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Abstract

Mutations in the kinase and juxtamembrane domains of the MET Receptor Tyrosine Kinase are
responsible for oncogenesis in various cancers and can drive resistance to MET-directed treatments.
Determining the most effective inhibitor for each mutational profile is a major challenge for MET-driven
cancer treatment in precision medicine. Here, we used a deep mutational scan (DMS) of ~5,764 MET
kinase domain variants to profile the growth of each mutation against a panel of 11 inhibitors that are
reported to target the MET kinase domain. We validate previously identified resistance mutations, pinpoint
common resistance sites across type |, type Il, and type | % inhibitors, unveil unique resistance and
sensitizing mutations for each inhibitor, and verify non-cross-resistant sensitivities for type | and type Il
inhibitor pairs. We augment a protein language model with biophysical and chemical features to improve
the predictive performance for inhibitor-treated datasets. Together, our study demonstrates a pooled
experimental pipeline for identifying resistance mutations, provides a reference dictionary for mutations that
are sensitized to specific therapies, and offers insights for future drug development.

Introduction
Receptor Tyrosine Kinases (RTKs) are critical signaling molecules that activate and regulate cellular

pathways. Disruption of typical RTK regulatory mechanisms through point mutations, gene amplification,
protein fusions, or autocrine loops can drive the development, maintenance, and spread of cancers. Small
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molecule inhibitors are designed to disrupt aberrant signaling cascades by selectively targeting the kinase
domain, with tyrosine kinase inhibitors (TKIs) like imatinib showing durable treatment outcomes (Cohen et
al., 2021; Attwood et al., 2021). Inhibitors are generally designed against either a wild-type kinase or a
specific mutational profile, yet acquired mutations can alter sensitivity to different inhibitors and undermine
efficacy. The most extreme case of this is resistance, which emerges in the treatment of many cancers by
TKI selective pressure (Cohen et al., 2021; Attwood et al., 2021). These mutations may act by altering
kinase stability, expression, conformation, or activity of the target kinase. Although several recurrent
mutations at inhibitor-interacting positions have predictable resistance, specific and rare resistance
mutations can be associated with the interactions or conformations unique to certain inhibitors.

An attractive strategy to counter resistance is optimizing the interactions that differ between inhibitors.
Small-molecule kinase inhibitors fall into four distinct groups, characterized by their binding modality to the
ATP pocket and conformational preferences (Arter et al., 2022; Attwood et al., 2021; Zuccotto et al.,
2009). Among these groups, three are ATP-competitive: type |, type Il, and type 1¥2 (Figure 1A-C). Type |
inhibitors occupy the adenosine binding pocket, form hydrogen bonds with "hinge" region residues, and
favor an active conformation. Type Il inhibitors also occupy the adenosine pocket but extend into an
opening in the R-spine that is accessible in an inactive conformation (Arter et al., 2022) (Figure 1B). Type
I%2 inhibitors combine features from both type | and type Il inhibitors, engaging with both the adenosine
pocket and the R-spine pocket (Arter et al., 2022) (Figure 1B). Finally, type Il inhibitors are allosteric,
non-ATP competitive inhibitors (Arter et al., 2022) (Figure 1B). Given the chemical interaction differences
and conformational preferences among TKI groups for distinct kinase states, a general approach to
combating resistance is sequential treatment of type | and Il inhibitors (Recondo et al., 2018). However,
without understanding the potential sensitivity of an acquired resistance mutation to the subsequent
inhibitor, the efficacy of such strategies is not guaranteed.

The problem of which inhibitor to use and in what order is exemplified by the choice of inhibitors targeting
MET kinase (Recondo et al., 2020; Fernandes et al., 2021). MET is an RTK and proto-oncogene that has
been implicated in the pathogenesis of gastric, renal, colorectal, and lung cancers (Frampton et al., 2015;
Duplaquet et al., 2018; Wood et al., 2021; Lu et al., 2017). Molecular profiling and next-generation
sequencing of tumor samples has provided insight on cancer-associated MET variants (Frampton et al.,
2015; Bahcall et al., 2022). Clinical reports following post-treatment outcomes have documented recurrent
resistance mutations at positions such as D1228, Y1230, G1163, L1195 for MET (Fernandes et al., 2021;
Lu et al., 2017; Recondo et al., 2020). The challenge of acquired resistance following MET inhibitor
therapy has been approached with strategies including sequential treatment of type | and type Il TKis
(Recondo et al., 2020; Bahcall et al., 2016), and combination therapy with type | and type Il TKIs
(Bahcall et al., 2022; Fernandes et al., 2021; Smyth et al., 2022). However, without extensive
documentation of the behavior of resistance and sensitizing mutations in MET towards specific TKIs, there
remains a barrier towards leveraging inhibitors for specific mutational responses, optimizing inhibitor
pairings, and informing rational drug design. Thousands of compounds have been screened against the
MET kinase domain, and while several have undergone clinical trials, currently four MET inhibitors have
received FDA approval: crizotinib, cabozantinib, tepotinib, and capmatinib (Santarpia et al., 2021; Wang
and Lu, 2023). Nevertheless, the emergence of resistance not only limits the efficacy of these drugs but
also poses challenges for second-line therapeutic strategies, particularly in the context of rare and novel
mutations.
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Previously, we used Deep Mutational Scanning (DMS), a pooled cellular selection experiment, to massively
screen a library of nearly all possible MET kinase domain mutations. The juxtamembrane domain is
encoded by Exon 14 in MET, serves an incompletely understood negative regulatory function in the kinase
(Ma et al., 2003) and is recurrently excluded in cancer by somatically encoded exon skipping mutations. By
testing this library in the context of a wild-type intracellular domain and the recurrent cancer exon 14

skipped variant (METAEx14) (Figure 1E), we identified conserved regulatory motifs, interactions involving
the juxtamembrane and aC-helix, a critical 35 motif, clinically documented cancer mutations, and classified

variants of unknown significance (Estevam et al., 2024). Understanding how these variants respond to

specific inhibitors can inform therapeutic strategies, with precedent in inhibitor-based DMS studies across
kinases such as ERK, CDK4/6, Src, EGFR, and others (Brenan et al., 2016; Persky et al., 2020;
Chakraborty et al., 2023; An et al., 2023).

Here, we explore the landscape of TKI resistance of the MET kinase domain against a panel of 11
inhibitors, utilizing our previously established platform (Estevam et al., 2024). By profiling a near-
comprehensive library of kinase domain variants in the MET and METAEx14 intracellular domain, we
captured a diverse range of effects based on inhibitor chemistry and ‘type' classifications (Figure 1). Within
our screen, mutations that confer resistance and offer differential sensitivities across inhibitors were
identified, which can be leveraged in sequential or combination therapy. We use Rosace, a Bayesian
fitness scoring framework, to reduce false discovery rates in mutational scoring and allow for post-
processing normalization of inhibitor treatments (Rao et al., 2024). With our dataset, we have analyzed
differential sensitivities to inhibitor pairs and provided a platform for assessing inhibitor efficacy based on
mutational sensitivity and likelihood. Lastly, we augment a protein language model (Rives et al., 2021;
Brandes et al., 2023; Chen and Guestrin, 2016) with biophysical and chemical features to improve
predictions for MET inhibitor datasets, and in the future more effectively learn and predict mutational fithess
towards novel inhibitors.


https://doi.org/10.1101/2024.07.16.603579
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.16.603579; this version posted December 5, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

N-lobe

AN\

>

Y e

available under aCC-BY 4.0 International license.

Ta

3

C-lobe

C
1a)

Crizotininib
(IC5, 21.9nI)

£

Glumetinib Y Capmatinib
(IC5; 31.3nM) (ICs; 6.70nM)
& —?" Ly i
S P .
; LN AMG-458
Ib) Savolitinib NVP-BVU972 ‘\\
{ICs; 1.51nM) (ICs, 45.1nM) N

W y= Z
— . ; “‘w/“/ =
<) _ ] 7
L N

Cabozantinib
(ICs 71.0nM)

Merestinib
(IC5, 47.3nM)

0 Q

1)

Glesatinib [analog]
(ICs; 324nM)

o S

AMG-458

1
| /2) (IC5 534nM)

Fold Change

0.0
0.0001

V
1

0.01 01
[Inhibitor] (uM)

0.001

Tepotinib
(ICs, 1.74nM)

:
—{: )-,:% t‘*
a

|||) Tivantinib

N

A

Y

[

=

FL-MET FL-METAEx14

¢

! Exon14 JM2  Resistance mut.
JM2 Q

(IC50 2.55uM) D1228N/H/S/IAY
Y1230H/SINIC
G1163R
Exon 14 L1195V/F
skipping F12001
point H1094Y
mutations
F Transduce
=== Crizotinib * retrovirus library
=== Tepolinib TPR-MET into Ba/F3 cells
- variants —>»>
Capmatinib

10

=== Savolitinib

== Glumetinib
NVP-BVU972

== Cabozantinib

®

TPR-METAEx14

%*
—>»

== Merestinib variants
Glesatinib
= AMG-458 Map fitness scores
Tivantinib for each inhibitor
MET METAEX14 -
[}
= e e !
100

