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Abstract 

Humans exhibit large interindividual differences in motor learning ability. However, 

most previous studies have examined properties common across populations, with less 

emphasis on interindividual differences. We hypothesized here, based on our previous 

experimental and computational motor adaptation studies, that individual differences in 

effective learning rates between a generalist memory module that assumes 

environmental continuity and specialist modules that are responsive to trial-by-trial 

environmental changes could explain both large population-wise and individual-wise 

differences in dual tasks adaptation under block and random schedules. Participants 

adapted to two opposing force fields, either sequentially with alternating training blocks 

or simultaneously with random sequences. As previously reported, in the block training 

schedule, all participants adapted to the force field presented in a block but showed 

large interference in the subsequent opposing force field blocks, such that adapting to 

the two force fields was impossible. In contrast, in the random training schedule, 

participants could adapt to the two conflicting tasks simultaneously as a group; 

however, large interindividual variability was observed. A modified MOSAIC 

computational model of motor learning equipped with one generalist module and two 

specialist modules explained the observed behavior and variability for wide parameter 

ranges: when the predictions errors were large and consistent as in block schedules, the 

generalist module was selected to adapt quickly. In contrast, the specialist modules were 

selected when they more accurately predicted the changing environment than the 

generalist, as during random schedules; this resulted in consolidated memory 

specialized to each environment, but only when the ratio of learning rates of the 

generalist to specialists was relatively small. This dynamic selection process plays a 

crucial role in explaining the individual differences observed in motor learning abilities. 
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Introduction 

Acquiring dexterous motor skills such as playing sports or musical instruments can 

take years of practice, although considerable individual variability exists (Ackerman & 

Cianciolo, 2000; Golenia et al., 2014; Stark-Inbar et al., 2017). This variability has 

largely been overlooked in quantitative and computational motor control studies, which 

typically only investigate population averages. Studies of motor adaptation with a single 

environment, i.e., repeated exposure to the same task, show consistent results with small 

individual variability, e.g., (Krakauer et al., 2005). In contrast, studies of adaptation to 

multiple tasks show inconsistent results; some studies have reported that humans can 

learn conflicting multiple tasks simultaneously (Forano & Franklin, 2020; Lee & 

Schweighofer, 2009; Osu et al., 2004; Shelhamer et al., 2005; Wada et al., 2003), while 

others indicate that such learning is difficult or even impossible (Gandolfo et al., 1996; 

Gupta & Ashe, 2007; Hinder et al., 2008).  

Sequential exposure to opposing force fields or visuomotor transformations in 

blocked schedules often leads to anterograde and retrograde interference (interference is 

anterograde when the preceding task interferes with the subsequent task, while it is 

retrograde when the subsequent task interferes with the memory of the preceding task). 

These interferences create large motor errors whenever the block alters (Brashers-Krug 

et al., 1996; Caithness et al., 2004; Gandolfo et al., 1996; Karniel & Mussa-Ivaldi, 
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2002; Krakauer et al., 2005; Wigmore et al., 2002), although re-adaptation is often 

faster with repetitive blocks (a phenomenon called savings) (Heald et al., 2021; 

Herzfeld et al., 2014; Oh & Schweighofer, 2019; Sugiyama et al., 2023; Turnham et al., 

2012). Because of such interference, it has been claimed that dual adaptation is 

impossible (Gupta & Ashe, 2007; Hinder et al., 2008). 

However, several studies have shown that humans are capable of overcoming 

interference by consolidating the motor memories of multiple environments and 

immediately switching among them by randomly presenting the multiple environments 

and/or providing additional environmental contexts (Forano & Franklin, 2020; Forano 

et al., 2021; Heald et al., 2021; Hinder et al., 2008; Howard et al., 2013; Krouchev & 

Kalaska, 2003; Lee & Schweighofer, 2009; Magnard et al., 2024; Osu et al., 2004; 

Shelhamer et al., 2005; Wada et al., 2003). Consolidation here is defined as resistance to 

retrograde interference (Caithness et al., 2004; Krakauer et al., 2005), assuming that 

motor memory is transformed from a fragile to a more stable state (Albouy et al., 2013; 

Thurer et al., 2018), and switching as the effective retrieval of the saved motor memory 

corresponding to presented contextual cues, being susceptible neither to anterograde nor 

retrograde interference (Zarahn et al., 2008).  In particular, simultaneous learning of two 

opposing environments is possible when these conflicting environments are presented 

randomly with contextual cues (Forano & Franklin, 2020; Forano et al., 2021; Lee & 
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Schweighofer, 2009; Osu et al., 2004; Shelhamer et al., 2005; Wada et al., 2003), 

although simultaneous adaptation is slower than adaptation for each task. Given these 

previous reports of both the ability and the inability to learn, we propose that there must 

be memory mechanisms that can adequately explain these contradictory results.  

When adapting to novel environments, motor memories that capture the 

relationships between the desired behavioral consequences and the motor commands are 

formed as internal models in the central nervous system (CNS) (Kawato, 1999; 

Shadmehr & Mussa-Ivaldi, 1994; Shadmehr et al., 2010; Wolpert et al., 1998). The 

internal models are consecutively updated based on errors in preceding trials (Franklin 

et al., 2008; Herzfeld et al., 2014; Lee et al., 2018; Mattar & Ostry, 2007; Oh & 

Schweighofer, 2019; Scheidt et al., 2001; Takahashi et al., 2001). Smith et al. (2006) 

proposed a computational model that comprises a fast-learning, fast-forgetting memory 

process and a slow-learning, slow-forgetting memory process; see also (Coltman et al., 

