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Summary

Mutations in subunits of the SWltch Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex
occur in =20% of cancers and represent a highly unmet medical need. To identify novel therapeutic
approaches, we systematically characterized transcriptomic and proteomic changes caused by the loss of
SWI/SNF subunits or other epigenetic enzymes in isogenic cell lines, which we subsequently integrated
with high-throughput drug screening and independent genetic screens of the DepMap project. Using an
optimized bioinformatics pipeline for pathway enrichment, we identified Metabolism of proteins as the
most frequently dysregulated Reactome pathway category in SWI/SNF-defective cell lines. Drug screening
and multiomic integration revealed multiple chemicals selectively cytotoxic for SWI/SNF-defective
models, including CBP/EP300 or mitochondrial respiration inhibitors. A novel algorithm for the analysis of
DepMap CRISPR screens independently identified synthetic lethality between SWI/SNF defects and EP300
or mitochondrial respiration genes, which we further revalidated in disease-relevant models. These

results unravel novel genetic dependencies for SWI/SNF-defective cancers.
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INTRODUCTION

Epigenetic dysregulation has recently been identified as a major cancer hallmark®. Notably, deleterious
mutations in genes encoding subunits of SWI/SNF (SWitch Sucrose Non-Fermentable), a major chromatin
remodeling complex, occur in approximately 20% of human solid tumors*3. They have been linked to poor
patient outcomes and represent an unmet medical need*. SWI/SNF orchestrates multiple functions in
cellular physiology, such as cell differentiation, proliferation, adhesion, chromosome segregation, DNA
repair, gene expression, and immunogenicity’. Previous studies have shed light on the mechanisms by
which mutations in certain SWI/SNF subunits contribute to tumor development®, but SWI/SNF subunit-
specific oncogenic mechanisms are still far from being unveiled. SWI/SNF is a modular complex composed
of 12-15 subunits encoded by 29 genes, which exists in three forms: canonical BRG1/BRM associated
factor (cBAF), polybromo-associated BAF (PBAF) and non-canonical (ncBAF/GBAF), which have variable
compositions, targets and effects on chromatin remodeling’. Each complex includes at least three core
subunits (SMARCC1, SMARCC2, and SMARCD1-3) and one of the two mutually exclusive ATPase subunits
(SMARCA2 or SMARCA4). Multiple variant subunits then define each complex’s specificity: ARID1A/B and
DPF1-3 for cBAF; ARID2, PBRM1, BRD7 and PHF10 for PBAF; GLTSCR1/1L and BRD9 for ncBAF2. If this
modular structure has recently been deciphered, the phenotypic effects and targetable dependencies that
result from the loss of distinct subunits - which are mutated in different cellular contexts and cancer

subtypes - are still poorly understood®.

Over the past years, novel therapeutic strategies have emerged to target vulnerabilities resulting from
defects in SWI/SNF subunits®®, notably based on synthetic lethality and epigenetic antagonism. Such
approaches exploit a situation where the simultaneous loss (or inhibition) of two genes (or proteins) leads
to cell death, while the loss of either one does not affect cell survival. In SWI/SNF, intra-complex
dependencies operate notably between paralog subunits, e.g. SMARCA4- or ARID1A-mutant tumor cells’
survival depend respectively on SMARCA?2 and ARID1B expression®'%!, Extra-complex dependencies also
operate with certain signaling pathways or mechanisms in which SWI/SNF is involved. For example,
following the description of an epigenetic antagonism between SWI/SNF and EZH2 (Enhancer of Zest
Homolog 2)*%3, the first EZH2 inhibitor tazemetostat was assessed in SMARCBI1-deficient tumors. The
observed efficacy (15% response rate) in epithelioid sarcoma justified its accelerated approval in 2020,

thereby representing the first-ever approved epigenetic drug in solid tumors*?*°, In October 2023, the 2™
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generation EZH1/2 inhibitor tulmimetostat received Fast Track Designation for the treatment of
endometrial tumors with ARID1A mutations®®. Other synthetic lethal interactions with SWI/SNF subunit
defects have been described, e.g., between ATR or PARP inhibitors and defects in SMARCA4'"*® or
ARID1AY2 or between BRD9 inhibitors and SMARCB1 alterations?¥?2, Still, except for the examples
mentioned above, none of them has reached clinical approval so far, and defects in most subunits are still

undruggable, highlighting the urgent need for additional therapeutic approaches®.

Multi-omics profiling of cancer cell lines combined with high-throughput genetic, or drug screening allows
to uncover protein network dysregulation and targetable vulnerabilities in a systematic fashion?24, Since
interpretation of such high-dimensional omics datasets may be challenging, pathway enrichment
methodologies have been developed to inform on the dysregulation of gene sets corresponding to cellular
functionalities. The choice of database providing pathway definitions may greatly affect the reliability of
the results. Indeed, testing large numbers of pathways — which are each considered as an independent
hypothesis test - harms the statistical performance of the method because of the need for multiple testing
correction? and may violate the assumption of statistical independence between tests, since pathways
sharing genes are not independent?®. Regarding enrichment algorithms, first-generation algorithms (e.g.,
Overrepresentation Analysis, ORA) assess whether a pathway is overrepresented in a list of differentially
expressed genes, regardless of gene expression fold change (FC) between conditions. Second-generation
algorithms, such as Gene Set Enrichment Analysis (GSEA), do account for quantitative gene FC
information, whereas third-generation enrichment methods such as ROntoTools further include the
network structure (topology) of the pathway?’. A recent benchmark of these methods found that
ROntoTools and GSEA were the best-performing methods, despite numerous false negatives, whereas
ORA was less efficient with a high rate of false positives®. Thus, each of these algorithms has inherent

limitations, which calls for further methodological development.

To unravel novel targetable vulnerabilities in SWI/SNF-defective cancers, we integrated in-house multi-
omics profiling with high-throughput drug screening, using an isogenic panel of SWI/SNF subunit- and
non-SWI/SNF chromatin remodeling-genes knock-out cell lines (herein referred as “SWI/SNF mutants”
and “non-SWI/SNF mutants”). To improve pathway enrichment reliability, we developed an optimized
gene set analysis pipeline, which allowed us to identify dysregulated networks in each condition. To assess
the transferability of our results, we next developed a novel statistical algorithm to predict synthetic lethal
interacting genes for each SWI/SNF subunit using genetic screens of the DepMap cancer cell line

encyclopedia and compared hits to our in-house dataset. The combination of both studies allowed us to
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identify novel genetic vulnerabilities, notably linked to protein metabolism, mitochondrial respiration and

CBP/EP300 inhibition, which we revalidated in independent SWI/SNF-deficient disease-relevant models.

RESULTS

Loss of individual SWI/SNF subunits variably alters the complex stoichiometry

To identify cell regulatory network alterations and genetic vulnerabilities induced by SWI/SNF defects, at
the complex or subunit level, we molecularly and functionally profiled an isogenic panel of HAP1 cell lines,
where the seven SWI/SNF subunits most frequently altered in cancer had been knocked-out (Fig. 1A;
Supplementary Tables 1-2). This panel comprised mutants in the core subunit SMARCB1, catalytic subunits
SMARCA4 and SMARCA2, cBAF-specific subunits ARID1A and ARID1B, and P-BAF-specific subunits ARID2
and PBRML. In parallel, we similarly characterized HAP1-derived isogenic models where genes encoding
other chromatin remodelers had been disabled, to be able to identify SWI/SNF-specific effects
(Supplementary Tables 1-2). The latter panel comprised mutants of CREBBP, BAP1 and EED (Polycomb
Repressive Complex), KMT2C and KMT2D (COMPASS), and SETD2.

Using transcriptomics and proteomics data, we first verified the absence of expression of each subunit in
its corresponding knock-out (KO) cell line (Supplementary Tables 1-2). SWI-SNF subunit KO resulted in
modifications of other components of the complex, which were overall more pronounced at the protein
than at the mRNA level, suggesting that these might, at least in part, result from altered protein-protein
interactions (e.g. BRD7 or PBRM1 decrease in ARID2-KO implicating stabilising protein interactions; Fig.
1B). Since SWI/SNF subunits assemble in a modular fashion® we next characterized the complex
composition using immunoprecipitation of the SMARCC2 core subunit, present in cBAF, PBAF, and ncBAF.
As previously described?, western blotting of selected subunits found that loss of SMARCB1 impaired the
incorporation of almost all other BAF or PBAF-specific subunits, whereas loss of either SMARCA2 or
SMARCA4 increased expression and incorporation of their respective paralog. In contrast with PBRM1
decrease observed in ARID2-KO, PBRM1 loss led to increased expression and incorporation of the PBAF-
specific subunit ARID2, highlighting the importance of directionality in protein interactions (Fig. 1C)*. To
guantitatively interrogate these intra-complex modifications, we performed quantitative Rapid
Immunoprecipitation Mass spectrometry of Endogenous proteins (RIME) on SWI/SNF-WT and KO-models,
using SMARCC2 immunoprecipitation (Fig. 1D-E, Supplementary Table 3). This revealed additional

perturbations that were not previously identified at the transcriptomic or proteomic level. For example,
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loss of ARID2, beyond significantly decreasing the incorporation of PHF10, BRD7 and PBRM1, increased
that of the cBAF subunit ARID1B (log,FC = 2.26, p-adj < 0.001) and some SWI/SNF core subunits (Fig. 1E).
Loss of ARID2 also led to decreased interactions of SMARCC2 with a subset of proteins involved in RNA
metabolism or splicing (e.g. DDX24, log,FC =-2.06; SF3B1, log,FC =-3.08; p-adj < 0.05), or translation (e.g.,
RRP1B, log,FC = -4.51; NOP56, log,FC = -3.61; MYBBP1A, log,FC =-2.26; all p-adj < 0.001), reminiscent of
the recently described role of SWI/SNF in alternative splicing in mammals3%32, endoplasmic reticulum

homeostasis in yeast®, and dependency of SWI/SNF-altered cells on translation factors*.

Altogether, this shows that loss of SWI/SNF subunits destabilizes SWI/SNF stoichiometry in subunit-
specific manner and supports that cellular consequences of SWI/SNF subunit defects can both result from

direct and indirect effects.

Loss of individual SWI/SNF subunits distinctly alters gene and protein expression

If most SWI/SNF functions have traditionally been linked to transcription regulation, recent reports33*
and our RIME results suggested that SWI/SNF defects might also alter RNA splicing or translation. We
therefore hypothesized that some SWI/SNF-dependent signaling effects might occur uniquely at the
protein level and investigated the effects of SWI/SNF subunit defects at both the transcriptome and

proteome levels.