TPR-MET fusion
variant library

cell membrane
cytoplasm

TPR-MET
TPR-METAEx14

il
G 60

Inhibitor selection

kinase domain
mutagenesis

>99% 5,764 aa
substitutions

at IC5,
—> Collect
IL-3 time points,
withdrawal x3 bio reps

-~ ¢®

NGS & score variants

Resistant

< Sensitive

Time point

Sensitive 1 Resistant
i

Variant
Frequency

Fitness score


https://doi.org/10.1101/2024.07.16.603579
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.16.603579; this version posted December 5, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Figure 1. MET kinase inhibitor types and resistance mutations screened against a nearly
comprehensive library of kinase domain substitutions. (A) Crystal structure of the ATP-bound MET
kinase domain (3DKC) overlaid with type la (crizotinib, 2WGJ), type Ib (savolitinib, 6SDE), type Il
(merestinib, 4EEV), type I¥2 (AMG-458, 5T3Q), and type Il inhibitors (tivantinib, 3RHK). (B) Pocket view of
ATP and each inhibitor type bound to the active site of the MET kinase domain with the respective inhibitor
and crystal structures from panel A. (C) 2D chemical structures of each inhibitor screened against the site
saturation mutagenesis library of the MET kinase domain, with each experimentally determined ICsq values
displayed for Ba/F3 cells stably expressing the wild-type MET ICD in a TPR-fusion background. (D) Dose-
response curves for each inhibitor against the wild-type MET intracellular domain expressed in a TPR-
fusion in the Ba/F3 cell line. (E) Schematics of the full-length and exon 14 skipped MET receptor alongside
the TPR-fusion constructs with the full-length and exon 14 skipped intracellular domain, displaying four
mechanisms of oncogenic activity: point mutations, exon 14 skipping, constitutive activity through domain
fusions, and inhibitor resistance mutations. (F) Experimental workflow for defining the mutational landscape
of the wild-type TPR-MET and exon 14 skipped TPR-METAEx14 intracellular domain against 11 ATP-
competitive inhibitors in Ba/F3, interleukin-3 (IL-3) withdrawn pooled competition assay.

Results

Measuring the mutational fitness of 5,764 MET kinase domain variants against ATP-
competitive inhibitors

To evaluate the response of MET mutations to different inhibitors, we selected six type | inhibitors
(crizotinib, capmatinib, tepotinib, glumetinib, savolitinib, and NVP-BVU972), three type Il inhibitors
(cabozantinib, glesatinib analog, merestinib), and a proposed type Il inhibitor, tivantinib (Figure 1C). Type
I MET inhibitors leverage pi-stacking interactions with Y1230 and salt-bridge formation between D1228 and
K1110, and are further classified as type la or Ib based on whether they interact with solvent front residue
G1163 (Cui 2014, Fujino et al., 2019; Wang et al., 2023) (Figure 1C). Here we specifically define type la
inhibitors as having a solvent-front interaction (Cui 2014), which structurally classifies tepotinib and
capmatinib as type la based on our analysis of experimental structures and inhibitor docked models
(Figure 1A-C; Figure 1 - figure supplement 1), despite classification as type Ib in other studies (Brazel et
al., 2022; Fujino et al., 2022; Recondo et al., 2020).

As in our previous work, we employed the Ba/F3 cell line as our selection system due to its undetectable
expression of endogenous RTKs and addiction to exogenous interleukin-3 (IL-3) (Estevam et al., 2024).
These properties allow for positive selection based on ectopically expressed kinase activity and
proliferation in the absence of IL-3 (Daley and Baltimore, 1988; Warmuth et al., 2007; Koga et al.,
2022). We used a TPR-MET fusion to generate IL-3 independent constitutive activity (Estevam et al.,
2024). While this system affords cytoplasmic expression, constitutive oligomerization, and HGF-
independent activation, features like membrane-proximal effects are lost (Cooper et al., 1984; Park et al.,
1986; Peschard et al., 2001; Rodrigues and Park, 1993; Vigna et al., 1999; Mak et al., 2007; Pal et al.,
2017; Lu et al., 2017; Fujino et al., 2019). The constitutive activity of TPR-MET and the reliance of Ba/F3
cells on that activity render this selection system quite sensitive for determining reduction in growth from
small molecule inhibition.
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We generated dose response curves for each inhibitor against wild-type TPR-MET (wild-type intracellular
domain, including exon 14) and TPR-METAEx14 (exon 14 skipped intracellular domain) constructs, stably
expressed in Ba/F3 cells to determine ICsq values for our system (Figure 1D; Figure 1 - figure
supplement 1). We used our previously published library harboring >99% of all possible 5,764 kinase
domain (1059-1345aa) mutations in a TPR-fusion background carrying either a wild-type MET or exon 14
skipped intracellular domain (Estevam et al., 2024) (Figure 1E) . Time points were selected every two cell
doublings over the course of four time points, and cells were split and maintained in the absence of IL-3
and presence of drug at ICsy for each inhibitor, including a DMSO control. All samples, across all time
points and replicates, were prepared for next-generation sequencing (NGS) in parallel, and sequenced on
the same lllumina NovaSeq 6000 flow cell to identify variant frequencies (Figure 1F). We then calculated
variant fitness scores using Rosace (Rao et al., 2024) (Figure 1F; Figure 1 - figure supplement 1-4). We
performed parallel analysis of the TPR-MET and TPR-METAEx14 screens; however, we focus our analysis
below on TPR-MET with the parallel and largely consistent analyses of TPR-METAEx14 available in the
supplement.
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Figure 2. Mutational landscape of the MET kinase domain under 11 ATP-competitive inhibitor
selection. (A) Distributions of all variants (wild-type synonymous, early stop, and missense) for each
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condition in the wild-type TPR-MET kinase domain, scored with Rosace and normalized to the growth rate
of the DMSO control population. (B) Correlation plots for all mutational fithess scores for each drug against
DMSO, fitted with a linear regression and Pearson’s R value displayed. (C) Heatmap showing the
Pearson’s R correlation for each condition against each other, annotated by condition and inhibitor type.
Correlations are colored according to a scale bar from gray to blue (low to high correlation). (D) Crystal
structure of the tivantinib-bound MET kinase domain (PDB 3RHK) overlaid with the ATP-bound kinase
domain (PDB 3DKC), with tivantinib-stabilizing residues and overlapping density of tivantinib (orange) and
ATP (purple) highlighted. (E) Dose responses of crizotinib and tivantinib tested against stable Ba/F3 cells
expressing the wild-type intracellular domain of MET fused to TPR, tested in the presence and absence of
interleukin-3 (IL-3).

Defining the mutational landscape of resistant and sensitizing mutations for the MET
kinase domain.

While growth rates were experimentally controlled through equipotent dosing during selection, there was
no direct way to validate this post-processing. To generate meaningful comparisons between inhibitor
scores and conditions, in addition to performing downstream score subtractions, we normalized cell growth
rates for each inhibitor to the growth rate observed for the DMSO population. As expected, the DMSO
control population displayed a bimodal distribution with mutations exhibiting wild-type fithess centered
around 0, with a wider distribution of mutations that exhibited loss- or gain-of-function effects, as defined by
fitness scores with statistically significant lower or greater scores than wild-type, respectively (Figure 2A).
Also as expected, inhibitor-treated populations displayed distributions with a loss-of-function peak,
representative of mutations that are sensitive to the inhibitor. Unlike DMSO, inhibitor populations were
right-skewed, showing greater enrichment of gain-of-function scores at the positive tail of distributions
(Figure 2A). These population differences were exemplified by the low correlation between each inhibitor
and DMSO, with capmatinib showing the greatest difference from DMSO with a Pearson’s correlation of
0.45, and tivantinib standing as an outlier with a Pearson’s correlation of 0.93 (Figure 2B).

In comparing all conditions to each other, we were able to further capture differences between and within
inhibitor types. Type Il inhibitors displayed the greatest similarities to one another, with merestinib and the
glesatinib analog having the highest correlation (r = 0.93) and cabozantinib and glesatinib analog showing
the lowest (r = 0.87) (Figure 2C). While type | inhibitors were also highly correlated, capmatinib stood out
as an outlier, displaying the lowest correlations potentially due to difficulty in experimental overdosing due
to its greater potency (Bahcall et al., 2022; Fujino et al., 2019) (Figure 2C). While there was only one
type 1%z inhibitor, AMG-458, it displayed higher similarity to type Il inhibitors than to type |, likely due to
similar type Il back pocket interactions with the kinase R-spine (Figure 1B; Figure 2C). Nevertheless,
AMG-458 was most distinct from cabozantinib (r = 0.83) and type | inhibitors tepotinib (r = 0.79) and
savolitinib (r = 0.73) (Figure 2C). Between type | and type Il groups, with the exception of capmatinib,
tepotinib and savolitinib showed the lowest correlation with merestinib and glesatinib analog (Figure 2C).

The strong correlation of tivantinib with the DMSO control (r = 0.93) and low correlation with all other
inhibitors suggested a MET-independent mode of action. Until recently (Michaelides et al, 2023), tivantinib
was considered the only type 1l MET-inhibitor and showed promising early clinical trial results (Eathiraj et
al., 2011; Wang et al., 2022). In vitro assays on the purified MET kinase domain have shown that tivantinib
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has the potential to hinder catalytic activity (Munshi et al., 2010) and structural studies revealed that it
selectively targets an inactive DFG-motif conformation, with tivantinib stabilizing residues (F1089, R1227)
blocking ATP binding (Eathiraj et al., 2011) (Figure 2D). Yet in contradiction, comparative MET-dependent
and MET-independent cell-based studies on tivantinib have also shown MET agnostic anti-tumor activity,
posing that tivantinio may have an alternative inhibitory mechanism than a MET-selective one (Michieli
and Di Nicolantonio, 2013; Basilico et al., 2013; Katayama et al., 2013; Fujino et al., 2019).

