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Abstract

Protein aggregation is a pathological hallmark of more than fifty human diseases and a
major problem for biotechnology. Methods have been proposed to predict aggregation from
sequence, but these have been trained and evaluated on small and biased experimental
datasets. Here we directly address this data shortage by experimentally quantifying the
amyloid nucleation of >100,000 protein sequences. This unprecedented dataset reveals the
limited performance of existing computational methods and allows us to train CANYA, a
convolution-attention hybrid neural network that accurately predicts amyloid nucleation from
sequence. We adapt genomic neural network interpretability analyses to reveal CANYA's
decision-making process and learned grammar. Our results illustrate the power of massive
experimental analysis of random sequence-spaces and provide an interpretable and robust
neural network model to predict amyloid nucleation.
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Introduction

Specific insoluble protein aggregates in the form of amyloid fibrils characterize more than
fifty clinical conditions affecting more than half a billion people (Fig. 1A)'. These include
common neurodegenerative disorders and the most frequent forms of dementia.
Nonetheless, amyloids are present in all kihngdoms of life and can have functional roles,
including in humans?. Protein aggregation is also a major problem in biotechnology, for
example in the production of enzymes, antibodies and other protein therapeutics®. The
importance of amyloids across biological functions and diseases has spurred massive
research efforts, yet the determinants and mechanisms of their formation remain quite poorly
understood**.

Recent advances in cryogenic electron microscopy have allowed the atomic structures of
many mature amyloid fibrils to be determined®. Amyloids share a cross-f structure wherein
hydrogen-bonded B-strands are perpendicularly stacked along the fibril axis, creating
B-sheets that face each other and are parallel to the fibril axis*”®. Amongst humans, amyloid
fibrils typically have hydrophobic cores, for which hydrophobicity and B-strand propensity
form the basis of many computational methods to predict amyloid propensity from
sequence® ', However, other amyloids, for example yeast prions, have very different
sequence composition, hinting at a richer diversity of amyloid-forming sequences'®".

In contrast to the remarkable advances in the structural characterization of mature fibrils, the
process of amyloid formation—how soluble proteins overcome a free energy barrier to
nucleate fibrils (Fig.1B)—is much less understood. Time-resolved structure determination
has been used to study the in vitro assembly of amyloids, revealing a striking diversity of
intermediate structures appearing and disappearing as fibrillation proceeds''. However,
how this process initiates and why it only occurs for some sequences under physiological
conditions remains unclear. Mature amyloid fibrils are very stable and are likely to be the
thermodynamically favored state at high protein concentration for many proteins?°2'. There
is, however, a very high energy barrier to amyloid nucleation for most proteins i.e. the
process is under kinetic control?’. The kinetic control of amyloid nucleation is, therefore, the
key problem to understand: what are the sequence-level determinants that cause some
peptides to nucleate amyloid formation on timescales relevant to biology?

We believe that our ability to understand and predict amyloid formation is currently
data-limited. To date, computational methods to predict aggregation have been trained and
benchmarked on very small and biased experimental datasets, making it unlikely they have
learnt representations of aggregation that generalize across the diversity of sequence
space'> 2223 For example, even for 20 amino acid sequences there are 20% (>10%)
different sequences of 20 amino acids. Such a large sequence space is unlikely to have
been accurately modeled by methods trained on tens or a few hundred sequences.

To directly address this data gap we have developed a massively parallel selection assay
that allows the aggregation of thousands of different proteins to be tested and quantified in a
single experiment?*%, This has allowed us to quantify the nucleation kinetics for all possible
substitutions, insertions and deletions in the amyloid beta peptide that aggregates as a
hallmark of Alzheimer’s disease. The resulting measurements agree very well with in vitro
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nucleation kinetic rate constants?*?°. However, these datasets are limited to testing the
effects of small changes to a single sequence, hindering utility for general-purpose
model-building.

Here we apply this approach at a much larger scale and quantify the nucleation of >100,000
peptides with completely random sequences. We use the resulting massive dataset to
evaluate existing aggregation prediction methods and find they are only moderately
predictive. We therefore use the data to train CANYA, a convolution-attention hybrid neural
network. This fast model dramatically outperforms existing predictors of protein aggregation
when tested on >10,000 additional sequences, demonstrating the power of massive
experimental sequence-space exploration. Subsequent post-hoc explainable Al (xAl)
analyses provide mechanistic insights into CANYA's decision-making process and learned
grammar. CANYA provides a robust and interpretable neural network model for
understanding and predicting amyloid-forming proteins. More generally, our results provide a
very large and well-calibrated dataset to train and evaluate models beyond CANYA and they
demonstrate the utility of massive experimental analysis of random protein
sequence-spaces.

Results

Massively parallel quantification of amyloid nucleation kinetics for
>100,000 sequences

To better understand the sequence determinants of amyloid nucleation kinetics, we used an
in-cell selection assay to quantify the rate of nucleation of more than a hundred thousand
peptides with fully random sequences. We generated four libraries (NNK1-4) of random 20
AA peptides using NNK degenerate codons (where N = A/C/G/T and K = G/T) and
expressing them as fusions to the nucleation domain of Sup35 (Sup35N), a yeast
prion-forming protein that allows fitness-based selection for amyloid nucleation (Fig. 1C)*2°.
Briefly, fusion sequences that nucleate amyloids sequester Sup35 resulting in translational
readthrough of a premature stop codon in the ade? gene so that cells containing those
sequences become able to survive in medium lacking adenine. Enrichment or depletion of
each sequence after selection can be quantified by deep sequencing, with enrichment
scores linearly related to the log of in vitro amyloid nucleation rates®*%.

