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41

42  Abstract:

43 Reference genomes are key resources in biodiversity conservation. Y et, sequencing efforts are
44 not evenly distributed in the tree of life questioning our true ability to enlighten conservation
45  with genomic data. Good quality reference genomes remain scarce in octocorals while these
46  species are highly relevant target for conservation. Here, we present the first annotated
47  reference genome in the red coral, Corallium rubrum (Linnaeus, 1758), a habitat-forming
48  octocoral from the Mediterranean and neighboring Atlantic, impacted by overharvesting and
49  anthropogenic warming-induced mass mortality events. Combining long reads from Oxford
50 Nanopore Technologies (ONT), Illumina paired-end reads for improving the base accuracy of
51 the ONT-based genome assembly and Arima Hi-C contact data to place the sequences into
52  chromosomes, we assembled a genome of 475 Mb (21 chromosomes, 326 scaffolds) with
53 contig and scaffold N50 of 1.6 Mb and 16.2 Mb, respectively. Fifty percent of the sequence
54  (L50) was contained in eight superscaffolds. The consensus quality (QV) of the final
55  assembly was 42 and the gene completeness reported by BUSCO was 74% (metazoa_odb10
56  database). We annotated 39,114 protein-coding genes and 32,678 non-coding transcripts. This
57 annotated chromosome-level genome assembly, one of the first in octocorals, is currently
58 used in a project based on whole genome re-sequencing dedicated to the conservation and
59  management of C. rubrum.

60

61 Keywords: Catdan Initiative for the Earth Biogenome Project, Biodiversity Genomics
62  Europe, Cnidaria, HiC, RNAseq, Oxford Nanopore.
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70  Significance Statement:

71  The Mediterranean red coral, Corallium rubrum, is critically impacted by overharvesting and
72 by mass mortality events linked to marine heat waves. Accordingly, C. rubrumisincreasingly
73  receiving conservation efforts. Previous population genetics studies based on microsatellites
74  contributed to improving our knowledge of the species ecology. Yet, crucia questions
75 regarding, admixture among lineages, demographic history, effective population sizes and
76 loca adaptation, are still open owing to a lack of genomic resources. Here, we present the
77  first chromosome-level genome assembly for the species with high contiguity, good
78  completeness and protein-coding genes and repeat sequence annotations. This genome, one of
79 thefirst in octocorals, will pave the way for the integration of population genomics data into
80  ongoing interdisciplinary conservation efforts dedicated to C. rubrum.
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91

92  Introduction

93 Recent improvements in sequencing technologies and bioinformatics are upgrading the

94 potential inputs of population genetics in conservation biology (Formenti et al. 2022).

95  Accordingly, the number of initiatives to produce high-quality reference genomes has been

96 increasing in the last five years (e.g. Catalan initiative for the Earth Biogenome Project

97  https://www.biogenoma.cat).

98  Yet, these efforts are still mostly focused on a few taxa (e.g. Vertebrate Genome Project) and

99 reference genomes for non-model Metazoans are still scarce (but see Ledoux et al. 2020).
100 This bias in the sequencing efforts is detrimental to biodiversity conservation owing to the
101  ecological roles of many of those underrepresented taxa.
102 Beyond an interesting phylogenetic position as a sister taxa of Hexacorallia, Octocoralliais a
103  diverse group (>3,500 species) of ecologically key organisms (e.g. Gomez-Gras et a. 2021)
104 found from shalow tropical to deep and polar seas. Some of these species are critically
105 impacted by globa change including extreme climatic events (e.g. Estaque et a. 2023). To
106  date, only a bunch of genomes (<1% of species diversity, see Ahuja et al. 2024) are available
107  limiting the integration of genomics data into ongoing conservation efforts.
108 The red coral, Corallium rubrum, is a habitat-forming octocoral (Figure 1) with a central
109  structural role in benthic communities from the Mediterranean and the neighboring Atlantic
110  (Zibrowius et al. 1984, Laborel & Vacelet 1961). This iconic species with high cultural and
111 economic value is critically impacted by two anthropogenic pressures. First, as a “precious
112 cord”, it has been harvested for jewelry since ancient times and owing to its market value
113  (>1,000 €/kg), the species has been overharvested and intensively poached (Ledoux et al.
114  2016). Second, C. rubrum has been recurrently impacted in the last twenty years by mass