2019; Huberdeau et al., 2015; McDougle et al., 2015; Sing & Smith, 2010; Turnham et 

al., 2012).  This fast/slow model accounted for several experimental phenomena in 

motor adaptation, including anterograde interference, spontaneous recovery, and rapid 

unlearning. However, this model cannot by itself reproduce the simultaneous 

acquisition and switching of multiple motor memories because a motor memory 

corresponding to each environment must be acquired to learn multiple environments 
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simultaneously (Forano & Franklin, 2020; Haruno et al., 2001; Heald et al., 2021; Lee 

& Schweighofer, 2009; Oh & Schweighofer, 2019; Wolpert & Kawato, 1998). The 

MOSAIC (Modular Selection and Identification for Control) model was proposed to 

explain adaptation to multiple environments (Haruno et al., 2001; Wolpert & Kawato, 

1998). Lee and Schweighofer (Lee & Schweighofer, 2009) then proposed a model with 

a single fast-learning, fast-forgetting “generalist” process and multiple slow-learning, 

slow-forgetting “specialist” processes, which were protected from interference.  

In MOSAIC and recent extensions, selection between multiple models and update of 

each model depends on responsibility signals that combine three factors (Haruno et al., 

2001; Heald et al., 2021): the prior history of the perturbation, possible sensory cues, 

and following feedback, the likelihood of the model, which depends on the sensory 

prediction error for each model weighted by the spatial precision of each model (i.e., the 

inverse of its width)(Oh & Schweighofer, 2019). Such models learn multiple 

environments simultaneously when information such as context or prediction error is 

provided and thus cannot sufficiently explain the observed behaviors of greater 

interference in the block than in random schedules. In addition, these models did not 

account for the large individual differences in learning in multiple environments. 

In recent work (Oh & Schweighofer, 2019), we showed that interindividual 

differences in the rate of de-adaption and re-adaption to a visuomotor rotation depended 
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on the ability to create and update new internal models specific to the perturbations and 

then easily switch between models (resulting in fast de-adaptation and re-adaptation), or 

to continuously update an existing model (resulting in slower de-adaptation and re-

adaptation). These interindividual differences were controlled by the relative precision 

of the different models, which yielded individual differences in model selection and 

learning rates by modulating the responsibility signals. 

Here, we hypothesize that individual differences in both the skill level and rate of 

skill acquisition in dual-adaptation paradigms largely arise from the ability to learn and 

switch between multiple tasks simultaneously. Combining MOSAIC and our previous 

single generalist and multiple specialists model (Lee & Schweighofer, 2009), we 

propose a new model equipped with two types of memory architecture: one with a 

single generalized memory store, which assumes continuity of the environment over 

trials as in block schedules, and the other with multiple memory stores specific to each 

environment, which assume that the environment may change between trials, as in 

random schedules. We further hypothesized that individual differences in model 

precisions (i.e., widths) and learning rates between the generalist memory module and 

the specialist modules can explain both population-wise and individual-wise 

characteristics of motor learning.   
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We first performed a series of multi-day force-field dual-adaptation experiments 

with block or random schedules. We examined the ability to learn and retain both tasks 

in 1-day retention tests, as well as individual differences in learning and retention, 

following these two practice schedules. We then simulated the different training 

schedules to examine whether the proposed model successfully accounted for poor 

memory consolidation and inappropriate switching after block presentation and superior 

memory consolidation and successful switching after random presentation, as well as 

large individual differences in random schedules. 

 

Results 

Participants learned reaching movements to eight targets located radially from a 

central start position. The movements occurred in either a clockwise (CW) or 

counterclockwise (CCW) velocity-dependent rotational force field (Figure 1). After the 

presentation of audiovisual cues that indicates the direction of rotation, one of the eight 

targets was randomly presented. Participants were required to reach the target in a 

straight trajectory. Participants learned two tasks, CW and CWW, in either block 

schedule or random schedule. Participants who practiced in a block schedule for four 

consecutive days were tested in either a block schedule (BLOCK-BLOCK group) or a 

random schedule (BLOCK-RANDOM group) after the last block training (Table 1). 
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Participants who practiced in a random schedule for two consecutive days were tested in 

either a block (RANDOM-BLOCK group) or a random schedule (RANDOM-

RANDOM group). During RANDOM training sessions, the number of trials for each 

force field (112) was the same as the number of trials in BLOCK training sessions. All 

groups executed 448 trials in total during training, with 224 CW trials and 224 CCW 

trials. A control group was presented with only a test block session (BLOCK-control 

group). The task and feedback in the test blocks were the same as those in the training 

blocks. Adaptation was assessed by deviations from the straight path computed as the 

signed areas between the actual hand path and the line joining the start and target 

centers, with a positive sign indicating a CCW hand path deviation and a negative sign 

indicating a CW deviation (directional error). These errors were averaged for each 

cycle, whereby one cycle consisted of eight consecutive trials in one of the two force 

fields, including movements to all eight targets.  
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Figure 1: Experimental procedure, with an example of two trials in the random 
condition. Each trial consisted of presenting audio-visual cues, target presentation, 
movement, and visual feedback of the movement trajectory. In RANDOM training and 
test sessions, the order of presentation of the two force fields was random. The insets 
show examples of hand paths at the initial exposure to CW (red) and CCW (blue) force 
fields, respectively. 
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BLOCK-BLOCK group (8 participants) 

 Train  Day 1: CW (112 trials)  
            Day 2: CCW (112 trials)  
            Day 3: CW (112 trials)  
            Day 4: CCW (112 trials) 
 Test    Day 4: CCW (64 trials) – CW (64 trials) – CCW (64 trials)  

 
BLOCK-RANDOM group (11 participants) 

 Train  Day 1: CW (112 trials)  
            Day 2: CCW (112 trials)  
            Day 3: CW (112 trials)  
            Day 4: CCW (112 trials) 

 Test    Day 4: Random (224 trials) 