As a quality control, we first benchmarked our transcriptomic profiles with the ones of a previously
published dataset of HAP-1 SWI/SNF mutants and found a positive moderate correlation across the six
cell lines that were common to both datasets (Pearson correlation coefficient R=0.364 + 0.182 (mean *
standard deviation (SD)), Supplementary Fig. 1)’. When performing hierarchical clustering of all chromatin
remodeling mutants based on transcriptomic or proteomic data, we found that SWI/SNF-mutants
clustered separately from non-SWI/SNF mutants, reinforcing the specificity of SWI/SNF functions (Fig. 2A-
B). However, SWI/SNF mutants did not sub-cluster according to their functional domains (e.g., DNA
binding, ATPase, etc.) or specificity towards cBAF or PBAF, perhaps because of compensation mechanisms
that modulate the complex’s stoichiometry (Fig. 1). Wild-type vs KO differential analysis of transcriptomics
data identified a mean number of 6117 (range 4058 to 7433) and 7098 (range 5653 to 8506) significantly
dysregulated genes across SWI/SNF-KO and non-SWI/SNF-KO cell lines, respectively, with 1864 and 2153
genes having a |log.FC| > 1 and p-adj < 0.05 (range 1106 to 2625 and 1704 to 2849), respectively (Fig. 2C;
Supplementary Table 1, see Methods). Differential analysis of proteomics data revealed a mean of 4170
(range 2147 to 5612) dysregulated proteins across SWI/SNF-KO, including a mean of 168 with a |log:FC]|

> 1 (range 32 to 388) (Fig. 2C; Supplementary Table 2). Interestingly, we noticed that the correlation of
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the proteome between paralogs was weaker than the one between independent subunits (e.g. Pearson’s
correlation scores R=0.3255 ARID1A/B, R=0.13 SMARCA2/4 versus R=0.5 ARID1A/PBRM1 or R=0.66
ARID1A/SMARCAA4), suggesting that the paralog’s functions are only partly redundant (Supplementary Fig.
2). In the non-SWI/SNF group, there were 3596 differentially expressed proteins on average (range 1043
to 4907), including 233 with a |logzFC| > 1 (range 112 to 404) (Fig. 2C; Supplementary Table 2). The most
dysregulated genes and proteins were either shared between SWI/SNF-mutants (e.g., increase of JAK3
MRNA level, decrease of SHISA2 or PGM5 protein expression; Fig. 2D-E) or mutant-specific (e.g.,
membrane glycoproteins LAMA1 or BACE2 upregulation in PBRM1-KO only; log,FC = 6.69 and 6.25
respectively, p-adj<0.001; Supplementary Tables 1-2). Interestingly, several sensors, effectors, or
receptors of the cell-autonomous innate immune pathways (e.g., OAS2, cGAS, JAK3, IFITM1) were found
significantly upregulated across several SWI/SNF-KO cell lines, notably ARID1A- and PBRM1-KO models,

reminiscent of the pro-immunogenic consequences of the loss of these subunits3>°,

We next compared the transcriptomic and proteomic profiles and found a variable correlation across
SWI/SNF-mutant cell lines, the highest and lowest ones being respectively observed for SMARCA4-KO and
ARID2-KO cell lines (R = 0.44 and 0.27 respectively, p<0.001; across-mutant mean R = 0.38, Fig. 2F, G;
Supplementary Fig. 2). Among all chromatin remodeling mutants, the lowest correlation was observed for
the CREBBP-KO cell line (R=0.092, p < 0.001; Fig 2H). Two distinct patterns could be identified: (i) changes
that were consistent between RNA and protein (e.g. decreased PGM5 or SNTB1 expression in the ARID1A-
and SMARCA4-KO cells); and (ii) changes that were inconsistent between RNA and protein levels. For
example, HCLS1 was significantly decreased in all SWI/SNF-mutant cell lines at the proteome level only
(logo,FC = -3.77 to -5.73), possibly indicating post-translational regulatory mechanisms (Fig. 2E,
Supplementary Tables 1-2). By contrast, the RNA binding protein LIN28A, which was experimentally
shown to interact with SMARCA4 and SMARCB1*, was upregulated only at the transcriptomic level in
almost all SWI/SNF mutants (log,FC = 4.66 — 8.38; Fig. 2D, Supplementary Tables 1-2).

Overall, this supports that transcriptomic profiling only partly recapitulates molecular changes induced by
defects in SWI/SNF subunits, and that proteomic analysis brings a meaningful additional level of

information.

Development of an optimized pathway enrichment method combining GSEA and RontoTools
To go beyond the transcript or protein level and systematically explore functional consequences of
SWI/SNF defects, we developed a new Gene Set Analysis strategy based on i) the design of a pruned

version of Reactome pathway database with a reduced number of pathways and ii) the development of
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an optimal pipeline undertaking the most efficient combination of existing enrichment methods (Fig. 3A,
Supplementary Fig. 3, Supplementary File 1). Reactome pathways are arranged as a tree where the 29
largest pathways are called the categories and are broken down into smaller pathways, which could be
seen as sub-categories, which are themselves divided into smaller ones. Keeping all pathways of such a
redundant database may affect enrichment performance in two ways: (i) violating the assumption of
statistical independence between pathways, as pathways may share a certain amount of genes®26and (ii)
increasing the multiple testing correction penalty by testing a large number of pathways. Moreover,
testing many redundant pathways can compromise results’ interpretability. We therefore reasoned that
using a pruned Reactome database may improve the performance of enrichment methods by reducing
the number of tested gene sets and the gene redundancy across pathways, while exploring all cellular
functions. To do so, we used a two-step approach (see Methods): (i) a top-down step, which eliminated
pathways that were exceedingly large (> 500 genes), small (< 10 genes), or redundant (i.e. which could be
subdivided into smaller child pathways of acceptable sizes), and (ii) a bottom-up step, which eliminated

pathways included in larger ones fulfilling the size criteria.

Overall, the pruning strategy discarded 1802 pathways out of 2502 (72%), fulfilling the goal of drastically
reducing the number of pathways while retaining 10999 out of 11360 (97%) genes documented in the
Reactome database (Supplementary Fig. 3B-D, Supplementary Tables 4-5). The 361 discarded genes (3%)
mostly corresponded to chemical reactions in large pathways, which were not represented in their
children and lost in the top-down step as a result of pathway size constraints enforcement; 332 of them
belonged to the Gene Expression category. Further, as this project aimed at identifying intracellular
targetable vulnerabilities, we discarded nine out of the 29 pathway categories (i.e. 291 pathways, 1595

genes) associated with irrelevant physiological systems or organism-level functionalities (see Methods).

Next, we used the proteomic dataset to benchmark three gene set analysis methods - ORA, GSEA, and
ROntoTools - and their combinations, based on their ability to predict the enrichment of (i) Chromatin
modifying enzymes and DNA repair, two pathways known to be dysregulated in SWI/SNF mutants; and (ii)
pathways containing the KO gene of each corresponding mutant?®. Pathways were ranked based on their
Benjamini-Hochberg adjusted p values (p-adj) in each method. For Chromatin modifying enzymes,
ROntoTools and GSEA correctly assigned a high enrichment rank to the pathway, while ORA failed to
identify it as a top hit (mean rank across SWI/SNF mutants 1.12, 4.48 and 13, respectively, Fig. 3B).
Similarly, DNA repair was in the top 15 of dysregulated pathways according to ROntoTools or GSEA but

was poorly ranked by ORA, further demonstrating the lack of accuracy of this last method. Next, we
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combined these enrichment tools two at a time by computing for each pathway, in each mutant, the
geometric mean of the ranking obtained from each method. Combining ORA with the other methods
harmed their performance so that the method was discarded. GSEA and ROntoTools were further
benchmarked based on their performance to predict the enrichment of pathways containing the KO gene
of each corresponding mutant (Fig. 3C, Supplementary Fig. 3E). Out of the 59 occurrences of KO gene in
pruned Reactome pathways, 11 were flagged by both methods, six by GSEA only eight by ROntoTools only,
and 34 by none, thus demonstrating the rationale of combining both algorithms to reduce false negative
rate. Transcriptional regulation by RUNX1, a pathway involved in the differentiation of hematopoietic
stem cells which may be dysregulated in acute myeloid leukemia (AML) - hence in our HAP-1 model - was
flagged as significant by GSEA in six out of ten mutants, but not by ROntoTools. Conversely, in SMARCA4-
, BAP1-, CREBBP-, EED- and KMT2D-KO cell lines, ROntoTools was able to detect eight pathways that GSEA
did not identify. When looking at all pathways, we observed a limited agreement between ROntoTools
and GSEA enrichment results in either the proteome (Fig. 3D) or transcriptome analysis (Supplementary
Fig. 5F), with on average 20% of shared pathways (9.9% to 21,1% across SWI/SNF-mutants), further

justifying the use of both methods combined.

Overall, our results suggested that even the latest enrichment methods yielded false negatives and we
decided, as the best strategy for signal seeking, to combine ROntoTools and GSEA enrichment methods

by retrieving pathways predicted as significant by either method.

“Metabolism of proteins” is the most enriched category in SWI/SNF-mutant proteomics

Using our optimized pipeline, we performed pathway enrichment analysis of the transcriptome and
proteome datasets (Fig. 4, Supplementary Fig. 4-6, Supplementary Tables 6-7). Hierarchical clustering
based on pathway rankings identified two groups: SWI/SNF and non-SWI/SNF mutants for both proteome
(Fig. 4A) and transcriptome (Supplementary Fig. 5A), in agreement with the clustering based on
differential transcript or protein expression (Fig. 2A-B). However, pathway enrichment only modestly
agreed between transcriptomics and proteomics analysis for each mutant (Fig. 3E, Supplementary Tables
6-7), in line with the moderate correlation found at the gene and protein level (Supplementary Fig. 2).
Since proteins have a more direct functional relevance than transcripts in cell biology when limited RNA-

protein correlation is observed, we first focused on the proteomic dataset.

To broadly describe enriched signaling pathways in SWI/SNF mutants, we analyzed them by pathway
categories, defined as the largest pathway sets of the Reactome database. The most dysregulated

category was Metabolism of proteins, which encompasses mechanisms related to protein folding and
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translation, peptide hormone metabolism, or post-translational protein modifications. It was followed by
Signal transduction, Cell cycle, Transcription, Metabolism, Immune system, and Metabolism of RNA (Fig.
4B-C). When focusing only on the Topl0 most dysregulated pathways for each SWI/SNF mutant,
Metabolism of proteins remained the most frequently enriched category, followed by traditional
SWI/SNF-regulated functions, i.e., Metabolism of RNA, Cell Cycle Transcription, Chromatin organization,
and Metabolism. Interestingly, the four most broadly dysregulated pathways across mutants, within the
Metabolism of proteins category, were related to post-translational modifications, including SUMOylation
and glycosylation, potentially uncovering novel direct or indirect SWI/SNF functions (Fig. 4B). In the non-
SWI/SNF group, Signal transduction was the most enriched category when accounting for all significant
pathways, followed by Metabolism of proteins and Immune system. When using only the Top10
dysregulated pathways, Metabolism of proteins and Metabolism of RNA were the most enriched, followed
by Metabolism and Immune system (Fig. 4D). Cell cycle and DNA repair were not enriched, and Gene

expression has just one significant pathway, in contrast to the SWI/SNF group.

We next investigated the Top10 enriched pathways in each SWI/SNF mutant (Fig. 4E). As a quality check
for the enrichment pipeline, Chromatin-modifying enzymes was the most dysregulated pathway (i.e. with
the highest ranking) in each SWI/SNF mutant except for SMARCA2, in line with the very low expression of
this subunit in HAP-1 cells. Three others of the Top10 dysregulated pathways were enriched in at least
five SWI/SNF mutants, including potential non-canonical (Major pathway of rRNA processing in the
nucleolus and cytosol) and novel (Asparagine N-linked glycosylation; Nonsense Mediated Decay enhanced

by the Exon Junction Complex) SWI/SNF functions.

