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Abstract 
 
Mutations in the kinase and juxtamembrane domains of the MET Receptor Tyrosine Kinase are 
responsible for oncogenesis in various cancers and can drive resistance to MET-directed treatments. 
Determining the most effective inhibitor for each mutational profile is a major challenge for MET-driven 
cancer treatment in precision medicine. Here, we used a deep mutational scan (DMS) of ~5,764 MET 
kinase domain variants to profile the growth of each mutation against a panel of 11 inhibitors that are 
reported to target the MET kinase domain. We validate previously identified resistance mutations, pinpoint 
common resistance sites across type I, type II, and type I ½ inhibitors, unveil unique resistance and 
sensitizing mutations for each inhibitor, and verify non-cross-resistant sensitivities for type I and type II 
inhibitor pairs. We augment a protein language model with biophysical and chemical features to improve 
the predictive performance for inhibitor-treated datasets. Together, our study demonstrates a pooled 
experimental pipeline for identifying resistance mutations, provides a reference dictionary for mutations that 
are sensitized to specific therapies, and offers insights for future drug development. 
 

Introduction 
 
Receptor Tyrosine Kinases (RTKs) are critical signaling molecules that activate and regulate cellular 
pathways. Disruption of typical RTK regulatory mechanisms through point mutations, gene amplification, 
protein fusions, or autocrine loops can drive the development, maintenance, and spread of cancers. Small 
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molecule inhibitors are designed to disrupt aberrant signaling cascades by selectively targeting the kinase 
domain, with tyrosine kinase inhibitors (TKIs) like imatinib showing durable treatment outcomes (Cohen et 
al., 2021; Attwood et al., 2021). Inhibitors are generally designed against either a wild-type kinase or a 
specific mutational profile, yet acquired mutations can alter sensitivity to different inhibitors and undermine 
efficacy. The most extreme case of this is resistance, which emerges in the treatment of many cancers by 
TKI selective pressure (Cohen et al., 2021; Attwood et al., 2021). These mutations may act by altering 
kinase stability, expression, conformation, or activity of the target kinase. Although several recurrent 
mutations at inhibitor-interacting positions have predictable resistance, specific and rare resistance 
mutations can be associated with the interactions or conformations unique to certain inhibitors.  
 
An attractive strategy to counter resistance is optimizing the interactions that differ between inhibitors. 
Small-molecule kinase inhibitors fall into four distinct groups, characterized by their binding modality to the 
ATP pocket and conformational preferences (Arter et al., 2022; Attwood et al., 2021; Zuccotto et al., 
2009). Among these groups, three are ATP-competitive: type I, type II, and type I½ (Figure 1A-C). Type I 
inhibitors occupy the adenosine binding pocket, form hydrogen bonds with "hinge" region residues, and 
favor an active conformation. Type II inhibitors also occupy the adenosine pocket but extend into an 
opening in the R-spine that is accessible in an inactive conformation (Arter et al., 2022) (Figure 1B). Type 
I½ inhibitors combine features from both type I and type II inhibitors, engaging with both the adenosine 
pocket and the R-spine pocket (Arter et al., 2022) (Figure 1B). Finally, type III inhibitors are allosteric, 
non-ATP competitive inhibitors (Arter et al., 2022) (Figure 1B). Given the chemical interaction differences 
and conformational preferences among TKI groups for distinct kinase states, a general approach to 
combating resistance is sequential treatment of type I and II inhibitors (Recondo et al., 2018). However, 
without understanding the potential sensitivity of an acquired resistance mutation to the subsequent 
inhibitor, the efficacy of such strategies is not guaranteed. 
 
The problem of which inhibitor to use and in what order is exemplified by the choice of inhibitors targeting 
MET kinase (Recondo et al., 2020; Fernandes et al., 2021). MET is an RTK and proto-oncogene that has 
been implicated in the pathogenesis of gastric, renal, colorectal, and lung cancers (Frampton et al., 2015; 
Duplaquet et al., 2018; Wood et al., 2021; Lu et al., 2017). Molecular profiling and next-generation 
sequencing of tumor samples has provided insight on cancer-associated MET variants (Frampton et al., 
2015; Bahcall et al., 2022). Clinical reports following post-treatment outcomes have documented recurrent 
resistance mutations at positions such as D1228, Y1230, G1163, L1195 for MET (Fernandes et al., 2021; 
Lu et al., 2017; Recondo et al., 2020). The challenge of acquired resistance following MET inhibitor 
therapy has been approached with strategies including sequential treatment of type I and type II TKIs 
(Recondo et al., 2020; Bahcall et al., 2016), and combination therapy with type I and type II TKIs 
(Bahcall et al., 2022; Fernandes et al., 2021; Smyth et al., 2022). However, without extensive 
documentation of the behavior of resistance and sensitizing mutations in MET towards specific TKIs, there 
remains a barrier towards leveraging inhibitors for specific mutational responses, optimizing inhibitor 
pairings, and informing rational drug design. Thousands of compounds have been screened against the 
MET kinase domain, and while several have undergone clinical trials, currently four MET inhibitors have 
received FDA approval: crizotinib, cabozantinib, tepotinib, and capmatinib (Santarpia et al., 2021; Wang 
and Lu, 2023). Nevertheless, the emergence of resistance not only limits the efficacy of these drugs but 
also poses challenges for second-line therapeutic strategies, particularly in the context of rare and novel 
mutations. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 5, 2024. ; https://doi.org/10.1101/2024.07.16.603579doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.16.603579
http://creativecommons.org/licenses/by/4.0/


 

 
Previously, we used Deep Mutational Scanning (DMS), a pooled cellular selection experiment, to massively 
screen a library of nearly all possible MET kinase domain mutations. The juxtamembrane domain is 
encoded by Exon 14 in MET, serves an incompletely understood negative regulatory function in the kinase 
(Ma et al., 2003) and is recurrently excluded in cancer by somatically encoded exon skipping mutations. By 
testing this library in the context of a wild-type intracellular domain and the recurrent cancer exon 14 

skipped variant (METΔEx14) (Figure 1E), we identified conserved regulatory motifs, interactions involving 

the juxtamembrane and ⍺C-helix, a critical β5 motif, clinically documented cancer mutations, and classified 

variants of unknown significance (Estevam et al., 2024). Understanding how these variants respond to 

specific inhibitors can inform therapeutic strategies, with precedent in inhibitor-based DMS studies across 
kinases such as ERK, CDK4/6, Src, EGFR, and others (Brenan et al., 2016; Persky et al., 2020; 
Chakraborty et al., 2023; An et al., 2023).  
 
Here, we explore the landscape of TKI resistance of the MET kinase domain against a panel of 11 
inhibitors, utilizing our previously established platform (Estevam et al., 2024). By profiling a near-
comprehensive library of kinase domain variants in the MET and METΔEx14 intracellular domain, we 
captured a diverse range of effects based on inhibitor chemistry and 'type' classifications (Figure 1). Within 
our screen, mutations that confer resistance and offer differential sensitivities across inhibitors were 
identified, which can be leveraged in sequential or combination therapy. We use Rosace, a Bayesian 
fitness scoring framework, to reduce false discovery rates in mutational scoring and allow for post-
processing normalization of inhibitor treatments (Rao et al., 2024). With our dataset, we have analyzed 
differential sensitivities to inhibitor pairs and provided a platform for assessing inhibitor efficacy based on 
mutational sensitivity and likelihood. Lastly, we augment a protein language model (Rives et al., 2021; 
Brandes et al., 2023; Chen and Guestrin, 2016) with biophysical and chemical features to improve 
predictions for MET inhibitor datasets, and in the future more effectively learn and predict mutational fitness 
towards novel inhibitors.  
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Figure 1. MET kinase inhibitor types and resistance mutations screened against a nearly 
comprehensive library of kinase domain substitutions. (A) Crystal structure of the ATP-bound MET 
kinase domain (3DKC) overlaid with type Ia (crizotinib, 2WGJ), type Ib (savolitinib, 6SDE), type II 
(merestinib, 4EEV), type I½ (AMG-458, 5T3Q), and type III inhibitors (tivantinib, 3RHK). (B) Pocket view of 
ATP and each inhibitor type bound to the active site of the MET kinase domain with the respective inhibitor 
and crystal structures from panel A. (C) 2D chemical structures of each inhibitor screened against the site 
saturation mutagenesis library of the MET kinase domain, with each experimentally determined IC50 values 
displayed for Ba/F3 cells stably expressing the wild-type MET ICD in a TPR-fusion background. (D) Dose-
response curves for each inhibitor against the wild-type MET intracellular domain expressed in a TPR-
fusion in the Ba/F3 cell line. (E) Schematics of the full-length and exon 14 skipped MET receptor alongside 
the TPR-fusion constructs with the full-length and exon 14 skipped intracellular domain, displaying four 
mechanisms of oncogenic activity: point mutations, exon 14 skipping, constitutive activity through domain 
fusions, and inhibitor resistance mutations. (F) Experimental workflow for defining the mutational landscape 
of the wild-type TPR-MET and exon 14 skipped TPR-METΔEx14 intracellular domain against 11 ATP-
competitive inhibitors in Ba/F3, interleukin-3 (IL-3) withdrawn pooled competition assay.  
 

Results 
 
Measuring the mutational fitness of 5,764 MET kinase domain variants against ATP-
competitive inhibitors  
 
To evaluate the response of MET mutations to different inhibitors, we selected six type I inhibitors 
(crizotinib, capmatinib, tepotinib, glumetinib, savolitinib, and NVP-BVU972), three type II inhibitors 
(cabozantinib, glesatinib analog, merestinib), and a proposed type III inhibitor, tivantinib (Figure 1C). Type 
I MET inhibitors leverage pi-stacking interactions with Y1230 and salt-bridge formation between D1228 and 
K1110, and are further classified as type Ia or Ib based on whether they interact with solvent front residue 
G1163 (Cui 2014; Fujino et al., 2019; Wang et al., 2023) (Figure 1C). Here we specifically define type Ia 
inhibitors as having a solvent-front interaction (Cui 2014), which structurally classifies tepotinib and 
capmatinib as type Ia based on our analysis of experimental structures and inhibitor docked models 
(Figure 1A-C; Figure 1 - figure supplement 1), despite classification as type Ib in other studies (Brazel et 
al., 2022; Fujino et al., 2022; Recondo et al., 2020). 
 
As in our previous work, we employed the Ba/F3 cell line as our selection system due to its undetectable 
expression of endogenous RTKs and addiction to exogenous interleukin-3 (IL-3) (Estevam et al., 2024). 
These properties allow for positive selection based on ectopically expressed kinase activity and 
proliferation in the absence of IL-3 (Daley and Baltimore, 1988; Warmuth et al., 2007; Koga et al., 
2022). We used a TPR-MET fusion to generate IL-3 independent constitutive activity (Estevam et al., 
2024). While this system affords cytoplasmic expression, constitutive oligomerization, and HGF-
independent activation, features like membrane-proximal effects are lost (Cooper et al., 1984; Park et al., 
1986; Peschard et al., 2001; Rodrigues and Park, 1993; Vigna et al., 1999; Mak et al., 2007; Pal et al., 
2017; Lu et al., 2017; Fujino et al., 2019). The constitutive activity of TPR-MET and the reliance of Ba/F3 
cells on that activity render this selection system quite sensitive for determining reduction in growth from 
small molecule inhibition.  
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We generated dose response curves for each inhibitor against wild-type TPR-MET (wild-type intracellular 
domain, including exon 14) and TPR-METΔEx14 (exon 14 skipped intracellular domain) constructs, stably 
expressed in Ba/F3 cells to determine IC50 values for our system (Figure 1D; Figure 1 - figure 
supplement 1). We used our previously published library harboring >99% of all possible 5,764 kinase 
domain (1059-1345aa) mutations in a TPR-fusion background carrying either a wild-type MET or exon 14 
skipped intracellular domain (Estevam et al., 2024) (Figure 1E) . Time points were selected every two cell 
doublings over the course of four time points, and cells were split and maintained in the absence of IL-3 
and presence of drug at IC50 for each inhibitor, including a DMSO control. All samples, across all time 
points and replicates, were prepared for next-generation sequencing (NGS) in parallel, and sequenced on 
the same Illumina NovaSeq 6000 flow cell to identify variant frequencies (Figure 1F). We then calculated 
variant fitness scores using Rosace (Rao et al., 2024) (Figure 1F; Figure 1 - figure supplement 1-4). We 
performed parallel analysis of the TPR-MET and TPR-METΔEx14 screens; however, we focus our analysis 
below on TPR-MET with the parallel and largely consistent analyses of TPR-METΔEx14 available in the 
supplement.  
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Figure 2. Mutational landscape of the MET kinase domain under 11 ATP-competitive inhi
selection. (A) Distributions of all variants (wild-type synonymous, early stop, and missense) for 

hibitor 
or each 
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condition in the wild-type TPR-MET kinase domain, scored with Rosace and normalized to the growth rate 
of the DMSO control population. (B) Correlation plots for all mutational fitness scores for each drug against 
DMSO, fitted with a linear regression and Pearson’s R value displayed. (C) Heatmap showing the 
Pearson’s R correlation for each condition against each other, annotated by condition and inhibitor type. 
Correlations are colored according to a scale bar from gray to blue (low to high correlation). (D) Crystal 
structure of the tivantinib-bound MET kinase domain (PDB 3RHK) overlaid with the ATP-bound kinase 
domain (PDB 3DKC), with tivantinib-stabilizing residues and overlapping density of tivantinib (orange) and 
ATP (purple) highlighted. (E) Dose responses of crizotinib and tivantinib tested against stable Ba/F3 cells 
expressing the wild-type intracellular domain of MET fused to TPR, tested in the presence and absence of 
interleukin-3 (IL-3).  

 
Defining the mutational landscape of resistant and sensitizing mutations for the MET 
kinase domain. 
 
