rep* **40**: 1701-1717.

541 de Vries, S., and de Vries, J. (2022) Evolutionary genomic insights into cyanobacterial symbioses in
542 plants. *Quant Plant Biol* **3**: e16.

543 DeLuca, T.H., Zackrisson, O., Gundale, M.J., and Nilsson, M.C. (2008) Ecosystem feedbacks and
544 nitrogen fixation in boreal forests. *Science* **320**: 1181.

545 Heck, K., Machineski, G.S., Alvarenga, D.O., Vaz, M., Varani, A.M., and Fiore, M.F. (2016)
546 Evaluating methods for purifying cyanobacterial cultures by qPCR and high-throughput Illumina
547 sequencing. *J Microbiol Methods* **129**: 55-60.

548 Hein, M., and SandJensen, K. (1997) CO₂ increases oceanic primary production. *Nature* **388**: 526-
549 527.

550 Khamar, H.J., Breathwaite, E.K., Prasse, C.E., Fraley, E.R., Secor, C.R., Chibane, F.L. et al. (2010)
551 Multiple roles of soluble sugars in the establishment of *Gunnera-Nostoc* endosymbiosis. *Plant
552 Physiol* **154**: 1381-1389.

553 Larmola, T., Leppanen, S.M., Tuittila, E.S., Aarva, M., Merila, P., Fritze, H., and Tiirola, M. (2014)
554 Methanotrophy induces nitrogen fixation during peatland development. *Proc Natl Acad Sci U S A*
555 **111**: 734-739.

556 Larson, C.A., Mirza, B., Rodrigues, J.L.M., and Passy, S.I. (2018) Iron limitation effects on nitrogen-
557 fixing organisms with possible implications for cyanobacterial blooms. *FEMS Microbiol Ecol* **94**.

558 Lee, M.D., Walworth, N.G., McParland, E.L., Fu, F.X., Mincer, T.J., Levine, N.M. et al. (2017) The
559 *Trichodesmium* consortium: conserved heterotrophic co-occurrence and genomic signatures of
560 potential interactions. *ISME J* **11**: 1813-1824.

561 Li, H., and Durbin, R. (2009) Fast and accurate short read alignment with Burrows-Wheeler
562 transform. *Bioinformatics* **25**: 1754-1760.

563 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N. et al. (2009) The Sequence
564 Alignment/Map format and SAMtools. *Bioinformatics* **25**: 2078-2079.

565 Liaimer, A., Jensen, J.B., and Dittmann, E. (2016) A genetic and chemical perspective on symbiotic
566 recruitment of cyanobacteria of the genus *Nostoc* into the host plant *Blasia pusilla* L. *Front Microbiol*
567 **7**: 1693.

568 Liaimer, A., Jenke-Kodama, H., Ishida, K., Hinrichs, K., Stangeland, J., Hertweck, C., and Dittmann,
569 E. (2011) A polyketide interferes with cellular differentiation in the symbiotic cyanobacterium *Nostoc
570 punctiforme*. *Environ Microbiol Rep* **3**: 550-558.

571 Liaimer, A., Helfrich, E.J., Hinrichs, K., Guljamow, A., Ishida, K., Hertweck, C., and Dittmann, E.
572 (2015) Nostopeptolide plays a governing role during cellular differentiation of the symbiotic
573 cyanobacterium *Nostoc punctiforme*. *Proc Natl Acad Sci U S A* **112**: 1862-1867.

574 Liao, Y., Smyth, G.K., and Shi, W. (2014) featureCounts: an efficient general purpose program for
575 assigning sequence reads to genomic features. *Bioinformatics* **30**: 923-930.

576 Love, M.I., Huber, W., and Anders, S. (2014) Moderated estimation of fold change and dispersion
577 for RNA-seq data with DESeq2. *Genome Biol* **15**: 550.

578 Martin, M. (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. .
579 *EMBnetjournal* **17**: 10-12.

580 Martin, M., Dragos, A., Otto, S.B., Schafer, D., Brix, S., Maroti, G., and Kovacs, A.T. (2020)
581 Cheaters shape the evolution of phenotypic heterogeneity in *Bacillus subtilis* biofilms. *ISME J* **14**:
582 2302-2312.

583 Meeks, J.C. (1998) Symbiosis between nitrogen-fixing cyanobacteria and plants - The establishment
584 of symbiosis causes dramatic morphological and physiological changes in the cyanobacterium.
585 *Bioscience* **48**: 266-276.