The most populated category was Metabolism of proteins, encompassing seven Top10 pathways (Fig. 4C,
E, Supplementary Table 7). The most frequently dysregulated one was Regulation of Insulin-like Growth
Factor transport and uptake by insulin growth factor binding proteins, which was consistently upregulated
in all SWI/SNF mutants, with 13 (out of 124) genes being common to the GSEA leading edges of all mutants
(Supplementary Fig. 3F, Supplementary Table 7). The second most dysregulated pathway, Asparagine N-
linked glycosylation, was upregulated in all SWI/SNF mutants except ARID2- and SMARCA2-KO, with 61
(out of 305) genes being common to the GSEA leading edges across mutants. Intriguingly, this process,
which corresponds to the addition of glycans to peptides folded in the endoplasmic reticulum (ER) and
subsequent transport to the Golgi apparatus, had not been previously related to SWI/SNF functions. The

other five dysregulated pathways of the Metabolism of proteins category were directly linked to protein

10
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translation, with two pathways occurring in the cytoplasm (Cap-dependent translation initiation and
Eukaryotic Translation Elongation), and three of them related to mitochondrial protein metabolism
(Mitochondrial translation initiation, elongation, and termination), reminiscent of the role of SWI/SNF
subunits in OxPhos*2. Discrepancies between subunit defects could also be observed: for example,
mitochondrial metabolism-related pathways were all upregulated in the PBRM1-KO cell line, whereas it
was the opposite in the SMARCA2-KO; Cap-dependent translation initiation and Eukaryotic Translation
Elongation were both upregulated in the ARID1B-KO but downregulated in all other SWI/SNF mutants;
and pathways related to mitochondrial translation were downregulated in PBRM1-KO and upregulated in

the SMARCAZ2-, ARID1B- and ARID2-KO cell lines.

The following three most enriched Top10 pathways belonged to the Metabolism of RNA category and
included: (i) Processing of Capped Intron-Containing Pre-mRNA , (ii) Major pathway of rRNA processing in
the nucleolus and cytosol, and (iii) Nonsense Mediated Decay enhanced by the Exon Junction Complex
which were downregulated in all SWI/SNF mutants, but SMARCA2 for the first pathway, and except for
ARID1B where both latter ones were upregulated. The next seven most enriched Top10 pathways were
part of the Cell Cycle category: six of them were linked to activation of the G1/S, G2/M checkpoints or
mitosis, and notably identified in the ARID1A- and ARID2-KO cell lines, in line with the known role of these
DNA-binding subunits in cell cycle control*®*, as well as in the SMARCA4-KO mutant, consistent with the
described increased replication stress and ATR inhibitor sensitivity when SMARCA4 is lost?. Both
subsequent Topl0 pathways belonged to the Gene Expression category and included Transcriptional
Regulation by RUNX1 (most likely HAP1 cell type-specific considering the role of the master transcriptional
regulator RUNX1 in hematopoiesis and acute myeloid leukemia) and Epigenetic regulation of gene
expression, most likely cell type-independent. They were dysregulated in all cell lines but the SMARCA2
KO one. Finally, the last four most enriched Top10 pathways belonged to the Metabolism category and
notably included the Respiratory electron chain which, intriguingly, was upregulated in the ARID2-,
SMARCA2- and SMARCA4-KO cell lines, and downregulated in the PBRM1-KO. In the non-SWI/SNF group,
the most enriched Top10 pathways belonged to the Metabolism of Proteins, Metabolism of mRNAs and

Metabolism categories (Fig. 4D)

Pathway enrichment analysis was further performed for the transcriptome dataset (Supplementary Fig.
5). When comparing category rankings for SWI-SNF mutants only, Signal Transduction was the most
dysregulated category, followed by Immune System, Metabolism of proteins, Gene Expression and Cellular

response to stimuli (Supplementary Fig. 5C), which were distinct from the proteomic enrichment results.
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Surprisingly, none of the pathways of the Chromatin organization category were found enriched in any
mutants (Supplementary Fig. 5B-E). Contrary to the modest overlap across enriched pathways which was
found between proteomic and transcriptomic data when considering all significantly dysregulated
pathways (Fig. 3E), focusing on the Top10 most dysregulated pathways for each SWI/SNF mutant allowed
us to consistently identify Metabolism of proteins as the most frequently enriched category in both
datasets (Fig. 4C, Supplementary Fig. 5C). By contrast, while Metabolism of RNA was the 2" most enriched
category in the proteome Topl0 category ranking, it occupied the 7™ position in the transcriptome
dataset, with only three significantly enriched pathways (Supplementary Fig. 5C). When comparing the
proteome and transcriptome Top10 enriched pathways in each SWI/SNF-mutants, we could identify 14
common pathways, out of 33 in the proteome and 40 in the transcriptome datasets (Fig. 4E and
Supplementary Fig. 5E). Those included: Asparagine N-linked glycosylation, Regulation of Insulin-like
Growth Factor Receptors and Mitochondrial translation (Metabolism of proteins category); Processing of
capped intron-containing pre-mRNA and Major pathway of rRNA processing (Metabolism of RNA);
Glycerophospholipid biosynthesis and Respiratory electron transport (Metabolism), and Neutrophil

degranulation and Insulin-4 and 13 signaling (Immune system).

Overall, our new enrichment pipeline applied to the proteomic and transcriptomic data of our SWI/SNF-
mutant isogenic panel allowed us not only to recapitulate known SWI/SNF-dependent pathways (e.g., cell
cycle regulation and transcriptional regulation) but also to identify novel ones, such as Metabolism of

proteins-, Metabolism of RNA- and Mitochondrial metabolism-related pathways.

Drug screening identifies inhibitors of BRD9, protein synthesis, and histone modifiers as being
selectively synthetic lethal with defects in SWI/SNF subunits

To further identify targetable vulnerabilities associated with SWI/SNF defects, we used a functional,
orthogonal approach and performed high-throughput drug screening on the HAP1 panel using two
libraries: (i) the Prestwick library (1200 off-patent small molecule inhibitors, suitable for drug
repurposing), and (ii) the SelleckChem Epigenetics library (186 compounds), selected based on the
hypothesis that synthetic lethalities may mostly occur in-between epigenetic pathways. We first
performed a unidose screening, where cell viability was assessed after exposure to 10 uM of each drug
for five days for the Prestwick library, and for 5 and 11 days for the epigenetic library, considering the
longer time required for these drugs to rewire signaling and impact cell fitness (Fig. 5A). Hits were
identified based on their ability to selectively kill SWI/SNF- or chromatin remodeling-mutant HAP1 cells

while sparing the HAP1 parental (HAP1-WT) cell line (see Methods). The cytotoxicity of compounds of the
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Prestwick library was highly mutant-dependent, with only the estrogen antagonist Danazol affecting two
or more SWI/SNF mutant cell lines (Fig. 5B, Supplementary Table 8). By contrast, in the Epigenetics library,
four small molecule inhibitors selectively killed SWI/SNF mutants (Supplementary Table 9). As a
benchmarking and quality evaluation, we could identify previously described synthetic lethalities: for
example, the P300 inhibitor C646 was synthetic lethal in the CREBBP-KO and ARID1A-KO cell lines (with
86% and 74% reductions in survival fraction (SF) as compared to the parental HAP1-WT cell line)***,
Interestingly, C646 was also selectively toxic to all other SWI/SNF mutants (SMARCA2/4, ARID1B/2,
PBRM1-KO), as well as KMT2C/2D-, SETD2-, EED- and BAP1-KO, with reductions in SF ranging from 50% to
78%, thereby representing potential novel potent synthetic lethal interactions. Resveratrol, a flavonoid
used as an anti-tumoral agent*®*’, also selectively killed the ARID1B-, PBRM1-, and SMARCA2-KO cell lines,

with reductions in SFs ranging from 48 to 84%.

The most promising compounds were further selected for revalidation in dose-response (“multi-dose”)
medium throughput screening, based on: (i) the selective toxicity towards SWI/SNF- or other chromatin
remodeling-mutant HAP1 cells; (ii) redundancy of hits targeting the same pathway; and (iii) potential for
subsequent clinical development (see Methods; Supplementary Table 10). Using these criteria, 55 and 56
compounds were selected for revalidation from the Prestwick and Epigenetic drug libraries, respectively.
In that dose-response screen, we defined “hits” as chemicals whose 1Cso was smaller than the highest dose
screened (10 uM) in a SWI/SNF or non-SWI/SNF KO cell line and were not toxic towards the HAP1-WT cell
line (SF > 70% for any drug concentration in both replicates). Four main compounds reached these criteria
(Fig. 5C). The top hit was i-brd9 (GSK602, an inhibitor of the GBAF-specific subunit BRD9), which scored in
all but one SWI/SNF-KO cell lines; interestingly, inhibition of BRD9 was shown to be synthetic lethal with
cBAF and PBAF SWI/SNF defects concomitantly to our screen*®, allowing us to use that top hit as a positive
quality control of our screen, and supporting the ability of our HAP1 isogenic panel to serve as signal-
searching model for cell type-independent targetable vulnerabilities. By contrast, the top second hit, the
JAK inhibitor zm39923 HCL, was potentially cell-type-specific, considering the role of JAK/STAT signaling
in cells of the myeloid lineage, such as HAP1. Interestingly, the third hit was the cytidine analog blasticidin,
an antibiotic that acts as a protein synthesis inhibitor by inhibiting the termination step of protein
translation and peptide bond formation by the ribosome, thereby making a potential link between the
drug screen and the dysregulation previously identified in the Metabolism of proteins pathway category
by proteomic profiling (Fig. 4B-C). The fourth hit, Raloxifene HCL, an estrogen receptor (ER) modulator
(close to Danazol) that inhibits the human cytosolic aldehyde oxidase-catalyzed phthalazine oxidation

activity, was selectively toxic to the PBAF-mutant ARID2- and PBRM1-KO cell lines. Raloxifene has ER-
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dependent and ER-independent mechanisms of action, including modulation of cell metabolism and
mitochondrial function, potentially underlying its selectivity in SWI/SNF-KO HAP1 cells, and in line with
the dysregulation of Mitochondrial Metabolism previously identified by proteomic profiling (Fig. 4B)*°. The
fifth hit was the BRD4 inhibitor PFI-1, which had previously been described as synthetic lethal with
SMARCA4 defects®, and also scored as hit in PBRM1-, BAP1-, and CREBBP-KO clones on our screen (Fig
5B, 5C). This novel synthetic lethality occurring at a similar magnitude in the BAP1- and CREBBP-KO clones
was in line with the newly described CREBBP-like role of BAP1 as a transcriptional activator in the BAP1

complex®.

We next sought to explore drug-targeted pathways by using drug-gene interaction databases®™° to
identify genes interacting with hits of our drug screens (see Methods). Enriched pathways targeted by
drug hits belonged to various categories, notably Metabolism of proteins, Signal transduction, Cell Cycle,
Gene expression, Metabolism, and Immune system (Fig. 5D). These pathway categories were broadly
concordant with the ones identified by proteomics profiling (Fig 4). Still, there was only a partial overlap
between individual pathways predicted as targetable by drug screening and as dysregulated in proteomics
(22%; SD = 17%), highlighting the complementarity of both molecular profiling (Fig. 2,4) and functional
(Fig. 5) approaches. Among pathways that were both drug-targeted and enriched in proteomics, we could
identify Interleukin-4 and -13 signaling, in line with the frequent identification of JAK/STAT inhibitors
within the top hits of both drug screens, Regulation of Insulin-like Growth Factor (IGF) transport
(dysregulated in 11 out of 12 mutant cell lines), and Chromatin-modifying enzymes (targetable in 10
mutant cell lines, and significant in the proteome enrichment of six of them), potentially favored by the

enrichment in epigenetic drugs in our initial and revalidation screen.

In conclusion, high throughput drug screening enabled to confirm known synthetic lethalities with
SWI/SNF defects, and to newly identify compounds selectively targeting SWI/SNF subunit-KO cell lines,
including several epigenetic drugs, compounds interfering with mitochondrial metabolism, and small

molecule inhibitors of ribosomal translation and protein metabolism.