While growth rates were experimentally controlled through equipotent dosing during selection, there was 
no direct way to validate this post-processing. To generate meaningful comparisons between inhibitor 
scores and conditions, in addition to performing downstream score subtractions, we normalized cell growth 
rates for each inhibitor to the growth rate observed for the DMSO population. As expected, the DMSO 
control population displayed a bimodal distribution with mutations exhibiting wild-type fitness centered 
around 0, with a wider distribution of mutations that exhibited loss- or gain-of-function effects, as defined by 
fitness scores with statistically significant lower or greater scores than wild-type, respectively (Figure 2A). 
Also as expected, inhibitor-treated populations displayed distributions with a loss-of-function peak, 
representative of mutations that are sensitive to the inhibitor. Unlike DMSO, inhibitor populations were 
right-skewed, showing greater enrichment of gain-of-function scores at the positive tail of distributions 
(Figure 2A). These population differences were exemplified by the low correlation between each inhibitor 
and DMSO, with capmatinib showing the greatest difference from DMSO with a Pearson’s correlation of 
0.45, and tivantinib standing as an outlier with a Pearson’s correlation of 0.93 (Figure 2B).  
 
In comparing all conditions to each other, we were able to further capture differences between and within 
inhibitor types. Type II inhibitors displayed the greatest similarities to one another, with merestinib and the 
glesatinib analog having the highest correlation (r = 0.93) and cabozantinib and glesatinib analog showing 
the lowest (r = 0.87) (Figure 2C). While type I inhibitors were also highly correlated, capmatinib stood out 
as an outlier, displaying the lowest correlations potentially due to difficulty in experimental overdosing due 
to its greater potency (Bahcall et al., 2022; Fujino et al., 2019) (Figure 2C). While there was only one 
type I½ inhibitor, AMG-458, it displayed higher similarity to type II inhibitors than to type I, likely due to 
similar type II back pocket interactions with the kinase R-spine (Figure 1B; Figure 2C). Nevertheless, 
AMG-458 was most distinct from cabozantinib (r = 0.83) and type I inhibitors tepotinib (r = 0.79) and 
savolitinib (r = 0.73) (Figure 2C). Between type I and type II groups, with the exception of capmatinib, 
tepotinib and savolitinib showed the lowest correlation with merestinib and glesatinib analog (Figure 2C).  
 
The strong correlation of tivantinib with the DMSO control (r = 0.93) and low correlation with all other 
inhibitors suggested a MET-independent mode of action. Until recently (Michaelides et al, 2023), tivantinib 
was considered the only type III MET-inhibitor and showed promising early clinical trial results (Eathiraj et 
al., 2011; Wang et al., 2022). In vitro assays on the purified MET kinase domain have shown that tivantinib 
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has the potential to hinder catalytic activity (Munshi et al., 2010) and structural studies revealed that it 
selectively targets an inactive DFG-motif conformation, with tivantinib stabilizing residues (F1089, R1227) 
blocking ATP binding (Eathiraj et al., 2011) (Figure 2D). Yet in contradiction, comparative MET-dependent 
and MET-independent cell-based studies on tivantinib have also shown MET agnostic anti-tumor activity, 
posing that tivantinib may have an alternative inhibitory mechanism than a MET-selective one (Michieli 
and Di Nicolantonio, 2013; Basilico et al., 2013; Katayama et al., 2013; Fujino et al., 2019).  
 
Therefore, to test the hypothesis that tivantinib is not MET-selective in our system, we compared the dose 
response of tivantinib and crizotinib in the presence and absence of IL-3 for wild-type TPR-MET, stably 
expressed in Ba/F3 cells (Figure 2E). As expected, crizotinib only displayed an inhibitory effect under IL-3 
withdrawal, highlighting a MET-dependent mode of action. In contrast, tivantinib displayed equivalent 
inhibition regardless of IL-3, reinforcing that tivantinib has cytotoxicity effects unrelated to MET inhibition 
(Figure 2E) and underscores the sensitivity of the DMS in identifying direct protein-drug effects. 
 
Crizotinib-MET kinase domain resistance profiles exemplify the information accessible 
from individual inhibitor DMS  
 
As an example of the insights that can be learned from the inhibitor DMS screens, we examined the profile 
for crizotinib, one of four FDA approved inhibitors for MET and a multitarget TKI (Cui et al., 2011; Wang 
and Lu, 2023; Santarpia et al., 2021). To identify mutations that show gain-of-function and loss-of-function 
behaviors specific to inhibitors compared to DMSO, we subtracted DMSO from all fitness scores. (Figure 
3A), with the expectation that effects related to expression or stability would be similar in both conditions, 
enhancing the ability to identify drug sensitivity or resistance. Indeed, the highest frequency of gain-of-
function mutations occurred at residues mediating direct drug-protein interactions, such as D1228, Y1230, 
and G1163. These sites, and many of the individual mutations, have been noted in prior reports, such as: 
D1228N/H/V/Y, Y1230C/H/N/S, G1163R (Fernandes et al., 2021; Yao et al., 2023; Bahcall et al., 2022; 
Recondo et al., 2020; Rotow et al., 2020; Fujino et al., 2019; Lu et al., 2017; Pecci et al 2024). Beyond 
these well characterized sites, regions with sensitivity occurred throughout the kinase, primarily in loop-
regions which have the greatest mutational tolerance in DMSO, but do not provide a growth advantage in 
the presence of an inhibitor. 
 
In mapping positions with resistance to the crizotinib-bound kinase domain crystal structure (PDB 2WGJ), 
our DMS results further emphasize the emergence of resistance mutations at the ATP-binding site and 
direct-protein drug interacting residues (Figure 3B-D). Mutations to the hinge position, Y1159, and C-spine 
residues, including M1211 and V1092, introduce charge or are predicted to change the conformation of the 
pocket to clash with crizotinib but not ATP (Figure 3E,F). Outside of direct drug-protein interactions, 
positions I1084, T1261, Y1093, and G1242 displayed the largest resistance signals (Figure 3A-D). 
Structurally, I1084 is located in β1 at the roof of the ATP-binding pocket, and a mutation to His clashes with 
crizotinib’s hinge-binding and solvent-front moieties without interfering with bound-ATP (Figure 3E,F). 
Y1093 is also at the roof of the ATP-binding site, residing in β2 (Figure 3B). However, its structural 
influence on resistance is unobvious. In all rotameric states, the R-group of Y1093 points away from the 
catalytic site and does not clash with crizotinib. We speculate that Y1093 mutations may negatively impact 
crizotinib’s stability in the catalytic site compared to ATP, as ATP's triphosphate group is stabilized by the 
P-loop. Therefore, comparing crizotinib to DMSO highlights both known hotspots and rarer sites like I1084 
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and Y1093, which may contribute to resistance through conformational changes rather than disrupting 
direct inhibitor-protein contacts. Individual inhibitor resistance landscapes also aid in identifying target 
residues for novel drug design by providing insights into mutability and known resistance cases. This 
enables the selection of vectors for chemical elaboration with a potential lower risk of resistance 
development. Sites with mutational profiles such as R1086 and C1091, located in the common drug target 
P-loop of MET, could be likely candidates for crizotinib.  
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Figure 3. Novel resistance mutations identified and mapped for crizotinib. (A) Heatmap of crizotinib 
fitness scores subtracted from DMSO, scaled from loss-of-function (red) to gain-of-function (blue), with the 
wild-type protein sequence, secondary structure, kinase domain residue position, and mutational 
substitution annotated. Wild-type synonymous substitutions are outlined in green, and uncaptured 
mutations are in light yellow. (B) Resistance positions mapped onto the crizotinib-bound, MET crystal 
structure (PDB 2WGJ). Positions that contain one or multiple resistance mutations are labeled and colors 
are scaled according to the average score for the resistance mutations at each site. (C) 2D protein-drug 
interactions between crizotinib and the MET kinase domain (PDB 2WGJ) with pocket residues and polar 
and pi interactions annotated. Schematic generated through PoseEdit (Diedrich et al., 2023) 
(https://proteins.plus/). (D) Condensed crizotinib heatmap displaying direct drug-protein interacting and 
non-direct resistance position. Again, fitness scores are scaled from loss-of-function (red) to gain-of-
function (blue), wild-type synonymous substitutions are outlined in green, and uncaptured mutations are in 
light yellow. (E) Crizotinib binding site and pocket residues displayed with resistance positions highlighted 
(pink) and the wild-type residue and inhibitor interactions shown (PDB 2WGJ). (F) Resistance mutations 
modeled for I1084H, V1092I, Y1159R, M1211Y, and N1167 relative to ATP (PDB 3DKC).  
 
 
Resistance mutations identified for type I, type II, and type I ½ inhibitors  
 
To assess the agreement between our DMS and previously annotated resistance mutations, we compiled a 
list of reported resistance mutations from recent clinical and experimental studies (Pecci et al 2024; Yao et 
al., 2023; Bahcall et al., 2022; Recondo et al., 2020; Rotow et al ., 2020; Fujino et al., 2019) (Figure 
4A,B). Overall, previously discovered mutations are strongly shifted to a GOF distribution for the drugs 
where resistance is reported from treatment or experiment; in contrast, the distribution is centered around 
neutral for those sites for other drugs not reported in the literature (Figure 4C). However, even in cases 
such as L1195V, we observe GOF DMS scores indicative of resistance to previously reported inhibitors. 
Given this overall strong concordance with prior literature and clinical results, we can also provide 
hypotheses to clarify the role of mutations that are observed in combination with others. For example, 
H1094Y is a reported driver mutation that has been linked to resistance in METΔEx14 for glesatinib with 
either the secondary L1195V mutation or in isolation (Recodo et al., 2020). However, in our assay H1094Y 
demonstrated slight sensitivity to gelesatinib, suggesting that either resistance is linked to the exon14 
deletion isoform, the L1195V mutation, or a cellular factor not modeled well by the BaF3 system.  
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Figure 4. Comparison of previously reported resistance mutations with DMS fitness scores. (A) 
Data table summarizing reported resistance mutations from clinical and experimental studies. Inhibitors 
linked to reported resistance cases are listed, along with corresponding DMSO subtracted fitness scores 
from the DMS. The scores are represented with a color gradient ranging from loss-of-function (red) to gain-
of-function (blue), with the reported inhibitor scores underlined. (B) Residue locations of previously reported 
resistance mutations mapped on a representative crystal structure as blue spheres (2WGJ). (C) 
Histograms of fitness scores from the DMS for previously annotated resistance mutations, comparing their 
reported inhibitor (blue) to non-reported inhibitor scores (gray). 
 

With this validation, we next wanted to identify the strongest potential resistance mutations. We identified 

unique resistance mutations enriched at the ATP-binding site across all inhibitors, yet also noticed 

discernible differences between type I and II inhibitors, the R-spine, and ⍺C-helix (Figure 5A-G). Mapping 

inhibitor-specific positions and mutational scores, not only provides a mutation-level breakdown of inhibitor 
contributions to common resistance mutations, but also demonstrates differences in structural resistance 
enrichment across specific inhibitors (Figure 5A-G). To summarize this information, we next examined 
trends by grouping inhibitors by type. 
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Figure 5. Resistance mutations mapped onto experimental and docked kinase domain structures 
for type I and type II inhibitors. (A-F) Resistance positions and average resistance mutational score 
mapped onto representative crystal structures (tepotinib, 4R1V; merestinib, 4EEV) and labeled (type I, 
pink; type II, blue). Inhibitors lacking experimental structures (capmatinib, cabozantinib, glumetinib, and 
glesatinib) were docked onto a representative type I (2WGJ) and type II (4EEV) crystal structure through 
AutoDock Vina (Eberheart et al., 2021; Trott et al., 2010). (G) Heatmaps of each resistance position 
within an inhibitor DMS. Fitness scores are scaled from loss-of-function (red) to gain-of-function (blue). 
Wild-type synonymous substitutions are outlined in green, and mutations uncaptured by the screen are in 
light yellow. 

 
Next, we filtered resistance mutations by their score and test statistics (Figure 6 - figure supplement 1) 
and collapsed the information by inhibitor type, plotting the total frequency of resistance mutations at each 
position (Figure 6A). In this condensed heatmap, several common resistance positions emerged within 
and across inhibitor types to provide a broad view of “hotspots.” Two positions stood out with the highest 
frequency of resistance: G1163 and D1228 (Figure 6A-D). Both sites are unsurprising due to their inhibitor 
interactions - G1163 is at the solvent front entrance of the active site and D1228 stabilizes an inactive 
conformation of the A-loop with an inhibitor bound (Cui 2014; Recondo et al., 2020; Fernandes et al., 
2021). Located at the base of the active site, M1211 is a previously documented resistance site (Tidet et 
al., 2011) and a C-spine residue (Estevam et al., 2024), which harbors a smaller number of resistance 
mutations for all inhibitor types within our analysis (Figure 6A). In contrast to these universal sites, Y1230 
was a hotspot for type I and I ½ inhibitors, but not a major resistance site for type II inhibitors (Figure 6A-
D). This specificity can be rationalized based on the role of Y1230 in stabilizing inhibitors through pi-
stacking interactions (Cui 2014). In contrast, F1200 and L1195 (Bahcall et al., 2022; Recondo et al., 
2020), are both hotspots for type II but not type I inhibitors (Figure 6A-C). Again, this effect can be 
rationalized structurally: both residues make direct contact with type II inhibitors, but not type I inhibitors. 
 