586 Meeks, J.C., and Elhai, J. (2002) Regulation of cellular differentiation in filamentous cyanobacteria
587 in free-living and plant-associated symbiotic growth states. *Microbiol Mol Biol Rev* **66**: 94-121; table
588 of contents.

589 Pascault, N., Rue, O., Loux, V., Pedron, J., Martin, V., Tambosco, J. et al. (2021) Insights into the
590 cyanosphere: capturing the respective metabolisms of cyanobacteria and chemotrophic bacteria in
591 natural conditions? *Environ Microbiol Rep* **13**: 364-374.

592 Pelroy, R.A., Rippka, R., and Stanier, R.Y. (1972) Metabolism of glucose by unicellular blue-green
593 algae. *Arch Mikrobiol* **87**: 303-322.

594 Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P. et al. (2013) The SILVA
595 ribosomal RNA gene database project: improved data processing and web-based tools. *Nucleic Acids
596 Res* **41**: D590-596.

597 Rai, A.N., Soderback, E., and Bergman, B. (2000) Cyanobacterium-plant symbioses. *New Phytologist*
598 **147**: 449-481.

599 Risser, D.D. (2023) Hormogonium development and motility in filamentous cyanobacteria. *Appl
600 Environ Microbiol* **89**: e0039223.

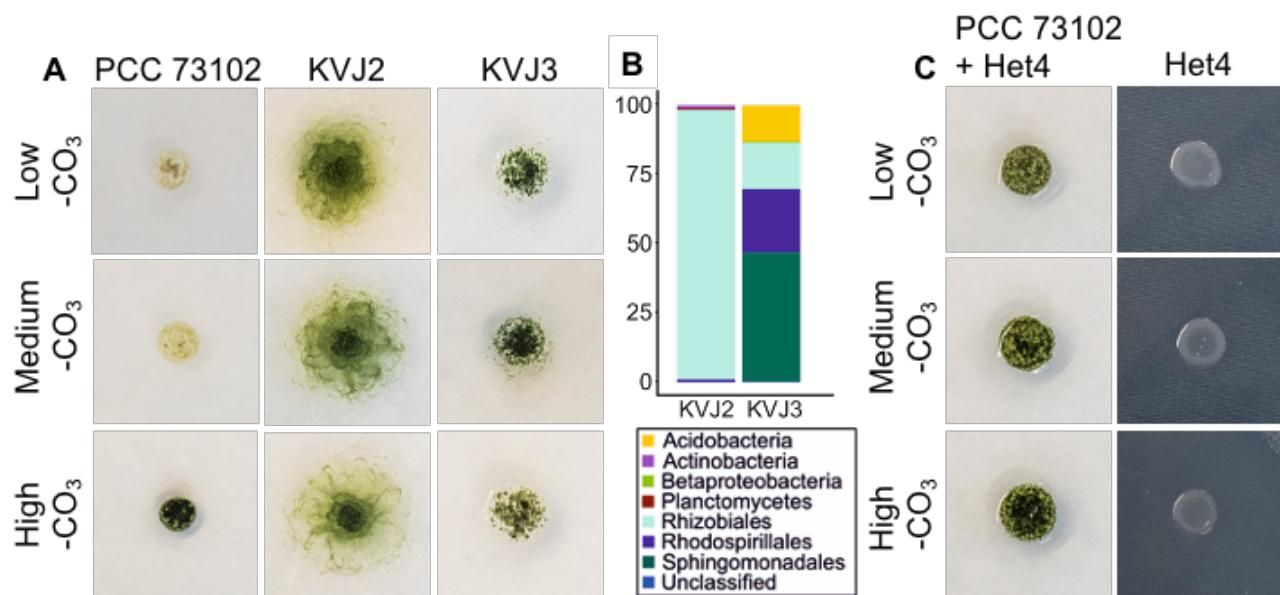
601 Rousk, K., Jones, D.L., and Deluca, T.H. (2013) Moss-cyanobacteria associations as biogenic sources
602 of nitrogen in boreal forest ecosystems. *Front Microbiol* **4**: 150.