CRISPR DepMap project analysis identifies EP300 and mitochondrial targets as novel genetic
vulnerabilities in a non-isogenic panel of cell lines with low expression of SWI/SNF subunits

To next investigate whether our findings could be extended to large, independent datasets of non-
isogenic cancer cell lines from various cell-of-origins, we used the publicly available resource of the
DepMap project®® and developed an algorithm to infer synthetic lethal interactions between defects in

SWI/SNF subunits and any other gene in the DepMap whole genome CRISPR KO high-throughput screen
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(see Methods, Fig. 6A). To that end, we compared CRISPR effect scores between cell line groups selected
based on the level of expression of genes encoding the SWI/SNF subunit or chromatin remodeler of
interest®. Briefly, we: (i) estimated the distribution of the expression of each gene encoding a SWI/SNF
subunit across the CCLE panel using transcriptomic data (Supplementary Fig. 7), since proteomics were
only available for a subset of the cell lines ; (ii) defined two groups corresponding to cell lines with the
10% highest or lowest expression for the gene of interest; and (iii) compared between both groups the
CRISPR score of each gene knocked out within the genome-wide CRISPR screen. We defined gene hits as
the ones with adjusted p-value < 1e-3 and Wilcox displacement > 0.15, and super hits as those with p-adj
< le-4 and Wilcox displacement > 0.15. Overall, gene hits and superhits were largely subunit defect-
specific: 10 superhits and 28 hits were identified for two or more SWI/SNF subunits, whereas 49 superhits
and 93 hits were private to one unique SWI/SNF subunit defect (Fig. 6B). As a quality control of our newly
developed method, we could identify SMARCA4 as the top hit for cell lines with low SMARCA2 expression
(Supplementary Table 11). Thirty-one super hits and six hits were shared between SWI/SNF and non-
SWI/SNF defective cell lines, while eight superhits and 41 hits were detected in a single non-SWI/SNF
defect (Fig. 6C, Supplementary Table 11). The most represented super hit across SWI/SNF lines was E1A
Binding Protein P300 (EP300), which was predicted as being synthetic lethal in six SWI/SNF-defective
(ARID1A/1B/2, PBRM1, SMARCA4/B1) and three non-SWI/SNF-defective (BAP1, KMT2D/2C) populations.
EP300 synthetic lethality was also close to significant for CREBBP low expression (Wilcox
displacement>0.15 but p-adj=0.1, Supplementary Table 11). EP300 is a histone acetyltransferase that
belongs to the same family and has a similar structure and function to its cognate co-activator CREBBP;
both activate transcription through interactions with transcription factors and histone acetylation relaxing
chromatin structure at gene promoters and enhancers. Interestingly and consistent with this data, our
high-throughput drug screen previously identified the C646 EP300 inhibitor as one of the top hits, causing
selective cell death in all SWI/SNF and non-SWI/SNF-KO mutants, with the strongest synthetic lethal
interaction being — as expected — in the CREBBP-KO cell line (Fig. 5B and Supplementary Table 11). This
match between our high-throughput drug screen on isogenic HAP1 cell lines, and the DepMap CRISPR
screen on a non-isogenic panel of high/low chromatin remodeling expression cell lines from diverse

genetic backgrounds, reinforced the relevance of our HAP1 model for signal-searching.

Strikingly, five out of the ten following superhits that scored in at least two SWI/SNF-KO cell lines (namely
MICOS10, SDHD, SDHB, SDHC and MRSP26), were related to mitochondrial metabolism. MICOS10 is a
protein that plays a key role in the formation of mitochondrial cristae, which are folds of the inner

mitochondrial membrane where energy production occurs®®. SDHB/C/D are subunits of the Succinate
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Dehydrogenase Complex which is part of the mitochondrial inner membrane protein of complex Il of the
respiratory chain, responsible for the oxidation of succinate in the oxidative phosphorylation and the TCA
cycle. Finally, the MRPS26 nuclear gene encodes Mitochondrial Ribosomal Protein S26, which participates
in protein synthesis within the mitochondria. Additionally, FECH and CDS2, two genes related to
mitochondrial metabolic pathways (Heme biosynthesis and Glycerophospholipid biosynthesis,
respectively), were predicted as synthetic lethal with SMARCA4 and ARID1B KO respectively (Fig. 6C).
Altogether, this pointed towards a novel genetic vulnerability of SWI/SNF-defective cancer cells, which
would be driven by an altered mitochondrial respiration and protein metabolism, as previously identified

in our proteomics dataset.

Superhits for both SWI/SNF and non-SWI/SNF KO lines were mapped to their respective Reactome
pathways to allow comparison with proteomics enrichment results in HAP1 cell lines. Metabolism was the
most targetable category across all defects. In the SWI/SNF group, it was followed by Signal transduction,
Metabolism of proteins, Gene expression and Immune system (Fig. 6D). In the non-SWI/SNF group, the
subsequent targetable genes were almost evenly spread over 10 different categories. At the pathway
level, processes related to mitochondrial respiration and protein metabolism (Respiratory electron
transport, TCA cycle, Mitochondrial translation, Cristae formation) were the most enriched across
SWI/SNF and KMT2C/2D-low expressing cell lines, in line with our proteomics data of the HAP1 isogenic
panel (Fig. 6E).

To next explore whether genes predicted as targetable by the CRISPR DepMap analysis would be involved
in pathways targeted by compounds identified as hits of the drug screening, we compared, for every clone,
the list of CRISPR hits and the list of genes known to interact with hit compounds (Fig. 6F, Supplementary
Figures 8-20, Supplementary Tables 12,13). This enabled us to identify 16 genes that interacted with seven
drugs. The first one was EP300, the main target of the c646 drug, which was predicted as a super hit in
the ARID1A-, ARID2-, BAP1-, KMT2D- and SMARCA4- low expressing cell lines (Fig. 6C). Interestingly, EP300
is also known to interact with other hits of the drug screen, including flavonoids quercetin, resveratrol, as
well as estradiol-17 beta. The following seven genes were involved in cellular metabolism, of which five
(COX5B, COX7B, SDHB, SDHC, and UQCRC1) were part of the mitochondrial respiratory chain. Two
additional genes were involved in Metabolism of proteins: HGS, which plays a role in protein
deubiquitination and cell signaling by Receptor Tyrosine Kinases, specifically EGFR and Rho GTPases, and
WARS1 which encodes a tryptophanyl-tRNA synthetase, an enzyme involved in cytosolic protein

translation.
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In summary, analysis of the DepMap project genome-wide CRISPR screen allowed us to identify multiple
SWI/SNF defects-associated genetic vulnerabilities that corresponded either to pharmacologic
vulnerabilities identified in our high-throughput drug screening on the HAP1-isogenic panel (e.g., EP300
and C646), or to pathways dysregulated in proteomics profiling (e.g. MICOS10, SDHB/C/D and
mitochondrial metabolism), overall pointing towards “orthogonal" synthetic lethal dependencies that

may be the most robust and independent from the cellular genetic background.

SMARCA4-defective cells are vulnerable to inhibition of EP300 and mitochondrial respiration

IH

We next thought to explore whether the above-identified “orthogonal” synthetic lethal dependencies
would also operate in isogenic histotype-relevant models and decided to focus on deficiencies of
SMARCAA4, a pivotal SWI/SNF catalytic subunit frequently mutated across multiple solid tumors. To do so,
we created two SMARCA4 isogenic models in cancer cell types where SMARCA4 is found mutated: non-
small cell lung cancer (H358 cell line), and sarcoma (U20S cell line). Each model was constituted of one
SMARCA4-WT parental cell line, and one SMARCA4-KO cell line where SMARCA4 had been disabled by
CRISPR-Cas9 gene editing (Fig. 7A). For both cell lines, knocking out SMARCA4 resulted in an increased
protein expression of ARID1A/1B and ARID2 and a decreased PBRM1 expression, as observed in the HAP1
model for the latter (Fig. 7B). We next assessed the sensitivity of each model to compounds identified as
“orthogonal” hits: the selective CBP/EP300 inhibitor CPI-637°° and two mitochondrial respiratory chain
poisons: antimycin and oligomycin (which inhibit complexes Ill and V, respectively). Short-term drug
sensitivity assays did not show any significant therapeutic window, in line with our previous unidose drug
screen and the need for longer exposure to epigenetic drugs to rewire the cell epigenome and impact
cellular fitness (Supplementary Fig. 21A). By contrast, long-term colony formation assays confirmed that
the SMARCA4-KO cell line of both models was selectively sensitive to CPI-637, with I1Cs values respectively
2.9-fold and 7.8-fold smaller in H358 and U20S SMARCA4-KO cells as compared to corresponding parental
cells (two-way ANOVA p<0.001, Fig. 7C, Supplementary Fig 21). This suggested that CBP/EP300 inhibition
could represent a novel synthetic lethal therapeutic strategy for SMARCA4-defective tumors. Similarly,
antimycin was selectively toxic towards the SMARCA4-KO cell line of both models in short-term exposure,
consistent with the more rapid action of drugs targeting cell metabolism (ICso values respectively 43-fold
and 1.1-fold smaller in H358 and U20S SMARCA4-KO than in parental cells, two-way ANOVA p<0.001, Fig.
7D). Intriguingly, the SMARCA4-KO H358 cell line was profoundly more sensitive to oligomycin than the
parental cell line (short-term ICsp : 2.63 uM for WT vs 0.0647 nM for SMARCA4-KO; long-term 1Csp : 1.65
nM for WT vs 0.14 nM for SMARCA4-KO; two-way ANOVA p<0.001, Fig. 7E-F), while a therapeutic window
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was inconstantly observed in the U20S cell line (Supplementary Fig. 21), suggesting a potential variability

and the contribution of additional factors for this latter synthetic lethal interaction.

Overall, the SMARCA4-EP300 and -mitochondrial respiratory chain complexes synthetic lethal
dependencies could be revalidated in independent cancer-relevant models, highlighting their robustness

and potential clinical translatability.

DISCUSSION

Mutations in subunits of the SWI/SNF chromatin complex occur in 20% of solid tumors and still represent
a highly unmet need. In this study, we integrated multi-omics profiling and drug screening of HAP1
isogenic cell lines mutated for individual SWI/SNF subunits or other chromatin modifying enzymes, with
CRISPR screens from the DepMap project to investigate the consequences of SWI/SNF mutations on gene
expression and intracellular pathway dysregulation, and subsequently identify targetable genetic
vulnerabilities. We uncovered that the defects in several SWI/SNF subunits, including SMARCA4, led to a
dependency on the protein acetyltransferase CBP/EP300 and adequate mitochondrial respiration, which

we revalidated in independent disease-relevant SWI/SNF-defective tumor models.