Therefore, to test the hypothesis that tivantinib is not MET-selective in our system, we compared the dose
response of tivantinib and crizotinib in the presence and absence of IL-3 for wild-type TPR-MET, stably
expressed in Ba/F3 cells (Figure 2E). As expected, crizotinib only displayed an inhibitory effect under IL-3
withdrawal, highlighting a MET-dependent mode of action. In contrast, tivantinib displayed equivalent
inhibition regardless of IL-3, reinforcing that tivantinib has cytotoxicity effects unrelated to MET inhibition
(Figure 2E) and underscores the sensitivity of the DMS in identifying direct protein-drug effects.

Crizotinib-MET kinase domain resistance profiles exemplify the information accessible
from individual inhibitor DMS

As an example of the insights that can be learned from the inhibitor DMS screens, we examined the profile
for crizotinib, one of four FDA approved inhibitors for MET and a multitarget TKI (Cui et al., 2011; Wang
and Lu, 2023; Santarpia et al., 2021). To identify mutations that show gain-of-function and loss-of-function
behaviors specific to inhibitors compared to DMSO, we subtracted DMSO from all fitness scores. (Figure
3A), with the expectation that effects related to expression or stability would be similar in both conditions,
enhancing the ability to identify drug sensitivity or resistance. Indeed, the highest frequency of gain-of-
function mutations occurred at residues mediating direct drug-protein interactions, such as D1228, Y1230,
and G1163. These sites, and many of the individual mutations, have been noted in prior reports, such as:
D1228N/H/VIY, Y1230C/H/N/S, G1163R (Fernandes et al., 2021; Yao et al., 2023; Bahcall et al., 2022;
Recondo et al., 2020; Rotow et al., 2020; Fujino et al., 2019; Lu et al., 2017; Pecci et al 2024). Beyond
these well characterized sites, regions with sensitivity occurred throughout the kinase, primarily in loop-
regions which have the greatest mutational tolerance in DMSO, but do not provide a growth advantage in
the presence of an inhibitor.

In mapping positions with resistance to the crizotinib-bound kinase domain crystal structure (PDB 2WGJ),
our DMS results further emphasize the emergence of resistance mutations at the ATP-binding site and
direct-protein drug interacting residues (Figure 3B-D). Mutations to the hinge position, Y1159, and C-spine
residues, including M1211 and V1092, introduce charge or are predicted to change the conformation of the
pocket to clash with crizotinib but not ATP (Figure 3E,F). Outside of direct drug-protein interactions,
positions 11084, T1261, Y1093, and G1242 displayed the largest resistance signals (Figure 3A-D).
Structurally, 11084 is located in B1 at the roof of the ATP-binding pocket, and a mutation to His clashes with
crizotinib’s hinge-binding and solvent-front moieties without interfering with bound-ATP (Figure 3E,F).
Y1093 is also at the roof of the ATP-binding site, residing in B2 (Figure 3B). However, its structural
influence on resistance is unobvious. In all rotameric states, the R-group of Y1093 points away from the
catalytic site and does not clash with crizotinib. We speculate that Y1093 mutations may negatively impact
crizotinib’s stability in the catalytic site compared to ATP, as ATP's triphosphate group is stabilized by the
P-loop. Therefore, comparing crizotinib to DMSO highlights both known hotspots and rarer sites like 11084
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and Y1093, which may contribute to resistance through conformational changes rather than disrupting
direct inhibitor-protein contacts. Individual inhibitor resistance landscapes also aid in identifying target
residues for novel drug design by providing insights into mutability and known resistance cases. This
enables the selection of vectors for chemical elaboration with a potential lower risk of resistance
development. Sites with mutational profiles such as R1086 and C1091, located in the common drug target
P-loop of MET, could be likely candidates for crizotinib.
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Figure 3. Novel resistance mutations identified and mapped for crizotinib. (A) Heatmap of crizotinib
fitness scores subtracted from DMSO, scaled from loss-of-function (red) to gain-of-function (blue), with the
wild-type protein sequence, secondary structure, kinase domain residue position, and mutational
substitution annotated. Wild-type synonymous substitutions are outlined in green, and uncaptured
mutations are in light yellow. (B) Resistance positions mapped onto the crizotinib-bound, MET crystal
structure (PDB 2WGJ). Positions that contain one or multiple resistance mutations are labeled and colors
are scaled according to the average score for the resistance mutations at each site. (C) 2D protein-drug
interactions between crizotinib and the MET kinase domain (PDB 2WGJ) with pocket residues and polar
and pi interactions annotated. Schematic generated through PoseEdit (Diedrich et al., 2023)
(https://proteins.plus/). (D) Condensed crizotinib heatmap displaying direct drug-protein interacting and
non-direct resistance position. Again, fithess scores are scaled from loss-of-function (red) to gain-of-
function (blue), wild-type synonymous substitutions are outlined in green, and uncaptured mutations are in
light yellow. (E) Crizotinib binding site and pocket residues displayed with resistance positions highlighted
(pink) and the wild-type residue and inhibitor interactions shown (PDB 2WGJ). (F) Resistance mutations
modeled for 11084H, V1092, Y1159R, M1211Y, and N1167 relative to ATP (PDB 3DKC).

Resistance mutations identified for type |, type I, and type | Y2 inhibitors

To assess the agreement between our DMS and previously annotated resistance mutations, we compiled a
list of reported resistance mutations from recent clinical and experimental studies (Pecci et al 2024; Yao et
al., 2023; Bahcall et al., 2022; Recondo et al., 2020; Rotow et al ., 2020; Fujino et al., 2019) (Figure
4A,B). Overall, previously discovered mutations are strongly shifted to a GOF distribution for the drugs
where resistance is reported from treatment or experiment; in contrast, the distribution is centered around
neutral for those sites for other drugs not reported in the literature (Figure 4C). However, even in cases
such as L1195V, we observe GOF DMS scores indicative of resistance to previously reported inhibitors.
Given this overall strong concordance with prior literature and clinical results, we can also provide
hypotheses to clarify the role of mutations that are observed in combination with others. For example,
H1094Y is a reported driver mutation that has been linked to resistance in METAEx14 for glesatinib with
either the secondary L1195V mutation or in isolation (Recodo et al., 2020). However, in our assay H1094Y
demonstrated slight sensitivity to gelesatinib, suggesting that either resistance is linked to the exonl4
deletion isoform, the L1195V mutation, or a cellular factor not modeled well by the BaF3 system.
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Figure 4. Comparison of previously reported resistance mutations with DMS fithess scores. (A)
Data table summarizing reported resistance mutations from clinical and experimental studies. Inhibitors
linked to reported resistance cases are listed, along with corresponding DMSO subtracted fithess scores
from the DMS. The scores are represented with a color gradient ranging from loss-of-function (red) to gain-
of-function (blue), with the reported inhibitor scores underlined. (B) Residue locations of previously reported
resistance mutations mapped on a representative crystal structure as blue spheres (2WGJ). (C)
Histograms of fitness scores from the DMS for previously annotated resistance mutations, comparing their
reported inhibitor (blue) to non-reported inhibitor scores (gray).

With this validation, we next wanted to identify the strongest potential resistance mutations. We identified
unique resistance mutations enriched at the ATP-binding site across all inhibitors, yet also noticed

discernible differences between type | and Il inhibitors, the R-spine, and aC-helix (Figure 5A-G). Mapping

inhibitor-specific positions and mutational scores, not only provides a mutation-level breakdown of inhibitor
contributions to common resistance mutations, but also demonstrates differences in structural resistance
enrichment across specific inhibitors (Figure 5A-G). To summarize this information, we next examined
trends by grouping inhibitors by type.
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Figure 5. Resistance mutations mapped onto experimental and docked kinase domain structures
for type | and type Il inhibitors. (A-F) Resistance positions and average resistance mutational score
mapped onto representative crystal structures (tepotinib, 4R1V; merestinib, 4EEV) and labeled (type |,
pink; type Il, blue). Inhibitors lacking experimental structures (capmatinib, cabozantinib, glumetinib, and
glesatinib) were docked onto a representative type | (2WGJ) and type Il (4EEV) crystal structure through
AutoDock Vina (Eberheart et al., 2021; Trott et al., 2010). (G) Heatmaps of each resistance position
within an inhibitor DMS. Fitness scores are scaled from loss-of-function (red) to gain-of-function (blue).
Wild-type synonymous substitutions are outlined in green, and mutations uncaptured by the screen are in
light yellow.