 
RANDOM-RANDOM group (10 participants) 

 Train  Day 1: Random (224 trials) 
            Day 2: Random (224 trials) 
 Test    Day 2: Random (256 trials with 32 catch) 

 
RANDOM-BLOCK group (12 participants) 

 Train  Day 1: Random (224 trials) 
            Day 2: Random (224 trials) 
 Test    Day 2: CCW (64 trials) – CW (64 trials) – CCW (64 trials) 

 
 
Control Experiment 
BLOCK control group (10 participants) 

 Baseline    CCW (64) – CW (64) – CCW (64)  
 
 
Table 1. Experimental protocol. The numbers in parenthesis indicate the number of 

trials in each session. In block training and test sessions, half of the participants were 
exposed to blocks in the reverse order except for training sessions of the BLOCK-
RANDOM group in which all participants were exposed in the order of CW-CCW-CW-
CCW. 
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Block training induced interference  

We first investigated the effect of block schedule training on performance in the 

following block or random test session. When participants were initially exposed to the 

CW force fields, hand trajectories were highly distorted and curved in the direction of 

the applied force (Figure 1, inset). The movement error measured by directional error 

(see Methods) was reduced in an exponential-like manner as practice proceeded (Figure 

2a, b). When exposed to an opposite CCW force field on Day 2, participants produced a 

larger magnitude of directional error than on Day 1, as in previous studies (Caithness et 

al., 2004; Krakauer et al., 2005). On Days 3 and 4, the magnitudes of initial errors were 

as large as or larger than those on Day 1. The magnitude of the directional error 

approached zero in an exponential-like manner at the end of each daily training block. 

The observed large aftereffects and considerable re-adaptation process demonstrate 

anterograde and retrograde interference, which are incompatible with the possibility of 

the consolidation and switching of motor memory learned on Day 1 and 2.  

In the following block test session on Day 4 in the BLOCK-BLOCK group, the 

magnitude of the directional error was small in the first block (Blk 1 in Figure 2a) in the 

test session because the direction of the force field was the same (CW) as that in the last 

training session block. However, the error increased when the force field switched to the 

CCW block (Blk 2 Figure 2a). The error in the subsequent CW block (Blk 3 in Figure 
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2a) increased again. The learning curves in the second and third test session blocks were 

comparable with those in the BLOCK-control group in which participants only 

experienced the block test session (pale blue and pale red dotted curves), suggesting that 

the preceding block training session was not effective for memory consolidation or 

switching of multiple environmental dynamics.  

In the following random test session in the BLOCK-RANDOM group, the 

magnitude of the initial directional error was small when CCW was presented and large 

when CW was presented (Figure 2b). Good initial performance in CCW test session 

trials reflected memory preservation from the preceding CCW training block. Poor 

initial performance in CW test session trials suggested that the memory of the CW 

training block presented the day before was not preserved. Consequently, although 

participants had already experienced both force fields in blocks, the initial directional 

error for CW in the random test session was worse than for the first exposure to CW 

force field in either block or random schedules (Figure 2c and d). As the test proceeded, 

performance in CCW worsened in parallel with the gradual improvement in 

performance in CW, reflecting probable learning of the average of the two dynamics 

rather than learning them separately, as previously reported (Scheidt et al., 2001).  
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Figure 2: Learning curves for the BLOCK-BLOCK (a), BLOCK-RANDOM (b) 
RANDOM-BLOCK (c), and RANDOM-RANDOM (d) groups. Average directional 
errors and s.e.m (dashed lines) in CW (red) and CCW (blue) across participants are 
plotted against cycles of 8 targets for TRAINING and TEST. The sign was flipped for 
the participants who were exposed to blocks in reverse order before averaging. The 
thick dotted curves with a light color in TEST denote average directional errors of the 
second (blue) and third (red) blocks of the BLOCK-control group.  
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Random training reduced interference 

We next investigated the effect of training in random presentation on performance 

in the following block (Figure 2c) or random (Figure 2d) test session. In both 

RANDOM-BLOCK and RANDOM-RANDOM groups, the average performance was 

superior in test sessions compared to that in BLOCK-BLOCK and BLOCK-RANDOM 

groups, respectively (compare Figure 2c to Figure 2a, and Figure 2d to 2b).  

To summarize performance, we defined the difference errors as the difference in the 

directional errors between the CW and CCW (CCW - CW), where larger positive values 

indicated poorer adaptation, and negative values indicated over-adaptation. Figure 3a 

compares the magnitude of difference error computed from the second and third blocks 

in the test session of BLOCK-BLOCK, RANDOM-BLOCK, and BLOCK-control 

groups. The error was significantly smaller only in the RANDOM-BLOCK group 

(Kruskal-Wallis test, p < 0.001; post-hoc Wilcoxon test, p < 0.01, effect size r > 0.6), 

suggesting that block training did not result in consolidation and switching of motor 

memory responsible for each force field. Results also confirmed the preservation of 

multiple motor memories in the block presentation after random training. The difference 

error across cycles in random test sessions was significantly smaller in the RANDOM-

RANDOM group than in the BLOCK-RANDOM group (Wilcoxon rank sum test, p = 

0.018, effect size r > 0.5; Figure 3b), suggesting that memory consolidation and 
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effective switching occurred after random training but not after block training. Note that 

although RANDOM-RANDOM group received only two days of training, performance 

was still much better in test than BLOCK-RANDOM group who received four days for 

training. 

 

Figure 3: (a) Comparison of average difference errors across participants and s.e.m 
from the second and third blocks during the test session among BLOCK-BLOCK (BB), 
RANDOM-BLOCK (RB), and BLOCK control groups. Errors in the RB test session 
were significantly smaller than in the other two groups (** denotes p < 0.01). (b) 
Comparison of average difference errors during the test session and s.e.m between 
BLOCK-RANDOM (BR) and RANDOM-RANDOM (RR) groups. Errors in the RR 
test sessions were significantly smaller than those in the BR test session (* denotes p < 
0.05). 