Targeting tumor loss-of-function is often more challenging than targeting oncogene addiction, and
identification of synthetic lethal relationships or genetic vulnerabilities is key to uncovering novel
therapeutic approaches. The choice of the model in which such discoveries are performed is key: while
clean isogenic models allow to confidently link the observed phenotype with the genetic alteration, they
do not enable to explore the cell type-dependency of genetic vulnerabilities and non-isogenic models
better recapitulate the tumor reality and heterogeneity. Here, we show that isogenic HAP1 models,
despite being haploid and originating from chronic myeloid leukemia - a histology where SWI/SNF is
usually not mutated - represent a useful tool for the initial identification of genetic dependencies that are
cell type-independent. Indeed, we could confidently revalidate several genetic dependencies identified
using multi-omics profiling and high-throughput drug screening on our HAP1 isogenic panel, not only in
the DepMap project CRISPR screen, performed on independent non-isogenic cell lines, but also in
additional disease-relevant models. Among them, our strongest uncovered genetic dependency was the
synthetic lethality between EP300 pharmacological inhibition (or EP300 genetic depletion) and SWI/SNF
subunit defects, including SMARCB1/A4 and ARIDA1/1B/2. Interestingly, such synthetic lethality was also

extremely recently found to operate between SMARCB1 or ARID1A defects and the dual inhibition of
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CBP/p300 in unrelated models®®®?, thereby reinforcing the robustness of our findings. Several CBP or
EP300 small molecule inhibitors are currently being tested in patients with advanced solid tumors or
hematological malignancies (e.g., NCT06433947, NCT05488548), opening the way to clinical translation

of our findings.

Differential expression analysis between SWI/SNF-mutated versus -WT cell lines and pathway enrichment
both concluded on a weak correlation between alterations of the transcriptome and proteome, suggesting
that transcript levels were only moderately predictive of protein expression, as reported in the literature
for various species and tissues®*~8, Still, the correlation between RNA and protein expression may vary
depending on the cellular process in which genes are involved®. In this study, the Chromatin modifying
enzymes pathway, together with several DNA damage response and Cell Cycle processes, were found
enriched in SWI/SNF mutants in the proteomics analysis whereas they were not identified in the previous
transcriptomics studies (ARID1A207%71 ARID1B’!, ARID27%7%, PBRM1747%, SMARCA2/SMARCA4”"78 and
SMARCB1”). These results implicate the role of post transcriptional regulation underscoring the weaker

predictive capacity of the latter dataset for pathway functionality.

Optimal integration of large-scale multi-omics datasets and functional high-throughput screening requires
the design and use of robust bioinformatics pipelines. Here, we developed an optimized pathway
enrichment strategy based on two improvements: (i) a biologically-sound reduction of the number of
pathways tested for enrichment, and (ii) an optimization of the enrichment statistical algorithms (see
Methods). By applying this new pipeline to proteomics datasets, we uncovered novel dysregulations in
SWI/SNF-defective cell line models, which were linked to Metabolism of proteins, including protein
sumoylation, glycosylation, and mitochondrial translation. Such pathway alterations were further
supported by the selective toxicity of blasticidin - a drug that acts as a protein synthesis inhibitor - and
mitochondrial respiration inhibition in SWI/SNF-defective cell lines, observed in independent drug and
CRISPR screens. Whether this directly results from the loss of a SWI/SNF subunit function which may be
involved in protein or mitochondrial metabolism, or whether a SWI/SNF-dependent transcriptional
dysregulation of genes involved in such processes secondarily induces these phenotypes, remains to be
explored. In this context, the recently described cytoplasmic location of some SWI/SNF subunits is
intriguing, and whether some SWI/SNF subunits also have cytoplasmic or mitochondrial functions might

require further investigation3*%,

In conclusion, our data uncover several previously undescribed targetable synthetic lethal vulnerabilities

with defects in SWI/SNF subunits and provide a large muti-omics, drug and CRISPR screen-based resource
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to the scientific community for further identification of signaling and genetic dependencies in chromatin

remodeling-defective cancers.
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Figure 1. SWI/SNF subunit defects lead to subunit-specific transcriptomic, proteomic and stoichiometric

changes in SWI/SNF complex composition. A) Study workflow. SWI/SNF subunits and other chromatin

remodelers for which KO isogenic HAP1 mutants were profiled are shown on left panel; molecular and
profiling methods, as well as analyses performed are depicted in middle and right panels. B) SWI/SNF
related subunits differential expression between indicated SWI/SNF mutant and WT in transcriptome and
proteome analysis. SWI/SNF mutants and SWI/SNF subunits are colored according to the type of SWI/SNF
complex they belong to according to Mashtalir et al®. The color scale represents the log,(Fold-change)
between gene expression in each mutant as compared to the wild-type cell lines. Positive values indicate
gene/protein upregulation with respect to HAP1 wild-type, whereas negative values indicate
downregulation. p-adj value: *** < 0.0001, ** < 0.001, * < 0.01. C) Western blot of selected SWI/SNF
subunits following immunoprecipitation (IP) of the SMARCC2 core subunit. D) SWI/SNF subunits detected
by quantitative RIME following SMARCC2 IP. See panel B for legend. E) String network of the ARID2-
mutant RIME data showing the significant down-regulation of all PBAF-specific subunits (blue) and the

upregulation of SS18 (red).
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Figure 2. Differential expression analysis of whole transcriptome and proteome profiling shows

that SWI/SNF mutants cluster together despite mutant-specific features and reveals a limited

correlation between transcript and protein dysregulations. A-B) Hierarchical clustering of

mutant cell lines according to whole transcriptome (A) and proteome (B) differential expression
analysis. C) Number of differentially expressed genes and proteins for each mutant cell line as
compared to WT. The significance level was set to p-adj < 0.05 for any log,FC, light colors flag
entries with |log2FC| > 1. D-E) Most commonly dysregulated genes (D) and proteins (E) across
SWI/SNF mutants (genes with |log2FC| > 4 and p-adj < 0.0001 in at least four SWI/SNF KO cell
lines; proteins with |log2FC| > 2 and p-adj < 0.05 in at least two SWI/SNF KO cell lines)). Gene
symbols in bold are mentioned in the text. F-H) Comparison of transcriptome and proteome
differential expression in SMARCA4 (F), CREBBP (G) and ARID2 mutants (H). SWI/SNF-related
genes are colored in pink and most differentially expressed genes (i.e. |log2FC| > 2) are
highlighted as follows: blue, upregulation in both transcriptome and proteome; cyan,
downregulation in both transcriptome and proteome; beige, downregulation in transcriptome
and upregulation in proteome; red, upregulation in transcriptome and downregulation in
proteome. The blue line represents the Pearson correlation line with indicated R coefficients and

p values.
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Figure 3. An optimized pathway enrichment pipeline based on pruned pathway database and

combination of GSEA and RontoTools algorithms identifies common and mutant-specific dysregulated

pathways. A) Design of the optimal pathway enrichment strategy: 1) Gene set definition by pruning the
Reactome pathway database, 2) Gene set enrichment optimal strategy combines GSEA and ROntoTools
by selecting pathways which are significant in at least one of the methods (i.e.: OR rule). ORA was
discarded to due to poorer performance. B) Proteomics enrichment ranks of Chromatin remodeling and
DNA repair pathways, known to be dysregulated in SWI/SNF mutants (i.e., positive controls). Ranking was
based on p-adj values obtained from each indicated enrichment method. For algorithm combination, the
geometric mean of ranks obtained from each method individually were used. C) Proteomics enrichment
results for pathways containing the SWI/SNF gene KO in the corresponding cell line. Cells are filled when
the pathway contains the KO gene, and colors indicate the method that identified it. For the sake of
visualization, CREBBP-only pathways have been cropped; see Supplementary Fig. 2F for full plot. D)
Number of enriched pathways in proteomics dataset of each indicated mutant cell lines, as detected by
GSEA or ROntoTools, using the pruned Reactome database. E) Number of enriched pathways in
transcriptomics and proteomics datasets of indicated mutant cell line, as computed by the optimized

enrichment pipeline.
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Figure 4. Metabolism of proteins is the most largely dysregulated category in the proteomics of SWI-

SNF mutants and other enriched pathways are largely mutant-specific. A) Hierarchical clustering of

mutant cell lines according to pathway ranking from proteomics enrichment analysis. B) Enriched
pathways in at least five SWI/SNF mutants or at least four non SWI/SNF mutants. Symbols in each cell
indicate if the pathway is significantly upregulated (+), downregulated (-) or not significant (empty),
according to the NES score of GSEA. Pathway names are colored according to pathway categories.
Pathways dysregulated in SWI/SNF mutants and not in non-SWI/SNF KO cell lines are highlighted in bold.
Full pathways names are reported in Supplementary Table 7. C) Most dysregulated pathway categories in
SWI/SNF mutants. Rankings correspond to the number of significantly enriched pathways for at least one
SWI/SNF mutant, considering the whole pathway database (upper line) or only the Top10 most enriched
pathways in each SWI/SNF mutant (lower line). D) Most dysregulated pathway categories in non-SWI/SNF
mutants. Rankings correspond to the number of significantly enriched pathways for at least one non
SWI/SNF mutant, considering the whole pathway database (upper line) or only the Top10 most enriched
pathways in each SWI/SNF mutant (lower line). E) Top10 enriched pathways in SWI/SNF mutants. The cell
colors indicate the pathway up- or downregulation (NES score of GSEA). The numbers inside the cells
indicate the pathway ranking, in white, if the pathway is in the Top10 pathways of the mutant, and in
black, otherwise. On the y-axis, pathways are arranged following the category rankings of panel B, and,
within each category, according to the number of mutants for which the pathway appeared in the Top10.

Full pathways names are reported in Supplementary Table 7.
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Figure 5. Drug screening reveals potential drug targets in SWI/SNF-KO cell lines. A) Drug screening

strategy. Cell line sensitivity to a unidose drug screening of 1200 compounds (Prestwick Chemical Library)
and 186 small molecule inhibitors (SelleckChem Epigenetic Library) was assessed; 55 and 56 hits were
selected, respectively, for revalidation in multidose assay (see Methods). B) Unidose drug screening.
Survival fractions (SF), normalized on control, are depicted for HAP1-mutant or HAP1-WT cell lines. Drugs
are ranked by increasing number of sensitive cell lines and average SF across cell lines. C) Multidose drug
screening. Inhibitory Concentration (IC)50 values of drugs that were selectively toxic towards HAP1-
mutant cell lines are depicted; white squares indicate that IC50 was not reached. D) Enriched pathways in
genes interacting with at least one HAP1-mutant selective drug of the unidose or multidose analyses for
each cell line individually. Cell colors refer to the number of drugs interacting with genes of the pathway.
Green dots represent the rank of the pathway in the proteome enrichment analysis whenever predicted
as dysregulated. Pathways are colored based on Reactome categories and categories are arranged on the

y-axis according to their enrichment in SWI/SNF-KO cell line proteomics (Fig. 4C).
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Figure 6. CRISPR DepMap project analysis identifies potential synthetic lethalities associated with

SWI/SNF deficiencies. A) Scheme of the algorithm developed to predict synthetic lethal interactions. 1) A

mutant-like gene of interest is chosen (e.g.: SMARCA2) and cell lines in the highest and lowest 10%
quantiles are selected to form the high and low expression groups, respectively. 2) Given a gene KO by
CRISPR (e.g. EP300), a Wilcoxon statistical test is run to evaluate the difference in the EP300 CRISPR score
between the low and high expression groups of cell lines. If the test is significant and if the displacement
between CRISPR score distributions of high and low expression groups is in the desired direction (i.e.
SMARCAZ2 low expressing cell lines are more sensitive to the deletion of EP300 as compared to the high
expression group), a synthetic lethal interaction is found. Significance is defined as Wilcox displacement
estimate being > 0.15 and p-adj < 1e-3 for “hits” and p-adj < 0.0001 for “super-hits”. 3) This procedure
was iteratively performed for the 13 chromatin remodelers of interest, set as the mutant-like gene,
explored CRISPR genes corresponding to those of the Reactome database. Results can be displayed in a
volcano plot where the dotted lines represent significance thresholds for hits. B) Number of super hits
and hits for each cell line. C) Super-hit CRISPR genes for each cell line. Genes are ranked in decreasing
order with respect to the number of affected mutants. D) Top dysregulated Reactome pathway categories
considering the super-hits predicted across SWI/SNF mutants (upper line) or non-SWI/SNF mutants (lower
line). E) Enriched pathways in the hit gene list for each cell line. The color code indicates the number of
hits found in each pathway. The green dots represent the rank of the pathway in the proteome
enrichment analysis whenever it was predicted as dysregulated. Pathways are ranked in decreasing order
of the number of cell lines where they are found significant. F) Comparison between CRISPR analysis and
drug screening. Genes identified as hits in the CRISPR study were compared with genes interacting with
drugs identified as efficient in the drug screening, for each cell line individually. Drug-gene interactions
were obtained from public databases (see Methods). Only genes being CRISPR hits for at least two cell
lines or being targeted by at least two efficient drugs are depicted. Drugs are ordered based on the
number of targeted CRISPR hits. Genes are colored according to the Reactome category they belong to

(see panel D).
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Figure 7. SMARCA4-defective cells are vulnerable to inhibition of EP300 and mitochondrial respiration.