Next, we filtered resistance mutations by their score and test statistics (Figure 6 - figure supplement 1)
and collapsed the information by inhibitor type, plotting the total frequency of resistance mutations at each
position (Figure 6A). In this condensed heatmap, several common resistance positions emerged within
and across inhibitor types to provide a broad view of “hotspots.” Two positions stood out with the highest
frequency of resistance: G1163 and D1228 (Figure 6A-D). Both sites are unsurprising due to their inhibitor
interactions - G1163 is at the solvent front entrance of the active site and D1228 stabilizes an inactive
conformation of the A-loop with an inhibitor bound (Cui 2014; Recondo et al., 2020; Fernandes et al.,
2021). Located at the base of the active site, M1211 is a previously documented resistance site (Tidet et
al., 2011) and a C-spine residue (Estevam et al., 2024), which harbors a smaller number of resistance
mutations for all inhibitor types within our analysis (Figure 6A). In contrast to these universal sites, Y1230
was a hotspot for type | and | ¥ inhibitors, but not a major resistance site for type Il inhibitors (Figure 6A-
D). This specificity can be rationalized based on the role of Y1230 in stabilizing inhibitors through pi-
stacking interactions (Cui 2014). In contrast, F1200 and L1195 (Bahcall et al., 2022; Recondo et al.,
2020), are both hotspots for type Il but not type | inhibitors (Figure 6A-C). Again, this effect can be
rationalized structurally: both residues make direct contact with type Il inhibitors, but not type | inhibitors.

Across all inhibitor types, there were a total of 17 shared variants with G1163, D1228, and M1211 being
the most common (Figure 6G). The overall spatial pattern of mutations for each inhibitor type follows
general principles that are expected based on their interactions. For example, 11084 is enriched as a
resistance site for type | inhibitors, consistent with previous studies in hereditary papillary renal cell
carcinomas (Guérin et al., 2023). 11084 is located at the solvent front of the phosphate-loop (P-loop) of the
kinase N-lobe (Figure 1A), which is responsible for stabilization of the ATP phosphate groups. This region
of the kinase is leveraged for interactions with type |, but not type Il inhibitors. In contrast, L1142, an R-
spine residue, and L1140, which sits at the back of the ATP-binding pocket, are enriched for type Il inhibitor
resistance, consistent with their spatial locations (Figure 6E-F). Resistance mutations tend to cluster
around the catalytic site across all types, but the shared mutations across different inhibitor types did not
display a unifying pattern that evokes a simple rule for combining or sequencing inhibitors to counter
resistance (Figure 6H).
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Figure 6. Resistance mutations and “hotspots” identified for MET inhibitor types. (A) Collapsed
heatmap of common resistance positions along the kinase domain, with the wild-type protein sequence and
secondary structure annotated. Each tile represents a sum of counts for statistically filtered resistance
mutations across all inhibitors for type | (pink), type Il (blue), and the type %2 inhibitor AMG-458 (green),
with the scale bar reflecting counts of resistance mutations across respective inhibitor types. (B-D)
Expanded heatmap showing each resistance position and the counts for each specific resistance mutation
across all inhibitor types type | (pink), type Il (blue), and the type 1Y% inhibitor AMG-458 (green). Wild-type
sequence and variant change are annotated. (E-F) Average frequency of resistance mutations for each
mapped on to a representative type | (crizotinib, 2WGJ) and type Il (merestinib, 4EEV) crystal structure,
alongside the type 12, AMG-458 structure (5T3Q), with associated scale bars. Individual positions with high
resistance mutation frequencies are annotated on each structure, with a zoom-in of the bound inhibitor and
surrounding resistance sites. (G) Venn diagram showing mutations shared among type | (pink), type 1l (light
blue), and type 1%z (green). (H) Structurally mapped (PDB 2WGJ) resistance positions shared among type |,
I, I¥2 (blue-gray), type | and Il (purple), type | and 12 (dusty rose), type Il and 1% (teal) inhibitors.

Differential sensitivities of the MET kinase domain to type | and type Il inhibitors

Strategies aimed at preventing resistance, such as sequential or combination dosing of type | and type I
inhibitors, have been explored and offer promise in preventing resistance (Recondo et al., 2020; Bahcall
et al., 2022; Fernandes et al., 2021). However, the efficacy of these strategies is limited to the emergence
of secondary resistance mutations, and specific inhibitor pairings are further limited to case examples of
disparate effects. Using our DMS datasets, we sought to identify inhibitor pairings with the largest
divergence in cross-sensitivity. By comparing the fithess landscape of each type | inhibitor to each type Il
inhibitor, we could again assess inhibitor response likeness based on correlations (Figure 2A; Figure 7 -
figure supplement 1). Type | and type Il pairs with the highest correlations included capmatinib and
glesatinib analog (r = 0.92), suggesting a large overlapping fitness profile, in contrast to pairs with the lower
correlations, like savolitinib and merestinib (r = 0.7) (Figure 7A; Figure 7 - figure supplement 1). Overall,
cabozantinib maintained the lowest average correlation with all type | inhibitors, making it the most
divergent type Il inhibitor within our screen, and potentially offering the least overlap in resistance (Figure
7A; Figure 7 - figure supplement 1).

To narrow our characterization of cross-sensitivity, we focused on the inhibitor pair crizotinib and
cabozantinib (Figure 7B; Figure 7 - figure supplement 1). By statistically filtering mutations that are
categorized as gain-of-function in one inhibitor, but loss-of-function in the other, a set of 44 mutations were
identified as having crizotinib resistance and cabozantinib sensitivity, and 3 mutations with the opposite
profile (Figure 7B,C). Structural mapping of divergent mutations further revealed enrichment at the N-lobe
and typical protein-drug interaction sites like Y1230, G1163, and M1211 (Figure 7B, C). While these
positions have precedence for resistance, as previously noted, they are also resistance hotspots across all
inhibitor types (Figure 6A), where even mutations with differential sensitivities may be insufficient targets to
counteract the reemergence of resistance, thus limiting the interchangeability of drugs.

Understanding which mutations have resistance profiles for only type | or type Il inhibitors provides better
leverage for sequential and combination dosing. To identify such mutations across our dataset, we further
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filtered variants that met our resistance metrics and were only observed for inhibitors of the same type. In
again comparing crizotinib to cabozantinib, Y1093K was a mutation with one of the largest differences
between crizotinib and cabozantinib, having a gain-of-function profile for crizotinib and loss-of-function for
cabozantinib (Figure 7B). Interestingly, Y1093 is located in 2 of the N-lobe, at the roof of the ATP-binding
site, and does not directly engage with crizotinib. We speculate this mutation potentially contributes to
resistance by perturbing the packing of f1-82 and altering the conformation of the ATP binding site in a
manner that destabilizes crizotinib binding. When comparing the dose-response of Y1093K to the wild-type
TPR-MET kinase domain, Y1093K shows a nearly 10-fold shift in crizotinib sensitivity with no difference in
cabozantinib sensitivity (Figure 7D). In identifying mutations with the opposite profiles, resistance to
cabozantinib and sensitivity to crizotinib, L1195M displayed the greatest differential scores (Figure 7B).

L1195 is an aE-helix position with previously recorded resistance (L1195V/F), which our analysis further

supports as a type ll-only resistance hotspot (Figure 6A). Structurally, mutations like Met or Phe at 1195

clash with the fluorophenyl moiety of cabozantinib used to access and stabilize a deep, back pocket of the
kinase in an inactive conformation, unlike crizotinib which occupies the solvent front and adenosine binding
region of the ATP binding site. In comparing the dose-response of L1195M to the wild-type TPR-MET
kinase domain, we find that L1195M is refractory to all concentrations of cabozantinib tested, but still
sensitive to crizotinib (Figure 7D). Beyond a type | and type Il pairing, such cross-resistance identification
can be further applied to identify differential sensitivities within an inhibitor group (Figure 7 - figure
supplement 2), which can further expand opportunities for inhibitor-specific sensitivity in therapy and drug
design.
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Figure 7. MET kinase domain differential sensitivities revealed for type | and type Il inhibitors. (A)
Heatmap showing Pearson correlation values for all combinations of screened type | and type Il inhibitors.
Correlations were determined from DMSO subtracted fithess scores (B) Correlation plot correlation plot of
DMSO subtracted fitness scores for crizotinib and cabozantinib. Mutations with differential scores are
highlighted for type | (pink) and type Il (blue). (C) Average scores of mutations with differential sensitivities
within inhibitor pairs mapped and annotated in respective crystal structures (crizotinib, 2WGJ; cabozantinib,
docked into 4EEV). Positions that are gain-of-function for type | but loss-of-function in type Il are
highlighted in pink, whereas positions that are gain-of-function for type Il but loss-of-function in type | are
highlighted in blue. (D) Dose-response curves for crizotinib and cabozantinib in Ba/F3 cells expressing
TPR-MET (full MET intracellular domain) harboring mutations at Y1093K and L1195M. Dose-response for
each inhibitor concentration is represented as the fraction of viable cells relative to the TKI free control.

Identification of biophysical contributors to inhibitor-specific fitness landscapes using
machine learning

Machine learning models originally developed for predicting protein structure (Jumper et al., 2021; Rives
et al., 2021; Lin et al., 2023) have been adapted for predicting protein-ligand complexes (Bryant et al.,
2023), and predicting fitness values from DMS studies (Meier et al., 2021; Brandes et al., 2023; Jones et
al., 2020). In particular, protein language models have shown the ability to estimate the functional effects of
sequence variants in correlation with DMS data (Rives et al., 2021; Meier et al., 2021; Brandes et al.,
2023). We observed that ESM-1b, a protein language model (Rives et al., 2021), predicts the fitness of
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variants in the untreated/DMSO condition (correlation 0.50) much better than it does for the inhibitor treated
datasets (correlation 0.28). This difference in predictive ability is likely because the language model is
trained on sequences in the evolutionary record and fitness in the presence of inhibitors does not reflect a
pressure that has operated on evolutionary timescales.