Each library was selected independently and sequencing was used to quantify the relative
enrichment (‘nucleation score’) for each genotype in the library. Sequences in the first three
experiments made up our training and testing sets (NNK1-3, ~111,000; Fig. 1D;
Supplementary Data Files 1 and 2), corresponding to about a 1/10" fraction of the possible
sequence space (20%°), while sequences from the fourth experiment (NNK4, ~7,000) were
used as a held-out validation data set. After data processing and quality control, the vast
majority of sequences had a nucleation score of 0. Consequently, we classified sequences
with a nucleation score significantly greater than 0 (one-sided Z-test, FDR adjusted p-value
<=0.05) as nucleators (n=21,936), and all other sequences as non-nucleators (n=88,470)
(Fig. 1E). Importantly, these nucleation scores are reproducible, as measured by an
additional selection experiment on a designed library (replication library) re-quantifying the
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nucleation of 400 sequences sampled across all four libraries (Pearson correlation range
0.506-0.797, Fig. 1F, Supplementary Fig. 1).

Amyloid nucleation occurs in > 50 human diseases
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Figure 1. Quantifying the nucleation of >100,000 random peptides. (A) Examples of amyloids in
human diseases. (B) The amyloid state is thermodynamically favorable, but requires overcoming a
kinetic barrier. (C) Experimental design. (D) While we explore over 110,000 sequences, our dataset is
a tiny sample of the possible sequence space. (E) The assayed nucleation scores of sequences
labeled “Nucleators” and “Non-nucleators” in our experiment. (F) An example of a follow-up replication
experiment using a synthesized library (NNK3; see Supplementary Fig. 1 for others; Supplementary
Data File 3).

Nucleating sequences span a large sequence-space and are poorly
predicted by existing computational methods

After classifying sequences as nucleators and non-nucleators, we sought to characterize
each class through amino acid composition (Fig. 2A), physicochemical properties (Fig. 2B),
and current amyloid prediction tools (Fig. 2C).

First, we examined the differences in amino acid frequency between nucleating and
non-nucleating sequences. Differences in frequencies were generally modest, however we
observed statistically significant differences owing to the large sample size of our data.
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When looking at composition independent of position, nucleators had higher frequencies of
cysteine (difference in frequency 0.012, p<2e-16), asparagine (0.009, p<2e-16), and
isoleucine (0.005, p<2e-16), and lower frequencies of arginine (-0.010, p<2e-16), leucine
(-0.008, p<2e-16), and lysine (-0.006, p<2e-16; Fig. 2A, See Supplementary Table 1 for full
differences). Moreover, both nucleators and non-nucleators covered the beta-sheet
propensity and hydrophobicity spaces of the human proteome and known amyloid
sequences, and nucleators had slightly higher values of both than non-nucleators on
average (difference in means of hydrophobicity=0.130, beta-sheet propensity=0.012, both
two-way t-test p-values < 2e-16; Fig. 2B). Considering position-specific composition,
differences were again modest, ranging from a difference in frequency from -0.06 to 0.03
(Fig. 2D). Subsequently, we grouped amino acids by their physicochemical properties to
check for more broad, position-specific differences between the two sequence classes (Fig.
2E). Toward the N-terminus of the random sequence (i.e., closer to Sup35N), nucleators
were significantly enriched (chi-squared test) for aliphatic residues (min p-value=1.54e-13,
position 2 difference=0.033), and significantly depleted for positive (min p-value=1.57e-25,
position 9 difference=-0.032) and negative residues (min. p-value=3.14e-11, position 2
difference=-0.016). The differences in charge waned toward the C-terminus (min. p-value
above position 15=1.03e-3, position 20 charged difference=0.011), however, and frequency
differences in aliphatic residues changed such that nucleators were significantly depleted for
aliphatic residues relative to non-nucleators (min. p-value=5.77e-39, position 19
difference=-0.058). Several groupings showed other position-sensitive differences, such as
an enrichment of aromatic residues toward the C-terminus in nucleators (min.
p-value=5.09e-6, position 19 difference=0.015), an enrichment of varying strength for polar
residues in nucleators (p-value= 5.57e-8 position 1 difference=0.023, p-value=9.41e-7
position 17 difference=0.020), and the enrichment of cysteines away from the ends of the
random construct (min. p-value=1.11e-28, position 10 difference=0.023).

Despite statistical significance, we highlight that differences in sequence space are subtle. In
other words, the collection of slight variation in amino acid frequencies offers minimal insight
or definitive conclusions around the overall properties or characteristics determining
nucleation in our experiment. To attempt to elucidate characteristics that separate the
sequence classes and consequently learn important axes of variability, we turned to
dimensionality reduction techniques. In addition to manually examining differences within the
first several dimensions, we also used the scores in lower-dimensional space as features in
a logistic multiple regression task to distinguish nucleators from non-nucleators. Using
principal components analysis (PCA), we observed no clear separation between nucleators
and non-nucleators whether we used amino acid composition alone (cumulative variance
explained from the top 10 PCs = 54.7%, Area Under ROC curve (AUC) using all 10 PC
scores=0.601, 95% Confidence Interval (Cl)=[0.596, 0.607], Supplementary Fig. 2), or
maintained positionality of the amino acids when fitting the model (cumulative variance
explained from the top 10 PCs = 3.1%, AUC=0.564, 95% CI=[0.559, 0.570], Supplementary
Fig. 2). This modest separation between classes of sequences was consistent even when
using non-linear embedding techniques (first 10 UMAPs AUC=0.584, 95% CI [0.578, 0.589]),
or adding amino acid propensities to the dimensionality reduction tools (first 10 PCs
AUC=0.614, 95% CI [0.608, 0.619]; Supplementary Fig. 2).
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Figure 2. Nucleation is poorly predicted by existing models and subtly related to amino acid
composition (A) The percent composition of residues grouped by their physicochemical properties in
nucleators and non-nucleators. (B) The hydrophobicity and beta-sheet propensity of assayed
sequences relative to known human amyloids (Supplementary Table 2) and the human proteome. (C)
The predictive power (AUC £ 95% CI) of previous amyloid predictors on the random sequences. (D,
E) The position-specific differences in amino acid frequencies across nucleating and non-nucleating
sequences. Asterisks indicate marginal p-value (chi-square test) lower than 0.05 “*”; lower than 0.01
“*’- lower than 0.001 “***”,