A) Western blot of SMARCA4 expression on total cell extracts of H358 SMARCA4-WT or -KO, U20S
SMARCA4-WT or -KO. B) Western blot on total cell extracts of H358 SMARCA4-WT or -KO, U20S SMARCA4-
WT or -KO of selected SWI/SNF subunits following immunoprecipitation (IP) of the SMARCC2 core subunit.
C) Dose-response clonogenic survival curves and representative pictures of SMARCA4-isogenic models
exposed to increasing concentrations of CPI-637 for 10 days (U20S cells) or 13 days (H358 cells). Mean +
SD, number of replicates per data point n = 3; two-way ANOVA and post hoc Sidak’s test. D) Dose-response
survival curves of SMARCA4-isogenic models exposed to increasing concentrations of mitochondrial
respiration complex Il inhibitor Antimycin A for 7 days. Mean £ SD, n = 3; two-way ANOVA and post hoc
Sidak’s test. E) Dose-response survival curves of H358 SMARCA4-isogenic cells exposed to increasing
concentrations of mitochondrial respiration complex V inhibitor Oligomycin A for 7 days. Mean £ SD, n =
3; two-way ANOVA and post hoc Sidak’s test. F) Dose-response clonogenic survival curves and
representative pictures of H358 SMARCA4-isogenic cells exposed to increasing concentrations of

Oligomycin A for 17 days. Mean % SD, n = 3; two-way ANOVA and post hoc Sidak’s test.
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METHODS

Cell lines

HAP1 parental and KO cell lines for ARID1A, ARID1B, ARID2, PBRM1, SMARCA2, SMARCA4, KMT2C,
KMT2D, CREBBP or SETD2 were purchased from Horizon Discovery. HAP-1 KO cell lines for SMARCB1, BAP-
1 or EED were obtained from Drs. Raphaél Margueron (Institut Curie, UMR934, Paris) and Eric Pasmant’s

teams (Institut Cochin, Paris). NCI-H358 and U20S cell lines were purchased from ATCC.

SMARCAA4 gene knockout was performed in U20S and NCI-H358 cell lines using a CRISPR/Cas9-based gene
editing approach. Cells were targeted using the Edit-R™ CRISPR/Cas9 gene engineering protocol (Horizon),
according to the supplier's instructions. The following sgRNA sequence was used (5'-
TTGTCCTGAGGGTACCCTCC-3') to generate a frameshift deletion in exon 1 of the SMARCA4 gene. Cells
were transfected in T25 flasks with sgRNA and Cas9 plasmid, using Lipofectamine 2000 (Thermo Fisher).
Several rounds of transfection were performed to obtain an optimal knockout efficiency. SMARCA4
expression was monitored on the transfected pool at each transfection cycle by western blot, and when
sufficient depletion of the protein was observed, cells were plated in 96-well plates for clonal isolation
using the classical limiting dilution method. Colonies were recovered and profiled for SMARCA4

expression by western blot.

HAP-1 cells were cultured in Iscove’s Modified Dulbecco’s Medium (IMDM, Gibco) supplemented with
10% FBS (Sigma), 1% Penicillin-Streptomycin (Gibco), 1% Sodium Pyruvate (Gibco), 1% Sodium
Bicarbonate (Gibco) and 1% Non-Essential Amino Acids (Gibco). U20S cells were cultured in in high
glucose-Dulbecco's Modified Eagle Medium (DMEM, Gibco) supplemented with 10% FBS (Sigma), 1%
Penicillin-Streptomycin (Gibco), 1% Sodium Bicarbonate (Gibco), 1% Non-Essential Amino Acids (Gibco)
and 1% HEPES (Gibco). NCI-H358, cells were cultured in Roswell Park Memorial Institute-1640 (RPMI-
1640) medium supplemented with 2mM L-glutamine (Gibco), 10% FBS (Sigma) and 1% Penicillin-
Streptomycin (Gibco). All cells were grown and maintained at 37°C and 5% CO2. Cells were controlled for

mycoplasma-free status using the Venor®GeM Classic Kit (Minerva Biolabs).

Co-immunoprecipitation SMARCC2 immunoblotting

For co-immunoprecipitation (co-IP), cells were lysed in custom lysis buffer (1% NP-40, 50 mM Tris-HCl,
137 mM NacCl, 10% glycerol, supplemented with 1% Halt™ protease and phosphatase inhibitor cocktail).
Lysates were generated on ice and centrifuged for 30 min at 16,900 g before supernatant collection.

Lysates containing 300g proteins were incubated O/N at 4°C on a rotating wheel with 50 uL Dynabeads
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protein G (ThermoFisher, 10004A) and 0.25ug of SMARCC2 antibody (Cell Signaling #12760) or equivalent
rabbit polyclonal IgG isotype (Cell Signaling, #2729). Flow-through and IP fractions were collected and
subjected to electrophoresis using NUPAGE™ 4-12% Bis-Tris or NUPAGE™ 3-8% Tris-Acetate precast gels
(Invitrogen, Carlsbad, CA, USA). After migration, proteins were transferred to a nitrocellulose membrane
(GE Healthcare). 3% bovine serum albumin (BSA) in TBS buffer supplemented with 0.1% Tween 20 (TBST
0.1%) was used to block the membrane, at room temperature (RT) for 1 h. Primary antibodies were diluted
in 3% BSA in TBST 0.1%, and incubated at 4°C O/N. The next day, the membrane was washed three times
with TBST 0.1%, each for 10 min, followed by incubation with horseradish-peroxidase (HRP)-conjugated
secondary antibodies at RT for 1 h, in 5% milk in TBST 0.1%. The membrane was washed again three times
with TBST 0.1% and incubated with Amersham ECL prime detection reagent (GE Healthcare) or Clarity
Max ECL substrate (Biorad). The membrane was then imaged with a BioRad ChemiDoc XRS+
chemiluminescent detection system. Antibodies used: PBRM1 (A301-591A-M) from Bethyl Laboratories
(Montgomery, TX, USA); SMARCC1 (#11956S) and SMARCC2 (#12760S) from Cell Signaling Technology
(Danvers, MA, USA); ARID1B (ab57461), SMARCA2 (ab15597) from Abcam (Cambridge, UK); ARID1A (sc-
32761), ARID2 (sc-166117) SMARCA4 (sc17796), SMARCB1 (sc-166165) from Santa Cruz (Dallas, TX,
USA);B-Actin (A1978) from Sigma Aldrich (Gillingham, UK); Goat anti-Rabbit IgG (H+L) Secondary Antibody,
HRP, 31460, Thermofisher Scientific; Goat anti-Mouse IgG (H+L) Secondary Antibody, HRP, 31430,

Thermofisher Scientific.

Transcriptome analysis

Transcriptomic analysis was performed on three independent replicates for HAP1 parental cell lines and
for all isogenic mutants except SMARCB1, BAP1 and EED. 70-80% confluent cells were harvested, and total
RNA was extracted using Rneasy Mini Kit (Qiagen, 74104) with DNAse treatment, according to the
manufacturer’s instructions. Every RNA sample was quantified with a Qubit Fluorometer and evaluated
for quality controls using 2100 Bioanalyzer (Agilent Technologies). After RNA Integrity Number (RIN)
quality control, cDNA libraries were generated using the NEBNext Ultra Il RNA Library Prep Kit (NEB
#E7775) on Bravo Liquid Handler (Agilent). Subsequent indexed RNA sequencing of cDNA libraries with
paired-end reads was performed according to the standard Illumina protocol using NovaSeq 6000 S2
system, with a target of 100Gb (X million reads) per sample. Pre-processing of reads included quality
controls with FASTQC and adapter trimming with TrimGalore using the nf-core RNA-seq pipeline.
Following alignment to GRCh38 with STAR, the quality of RNAseq data was evaluated with RseQC (BAM
stat, junction saturation, RPKM saturation, read duplication, Inner distance). FeatureCounts was used to

guantify expression relative to the transcriptome.
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Proteome analysis

Samples preparation:

Proteomic analysis was performed on 3 independent replicates of HAP1 parental cell lines and for all
isogenic mutants except CREBBP, KMT2C, KMT2D, and SETD2, for which 2 biological replicates were
processed. Cells were harvested at 70% confluence and pellets were dissolved in 150uL lysis buffer
containing 1% sodium deoxycholate (SDC), 100mM triethylammonium bicarbonate (TEAB), 10%
isopropanol, 50mM NaCl and Halt protease and phosphatase inhibitor cocktail (100X) (Thermo Fisher,
#78442). Pellets were pulsed with probe sonication for 15 sec (on ice), followed by boiling at 90°C for 5
min and re-sonication for 5 sec. Protein concentration was measured with the Coomassie Plus Bradford
Protein Assay (Pierce) according to the manufacturer’s instructions. Protein aliquots of 100 pug were
reduced with 5 mM tris-2-carboxyethyl phosphine (TCEP) for 1 h at 60 °C and alkylated with 10 mM
lodoacetamide (IAA) for 30 min. Proteins were finally digested with trypsin (Pierce) at 75 ng/uL O/N. The
peptides were labelled with the TMT-11plex reagents (Thermo Fisher) according to the manufacturer’s
instructions. Peptides were fractionated with the XBridge C18 column (2.1 x 150 mm, 3.5 um, Waters) on
a Dionex Ultimate 3000 HPLC system at high pH. Mobile phase A was 0.1% ammonium hydroxide and
mobile phase B was acetonitrile, 0.1% ammonium hydroxide. The TMT labelled peptide mixture was
fractionated using a multi-step gradient elution at 0.2 mL/min. The separation method was: for 5 minutes
isocratic at 5% B, for 35 min gradient to 35% B, gradient to 80% B in 5 min, isocratic for 5 minutes, and re-

equilibration to 5% B. Fractions were collected every 30 sec and vacuum dried.

