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Abstract

We o�er a simple mathematical model of gene transcription loss due to accumu-

lated DNA damage in time based on widely agreed biological axioms. Closed

form formulae characterizing the distribution of the underlying stochastic pro-

cesses representing the transcription loss upon speci�ed number of DNA dam-

ages are obtained. Moreover, the asymptotic behavior of the stochastic process

was analyzed. Finally, the distribution of the �rst hitting time of transcription

loss to speci�ed biologically relevant levels was studied both analytically and

computationally on mice data.
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1 Introduction

Transcription is the process of creating an RNA copy of a gene's DNA sequence called

messenger RNA (mRNA) which represents a carrier of the gene's protein informa-

tion encoded in DNA. In humans and other complex biological organisms, mRNA

moves from the cell nucleus to the cell cytoplasm, where it is subsequently used in

the process of synthesis the encoded protein. DNA damage represents any alteration

of the chemical structure of the DNA molecule and can occur both naturally and due

to presence of the exogenous factors. Moreover, DNA damages are changes in the
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structure of the genetic material and can prevent the transcription machinery from

functioning and performing properly, causing transcription stress ([24]). Ageing is

a naturally occurring biological process associated with a gradual decline in biolog-

ical function. There is a growing body of scienti�c evidence that aging is a direct

consequence of the accumulation of unrepaired DNA damage. This idea was �rst

suggested in ([1]) with the ever increasing experimental proof over the past decades

([2, 3, 4, 5, 6, 7]). The accumulation of DNA damage is particularly visible in cells

that are either non-replicating or slowly replicating, because DNA repair capacity is

lower in these cells ([25]). This includes but is not restricted to cells in the brain ([8]),

muscle ([9, 10, 11]), liver ([9, 12]) and kidney ([9, 13]). The corresponding reduction in

gene expression is observed both on mRNA and protein levels. Further support of the

DNA damage theory of aging comes from the observed accelerated aging in humans

with inherited defects in DNA repair mechanisms, such as Werner syndrome ([14]),

Huchinsosn-Gilford progeria ([15]) and Cockayne syndrome ([16]) with corresponding

mean life expectancy of 47, 13 and 13 years, respectively. Moreover, it was recently

demonstrated that the age-related transcriptional stress is evolutionary conserved

from nematodes to humans. Thus, accumulation of stochastic endogenous DNA dam-

age during aging deteriorates basal transcription, which establishes the age-related

transcriptome and causes dysfunction of key aging hallmark pathways, disclosing how

DNA damage functionally underlies major aspects of normal aging ([23]).

The purpose of this study is to quantify the connection between the accumulation of

unrepaired DNA damage and the associated loss in transcription in a mathematically

rigorous fashion and to study the stochastic properties of the associated processes. To

be more speci�c, we quantify the distribution of the transcription loss as a function

of the number of accumulated DNA damages in closed form. Furthermore, although

the closed form formula for the distribution of the �rst hitting time of biologically

relevant levels of blocked transcription is available, it is impractical due to computa-

tional complexity and hence simulation is used to draw inferences on these important

distributions. Moreover, we also quantify the distribution of the number of damages

needed to switch o� both copies of the gene in the genome thereby terminating its

biological function.

This manuscript is organized as follows. In Section 2 we list and corroborate the key

biological assumptions of the model that are in turn translated into mathematical

foundations. Section 3 presents the �ndings including closed form formulae for the

distribution of losses as a function of number of DNA damages accumulated. Section

4 presents �ndings of a simulation study for the distribution of the �rst hitting time

of the level of accumulated DNA damage to a range of biologically relevant levels. Fi-

nally, Section 5 provides some concluding remarks and elaborates on future research

directions.
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2 The set-up

We introduce a mathematical model of transcription loss due to accumulation of DNA

damage in biological organisms. DNA damage accumulates at a constant discrete rate

([17, 18]). We shall assume that once certain gene exhibits a damage this damage is

indeed permanent and the amount of transcription associated with the gene drops to

0 from that moment onward. There exist two DNA strands, one from each parent

while the transcription is only relevant in one direction ([19]). We assume that dam-

age is equally likely to occur on any one of these and hence, at any one time, with

probability 1
2
, no transcription is lost. Each of the genes will have two copies and the

transcription will be equally split between these. The probability that gene i will ex-

hibit DNA damage is only assumed to be proportional to its length. Equivalently, we

assume DNA is uniformly distributed over the entire length of the genome ([20, 21]).