Across all inhibitor types, there were a total of 17 shared variants with G1163, D1228, and M1211 being 
the most common (Figure 6G). The overall spatial pattern of mutations for each inhibitor type follows 
general principles that are expected based on their interactions. For example, I1084 is enriched as a 
resistance site for type I inhibitors, consistent with previous studies in hereditary papillary renal cell 
carcinomas (Guérin et al., 2023). I1084 is located at the solvent front of the phosphate-loop (P-loop) of the 
kinase N-lobe (Figure 1A), which is responsible for stabilization of the ATP phosphate groups. This region 
of the kinase is leveraged for interactions with type I, but not type II inhibitors. In contrast, L1142, an R-
spine residue, and L1140, which sits at the back of the ATP-binding pocket, are enriched for type II inhibitor 
resistance, consistent with their spatial locations (Figure 6E-F). Resistance mutations tend to cluster 
around the catalytic site across all types, but the shared mutations across different inhibitor types did not 
display a unifying pattern that evokes a simple rule for combining or sequencing inhibitors to counter 
resistance (Figure 6H). 
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Figure 6. Resistance mutations and “hotspots” identified for MET inhibitor types. (A) Collapsed 
heatmap of common resistance positions along the kinase domain, with the wild-type protein sequence and 
secondary structure annotated. Each tile represents a sum of counts for statistically filtered resistance 
mutations across all inhibitors for type I (pink), type II (blue), and the type I½ inhibitor AMG-458 (green), 
with the scale bar reflecting counts of resistance mutations across respective inhibitor types. (B-D) 
Expanded heatmap showing each resistance position and the counts for each specific resistance mutation 
across all inhibitor types type I (pink), type II (blue), and the type I½ inhibitor AMG-458 (green). Wild-type 
sequence and variant change are annotated. (E-F) Average frequency of resistance mutations for each 
mapped on to a representative type I (crizotinib, 2WGJ) and type II (merestinib, 4EEV) crystal structure, 
alongside the type I½, AMG-458 structure (5T3Q), with associated scale bars. Individual positions with high 
resistance mutation frequencies are annotated on each structure, with a zoom-in of the bound inhibitor and 
surrounding resistance sites. (G) Venn diagram showing mutations shared among type I (pink), type II (light 
blue), and type I½ (green). (H) Structurally mapped (PDB 2WGJ) resistance positions shared among type I, 
II, I½ (blue-gray), type I and II (purple), type I and I½ (dusty rose), type II and I½ (teal) inhibitors. 
 
 
Differential sensitivities of the MET kinase domain to type I and type II inhibitors  
 
Strategies aimed at preventing resistance, such as sequential or combination dosing of type I and type II 
inhibitors, have been explored and offer promise in preventing resistance (Recondo et al., 2020; Bahcall 
et al., 2022; Fernandes et al., 2021). However, the efficacy of these strategies is limited to the emergence 
of secondary resistance mutations, and specific inhibitor pairings are further limited to case examples of 
disparate effects. Using our DMS datasets, we sought to identify inhibitor pairings with the largest 
divergence in cross-sensitivity. By comparing the fitness landscape of each type I inhibitor to each type II 
inhibitor, we could again assess inhibitor response likeness based on correlations (Figure 2A; Figure 7 - 
figure supplement 1). Type I and type II pairs with the highest correlations included capmatinib and 
glesatinib analog (r = 0.92), suggesting a large overlapping fitness profile, in contrast to pairs with the lower 
correlations, like savolitinib and merestinib (r = 0.7) (Figure 7A; Figure 7 - figure supplement 1). Overall, 
cabozantinib maintained the lowest average correlation with all type I inhibitors, making it the most 
divergent type II inhibitor within our screen, and potentially offering the least overlap in resistance (Figure 
7A; Figure 7 - figure supplement 1). 
 
To narrow our characterization of cross-sensitivity, we focused on the inhibitor pair crizotinib and 
cabozantinib (Figure 7B; Figure 7 - figure supplement 1). By statistically filtering mutations that are 
categorized as gain-of-function in one inhibitor, but loss-of-function in the other, a set of 44 mutations were 
identified as having crizotinib resistance and cabozantinib sensitivity, and 3 mutations with the opposite 
profile (Figure 7B,C). Structural mapping of divergent mutations further revealed enrichment at the N-lobe 
and typical protein-drug interaction sites like Y1230, G1163, and M1211 (Figure 7B, C). While these 
positions have precedence for resistance, as previously noted, they are also resistance hotspots across all 
inhibitor types (Figure 6A), where even mutations with differential sensitivities may be insufficient targets to 
counteract the reemergence of resistance, thus limiting the interchangeability of drugs.  
 
Understanding which mutations have resistance profiles for only type I or type II inhibitors provides better 
leverage for sequential and combination dosing. To identify such mutations across our dataset, we further 
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filtered variants that met our resistance metrics and were only observed for inhibitors of the same type. In 
again comparing crizotinib to cabozantinib, Y1093K was a mutation with one of the largest differences 
between crizotinib and cabozantinib, having a gain-of-function profile for crizotinib and loss-of-function for 
cabozantinib (Figure 7B). Interestingly, Y1093 is located in β2 of the N-lobe, at the roof of the ATP-binding 
site, and does not directly engage with crizotinib. We speculate this mutation potentially contributes to 
resistance by perturbing the packing of β1-β2 and altering the conformation of the ATP binding site in a 
manner that destabilizes crizotinib binding. When comparing the dose-response of Y1093K to the wild-type 
TPR-MET kinase domain, Y1093K shows a nearly 10-fold shift in crizotinib sensitivity with no difference in 
cabozantinib sensitivity (Figure 7D). In identifying mutations with the opposite profiles, resistance to 
cabozantinib and sensitivity to crizotinib, L1195M displayed the greatest differential scores (Figure 7B). 

L1195 is an ⍺E-helix position with previously recorded resistance (L1195V/F), which our analysis further 

supports as a type II-only resistance hotspot (Figure 6A). Structurally, mutations like Met or Phe at 1195 

clash with the fluorophenyl moiety of cabozantinib used to access and stabilize a deep, back pocket of the 
kinase in an inactive conformation, unlike crizotinib which occupies the solvent front and adenosine binding 
region of the ATP binding site. In comparing the dose-response of L1195M to the wild-type TPR-MET 
kinase domain, we find that L1195M is refractory to all concentrations of cabozantinib tested, but still 
sensitive to crizotinib (Figure 7D). Beyond a type I and type II pairing, such cross-resistance identification 
can be further applied to identify differential sensitivities within an inhibitor group (Figure 7 - figure 
supplement 2), which can further expand opportunities for inhibitor-specific sensitivity in therapy and drug 
design.  
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Figure 7. MET kinase domain differential sensitivities revealed for type I and type II inhibitors
Heatmap showing Pearson correlation values for all combinations of screened type I and type II inhib
Correlations were determined from DMSO subtracted fitness scores (B) Correlation plot correlation p
DMSO subtracted fitness scores for crizotinib and cabozantinib. Mutations with differential score
highlighted for type I (pink) and type II (blue). (C) Average scores of mutations with differential sensit
within inhibitor pairs mapped and annotated in respective crystal structures (crizotinib, 2WGJ; cabozan
docked into 4EEV). Positions that are gain-of-function for type I but loss-of-function in type I
highlighted in pink, whereas positions that are gain-of-function for type II but loss-of-function in type
highlighted in blue. (D) Dose-response curves for crizotinib and cabozantinib in Ba/F3 cells expre
TPR-MET (full MET intracellular domain) harboring mutations at Y1093K and L1195M. Dose-respons
each inhibitor concentration is represented as the fraction of viable cells relative to the TKI free control
 
Identification of biophysical contributors to inhibitor-specific fitness landscapes u
machine learning 
 
Machine learning models originally developed for predicting protein structure (Jumper et al., 2021; R
et al., 2021; Lin et al., 2023) have been adapted for predicting protein-ligand complexes (Bryant e
2023), and predicting fitness values from DMS studies (Meier et al., 2021; Brandes et al., 2023; Jon
al., 2020). In particular, protein language models have shown the ability to estimate the functional effe
sequence variants in correlation with DMS data (Rives et al., 2021; Meier et al., 2021; Brandes e
2023). We observed that ESM-1b, a protein language model (Rives et al., 2021), predicts the fitne
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variants in the untreated/DMSO condition (correlation 0.50) much better than it does for the inhibitor treated 
datasets (correlation 0.28). This difference in predictive ability is likely because the language model is 
trained on sequences in the evolutionary record and fitness in the presence of inhibitors does not reflect a 
pressure that has operated on evolutionary timescales.  
 
To overcome this limitation and improve the predictive properties of the ESM approach, we sought to 
augment the model with additional features that reflect the interactions between protein and inhibitors that 
are not present in the evolutionary record (Chen and Guestrin, 2016). While our features can account for 
some changes in MET-mutant conformation and altered inhibitor binding pose, the prediction of these 
aspects can likely be improved with new methods. There are several challenges associated with this task, 
including the narrow sequence space explored, high correlations between datasets, and the limited 
chemical space explored by the 11 inhibitors. We used an XGBoost regressor framework and designed a 
test-train-validation strategy to account for these issues (Figure 8A), exploring many features representing 
conformation, stability, inhibitor-mutation distance, and inhibitor chemical information (Figure 8 - Figure 
Supplement 1). To avoid overfitting, we introduced several constraints on the monotonicity and the 
precision of certain features. The final model uses a subset of the features we tested and improves the 
performance from 0.28 to 0.37 (Figure 8B,C). The model primarily improves the correlation by shifting the 
distribution of predicted fitness values to center around drug sensitivity, reflecting the pressures that are not 
accounted for by ESM-1b (Figure 8D). Nonetheless, many resistant mutations are correctly predicted by 
the new model. 
 
To examine whether the model could help interpret the mechanisms of specific mutations, we examined 
several cases with notable improved predictions as the model increased in complexity (Figure 8E,F). For 
some mutations, as in Y1230D, we observe a gradual improvement in prediction for each set of features, 
suggesting that resistance relies on multiple factors. For other mutations, such as N1167K, we see a single 
set of features driving the improvement, which suggests much more dominant driving forces. Lastly, in 
other mutations, like G1290D, the models trained with different features can over or under predict the true 
value, demonstrating the value of combining features together. The reliance on simple features helps 
identify some of the major factors in drug resistance and sensitization such as distance to the inhibitor and 
active/inactive conformation; however, improved feature engineering and coverage of both sequence and 
chemical space will likely be needed to create a more interpretable model. 
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Figure 8. Inhibitor-bound variant fitness predicted from a machine learning model trained on the 
MET DMS dataset. (A) Model architecture outlining the information flow and inputs for model training, 
validation, fitness predictions, and prediction tests. (B) Improvement in correlation between experimental 
and predicted fitness for each inhibitor with usage of different kinds of features. (C) Cross-validation trends 
between the baseline ESM model and the model with all features incorporated. (D) Scatter plots of 
predictions versus experimental fitness scores of the baseline ESM model (top) compared to the model 
with all features (bottom), with a dashed cross-graph line in red displayed. (E) Residue-level analysis of 
feature significance in fitness predictions (ESM, stability, distance, conformation, all features). The Rosace 
experimental score is shown as a red line. (F) Residues with improved predictions mapped on a crizotinib-
bound MET kinase domain (PDB 2WGJ). Predicted resistance mutations (dark purple) modeled relative to 
the wild-type residue (pink).  

 
Discussion  
 
Tyrosine kinase inhibitors have revolutionized the treatment of many diseases, but the development of 
resistance creates a significant challenge for long term efficacy. Many strategies, including sequential 
dosing (Attwood et al., 2021; Recondo et al., 2020), are being explored to overcome resistance. Our 
DMS of the MET receptor tyrosine kinase domain, performed against a panel of varying inhibitors offers a 
framework for experimentally identifying resistance and sensitizing mutations in an activated kinase context 
for different inhibitors. By massively screening the effect of a nearly comprehensive library of amino acid 
mutations in the MET kinase domain against 11 inhibitors, some generalizable patterns emerged. In 
concordance with the binding mode of both type I and II inhibitors, residues that commonly confer 
resistance, or act as “hotspots,” were mapped to previously reported sites like D1228, Y1230, M1211, 
G1163 (Figure 4), and novel sites like I1084, L1140, L1142, T1261, and L1272 (Figure 5). Annotation of 
hotspots also offers an opportunity to inform inhibitor selection based on likelihood of cross-inhibitor 
resistance (Figure 6). For instance, I1084 is a hotspot for type I and II inhibitors within our study that 
displayed wild-type sensitivity to the type I½ inhibitor screened (Figure 6). Understanding positions with 
high resistance frequencies that are distal from the ATP-binding site also offers a design opportunity for 
allosteric inhibitors that can target cancer-associated and resistance-associated regions within the N- and 
C-lobe (Mingione et al., 2023).  
 
Nevertheless, similar to its ability in identifying resistance for inhibitors, our parallel DMS also demonstrated 
the ability to detect non-selective drugs, with the example of tivantinib. Despite being a proposed MET-
selective inhibitor, like several others, tivantinib failed clinical trials, and follow-up studies suggested 
cytotoxicity and off-target binding as the culprit (Michieli and Di Nicolantonio, 2013; Basilico et al., 2013; 
Katayama et al., 2013; Fujino et al., 2019) - a scenario that is not uncommon to antitumor drugs that do 

not advance to the clinic (Lin et al., 2019). To this effect, the ability of DMS to differentiate between 

selective compounds provides a unique prospect for developing inverse structure−activity relationships, 

whereby varying protein sequence both inhibitor specificity and resistance can be learned.  

 
Reported cancer mutations in databases such as OncoKB or cBioPortal are useful for patient data and 
cancer type reporting (Suehnholz et al., 2024; Chakravarty et al., 2017; Cerami et al., 2012). A recent 
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analysis of these databases aided in annotation of mutations observed within patient populations (Pecci et 
al., 2024). This study used pre-clinical models to examine a subset of these mutations and identified 
sensitivities to multiple inhibitors and confirmed clinical responses of two rare driver mutations (H1094Y 
and F1200I) to elzovantinib, a type Ib inhibitor (Pecci et al., 2024). Their results are consistent with the 
predictions of our DMS, illustrating the potential value of having a broad dictionary of inhibitor sensitivity 
and resistance patterns.  
 