To overcome this limitation and improve the predictive properties of the ESM approach, we sought to
augment the model with additional features that reflect the interactions between protein and inhibitors that
are not present in the evolutionary record (Chen and Guestrin, 2016). While our features can account for
some changes in MET-mutant conformation and altered inhibitor binding pose, the prediction of these
aspects can likely be improved with new methods. There are several challenges associated with this task,
including the narrow sequence space explored, high correlations between datasets, and the limited
chemical space explored by the 11 inhibitors. We used an XGBoost regressor framework and designed a
test-train-validation strategy to account for these issues (Figure 8A), exploring many features representing
conformation, stability, inhibitor-mutation distance, and inhibitor chemical information (Figure 8 - Figure
Supplement 1). To avoid overfitting, we introduced several constraints on the monotonicity and the
precision of certain features. The final model uses a subset of the features we tested and improves the
performance from 0.28 to 0.37 (Figure 8B,C). The model primarily improves the correlation by shifting the
distribution of predicted fitness values to center around drug sensitivity, reflecting the pressures that are not
accounted for by ESM-1b (Figure 8D). Nonetheless, many resistant mutations are correctly predicted by
the new model.

To examine whether the model could help interpret the mechanisms of specific mutations, we examined
several cases with notable improved predictions as the model increased in complexity (Figure 8E,F). For
some mutations, as in Y1230D, we observe a gradual improvement in prediction for each set of features,
suggesting that resistance relies on multiple factors. For other mutations, such as N1167K, we see a single
set of features driving the improvement, which suggests much more dominant driving forces. Lastly, in
other mutations, like G1290D, the models trained with different features can over or under predict the true
value, demonstrating the value of combining features together. The reliance on simple features helps
identify some of the major factors in drug resistance and sensitization such as distance to the inhibitor and
active/inactive conformation; however, improved feature engineering and coverage of both sequence and
chemical space will likely be needed to create a more interpretable model.
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Figure 8. Inhibitor-bound variant fitness predicted from a machine learning model trained on the
MET DMS dataset. (A) Model architecture outlining the information flow and inputs for model training,
validation, fitness predictions, and prediction tests. (B) Improvement in correlation between experimental
and predicted fitness for each inhibitor with usage of different kinds of features. (C) Cross-validation trends
between the baseline ESM model and the model with all features incorporated. (D) Scatter plots of
predictions versus experimental fitness scores of the baseline ESM model (top) compared to the model
with all features (bottom), with a dashed cross-graph line in red displayed. (E) Residue-level analysis of
feature significance in fithess predictions (ESM, stability, distance, conformation, all features). The Rosace
experimental score is shown as a red line. (F) Residues with improved predictions mapped on a crizotinib-
bound MET kinase domain (PDB 2WGJ). Predicted resistance mutations (dark purple) modeled relative to
the wild-type residue (pink).

Discussion

Tyrosine kinase inhibitors have revolutionized the treatment of many diseases, but the development of
resistance creates a significant challenge for long term efficacy. Many strategies, including sequential
dosing (Attwood et al., 2021; Recondo et al., 2020), are being explored to overcome resistance. Our
DMS of the MET receptor tyrosine kinase domain, performed against a panel of varying inhibitors offers a
framework for experimentally identifying resistance and sensitizing mutations in an activated kinase context
for different inhibitors. By massively screening the effect of a nearly comprehensive library of amino acid
mutations in the MET kinase domain against 11 inhibitors, some generalizable patterns emerged. In
concordance with the binding mode of both type | and Il inhibitors, residues that commonly confer
resistance, or act as “hotspots,” were mapped to previously reported sites like D1228, Y1230, M1211,
G1163 (Figure 4), and novel sites like 11084, L1140, L1142, T1261, and L1272 (Figure 5). Annotation of
hotspots also offers an opportunity to inform inhibitor selection based on likelihood of cross-inhibitor
resistance (Figure 6). For instance, 11084 is a hotspot for type | and Il inhibitors within our study that
displayed wild-type sensitivity to the type 1% inhibitor screened (Figure 6). Understanding positions with
high resistance frequencies that are distal from the ATP-binding site also offers a design opportunity for
allosteric inhibitors that can target cancer-associated and resistance-associated regions within the N- and
C-lobe (Mingione et al., 2023).

Nevertheless, similar to its ability in identifying resistance for inhibitors, our parallel DMS also demonstrated
the ability to detect non-selective drugs, with the example of tivantinib. Despite being a proposed MET-
selective inhibitor, like several others, tivantinib failed clinical trials, and follow-up studies suggested
cytotoxicity and off-target binding as the culprit (Michieli and Di Nicolantonio, 2013; Basilico et al., 2013;
Katayama et al., 2013; Fujino et al., 2019) - a scenario that is not uncommon to antitumor drugs that do

not advance to the clinic (Lin et al., 2019). To this effect, the ability of DMS to differentiate between
selective compounds provides a unique prospect for developing inverse structure—activity relationships,

whereby varying protein sequence both inhibitor specificity and resistance can be learned.

Reported cancer mutations in databases such as OncoKB or cBioPortal are useful for patient data and
cancer type reporting (Suehnholz et al., 2024; Chakravarty et al., 2017; Cerami et al., 2012). A recent
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analysis of these databases aided in annotation of mutations observed within patient populations (Pecci et
al., 2024). This study used pre-clinical models to examine a subset of these mutations and identified
sensitivities to multiple inhibitors and confirmed clinical responses of two rare driver mutations (H1094Y
and F1200I) to elzovantinib, a type Ib inhibitor (Pecci et al., 2024). Their results are consistent with the
predictions of our DMS, illustrating the potential value of having a broad dictionary of inhibitor sensitivity
and resistance patterns.

Finally, a significant challenge of inhibitor screening is the considerable time and cost involved, even at
high-throughput. While docking has accelerated the prioritization of compounds for protein targeting and
screening in silico (Sadybekov and Katritch, 2023), prediction of drug resistance is of high interest in
informing iterative drug design. Screening for resistance in the early stages of drug design is particularly
useful for obtaining inhibitors that can be effective in the long-term by optimizing protein-inhibitor
interactions in the wildtype and functionally silent mutant context (Pisa and Kapoor, 2020). While base-
editor approaches can rapidly screen for inhibitor resistance mutations within full-length, endogenous
genes, undersampling of rare variants due to lower coverage is a significant caveat (Dorighi et al., 2024),
compared to DMS where nearly full coverage is achieved and controlled. A full landscape of mutational
effects can help to predict drug response and guide small molecule design to counteract acquired
resistance. The ability to define molecular mechanisms towards that goal will likely require more
purposefully chosen chemical inhibitors and combinatorial mutational libraries to be maximally informative.
The ideas motivating our ML-model, which combines protein language models and biophysical/chemical
features, to novel inhibitors could eventually be used to profile resistance and sensitivity for novel and
unscreened small molecules, greatly extending the scale of kinase inhibitor repositioning for second-line
therapies.

Materials and methods

Mammalian cell culturing

Ba/F3 cells (DSMZ) were maintained and passaged in 90% RPMI (Gibco), 10% HI-FBS (Gibco), 1%
penicillin/streptomycin (Gibco), and 10ng/ml IL-3 (Fisher), and incubated at 37°C with 5% CO2. Cells were
passaged at or below 1.0e6 cells/ml to avoid acquired IL-3 resistance, and regularly checked for IL-3
dependence by performing 3x PBS (Gibco) washes and outgrowth in the absence of IL-3.

Plat-E cells stably expressing retroviral envelope and packaging plasmids were originally gifted by Dr.
Wendell Lim, and maintained in 90% DMEM, HEPES (Gibco), 10% HI-FBS (Gibco), 1%

penicillin/streptomycin (Gibco), 10ug/ml blasticidin, 1ug/ml puromycin. Cells were cultured at 37°C with 5%
CO2 and maintained under blasticidin and puromycin antibiotic pressure unless being transfected.

Dose response and IC50 determination of inhibitors

Unless otherwise stated, all inhibitors used in this study were purchased from SelleckChem.
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Ba/F3 cells stably expressing TPR-MET and TPR-METAEx14 were washed with DPBS (Gibco) 3x times to
remove IL-3, puromycin, penicillin, and streptomycin. Cells were resuspended in 90% RPMI and 10% FBS,
and were seeded in the wells of a 96-well, round-bottom plate at a density of 2.5e4 cells/ml in 200ul. Cells
were incubated for 24hr to allow kinase-driven signaling. The next day, inhibitors were added to triplicate
rows of cells at a concentration range of 0 to 10uM (2-fold dilutions), and allowed to incubate for 72 hr post
TKI addition. CellTiter-Glo reagent (Promega) was mixed at a 1:1 ratio with cells to lyse and provide a
luminescence readout, which was measured on a Veritas luminometer. Cell numbers were determined
from a Ba/F3 cell and ATP standard curve generated according to the manufacturer's instructions. Dose
response curves were fitted using GraphPad Prism with the log(inhibitor) vs. response, variable slope
function. Data are presented as cell viability normalized to the fold change from the TKI free control.

MET kinase domain variant library generation, cloning, and library introduction into Ba/F3

In this study, we repurposed cell lines transduced with TPR-MET and TPR-METAEx14 kinase domain
variant libraries, previously reported in Estevam et al., 2024. All libraries were generated, transfected, and
tested in parallel.