Consider a biological organism with 2N genes in total, thereby taking into account

presence of a copy of each gene. For all i ∈ {1, . . . , N} let li and αi stand for the

length and weight of gene i, respectively, with restriction:

2N∑
i=1

αi = 1 (2.1)

where, for convenience, we rearranged the genome to have αi = αN+i for all i ∈
{1, . . . , N}. In line with the assumptions above we will assume that, at any instance

of time and independently of both past and future, the probability that gene i will

exhibit DNA damage equals:

qi =
li
4L

,L =
N∑
i=1

li (2.2)

where again pi = pN+i for all i ∈ {1, . . . , N}.

Let us introduce a partition of the interval [0, 1] which we will use throughout the

manuscript:

De�nition 2.1. For i ∈ {1, . . . , 2N + 1} de�ne the following sequence of intervals

I1 = [0, l1
4L
)

I2 = [ l1
4L
, l1+l2

4L
)

.

.
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.

IN =

[
l1+l2+···+lN−1

4L
, 1
4

)
IN+1 =

[
1
4
, 1
4
+ l1

4L

)
IN+2 =

[
1
4
+ l1

4L
, 1
4
+ l1+l2

4L

)
.

.

.

I2N =

[
1
4
+ l1+l2+···+lN−1

4L
, 1
2

)
I2N+1 = [1

2
, 1]
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3 Results

We begin with a trivial yet important observation.

Proposition 1. Let U be a uniformly distributed random variable on the interval

[0, 1]. Then:

(i) P (gene i exhibits damage at any time) = P (U ∈ Ii)

(ii) P (either one of the two inactive strands is hit at any one time)= P (U ∈ I2N+1)

Proof. The result follows immediately from the fact that P(U ∈ I) = |I| for all
intervals I ⊆ [0, 1], where |I| is the length of interval I.

De�nition 3.1. Let ωn stand for the sequence of random variables representing the

overall amount of transcription lost after exactly n DNA damages have occurred. Note

that if certain gene exhibits more than one damage this has no additional e�ect as we

assume that a single damage is equally harmful and that transcription from that gene

is permanently lost.

Proposition 2. Assume the above set-up. Then the expected transcription lost after

n DNA damages reads

E(ωn) =
∑2N

j=1 αj(1− (1− qj)
n)

Proof. Let ξk :=
∑2N

j=1 αj1{Uk ∈ Ij, Uk−1 ̸∈ Ij, . . . , U1 ̸∈ Ij}, where (Un)n∈N is a

sequence of independent and identically distributed uniform [0, 1] random variables.

Observe that Proposition 1 tells us that the entire path of damages can be captured

by the sequence (Un)n∈N. Moreover, we know that the additional transcriptions is lost

if and only if a gene which was not previously hit exhibits a damage. Putting these

two pieces of information together one can see that ξk precisely stands for the amount

of additional transcription lost on the kth DNA damage. Then clearly:

ωn =
∑n

k=1

∑2N
j=1 αj1{Uk ∈ Ij, Uk−1 ̸∈ Ij, . . . , U1 ̸∈ Ij}

Using the fact that, for all measurable sets, E1(A) = P(A) we get:

E(ωn) =
n∑

k=1

2N∑
j=1

αjP{Uk ∈ Ij, Uk−1 ̸∈ Ij, . . . , U1 ̸∈ Ij} =

=
n∑

k=1

2N∑
j=1

αjqj(1− qj)
k−1 =

=
2N∑
j=1

αjqj

n∑
k=1

(1− qj)
k−1

(3.3)

Hence the result follows from the independence of the sequence (Un)n∈N and

interchanging of the order of summation.
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Somewhat more involved calculation yields the behavior of the second moment. More

speci�cally, we have the following result:

Theorem 3.1. There exists a real number τ ∈ (0, 1) and an absolute constant C such

that Var(ωn) ≤ Cτn for all n simultaneously.

