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Abstract 

GABAergic interneurons, including somatostatin (SST) and vasoactive intestinal peptide 
(VIP) positive cells, play a crucial role in cortical circuit processing. Cre recombinase-
mediated manipulation of these interneurons is facilitated by commercially available 
knock-in mouse strains such as Sst-IRES-Cre (Sst-Cre) and Vip-IRES-Cre (Vip-Cre). 
However, these strains are troublesome for hearing research because they are only 
available on the C57BL/6 genetic background, which suffer from early onset age-related 
hearing loss (AHL) due to a mutation of the Cdh23 gene. To overcome this limitation, 
we backcrossed Sst-Cre and Vip-Cre mice to CBA mice to create normal-hearing 
offspring with the desired Cre transgenes. We confirmed that in these "CBA Cre" lines, 
Cre drives appropriate expression of Cre-dependent genes, by crossing CBA Cre mice 
to Ai14 reporter mice. To assess the hearing capabilities of the CBA Cre mice, we 
measured auditory brainstem responses (ABRs) using clicks and tones. CBA Cre mice 
showed significantly lower ABR thresholds compared to C57 control mice at 3, 6, 9, and 
12 months. In conclusion, our study successfully generated Sst-Cre and Vip-Cre mouse 
lines on the CBA background that will be valuable tools for investigating the roles of 
SST and VIP positive interneurons without the confounding effects of age-related 
hearing loss. 
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1. Introduction 

Cre-Lox recombination tools in mice have enabled cell-type specific 
manipulations of neuronal activity (reviewed in Luo et al., 2018; Taniguchi et al., 2011; 
Tsien et al., 1996; Zhang et al., 2011) which have provided important insights into circuit 
mechanisms in the central auditory system (Bigelow et al., 2019; reviewed in 
DiGuiseppi and Zuo, 2019; Olsen and Hasenstaub, 2022). These tools have 
revolutionized our understanding of cortical inhibitory interneurons, including the 
somatostatin (SST) and vasoactive intestinal peptide (VIP) positive cells, which play 
crucial roles in cortical function (Bigelow et al., 2019; Natan et al., 2015; Pfeffer et al., 
2013; Phillips and Hasenstaub, 2016).  

But there is an important limitation: in the majority of commercially available Cre 
strains, the Cre gene is carried on a C57BL/6 background. C57 mice carry a mutated 
copy of the Cdh23 gene (Noben-Trauth et al., 2003), which causes age-related hearing 
loss (AHL; Ison and Allen, 2003; Li and Borg, 1991). This limits the usefulness of these 
Cre-bearing mice for studies of the auditory system, especially since hearing loss due to 
the Cdh23 mutation is already present by early adulthood and rapidly worsens over time 
(Li and Borg, 1991; Willott, 1986). CBA/CaJ background mice do not carry the AHL 
mutation and have better hearing than C57 mice (Henry and Chole, 1980; 
Hequembourg and Liberman, 2001; Spongr et al., 1997). The AHL phenotype is 
recessive, and first generation (F1) crosses of CBA and C57 have normal hearing 
(Frisina et al., 2011). However, CBA and C57 mice have significant genetic and 
behavioral differences (Lilue et al., 2018; Sultana et al., 2019), rendering F1 C57-CBA 
crosses heterozygous in many key alleles. Thus, it is desirable to iteratively backcross  
AHL-negative C57-CBA hybrids onto the CBA background across multiple generations 
(>F4) to achieve genetic homogeneity suitable for the multi-generational breeding 
schemes that are often necessary to leverage the power of Cre (Grove et al., 2016; 
Markel et al., 1997). 

Herein, we describe two Cre knock-in mouse strains which we backcrossed to 
the CBA/CaJ background to generation F6: Ssttm2.1(cre)Zjh/J (“Sst-IRES-Cre”) and 
Viptm1(cre)Zjh/J (“Vip-IRES-Cre”). We confirmed normal hearing in these strains with 
auditory brainstem response (ABR) measurements, and normal Sst-Cre and Vip-Cre 
expression by further crossing these strains with Ai14 Cre-dependent reporter mice. 
Finally, we made these strains publicly available by donating them to The Jackson 
Laboratory (JAX). 