Finally, a significant challenge of inhibitor screening is the considerable time and cost involved, even at 
high-throughput. While docking has accelerated the prioritization of compounds for protein targeting and 
screening in silico (Sadybekov and Katritch, 2023), prediction of drug resistance is of high interest in 
informing iterative drug design. Screening for resistance in the early stages of drug design is particularly 
useful for obtaining inhibitors that can be effective in the long-term by optimizing protein-inhibitor 
interactions in the wildtype and functionally silent mutant context (Pisa and Kapoor, 2020). While base-
editor approaches can rapidly screen for inhibitor resistance mutations within full-length, endogenous 
genes, undersampling of rare variants due to lower coverage is a significant caveat (Dorighi et al., 2024), 
compared to DMS where nearly full coverage is achieved and controlled. A full landscape of mutational 
effects can help to predict drug response and guide small molecule design to counteract acquired 
resistance. The ability to define molecular mechanisms towards that goal will likely require more 
purposefully chosen chemical inhibitors and combinatorial mutational libraries to be maximally informative. 
The ideas motivating our ML-model, which combines protein language models and biophysical/chemical 
features, to novel inhibitors could eventually be used to profile resistance and sensitivity for novel and 
unscreened small molecules, greatly extending the scale of kinase inhibitor repositioning for second-line 
therapies.  
 

Materials and methods  
 
Mammalian cell culturing  
 
Ba/F3 cells (DSMZ) were maintained and passaged in 90% RPMI (Gibco), 10% HI-FBS (Gibco), 1% 
penicillin/streptomycin (Gibco), and 10ng/ml IL-3 (Fisher), and incubated at 37°C with 5% CO2. Cells were 
passaged at or below 1.0e6 cells/ml to avoid acquired IL-3 resistance, and regularly checked for IL-3 
dependence by performing 3x PBS (Gibco) washes and outgrowth in the absence of IL-3.  
 
Plat-E cells stably expressing retroviral envelope and packaging plasmids were originally gifted by Dr. 
Wendell Lim, and maintained in 90% DMEM, HEPES (Gibco), 10% HI-FBS (Gibco), 1% 
penicillin/streptomycin (Gibco), 10ug/ml blasticidin, 1ug/ml puromycin. Cells were cultured at 37°C with 5% 
CO2 and maintained under blasticidin and puromycin antibiotic pressure unless being transfected.  
 
Dose response and IC50 determination of inhibitors 
 
Unless otherwise stated, all inhibitors used in this study were purchased from SelleckChem.  
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Ba/F3 cells stably expressing TPR-MET and TPR-METΔEx14 were washed with DPBS (Gibco) 3x times to 
remove IL-3, puromycin, penicillin, and streptomycin. Cells were resuspended in 90% RPMI and 10% FBS, 
and were seeded in the wells of a 96-well, round-bottom plate at a density of 2.5e4 cells/ml in 200ul. Cells 
were incubated for 24hr to allow kinase-driven signaling. The next day, inhibitors were added to triplicate 
rows of cells at a concentration range of 0 to 10uM (2-fold dilutions), and allowed to incubate for 72 hr post 
TKI addition. CellTiter-Glo reagent (Promega) was mixed at a 1:1 ratio with cells to lyse and provide a 
luminescence readout, which was measured on a Veritas luminometer. Cell numbers were determined 
from a Ba/F3 cell and ATP standard curve generated according to the manufacturer's instructions. Dose 
response curves were fitted using GraphPad Prism with the log(inhibitor) vs. response, variable slope 
function. Data are presented as cell viability normalized to the fold change from the TKI free control. 
 
MET kinase domain variant library generation, cloning, and library introduction into Ba/F3 
 
In this study, we repurposed cell lines transduced with TPR-MET and TPR-METΔEx14 kinase domain 
variant libraries, previously reported in Estevam et al., 2024. All libraries were generated, transfected, and 
tested in parallel. 
 
In short, the MET kinase domain sequence used in this study spans amino acid positions 1059-1345, 
which includes the full kinase domain (aa 1071-1345) and a small region of the juxtamembrane (aa 1059-
1070). The variant DNA library was synthesized by Twist Bioscience, containing one mammalian high-
usage codon per amino acid. A “fill-in” library was generated to introduce an early stop control codon every 
11 amino acids evenly spaced across the sequence. In addition, mutations at positions with failed 
synthesis (positions 1194 and 1278) were generated and added at equimolar concentration into the variant 
library. The kinase domain variant library was introduced into two different cloning backbones, one carrying 
the TPR-fusion sequence with the wild-type juxtamembrane sequence (aa 963-1058), wild-type C-terminal 
tail (aa 1346-1390), and IRES-EGFP (pUC19_kozak-TPR-METΔEx14-IRES-EGFP) and the other carrying 
the TPR-fusion sequence with an exon 14 skipped juxtamembrane sequence (aa 1010-1058), wild-type C-
terminal tail (aa 1346-1390), and IRES-mCherry (pUC19_kozak-TPR-MET-IRES-mCherry). The libraries 
were transformed in MegaX 10 beta cells (Invitrogen), propagated in 50mL LB and Carbinacillin at 37°C to 
an OD of 0.5, and then midiprepped (Zymo). Library coverage was determined by colony count of serial 
dilutions from the recovery plated at varying dilutions (1:100, 1:1k, 1:10k, 1:100k, 1:1M).  
 
The full TPR-METΔEx14-IRES-EGFP and TPR-MET-IRES-mCherry variant libraries were then shuttled 
into the mammalian retroviral MSCV backbone (addgene) through restriction enzyme digest with MluI-HF 
(NEB) and MfeI-HF (NEB), then ligated into the empty backbone with T4 ligase (NEB). Ligations were DNA 
cleaned (Zymo), electroporated into ElectroMAX Stbl4 Competent Cells (Thermo Fisher), plated on LB-
agar bioassay plates with Carbenicillin, incubated at 37°C, then colonies were scraped into 50mL LB and 
midi-prepped for transfections (Zymo).  
 
Variant libraries were transfected into Plat-E cells for retroviral packaging using Lipofectamine3000 
(Invitrogen) following the manufacturer's for a T-175 scale, and using a total of 46 μg DNA. 48 hr post-
transfection, the viral supernatant was harvested, passed through a 0.45 μm sterile filter, then concentrated 
with Retro-X concentrator (TakaraBio) using a 1:4 ratio of concentrator to supernatant. The concentrated 
virus was titered in Ba/F3 to determine the proper volume for a transduction MOI of 0.1-0.3. The viral titer 
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was calculated from the percent of fluorescent cells and viral dilution. To generate the DMS transduced cell 
lines, 6 million cells were spinfected at an MOI of 0.1, in triplicate. Then infected cells were selected with 
1μg/ml puromycin in 4 days, with fluorescence and cell counts tracked each day. 
 
DMS time point selection and sample preparation 
 
All screening conditions were performed and handled in parallel for TPR-MET and TPR-METΔEx14 
libraries across all independent conditions and biological replicates.  
 
For each biological replicate, a stock of 4.0e6 cells transduced with TPR-MET and TPR-METΔEx14 kinase 
domain variants was thawed and expanded for 48 hrs in the presence of IL-3 and puromycin to prevent 
pre-TKI selection to reach a density for screen seeding. Each batch of cells were grown to a density of 72 
million cells to be split into 12 dishes (15cm) for each selection condition. Cells were first washed with 
DPBS (Gibco) 3 times to remove IL-3 and antibiotics. Cells were resuspended in 90% RPMI and 10% FBS, 
counted, and split across 12 dishes (15cm) at a density of 6 million cells in 30mL. A total of 6 million cells 
from each replicate was harvested and pelleted at 250xg to serve as the “time point 0” pre-selection 
sample (T0).  
 
To begin selection of each replicate for each library, DMSO was added to the control plate (0.01% final) 
while the appropriate IC50 concentration of inhibitor was added to each respective plate (independent pool 
of cells). Three time points post T0 were collected for each library replicate and inhibitor condition for a total 
of 4 time points (T0, T1, T2, T3). Time points were harvested every two doublings (~72hr) across 12 days; 
6 million cells were harvested for each condition and pelleted at 250xg for 5min; 2.0e5 cells/ml were split at 
every time point and maintained either in DMSO or TKI at the appropriate concentration to maintain cellular 
growth rates under inhibitor selection.  
 
The gDNA of each time point sample was isolated with the TakaraBio NucleoSpin Blood QuickPure kit the 
same day the cells were harvested. gDNA was eluted in 50μl of elution buffer provided by the kit, using the 
high concentration and high yield elution manufacturer's protocol. Immediately after gDNA was isolated, 
5μg of gDNA was used for PCR amplification of the target MET KD gene to achieve the proper variant 
coverage. A 150μl PCR master mix was prepared for each sample using the TakaraBio PrimeStar GXL 
system according to the following recipe: 30μl 5X PrimeStar GXL buffer, 4.5μl 10μM forward primer (0.3uM 
final), 4.5μl 10μM reverse primer (0.3uM final), 5μg gDNA, 12μl 10mM dNTPs (2.5mM each NTP), 6μl GXL 
polymerase, nuclease free water to a final reaction volume of 150uL. The PCR master mix for each sample 
was split into three PCR tubes with 50μl volumes for each condition and amplified with the following 
thermocycler parameters: initial denaturation at 98°C for 30 s, followed by 24x cycles of denaturation at 
98°C for 10 s, annealing at 60°C for 15 s, extension at 68°C for 14 s, and a final extension at 68°C for 1 
min.  
 
PCR samples were stored at -20°C until all time points and replicates were harvested and amplified, so as 
to prepare all final samples for NGS together with the same handling and sequence them in the same pool 
to prevent sequencing bias.  
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Library preparation and Next-generation sequencing  
 
After all time points were selected, harvested, and PCR amplified, the target gene amplicon was isolated 
from gDNA by gel purification (Zymo), for a total of 222 samples. The entire 150μl PCR reaction for each 
sample was mixed with 1X NEB Purple Loading Dye (6X stock) and run on a 0.8% agarose, 1X TBE gel, at 
100 mA until there was clear ladder separation and distinct amplicon bands. The target amplicons were gel 
excised and purified with the Zymo Gel DNA Recovery kit. To remove excess agarose contamination, each 
sample was then further cleaned using the Zymo DNA Clean and Concentrator-5 kit and eluted in nuclease 
free water. Amplicon DNA concentrations were then determined by Qubit dsDNA HS assay (Invitrogen).  
 
Libraries were then prepared for deep sequencing using the Nextera XT DNA Library Prep kit in a 96-well 
plate format (Illumina). Manufacturer’s instructions were followed for each step: tagmentation, indexing and 
amplification, and clean up. Libraries were indexed using the IDT for Nextera Unique Dual Indexes Set A,B 
and C (Illumina). Then, indexed libraries were quantified using the Agilent TapeStation with HS D5000 
screen tape (Agilent) and reagents (Agilent). DNA concentrations were further confirmed with a Qubit 
dsDNA HS assay (Invitrogen). All samples were manually normalized and pooled at 10nM (MET and 
METΔEx14 in the same pool). The library was then paired-end sequenced (SP300) on two lanes of a 
NovaSeq6000.  
 
MET kinase domain variant analysis and scoring  

 
Enrich2 Scoring  
 
Our approach followed the one used for our initial MET DMS experiments (Estevam et al., 2024). 
Sequencing files were obtained from the sequencing core as demultiplexed fastq.gz files. The reads were 
first filtered for contamination and adapters using BBDuk, then the paired reads were error-corrected and 
merged with BBMerge and mapped to the reference sequence using BBMap (all from BBTools) (BBMap – 
Bushnell B. – sourceforge.net/projects/bbmap/). Read consequences were determined and counted 
using the AnalyzeSaturationMutagenesis tool in GATK v4 (van der Auwera and O’Connor, 2020). This is 
further processed by use of a script to filter out any variants that are not expected to be in the library (i.e., 
variants due to errors in sequencing, amplification, etc). The final processed count files were then analyzed 
with Enrich2, using weighted least squares and normalizing to wildtype sequences (NCBI SRA BioProject 
PRJNA1136906). 
 
Rosace scoring 
 
We used Rosace to analyze experiments of different conditions (DMSO or inhibitors) independently. In 
order to make the scores more comparable and interpretable across conditions, we modified the original 
Rosace software so that the output scores reflect the scale of cell doubling rate between every contiguous 
time point. For example, in an ideal experiment, if the wild-type cell doubling rate is 2 and its score is 0 by 
wild-type normalization, a score of -2 means that the cells are not growing (2^(2-2)) and a score of 1 means 
that the cells are doubling three times (increasing to 2^(2+1) times the original count) between every 
contiguous time point.  
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The input to Rosace is the filtered count files provided by the AnalyzeSaturationMutagenesis tool described 
in the above section. From here, we filtered variants by the mean count (>= 4) and the proportion of 0 
count across replicates and time points (<= 10/12) and before inhibitor selection at T0 (<= 2/3). Second, we 
normalized the counts using wild-type normalization with log2 transformation rather than the default natural 
log transformation to maintain the doubling rate scale. Finally, the normalized count is regressed on time 
intervals (t = {1, 2, 3, 4}) instead of the entire time span (t = {1/4, 2/4, 3/4, 4/4}) so that the resulting score 
reflects the growth rate between every contiguous time point. 
 
Statistical filtering and resistance classification 

 
In mathematical terms, we define the raw Rosace fitness scores of a mutation in DMSO as ��,���� and in a 
specific inhibitor condition as ��,��	. The scores of wildtype variants were normalized to 0, and we denote 
them as �
�,���� � 0 and �
�,��	 � 0. Growth rate of wild-type cells under different inhibitor selections 
were controlled to be identical (two doublings between every time point), so even though raw Rosace 
scores are computed independently per condition, ��,��	 are directly comparable between inhibitor 
conditions.  
 