Proof. We begin by computing

(
Eωn

)2
=

( 2N∑
k=1

αj(1− (1− qj)
n

)2

=
2N∑
k=1

2N∑
l=1

αkαl(1− (1− qk)
n(1− (1− ql)

n

=
2N∑
k=1

2N∑
l=1

αkαl −
2N∑
k=1

2N∑
l=1

αkαl(1− qk)
n −

2N∑
k=1

2N∑
l=1

αkαl(1− ql)
n +

2N∑
k=1

2N∑
l=1

αkαl(1− qk)
n(1− ql)

n

= 1− 2
2N∑
k=1

αk(1− qk)
n +

2N∑
k=1

2N∑
l=1

(1− qk − ql + qkql)
n

(3.4)

Moreover, we have:

ω2
n =

n∑
k=1

n∑
l=1

2N∑
j=1

2N∑
m=1

1{Uk ∈ Ij, Uk−1 ̸∈ Ij, . . . , U1 ̸∈ Ij, Ul ∈ Im, Ul−1 ̸∈ Im, . . . , U1 ̸∈ I1}

(3.5)

and hence

Eω2
n =

n∑
k=1

n∑
l=1

2N∑
j=1

2N∑
m=1

P{Uk ∈ Ij, Uk−1 ̸∈ Ij, . . . , U1 ̸∈ Ij, Ul ∈ Im, Ul−1 ̸∈ Im, . . . , U1 ̸∈ I1}

(3.6)

Suppose k = l and j ̸= m. Non-zero contribution of these terms would imply that

Uk ∈ Ij and Uk ̸∈ Ij simultaneously which is clearly impossible. In other words, if

k = l then only the only cross terms which contribute are those when j = m as well.

We split the sum repeated sum above into three sub-cases, namely k = l, k > l and

k < l. We shall deal with the �rst two in detail while the third one is easily computed

by symmetry. To this end we have:

Case 1: If k = l then j = m and whence by using the independence and distributional

equality of the Uj's together with interchanging the order of summation, we see that

the corresponding cross terms reduce to:

n∑
k=1

2N∑
j=1

α2
jP{Uk ∈ Ij, Uk−1 ̸∈ Ij, . . . , U1 ̸∈ Ij} =

n∑
k=1

2N∑
j=1

α2
jqj(1− qj)

k−1 =

=
2N∑
j=1

α2
j (1− (1− qj)

n)

(3.7)
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Case 2: k > l. The corresponding cross terms read:

n∑
k=1

k−1∑
l=1

2N∑
j=1

2N∑
m=1

αjαmP{Uk ∈ Ij, . . . , Ul+1 ̸∈ Ij, Ul ̸∈ Ij, Ul ∈ Im, . . . , U1 ̸∈ Im, U1 ̸∈ Ij}

(3.8)

Notice that if j = m implies that Ul ̸∈ Ij and Ul ∈ Ij and thus those terms with

j ̸= m will yield zero contribution. Moreover, observe that {Ul ∈ Im} implies that

{Ul ̸∈ Ij} since these intervals are disjoint by the very construction. In other words,

{Ul ∈ Im} ⊆ {Ul ̸∈ Ij} for all j ̸= m. This implies that (1.8) simpli�es to:

n∑
k=1

k−1∑
l=1

2N∑
j=1

∑
m̸=j

αjαmqjqm(1− qj)
k−l−1(1− qj − qm)

l−1 (3.9)

Furthermore, simple algebra and interchange of the order of summation also yields:

n∑
k=1

k−1∑
l=1

2N∑
j=1

∑
m̸=j

αjαmqjqm(1− qj)
k−l−1(1− qj − qm)

l−1 =

=
n∑

k=1

2N∑
j=1

∑
m̸=j

αjαmqjqm(1− qj)
k

k−1∑
l=1

(1− qj − qm)
l−1(1− qj)

−(l+1) =

=
n∑

k=1

2N∑
j=1

∑
m̸=j

αjαmqjqm(1− qj)
k

k−1∑
l=1

(
1− qj − qm

1− qj
)l−1(1− qj)

−2 =

=
n∑

k=1

2N∑
j=1

∑
m̸=j

αjαmqjqm(1− qj)
k−1(1−

(1− qj − qm
1− qj

)k−1
)
=

=
n∑

k=1

2N∑
j=1

∑
m̸=j

αjαmqjqm(1− qj)
k−1 −

n∑
k=1

2N∑
j=1

∑
m̸=j

αjαmqjqm(1− qj − qm)
k−1 =

=
2N∑
j=1

∑
m̸=j

αjαm(1− (1− qnj )−
2N∑
j=1

∑
m̸=j

αjαm
qj

qj + qm
(1− (1− qj − qm)

n) =

=
2N∑
j=1

2N∑
m=1

αjαm(1− (1− qj)
n)−

2N∑
j=1

2N∑
m=1

αjαm
qj

qj + qm
(1− (1− qj − qm)

n)