In short, the MET kinase domain sequence used in this study spans amino acid positions 1059-1345,
which includes the full kinase domain (aa 1071-1345) and a small region of the juxtamembrane (aa 1059-
1070). The variant DNA library was synthesized by Twist Bioscience, containing one mammalian high-
usage codon per amino acid. A “fill-in” library was generated to introduce an early stop control codon every
11 amino acids evenly spaced across the sequence. In addition, mutations at positions with failed
synthesis (positions 1194 and 1278) were generated and added at equimolar concentration into the variant
library. The kinase domain variant library was introduced into two different cloning backbones, one carrying
the TPR-fusion sequence with the wild-type juxtamembrane sequence (aa 963-1058), wild-type C-terminal
tail (aa 1346-1390), and IRES-EGFP (pUC19_kozak-TPR-METAEXx14-IRES-EGFP) and the other carrying
the TPR-fusion sequence with an exon 14 skipped juxtamembrane sequence (aa 1010-1058), wild-type C-
terminal tail (aa 1346-1390), and IRES-mCherry (pUC19 kozak-TPR-MET-IRES-mCherry). The libraries
were transformed in MegaX 10 beta cells (Invitrogen), propagated in 50mL LB and Carbinacillin at 37°C to
an OD of 0.5, and then midiprepped (Zymo). Library coverage was determined by colony count of serial
dilutions from the recovery plated at varying dilutions (1:100, 1:1k, 1:10k, 1:100k, 1:1M).

The full TPR-METAEX14-IRES-EGFP and TPR-MET-IRES-mCherry variant libraries were then shuttled
into the mammalian retroviral MSCV backbone (addgene) through restriction enzyme digest with Mlul-HF
(NEB) and Mfel-HF (NEB), then ligated into the empty backbone with T4 ligase (NEB). Ligations were DNA
cleaned (Zymo), electroporated into ElectroMAX Stbl4 Competent Cells (Thermo Fisher), plated on LB-
agar bioassay plates with Carbenicillin, incubated at 37°C, then colonies were scraped into 50mL LB and
midi-prepped for transfections (Zymo).

Variant libraries were transfected into Plat-E cells for retroviral packaging using Lipofectamine3000
(Invitrogen) following the manufacturer's for a T-175 scale, and using a total of 46 ug DNA. 48 hr post-
transfection, the viral supernatant was harvested, passed through a 0.45 um sterile filter, then concentrated
with Retro-X concentrator (TakaraBio) using a 1:4 ratio of concentrator to supernatant. The concentrated
virus was titered in Ba/F3 to determine the proper volume for a transduction MOI of 0.1-0.3. The viral titer
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was calculated from the percent of fluorescent cells and viral dilution. To generate the DMS transduced cell
lines, 6 million cells were spinfected at an MOI of 0.1, in triplicate. Then infected cells were selected with
1ug/ml puromycin in 4 days, with fluorescence and cell counts tracked each day.

DMS time point selection and sample preparation

All screening conditions were performed and handled in parallel for TPR-MET and TPR-METAEx14
libraries across all independent conditions and biological replicates.

For each biological replicate, a stock of 4.0e6 cells transduced with TPR-MET and TPR-METAEX14 kinase
domain variants was thawed and expanded for 48 hrs in the presence of IL-3 and puromycin to prevent
pre-TKI selection to reach a density for screen seeding. Each batch of cells were grown to a density of 72
million cells to be split into 12 dishes (15cm) for each selection condition. Cells were first washed with
DPBS (Gibco) 3 times to remove IL-3 and antibiotics. Cells were resuspended in 90% RPMI and 10% FBS,
counted, and split across 12 dishes (15cm) at a density of 6 million cells in 30mL. A total of 6 million cells
from each replicate was harvested and pelleted at 250xg to serve as the “time point 0" pre-selection
sample (TO).

To begin selection of each replicate for each library, DMSO was added to the control plate (0.01% final)
while the appropriate IC50 concentration of inhibitor was added to each respective plate (independent pool
of cells). Three time points post TO were collected for each library replicate and inhibitor condition for a total
of 4 time points (TO, T1, T2, T3). Time points were harvested every two doublings (~72hr) across 12 days;
6 million cells were harvested for each condition and pelleted at 250xg for 5min; 2.0e5 cells/ml were split at
every time point and maintained either in DMSO or TKI at the appropriate concentration to maintain cellular
growth rates under inhibitor selection.

The gDNA of each time point sample was isolated with the TakaraBio NucleoSpin Blood QuickPure kit the
same day the cells were harvested. gDNA was eluted in 50l of elution buffer provided by the kit, using the
high concentration and high yield elution manufacturer's protocol. Immediately after gDNA was isolated,
5ug of gDNA was used for PCR amplification of the target MET KD gene to achieve the proper variant
coverage. A 150ul PCR master mix was prepared for each sample using the TakaraBio PrimeStar GXL
system according to the following recipe: 30ul 5X PrimeStar GXL buffer, 4.5ul 10uM forward primer (0.3uM
final), 4.5ul 10uM reverse primer (0.3uM final), 5ug gDNA, 12ul 20mM dNTPs (2.5mM each NTP), 6ul GXL
polymerase, nuclease free water to a final reaction volume of 150uL. The PCR master mix for each sample
was split into three PCR tubes with 50ul volumes for each condition and amplified with the following
thermocycler parameters: initial denaturation at 98°C for 30 s, followed by 24x cycles of denaturation at
98°C for 10 s, annealing at 60°C for 15 s, extension at 68°C for 14 s, and a final extension at 68°C for 1
min.

PCR samples were stored at -20°C until all time points and replicates were harvested and amplified, so as
to prepare all final samples for NGS together with the same handling and sequence them in the same pool
to prevent sequencing bias.
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Library preparation and Next-generation sequencing

After all time points were selected, harvested, and PCR amplified, the target gene amplicon was isolated
from gDNA by gel purification (Zymo), for a total of 222 samples. The entire 150ul PCR reaction for each
sample was mixed with 1X NEB Purple Loading Dye (6X stock) and run on a 0.8% agarose, 1X TBE gel, at
100 mA until there was clear ladder separation and distinct amplicon bands. The target amplicons were gel
excised and purified with the Zymo Gel DNA Recovery kit. To remove excess agarose contamination, each
sample was then further cleaned using the Zymo DNA Clean and Concentrator-5 kit and eluted in nuclease
free water. Amplicon DNA concentrations were then determined by Qubit dsDNA HS assay (Invitrogen).

Libraries were then prepared for deep sequencing using the Nextera XT DNA Library Prep kit in a 96-well
plate format (lllumina). Manufacturer’s instructions were followed for each step: tagmentation, indexing and
amplification, and clean up. Libraries were indexed using the IDT for Nextera Unique Dual Indexes Set A,B
and C (lllumina). Then, indexed libraries were quantified using the Agilent TapeStation with HS D5000
screen tape (Agilent) and reagents (Agilent). DNA concentrations were further confirmed with a Qubit
dsDNA HS assay (Invitrogen). All samples were manually normalized and pooled at 10nM (MET and
METAEXx14 in the same pool). The library was then paired-end sequenced (SP300) on two lanes of a
NovaSeq6000.

MET kinase domain variant analysis and scoring
Enrich2 Scoring

Our approach followed the one used for our initial MET DMS experiments (Estevam et al., 2024).
Sequencing files were obtained from the sequencing core as demultiplexed fastq.gz files. The reads were
first filtered for contamination and adapters using BBDuk, then the paired reads were error-corrected and
merged with BBMerge and mapped to the reference sequence using BBMap (all from BBTools) (BBMap —
Bushnell B. — sourceforge.net/projects/bbmap/). Read consequences were determined and counted
using the AnalyzeSaturationMutagenesis tool in GATK v4 (van der Auwera and O’Connor, 2020). This is
further processed by use of a script to filter out any variants that are not expected to be in the library (i.e.,
variants due to errors in sequencing, amplification, etc). The final processed count files were then analyzed
with Enrich2, using weighted least squares and normalizing to wildtype sequences (NCBI SRA BioProject
PRJINA1136906).

Rosace scoring

We used Rosace to analyze experiments of different conditions (DMSO or inhibitors) independently. In
order to make the scores more comparable and interpretable across conditions, we modified the original
Rosace software so that the output scores reflect the scale of cell doubling rate between every contiguous
time point. For example, in an ideal experiment, if the wild-type cell doubling rate is 2 and its score is 0 by
wild-type normalization, a score of -2 means that the cells are not growing (2(2-2)) and a score of 1 means
that the cells are doubling three times (increasing to 27(2+1) times the original count) between every
contiguous time point.
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The input to Rosace is the filtered count files provided by the AnalyzeSaturationMutagenesis tool described
in the above section. From here, we filtered variants by the mean count (>= 4) and the proportion of 0
count across replicates and time points (<= 10/12) and before inhibitor selection at TO (<= 2/3). Second, we
normalized the counts using wild-type normalization with log2 transformation rather than the default natural
log transformation to maintain the doubling rate scale. Finally, the normalized count is regressed on time
intervals (t = {1, 2, 3, 4}) instead of the entire time span (t = {1/4, 2/4, 3/4, 4/4}) so that the resulting score
reflects the growth rate between every contiguous time point.