603 Russo, D.A., Oliynyk, D., Pohnert, G., Meyer, F., and Zedler, J.A.Z. (2024) EXCERTE enables deep
604 proteomics of the microbial extracellular environment. *BioRxiv* doi: 10.1101/2024.03.01.582910

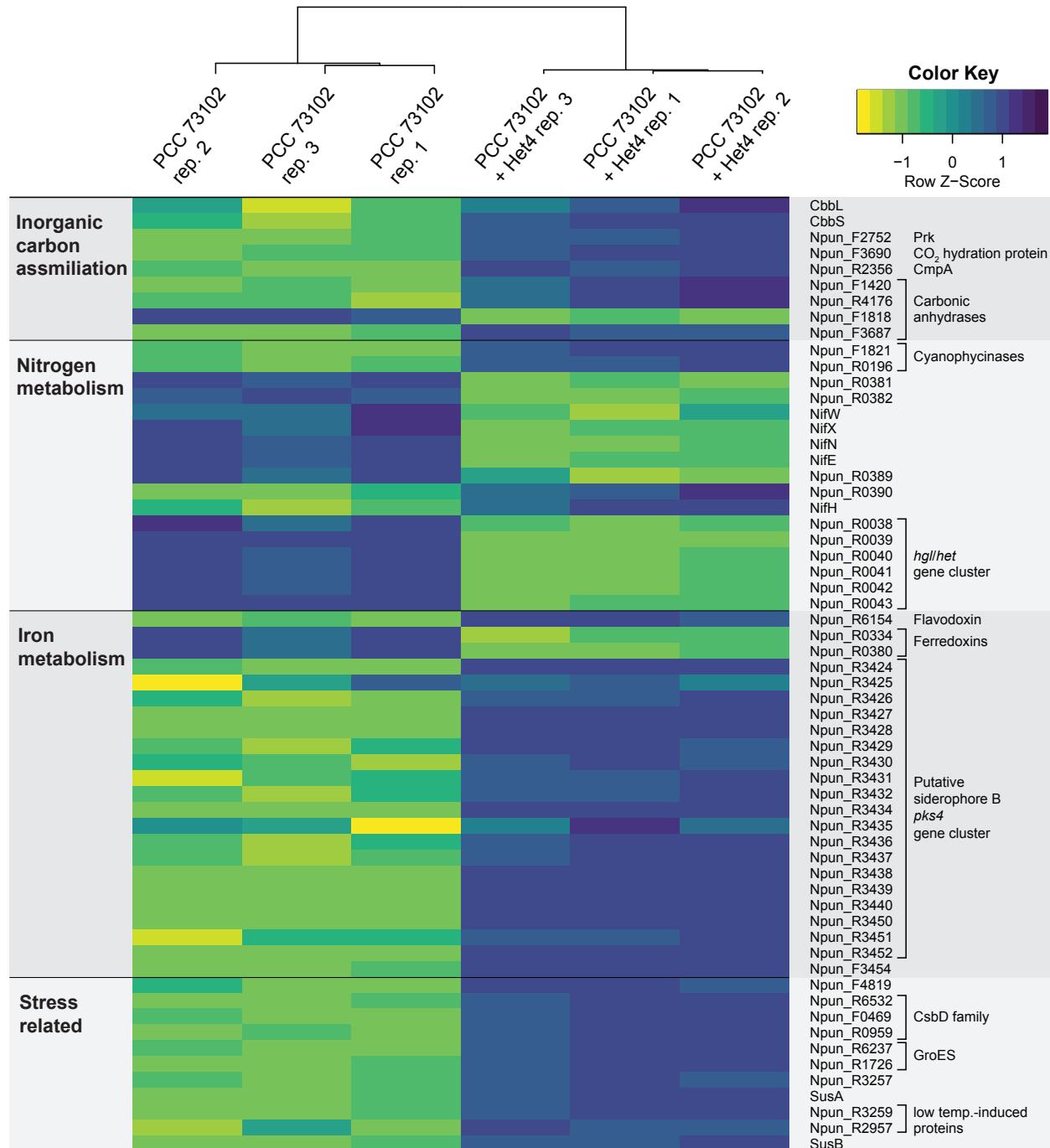
605 Sandmann, G., Peleato, M.L., Fillat, M.F., Lazaro, M.C., and Gomez-Moreno, C. (1990)
606 Consequences of the iron-dependent formation of ferredoxin and flavodoxin on photosynthesis and
607 nitrogen fixation on *Anabaena* strains. *Photosynth Res* **26**: 119-125.

608 Sandrini, G., Matthijs, H.C., Verspagen, J.M., Muyzer, G., and Huisman, J. (2014) Genetic diversity
609 of inorganic carbon uptake systems causes variation in CO₂ response of the cyanobacterium
610 *Microcystis*. *ISME J* **8**: 589-600.