Within one condition (DMSO or inhibitor), according to convention, we call variants with ��,��	 �  0 or 
��,����  � 0 “gain-of-function” and ��,��	 �  0 or ��,����  � 0 “loss-of-function”. With scores from multiple 
conditions, we presented three types of filtering strategies and produced the following classification: 
inhibitor-specific "resistance mutation", inhibitor-specific "resistance position", and "loss-of-function" and 
"gain-of-function" mutation in the context of growth rate differential with and without an inhibitor.  
 
We stress the different interpretations of “gain-of-function” and “loss-of-function” labels. Within one 
condition, this label is a general term to describe whether the function of protein is perturbed by the 
mutation. In contrast, the latter describes the difference with and without a given inhibitor, canceling effects 
of folding, expression, and stability and targeting only the inhibitor sensitivity function of the protein. 
 
A “resistance mutation” is specific to a certain inhibitor, and it satisfies the chained inequality ��,��	 �

�
�,��	 � �
�,���� �  ��,����. The first inequality specifies that the growth rate of a resistant mutation 
needs to be much larger than that of the wild-type in the presence of the inhibitor, and we used the one-
sided statistical test ��,��	  �  0.5 with the test statistics cutoff 0.1. The second inequality specifies that in 
DMSO, the growth rate of that mutation is equal to or lower than that of the wild-type, ensuring that the 
resistance behavior we see is specific to that inhibitor, not that it grows faster under every condition, and 
thus we used the effect size cutoff ��,���� �  0. 
 
A “resistance position” is a position that contains at least one “resistance mutation” to a certain inhibitor. 
 
In the context of growth rate differential with and without an inhibitor, a mutation is “gain-of-function” if it has 
a higher growth rate in the presence of the inhibitor than in its absence, which is one feature of “resistance 
mutation”. It is “loss-of-function” if it grows faster in the absence of the inhibitor. To label the mutations 
accordingly, we first computed a recentered Rosace score for each mutation under inhibitor selection 
��,��	  � ��,��	 
 ��,����, and define “gain-of-function” ��,��	 � 0.75 and “loss-of-function” ��,��	 � 0 in the 
differential sensitivity analysis. 
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Machine learning modeling 
 
Feature selection for the machine learning model 
 
Interpretable features of the MET sequence variants and inhibitors were carefully chosen to be 
incrementally added to a model. To extract structural features from inhibitor bound mutant complexes, we 
used Umol to predict the structures of all the MET kinase variants bound to each of the inhibitors (Bryant 
et al. 2023). The input to Umol is the MET kinase variant sequence, SMILES string of the inhibitor and list 
of residues lining the putative binding pocket. The predicted complexes (MET kinase bound to inhibitor) 
were relaxed using OpenMM (Eastman et al. 2013). To ensure the inhibitor in the predicted structures are 
in the same pose as compared to reference structures, we tethered the predicted inhibitor structure to the 
reference pose using a modified version of the script available in 
https://github.com/Discngine/rdkit_tethered_minimization. The reference pose for crizotinib, NVP-BVU972, 
Merestenib and Savolitinib were taken from the corresponding crystal structures in the PDB - 2WGJ, 3QTI, 
4EEV and 6SDE, while the reference pose for cabozantinib, capmantinib, glumetinib and glesatinib analog 
were taken from the structures docked using Autodock Vina (see Kinase domain structural analysis). 
Following this, the tethered inhibitors were redocked back to the predicted variant structures using 
Autodock Vina (Eberhardt et al. 2021). We also extracted features from wild-type MET kinase structures. 
The features could be broadly classified into four categories: inhibitor, stability, distance, conformation and 
inhibitor binding. Apart from these, ESM Log Likelihood Ratio was used as a feature in all models that we 
trained. Each of the feature categories that we explored and the rationale behind choosing them are 
explained below: 
 
(1) ESM Log Likelihood Ratio (ESM LLR) 
 
ESM1b is an unsupervised protein language model trained on a large set of protein sequences from 
UniProt that has successfully learned protein fitness patterns (Rives et al, 2021; Lin et al., 2023). By 
including a mask token at a given position in the sequence, the log-likelihoods of all amino acid 
substitutions can be extracted from the model. The ratio between ESM1b log-likelihoods for the mutant and 
wildtype amino acids provides a score that indicates the fitness of each variant in the mutational scan, with 
log-likelihood ratios having precedent as a variant predictor (Rives et al, 2021; Lin et al., 2023). The 
predictions used here were obtained using esm-variants webserver 
(https://huggingface.co/spaces/ntranoslab/esm_variants) (Brandes et al., 2023).  
 
 
(2) Inhibitor features: 

● Inhibitor molecular weight: We calculated the molecular weight of each inhibitor as a 
feature. 

● Ligand RMSD: We structurally superposed the predicted variant structure onto the 
corresponding wildtype structure and calculated the RMSD between the predicted, re-docked 
inhibitor and the reference inhibitor structure (Figure 8 - figure supplement 1J) 

 
(3) Stability features: 
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● ∆∆∆G and ∆∆G: Because inhibitor types are largely distinguished based on binding 

configuration, we reasoned that the difference in stability contributed by each mutation 

between given binding states (e.g. Type I bound state vs. a Type II bound state) could 

contribute to the success of the predictor. To compute the stability difference, we used 

structural representatives for type-I bound (2WGJ) and type II bound (4EEV) MET kinase and 

calculated the change in free energy (∆∆G) of every possible mutation at every position using 

ThermoMPNN (Dieckhaus et al., 2023). The difference in ∆∆G between type-I bound and 

type-II bound structures (∆∆∆G) for every variant was added as a feature to the XGBoost 

model to capture the difference in stabilization from the mutation in the Type I or Type II 

bound state (Figure 8 - figure supplement 1C). We also used the predicted ∆∆G score of the 

corresponding inhibitor type-bound structure directly as a feature. For instance, if the input 
data corresponds to a mutation to Alanine at position 1065 in the presence of glumetinib (a 

type I inhibitor), the difference between ∆∆G predicted for the 1065A variant for the type-I 

bound (2WGJ) and for type II bound (4EEV) structure is used as a feature (∆∆∆G). The ∆∆G 

predicted for the 1065A variant for the type-I bound (2WGJ) structure is also used as a 
feature. 

 
(4) Distance features: 
 

● Residue to ATP distance: Proximity to the ATP-binding site indicates the ability of the given 
residue to influence inhibitor binding given that Type I and Type II inhibitors are ATP 
competitive. To include this feature, the distance between C-alpha residue atoms and the 
centroid of bound ATP in a representative structure (PDB 3DKC) was calculated and the 
distance corresponding to each position was added as a feature (Figure 8 - figure 
supplement 1D).  

● Inhibitor distance: This is the shortest distance between the inhibitor and mutated residue in 
the predicted variant-inhibitor complexes. (Figure 8 - figure supplement 1G). 

 
(5) Conformational features: 
 

● MET crystal structure RMSF: The extent of flexibility at the mutation position could be 
significantly affected by the mutation, which in turn can affect the function of the variant. To 
account for this, we utilized the structural information abundantly available for MET kinases in 
PDB. We structurally aligned all crystal structures of human MET kinases with resolution 
better than 3� (81 structures) using mTM-align (Dong et al., 2018) and calculated the Root 
Mean Squared Fluctuation at every residue position using Prody (Zhang et al., 2021) (Figure 
8 - figure supplement 1F). 
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● Residue RMSD: We structurally superposed the predicted variant structure onto the 
corresponding wildtype structure and calculated the RMSD between the mutant and wildtype 
residue at the mutation position (Figure 8 - figure supplement 1I) 
 

(6) Inhibitor Binding features:  
● RF-Score: To quantify the binding strength between the inhibitor and the variant protein 

structure, we calculated the RF-score, which is a random forest-based approach to predict 
protein-ligand binding affinity (Wójcikowski et al., 2017) 

● Pocket volume, hydrophobicity score and polarity score: Changes to the binding pocket 
in terms of volume and hydrophobicity due to mutations could affect the interaction and 
binding between the inhibitor and variant. These effects were brought in as features into the 
model by calculating the binding pocket volume, hydrophobicity score and polarity score of the 
binding pocket using fpocket (Le Guilloux et al., 2009) (Figure 8 - figure supplement 1H). 

This category of features are not part of the best performing model shown in Figure 8. 
 
Apart from these categories, we calculated the difference in volume between the wildtype and mutated 

residue at a given position and added it as a feature (∆Volume) since residue volume changes upon 

mutation could contribute to steric hindrance (Figure 8 - figure supplement 1E). This feature is also not 
part of the best performing model. 
 
This led to a total of 14 interpretable features to evaluate our models on. We trained and tested a total of 
8192 models by considering all possible numbers and combinations of these features (keeping ESM LLR 
as a constant feature in all models). The hyperparameter tuning, cross-validation, training and testing of 
each of these models are described in detail below.  
 
Training and Selecting the Predictive Model 
 
An XGBoost regressor model, which is a gradient boosting method based on decision trees as the base 
learner (Chen and Guestrin, 2016), was used to predict DMS fitness scores in presence of inhibitors. 
Given the relatively small dataset we are using here, the models are prone to overfitting. Hence, we used 
monotonic constraints on features that had a monotonic relationship with the experimental fitness scores. 

ESM LLR score and ∆∆G have a positive and negative correlation with the experimental fitness scores 

respectively (Figure 8 - figure supplement 1A). Therefore, ESM LLR was constrained positively and ∆∆G 

was constrained negatively by assigning 1 and -1 respectively to the ‘monotone_constraints’ parameter in 
Python XGBoost. This ensures that the monotonic relationship between the input feature and the target 
value is maintained during predictions.To further prevent overfitting, we binned the values of the 12 
remaining into four or five bins and assigned the median of the bin as their value. The bins were chosen 
such that one or two bins would contain the majority of feature values. The distribution of these twelve 
features are shown in Figure 8 - figure supplement 1B. The bins of each feature are shown as red 
dashed lines on the histograms. Model performance was evaluated using Pearson’s R and mean squared 
error (MSE).  
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Experimental fitness scores of MET variants in the presence of DMSO and AMG458 were ignored in model 
training and testing since having just one set of data for a type I ½ inhibitor and DMSO leads to learning by 
simply memorizing the inhibitor type, without generalizability. The remaining dataset was split into training 
and test sets to further avoid overfitting (Figure 8A). The following data points were held out for testing - 
(a) all mutations in the presence of one type I (crizotinib) and one type II (glesatinib analog) inhibitor, (b) 
20% of randomly chosen positions (columns) and (c) all mutations in two randomly selected amino acids 
(rows) (e.g. all mutations to Phe, Ser). After splitting the dataset into train and test sets, the train set was 
used for XGBoost hyperparameter tuning and cross-validation. For tuning the hyperparameters of each of 
the XGBoost models, we held out 20% of randomly sampled data points in the training set and used the 
remaining 80% data for Bayesian hyperparameter optimization of the models with Optuna (Akiba et al., 
2019), with an objective to minimize the mean squared error between the fitness predictions on 20% held 
out split and the corresponding experimental fitness scores. The following hyperparameters were sampled 
and tuned: type of booster (booster - gbtree or dart), maximum tree depth (max_depth), number of trees 
(n_estimators), learning rate (eta), minimum leaf split loss (gamma), subsample ratio of columns when 
constructing each tree (colsample_bytree), L1 and L2 regularization terms (alpha and beta) and tree 
growth policy (grow_policy - depthwise or lossguide). After identifying the best combination of 
hyperparameters for each of the models, we performed 10-fold cross validation (with re-sampling) of the 
models on the full training set. The training set consists of data points corresponding to 230 positions and 
18 amino acids. We split these into 10 parts such that each part corresponds to data from 23 positions and 
2 amino acids. Then, at each of 10 iterations of cross-validation, models were trained on 9 of 10 parts (207 
positions and 16 amino acids) and evaluated on the 1 held out part (23 positions and 2 amino acids). 
Through this protocol we ensure that we evaluate performance of the models with different subsets of 
positions and amino acids. The average Pearson correlation and mean squared error of the models from 
these 10 iterations were calculated and the best performing model out of 8192 models was chosen as the 
one with the highest cross-validation correlation. The final XGBoost models were obtained by training on 
the full training set and also used to obtain the fitness score predictions for the validation and test sets. These 
predictions were used to calculate the inhibitor-wise correlations shown in Figure 8B. 
 
Kinase domain structural analysis  
 
Unless otherwise stated, all structural analysis was performed on PyMOL. Structural mapping incorporated 
tools from the Bio3D bioinformatics package in R (Grant et al., 2006). Inhibitors that lacked an 
experimental crystal structure were docked into a representative type I (2WGJ) or type II (4EEV) structure 
with AutoDock Vina (Eberhardt et al., 2021). Existing ligands in both the structures were removed in silico 
and the proteins prepared for docking using AutoDockTools by adding polar hydrogens and Kollman 
charges. The inhibitors were also prepared using AutoDockTools by adding polar hydrogens and charges 
and identifying rotatable torsions. A grid box which dictates the search space for the docking tool was 
defined approximately around the region where the existing ligands in 2WGJ and 4EEV were bound. The 
energy range and exhaustiveness of docking was set to 3 and 8 respectively. AutoDock Vina was made to 
output 5 modes for each ligand. Capmatenib and glumetinib (type I inhibitors) were docked on to 2WGJ 
and glesatinib analog and cabozantinib (type II inhibitors) were docked on to 4EEV.  
Acknowledgements  

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 5, 2024. ; https://doi.org/10.1101/2024.07.16.603579doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.16.603579
http://creativecommons.org/licenses/by/4.0/


 

Sequencing was performed at the UCSF CAT, supported by UCSF PBBR, RRP IMIA, and NIH 
1S10OD028511-01 grants. This work was supported by NIH CA239604 to EAC, NJ, JSF; HHMI Hanna 
Gray Fellowship and UCSF QBI Fellow program to WCM; NIH R01LM013434 to JAC; NIH GM145238 and 
the UCSF Program for Breakthrough Biomedical Research, funded in part by the Sandler Foundation, to 
JSF.  
 