 

Individual differences in random learning 

To examine interindividual variability in performance, we compared the distribution 

of difference errors between test sessions after random training and those after block 
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training (Figure 4a). Difference errors were distributed with significantly more 

dispersion after random training than after block training (Ansari-Bradley one-tailed test 

of equal variance, p = 0.039). Coefficient of variations (standard deviation divided by 

the mean) of the difference errors and their bootstrap confidence intervals (95% CI) 

after random and block training were 86.8% (58.5, 153.1) and 33.5% (24.0, 50.4), 

respectively, showing larger dispersion after random training. These results and those of 

Figure 3 show that, overall, performance was poorer after block training than after 

random training but also more variable after random training. 

We separated the 22 participants assigned to random presentation training 

(RANDOM-BLOCK and RANDOM-RANDOM groups) into good or poor learners 

based on the mean difference error during the training session on Day 2 (cycles 29 to 

56) (Figure 4b and c). Because their mean difference error on Day 2 training was 

smaller than the average of 22 participants, we classified ten participants (five per 

group) as good learners (solid blue and red lines). The other 12 participants were 

assigned as poor learners (seven for RANDOM-BLOCK, five for RANDOM-

RANDOM; dotted blue and red lines). As shown in Figure 4b and c, participants who 

learned well in the random training session performed well in the subsequent block or 

random test session, while those who learned poorly in the random training session 

performed poorly in the subsequent block or random test session (Wilcoxon rank sum 
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test, p < 0.01). There was a significant correlation between difference errors on Day 2 

random training and test sessions for both RANDOM-BLOCK (Spearman ρ = 0.84, p < 

0.001) and RANDOM-RANDOM (Spearman ρ = 0.85, p < 0.01) groups.  

We then separated the 11 participants in the BLOCK-RANDOM group into good 

learners (four participants) and poor learners (seven participants) based on the mean 

difference error during the last four cycles (25 to 28) of random test sessions (Figure 

4d). The mean difference error of the preceding block training session on Day 3 and 4 

(cycles 29 to 56) was not correlated with the final performance in the last four cycles of 

the random test session (Spearman ρ = 0.23, p = 0.50; n.s.), indicating that the memory 

shaped during subsequent random training was independent of the memory shaped 

during the preceding block training.  
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Figure 4: Individual differences in learning under random presentation. (a) 

Histogram of the difference errors in test sessions of BLOCK-BLOCK and BLOCK-
RANDOM groups (upper panel), and RANDOM-BLOCK and RANDOM-RANDOM 
groups (lower panel). Negative difference errors indicate over-adaptation. (b-d) 
Learning curves of good learners (solid curves) and poor learners (dotted curves) 
separately presented for RANDOM-BLOCK (RB), RANDOM-RANDOM (RR), and 
BLOCK-RANDOM (BR) groups. For RB and RR groups, participants were classified 
based on difference errors in the second half of the training session by the threshold of 
the mean (8.42 cm2). Five out of 12 participants in the RB group and five out of 10 
participants in the RR group were denoted as good learners. For the BR group, 
participants were classified based on difference errors in the last two cycles (13 and 14 
cycles) by the threshold of the mean (17.00 cm2). Four out of 11 participants were 
denoted as good learners. 

 

The ratio of learning rates of the generalist to specialist memory modules 

explained behavioral results: a simulation 

To account for the experimental results, we performed simulations based on the 

MOSAIC architecture, as it can learn and switch among multiple internal models 

(Wolpert & Kawato, 1998). In MOSAIC, each module i consists of a pair of forward 

and inverse models and is selected and updated based on the responsibility signal . 

In simulations, we defined a simplified environment of the task under CCW and CW 

force fields. The position of the cursor and force applied at the cursor were represented 

by  and , respectively. The equation of motion was 

defined by: 
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,     (1) 

where  are the rotation matrices;  and 

. The mass of the arm tip was 1 kg for simplicity. The state variable 

and motor output were defined as  and 

, respectively. The following linear forward models predicted 

the state with each module i: 

 ,  (2) 

where  and  are the forward model parameter of module i. The motor output of 

each module was computed by inverting the forward models, 

 ,    (3) 

where the desired trajectory  was set as minimum jerk trajectory. The final motor 

output  is the summation of the control signal from each module  weighted by 

its responsibility signal . 
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In parallel, the internal forward model parameters in  of each module i are 

updated according to the gradient method.  

,    (5) 

where  is the learning rate of the module i. Note that the effective learning rate for 

each module is given by . 

The responsibility signal  is computed from prediction error  between the 

actual state (velocity)  and the state predicted by the forward model 𝐱̇*!(𝑡), and prior 

probability of the responsibility signal , as follows: 

 , with    (6) 

where the parameter  determines the selectivity spatial width of switching in 

responsibility signal of module i, and M is the number of modules. The prior probability 

for each module is given by:  

 ,     (7) 

with  is a temporally smoothed prediction error. The characteristics of the prior 

probability of the responsibility signals , and therefore that of , is a key factor 

for learning in multiple environments (Imamizu et al., 2007). The temporal continuity of 
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the environment is informative in recommending not to frequently switch, and to 

stabilize network performance. However, in random presentation of the opposing force 

fields, environments are discontinuous across trials and continuous within a trial. Thus, 

the generalist module is expected to deal with a single environment that will continue to 

exist for at least a block of trials. In contrast, the specialist modules are expected to 

collectively deal with multiple environments that appear stochastically at each trial. 