(3.10)

Finally, we shall put this expression in the form when the summations index j is

unrestricted and hence the expression (3.10) further simpli�es to:
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2N∑
j=1

2N∑
m=1

αjαm(1− (1− qj)
n)−

2N∑
j=1

α2
j (1− (1− qj)

n)−

−
2N∑
j=1

2N∑
m=1

αjαm
qj

qj + qm
(1− (1− qj − qm)

n) +
2N∑
j=1

α2
j

2
(1− (1− 2qj)

n) =

=
2N∑
j=1

∑
αj(1− (1− qj)

n)−
2N∑
j=1

α2
j (1− (1− qj)

n)−

−
2N∑
j=1

2N∑
m=1

αjαm
qj

qj + qm
(1− (1− qj − qm)

n) +
2N∑
j=1

α2
j

2
(1− (1− 2qj)

n)

(3.11)

By symmetry, the cross-terms corresponding to the those indices such that l ≥ k read:

2N∑
j=1

∑
αj(1− (1− qj)

n)−
2N∑
j=1

α2
j (1− (1− qj)

n)−

−
2N∑
j=1

2N∑
m=1

αjαm
qj

qj + qm
(1− (1− qj − qm)

n) +
2N∑
j=1

α2
j

2
(1− (1− 2qj)

n)

(3.12)

Using su�x notation and summation convention we �nalize the expression for the

second moment of ωn. Indeed, we have:

Eω2
n = 2

2N∑
j=1

αj(1− (1− qj)
n)−

2N∑
j=1

α2
j (1− (1− qj)

n)−

−
2N∑
j=1

2N∑
m=1

αjαm(1− (1− qj − qm)
n) +

2N∑
j=1

α2
j (1− (1− 2qj)

n)

(3.13)

Further simple algebra yields the expression for the variance of ωn. Indeed, we have:

Varωn = Eω2
n − (Eωn)

2 = 2
2N∑
j=1

αj(1− (1− qj)
n)−

2N∑
j=1

α2
j (1− (1− qj)

n)−

−
2N∑
j=1

2N∑
m=1

αjαm(1− (1− qj − qm)
n) +

2N∑
j=1

α2
j (1− (1− 2qj)

n)−

−1 + 2
2N∑
j=1

αj(1− qj)
n −

2N∑
j=1

2N∑
m=1

αjαm(1− qj − qm + qjqm)
n =

= 2
2N∑
j=1

α2
j

[
(1− qj)

n − (1− 2qj)
n)
]
+

2N∑
j=1

2N∑
m=1

αjαm

[
(1− qj − qm)

n − (1− qj − qm + qjqm)
n
]

(3.14)
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Moreover let us de�ne:

q∗ := min
0≤j≤2N

qj (3.15)

Several applications of triangle inequality �nally yield:

Varωn ≤ 3(1− q∗)n
2N∑
j=1

α2
j ≤ 3(1− q∗)n (3.16)

and hence the proof is complete.

As damages accumulate the overall amount of transcription lost increases and eventu-

ally approaches 1 (100%). We have seen that limn→∞ Var(ωn) = 0 and limn→∞ E(ωn) =

1 and hence the model is in line with these simplistic demands. However, much more

is true but further de�nitions and results are needed. To this end we have:

De�nition 3.2. A sequence of random variables (Xn)n∈N is said to converge in Lp to

some random variable X, written Xn
Lp→ X, if and only if limn→∞ E(|Xn −X|p = 0

De�nition 3.3. A sequence of L1 random variables (Xn)n∈N is said to be uniformly

integrable if and only if

lima→∞ sup
n∈N

E(|Xn|1{|Xn| ≥ a} = 0

De�nition 3.4. We say that a sequence of random variables (Xn)n∈N converges to

a random variable X in probability, written Xn
P→ X if and only if, for all ϵ > 0,

limn→∞ P(|Xn −X| ≥ ϵ) = 0

De�nition 3.5. A sequence of random variables (Xn)n∈N converges almost surely to

a random variable X, written Xn
a.s.→ X if and only if there exists some measurable

set A with P(A) = 1 and Xn(ω) → X(ω) for all ω ∈ A.