 

2. Materials and Methods 
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All procedures were approved by the Institutional Animal Care and Use 
Committee at the University of California, San Francisco. 

 

2.1 Animal Husbandry 

We crossed female Sst-IRES-Cre (stock no. 013044) and Vip-IRES-Cre (stock 
no. 010908) mice with CBA/CaJ (stock no. 000654) male mice, all purchased from JAX. 
Subsequent generations were genotyped for AHL and Cre, and AHL-negative, Cre-
positive females were used to continue the backcrossing. In cases where such females 
were not available, we instead crossed AHL-negative, Cre-positive males with CBA/CaJ 
females. We continued backcrosses through generation F6, at which point we donated 
young males from each strain to JAX for distribution to other investigators as Sst-IRES-
Cre (stock no. 037963) and Vip-IRES-Cre (stock no. 037964). We used generation F4 
mice to verify normal hearing via ABR measures collected through 12 months of age 
(described below). We used generation F5 mice to verify Cre expression patterns by 
crossing male Ai14 mice (Cre-dependent tdTomato; JAX stock no. 007914) to female 
CBA Cre-bearing mice, and to female C57 Sst-IRES-Cre and Vip-IRES-Cre mice. 
Animals were socially housed in cages of 2-5 animals under a 12 h-12 h light-dark 
cycle. Food and water were provided ad libitum.  

 

2.2 Genotyping 

Mice were genotyped by Transnetyx (Cordova, TN) for Cdh23 and Sst-Cre or 
Vip-Cre. Primers for the Cdh23 AHL gene were as follows:  forward: 
TGCCCTACAGTACTAACATCTACGA, reverse: ACGCAGGACAGGCATTTGT, reporter 
1: CTCTCCTCCGGTGAGC, reporter 2: CTCTCCTCCAGTGAGC. Primers for the Sst-
IRES-Cre transgene were as follows: forward: GTCAGGTACATGGATCCACTAGTTC, 
reverse: GCCAGGAGTTAAGGAAGAGATATGG, reporter: 
CTAGGACAACAATATTGCGGCCG. Primers for the Vip-IRES-Cre transgene were as 
follows:  forward: TCAGGTACATGGATCCACTAGTTCT, reverse: 
GCACGCTCACCTCTGATTTCA, reporter: AGGCCTCTTCGCGGCCG. 

 

2.3 Perfusion and tissue processing 

Four CBA Sst-Cre:Ai14, five C57 Sst-Cre:Ai14, five CBA Vip-Cre:Ai14, and eight 
C57 Vip-Cre:Ai14 mice were euthanized at p36-p41 with sodium pentobarbital (Fatal-
Plus, Vortech Pharmaceuticals) and perfused with ice cold, phosphate-buffered saline 
(PBS) followed by 4% paraformaldehyde (PFA) in PBS. Brains were fixed in 4% PFA 
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overnight and changed to a 30% sucrose solution the following day. After at least one 
day in sucrose solution, brains were frozen and cut into 50-µm thick coronal slices on a 
Microm HM 450 sliding microtome. Slices were mounted on slides using Vectashield 
with DAPI mounting media and imaged using a Keyence BZ-X810 fluorescent 
microscope. No immunostaining was performed; example images in Figure 1 reflect 
unamplified tdTomato fluorescence. 

 

2.4 Auditory brainstem response (ABR) measurements 

ABR measures were collected at 3, 6, 9, and 12 months of age from eight CBA 
Sst-Cre mice, nine CBA Vip-Cre mice, and ten C57BL/6J control mice (JAX stock no. 
000664). Additional measurements were performed on C57BL/6J mice at 2 months old. 
Mice were anesthetized with a combination of ketamine (90 mg/kg IP, Ketathesia, 
HenrySchein) and xylazine (10 mg/kg IP, AnaSed, Akorn) and maintained with 
supplemental doses of ketamine (25-50 mg/kg IP) as needed. Recordings were 
conducted inside a sound-attenuation chamber lined with anechoic foam.  