Statistical filtering and resistance classification

In mathematical terms, we define the raw Rosace fitness scores of a mutation in DMSO as f,, pyso and in a
specific inhibitor condition as g, ;,,,. The scores of wildtype variants were normalized to O, and we denote
them as B pmso = 0 and B, imp = 0. Growth rate of wild-type cells under different inhibitor selections
were controlled to be identical (two doublings between every time point), so even though raw Rosace
scores are computed independently per condition, f,;,, are directly comparable between inhibitor
conditions.

Within one condition (DMSO or inhibitor), according to convention, we call variants with £, ;,, > 0 or
Bupmso >> 0 “gain-of-function” and B, ;,n < 0 or B, puso < 0 “loss-of-function”. With scores from multiple
conditions, we presented three types of filtering strategies and produced the following classification:
inhibitor-specific "resistance mutation”, inhibitor-specific "resistance position”, and "loss-of-function” and
"gain-of-function” mutation in the context of growth rate differential with and without an inhibitor.

We stress the different interpretations of “gain-of-function” and “loss-of-function” labels. Within one
condition, this label is a general term to describe whether the function of protein is perturbed by the
mutation. In contrast, the latter describes the difference with and without a given inhibitor, canceling effects
of folding, expression, and stability and targeting only the inhibitor sensitivity function of the protein.

A ‘“resistance mutation” is specific to a certain inhibitor, and it satisfies the chained inequality S, ;,, >
BB . 0s0- The first inequality specifies that the growth rate of a resistant mutation
needs to be much larger than that of the wild-type in the presence of the inhibitor, and we used the one-
sided statistical test 3, ;,, > 0.5 with the test statistics cutoff 0.1. The second inequality specifies that in
DMSO, the growth rate of that mutation is equal to or lower than that of the wild-type, ensuring that the
resistance behavior we see is specific to that inhibitor, not that it grows faster under every condition, and
thus we used the effect size cutoff 8, pys0 < 0.

A “resistance position” is a position that contains at least one “resistance mutation” to a certain inhibitor.

In the context of growth rate differential with and without an inhibitor, a mutation is “gain-of-function” if it has
a higher growth rate in the presence of the inhibitor than in its absence, which is one feature of “resistance
mutation”. It is “loss-of-function” if it grows faster in the absence of the inhibitor. To label the mutations
accordingly, we first computed a recentered Rosace score for each mutation under inhibitor selection
Yv,inh = Bv,inh — Bv,puso,» and define “gain-of-function” y,, ;,;, > 0.75 and “loss-of-function” y,, ;,, < 0 in the
differential sensitivity analysis.
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Machine learning modeling
Feature selection for the machine learning model

Interpretable features of the MET sequence variants and inhibitors were carefully chosen to be
incrementally added to a model. To extract structural features from inhibitor bound mutant complexes, we
used Umol to predict the structures of all the MET kinase variants bound to each of the inhibitors (Bryant
et al. 2023). The input to Umol is the MET kinase variant sequence, SMILES string of the inhibitor and list
of residues lining the putative binding pocket. The predicted complexes (MET kinase bound to inhibitor)
were relaxed using OpenMM (Eastman et al. 2013). To ensure the inhibitor in the predicted structures are
in the same pose as compared to reference structures, we tethered the predicted inhibitor structure to the
reference pose using a modified version of the script available in
https://github.com/Discngine/rdkit_tethered _minimization. The reference pose for crizotinib, NVP-BVU972,
Merestenib and Savolitinib were taken from the corresponding crystal structures in the PDB - 2WGJ, 3QT],
4EEV and 6SDE, while the reference pose for cabozantinib, capmantinib, glumetinib and glesatinib analog
were taken from the structures docked using Autodock Vina (see Kinase domain structural analysis).
Following this, the tethered inhibitors were redocked back to the predicted variant structures using
Autodock Vina (Eberhardt et al. 2021). We also extracted features from wild-type MET kinase structures.
The features could be broadly classified into four categories: inhibitor, stability, distance, conformation and
inhibitor binding. Apart from these, ESM Log Likelihood Ratio was used as a feature in all models that we
trained. Each of the feature categories that we explored and the rationale behind choosing them are
explained below:

(1) ESM Log Likelihood Ratio (ESM LLR)

ESM1b is an unsupervised protein language model trained on a large set of protein sequences from
UniProt that has successfully learned protein fitness patterns (Rives et al, 2021; Lin et al., 2023). By
including a mask token at a given position in the sequence, the log-likelihoods of all amino acid
substitutions can be extracted from the model. The ratio between ESM1b log-likelihoods for the mutant and
wildtype amino acids provides a score that indicates the fitness of each variant in the mutational scan, with
log-likelihood ratios having precedent as a variant predictor (Rives et al, 2021; Lin et al., 2023). The
predictions used here were obtained using esm-variants webserver
(https://huggingface.co/spaces/ntranoslab/esm_variants) (Brandes et al., 2023).

(2) Inhibitor features:
e Inhibitor molecular weight: We calculated the molecular weight of each inhibitor as a
feature.
e Ligand RMSD: We structurally superposed the predicted variant structure onto the
corresponding wildtype structure and calculated the RMSD between the predicted, re-docked
inhibitor and the reference inhibitor structure (Figure 8 - figure supplement 1J)

(3) Stability features:
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AAG and AAG: Because inhibitor types are largely distinguished based on binding
configuration, we reasoned that the difference in stability contributed by each mutation
between given binding states (e.g. Type | bound state vs. a Type Il bound state) could
contribute to the success of the predictor. To compute the stability difference, we used
structural representatives for type-1 bound (2WGJ) and type Il bound (4EEV) MET kinase and
calculated the change in free energy (AAG) of every possible mutation at every position using
ThermoMPNN (Dieckhaus et al., 2023). The difference in AAG between type-I bound and
type-ll bound structures (AAAG) for every variant was added as a feature to the XGBoost
model to capture the difference in stabilization from the mutation in the Type | or Type Il

bound state (Figure 8 - figure supplement 1C). We also used the predicted AAG score of the

corresponding inhibitor type-bound structure directly as a feature. For instance, if the input
data corresponds to a mutation to Alanine at position 1065 in the presence of glumetinib (a

type | inhibitor), the difference between AAG predicted for the 1065A variant for the type-I

bound (2WGJ) and for type Il bound (4EEV) structure is used as a feature (AAAG). The AAG

predicted for the 1065A variant for the type-l bound (2WGJ) structure is also used as a
feature.

(4) Distance features:

Residue to ATP distance: Proximity to the ATP-binding site indicates the ability of the given
residue to influence inhibitor binding given that Type | and Type Il inhibitors are ATP
competitive. To include this feature, the distance between C-alpha residue atoms and the
centroid of bound ATP in a representative structure (PDB 3DKC) was calculated and the
distance corresponding to each position was added as a feature (Figure 8 - figure
supplement 1D).

Inhibitor distance: This is the shortest distance between the inhibitor and mutated residue in
the predicted variant-inhibitor complexes. (Figure 8 - figure supplement 1G).

(5) Conformational features:

MET crystal structure RMSF: The extent of flexibility at the mutation position could be
significantly affected by the mutation, which in turn can affect the function of the variant. To
account for this, we utilized the structural information abundantly available for MET kinases in
PDB. We structurally aligned all crystal structures of human MET kinases with resolution
better than 311 (81 structures) using mTM-align (Dong et al., 2018) and calculated the Root
Mean Squared Fluctuation at every residue position using Prody (Zhang et al., 2021) (Figure
8 - figure supplement 1F).
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e Residue RMSD: We structurally superposed the predicted variant structure onto the
corresponding wildtype structure and calculated the RMSD between the mutant and wildtype
residue at the mutation position (Figure 8 - figure supplement 11)

(6) Inhibitor Binding features:

e RF-Score: To quantify the binding strength between the inhibitor and the variant protein
structure, we calculated the RF-score, which is a random forest-based approach to predict
protein-ligand binding affinity (W6jcikowski et al., 2017)

e Pocket volume, hydrophobicity score and polarity score: Changes to the binding pocket
in terms of volume and hydrophobicity due to mutations could affect the interaction and
binding between the inhibitor and variant. These effects were brought in as features into the
model by calculating the binding pocket volume, hydrophobicity score and polarity score of the
binding pocket using fpocket (Le Guilloux et al., 2009) (Figure 8 - figure supplement 1H).

This category of features are not part of the best performing model shown in Figure 8.

Apart from these categories, we calculated the difference in volume between the wildtype and mutated
residue at a given position and added it as a feature (AVolume) since residue volume changes upon

mutation could contribute to steric hindrance (Figure 8 - figure supplement 1E). This feature is also not
part of the best performing model.

This led to a total of 14 interpretable features to evaluate our models on. We trained and tested a total of
8192 models by considering all possible numbers and combinations of these features (keeping ESM LLR
as a constant feature in all models). The hyperparameter tuning, cross-validation, training and testing of
each of these models are described in detail below.

Training and Selecting the Predictive Model

An XGBoost regressor model, which is a gradient boosting method based on decision trees as the base
learner (Chen and Guestrin, 2016), was used to predict DMS fitness scores in presence of inhibitors.
Given the relatively small dataset we are using here, the models are prone to overfitting. Hence, we used
monotonic constraints on features that had a monotonic relationship with the experimental fithess scores.