115 mortdities, linked to recurrent marine heatwaves, across thousands of kilometers of coastal
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116  habitats (Garrabou et al. 2022). The species with slow population dynamics (Montero-Serra et
117  al. 2018) and restricted connectivity (Ledoux et al. 2010a; Horaud et al. 2023) is characterized
118 by alow resilience capacity (Linares et al. 2012). The combination of overharvesting and
119 mass mortality events is driving steep demographic declines, questioning the evolutionary
120 tragjectory of the species (Montero-Serra et a. 2019).

121  Inthis context, C. rubrumis receiving conservation attention from scientists and biodiversity
122  managers (included in Barcelona Convention, EU Habitat Directive and listed as
123  “endangered”’ by IUCN [Otero et al. 2017]). Y et, mgjor knowledge gaps in relation to genome
124  diversity, effective population size and adaptation to the local environment remain and should
125 befilled to improve existing conservation policies. As a part of the Catalan Initiative for the
126  Earth BioGenome Project (CBP), we assembled and annotated the first chromosome-level
127  reference genome in C. rubrum. This reference genome will support a conservation genomics

128 project funded by the Biodiversity Genomics Europe (https.//biodiversitygenomics.eu) and

129 based on whole genome re-sequencing. This project will infer demographic history and
130 contemporary processes shaping the intraspecific genetic patterns with direct applications for
131  red cora conservation and management.

132

133 Material and Methods:

134  Collection and preparation of biological material

135 Theapical tip (5 cm) of one colony from the Cap Castell (42.082610, 3.201981) population in
136  Catalunya (Spain) was sampled a 18 m depth and immediately transported in coolers to the
137  Aquarium Experimental Zone (ZAE) of the Ingtitut de Ciencies del Mar (ICM-CSIC,
138 Barcelona, Spain). The sample was flash frozen using liquid nitrogen and conserved at -80°C
139 until DNA extractions. The same individual was used for short (lllumina) and long-read

140 (Oxford Nanopore Technology) sequencing. For Hi-C sequencing, one individual colony was
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141 sampled from Meda Petita population at 12m depth (42.043652; 3.226719), Medes Islands,
142  Spain.

143

144  DNA extraction and Illumina Whole Genome Sequencing

145 High Molecular Weight gDNA was extracted from the coenenchyme (external tissue
146  containing the polyps) using the MagAttract HMW DNA kit (Qiagen) at the Centre Nacional
147  d' Andisi Genomica (CNAG, https://www.cnag.eu). The HMW gDNA eluate was quantified
148 using the Qubit DNA BR Assay kit (Thermo Fisher Scientific), and its purity was assessed
149  using Nanodrop 2000 (Thermo Fisher Scientific). The extractions integrity was analyzed in an
150 agarose gel (1%) in a pulsed field gel electrophoresis system (Sage Science). The HMW
151 gDNA sample was stored at 4°C. Whole genome sequencing library preparation was
152  performed using the KAPA HyperPrep kit (Roche), following the manufacturer's instructions.
153 Thelibraries were sequenced on the NovaSeq 6000 (IIlumina) with a read length of 2x151bp,
154  following the manufacturer’'s protocol for dua indexing. Image anaysis, base calling, and
155  quality scoring of the run were executed using the manufacturer’s Real Time Analysis (RTA
156  3.4.4) software.

157

158 Long-Read Whole genome library preparation and sequencing

159 The sequencing libraries were prepared using the 1D Sequencing kit SQK-LSK110 from
160 Oxford Nanopore Technologies (ONT). Briefly, 4.0 ug of the DNA was DNA-repaired and
161 DNA-end-repaired using NEBNext FFPE DNA Repair Mix (NEB) and the NEBNext Ultrall
162 End Repair/dA-Tailing Module (NEB) followed by the sequencing adaptors ligation. The
163 ligation product was purified by 0.4X AMPure XP beads (Agencourt, Beckman Coulter), and

164  eluted in elution buffer.
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165 The sequencing runs were performed on Promethlon 24 (ONT) using aflow cell R9.4.1 FLO-
166 PRO 002 (ONT) and the sequencing data was collected for 110 hours. The quality parameters
167  of the sequencing runs were monitored by the MinKNOW platform version 21.11.7 in real
168 time and base called with Guppy version 5.1.13.