As dimensionality reduction methods were unable to distinguish the classes of sequences,
we next explored whether separation is possible using existing amyloid predictors. Beyond
hydrophobicity indices, several of these methods include structural information?” or model
biophysical mechanisms'?, potentially enabling them to capture more complex features of
nucleation. We applied several state-of-the-art amyloid prediction algorithms to our data and
found that the methods either failed to generalize to our data or had only modest predictive
power (Fig. 2C, CamSol, highest AUC=0.598, 95% CI [0.593, 0.603]). We posit that, since
many of these tools have been trained on very small sets of known amyloids or moderate
numbers of short hexamer sequences, their applicability to our experimental data may be
limited. To understand where the methods underperformed, we examined the scores from
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the highest performing methods (CamSol™® and TANGO'™) and found that non-nucleating
sequences with a high-predicted nucleation score had higher hydrophobicity (two-sided t-test
p-value<2e-16) than all other non-nucleating sequences (Supplementary Table 3). We also
found that low-predicted nucleators had higher presence of positive (two-sided t-test
p-value<2e-16) and negative (p-value<2e-16) residues than all other nucleators
(Supplementary Table 4).
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Figure 3. Convolution-Attention Network of amYloid Aggregation (CANYA). (A) CANYA is a
3-layer neural network with 65,491 parameters. The model contains 100 filters, a single attention head
with key-length 6, a dense layer with 64 nodes, and finally a sigmoid output layer. (B-D) Evaluation
metrics across the top 50 performing (of 100) model fits of CANYA. (B) The area under receiver
operating characteristic curve (AUC) for held-out testing sequences. (C) The area under precision
recall curve (AUPROC) for held-out testing sequences. (D) The interpretability score (KL divergence;
Methods) calculated on all held-out test sequences plotted against the mean AUPROC across
experiments. See Supplementary Fig. 3 for results on all 100 model fits.
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CANYA: a hybrid neural-network that accurately predicts amyloid
nucleation

Given previous approaches failed to accurately predict nucleation status within our dataset,
we built our own model to capture the sequence-nucleation score landscape. Concretely, we
developed a hybrid neural network which we term CANYA, or Convolution Attention Network
for amYloid Aggregation. Though a neural network may seem inherently less interpretable
than simpler models, as we explain below, the architecture of CANYA is not only simple, but
also biologically motivated. CANYA builds off the observation that known amyloids are
composed of interacting short sequences, such as stacked beta sheets, and treats this
information as an inductive bias for the model—first the sequences are passed through a
convolutional layer which discovers ‘motifs’, then these motifs are passed through an
attention layer to learn positional effects of motifs and to encourage these motifs to interact
with each other (Fig.3 A). Moreover, we set the filter lengths of the convolutional layer based
on the distribution of secondary structure lengths in 80 known amyloid fibril structures
(WALTZ-DB?, Supplementary Fig. 4). Though—to our knowledge—this class of models is
new to proteins, convolution-attention hybrid models have been used in genomics and found
to serve as a sound inductive bias for discovering motifs and their interactions?=°.

We trained CANYA 100 times on over 100,000 synthetic sequences and their respective
nucleation status to learn the sequence-nucleation landscape. Unlike massive,
computationally intensive neural networks, CANYA comprises only three layers (spanning
65,491 parameters) and requires less than an hour to train on a basic, modern CPU. Despite
this simplicity, and having only observed a small fraction of the possible sequence space,
CANYA substantially improved the prediction of nucleation status of held-out test sequences
(average AUC=0.710, 0.650, 0.769 across NNK experiments 1-3 respectively, Fig. 3B-C)
over previous methods (max AUC CamSol, NNK1=0.617, NNK2=0.537, NNK3=0.673). We
also note that the predictive accuracy of CANYA was significantly higher than simpler linear
models trained on the same dataset with amino acid composition or counts alone
(Supplementary Fig. 5).

To understand the differences in performance across methods, we examined the sequence
scores between the next best performing method (CamSol) and CANYA. We found that the
largest discrepancies for non-nucleating sequences occurred in hydrophobic sequences with
tryptophans, and in cysteine- or asparagine-rich sequences with few aliphatic residues in the
case of nucleating sequences (Supplementary Tables 3 and 4). Our results not only highlight
the utility of exploring a vast sequence space, but also suggest that CANYA is able to
contextualize physicochemical properties within sequences (e.g., among hydrophobic
sequences, CANYA adjusts its score in the presence of bulky, or disruptive residues).