Author contributions  
Conceptualization JSF, NJ, EAC; Methodology, GOE, EML, JR, CBM, AR, KC; Formal analysis, GOE, AR; 
Writing – Original Draft, GOE and JSF; Writing – Editing, GOE, JSF, EML, NJ, EAC; Validation, GOE, 
EML,; Funding Acquisition, JSF, NJ, EAC; Resources, JSF, NJ, EA, WCM, HP; Supervision, JSF, NJ, 
EAC, WMC, EML, HP, JAC. 
 

Competing Interests 
 

JSF is a consultant for, has equity in, and receives research support from Relay Therapeutics and is a 
consultant for Octant Bio. N.J. is a founder of Rezo Therapeutics and a shareholder of Rezo Therapeutics, 
Sudo Therapeutics, and type6 Therapeutics. N.J. is a SAB member of Sudo Therapeutics, type6 
Therapeutic and NIBR Oncology. The Jura laboratory has received sponsored research support from 
Genentech, Rezo Therapeutics and type6 Therapeutics. E.A.C. is a consultant at IHP Therapeutics, Valar 
Labs, Tatara Therapeutics and Pear Diagnostics, reports receiving commercial research grants from Pfizer, 
and has stock ownership in Tatara Therapeutics, HDT Bio, Clara Health, Aqtual, and Guardant Health. 
 
Code and data availability 

 
The sequencing data has been deposited at the NCBI SRA (BioProject PRJNA1136906). Original data 
files, analysis, and source code is available at https://github.com/fraser-lab/MET_kinase_Inhibitor_DMS  
 

References  
 
Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019). Optuna: A Next-generation 
Hyperparameter Optimization Framework. Proceedings of the 25th ACM SIGKDD International Conference 
on Knowledge Discovery & Data Mining, 2623–2631. https://doi.org/10.48550/arXiv.1907.10902 
 
An, L., Wang, Y., Wu, G., Wang, Z., Shi, Z., Liu, C., Wang, C., Yi, M., Niu, C., Duan, S., Li, X., Tang, W., 
Wu, K., Chen, S., & Xu, H. (2023). Defining the sensitivity landscape of EGFR variants to tyrosine kinase 
inhibitors. Translational Research, 255, 14–25. https://doi.org/10.1016/j.trsl.2022.11.002 
 
Arter, C., Trask, L., Ward, S., Yeoh, S., & Bayliss, R. (2022). Structural features of the protein kinase 
domain and targeted binding by small-molecule inhibitors. Journal of Biological Chemistry, 298(8), 102247. 
https://doi.org/10.1016/j.jbc.2022.102247 
 
Attwood, M. M., Fabbro, D., Sokolov, A. V., Knapp, S., & Schiöth, H. B. (2021). Trends in kinase drug 
discovery: Targets, indications and inhibitor design. Nature Reviews Drug Discovery, 20(11), Article 11. 
https://doi.org/10.1038/s41573-021-00252-y 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 5, 2024. ; https://doi.org/10.1101/2024.07.16.603579doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.16.603579
http://creativecommons.org/licenses/by/4.0/


 

 
Auwera, G. van der, & O’Connor, B. D. (2020). Genomics in the Cloud: Using Docker, GATK, and WDL in 
Terra. O’Reilly Media, Incorporated. 
 
Bahcall, M., Paweletz, C. P., Kuang, Y., Taus, L. J., Sim, T., Kim, N. D., Dholakia, K. H., Lau, C. J., 
Gokhale, P. C., Chopade, P. R., Hong, F., Wei, Z., Köhler, J., Kirschmeier, P. T., Guo, J., Guo, S., Wang, 
S., & Jänne, P. A. (2022). Combination of Type I and Type II MET Tyrosine Kinase Inhibitors as 
Therapeutic Approach to Prevent Resistance. Molecular Cancer Therapeutics, 21(2), 322–335. 
https://doi.org/10.1158/1535-7163.MCT-21-0344 
 
Bahcall, M., Sim, T., Paweletz, C. P., Patel, J. D., Alden, R. S., Kuang, Y., Sacher, A. G., Kim, N. D., 
Lydon, C. A., Awad, M. M., Jaklitsch, M. T., Sholl, L. M., Jänne, P. A., & Oxnard, G. R. (2016). Acquired 
MET D1228V Mutation and Resistance to MET Inhibition in Lung Cancer. Cancer Discovery, 6(12), 1334–
1341. https://doi.org/10.1158/2159-8290.CD-16-0686 
 
Basilico, C., Pennacchietti, S., Vigna, E., Chiriaco, C., Arena, S., Bardelli, A., Valdembri, D., Serini, G., & 
Michieli, P. (2013). Tivantinib (ARQ197) Displays Cytotoxic Activity That Is Independent of Its Ability to 
Bind MET. Clinical Cancer Research, 19(9), 2381–2392. https://doi.org/10.1158/1078-0432.CCR-12-3459 
 
Brandes, N., Goldman, G., Wang, C. H., Ye, C. J., & Ntranos, V. (2023). Genome-wide prediction of 
disease variant effects with a deep protein language model. Nature Genetics, 55(9), Article 9. 
https://doi.org/10.1038/s41588-023-01465-0 
 
Brazel, D., Zhang, S., & Nagasaka, M. (2022). Spotlight on Tepotinib and Capmatinib for Non-Small Cell 
Lung Cancer with MET Exon 14 Skipping Mutation. Lung Cancer: Targets and Therapy, 13, 33–45. 
https://doi.org/10.2147/LCTT.S360574 
 
Brenan, L., Andreev, A., Cohen, O., Pantel, S., Kamburov, A., Cacchiarelli, D., Persky, N. S., Zhu, C., 
Bagul, M., Goetz, E. M., Burgin, A. B., Garraway, L. A., Getz, G., Mikkelsen, T. S., Piccioni, F., Root, D. E., 
& Johannessen, C. M. (2016). Phenotypic Characterization of a Comprehensive Set of MAPK1/ERK2 
Missense Mutants. Cell Reports, 17(4), 1171–1183. https://doi.org/10.1016/j.celrep.2016.09.061 
 
Bryant, P., Kelkar, A., Guljas, A., Clementi, C., & Noé, F. (2023). Structure prediction of protein-ligand 
complexes from sequence information with Umol (p. 2023.11.03.565471). bioRxiv. 
https://doi.org/10.1101/2023.11.03.565471 
 
Cai, B., Li, X., Huang, X., Ma, T., Qu, B., Yu, W., Yang, W., Zhang, P., Chen, J., & Liu, F. (2021). Case 
Report: Sequential Combination Targeted Therapy With Type I and II MET Inhibitors in a Metastatic EGFR-
Mutated, MET-Amplified NSCLC Patient With Acquired MET Y1230H Mutation. Frontiers in Oncology, 11. 
https://www.frontiersin.org/articles/10.3389/fonc.2021.738832 
 
Cerami, E., Gao, J., Dogrusoz, U., Gross, B. E., Sumer, S. O., Aksoy, B. A., Jacobsen, A., Byrne, C. J., 
Heuer, M. L., Larsson, E., Antipin, Y., Reva, B., Goldberg, A. P., Sander, C., & Schultz, N. (2012). The cBio 
Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics Data. 
Cancer Discovery, 2(5), 401–404. https://doi.org/10.1158/2159-8290.CD-12-0095 
 
Chakraborty, S., Ahler, E., Simon, J. J., Fang, L., Potter, Z. E., Sitko, K. A., Stephany, J. J., Guttman, M., 
Fowler, D. M., & Maly, D. J. (2023). Profiling of drug resistance in Src kinase at scale uncovers a regulatory 
network coupling autoinhibition and catalytic domain dynamics. Cell Chemical Biology. 
https://doi.org/10.1016/j.chembiol.2023.08.005 
 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 5, 2024. ; https://doi.org/10.1101/2024.07.16.603579doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.16.603579
http://creativecommons.org/licenses/by/4.0/


 

Chakravarty, D., Gao, J., Phillips, S., Kundra, R., Zhang, H., Wang, J., Rudolph, J. E., Yaeger, R., 
Soumerai, T., Nissan, M. H., Chang, M. T., Chandarlapaty, S., Traina, T. A., Paik, P. K., Ho, A. L., 
Hantash, F. M., Grupe, A., Baxi, S. S., Callahan, M. K., … Schultz, N. (2017). OncoKB: A Precision 
Oncology Knowledge Base. JCO Precision Oncology, 1, 1–16. https://doi.org/10.1200/PO.17.00011 
Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd 
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794. 
https://doi.org/10.1145/2939672.2939785 
 
Cohen, P., Cross, D., & Jänne, P. A. (2021). Kinase drug discovery 20 years after imatinib: Progress and 
future directions. Nature Reviews Drug Discovery, 20(7), Article 7. https://doi.org/10.1038/s41573-021-
00195-4 
 
Cooper, C. S., Park, M., Blair, D. G., Tainsky, M. A., Huebner, K., Croce, C. M., & Vande Woude, G. F. 
(1984). Molecular cloning of a new transforming gene from a chemically transformed human cell line. 
Nature, 311(5981), 29–33. https://doi.org/10.1038/311029a0  
 
Cui, J. J. (2014). Targeting Receptor Tyrosine Kinase MET in Cancer: Small Molecule Inhibitors and 
Clinical Progress. Journal of Medicinal Chemistry, 57(11), 4427–4453. https://doi.org/10.1021/jm401427c 
 
Cui, J. J., Tran-Dubé, M., Shen, H., Nambu, M., Kung, P.-P., Pairish, M., Jia, L., Meng, J., Funk, L., 
Botrous, I., McTigue, M., Grodsky, N., Ryan, K., Padrique, E., Alton, G., Timofeevski, S., Yamazaki, S., Li, 
Q., Zou, H., … Edwards, M. P. (2011). Structure Based Drug Design of Crizotinib (PF-02341066), a Potent 
and Selective Dual Inhibitor of Mesenchymal–Epithelial Transition Factor (c-MET) Kinase and Anaplastic 
Lymphoma Kinase (ALK). Journal of Medicinal Chemistry, 54(18), 6342–6363. 
https://doi.org/10.1021/jm2007613 
 
Daley, G. Q., & Baltimore, D. (1988). Transformation of an interleukin 3-dependent hematopoietic cell line 
by the chronic myelogenous leukemia-specific P210bcr/abl protein. Proceedings of the National Academy 
of Sciences, 85(23), 9312–9316. https://doi.org/10.1073/pnas.85.23.9312  
 
Dieckhaus, H., Brocidiacono, M., Randolph, N., & Kuhlman, B. (2023). Transfer learning to leverage larger 
datasets for improved prediction of protein stability changes (p. 2023.07.27.550881). bioRxiv. 
https://doi.org/10.1101/2023.07.27.550881 
 
Diedrich, K., Krause, B., Berg, O., & Rarey, M. (2023). PoseEdit: Enhanced ligand binding mode 
communication by interactive 2D diagrams. Journal of Computer-Aided Molecular Design, 37(10), 491–
503. https://doi.org/10.1007/s10822-023-00522-4 
 
Dong, R., Peng, Z., Zhang, Y., & Yang, J. (2018). mTM-align: An algorithm for fast and accurate multiple 
protein structure alignment. Bioinformatics, 34(10), 1719–1725. 
https://doi.org/10.1093/bioinformatics/btx828 
 
Dorighi, K. M., Zhu, A., Fortin, J.-P., Lo, J. H.-H., Sudhamsu, J., Wendorff, T. J., Durinck, S., Callow, M., 
Foster, S. A., & Haley, B. (2024). Accelerated drug-resistant variant discovery with an enhanced, scalable 
mutagenic base editor platform. Cell Reports, 43(6). https://doi.org/10.1016/j.celrep.2024.114313 
 
Duplaquet, L., Kherrouche, Z., Baldacci, S., Jamme, P., Cortot, A. B., Copin, M.-C., & Tulasne, D. (2018). 
The multiple paths towards MET receptor addiction in cancer. Oncogene, 37(24), 3200–3215. 
https://doi.org/10.1038/s41388-018-0185-4 
 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 5, 2024. ; https://doi.org/10.1101/2024.07.16.603579doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.16.603579
http://creativecommons.org/licenses/by/4.0/


 

Eastman, P., Friedrichs, M. S., Chodera, J. D., Radmer, R. J., Bruns, C. M., Ku, J. P., Beauchamp, K. A., 
Lane, T. J., Wang, L.-P., Shukla, D., Tye, T., Houston, M., Stich, T., Klein, C., Shirts, M. R., & Pande, V. S. 
(2013). OpenMM 4: A Reusable, Extensible, Hardware Independent Library for High Performance 
Molecular Simulation. Journal of Chemical Theory and Computation, 9(1), 461–469. 
https://doi.org/10.1021/ct300857j 
 
Eathiraj, S., Palma, R., Volckova, E., Hirschi, M., France, D. S., Ashwell, M. A., & Chan, T. C. K. (2011). 
Discovery of a Novel Mode of Protein Kinase Inhibition Characterized by the Mechanism of Inhibition of 
Human Mesenchymal-epithelial Transition Factor (c-Met) Protein Autophosphorylation by ARQ 197. 
Journal of Biological Chemistry, 286(23), 20666–20676. https://doi.org/10.1074/jbc.M110.213801 
 
Eberhardt, J., Santos-Martins, D., Tillack, A. F., & Forli, S. (2021). AutoDock Vina 1.2.0: New Docking 
Methods, Expanded Force Field, and Python Bindings. Journal of Chemical Information and Modeling, 
61(8), 3891–3898. https://doi.org/10.1021/acs.jcim.1c00203 
 