Proposition 3. Let (Xn)n∈N be a sequence of random variables and suppose there

exists a dominating L1 random variable Y with |Xn| ≤ Y for all n ∈ N. Then the

family (Xn)n∈N is uniformly integrable.

Proof. Please see page 183 of ([22]) for details.

Proposition 4. Let (Xn)n∈N be a monotone sequence of random variables that con-

verges in probability to some random variable X. Then (Xn)n∈N converges to X almost

surely.

Proof. Please see page 195 of ([22]) for details.

Theorem 3.2. Suppose p ≥ 1 and (Xn)n∈N ∈ Lp. The following statements

are equivalent

(a) (Xn)n∈N is Lp convergent.

(b) |Xn|pn∈N is uniformly integrable and (Xn)n∈N converges in probability.
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Proof. Please see page 194 of ([22]) for details.

Theorem 3.3. The following statements hold true:

(a) ωn
a.s.→ 1

(b) ωn
Lp→ 1 for all p ≥ 1

Proof.

By de�nition ωn ≤ 1 and whence

E|ωn − 1| = 1− Eωn = 1−
2N∑
j=1

αj(1− (1− qj)
n) → 0 (3.17)

as n → ∞ since all genes have strictly positive lengths. In other words, ωn
L1→ 1.

Then by Theorem 1.2 ωn
P→ 1. However, as damages can only accumulate in time,

ωn ≥ ωn−1 for all n ∈ N and hence (ωn)n∈N is a monotonically increasing. Thus, by

Proposition 4, ωn
a.s.→ 1. Moreover, as |ωn| ≤ 1 we have (ωn)n∈N ∈ Lp for all p ∈ R+.

Moreover by Theorem 1.2 (|ωn|p)n∈N is uniformly integrable and the proof is complete.

We are also interested in studying the least amount of damages needed to block

some prescribed level of transcription, β, say. More speci�cally, the levels β ∈
{0.3, 0.5, 0.7, 0.9} are of biological interest. Mathematically, this is captured by study-

ing the random variable T which is the �rst hitting time of the sequence (ωn)n∈N to

level β. More speci�cally:

T = inf{n ≥ 0 : ωn ≥ β} (3.18)

We now provide a closed form expression for the distribution of T . By using the law

of total probability we have:
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P(T = n) = P(ωn ≥ β, ωn−1 < β) = P(ξ1 + ξ2 + · · ·+ ξn ≥ β, ξ1 + ξ2 + · · ·+ ξn−1 < β) =

=
2N+1∑
i1=1

2N+1∑
i2=1

· · ·
2N+1∑
in−1=1

P(ξ1 + ξ2 + · · ·+ ξn ≥ β, ξ1 + ξ2 + · · ·+ ξn−1 < β|U1 ∈ Ii1 , . . . , Un−1 ∈ Iin−1) =

=
2N+1∑
i1=1

2N+1∑
i2=1

· · ·
2N+1∑
in−1=1

qi1 . . . qin
∑
l∗:

ql∗

(3.19)

where l∗ corresponds to all those indices satisfying the following relation:

l∗ ̸∈ {i1, . . . , in−1, 2N + 1},
αl∗ ≥ αi11{i1 ̸= 2N + 1} − αi21{i2 ̸= i1, i2 ̸= 2N + 1} − . . . αin−11{in−1 ̸∈ {i1, . . . , in−2, 2N + 1}}

(3.20)

We are also interested in a problem of computing the probability distribution of the

number of damages needed to �switch o�� both copies of some speci�c gene, that is

number of damages needed to see the transcription associated with this gene falling

to 0. To be more speci�c, we have:

Proposition 5. Let Ωi stand for the random variable representing the smallest num-

ber of damages needed for both copies of gene i (in further text these will be labeled i

and i∗) to exhibit a damage, that is, the �rst moment in time when the transcription

associated with this gene falls permanently to 0. Then:

P(Ωi = n) = 2qi((1− qi)
n−1 − (1− 2qi)

n−1)

Proof.