169

170  Chromatin confor mation capture sample preparation and sequencing

171  Tissue was carefully scraped from a living individual collected a Medas Petit. Chromatin
172  conformation capture sequencing (Hi-C) libraries were prepared using the Hi-C High-
173  coverage kit (Arima Genomics) in the Metazoa Phylogenomics Lab (Institute of Evolutionary
174 Biology (CSIC-UPF)). Sample concentration was assessed by Qubit DNA HS Assay kit
175 (Thermo Fisher Scientific) and library preparation was carried out using the ACCEL-NGS®T[]
176 2S PLUS DNA LIBRARY KIT (Swift Bioscience) and using the 2S Set A single indexes
177  (Swift Bioscience). Library amplification was carried out with the KAPA HiF DNA
178 polymerase (Roche). The amplified libraries were sequenced on the NovaSeq 6000 (I1lumina)
179 at CNAG.

180

181 RNA extraction and RNA Sequencing

182 RNA sequencing data were obtained from a parallel project characterizing the transcriptomic
183  response of C. rubrum to hesat stress (Ramirez et al. in prep). RNA was extracted from the
184  coenenchyme of 36 different samples combining TRIzol reagent (Invitrogen) for tissue lysis
185 and homogenization and RNA easy kit (Qiagen) for RNA isolation and purification. Eluted
186 RNA was stored at -80°C until shipment to CNAG. Total RNA quantification was assessed
187  using the Qubit RNA BR Assay kit (Thermo Fisher Scientific), and the RNA integrity was
188  estimated using the RNA 6000 Nano Bioanalyzer 2100 Assay (Agilent). To prepare the RNA-

189  Seq libraries, the KAPA Stranded mRNA-Seq Illumina Platforms Kit (Roche) was used with
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190 500 ng of total RNA. Library quality was assessed on an Agilent 2100 Bioanalyzer using the
191 DNA 7500 assay. The libraries were sequenced on the NovaSeq 6000 (Illumina) as above for
192 the WGSlibrary.

193

194  Genome assembly

195 We used the pipeline CLAWS v2.1 (Gomez-Garrido, 2023) to perform this genome assembly
196 combining ONT long reads, Illumina paired-end reads and Arima Hi-C contact data. A
197  flowchart with the genome assembly process is shown in Supplementary file (Figure S1).

198 Prior to assembly, adaptors present in the Illlumina data were trimmed with TrimGalore

199  (https://github.com/FelixKrueger/TrimGalore). A k-mer database was subsequently built with

200 Meryl (https://github.com/marbl/meryl). The k-mer histogram generated by Meryl was used

201 asinput to Genomescope2 (Ranallo-Benavidez et al. 2020) to estimate haploid genome size,
202  heterozygosity and repeat content (Supplementary file Figure S2). The ONT data were

203 filtered with Filtlong (https:.//github.com/rrwick/Filtlong; --minlen 1000 --min_mean_q 80 --

204  target_bases 25000000000) prior to the assembly to remove short and low-quality reads.

205 Thefiltered ONT data was assembled with Nextdenovo v2.4.0 (Hu et a. 2024). To improve
206 the base accuracy, the assembly was polished with HyPo (Kundu et al. 2019) using both
207  Illuminaand ONT data. Finally, the polished assembly was purged with purge_dups (Guan et
208  al. 2020) to remove alternate haplotypes and other artificially duplicated repetitive regions.
209 The Blobtoolkit (Challice et a. 2020) pipeline was run, using the NCBI nucleotide database
210  (updated in February 2023) and several BUSCO o0db10 databases (metazoa, eukaryota, fungi
211  and bacteria). A total of 135 contigs (corresponding to 70.2 Mb of sequences) belonging to
212  non-Cnidaria phylawere removed from the assembly at this step (see blobplot Figure S3).