Crucially, we developed CANYA with the goal of interpreting the grammar of nucleation
rather than maximizing predictive power. We accordingly scored each trained instance of
CANYA using a recently developed interpretability metric to select a model amenable to
uncovering this learned grammar®'. Briefly, this metric examines the enrichment of motifs
utilized when training the model and compares them to the set of all equal-length (k=3)
kmers in the training sequences (Methods). Strong enrichment (i.e., divergence from the
background training sequences) indicates a model may vyield clearer resolution in
downstream interpretability analyses. Though the area under the precision-recall curve
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(AUPROC) of test sequences was more consistent than AUC across experiments (average
AUPROC NNK1=0.434, NNK2=0.452, NNK3=0.415 ; Fig. 3C), we did not find a correlation
between predictive performance and this interpretability metric (correlation of average
AUPROC and interpretability score r=-0.059, p-value=0.6847, Fig. 3D). We therefore chose
the trained model with the highest interpretability score, conditional on the fact that it scored
better than the median-performant model (of 100 training runs; Methods).
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Figure 4 An additional experiment of >7,000 random sequences. (A) The nucleation rates over
an additional validation set of 7,040 random sequences. (B) The predictive performance (AUC + 95%
CI) of CANYA and previous methods on the additional dataset.

Evaluation on >7,000 additional sequences

To further evaluate the performance of CANYA and to compare it to that of previous methods
we quantified the nucleation of an additional ~7,000 random sequences (Fig. 4A). The
sequence spaces spanned by the training and these test sequences are effectively
independent (~10° and ~10° samples from a >10% sequence landscape). CANYA remained
highly accurate on the 7,000 unseen sequences (AUC CANYA=0.809, 95% CI [0.798, 0.821;
Fig. 4B, PROC in Supplementary Fig. 6). Moreover CANYA substantially outperforms all
tested previous methods'> 5232  The next best performing method was Aggrescan
(AUC=0.707 95% CI [0.694, 0.719]), followed by TANGO (AUC=0.680 [0.667, 0.693]) and
CamSol (AUC=0.679 [0.665, 0.693]). Neither AmyPred nor PLAAC produced significantly
accurate predictors on the validation dataset, which may be indicative of over-fitting on their
respective training datasets—we used a simple hydrophobicity score as a baseline predictor,
which scored AUC=0.593 95% CI [0.579, 0.607]).

CANYA predicts known amyloids and aggregating sequences

After establishing that CANYA can accurately predict the experimental nucleation status from
primary sequence, we sought to understand whether the nucleation function learned by
CANYA is applicable to longer sequences and different contexts. We first considered 1,400
hexapeptides from WALTZ-DB, the largest previous dataset of amyloidogenic and
non-amyloidogenic sequences?. Strikingly, however, on these six-AA peptides no method
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significantly outperformed hydrophobicity for classifying aggregating from non-aggregating
sequences (AUC=0.813 05% CI [0.791, 0.836]) (Fig. 5). The hydrophobicity distributions of
amyloid and non-amyloid hexamers in WALTZ-DB are indeed very distinct (Supplementary
Table 5), suggesting biases in this dataset or that hydrophobicity dominates the aggregation
potential of such very short peptides. This cautions against the use of such short sequences
for model training and evaluation.

We next considered the Curated Protein Aggregation Database (CPAD). Though CPAD
contains over 2,000 sequences, we limited our evaluation here to the 479 sequences with
length >10 AA (median length 16 (Q1 length=10 and Q3 length=22), comprising 304
amyloid-forming sequences and 175 non-aggregating sequences (Supp Table 5). It is
important to note that several of the previous methods (including TANGO, CamSol, and
Aggrescan) were directly trained on sequences within CPAD, violating the ability to evaluate
their out-of-sample predictive performance on this dataset. Despite this, CANYA performed
similarly as well as these methods on CPAD (AUC=0.804, 95% CI [0.762, 0.845],
AUPROC=0.855, 95% CI[0.817, 0.890]) (Fig. 5).

T —
I

0.75 £ {» I ‘} %

i I

I
8 0.50 N 2t {
0.25 I
b

0.00 WALTZ-DB CPAD Amy Context-free

(n=1400) (n=479) (n=547) Amypro (n=522)

Dataset

Hydrophobicity
Method l CANYA l TANGO (Kite-Doolittle) AMYPred
Aggrescan CamSol PRDscore

Figure 5 Stable performance of CANYA across diverse prediction tasks. The AUC of CANYA and
previous methods across several external datasets. Low-opacity bars represent cases in which the
method used data from the testing dataset for training and thus are not valid out-of-sample
evaluations. See text for additional descriptions of datasets (Methods, Supplementary Table 5) as well
as performance reported as area-under precision-recall curve (AUPROC; Supplementary Fig. 6).

We also evaluated performance on the Amy dataset®® which contains a set of much longer
sequences, including 382 non-amyloid sequences (median length=708 [Q1=344.5,
Q3=1375.5]) gathered from UniProt and 165 amyloid sequences (median length=162
[Q1=77, Q3=443]) from the AmyPro database®. Strikingly, CANYA was the only predictor
with both statistically significant AUC and PROC in this task (AUC=0.681 95% CI [0.631,
0.731], Fig. 5, AUPROC 0.495, 95% CI [0.428, 0.568]). The poor performance of
hydrophobicity and previous methods suggests the importance of features beyond sequence
composition in determining amyloid propensity in longer protein sequences.
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Finally, we evaluated whether each method could identify amyloidogenic regions of each
protein in the AmyPro dataset. Specifically, we evaluated whether methods were capable of
distinguishing an amyloidogenic region from a non-amyloidogenic region in the absence of
any contextual region (Methods), for which we term the task “Context-Free AmyPro.” CANYA
significantly out-performed all previous approaches (AUC=0.796, 95% CI [0.756, 0.837], Fig.
5), and was the only method to significantly out-perform hydrophobicity on this task
(AUC=0.663, 95% CI[0.609, 0.717]).