P(Ωi = n) = P(Ωi = n and i is hit last) + P(Ωi = n and i∗ is hit last) =

2P(Ωi = n and i is hit last)
(3.21)

as i and i∗ are equally likely to exhibit a DNA damage. Observe that the event

{Ωi = n and i is hit last} can only occur if and only if among the �rst n − 1 DNA

damages at least one occurs in gene i∗ while gene i is hit for the �rst time precisely

on the nth DNA damage. By conditioning on the number of i∗s among the �rst n− 1

DNA damages we have:

P(Ωi = n and i is hit last) = qi

n−1∑
k=1

(
n− 1

k

)
qki (1− 2qi)

k =

= qi

( n−1∑
k=0

(
n− 1

k

)
qki (1− 2qi)

k − (1− 2qi)
n−1

)
= qi((1− qi)

n−1 − (1− 2qi)
n−1)

(3.22)

and the proof is complete.
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4 Simulation study

Although the exact expression for the probability distribution of the random variable

T is available, its practical value is rather questionable due to the apparent computa-

tional complexity needed to implement the closed form solution. However, we provide

a simple algorithm which yields the approximate distribution of T in a computation-

ally feasible manner. Indeed, we simulate the process (ωn)n∈N speci�ed number of

times and record the value of T on each such run to obtain the corresponding his-

tograms. The pseudo-algorithm is presented below:

ω = 0; T = 0;

Generate a uniform [0,1] random variable U1. Find n such that U1 ∈ In for n ∈
{1, 2, . . . , 2N + 1}
If n = 2N + 1 T ++;

else ω = ω + αn

If ω ≥ β, Stop and return T = 1 else generate a random variable U2, U2 independent

of U1 and uniformly distributed on [0,1]

Find m such that U2 ∈ Im
if (m = 2N + 1 or U1 ∈ Im) T++ ;

else ω = ω + αm

if ω ≥ β T=2;

otherwise continue generating new independent and identically distributed uniform

[0,1] random variables until you eventually reach the prescribed level β

return T;

Transcription loss is computed based on relative levels of nascent RNA transcription

for each gene from three biological replicates. Data set spans 1331939K total base

pairs, 9661 Genes, including both alleles of each gene. The instances of DNA damage

were in�icted uniformly at random throughout the genome until a speci�ed loss of

transcription has been reached. This procedure was repeated 100 times to generate a

representative histogram of the �rst hitting time T .
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Figure 1 Relationship between the percentage of fully transcribed genes (blue), genes

with 50 percent transcription loss (green) and genes with completely blocked tran-

scription (red) and the number of DNA damages

Figure 2 Relationship between transcription loss and a number of accumulated DNA

damages
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Figure 3 Histogram of the probability distribution of the �rst hitting time for the

number of accumulated DNA damages resulting in 30 percent transcription loss

Figure 4 Histogram of the probability distribution of the �rst hitting time for the

number of accumulated DNA damages resulting in 50 percent transcription loss
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Figure 5 Histogram of the probability distribution of the �rst hitting time for the

number of accumulated DNA damages resulting in 70 percent transcription loss

Figure 6 Histogram of the probability distribution of the �rst hitting time for the

number of accumulated DNA damages needed for 90 percent transcription loss
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5 Conclusion

We develop a simple mathematical model of DNA transcription loss due to the ac-

cumulated DNA damages. More speci�cally, we provide closed form formulae for the

�rst two moments of the distribution of the transcription lost upon speci�ed number

of DNA damages. The associated stochastic process is demonstrated to converge to 1

as the number of damages tends to in�nity for a variety of probabilistic convergence

modes, including almost sure convergence and convergence in Lp, for all p ≥ 1. More-

over, we provide closed form formulae for the probability distribution function for

the random variable representing the number of damages needed to switch o� both

copies of a gene. Furthermore, the closed form formula for the distribution of the

�rst hitting time of speci�ed level of blocked transcription is provided. Unfortunately,

direct application of this formula is practically infeasible due to its computational

complexity, however, we have implemented a simple algorithm in a simulation study

to draw statistical inference on this biologically important quantity. We plan to sub-

sequently generalize this model further accounting for the DNA repair mechanism and

study the e�ect on protein synthesis. Finally, we will use analytic and computational

inference in conjunction with experimental in vivo and in vitro data to advance our

understanding of the implications of transcription loss in aging.
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