213  The decontaminated assembly was scaffolded using the Hi-C data with YAHS (Zhou et al.

214 2022). Manual curation of the resulting assembly was performed with PretextView
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215  (https://github.com/wtsi-hpag/PretextView). A total of 124 edits were made (183
216 interventions per gigabase), of which 29 were breaks and 58, joins. The rest corresponded to
217 36 unlocalized sequences and one haplotig. A total of 21 autosomes were assembled and no
218  sex chromosomes were identified.

219 A snailplot was produced on the final assembly with Blobtoolkit (Figure 2).

220

221  Genome annotation

222  The genome annotation was obtained by running the CNAG structura genome annotation

223  pipeline (https://github.com/cnag-aat/Annotation_AAT) that uses a combination of transcript

224 aignments, protein alignments and ab initio gene predictions (Supplementary file Figure $4).
225  Repeats present in the genome assembly were annotated with RedMask. To avoid masking
226  certain repetitive protein families present in the genome, we performed a BLAST (Altschul et
227  al. 1990) search of the RedMask-produced library against Swissprot/Uniprot (February 2023).
228  Those repeats with significant hits (evalue <10°) against proteins were removed from the
229 fina repeat library and BedTools v2.31.1 (Quinlan & Hall 2010) was run to produce the
230  masked version of the genome.

231  After sequencing, adaptors were removed from the reads corresponding to the 36 samples
232  with TrimGalore. Reads were aligned to the genome with STAR v-2.7.2a (Dobin et al. 2013).
233  Transcript models were subsequently generated using Stringtie v2.2.1 (Pertea et a. 2015) on
234  each BAM file and then all the models produced were combined using TACO v0.7.3 (Niknafs
235 et a. 2017). High-quality junctions used during the annotation process were obtained by
236  running ESPRESSO v1.3.0 (Gao et a. 2023) after mapping with STAR. Finally, PASA
237 assemblies were  produced with PASA v252 (Haass e da. 2015).
238 The TransDecoder program was run on the PASA assemblies to detect the presence of coding

239 regions in the transcripts. Additionally, the complete proteomes of Stylopora pistillata,
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240  Pocillopora damicornis and Paramuricea clavata were downloaded from Swissprot/Uniprot
241  (February 2023) and aligned to the C. rubrum genome using Miniprot v0.6 (Li 2023). Ab
242  initio gene predictions were performed on the repeat-masked assembly with three different
243 programs. GenelD v1.4 (Alioto et a. 2018), Augustus v35.0 (Stanke et al.
244 2006) and Genemark-ET v7.71 (Lomsadze et a. 2014) with and without incorporating
245  evidence from the RNAseq data. Geneid and Augustus were specifically trained for this
246  species using a set of 1000 gene candidates obtained from the longest Transdecoder complete
247  models that had a significant (evalue <10°®) BLAST hit against Swissprot/Uniprot. Genemark
248 was run in a self-training mode and it was not specifically trained with this set of gene
249  candidates.

250 Findly, al the data were combined into consensus CDS models using EvidenceM odeler-2.1
251 (Haaset al. 2015). Additionally, UTRs and alternative splicing forms were annotated via two
252  rounds of PASA annotation updates. To functionally annotate the proteins of the annotation,
253  we run the Pannzer's online server (Toronen & Holm 2020). Orthofinder (Emms & Kelly
254  2019) was run to obtain the orthologs between C. rubrum and the previously downloaded
255  proteins for P. clavata, P. damicornis and S. pistillata. The proteins that had not originally
256  been annotated by Pannzer but for which an ortholog was found, inherited the functional tags
257  of their other paralogs in the C. rubrum annotation or, if absent, they hierarchically obtained
258  theannotation of their orthologsin P. clavata, P. damicornisor S pistillata.