In summary, CANYA's performance is state of the art and consistent across diverse
prediction tasks and protein sizes. Moreover, CANYA is significantly more accurate than
simpler linear models that are trained over the same NNK training set (Supplementary Fig.
5)

CANYA learns physicochemical nucleation motifs

We next performed a series of interpretability analyses to understand how CANYA assigns
its nucleation score and to elucidate difficult-to-see patterns that differentiate the nucleators
and non-nucleators in the training data.

First, to visualize physicochemical ‘motifs’ learned by the model, we constructed
position-weight-matrices (PWMs) using kmers that activated a given filter at least 75% of the
maximume-activating kmer (Methods). We selected a filter length of 3, as this is the mode
length of secondary structures in structurally resolved amyloids (Methods; Supplementary
Fig. 4). Motifs showed clear physicochemical preferences (Fig. 6). For example, many motifs
capture blocks of hydrophobicity (clusters 1 and 2) or charge (clusters 6 and 8). Some motifs
showed heterogeneity, or position-preferential effects, such as polar or charged residues
being surrounded by hydrophobic (clusters 4 and 5) or aromatic residues (clusters 7, 9 and
10; Fig. 6).

We next turned to a post-hoc interpretability method named Global Importance Analysis
(GIA) to learn the effect of each motif*®. Briefly, GIA learns effect sizes by embedding a motif
of interest in a set of background sequences, then comparing the difference in the models’
predicted nucleation propensity between these background sequences with and without the
embedded motif (Fig. 7A). The effects learned by CANYA recapitulated previously known
amyloid biology—hydrophobic motifs strongly increased a given sequence’s propensity to
nucleate, and charged, proline-containing motifs lowered sequences’ propensity to nucleate
(Fig. 6)*-%. Motifs containing residues enriched in yeast prions (Q/N) also increased amyloid
propensity (weaker motifs of clusters 1, 2, and 3, stronger motifs of cluster 4), as did motifs
enriched in cysteine (cluster 3) or aromatic residues (cluster 2; Fig. 6). Interestingly, CANYA
could also uncover motifs for which specific residues had effect sizes in both directions. For
example, tryptophan-containing motifs led to a negative effect when the tryptophan was
surrounded by charged residues (clusters 7, 9, 10; Fig. 6), or a positive effect in the context
of hydrophobic, polar, or other aromatics (clusters 1, 2, 3; Fig. 6). Notably, CANYA also
found a set of motifs enriched in hydrophobicity with a positively charged residue (cluster 5,
Fig. 6), further suggesting the model captures previously uncharted areas of the amyloid
sequence space.
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Figure 6 CANYA discovers physicochemical nucleation motifs. The motifs discovered by CANYA,
clustered by their physicochemical properties and GIA effect sizes, then sorted based on their effect
size magnitude. Translucency represents the ratio of cluster effect size compared to the strongest
cluster (Methods). The enrichment (in AUC) of motif-cluster presence in secondary structures of
resolved amyloids in Uniprot (Methods; Supplementary Fig. 7). The dashed lines represent an AUC of
0.50 and asterisks represent structures for which the enrichment was significantly higher than both
0.50 and the second most-enriched structure.
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We next clustered the motifs using their AA similarity to generate a more concise
representation of what the model has learned and to reduce the dimensionality of in silico
analyses to extract further information learned by CANYA. To do so, we first generated
BLOSUM scores (which capture a similarity of amino acids based on evolutionary
divergence) for each motif, then performed affinity clustering on the BLOSUM scores to
derive a candidate set of clusters (Methods)*. We verified that this approach results in a
sound set of clusters by re-running GIA using the clusters as the feature of interest and
confirming that the learned effect size for a cluster was consistent with the motifs of which it
is composed (Methods; Supplementary Table 6). We were left with 10 clusters on which to
perform downstream in silico experiments, effectively reducing the number of experiments
by at minimum one order of magnitude (from 100 filters).

Physicochemical motif activation in known amyloid structures

We examined whether the motif clusters discovered by CANYA showed propensity for
secondary structures in known amyloid fibril structures (from the Structural analysis of
Amyloid Polymorphs (StAmP) database*). We included in our comparison full-length
resolved structures of amyloid fibrils for 114 PDB entries comprising amyloid structures of 23
proteins (Supplementary Table 7). Here, we used the activation energy of a cluster across
positions to predict whether or not the corresponding position was in a beta-strand, other
structured region (coil), or unresolved (disordered, see Methods). The AUC from this task
serves as a metric of whether high activation (high matching score) of a motif is associated
with a specific structural element. Clusters with high hydrophobicity and positive effect size
were most strongly associated with activating in beta strands (Fig. 6; Supplementary Fig. 8,
max AUC=0.683, 95% CIl [0.672, 0.693], cluster 1), whereas the strongest enrichment
amongst negative-importance clusters was observed in disordered regions (max
AUC=0.617, 95% CI [0.605, 0.628], cluster 6). Interestingly, negative-importance clusters
containing tryptophan showed varying enrichments in secondary structures (Fig. 6;
Supplementary Fig 8). Clusters with tryptophans near histidines were moderately enriched in
coils (cluster 7; AUC=0.553, 95% CI [0.541, 0.565]), tryptophans adjacent to positive
charges showed moderate enrichment for strands (cluster 10; AUC=0.566, 95% CI [0.554,
0.577]), and tryptophans near other aromatics (cluster 9) showed no significant enrichment
for any structure.

Motif position-dependence and interactions

Treating the motif clusters as input for GIA, we performed an additional set of experiments to
evaluate whether CANYA has learned positional information of motif effects and whether
motif effects are additive (Fig. 7A).