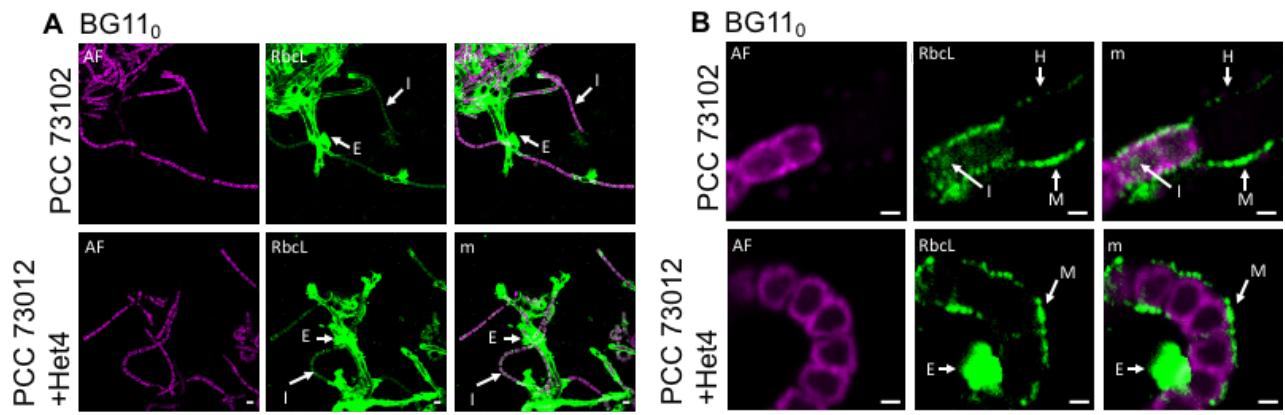
611 Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B. et al. (2009)
612 Introducing mothur: open-source, platform-independent, community-supported software for
613 describing and comparing microbial communities. *Appl Environ Microbiol* **75**: 7537-7541.

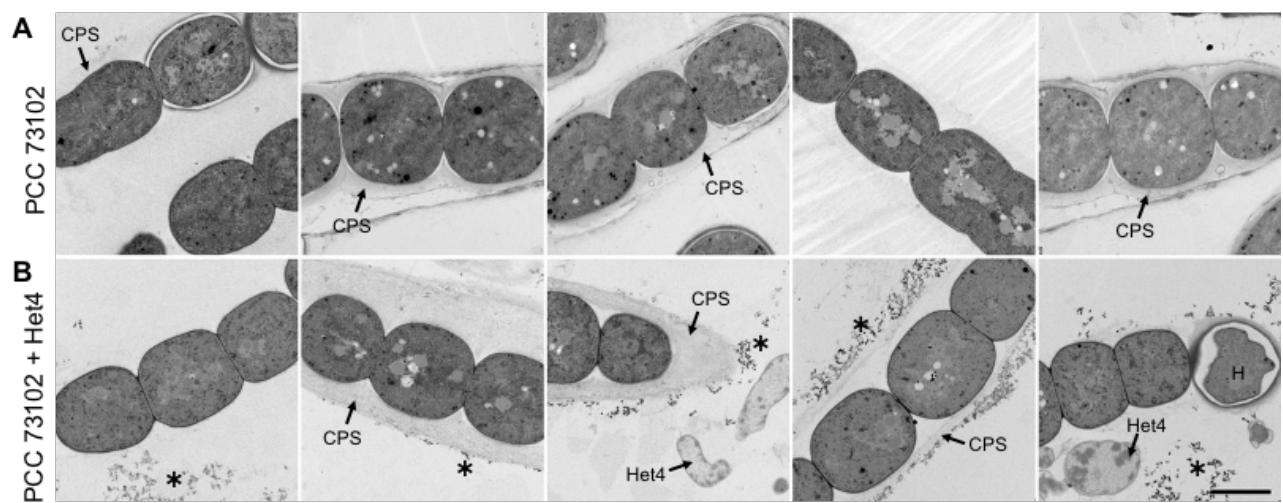

614 Seymour, J.R., Amin, S.A., Raina, J.B., and Stocker, R. (2017) Zooming in on the phycosphere: the
615 ecological interface for phytoplankton-bacteria relationships. *Nat Microbiol* **2**: 17065.