Therefore, in the present model, in addition to a generalist module with   that 

exhibits temporal continuity across trials (like the modules in MOSAIC), we assumed 

the existence of specialist modules whose  were smooth within a trial but reset on 

the next trial (Equation 8). The temporally smoothed prediction errors of module i at 

time t are therefore described as 

  ,  (8) 

where the parameter is a time constant for temporal smoothness and was fixed to 1 s 

for both generalist and specialist modules in the present simulation,  is the 

prediction error at time s (Equation 6), and  denotes  at the end of the 

previous trial.   
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In our simulation of dual adaptation, we prepared a single generalist module and two 

specialist modules with forward model parameters of , , and  

similarly to (Lee & Schweighofer, 2009). Each module computes a control signal based 

on Equation 3. We randomly searched for the learning rate  in Equation 5 and the 

width of switching in the responsibility signal  in Equations 6 and 7, for each type of 

module so that the model could reproduce the experimentally observed characteristics 

of good learners.  

Two requirements needed to be met for the reproduction of good learners. First, the 

model needed to account for the retention of motor memories corresponding to two 

environmental dynamics and effective switching in test sessions after random training in 

RANDOM-BLOCK and RANDOM-RANDOM conditions. Second, the model needed 

to account for poor retention or switching in test sessions after block training in 

BLOCK-BLOCK and BLOCK-RANDOM conditions. We defined the threshold of 

simulated maximum magnitude of directional error (error magnitude) as less than 10 

cm2 for successful retention. After random training, the error magnitude of test sessions 

had to be less than the threshold to replicate good memory retention in good leaners; in 

contrast, after block training, the error magnitude of test sessions had to be large and 

above threshold to replicate poor memory retention, even in good learners. Assuming 

that the parameters of two specialists were the same, we randomly generated 50,000 of 
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four parameter sets consisting of , , , and , and simulated 

the four experiments (BLOCK-BLOCK, BLOCK-RANDOM, RANDOM-BLOCK, and 

RANDOM-RANDOM) using these parameter sets.  

 Of 50,000 parameter sets, 452 satisfied the two above conditions and thus 

reproduced the behavioral characteristics of good learners. The learning rate  was 

significantly larger for the generalist module than for the specialist module (Wilcoxon 

signed rank test, p < 0.0001; see histograms in Figure 5a and b). That is, the generalist 

module exhibited faster learning, whereas the specialist module exhibited slower 

learning. Thus, in our simulations, fast and slow learning processes emerged 

spontaneously even though we did not explicitly preset fast and slow processes 

beforehand (Sing & Smith, 2010; Smith et al., 2006). Similarly, the width parameter  

was significantly larger for the generalist module than for the specialist module 

(Wilcoxon signed rank test, p < 0.0001, see histograms in Figure 5c and d). This 

indicated that the generalist module was selected even when its prediction error was 

large, whereas each specialist module was selected when its prediction was accurate. 

Considering the effective learning rate  (Equation 5), the sharp switching 

(smaller ) in specialists resulted in even slower learning of specialists, since a 

specialist easily leaves out of the selection window for the responsibility signal. This 

corresponds to the observed slow learning in random presentations and is consistent 
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with the results from a previous model with multiple slow states (Lee & Schweighofer, 

2009) that learned each environment separately. Similarly, large  and  in the 

generalist module are consistent with the fast memory state in this previous model.  

ηi σ i
2

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 18, 2024. ; https://doi.org/10.1101/2024.07.15.603502doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.15.603502
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 

 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 18, 2024. ; https://doi.org/10.1101/2024.07.15.603502doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.15.603502
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 

 

Figure 5: Parameter sets of the modified MOSAIC model with one generalist 
module and two specialist modules that explained human behavior in our experiment, 
i.e., no consolidation in BB and BR test sessions and good consolidation in RB and RR 
test sessions. (a-d) Histograms of learning rate  for generalist (a) and specialist 
modules (b), and histograms of width of switching in responsibility signal  for 
generalist (c) and specialist modules (d) from selected parameter sets. (e-h) Examples of 
simulated learning curves using one parameter set that satisfied human behavior. 
Directional error was plotted against cycles in the same way as the human data shown in 
Figures 2 and 3 for BB (e), BR (f), RB (g), and RR (h) conditions. 

 

An example of the simulated learning curves using one of the parameter sets that 

reproduced all four behavioral results of BB, BR, RB, and RR is depicted in Figure 5 

(lower panels). The simulation qualitatively reproduced the time course of errors of the 

good learners under all four conditions. 

Figure 6 plots the evolution of the responsibility signal  using the same 

parameter set as that in the example of Figure 5. In the BLOCK-BLOCK condition, the 

responsibility signal of the generalist rapidly increased in each block (magenta curves in 

Figure 6a). In the BLOCK-RANDOM condition, the responsibility signal of specialists 

started to evolve when random test sessions were introduced and then gradually 

overwhelmed the generalist module that was dominant in the block training session 

(Figure 6b). In the RANDOM-BLOCK and RANDOM-RANDOM conditions, the 

responsibility signal of the generalist module gradually decreased, while that of the 
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specialist modules evolved during training sessions and remained high in the test period 

(cyan curves in Figure 6c and d).  

 
Figure 6: Evolution of responsibility signals using the parameter set of Figure 5. 

Magenta curves denote the responsibility signal of the generalist. Cyan curves denote 
the sum of the responsibility signals of the two specialists. When the magenta curve 
reaches 1 (a,b), only the generalist module is selected to control the hand. When the 
cyan curve reaches 1 (c,d), one of the two specialist modules is selected. When neither 
reaches 1, the hand is controlled by the weighted summation of generalist and specialist 
modules.  