To learn positional information for each cluster of motifs, we ran an experiment in which we
calculated the GIA effect of the cluster at every position of the construct, and compared it to
the global, position-averaged effect of the cluster. These comparisons revealed that CANYA
was also able to learn position-relevant information across each cluster of motifs (Fig. 7D).
Generally, the positive-effect clusters showed diminished effects at the ends of the construct
and stronger effects at the center (Fig. 7D). The range of percent change was most drastic
for cluster 5, potentially due to the presence of a charged residue (%-change in effect from
14.81% 95% CI [9.59, 19.59] to -39.81 %, 95% CI [-43.76, -36.02]; Fig. 7D). Clusters 1, 2,
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and 4 followed similar trends, however the changes were much more modest (highest
percent change position 12, cluster 4=4.42%, 95% CI [2.05, 6.73], lowest percent change
position 18, cluster 1=-8.58%, 95% CI [-9.53, -7.63]). Cluster 3, which is marked by high
presence of cysteines, followed a similar trend except that its effect significantly increased in
the last position (% change=10.76, 95% CI [9.11, 12.37]).
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Figure 7. in-silico experiments reveal CANYA’s learned nucleation grammar. (A) An example of
an experiment using GIA, an explainability tool to extract importance (effect sizes) of features in a
model. Briefly, model predictions for a background set of sequences are compared to predictions on
the same set of sequences with a feature (motif) embedded in them. (B) The distribution of effects
from adding 1-4 copies of a cluster-motif to sequences. Points represent importance. (C) Interaction
importance from adding motifs from two clusters to sequences. Warmer colors indicate higher CANYA
score than from marginally adding the motifs (and their effects) separately to sequences, whereas
cooler colors represent a CANYA score lower than expected from adding marginal motif effects. “X”
indicates effects that were not significantly different from 0. (D) The position-dependence of motif
effects. Plotted is the percent change of a position-specific effect relative to the motif’'s global,
position-averaged effect. Stars represent a significantly non-zero percent change in effect.

Conversely, the negative-importance clusters all had strengthened effects toward the
N-terminus, where the peptides are fused to Sup35N,, and all but the proline-rich cluster
(cluster 6) had diminished effects toward the C terminus (Fig. 7D). This may be due to the
fact that cluster 6 was the most negatively charged cluster, consistent with negative charges
in the C-terminus of some amyloid-forming peptides reducing fibril formation®.
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Tryptophan-containing motifs (clusters 7, 9, and 10) typically had increased effects closer to
the N-terminus (greatest % change cluster 9, position 1=11.14% 95% CI [8.96, 13.28]) and
dampened effects at the C-terminus (greatest % change cluster 10, position 18=-19.67
[-21.74, -17.80]). Like cluster 5, cluster 10 contains positively-charged and hydrophobic
residues and had its most dampened effect at position 18. However, cluster 10’s effect size
is in the opposite direction, likely due to the presence of tryptophan.

To learn whether the effects of motifs were additive, we ran an experiment where we
embedded motifs in a cluster in non-overlapping positions between 1 and 4 times. Simple
additive effects explained nearly all of the variance observed in model predictions (range of
R? between multiplicity and importance = [0.971, 0.999]; Fig. 7B). However, some clusters
showed evidence of heteroskedasticity in their importance values, which may indicate minor
epistatic or background-specific grammars. Accordingly, we used GIA to perform an
experiment similar to the one determining additivity of motifs, however we focused on the
case in which there are only two motifs, and the embedded motifs are selected from different
clusters (Methods). This enables us to learn how interactions between clusters affect
nucleation scores. Every cluster showed at least 8 statistically significant interactions
(p-value of paired, two-way t-test <0.05 /(10*10 tests); Fig. 7C; Methods), suggesting the
importance of modeling sequence context in the prediction of nucleation status.
Nonetheless, cluster interaction effects were modest (ranging from -0.058 to 0.085)
compared to cluster main effects (-0.608 to 0.448). Almost all clusters exhibited a
self-enhancing effect in which their interaction importance was significantly higher than the
importance from additively combining each marginal effect (maximum importance cluster 6,
0.063). This was not the case for the mixed-charge disorder cluster (cluster 8; importance
-0.012 p-value<2e-16) interacting with itself, nor the negative-importance charged,
hydrophobic cluster (cluster 10; importance -0.011 p-value<2e-16). Interestingly, the
hydrophobic and aromatic positive-importance clusters (clusters 1 and 2, respectively),
showed positive interaction effects with the mixed-charge disorder cluster (cluster 8),
suggesting that the interaction with disordered regions (like cluster 8) could facilitate amyloid
nucleation by hydrophobic regions (like clusters 1 and 2)*2. On the contrary, disorder clusters
(clusters 6 and 8) showed negative interactions with the cysteine and asparagine positive
clusters (clusters 3 and 4; Flg 7C).
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Discussion

Amyloid protein aggregation is a hallmark of many human diseases and a major problem in
biotechnology. However, relatively few protein sequences are known to nucleate amyloids
under physiological conditions, and this shortage of data likely limits our ability to
understand, predict, engineer, and prevent the formation of amyloid fibrils.

Here we have directly addressed this data shortage by quantifying the nucleation of
amyloids at an unprecedented scale (100,000 random sequences) and used the data to
evaluate the performance of existing computational models. Finding the performance of
these methods to be limited, we then used the data to train CANYA, a fast and interpretable
deep learning model of amyloid nucleation. Evaluation on an additional independent 7,000
sequences confirmed the performance of CANYA but not other methods on predicting
nucleation from sequence.