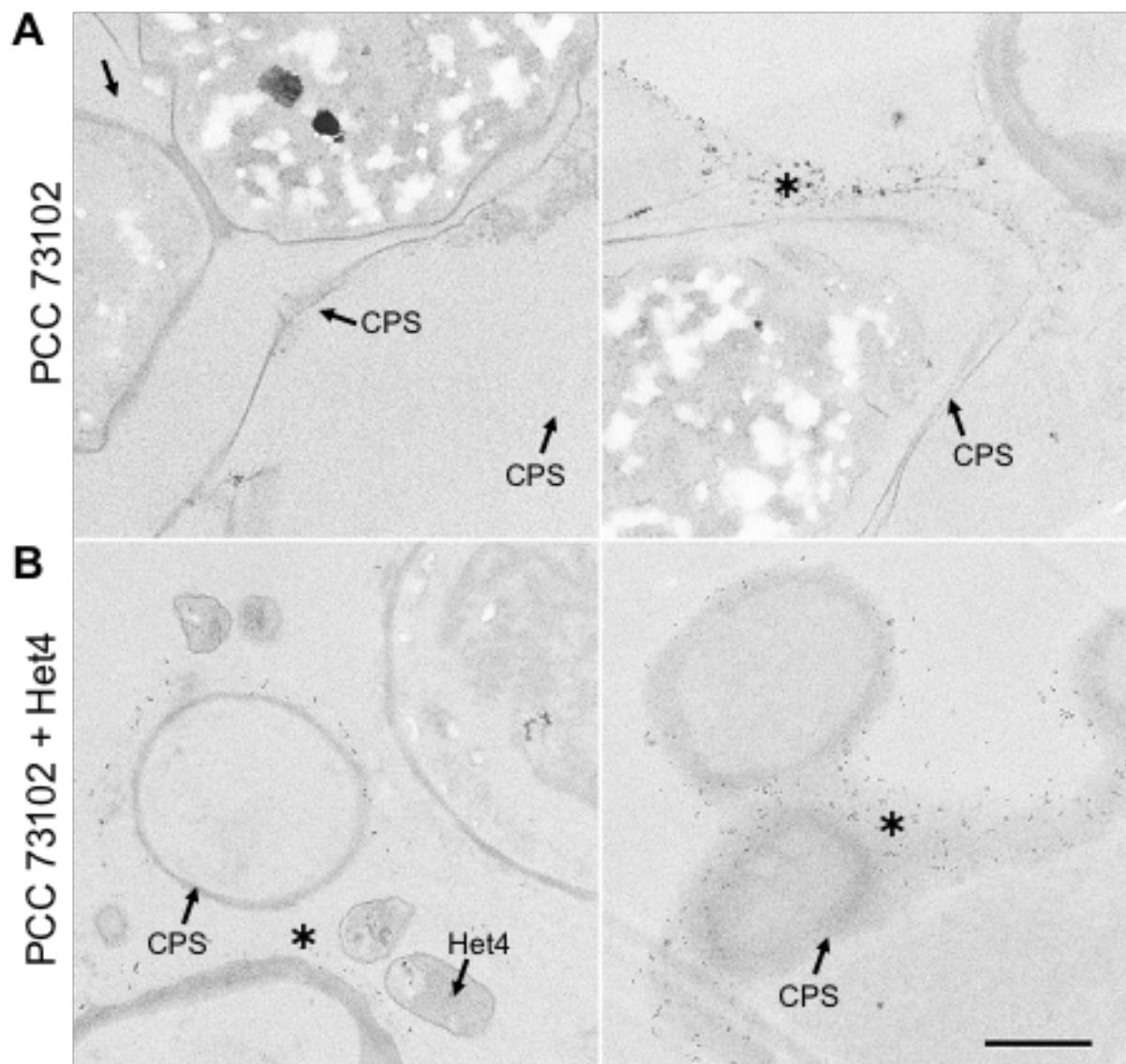
616 Shibata, M., Ohkawa, H., Kaneko, T., Fukuzawa, H., Tabata, S., Kaplan, A., and Ogawa, T. (2001)
617 Distinct constitutive and low-CO₂-induced CO₂ uptake systems in cyanobacteria: genes involved and
618 their phylogenetic relationship with homologous genes in other organisms. *Proc Natl Acad Sci USA*
619 **98**: 11789-11794.


620 So, A.K.C., and Espie, G.S. (2005) Cyanobacterial carbonic anhydrases. *Canad J Bot* **83**: 721-734.

621 Tamura, K., Stecher, G., and Kumar, S. (2021) MEGA11: Molecular evolutionary genetics analysis
622 version 11. *Mol Biol Evol* **38**: 3022-3027.