Elizabeth A. Tovar, & Graveel, C. R. (2017). MET in human cancer: Germline and somatic mutations. 
Annals of Translational Medicine, 5(10), 205–205. https://doi.org/10.21037/atm.2017.03.64 
 
Estevam, G. O., Linossi, E. M., Macdonald, C. B., Espinoza, C. A., Michaud, J. M., Coyote-Maestas, W., 
Collisson, E. A., Jura, N., & Fraser, J. S. (2024). Conserved regulatory motifs in the juxtamembrane 
domain and kinase N-lobe revealed through deep mutational scanning of the MET receptor tyrosine kinase 
domain (p. 2023.08.03.551866). bioRxiv. https://doi.org/10.1101/2023.08.03.551866 
 
Fernandes, M., Jamme, P., Cortot, A. B., Kherrouche, Z., & Tulasne, D. (2021). When the MET receptor 
kicks in to resist targeted therapies. Oncogene, 40(24), 4061–4078. https://doi.org/10.1038/s41388-021-
01835-0 
 
Frampton, G. M., Ali, S. M., Rosenzweig, M., Chmielecki, J., Lu, X., Bauer, T. M., Akimov, M., Bufill, J. A., 
Lee, C., Jentz, D., Hoover, R., Ou, S.-H. I., Salgia, R., Brennan, T., Chalmers, Z. R., Jaeger, S., Huang, A., 
Elvin, J. A., Erlich, R., … Miller, V. A. (2015). Activation of MET via Diverse Exon 14 Splicing Alterations 
Occurs in Multiple Tumor Types and Confers Clinical Sensitivity to MET Inhibitors. Cancer Discovery, 5(8), 
850–859. https://doi.org/10.1158/2159-8290.CD-15-0285 
 
Fujino, T., Kobayashi, Y., Suda, K., Koga, T., Nishino, M., Ohara, S., Chiba, M., Shimoji, M., Tomizawa, K., 
Takemoto, T., & Mitsudomi, T. (2019). Sensitivity and Resistance of MET Exon 14 Mutations in Lung 
Cancer to Eight MET Tyrosine Kinase Inhibitors In Vitro. Journal of Thoracic Oncology, 14(10), 1753–1765. 
https://doi.org/10.1016/j.jtho.2019.06.023 
 
Fujino, T., Suda, K., Koga, T., Hamada, A., Ohara, S., Chiba, M., Shimoji, M., Takemoto, T., Soh, J., & 
Mitsudomi, T. (2022). Foretinib can overcome common on-target resistance mutations after 
capmatinib/tepotinib treatment in NSCLCs with MET exon 14 skipping mutation. Journal of Hematology & 
Oncology, 15(1), 79. https://doi.org/10.1186/s13045-022-01299-z 
 
Fujino, T., Suda, K., & Mitsudomi, T. (2021). Lung Cancer with MET exon 14 Skipping Mutation: Genetic 
Feature, Current Treatments, and Future Challenges. Lung Cancer: Targets and Therapy, 12, 35–50. 
https://doi.org/10.2147/LCTT.S269307 
 
Grant, B. J., Rodrigues, A. P. C., ElSawy, K. M., McCammon, J. A., & Caves, L. S. D. (2006). Bio3d: An R 
package for the comparative analysis of protein structures. Bioinformatics, 22(21), 2695–2696. 
https://doi.org/10.1093/bioinformatics/btl461 
 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 5, 2024. ; https://doi.org/10.1101/2024.07.16.603579doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.16.603579
http://creativecommons.org/licenses/by/4.0/


 

Guérin, C. M., Vinchent, A., Fernandes, M., Damour, I., Laratte, A., Tellier, R., Estevam, G. O., Meneboo, 
J.-P., Villenet, C., Descarpentries, C., Fraser, J. S., Figeac, M., Cortot, A. B., Rouleau, E., & Tulasne, D. 
(2023). MET variants with activating N-lobe mutations identified in hereditary papillary renal cell 
carcinomas still require ligand stimulation (p. 2023.11.03.565283). bioRxiv. 
https://doi.org/10.1101/2023.11.03.565283 
 
Jones, E. M., Lubock, N. B., Venkatakrishnan, A., Wang, J., Tseng, A. M., Paggi, J. M., Latorraca, N. R., 
Cancilla, D., Satyadi, M., Davis, J. E., Babu, M. M., Dror, R. O., & Kosuri, S. (2020). Structural and 
functional characterization of G protein–coupled receptors with deep mutational scanning. eLife, 9, e54895. 
https://doi.org/10.7554/eLife.54895 
 
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, 
R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-
Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure 
prediction with AlphaFold. Nature, 596(7873), Article 7873. https://doi.org/10.1038/s41586-021-03819-2 
 
Katayama, R., Aoyama, A., Yamori, T., Qi, J., Oh-hara, T., Song, Y., Engelman, J. A., & Fujita, N. (2013). 
Cytotoxic Activity of Tivantinib (ARQ 197) Is Not Due Solely to c-MET Inhibition. Cancer Research, 73(10), 
3087–3096. https://doi.org/10.1158/0008-5472.CAN-12-3256 
 
Koga, T., Suda, K., & Mitsudomi, T. (2022). Utility of the Ba/F3 cell system for exploring on-target 
mechanisms of resistance to targeted therapies for lung cancer. Cancer Science, 113(3), 815–827. 
https://doi.org/10.1111/cas.15263  
 
Le Guilloux, V., Schmidtke, P., & Tuffery, P. (2009). Fpocket: An open source platform for ligand pocket 
detection. BMC Bioinformatics, 10(1), 168. https://doi.org/10.1186/1471-2105-10-168 
 
Li, A., Yang, J., Zhang, X., Zhang, Z., Su, J., Gou, L., Bai, Y., Zhou, Q., Yang, Z., Han-Zhang, H., Zhong, 
W.-Z., Chuai, S., Zhang, Q., Xie, Z., Gao, H., Chen, H., Wang, Z., Wang, Z., Yang, X., … Wu, Y. (2017). 
Acquired MET Y1248H and D1246N Mutations Mediate Resistance to MET Inhibitors in Non–Small Cell 
Lung Cancer. Clinical Cancer Research, 23(16), 4929–4937. https://doi.org/10.1158/1078-0432.CCR-16-
3273 
 
Lin, A., Giuliano, C. J., Palladino, A., John, K. M., Abramowicz, C., Yuan, M. L., Sausville, E. L., Lukow, D. 
A., Liu, L., Chait, A. R., Galluzzo, Z. C., Tucker, C., & Sheltzer, J. M. (2019). Off-target toxicity is a common 
mechanism of action of cancer drugs undergoing clinical trials. Science Translational Medicine, 11(509), 
eaaw8412. https://doi.org/10.1126/scitranslmed.aaw8412 
 
Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., Smetanin, N., Verkuil, R., Kabeli, O., Shmueli, Y., dos 
Santos Costa, A., Fazel-Zarandi, M., Sercu, T., Candido, S., & Rives, A. (2023). Evolutionary-scale 
prediction of atomic-level protein structure with a language model. Science, 379(6637), 1123–1130. 
https://doi.org/10.1126/science.ade2574 
 
Lu, X., Peled, N., Greer, J., Wu, W., Choi, P., Berger, A. H., Wong, S., Jen, K.-Y., Seo, Y., Hann, B., 
Brooks, A., Meyerson, M., & Collisson, E. A. (2017). MET Exon 14 Mutation Encodes an Actionable 
Therapeutic Target in Lung Adenocarcinoma. Cancer Research, 77(16), 4498–4505. 
https://doi.org/10.1158/0008-5472.CAN-16-1944 
 
Ma, P. C., Kijima, T., Maulik, G., Fox, E. A., Sattler, M., Griffin, J. D., Johnson, B. E., & Salgia, R. (2003). c-
MET Mutational Analysis in Small Cell Lung Cancer: Novel Juxtamembrane Domain Mutations Regulating 
Cytoskeletal Functions1. Cancer Research, 63(19), 6272–6281.  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 5, 2024. ; https://doi.org/10.1101/2024.07.16.603579doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.16.603579
http://creativecommons.org/licenses/by/4.0/


 

 
Mak, H. H. L., Peschard, P., Lin, T., Naujokas, M. A., Zuo, D., & Park, M. (2007). Oncogenic activation of 
the Met receptor tyrosine kinase fusion protein, Tpr–Met, involves exclusion from the endocytic degradative 
pathway. Oncogene, 26(51), 7213–7221. https://doi.org/10.1038/sj.onc.1210522 
 
Meier, J., Rao, R., Verkuil, R., Liu, J., Sercu, T., & Rives, A. (2021). Language models enable zero-shot 
prediction of the effects of mutations on protein function (p. 2021.07.09.450648). bioRxiv. 
https://doi.org/10.1101/2021.07.09.450648 
 
Michaelides, I. N., Collie, G. W., Börjesson, U., Vasalou, C., Alkhatib, O., Barlind, L., Cheung, T., Dale, I. 
L., Embrey, K. J., Hennessy, E. J., Khurana, P., Koh, C. M., Lamb, M. L., Liu, J., Moss, T. A., O’Neill, D. J., 
Phillips, C., Shaw, J., Snijder, A., … Yang, W. (2023). Discovery and Optimization of the First ATP 
Competitive Type-III c-MET Inhibitor. Journal of Medicinal Chemistry, 66(13), 8782–8807. 
https://doi.org/10.1021/acs.jmedchem.3c00401 
 
Michieli, P., & Di Nicolantonio, F. (2013). Tivantinib—A cytotoxic drug in MET inhibitor’s clothes? Nature 
Reviews Clinical Oncology, 10(7), Article 7. https://doi.org/10.1038/nrclinonc.2013.86 
 
Mingione, V. R., Paung, Y., Outhwaite, I. R., & Seeliger, M. A. (2023). Allosteric regulation and inhibition of 
protein kinases. Biochemical Society Transactions, 51(1), 373–385. https://doi.org/10.1042/BST20220940 
 
Munshi, N., Jeay, S., Li, Y., Chen, C.-R., France, D. S., Ashwell, M. A., Hill, J., Moussa, M. M., Leggett, D. 
S., & Li, C. J. (2010). ARQ 197, a Novel and Selective Inhibitor of the Human c-Met Receptor Tyrosine 
Kinase with Antitumor Activity. Molecular Cancer Therapeutics, 9(6), 1544–1553. 
https://doi.org/10.1158/1535-7163.MCT-09-1173 
 
Pal, K., Bandyopadhyay, A., Zhou, X. E., Xu, Q., Marciano, D. P., Brunzelle, J. S., Yerrum, S., Griffin, P. 
R., Vande Woude, G., Melcher, K., & Xu, H. E. (2017). Structural Basis of TPR-Mediated Oligomerization 
and Activation of Oncogenic Fusion Kinases. Structure, 25(6), 867-877.e3. 
https://doi.org/10.1016/j.str.2017.04.015 
 
Park, M., Dean, M., Cooper, C. S., Schmidt, M., O’Brien, S. J., Blair, D. G., & Vande Woude, G. F. (1986). 
Mechanism of met oncogene activation. Cell, 45(6), 895–904. https://doi.org/10.1016/0092-8674(86)90564-
7 
 
Pecci, F., Nakazawa, S., Ricciuti, B., Harada, G., Lee, J. K., Alessi, J. V., Barrichello, A., Vaz, V. R., 
Lamberti, G., Di Federico, A., Gandhi, M. M., Gazgalis, D., Feng, W. W., Jiang, J., Baldacci, S., Locquet, 
M.-A., Gottlieb, F. H., Chen, M. F., Lee, E., … Awad, M. M. (2024). Activating Point Mutations in the MET 
Kinase Domain Represent a Unique Molecular Subset of Lung Cancer and Other Malignancies Targetable 
with MET Inhibitors. Cancer Discovery, OF1–OF17. https://doi.org/10.1158/2159-8290.CD-23-1217  
 
Persky, N. S., Hernandez, D., Do Carmo, M., Brenan, L., Cohen, O., Kitajima, S., Nayar, U., Walker, A., 
Pantel, S., Lee, Y., Cordova, J., Sathappa, M., Zhu, C., Hayes, T. K., Ram, P., Pancholi, P., Mikkelsen, T. 
S., Barbie, D. A., Yang, X., … Johannessen, C. M. (2020). Defining the landscape of ATP-competitive 
inhibitor resistance residues in protein kinases. Nature Structural & Molecular Biology, 27(1), 92–104. 
https://doi.org/10.1038/s41594-019-0358-z 
 
Peschard, P., Fournier, T. M., Lamorte, L., Naujokas, M. A., Band, H., Langdon, W. Y., & Park, M. (2001). 
Mutation of the c-Cbl TKB Domain Binding Site on the Met Receptor Tyrosine Kinase Converts It into a 
Transforming Protein. Molecular Cell, 8(5), 995–1004. https://doi.org/10.1016/S1097-2765(01)00378-1 
 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 5, 2024. ; https://doi.org/10.1101/2024.07.16.603579doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.16.603579
http://creativecommons.org/licenses/by/4.0/


 

Rao, J., Xin, R., Macdonald, C., Howard, M. K., Estevam, G. O., Yee, S. W., Wang, M., Fraser, J. S., 
Coyote-Maestas, W., & Pimentel, H. (2024). Rosace: A robust deep mutational scanning analysis 
framework employing position and mean-variance shrinkage. Genome Biology, 25(1), 138. 
https://doi.org/10.1186/s13059-024-03279-7 
 
Recondo, G., Bahcall, M., Spurr, L. F., Che, J., Ricciuti, B., Leonardi, G. C., Lo, Y.-C., Li, Y. Y., Lamberti, 
G., Nguyen, T., Milan, M. S. D., Venkatraman, D., Umeton, R., Paweletz, C. P., Albayrak, A., Cherniack, A. 
D., Price, K. S., Fairclough, S. R., Nishino, M., … Awad, M. M. (2020). Molecular Mechanisms of Acquired 
Resistance to MET Tyrosine Kinase Inhibitors in Patients with MET Exon 14–Mutant NSCLC. Clinical 
Cancer Research, 26(11), 2615–2625. https://doi.org/10.1158/1078-0432.CCR-19-3608 
 
Recondo, G., Che, J., Jänne, P. A., & Awad, M. M. (2020). Targeting MET Dysregulation in Cancer. 
Cancer Discovery, 10(7), 922–934. https://doi.org/10.1158/2159-8290.CD-19-1446 
 
Recondo, G., Facchinetti, F., Olaussen, K. A., Besse, B., & Friboulet, L. (2018). Making the first move in 
EGFR-driven or ALK-driven NSCLC: First-generation or next-generation TKI? Nature Reviews Clinical 
Oncology, 15(11), 694–708. https://doi.org/10.1038/s41571-018-0081-4 
 
Rives, A., Meier, J., Sercu, T., Goyal, S., Lin, Z., Liu, J., Guo, D., Ott, M., Zitnick, C. L., Ma, J., & Fergus, R. 
(2021). Biological structure and function emerge from scaling unsupervised learning to 250 million protein 
sequences. Proceedings of the National Academy of Sciences, 118(15), e2016239118. 
https://doi.org/10.1073/pnas.2016239118 
 
Rodrigues, G. A., & Park, M. (1993). Dimerization mediated through a leucine zipper activates the 
oncogenic potential of the met receptor tyrosine kinase. Molecular and Cellular Biology, 13(11), 6711–
6722. 
 