Using random sequences allowed us to test the nucleation of sequences very different to the
small number of known amyloids and to provide a principled evaluation of existing amyloid
predictors''°23 ysing both our own and existing datasets?>23443 serving as a guideline for
the community. The excellent performance of CANYA and its consistency across evaluation
tasks suggests CANYA does in fact learn an accurate approximation of the
sequence-nucleation landscape, despite only training on random, synthetic peptides. The
performance of previous methods compared to that of hydrophobicity scales suggests that
the use of limited dataset sizes and short peptides has limited the amount of additional
nucleation-relevant information these approaches could learn. This underscores the
importance of using longer sequences and high-throughput assays to profile previously
unexplored regions of the sequence-nucleation landscape.

CANYA has an inherently interpretable model whose architecture is inspired by biology. We
also adapted state-of-the-art explainable Al (xAl) techniques from genomic neural networks
to the protein space®-3'3%4 This not only reveals insight into the decision-making process of
our model, but also illustrates how xAl techniques developed for genomic neural networks
can provide intelligible information from neural networks that model protein function.

Interpretability analyses identified ‘physicochemical motifs’ that underlie CANYA's decision
making process, including nucleation promoting motifs enriched in beta strands of known
amyloid structures and nucleation preventing motifs enriched in disordered regions of
known amyloids. The effects of these physicochemical motifs combined mostly additively,
with only subtle motif-motif interactions, suggesting a modest role for long-range epistasis or
context-specificity in the process of amyloid nucleation. However, the physicochemical
motifs did have position-specific effects, and these warrant additional investigation in future
experimental work.

A potential limitation of our strategy is that we only tested the nucleation of sequences of 20
amino acids and in one particular experimental context. There likely remains additional
predictive power to be harvested by experimentally testing at scale and modeling longer
sequences and consequently longer-range interactions. Nonetheless, we found through
several evaluations that the information learned by modeling the length-20 constructs from
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our experimental assay can offer accurate predictions of nucleation status across a wide
range of protein lengths and contexts.

An additional consideration is CANYA's architecture. We limited our neural network
architecture to a relatively simple class of models as our focus was on interpretability.
Recent literature suggests that leveraging protein embeddings—in lieu of one-hot encoding
sequences—may boost our predictive power**2, though such an approach will likely pose
difficulties when performing post-hoc xAl experiments as done here®®. Further, our model
comprises a modest 65,000 parameters and leverages sparsity despite having over 100,000
sequences on which to learn. Many models of protein structure employ much more complex
architectures, with both substantially larger numbers of layers and parameters*®-0:5254-56,
Future investigations may build off of the work presented here by generating longer
sequences, or exploring more complex architectures.

The pairing of massive scale experimental data generation using random sequences with
interpretable models has led to insights into genomic regulatory functions®’. However, to the
best of our knowledge, it has been little utilized in the space of proteins to probe
mechanisms beyond short motifs. We believe the approach deserves wider adoption,
whenever sequences are functional at sufficient frequencies to allow their identification in
practical library sizes. Systematic large datasets such as the one presented here can be
re-used to train and evaluate additional models, and the predictions and outputs of these
models can loop back into additional large-scale experimental explorations of sequence
space.
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Data Availability

All datasets generated from this study are provided under Gene Expression Omnibus (GEO)
accession number GSE268261.

External datasets can be found under their respective repositories, which we list here:
AmyPred https://pmlabstack.pythonanywhere.com/dataset AMYPredFRL
AmyPro http://www.amypro.net/

CPAD https://web.iitm.ac.in/bioinfo2/cpad2/index.html

WALTZ-DB http://waltzdb.switchlab.org/sequences
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Methods

Plasmid library construction

Libraries of random sequences (NNK1-4) were synthesized by Integrated DNA Technologies
(IDT) as ultramers of 20 NNK codons (60 nucleotides). A library containing 400 sequences
selected from the previous four random libraries was synthesized as an oligopool by IDT for
validation and replication (Supplementary Data Files 3 and 4). In both cases, sequences
were flanked by constant regions of 25 nt upstream and 21 nt downstream for cloning. The
NNK ultramers and the replication oligo pool were extended in a 1-cycle PCR (Q5
high-fidelity DNA polymerase, NEB) with primers TSO_2 and TSO_65 (Supplementary Data
File 5). The resulting products were treated with 2ul/tube of ExoSAP (ExoSAP-IT, Applied
Biosystems) for 30 minutes at 37 °C and 20 minutes at 80 °C and purified through a
MinElute column (Qiagen). In parallel, the PCUP1-Sup35N plasmid was linearized by PCR
(Q5 high-fidelity DNA polymerase, NEB; primers TSO_3 and TSO_4, Supplementary Data
File 5). The products were purified from a 1% agarose gel (QlAquick Gel Extraction Kit,
Qiagen) and ligated by Gibson with 3 h of incubation at 50°C followed by dialysis for 3 h on a
membrane filter (MF-Millipore 0.025 um membrane, Merck) and vacuum concentration. The
resulting (NNK1-4) libraries were transformed into 10-beta Electrocompetent E. coli (NEB),
by electroporation with 2.0 kV, 200 Q, 25 uF (BioRad GenePulser machine). Cells were
recovered in SOC medium for 30 min and grown overnight in 50 ml of LB ampicillin medium.
A small amount of cells was also plated on LB ampicillin plates to assess transformation
efficiency. Total transformants were estimated (Supplementary Data File 6), 50 ml of
overnight culture were harvested to purify each library with a midi prep (Plasmid MIDI Kit,
Qiagen). Libraries NNK1-4 were bottlenecked to ~1 million transformants, while for the
replication library we estimated 625,000 transformants.