ESM LLR score and AAG have a positive and negative correlation with the experimental fitness scores

respectively (Figure 8 - figure supplement 1A). Therefore, ESM LLR was constrained positively and AAG

was constrained negatively by assigning 1 and -1 respectively to the ‘monotone_constraints’ parameter in
Python XGBoost. This ensures that the monotonic relationship between the input feature and the target
value is maintained during predictions.To further prevent overfitting, we binned the values of the 12
remaining into four or five bins and assigned the median of the bin as their value. The bins were chosen
such that one or two bins would contain the majority of feature values. The distribution of these twelve
features are shown in Figure 8 - figure supplement 1B. The bins of each feature are shown as red
dashed lines on the histograms. Model performance was evaluated using Pearson’s R and mean squared
error (MSE).
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Experimental fithess scores of MET variants in the presence of DMSO and AMG458 were ignored in model
training and testing since having just one set of data for a type | %2 inhibitor and DMSO leads to learning by
simply memorizing the inhibitor type, without generalizability. The remaining dataset was split into training
and test sets to further avoid overfitting (Figure 8A). The following data points were held out for testing -
(a) all mutations in the presence of one type | (crizotinib) and one type Il (glesatinib analog) inhibitor, (b)
20% of randomly chosen positions (columns) and (c) all mutations in two randomly selected amino acids
(rows) (e.g. all mutations to Phe, Ser). After splitting the dataset into train and test sets, the train set was
used for XGBoost hyperparameter tuning and cross-validation. For tuning the hyperparameters of each of
the XGBoost models, we held out 20% of randomly sampled data points in the training set and used the
remaining 80% data for Bayesian hyperparameter optimization of the models with Optuna (Akiba et al.,
2019), with an objective to minimize the mean squared error between the fithess predictions on 20% held
out split and the corresponding experimental fithess scores. The following hyperparameters were sampled
and tuned: type of booster (booster - gbtree or dart), maximum tree depth (max_depth), number of trees
(n_estimators), learning rate (eta), minimum leaf split loss (gamma), subsample ratio of columns when
constructing each tree (colsample_bytree), L1 and L2 regularization terms (alpha and beta) and tree
growth policy (grow_policy - depthwise or lossguide). After identifying the best combination of
hyperparameters for each of the models, we performed 10-fold cross validation (with re-sampling) of the
models on the full training set. The training set consists of data points corresponding to 230 positions and
18 amino acids. We split these into 10 parts such that each part corresponds to data from 23 positions and
2 amino acids. Then, at each of 10 iterations of cross-validation, models were trained on 9 of 10 parts (207
positions and 16 amino acids) and evaluated on the 1 held out part (23 positions and 2 amino acids).
Through this protocol we ensure that we evaluate performance of the models with different subsets of
positions and amino acids. The average Pearson correlation and mean squared error of the models from
these 10 iterations were calculated and the best performing model out of 8192 models was chosen as the
one with the highest cross-validation correlation. The final XGBoost models were obtained by training on
the full training set and also used to obtain the fitness score predictions for the validation and test sets. These
predictions were used to calculate the inhibitor-wise correlations shown in Figure 8B.

Kinase domain structural analysis

Unless otherwise stated, all structural analysis was performed on PyMOL. Structural mapping incorporated
tools from the Bio3D bioinformatics package in R (Grant et al., 2006). Inhibitors that lacked an
experimental crystal structure were docked into a representative type | (2WGJ) or type Il (4EEV) structure
with AutoDock Vina (Eberhardt et al., 2021). Existing ligands in both the structures were removed in silico
and the proteins prepared for docking using AutoDockTools by adding polar hydrogens and Kollman
charges. The inhibitors were also prepared using AutoDockTools by adding polar hydrogens and charges
and identifying rotatable torsions. A grid box which dictates the search space for the docking tool was
defined approximately around the region where the existing ligands in 2WGJ and 4EEV were bound. The
energy range and exhaustiveness of docking was set to 3 and 8 respectively. AutoDock Vina was made to
output 5 modes for each ligand. Capmatenib and glumetinib (type | inhibitors) were docked on to 2WGJ
and glesatinib analog and cabozantinib (type Il inhibitors) were docked on to 4EEV.
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Figure 1 - figure supplement 1. Structural inhibitor classification and dose-response determination.
(A) Type | (crizotinib, 2WGJ; tepotinib, 4R1V; capmatinib; savolitinib, 6SDE; NVP-BVU972, 3QTI) and type
II (merestinib, 4EEV; cabozantinib; glesatinib) inhibitor-bound MET kinase domain structures globally
aligned. Hinge (gray) and G1163 (represented as a sphere) are highlighted to show the kinase domain
solvent-front relative to each inhibitor. Inhibitors lacking experimental structures (capmatinib, cabozantinib,
glumetinib, and glesatinib) were docked onto a representative type | (PDB 2WGJ) and type Il (4EEV)

structure through AutoDock Vina (Eberheart et al., 2021; Trott et al., 2010). (B) Solvent-front and G1163
highlighted relative to the ATP-bound kinase domain crystal structure (3DKC) and all inhibitors screened.
(C) Dose-response curves for each inhibitor against the TPR-fusion MET and METAEx14 intracellular

domains, stably expressed in Ba/F3 cells.
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Figure 1 - figure supplement 2. Correlation analysis of the MET kinase domain site saturation
mutagenesis library across replicates and conditions. Replicate correlation analysis for each inhibitor
for both the TPR-fusion MET background scores with Enrich2.
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Figure 1 - figure supplement 3. Correlation analysis of the METAEx14 kinase domain site saturation
mutagenesis library across replicates and conditions. Replicate correlation analysis for each inhibitor for

the TPR-fusion METAEx14 background score with Enrich2.
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MET kinase domain heatmaps (2/4)
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MET kinase domain heatmaps (3/4)
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Figure 1 - figure supplement 4 . Fitness landscapes of the MET kinase domain against a panel of 11
inhibitors. Heatmap for the DMSO control condition and all inhibitor fitness scores from Rosace,
subtracted from DMSO for >99% of MET kinase domain variants in the full intracellular domain background
in the context of the TPR-fusion. Wild-type synonymous mutations are highlighted in green, and mutations

that were not captured by the screen are in light yellow.
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Figure 2 - figure supplement 5. Mutational landscape of the METAEx14 kinase domain under 11 ATP-

competitive inhibitor selection. (A) Distributions of all variants (wild-type synonymous, early stop, and

missense) for each condition, scored with Rosace and normalized to the growth rate of the DMSO control
population. (B) Correlation plots for all mutational fithess scores for each drug against DMSO, fitted with a
linear regression and Pearson’s R value displayed. (C) Heatmap showing the Pearson’s R correlation for
each condition against each other, annotated by condition and inhibitor type. Correlations are colored
according to a scale bar from gray to blue (low to high correlation).
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Figure 6 - figure supplement 1. Statistically filtered resistance mutations for grouped type I, type Il,
and type |2 inhibitors for MET. (A-C) Heatmaps of the sum of resistance mutations grouped for type |
(pink), type Il (blue), and type 1%z (green) for MET.
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Figure 7 - figure supplement 1. Cross-comparison of type | and type Il inhibitor pairs. Scatter plots of
each type Il inhibitor fithess scores (cabozantinib, glesatinib analog, merestinib; axis in blue) against each
type | inhibitor (crizotinib, capmatinib, tepotinib, glumetinib, savolitinib, NVP-BVU972; axis in pink).
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Figure 7 - figure supplement 2. Cross-comparison analysis of inhibitors within the same type.
Scatter plots of each inhibitor pair within the type Il group (cabozantinib, glesatinib analog, merestinib; axes
in blue) and within the type | group (crizotinib, capmatinib, tepotinib, glumetinib, savolitinib, NVP-BVU972;
axes in pink).
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Figure 8 - figure supplement 1. Distribution and visualization of features used in the XGBoost
machine learning models. (A) Distribution of ESM LLR vs. Experimental fitness (top) and AAG vs.

Experimental fitness (bottom). (B) Distribution of all features (except ESM LLR and AAG) extracted and
used for the XGBoost models. The features that were incorporated in the best performing model are shown
in yellow. The red dashed lines within each distribution show the edges of bins used to bin the feature
values. (C) AAAG calculated from predicted AAG Type | (PDB 2WGJ) (left) and Type Il (PDB 4EEV) (right)
MET kinase structure by subtracting type 1l AAG from type | AAG. The key regions showing difference in
conformation between type | and Il structures are the DFG motif (purple) and aC helix (teal). (D)
Calculation of “residue to ATP” distance feature for residue D1228 in ATP bound MET Kinase structure
(3DKC) is shown. Centroid of the ATP molecule is shown as a pink sphere. (E) Example of AVolume
feature calculation using the difference between the volume of Asp and Cys. (F) Ensemble of MET kinase
domain crystal structures aligned and RMSF of a given residue (D1228 in this example). (G) The shortest
distance between the inhibitor and a mutation calculated from the Umol predicted variant-inhibitor structure.
(H) The binding pocket of crizotinib in the predicted Umol structure. Pocket volume, hydrophobicity score,
polarity score and RF score are calculated from this binding site. (1) Residue RMSD feature is described by
the Umol predicted structure of variant D1228C (pink) superposed onto the wild-type reference structure
(PDB 2WGJ, gray) and RMSD between D1228 in the wild-type structure and 1228C in the variant
structure. (J) Ligand RMSD feature The Umol predicted structure of variant D1228C (pink) superposed
onto the wild-type reference structure (PDB 2WGJ, gray) and RMSD between crizotinib in the wild-type

structure (pink) and in the variant structure (blue).
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