LC-MS/MS

On-line LC-MS/MS analysis was performed on the Dionex Ultimate 3000 system coupled with the Orbitrap
Lumos Mass Spectrometer (Thermo Scientific). Peptide fractions were reconstituted in 40 pL 0.1% formic
acid and 10 pL were first loaded and desalted on a PepMap C18 Nanotrap trapping column (100 um x 2
cm C18, 5 um, 100 A) at 10 pL/min flow rate. The samples were then analyzed with the Acclaim PepMap
RSLC (75 um x 50 cm, 2 um, 100 A) C18 capillary column at 45 °C. Mobile phase A was 0.1% formic acid
and mobile phase B was 80% acetonitrile, 0.1% formic acid. The gradient method at flow rate 300 nL/min
was: for 90 min gradient from 5%- 38% B, for 10 min up to 95% B, for 5 min isocratic at 95% B, re-
equilibration to 5% B in 5 min, for 10 min isocratic at 10% B. Precursor ions within 375-1,500 m/z were
selected at mass resolution of 120 k in top speed mode (3 sec cycle) and were isolated for CID
fragmentation with quadrupole isolation width 0.7 Th, collision energy 35% and max IT 50 ms. MS3 spectra

were obtained with further HCD fragmentation of the top 5 most abundant CID fragments isolated with
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Synchronous Precursor Selection (SPS). Collision energy was applied at 65% with 105 ms IT and 50 k
resolution. Targeted precursors were dynamically excluded for further activation for 45 seconds with 7

ppm mass tolerance.

MS data analysis

The mass spectra were submitted to SequestHT for database search in Proteome Discoverer 2.2 (Thermo
Scientific) using reviewed UniProt human protein entries. The precursor mass tolerance was 20 ppm and
the fragment ion mass tolerance was 0.5 Da for fully tryptic peptides. TMT6plex at N-terminus/K and
Carbamidomethyl at C were selected as static modifications. Dynamic modifications were oxidation of M,
and deamidation of N/Q. Peptide confidence was estimated with the Percolator node, and peptides were

filtered for g-value to be used for protein quantification.

Firstly, a differential expression analysis was performed to generate lists of genes/proteins deregulated in
a mutant as compared to the wild-type cell line. Differential expression analyses were performed using
limma-voom&%# after Trimmed Mean of M values (TMM) normalization®. For differential analysis, a gene
was assumed to be dysregulated if its p-adj was below 0.05. DE was performed for HAP1 transcriptomics
and proteomics datasets and for transcriptomics data from Schick et al. To compare both transcriptomics
studies, only common mutant and WT HAP1 cell lines were selected. Whole transcriptome comparison
was done by taking all common genes between datasets in each mutant and computing the Pearson
correlation on the list of log,FCs. Similarly, the correlation between HAP1 transcriptome and the proteome
differential expression analysis was assessed by Pearson’s test performed on gene log,(FC) values®®. For
Gene Set Analysis, differentially expressed genes were ranked using the absolute value of the t-statistic

computed by limma.

Next, Gene Set Analysis was conducted to find biological pathways overrepresented in each differentially
expressed gene list. Pathway definitions were based on a pruned version of the Reactome database V82%
(see next paragraph) and specified in the form of a Gene Matrix Transposed (GMT) file.

Regarding pathway enrichment, an optimized pipeline was developed from the combined study of three
methods: ) Overrepresentation Analysis (ORA, Gprofiler2 R package®®), pre-ranked Gene Set Enrichment
Analysis (GSEA, fgsea R package®”®8), and ROntoTools?’. ORA is a first-generation method that uses only
differentially expressed genes as input and consists of a hypergeometric test to compare to a background
set of human genes. GSEA is a second-generation method (Functional Class Sorting) and it employs a

Kolmorogov-Smirnoff running sum using the whole gene list ranked by a statistic, in this study, the t-test
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statistic given by limma. ROntoTools is a third-generation method (topology-based) that computes a
pathway perturbation score using a pathway graph representation where the nodes (proteins) are
weighted based on the p-adj of differential expression analysis using the formula -logio(p-adj/max(p-adj)).
For all three methods, Benjamini-Hochberg multiple testing correction was applied to compute p-adj

values for each pathway which served to rank them.

A benchmark of 13 methods, based on 4 different metrics, concluded on the superiority of ROntoTools,
followed by GSEA, and highlighted a considerable difference in performance between both algorithms
and the rest of the methods?®. ORA was included in that study and was found to be the worst-performing
method among all evaluated ones. Nonetheless, a Nature Protocol study published in 2019 indicated that
ORA was the most utilized method across all Gene Set Analysis algorithms and was included here as a

[, Of note, in their study, Nguyen et al. used GSEA with phenotype permutations, which

negative contro
requires at least seven biological replicates per condition, a condition rarely met in high-throughput data
analysis®. Having at most three replicates per condition, we had to use the pre-ranked version of GSEA.
Being aware that it has an expected higher false positive rate as compared to GSEA algorithm with
phenotype permutations, we lowered the p-adj threshold from 0.25 to 0.05, as proposed by Subramanian
in the GSEA documentation (https://www.gsea-msigdb.org/gsea/doc/GSEAUserGuideFrame.html). Next,
given the rather low sensitivity (i.e.: true positive rate) reported for enrichment methods, we explored
the combination of existing algorithms as associating several methods may potentially increase the
number of discoveries. Furthermore, ROntoTools can only be run on pathways for which the topology is
documented, and does not report the sign of pathway dysregulation, as GSEA does with the Normalized

Enrichment Scores (NES). To reduce the number of false positives when combining methods, the results

of each algorithm were merged by computing the geometric mean of pathway ranks®.

RIME

Immunoprecipitation
Cells were fixed with 0.1mM DSP (dithiobis[succinimidylpropionate], Thermo Fisher Scientific, 22585) for

30 minutes at RT, washed and lysed using the following lysis buffer: 50 mM Tris-HCI, 137 mM NaCl, 10%
glycerol, 1% NP40 and protease inhibitor cocktail (Roche, 11836153001). Lysates were generated on ice
and incubated with 1u/mL Benzonase Nuclease (Sigma, E1014-5KU) and 2mM MgCI2 for 30 minutes on a
rotating wheel, then centrifuged 15 min at 16,900 g before supernatant collection. Lysates were incubated

with 1ug SMARCC2 antibody (Cell Signaling, #12760) or rabbit polyclonal IgG isotype (Cell Signaling,

41


https://doi.org/10.1101/2024.07.16.603530
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.16.603530; this version posted July 18, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

#2729) on a rotating wheel for 2 hours at 4°C and 1 hour more incubation with 1.5mg Dynabeads protein
G (Thermo Fisher Scientific, 10004A). IP fractions were washed four times with lysis buffer, then washed
twice with 50 mM ammonium bicarbonate, before trypsin digestion (1ug Trypsin Sequencing Grade,
Merck, 11418475001) O/N at 37°C with shaking. Peptides were purified by filtering throught Millipore

Multiscreen HTS plate before mass spec analysis.

LC-MS/MS Analysis
On-line LC-MS/MS analysis was performed on an Orbitrap Fusion Lumos hybrid mass spectrometer

coupled with an Ultimate 3000 RSLCnhano UPLC system. Samples were first loaded and desalted on a
PepMap C18 nano trap (100 um i.d. x 20 mm, 100 A, 5u), then peptides were separated on a PepMap C18
column (75 um i.d. x 500 mm, 2 um) over a linear gradient of 4—32% CH3CN/0.1% FA in 90 min, cycle time
at 120 min at a flow rate of 300 nl/min. All instruments and HPLC columns were from Thermo Fisher. The
MS acquisition used the standard DDA method with Top Speed 3s cycle time. Briefly, the Orbitrap full MS
survey scan was m/z 375 — 1500 with resolution 120,000 at m/z 200, with AGC (Automatic Gain Control)
set at 40,000 and maximum injection time at 50 sec. Multiply charged ions (z =2 —5) with intensity above
8,000 counts were fragmented in HCD (higher collision dissociation) cell at 30% collision energy, and the
isolation window was set at 1.6 Th. The fragment ions were detected in the ion trap with AGC at 10,000

and maximum injection time at 50 ms. The dynamic exclusion time was set at 30 s with £10 ppm.

MS data analysis
Raw data were analysed using MaxQuant v1.6.1.43%. Protein identification was performed by database

searches against the SwissProt human database (August 2019) and quantification used the MaxLFQ
algorithm®® and the iBAQ measure®. The following search and quantification parameters were used:
Trypsin was set as digestion mode with a maximum of two missed cleavages allowed. The main search
peptide tolerance was set to 20 ppm, and MS/MS match tolerance set to 0.5 Da. Acetylation at the N-
terminus, oxidation of methionine, and deamidation of asparagine or glutamine were set as variable

modifications. Peptide and protein identifications were set at 1% FDR.

Data analysis was performed with the Perseus software (v1.6.2.3). Contaminants, reverse hits,proteins
identified only by site, and proteins identified in only one of the biological replicates for each KO line were
removed before further analysis. For each sample, the iBAQ values were normalised by scaling to the iBAQ
of the bait protein (SMARCC2) in the corresponding sample. Normalised iBAQ values were transformed

and missing values were imputed from a normal distribution representing lowest abundance values to
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enable statistical analysis. Welch’s t-tests were performed for each KO line against the wild type. Averaged

scaled relative iBAQs were hierarchically clustered using Pearson correlation in Phantasus®.

Cell line clustering based on gene expression or pathway enrichment

Cell line clustering was done for the transcriptome and proteome based on the t-statistic of differential
expression analysis. Cell line clustering for transcriptome and proteome enrichment results was based on
the geometric mean of pathway rank. Both analyses were done with the Ward hierarchical clustering
algorithm and the Euclidean distance. In both cases, but especially for the genes and proteins, our data
was subject to the “Curse of dimensionality” problem, as we tried to cluster ~10 cell lines using thousands
of dimensions (~¥17000 in transcriptome, ~ 8000 in proteome, ~ 400 in enrichment). For this reason, the
Principal Components Analysis (PCA) dimensionality reduction method was applied before clustering °*.
In every analysis, choosing the number of principal components that explained between 85 and 90% of
the variance seemed to yield the best results. Choosing a lower or higher number of components did not
allow a biologically meaningful classification. In the former case, PCA did not retain enough signal or
variance explained to conduct a proper clustering. In the latter case, PCA likely kept components that

include noise or that are redundant with other components, therefore worsening the clustering.

Reduction of Reactome pathway database

Reactome database was used for pathway definition given its very comprehensive nature (Reactome V85,
2629 pathways, 29 pathway categories)®®. A two-step pruning algorithm was developed to obtain a
minimum set of Reactome pathways of interest. First, a top-down pruning was performed taking
advantage of the tree structure of Reactome and keeping only pathways with lengths between minimal
and maximal values to be specified. It is accepted that pathways smaller than 10 genes may not be
informative enough and that pathways larger than 500 genes may be too general and should be
discarded?. Our procedure starts at the top of the tree, from the pathway corresponding to the whole
Reactome category, and goes down. In every iteration, the current pathway (parent) is checked for correct
size. If its size is not within bounds, it is ruled out. If its size is correct, its children are checked as well for
correct size and eliminated if their size is out of bounds. Then, the union of the genes of the remaining
children is taken and compared to the parent gene set. If at least 1 gene is lost in the children's union set,
the parent is kept, as its gene set cannot be reproduced by merging the child pathways. On the opposite,

if the parent is included in its children, it can be discarded. This procedure is repeated iteratively until
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reaching every leaf of the tree (i.e.: pathways that do not have any children). It is done independently for
each of the 28 categories in Reactome, each regarded as a different pathway tree. Secondly, a bottom-up
pruning step was conducted for pathways remaining from step 1. A given pathway is compared to the rest
and, if it includes other smaller pathways in their entirety, those pathways are eliminated. For the present
study aiming at identifying novel drug targets in the context of SWI/SNF deficiencies, we discarded nine
irrelevant Reactome pathway categories which were: drug ADME, Hemostasis, Digestion and absorption,
Reproduction, Sensory Perception, Neuronal System, Developmental Biology, Muscle contraction, and

Disease.