Stimuli included clicks (0.1 ms ungated square waves) and pure tone frequencies 
of 4, 8, 16, 32, and 48 kHz (5 ms sine waves with 0.5-ms cosine2 ramps) presented at 
levels spanning 20–90 dB SPL in 5-dB steps. Each click- and frequency-level 
combination was repeated 500 times in pseudorandom order with a 30-ms inter-
stimulus interval. The stimuli were generated digitally with MATLAB at 192 kHz then 
converted to analog with a Roland Quad-Capture sound card, amplified by a Tucker-
Davis Technologies (TDT) SA1 power amplifier, and delivered through a TDT MF1 
speaker in the closed field configuration. Stimulus levels were calibrated with a Brüel & 
Kjær model 2209 sound level meter and a model 4939 microphone. 

Physiological signals were recorded by positioning subdermal silver wire 
electrodes at the right bulla, vertex (reference), and hindlimb (ground). Continuous 
voltage traces from the electrodes were amplified by a Medusa preamp and streamed to 
disk by a RZ2 acquisition system (TDT). The raw signal was bandpass filtered offline 
(500-3,000 Hz) and averaged across the trials for each stimulus/attenuation pair to 
obtain the ABR. Example stimuli and ABRs are shown in Figure 2A. 

 

2.5 Data analysis 

Similar to previous studies (e.g., Akil et al. 2016, Ingham et al. 2019), we 
estimated ABR thresholds by visual inspection of ABR waveforms. Three expert 
reviewers independently determined the minimum sound level (threshold) at which a 
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recognizable ABR pattern was observed for each recording and stimulus. If no ABR was 
apparent at any sound level (e.g., high frequency tones in aged C57 mice), threshold 
was scored as the maximum possible level (90 dB) for purposes of statistical analysis. 
Example rater responses are shown in Figure 2. Thresholds across raters were highly 
correlated with each other as seen in Figure 2D (1v2 r = 0.94, 2v3 r = 0.93, 3v1 r = 0.58; 
p < 0.0001 for all). We define ABR thresholds as the mean of the three rater values. All 
threshold judgments were performed blind to animal strain and age.  

 

2.6 Statistics 

Statistical analyses were performed using MATLAB. Because ABR thresholds 
are not normally distributed, they were first transformed using the Box-Cox procedure 
(Box and Cox, 1964). We then used two-way ANOVA to compare thresholds from CBA 
Sst-Cre and Vip-Cre mice at each age. Thresholds were not significantly different 
between Sst-Cre and Vip-Cre lines at any age, so the strains were combined for 
subsequent analyses. We used two-way ANOVA to compare the CBA Cre line 
thresholds to the C57 thresholds at each age. To control false discovery rate, all p-
values were adjusted using the Benjamini-Hochberg procedure (Benjamini and 
Hochberg, 1995). Following a significant result from the two-way ANOVA, Tukey-
Kramer post hoc tests were used to identify significant differences between groups.  

 

3. Results 

3.1 tdTomato expression is similar between CBA Cre:Ai14 and C57 Cre:Ai14 mice 

  We crossed CBA Sst-Cre and Vip-Cre mice with Ai14 reporter mice to test the 
function of the Cre modifications in the backcrossed mice. As a comparison, we also 
crossed C57 Sst-Cre and Vip-Cre mice with Ai14 reporter mice. Coronal sections from 
CBA Sst-Cre:Ai14 and C57 Sst-Cre:Ai14 mice both show a high concentration of 
tdTomato+ cells in the septal nucleus (SN), reticular nucleus (Thal), amygdala (Am), 
inferior colliculus (IC), and cerebellum (Cb), and scattered cells in the cortex (Ctx) 
(Figure 1 A-B) which parallels expression of Sst-Cre:Ai14 mice from the Allen Mouse 
Brain Connectivity Atlas (Allen, 2004, a). The CBA Vip-Cre:Ai14 and C57 Vip-Cre:Ai14 
slices both show a high concentration of tdTomato+ cells in the suprachiasmatic 
nucleus (SCN) and inferior colliculus (IC), and scattered cells in the superficial cortex 
(Ctx) (Figure 1 C-D) which parallels expression of Vip-Cre:Ai14 mice from the Allen 
Mouse Brain Connectivity Atlas (Allen, 2004, b). Thus, the CBA Sst-Cre and Vip-Cre 
mouse lines both drive Cre expression in expected brain regions.  
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3.2 CBA Cre mice have normal hearing through 12 months of age 