 

To examine the relationship between the characteristics of the parameter sets and 

consolidation, we plotted the maximum magnitude of directional error (error 

magnitude) in test sessions against the ratio of the effective learning rate between 
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generalist and specialist modules. It can be shown (see Methods) that the effective 

learning rates are proportional to , i.e., the ratio of 

learning rate  between generalist and specialist modules, multiplied by the ratio of 

width of responsibility signal  between generalist and specialist modules. The 

boxplots in Figures 7a and b show the distribution of error magnitude for all 50,000 

parameter sets in the simulation of BLOCK-BLOCK, RANDOM-BLOCK, BLOCK-

RANDOM, and RANDOM-RANDOM for different such ratios.  

When the generalist learned with similar or slightly faster speed than that of 

specialists (approximately) 1 to 20 times faster, (i.e., when the ratio of effective learning 

rate was 100 <  < 2 x101 on the abscissa), the error 

magnitude of all conditions was smaller than the threshold of 10 cm2, indicating 

retention in all four conditions, which contradicted all observed behavioral results.  

Larger ratios accounted for the data. As indicated by the dots showing the error 

magnitude for each of the selected 452 parameter sets in Figure 7a and b, the behavior 

of good learners was accounted for when the generalist learned 50 to 130 times  

(approximately) faster than the specialists (5 x 101 < 

 < 13 x 101 on the abscissa). In this case, the median 

of the error magnitude and that of the selected parameters in BLOCK-BLOCK and 

BLOCK-RANDOM conditions increased (magenta plots in Figures 7a and b: no 
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consolidation), while that of RANDOM-BLOCK and RANDOM-RANDOM conditions 

stayed below the threshold (green plots in Figures 7a and b: consolidation).  The 

behavior of poor learners corresponded occurred when the generalist learned 

(approximately) more than 200 times faster than the specialists (2 x 102 < 

 on the abscissa). In this case, the median of the 

error was higher than the threshold in any condition, corresponding to the behavior of 

poor learners.  

In addition, as observed in the behavior (Figure 4a), the errors were distributed with 

significantly more dispersion after random training (RANDOM-RANDOM and 

RANOM-BLOCK) than after block training (BLOCK-BLOCK and BLOCK-

RANDOM) in the parameter range that corresponds to both good and poor learners (i.e., 

the generalist learned 50 to 800 times faster) (Ansari-Bradley one-tailed test of equal 

variance, p < 0.001). The appropriate ratio of the effective learning rate successfully 

explained the average performance difference between block and random training, and 

its distribution explained individual performance differences in random training.  
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Figure 7: Maximum magnitude of directional error (error magnitude) in test 

sessions plotted against the ratio of effective learning rates of generalist to specialist  

 in simulations of TEST BLOCK (a) and TEST 

RANDOM (b) following both training conditions RANDOM and BLOCK. The black 
horizontal line at 10 cm2 indicates the threshold of error magnitude for successful 
consolidation in the tests. The boxplots show the median, 25th, and 75th percentiles of 
error magnitude for all 50,000 parameters for 100.2 bins, for increasing values of the 
effective learning rate ratio. The dots show the error magnitude for the good learners 
corresponding to the 452 selected parameter sets. The colors correspond to the type of 
training, with magenta for BLOCK and green for RANDOM. Thus, in a), magenta 
indicates parameters for BLOCK-BLOCK (BB) and in b) for BLOCK-RANDOM (BR). 
In a) green indicates parameters for RANDOM-BLOCK (RB) and in b) for RANDOM-
RANDOM (BR). When the ratio of effective learning rates was less than ~20, retention 
occurred following both training conditions (as the test error magnitude is smaller than 
the threshold in RB and RR), contradicting the data. A ratio of ~50 to ~130 corresponds 
to good learners as shown by the distribution as the median of the test error magnitude 
is below the threshold following random training and above the threshold following 
block training. Larger ratios correspond to poor learners, as the test error magnitude is 
greater than the threshold in RB and RR. 
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Discussion 

Our results show that, as previously reported, all participants in the block training 

schedule adapted to the force field presented in a block but showed large interference in 

the subsequent opposing force field blocks; thus, adapting to the two force fields was 

impossible. In contrast, participants in the random training schedule could, as a group, 

adapt to the two conflicting tasks simultaneously. This indicates that the motor 

memories of the two perturbations were not consolidated separately after block 

presentation. In contrast, the motor memories were consolidated after random 

presentation. Such consolidation improved the switching performance among the two 

environments in subsequent test sessions with both block and random presentations. In 

addition, while we observed little variability in learning performance and retention in 

block training across participants, we observed large inter-individual differences in 

random training: some participants showed almost perfect learning of both tasks, 

whereas others showed minimal learning. 

A modified MOSAIC model equipped with one generalist module and two 

specialist modules was able to account for both the different behaviors in the two 

conditions and the large variability in random schedules for adequate parameter ranges. 

Crucially, for the selected parameters, the width (inverse of precision) of switching in 

responsibility signals was larger in generalist than in specialist modules. That is, a 
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generalist module was selected even when errors were large and by learning quickly, 

attempted to cover any environment. Conversely, a specialist module was selected only 

when the module accurately predicted the environment and learned slowly to be a 

specialist in a given environment.  In addition, at the group level, the greater effective 

learning rates assigned to the generalist than to the specialists agreed qualitatively with 

the difference in learning rates of previously proposed fast memory and slow memory 

processes (Lee & Schweighofer, 2009; Smith et al., 2006).  Instead of including a single 

generalist, Forano and Franklin (2020) proposed a model with multiple parallel motor 

memories, each involving a fast, slow, and ultraslow process, all weighted by a 

responsibility estimator. They showed that their model better explains the spontaneous 

recovery after dual adaptation in a block schedule. Whereas their model could explain 

the individual difference by variability in learning rates, we believe that it could not 

account for our results in block schedules because of the lack of a generalist module.  