Unidose and multidose drug screening

High-throughput drug screening assays were performed in the HAP1 WT and 11 mutant cell lines
(SMARCA2, SMARCA4, ARID1A, ARID1B, ARID2, PBRM1, CREBBP, KMT2D, KMT2C, SETD2, EED and BAP1-
KO). Cells were cultured in Iscove’s Modified Dulbecco’s Medium (IMDM - Gibco Life Technologies -
31980048), supplemented with 10% fetal bovine serum (Gibco Life Technologies — 10270106), 1% of
Penicillin/Streptomycin (Gibco Life Technologies - 15140122), Sodium Pyruvate (Gibco Life Technologies -
11360039), Sodium Bicarbonate 7.5% solution (Gibco Life Technologies - 25080094) and Non-Essential
Amino Acids Solution (Gibco Life Technologies - 11140035), in a 37°C incubator with 5% CO2. These cells
were cultured in flasks and expanded as 2D monolayers using the same media as described above. For
cell passages, cells were washed with PBS and detached with trypsin-EDTA (Gibco Life Technologies -
25300054) for 5 minutes at 37°C. All cell lines were tested mycoplasma-free by the MycoAlert™

Mycoplasma Detection Kit (Lonza).

The unidose dataset comprised 1,200 chemicals from the Prestwick Chemical Library and 186 compounds
from the SelleckChem Epigenetic Library. Cells were counted using a T4 Cellometer (Nexcelom) to obtain
the desired number of cells for the screen and seeded in 384-well plates (ViewPlate-384 Black, Perkin
Elmer) using MultiDrop combi (Thermo Fisher Scientific), in 40uL of media. For the Prestwick library, cell
line densities were empirically determined: 250 cells per well for SMARCA2 and KMT2-KO; 300 cells per
well for ARID1A, ARID2, PBRM1, SMARCA4, KMT2C-KO, and HAP1; 400 cells per well for ARID1B, BAP1
and EED-KO; 800 cells per well for CREBBP and SETD2-KO. For the SelleckChem library, cell line densities
were as follows: 100 cells per well for all cell lines except for the SMARCA4- (150 cells per well) and KMT2C-
KO (200 cells per well). Twenty-four hours after cell seeding, compounds or control DMSO-vehicle were
transferred to the cell plates using the MultiChannel Arm™ 384 (MCA 384) (TECAN), to a final

concentration of 10uM and 0.5% of DMSO. Cells were then incubated for 5 days before cell viability
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assessment for both libraries. For the Epigenetic Library, cells were incubated with the chemical
compounds for two exposure durations, 5 days and 11 days, before cell viability assessment. CellTiter-Glo
2.0 Assay kit (Promega Inc., Madison, USA) was used to determine the cell viability in compound-treated
wells. The CellTiter-Glo 2.0 reagent was equilibrated to room temperature for 30 min before use. A
volume of 25l per well of CellTiter-Glo 2.0 reagent was robotically added using MultiDrop combi (Thermo
Fisher Scientific). The contents were mixed for 2 minutes at 300 rpm on an orbital shaker (Titramax 100,
Dutscher) and plates were further incubated for 10 min at room temperature to stabilize luminescent
signals. Units of luminescent signal generated by a thermos-stable luciferase are proportional to the
amount of ATP present in viable cells. Luminescence was recorded using a CLARIOStar (BMG Labtech)
(gain = 3600). In the unidose study, the survival fraction (SF) was calculated as the ratio between raw
luminescence in a treated well and the median luminescence of DMSO-treated wells of the same replicate.
Hits were subsequently identified based on three criteria: 1) efficacy (SF for both replicates < 70%), 2)
specificity (WT-vs-mutant difference of SF for both replicates > 30%), and 3) non-toxicity (SF for both
replicates > 70% in WT HAP1).

From this unidose study, the 55 compounds most cytotoxic for the mutant cell lines while not harming
the WT cells, were selected for a multi-dose assay (see details below), together with 56 epigenetic drugs
chosen from the SelleckChem Epigenetic Library. All compounds were received already diluted in Dimethyl
Sulfoxide (DMSO) as 10 mM stock solution and reformatted in-house into 384-well source plates for
automatic dose-response robotic screening. DMSO was added in the remaining wells as internal plate
solvent controls. Cells were seeded with the same density as in the unidose experiments, as described
above. Twenty-four hours after cell seeding, cell plates were treated with compounds and vehicle (0.5%
DMSO maximum) titrated in 8-point, three-fold dilutions starting at a concentration of 10 uM. For the
Prestwick library, cell viability was assessed after 5 days of compound incubation (6 days after cell
seeding). For the epigenetic drugs, half of the media was removed, fresh media was added after a 120h
incubation period, and the assay plates were incubated at 37°C. Cell viability was assessed after 144h (12
days after cell seeding). For each condition, cell viability was assessed by measuring cellular ATP through
luminescence using the Cell-titer Glo technology as described previously. The screen was performed at
the same early cell passages (1) for the three biological replicates when the cells had been passaged four
times after thawing from liquid nitrogen. The survival fraction (SF) was computed as the ratio between
raw luminescence in a treated well and the median luminescence of wells containing no cells from the
same plaque. Compounds were subsequently sorted by molecular targets, and manually selected for

multi-dose (dose-response) revalidation, based on the frequency of targets identified in a specific class,
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the # of compounds of that specific class within the Prestwick library, and the subsequent potential for

repurposing or clinical drug development.

For the multi-dose medium-throughput screen, a log-logistic curve was fitted to each concentration-SF
dataset using the drc R package and further used for compound selection. Firstly, any chemical killing
more than 30% of the HAP1 WT cell population at any concentration was considered too toxic and was
eliminated for further analyses. Next, compounds showing increasing or flat log-logistic curves for the
mutant cell lines were considered ineffective and were discarded (NoEffect function of the drc package,
p<0.05, and visual inspection)®. Similarly, chemicals for which the fitted curve did not drop under 50%
survival at the highest concentration (10 uM) were considered as not cytotoxic enough and were
eliminated. In summary, the compounds of interest were defined as the ones reaching an I1Cso between 0

and 10 puM in a mutant cell line while not reaching an ICsoin HAP1 WT cells.

Assessing pathway targetability from drug screening data

Drug-gene interaction databases contain qualitative drug-gene interactions based on curated scientific
evidence. Three databases were used to map working chemicals from the unidose and multi-dose
analyses to their interacting genes: drug-gene interaction database (DGIdb)®2, Comparative
Toxicogenomics Database (CTD)(Davis et al., 2021),and DrugBank>*. An extra manual mapping was added
for chemicals unable to map to any of the three databases. In case unmapped chemicals remain after the
manual curation, PubChem Bioassays in vitro data was used to add interacting genes to such drugs. For
the multi-dose analysis, only cytotoxic chemicals with an ICsp < 5 uM were selected for mapping to avoid
the non-specific effects of drugs working only at very high concentrations.

In the previous step, every cytotoxic chemical in a mutant cell line was successfully mapped to the set of
interacting genes based on drug-gene interaction databases. Such gene list was used as input to an
Overrepresentation Analysis (ORA) against the pruned Reactome database (the same version used to
conduct enrichment for transcriptomics and proteomics data). The test results in a list of pathways ranked
in increasing order based on the p-adj. For every pathway list corresponding to every cytotoxic chemical
in a mutant, only significant pathways were selected (p-adj < 0.05). A heatmap representing the pathways
targeted in at least one SWI/SNF KO cell line and targeted based on the proteome enrichment was built

by merging ORA results of cytotoxic drugs of the unidose and multidose analyses (Fig. 5D).

Estimating gene targetability using the CRISPR Cancer Dependency Map (DepMap) project
The DepMap project is a public database containing hundreds of cancer cell line models profiled for

genomic information and sensitivity to genetic and small molecule perturbations?. Here, we used the
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DepMap transcriptomics (RNA-seq) and CRISPR datasets available in 1100 cell lines. The CRISPR
technology was used to knock out approximately 17000 genes and compute a CRISPR dependency score
for every gene. The more negative this score is, the more deleterious the elimination of that gene is for
the cellular phenotype®.

An algorithm was developed to predict synthetic lethal interactions between HAP1 chromatin remodeling
mutant genes (E.g.: SMARCA2) and any other gene from the Reactome pruned database (called here
CRISPR gene). The method has 2 steps. (1) First, the definition of high and low mutant expression cell
populations. We obtain the expression distribution of the HAP1 mutated gene across all cell lines in the
database that contain measured expression for this gene. Then, the first and last 10% quantiles were
selected as the low and high expression groups, respectively. (2) The second step consists of testing a
displacement between CRISPR score distributions of the high and low mutant gene expression cell
populations. Because of the non-normality of the CRISPR score distribution, the nonparametric Wilcox
rank sum test was used to test for a difference in CRISPR gene scores between both cell line groups. If the
score is significantly more negative in the low expression group (p-adj < 0.05), the algorithm would predict
a possible synthetic lethality between the mutant and the CRISPR gene (l.e.: knocking out the CRISPR gene
on a cell line already deficient for the mutant gene would lead to cell death). The algorithm was run for
every mutant independently and for all genes in the pruned Reactome database. The results are shown
in form of a volcano plot indicating the Wilcox test displacement and the -logio(p-adj) (Supplementary Fig.
6 to 18). A Benjamini-Hochberg multiple testing correction was applied. Genes with a p-adj < 1e-3 and a
Wilcox displacement estimate > 0.15 were considered as “hits” (enough evidence of a synthetic lethal
interaction). Hits with a p-adj < 1e-4 were regarded as “super hits” (strong evidence of a synthetic lethal
interaction). For each mutant cell line, the list of CRISPR gene hits was used as input for ORA against the
pruned Reactome database to obtain the set of pathways enriched in the hit list. Significant pathways (p-
adj < 0.05) were named as targetable pathways for a particular mutant cell line, as they are

overrepresented in the hit gene list.

Revalidation proliferation assays

The p300 inhibitor C646, the CBP inhibitor CPI-637, and the mitochondrial respiration complex V inhibitor
Oligomycin A were purchased from Selleck Chemicals. The mitochondrial respiration complex Il inhibitor
Antimycin A was kindly gifted by Dr. Catherine Brenner’s team (Institut Gustave Roussy, UMR9018,
France). Short-term survival assays were performed in 96-well plates. Exponentially-growing cells were

plated in triplicates at a density of 150-1000 cells per well. Drug/vehicle was added 24 h after seeding and
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cells were continuously exposed to the drug for 7 days, after which cell viability was estimated using
CellTiter-Glo® Luminescent Cell Viability Assay (Promega, Madison, WI, USA) on a Spark® Multimode
Microplate Reader (Tecan, Switzerland). Long-term survival assays were performed in 6-well plates.
Exponentially growing cells were plated in triplicates at a density of 150-300 cells/well. Drug/vehicle was
added 24 h after seeding and cells were exposed to the drug for at least 10 days, with replenishment every
2 days by freshly made dilutions of drug or vehicle. Cells were fixed and stained with 0.5% crystal violet in
25% methanol for 30 min and washed three times with deionized water. Colonies of > 50 cells were
counted manually. Survival fractions (SF) were calculated compared to the DMSO-treated control and
dose-response curves were generated using Prism 10 (GraphPad Software®) after Log transformation of
the drug concentration. Two-way ANOVA testing the effect of WT/KO conditions and of varied
concentrations of drug exposure on SF and post hoc Sidak’s tests were performed to assess the

significance of the drug efficacy.
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