Rotow, J. K., Gui, P., Wu, W., Raymond, V. M., Lanman, R. B., Kaye, F. J., Peled, N., Fece de la Cruz, F., 
Nadres, B., Corcoran, R. B., Yeh, I., Bastian, B. C., Starostik, P., Newsom, K., Olivas, V. R., Wolff, A. M., 
Fraser, J. S., Collisson, E. A., McCoach, C. E., … Blakely, C. M. (2020). Co-occurring Alterations in the 
RAS–MAPK Pathway Limit Response to MET Inhibitor Treatment in MET Exon 14 Skipping Mutation-
Positive Lung Cancer. Clinical Cancer Research, 26(2), 439–449. https://doi.org/10.1158/1078-0432.CCR-
19-1667  
 
Rubin, A. F., Gelman, H., Lucas, N., Bajjalieh, S. M., Papenfuss, A. T., Speed, T. P., & Fowler, D. M. 
(2017). A statistical framework for analyzing deep mutational scanning data. Genome Biology, 18(1), 150. 
https://doi.org/10.1186/s13059-017-1272-5 
 
Sadybekov, A. V., & Katritch, V. (2023). Computational approaches streamlining drug discovery. Nature, 
616(7958), Article 7958. https://doi.org/10.1038/s41586-023-05905-z 
 
Santarpia, M., Massafra, M., Gebbia, V., D’Aquino, A., Garipoli, C., Altavilla, G., & Rosell, R. (2021). A 
narrative review of MET inhibitors in non-small cell lung cancer with MET exon 14 skipping mutations. 
Translational Lung Cancer Research, 10(3). https://doi.org/10.21037/tlcr-20-1113 
 
Smyth, E. C., Sclafani, F., & Cunningham, D. (2014). Emerging molecular targets in oncology: Clinical 
potential of MET/hepatocyte growth-factor inhibitors. OncoTargets and Therapy, 7, 1001–1014. 
https://doi.org/10.2147/OTT.S44941 
 
Suehnholz, S. P., Nissan, M. H., Zhang, H., Kundra, R., Nandakumar, S., Lu, C., Carrero, S., Dhaneshwar, 
A., Fernandez, N., Xu, B. W., Arcila, M. E., Zehir, A., Syed, A., Brannon, A. R., Rudolph, J. E., Paraiso, E., 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 5, 2024. ; https://doi.org/10.1101/2024.07.16.603579doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.16.603579
http://creativecommons.org/licenses/by/4.0/


 

Sabbatini, P. J., Levine, R. L., Dogan, A., … Chakravarty, D. (2024). Quantifying the Expanding Landscape 
of Clinical Actionability for Patients with Cancer. Cancer Discovery, 14(1), 49–65. 
https://doi.org/10.1158/2159-8290.CD-23-0467 
 
Tanizaki, J., Okamoto, I., Okamoto, K., Takezawa, K., Kuwata, K., Yamaguchi, H., & Nakagawa, K. (2011). 
MET Tyrosine Kinase Inhibitor Crizotinib (PF-02341066) Shows Differential Antitumor Effects in Non-small 
Cell Lung Cancer According to MET Alterations. Journal of Thoracic Oncology, 6(10), 1624–1631. 
https://doi.org/10.1097/JTO.0b013e31822591e9 
 
Tiedt, R., Degenkolbe, E., Furet, P., Appleton, B. A., Wagner, S., Schoepfer, J., Buck, E., Ruddy, D. A., 
Monahan, J. E., Jones, M. D., Blank, J., Haasen, D., Drueckes, P., Wartmann, M., McCarthy, C., Sellers, 
W. R., & Hofmann, F. (2011). A Drug Resistance Screen Using a Selective MET Inhibitor Reveals a 
Spectrum of Mutations That Partially Overlap with Activating Mutations Found in Cancer Patients. Cancer 
Research, 71(15), 5255–5264. https://doi.org/10.1158/0008-5472.CAN-10-4433 
 
Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new 
scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 
455–461. https://doi.org/10.1002/jcc.21334 
 
Vigna, E., Gramaglia, D., Longati, P., Bardelli, A., & Comoglio, P. M. (1999). Loss of the exon encoding the 
juxtamembrane domain is essential for the oncogenic activation of TPR-MET. Oncogene, 18(29), 4275–
4281. https://doi.org/10.1038/sj.onc.1202791 
 
Wang, C., & Lu, X. (2023). Targeting MET: Discovery of Small Molecule Inhibitors as Non-Small Cell Lung 
Cancer Therapy. Journal of Medicinal Chemistry, 66(12), 7670–7697. 
https://doi.org/10.1021/acs.jmedchem.3c00028 
 
Warmuth, M., Kim, S., Gu, X., Xia, G., & Adrián, F. (2007). Ba/F3 cells and their use in kinase drug 
discovery. Current Opinion in Oncology, 19(1), 55–60. https://doi.org/10.1097/CCO.0b013e328011a25f  
 
Wójcikowski, M., Ballester, P. J., & Siedlecki, P. (2017). Performance of machine-learning scoring functions 
in structure-based virtual screening. Scientific Reports, 7(1), 46710. https://doi.org/10.1038/srep46710 
 
Wood, G. E., Hockings, H., Hilton, D. M., & Kermorgant, S. (2021). The role of MET in chemotherapy 
resistance. Oncogene, 40(11), 1927–1941. https://doi.org/10.1038/s41388-020-01577-5 
 
Yao, Y., Yang, H., Zhu, B., Wang, S., Pang, J., Wu, X., Xu, Y., Zhang, J., Zhang, J., Ou, Q., Tian, H., & 
Zhao, Z. (2023). Mutations in the MET tyrosine kinase domain and resistance to tyrosine kinase inhibitors 
in non-small-cell lung cancer. Respiratory Research, 24(1), 28. https://doi.org/10.1186/s12931-023-02329-
1 
 
Zhang, S., Krieger, J. M., Zhang, Y., Kaya, C., Kaynak, B., Mikulska-Ruminska, K., Doruker, P., Li, H., & 
Bahar, I. (2021). ProDy 2.0: Increased scale and scope after 10 years of protein dynamics modelling with 
Python. Bioinformatics, 37(20), 3657–3659. https://doi.org/10.1093/bioinformatics/btab187 
 
Zuccotto, F., Ardini, E., Casale, E., & Angiolini, M. (2010). Through the “Gatekeeper Door”: Exploiting the 
Active Kinase Conformation. Journal of Medicinal Chemistry, 53(7), 2681–2694. 
https://doi.org/10.1021/jm901443h 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 5, 2024. ; https://doi.org/10.1101/2024.07.16.603579doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.16.603579
http://creativecommons.org/licenses/by/4.0/


 

Supplemental information  

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 5, 2024. ; https://doi.org/10.1101/2024.07.16.603579doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.16.603579
http://creativecommons.org/licenses/by/4.0/


 

Figure 1 - figure supplement 1. Structural inhibitor classification and dose-response determination. 
(A) Type I (crizotinib, 2WGJ; tepotinib, 4R1V; capmatinib; savolitinib, 6SDE; NVP-BVU972, 3QTI) and type 
II (merestinib, 4EEV; cabozantinib; glesatinib) inhibitor-bound MET kinase domain structures globally 
aligned. Hinge (gray) and G1163 (represented as a sphere) are highlighted to show the kinase domain 
solvent-front relative to each inhibitor. Inhibitors lacking experimental structures (capmatinib, cabozantinib, 
glumetinib, and glesatinib) were docked onto a representative type I (PDB 2WGJ) and type II (4EEV) 

structure through AutoDock Vina (Eberheart et al., 2021; Trott et al., 2010). (B) Solvent-front and G1163 

highlighted relative to the ATP-bound kinase domain crystal structure (3DKC) and all inhibitors screened. 

(C) Dose-response curves for each inhibitor against the TPR-fusion MET and MET∆Ex14 intracellular 

domains, stably expressed in Ba/F3 cells.  
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Figure 1 - figure supplement 2. Correlation analysis of the MET kinase domain site satur
mutagenesis library across replicates and conditions. Replicate correlation analysis for each inh
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Figure 1 - figure supplement 3. Correlation analysis of the MET∆Ex14 kinase domain site saturation 

mutagenesis library across replicates and conditions. Replicate correlation analysis for each inhibitor for 

the TPR-fusion MET∆Ex14 background score with Enrich2.  
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Figure 1 - figure supplement 4 . Fitness landscapes of the MET kinase domain against a panel of 11 
inhibitors. Heatmap for the DMSO control condition and all inhibitor fitness scores from Rosace, 
subtracted from DMSO for >99% of MET kinase domain variants in the full intracellular domain background 
in the context of the TPR-fusion. Wild-type synonymous mutations are highlighted in green, and mutations 
that were not captured by the screen are in light yellow.  
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Figure 2 - figure supplement 5. Mutational landscape of the MET∆Ex14 kinase domain under 11 ATP-

competitive inhibitor selection. (A) Distributions of all variants (wild-type synonymous, early stop, and 

missense) for each condition, scored with Rosace and normalized to the growth rate of the DMSO control 
population. (B) Correlation plots for all mutational fitness scores for each drug against DMSO, fitted with a 
linear regression and Pearson’s R value displayed. (C) Heatmap showing the Pearson’s R correlation for 
each condition against each other, annotated by condition and inhibitor type. Correlations are colored 
according to a scale bar from gray to blue (low to high correlation).  
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Figure 6 - figure supplement 1. Statistically filtered resistance mutations for grouped type I, type II, 
and type I½ inhibitors for MET. (A-C) Heatmaps of the sum of resistance mutations grouped for type I 
(pink), type II (blue), and type I½ (green) for MET.  
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Figure 7 - figure supplement 1. Cross-comparison of type I and type II inhibitor pairs. Scatter pl
each type II inhibitor fitness scores (cabozantinib, glesatinib analog, merestinib; axis in blue) against
type I inhibitor (crizotinib, capmatinib, tepotinib, glumetinib, savolitinib, NVP-BVU972; axis in pink). 
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Figure 7 - figure supplement 2. Cross-comparison analysis of inhibitors within the same 
Scatter plots of each inhibitor pair within the type II group (cabozantinib, glesatinib analog, merestinib;
in blue) and within the type I group (crizotinib, capmatinib, tepotinib, glumetinib, savolitinib, NVP-BVU
axes in pink). 
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Figure 8 - figure supplement 1. Distribution and visualization of features used in the XGBoost 

machine learning models. (A) Distribution of ESM LLR vs. Experimental fitness (top) and ∆∆G vs. 

Experimental fitness (bottom). (B) Distribution of all features (except ESM LLR and ∆∆G) extracted and 

used for the XGBoost models. The features that were incorporated in the best performing model are shown 

in yellow. The red dashed lines within each distribution show the edges of bins used to bin the feature 

values. (C) ∆∆∆G calculated from predicted ∆∆G Type I (PDB 2WGJ) (left) and Type II (PDB 4EEV) (right) 

MET kinase structure by subtracting type II ∆∆G from type I ∆∆G. The key regions showing difference in 

conformation between type I and II structures are the DFG motif (purple) and aC helix (teal). (D) 

Calculation of “residue to ATP” distance feature for residue D1228 in ATP bound MET Kinase structure 

(3DKC) is shown. Centroid of the ATP molecule is shown as a pink sphere. (E) Example of ∆Volume 

feature calculation using the difference between the volume of Asp and Cys. (F) Ensemble of MET kinase 

domain crystal structures aligned and RMSF of a given residue (D1228 in this example). (G) The shortest 

distance between the inhibitor and a mutation calculated from the Umol predicted variant-inhibitor structure. 

(H) The binding pocket of crizotinib in the predicted Umol structure. Pocket volume, hydrophobicity score, 

polarity score and RF score are calculated from this binding site. (I) Residue RMSD feature is described by 

the Umol predicted structure of variant D1228C (pink) superposed onto the wild-type reference structure 

(PDB 2WGJ, gray) and RMSD between D1228 in the wild-type structure and 1228C in the variant 

structure. (J) Ligand RMSD feature The Umol predicted structure of variant D1228C (pink) superposed 

onto the wild-type reference structure (PDB 2WGJ, gray) and RMSD between crizotinib in the wild-type 

structure (pink) and in the variant structure (blue). 
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