Here, we assumed that the prior distribution of the responsibility signal for 

specialists was reset for each trial, unlike the prior distribution for the generalist. This 

discontinuity in the specialist facilitated the selection of specialists in discontinuous 

environments, such as the random conditions, and was suppressed in continuous 

environments, such as the block conditions. Recent studies have reported that 

environmental consistency plays an essential role in determining the rate of motor 
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adaptation (Gonzalez Castro et al., 2014; Herzfeld et al., 2014). It remains unclear 

whether resetting the prior responsibility distribution is a fundamental brain property 

and how this may be implemented.  

An additional strength of the proposed model is its potential to explain individual 

differences. We observed smaller individual differences in block learning and larger 

individual differences in random learning (Figure 4); this contrast spontaneously 

emerged in simulations (Figure 7). When the ratio of effective learning rates between 

the generalist and specialist was intermediate, performance was poor in block training 

and good in random training as shown by good learners.  When the ratio of effective 

learning rates between the generalist and specialist was large, performance was poor in 

both block and random training. Individual differences during skill acquisition have 

been examined in the field of applied psychology (Ackerman & Cianciolo, 2000) but 

have not been fully quantitatively investigated in computational motor control and 

learning research (but see (Ganesh et al., 2014; Magnard et al., 2024; Oh & 

Schweighofer, 2019; Takagi et al., 2017)). A consistent predictor or interindividual 

variability in motor learning is the capacity of spatial working memory (Anguera et al., 

2010; Lingo VanGilder et al., 2018; Schweighofer et al., 2011), which may share neural 

resources with the fast-learning generalist module. In addition, individual differences 

have been examined in brain imaging studies (Bueti et al., 2012; Kanai & Rees, 2011), 
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and interindividual variability in motor learning was reported to be correlated to 

differences in brain structures (Gelineau-Morel et al., 2012; Sampaio-Baptista et al., 

2014; Vo et al., 2011). Future model-based fMRI studies are needed to relate our 

mechanistic explanations of good vs poor learners to such differences in neural 

activation or structures.  

In our modified MOSAIC model, we did not introduce explicit contextual cue 

signals that directly controlled switching. Instead, we assumed that the magnitude of the 

errors that influence the responsibility signals would act as cues. We, however, are not 

implying that humans do not use contextual signals. For example, learning conflicting 

environments is facilitated when associated with synergetic cues such as posture and 

target location, which may facilitate the activation of specialist modules more easily 

than arbitrary cues (Forano et al., 2021; Gandolfo et al., 1996; Krakauer et al., 1999; 

Thomas & Bock, 2012; Tong et al., 2002; Woolley et al., 2007). Heald et al. (Heald et 

al., 2021) proposed a contextual inference model computing the probability that each 

known context, or a novel context, is active and creating a new memory when 

responsibility is high for the novel context. Our future framework should integrate such 

computation of contextual inference where probability will be influenced by the 

temporal aspect, i.e., how frequently the contextual signal changes.  
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Our results showing the benefit of a random practice schedule over block practice 

are consistent with previous studies in many types of motor tasks, including high-level 

cognitive tasks, and is termed contextual interference (CI) (Schmidt, 1988). Block 

conditions, which involve less CI enhance acquisition but degrade memory retention. 

Random training involving greater CI initially worsens performance and slows 

acquisition but promotes memory retention after a delay. In the model, the CI occurred 

because, in a block schedule, the generalist quickly improved performance, therefore 

reducing error-driven updates of the specialist processes.  Because of interference in the 

generalist when another task was presented in the next block, poor long-term retention 

ensued. In random schedules, interferences in the fast process led to a slower change in 

performance, therefore increasing error-driven updates of the specialist and, thus, good 

long-term retention as in our proposed generalist and specialist architecture (see also, 

(Cross et al., 2007; Kim et al., 2015; Lage et al., 2015; Li & Wright, 2000; Schmidt, 

1988; Schweighofer et al., 2011)). 

A limitation of the current study was the exploratory nature of the analyses on 

individual variability; further hypothesis-driven experiments are required to confirm our 

results, although it is difficult to assign the participants a priori into good and poor 

learner groups. In addition, for modeling, the simulation environments were simplified 

and did not consider the nonlinear dynamics of the system. Furthermore, we prepared 
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two specialists in advance of adaptation. A future model should not pre-specify the 

number of models, but the models should be created as needed (Heald et al., 2021; Oh 

& Schweighofer, 2019). The practical implication of our study is that individualized 

training programs can be provided according to the individual properties of memory 

systems when learning motor skills. Acknowledging the existence of individual 

differences in memory systems may be helpful for the practice of motor skill coaches or 

therapists. 
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Methods 

Participants 

In total, 51 healthy right-handed participants (18 to 38-years-old) participated in the 

study and were assigned to one of the five groups (Table 1). The institutional ethics 

committee of ATR approved the experiments. Participants provided written informed 

consent prior to experiments. 

 

Apparatus 

Participants learned reaching movements to eight targets located radially from a 

central start position, as described previously (Osu et al., 2004). Movements occurred in 

either a clockwise (CW) or counterclockwise (CCW) velocity-dependent rotational 

force field produced by a manipulandum. The force fields are expressed as: 

,      

where  and  are hand velocity, and  and  are forces acting on the hand. 

Here, b was positive in the CW and negative in the CCW, and the magnitude of b was 

20 N m-1s. 
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Each force field was associated with different audio-visual cues that were presented 

before reaching (Figure 1). Before reaching, in the CW, participants were presented 

with a red background, a red windmill-like diagram showing the direction and 

magnitude of rotational forces, and a high-frequency beep. Before reaching, in the 

CCW, they were presented with a blue background, a blue windmill-like diagram, and a 

low-frequency beep.  