259  The annotation of NCRNASs was obtained by running the following steps on the repeat-masked
260 version of the genome assembly. First, cmsearch v1.1 (Cui et a. 2016) that is part of the
261 Infernal package (Nawrocki et al. 2013) was run against the RFAM database of RNA families
262 v12.0. Additionally, tRNAscan-SE v2.11 (Chan & Lowe 2017) was run to identify the
263 transfer RNA genes present in the genome assembly. Identification of IncRNAs was done by

264  first filtering the set of PASA-assemblies that had not been included in the annotation of
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265  protein-coding genes to retain those longer than 200bp and not covered more than 80% by a
266  small ncRNA. The resulting transcripts were clustered into genes using shared splice sites or
267  significant sequence overlap as criteriafor designation as the same gene.

268

269 Resultsand Discussion

270  Genome assembly

271  Results obtained with Genomescope2 (Figure S2) suggest a genome-size of around 500 Mb
272 and 1.2% heterozygosity rate. The base assembly obtained with NextDenovo v2.4.1
273  comprised a total assembly span of 568 Mb (876 contigs) and the final chromosome-level
274  assembly comprised 475 Mb (21 chromosomes, 326 scaffolds) (Table S1). The contig and
275  scaffold N50 of the final assembly are 1.6 Mb and 16.2 Mb, respectively, and fifty percent of
276  the sequence (L50) is placed in eight superscaffolds. BUSCO (Manni et al. 2021) and
277  Merqury (Rhie et al. 2020) were run to estimate the accuracy and completeness of the genome
278  assembly. The consensus quality (QV) of the final assembly was estimated by Merqury as 42
279 and the gene completeness reported by BUSCO v5 was 74% using the metazoa odbl0
280 database (Figure 2; Table S1).

281  Genome annotation

282 We annotated a total of 39,114 protein-coding genes that produce 44,624 transcripts (1.14
283  transcripts per gene) and encode for 43,533 unique protein products. We were able to assign
284  functiona labels to 45% of the annotated proteins. The annotated transcripts contain 5.09
285 exonson average, with 63% of them being multi-exonic (Table S2). In addition, 32,678 non-
286  coding transcripts were annotated, of which 24,752 and 7,926 are long and short non-coding
287  RNA genes, respectively.

288 The reference genome presented here is the backbone of an ongoing population genomics

289  project dedicated to the conservation and management of C. rubrum. This chromosome-level
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290 assembly, one of the first in octocorals and the first in within the order Scleralcyonacea,
291  contributes to reduce the current taxonomic bias in the generation of high-quality genome
292  resources.

293
294
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Figurel: a) Coralligenous habitat dominated by the red coral, Corallium rubrum (left panel).
Close up from apical tips of C. rubrum showing the polyps (white) and coenenchyma
covering the red calcareous skeleton used in jewelry since Ancient time (right panel).

b) Phylogenetic relationships among different anthozoans species including five octocorals
(Dendronephtya gigantea, Paramuricea clavata, Pheganax marumi, Xenia sp., Corallium
rubrum) and three hexacorals (Actinia tenebrosa, Plumathes pennacea, Acropora pal mata)
for which good quality assemblies are available. species with good quality genome
assemblies. Thetreeis based on 244 single copy orthologous genes identified with BUSCO.
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571 Figure 2: @) BlobToolKit Snailplot showing different assembly metrics. The main plot is
572  divided into 1,000 size-ordered bins around the circumference with each bin representing
573  0.1% of the 474.689.186 bp assembly. The distribution of scaffold lengthsis shown in dark
574  grey with the plot radius scaled to the longest scaffold present in the assembly (96.441.827
575  bp, shown in red). Orange and pale-orange arcs show the N50 and N90 scaffold lengths

576  (16.290.029 and 728.786 bp), respectively. The pale grey spira shows the cumulative

577  scaffold count on alog scale with white scale lines showing successive orders of magnitude.
578  The blue and pale-blue area around the outside of the plot shows the distribution of GC, AT
579  and N percentages in the same bins asthe inner plot. A summary of complete, fragmented,
580 duplicated and missing BUSCO genes in the metazoa_odb10 set is shown in the top right.
581 b) Chromatin contact map generated from Arima2 Hi-C data shows the 21 chromosomes
582  (2n=42) that represent 88.8% of the assembled C. rubrum genome.
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