We recorded ABRs using clicks and tones spanning 4-48 kHz (Figure 2) in n = 9 
CBA Vip-Cre mice (6 female), n = 8 CBA Sst-Cre mice (2 female), and n = 10 C57 mice 
(5 female), at 3, 6, 9, and 12 months (Figure 3). We suspected hearing thresholds 
would be similar between CBA Vip-Cre and Sst-Cre mice. To test this, we performed 
three-way ANOVA with threshold as the dependent variable, and Cre allele, age, and 
stimulus type as independent variables. The main effect of strain was not significant 
(F(1,369) = 1.84, FDR adjusted p = 0.26), as were interactions between strain and age 
(F(3,369) = 0.58, FDR adjusted p = 0.75), and strain and stimulus (F(5,369) = 0.36, 
FDR adjusted p = 0.88). Thus, CBA mice bearing these two Cre alleles had similar 
hearing thresholds and were grouped together for subsequent analyses.    

Differences between CBA Cre and C57 mice were first detectable at 3 months 
and became progressively more severe with age. At 3 months, the interaction between 
strain and stimulus was significant (F(5,132) = 3.07, FDR adjusted p < 0.05), consistent 
with the elevated thresholds seen in C57 mice at 48 kHz (Figure 3A). However, the 
main effect of strain was not significant (F(1,132) = 3.07, p = 0.4), as were post-hoc 
tests for any individual stimulus (all p-values > 0.08), suggesting only mild AHL at high 
frequencies in C57 mice of this age. At all other ages (6, 9, and 12 months), both the 
main effect of strain and interactions between strain and stimulus were highly significant 
(all FDR adjusted p-values < 0.001). Post-hoc tests indicated significant differences in 
hearing thresholds between CBA Cre and C57 mice for 32 and 48 kHz tones at 6 and 9 
months (all FDR adjusted p-values < 0.0001), and significant differences across all tone 
frequencies and clicks by 12 months (all FDR adjusted p-values < 0.001). Together, 
these outcomes confirmed the severe, progressive AHL phenotype was present in C57 
mice but absent in the new CBA Cre strains through at least 1 year of age. 

 

3.3 High frequency hearing thresholds in C57 mice are elevated even at 2 months old  

Considering early signs of high frequency hearing loss were already evident in 
C57 mice by 3 months old (Figure 3A), we wondered if such hearing deficits might be 
detected at an even earlier age. Thus, we collected additional ABR measurements from 
2-month-old C57 mice and compared them to the 3-month-old CBA Cre mice (Figure 4). 
Two-way ANOVA revealed a non-significant effect of strain on thresholds (FDR 
adjusted p = 0.83) but significant interactions between mouse strain and stimulus 
(F(5,138) = 2.56, FDR adjusted p < 0.05) indicating a stimulus-dependent effect of 
strain on hearing. Post-hoc tests revealed significant differences between the groups at 
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48 kHz (FDR adjusted p < 0.05). Thus, high frequency hearing impairment can be 
detected in C57 mice as young as 2 months old. 

 

4. Discussion 

 Sst-Cre and Vip-Cre transgenic mouse lines on C57 backgrounds have provided 
numerous insights into cortical microcircuit structure and function by enabling targeted 
manipulation of VIP- and SST-positive interneurons. However, the Cdh23 mutation 
carried by these strains confers an AHL phenotype extensively documented by previous 
studies (Burghard et al., 2019; Frisina et al., 2011; Henry and Chole, 1980; Henry and 
Lepkowski, 1978; Hequembourg and Liberman, 2001; Ison and Allen, 2003; Kane et al., 
2012; Li and Borg, 1991; Mikaelian et al., 1974; White et al., 2000; Willott, 1986). Our 
findings confirm previous work suggesting AHL is first detectable at high frequencies by 
2-3 months old, and progressively worsens with age such that thresholds are severely 
elevated at high frequencies by 6 months old, and across all frequencies by 12 months 
old. This early-onset, progressive AHL phenotype hinders the utility of C57-background 
strains for studies of the auditory pathway and related structures, especially for studies 
of aging-related changes in these structures. 