After 2-s cue presentation, one of the eight targets was randomly presented. After 

target presentation, participants were required to start within 1 s and reach the target 

within 225 ± 50 ms (time between exiting and entering start and target circles, 

respectively) using straight and uncorrected trajectories. The distance between the 

starting point and each target was 12.5 cm. The force field was off when participants 

returned to the start position and was on only during the recorded outward movements. 

Visual feedback of hand position was suppressed during movements. The entire 

hand path was shown after movement termination. Participants were encouraged to 

learn a straight hand path with fixed movement duration by two types of rewards after 

each trial: one was given as a score of the current trial and the other as a score 

accumulated from the initial to current trial within that session. For each trial, 

participants gained 10 points for a successful start after target presentation (within 1 s), 

20 points for a straight hand path when the hand was within 2 cm on the left or right of 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 18, 2024. ; https://doi.org/10.1101/2024.07.15.603502doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.15.603502
http://creativecommons.org/licenses/by-nc-nd/4.0/


41 

 

the straight line connecting the center of start and target circles, 30 points for stopping 

within the 0.15-cm radius target circle, and 40 points for movement duration within 225 

± 50 ms. A total of 100 points was awarded if a movement was fully successful. 

 

Procedure 

The two force fields were presented either in blocks or randomly. In the block 

presentation, one cycle comprised eight consecutive trials in one of the two force fields, 

including randomly ordered movements to all eight targets. In the random presentation, 

two cycles consisted of 16 consecutive trials, including randomly ordered movements to 

all eight targets in the two force fields. In the random condition, a given force field was 

repeated no more than five times.  

The BLOCK-BLOCK group (see Table 1 for Experimental protocol of each group) 

first learned two force fields in block presentation for four consecutive days as training 

and was then exposed to random presentation. On days 1 and 3, half of the eight 

participants performed one block comprising 112 movements (14 cycles) in CW. On 

day 2, they performed one block consisting of 14 cycles in CCW. On day 4, they 

performed one block consisting of 14 cycles in CCW and were then exposed to three 

blocks in the order of CCW, CW, and CCW, with each block comprising 64 movements 

(eight cycles). The other half was exposed to the force field in the reverse order. The 
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BLOCK-RANDOM group first learned two force fields in block presentation for four 

consecutive days as training and was then exposed to random presentation. On days 1 

and 3, 11 participants performed one block comprising 112 movements (14 cycles) in 

CW. On days 2 and 4, they performed one block consisting of 14 cycles in CCW. In the 

BLOCK-RANDOM group, the order was the same for all participants expecting that the 

similar results when the order was reversed since we find no significantly different 

behavior between the two orders in BLOCK-BLOCK group after subtracting the null 

field bias towards CCW. After block presentation on day 4, participants were exposed 

to 224 movements (28 cycles) in random order of CW and CCW as a test session. 

RANDOM-RANDOM group first learned two force fields in random presentation for 

two consecutive days as a training session and were then exposed to random 

presentation as a test session. On days 1 and 2, 10 participants performed 224 

movements (28 cycles) in random order of CW and CCW, and as a test session, they 

were exposed to 224 movements in random order of CW and CCW, interspersed with 

32 catch trials without a force field. These catch trials were included to verify that 

participants were not employing a co-contraction strategy. The RANDOM-BLOCK 

group first learned two force fields in random presentation for two consecutive days as a 

training session and were then exposed to block presentation as a test session. On days 1 

and 2, 12 participants performed 224 movements (28 cycles) in random order of CW 
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and CCW. Then, half of the 12 participants were exposed to three blocks in the order of 

CCW, CW, and CCW, with each block comprising 64 movements (eight cycles). The 

other half was exposed to three blocks in the order of CW, CCW, and CW. We assigned 

10 participants to a baseline control group (BLOCK-control group) who were exposed 

to three alternating blocks of 64 trials within one day as a baseline measure for 

reduction of interference by preceding training. Five of the participants in the BLOCK-

control group were exposed to blocks in the order of CCW, CW, and CCW; the other 

five were exposed to blocks in the reverse order.  

All groups except the BLOCK-control group experienced the same number of trials 

during the training session (224 movements for each force field). Prior to force field 

presentation, participants were familiarized with the apparatus and task during a block 

of 192 trials without any force fields (null force field: NF). 

 

Analysis 

Adaptation to each force field was quantified by an error measure computed as the 

directional error (see above). To assess performance in a particular cycle, the median of 

the directional error of a set of eight movements in each force field within the cycle (or 

the two cycles for random presentation) was determined and averaged across 

participants for each cycle. Since null field performance was biased towards the CCW 
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direction, we subtracted the median of the directional errors in the null field from that in 

the force fields for each participant. We compared the temporal evolution of these 

directional errors in the two force fields. For display reasons, the sign of the directional 

error was flipped for the participants who were exposed to blocks in the reverse order. 

To statistically confirm learning and retention, difference errors under CW and CCW 

were computed for each participant. The difference error was defined as the difference 

in directional errors between CW and CCW (CCW-CW), and indicated the average area 

enclosed by hand paths in CW and CCW. 

 

Effective learning rate 

From equation 7, the effective learning rate for each module is given by . 

The generalist responsibility  increased as increased when 

for a constant prediction error amplitude (see Supplementary Figure). Thus, the 

responsibility signal  monotonously increased with the width of 

responsibility signal . A similar behavior can be shows for the specialist. 

Therefore,   can be used as an alternative to  in estimating effective learning rate 

. Then,  reflected the ratio of the effective 

learning rate between generalist and specialist modules. 
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Statistical analyses 

Statistical analysis was performed using Matlab statistics toolbox (The MathWorks, 

Inc.) and JMP software (SAS Institute Inc.). The p-value for significance was set 0.05. 
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