623 Tatusova, T., DiCuccio, M., Badretdin, A., Chetvernin, V., Nawrocki, E.P., Zaslavsky, L. et al. (2016)
624 NCBI prokaryotic genome annotation pipeline. *Nucleic Acids Res* **44**: 6614-6624.
625 van Gestel, J., Vlamakis, H., and Kolter, R. (2015) Division of labor in biofilms: the ecology of cell
626 differentiation. *Microbiol Spectr* **3**: MB-0002-2014.
627 Walker, B.J., Abeel, T., Shea, T., Priest, M., Abouelliel, A., Sakthikumar, S. et al. (2014) Pilon: an
628 integrated tool for comprehensive microbial variant detection and genome assembly improvement.
629 *PLoS One* **9**: e112963.
630 Warshan, D., Liaimer, A., Pederson, E., Kim, S.Y., Shapiro, N., Woyke, T. et al. (2018) Genomic
631 changes associated with the evolutionary transitions of *Nostoc* to a plant symbiont. *Mol Biol Evol* **35**:
632 1160-1175.
633 Warshan, D., Espinoza, J.L., Stuart, R.K., Richter, R.A., Kim, S.Y., Shapiro, N. et al. (2017)
634 Feathermoss and epiphytic *Nostoc* cooperate differently: expanding the spectrum of plant-
635 cyanobacteria symbiosis. *ISME J* **11**: 2821-2833.
636 Wilhelm, S.W., Bullerjahn, G.S., and McKay, R.M.L. (2020) The complicated and confusing ecology
637 of *Microcystis* blooms. *mBio* **11**.
638 Wood, D.W., Setubal, J.C., Kaul, R., Monks, D.E., Kitajima, J.P., Okura, V.K. et al. (2001) The
639 genome of the natural genetic engineer *Agrobacterium tumefaciens* C58. *Science* **294**: 2317-2323.
640 Yu, H.F., Jia, S.R., and Dai, Y.J. (2009) Growth characteristics of the cyanobacterium
641 in photoautotrophic, mixotrophic and heterotrophic cultivation. *J Appl Phycol* **21**: 127-133.
642 Yue, L.F., Lv, H.X., Zhen, J., Jiang, S.P., Jia, S.R., Shen, S.G. et al. (2016) Bacterial Species and
643 Biochemical characteristic investigations of concentrates during its storage. *J Microbiol Biotechnol*
644 **26**: 648-658.
645
646


Figure 1


Figure 2

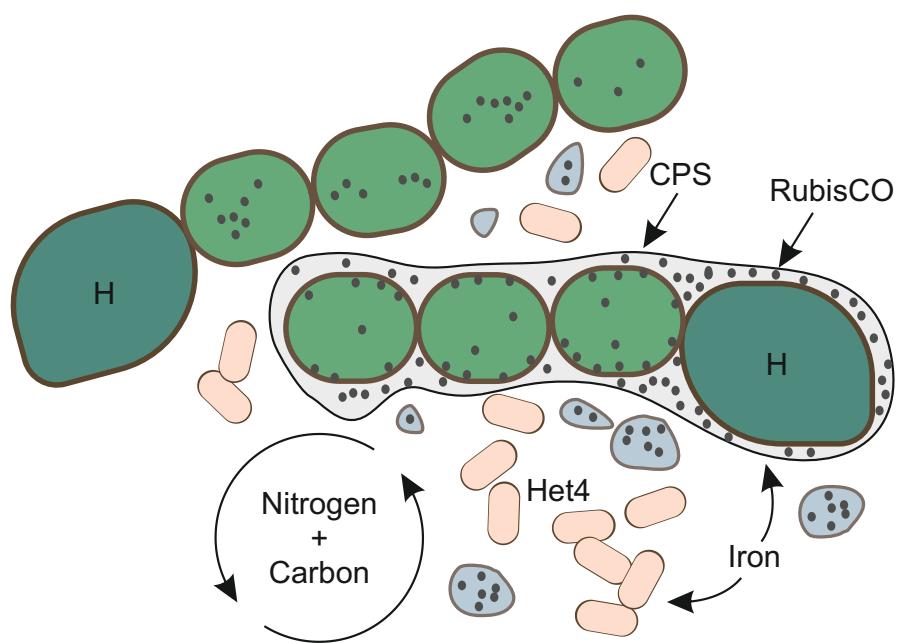

Figure 3

Figure 4

Figure 5

Figure 6