 To circumvent these limitations, we generated novel Sst-Cre and Vip-Cre lines 
by backcrossing onto a CBA background that does not carry the Cdh23 mutation. We 
verified the absence of AHL in the new strains by conducting longitudinal ABR 
recordings through 12 months of age (Figures 3-4). We also histologically confirmed the 
expected expression patterns of Cre-dependent genes via crosses with Ai14 reporter 
mice (Figure 1). The new strains thus provide new tools for studying circuit mechanisms 
of auditory processing and multisensory integration across the lifespan without potential 
confounds due to progressive AHL. Similar approaches were used by Beebe et al. 
(2020) and Lyngholm and Sakata (2019) to generate ChAT-Cre and Cre-dependent 
channelrhodopsin2 strains without AHL. 

 A minor caveat regarding the use of CBA mice for hearing studies is that males 
may develop mild adult onset diabetes-obesity syndrome, which has been associated 
with elevated thresholds in several previous studies (Fujita et al., 2015; Hwang et al., 
2013; Lee et al., 2008; Pålbrink et al., 2020). These influences tend to be modest, 
especially in comparison to AHL caused by Cdh23 mutation in C57 mice. Nevertheless, 
researchers specifically focusing on sex differences in aged CBA mice may wish to 
account for potential influences of metabolic status on hearing. 

In summary, we produced new Sst-Cre and Vip-Cre mouse strains on CBA 
backgrounds, then confirmed experimentally they lack AHL and feature the expected 
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Cre expression patterns. These mice are now publicly available from JAX as Sst-IRES-
Cre (stock no. 037963) and Vip-IRES-Cre (stock no. 037964).  
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Figure 1 

Histological comparison of Cre-driven expression patterns in commercially 
available and backcrossed Sst-Cre and Vip-Cre mice. A) Example CBA Sst-Cre : Ai14 
mouse. i) Low magnification image of coronal brain slices (50 µm thickness) spaced 600 
µm apart, in order from rostral to caudal from left to right, top to bottom. ii) Higher 
magnification image of cortical slice with expanded images of cortex and thalamus 
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showing expression. ii) Higher magnification image showing inferior colliculus 
expression. B) (i-iii) Example C57 Sst-Cre : Ai14 mouse showing similar expression 
patterns to A (i-iii). C) Example CBA Vip-Cre : Ai14 mouse. i) Low magnification image 
of coronal brain slices. ii) Higher magnification image of cortical slice with expanded 
images of cortex and suprachiasmatic nucleus showing expression. ii) Higher 
magnification image showing inferior colliculus expression. D) (i-iii) Example C57 Vip-
Cre : Ai14 mouse showing similar expression patterns to C (i-iii). 

 

Figure 2 

Auditory brain response (ABR) stimuli and analyses.  A) Responses to click and 
pure tone stimuli are averaged to obtain ABR. B) Hearing thresholds are defined as the 
mean of blinded raters’ assessed thresholds. C) Assessed thresholds for all recordings 
showed consistency between raters. 

 

Figure 3 

ABR thresholds over time. (A-D) Hearing thresholds for CBA Sst-Cre (red) and 
CBA Vip-Cre (blue) show consistency over 3, 6, 9, and 12 months while thresholds for 
C57BL/6J (gray) control mice show elevation over time. Error bars represent one 
standard deviation.  

 

Figure 4 

As early as P60, C57-Cre mice show significant hearing deficits compared to 
older CBAs. A) Representative ABR from a 2 month old C57 mouse shows minimal 48 
kHz responses. B) Hearing thresholds for CBA Sst-Cre (light red) and Vip-Cre (light 
blue) mice at 3 months, and C57BL/6J control mice at 2 months (purple) and 3 months 
(light gray). Thresholds are elevated for high frequencies in C57 mice at 2 and 3 
months. Error bars represent one standard deviation. 
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