Large-scale yeast transformation of random libraries

Saccharomyces cerevisiae GT409 [psi-pin-] (MATa ade1-14 his3 leu2-3,112 lys2 trp1
ura3-52) provided by the Chernoff lab was used in all experiments in this study?. Yeast cells
were transformed with the above plasmid library midipreps. After an overnight pre-growth
culture in 25 ml of YPDA medium at 30°C, cells were diluted to OD600 = 0.3 in 175 ml YPDA
and incubated at 30°C 200 rpm for ~4 hr. When cells reached the exponential phase, they
were harvested, washed with milliQ, and resuspended in sorbitol mixture (100 mM LiOAc, 10
mM Tris pH 8, 1 mM EDTA, 1M sorbitol). After a 30 min incubation at room temperature
(RT), 4 pg of plasmid library and 175 pl of ssDNA (UltraPure, Thermo Scientific) were added
to the cells. PEG mixture (100 mM LiOAc, 10 mM Tris pH 8, 1 mM EDTA pH 8, 40%
PEG3350) was also added and cells were incubated for 30 min at RT and heat-shocked for
15 min at 42°C in a water bath. Cells were harvested, washed, resuspended in 250 ml
recovery medium (YPD, sorbitol 0.5M, 70 mg/L adenine) and incubated for 1.5 hr at 30°C
200 rpm. After recovery, cells were resuspended in 350 ml -URA plasmid selection medium
and allowed to grow for 50 hr. Transformation efficiency was calculated for each of the four
transformations by plating an aliquot of cells in -URA plates (Supplementary Data File 6).
Two days after transformation, the culture was diluted to OD600 = 0.08 in 500 ml -URA
medium and grown until exponential phase. At this stage, cells were harvested and stored at
-80°C in 25% glycerol. In yeast, libraries NNK1-4 were bottlenecked to 0.5-1 million
transformants (Supplementary Data File 6).

19


https://paperpile.com/c/v8Y3GH/z67YR
https://doi.org/10.1101/2024.07.13.603366
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.13.603366; this version posted October 1, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Small-scale yeast transformation of replication library

Yeast cells were transformed with the library containing 400 sequences in three biological
replicates. An individual colony was grown overnight in 3 ml YPDA medium at 30 °C and 4 g.
Cells were diluted in 60 ml to OD600 = 0.25 and grown for 4-5 h. When cells reached the
exponential phase (OD~0.7-0.8), cells were harvested at 400 x g for 5 min, washed with
milliQ, and resuspended in 1 ml YTB (100 mM LiOAc, 10 mM Tris pH 8.0, 1 mM EDTA).
They were harvested again and resuspended in 72 pl YTB. 100 ng of plasmid library were
added to the cells, together with 8 pl of salmon sperm DNA (UltraPure, Thermo Scientific)
previously boiled, 60 pl of dimethyl sulfoxide (Merck) and 500 pl of YTB-PEG (100 mM
LiOAc, 10 mM Tris pH 8.0, 1 mM EDTA, 40% PEG 3350). The cells incubated at room
temperature for 30 minutes at 4g. Heat-shock was performed at 42 °C for 14 min in a thermo
block. Finally, cells were harvested and resuspended in 50 ml plasmid selection medium
(-URA, 20% glucose), allowing them to grow for 50 h at 30 °C and 4 g. A small amount of
cells was also plated in plasmid selection medium to assess transformation efficiency. We
estimated 70,000 transformants per replicate (Supplementary Data File 6). Two days after
transformation, the culture was diluted to OD600 = 0.08 in 500 ml -URA medium and grown
until exponential phase. At this stage, cells were harvested and stored at -80°C in 25%
glycerol.

Selection experiments

Cells were thawed from —-80 °C in 50 ml plasmid selection medium at OD = 0.05 and grown
until exponential for 15 h. At this stage, cells were harvested and resuspended in 300 ml
protein induction medium (-URA, 2% glucose, 100 uM Cu2S04) at OD = 0.1. After 24 h the
250 ml input pellets were collected, and cells were plated on -ADE-URA selection medium in
145-cm2 plates (Nunc, Thermo Scientific). Plates were incubated at 30 °C for 7 days. Finally,
colonies were scraped off the plates with PBS 1x and harvested by centrifugation to collect
the output pellets. Both input and output pellets were stored at -20 °C before DNA
extraction. For each random library experiment, one input sample and three technical
replicates of the output pellet were processed for sequencing. Selection experiments for the
replication library were instead performed in three biological replicates, following the same
steps as above. Three input and three output samples were processed for sequencing.

DNA extraction and sequencing library preparation

Input and output pellets were thawed and resuspended in 1.5 ml extraction buffer (2%
Triton-X, 1% SDS, 100 mM NaCl, 10 mM Tris pH 8, 1 mM EDTA pH 8), and underwent two
cycles of freezing and thawing in an ethanol-dry ice bath (10 min) and at 62°C (10 min).
Samples were then vortexed together with 1.5 ml of phenol:chloroform:isoamyl 25:24:1 and
1.5 g of glass beads (Sigma). The aqueous phase was recovered by centrifugation and
mixed again with 1.5 ml phenol:chloroform:isoamyl 25:24:1. DNA precipitation was
performed by adding 1:10 V of 3M NaOAc and 2.2 V of 100% cold ethanol to the aqueous
phase and incubating the samples at -20°C for 1 hr. After a centrifugation step, pellets were
dried overnight at RT. Pellets were resuspended in 900 ul resuspension buffer (10 mM Tris
pH 8, 1 mM EDTA pH 8) and treated with 7.5 ml RNase A (Thermo Scientific) for 30 min at
37°C. The DNA was finally purified using 30 pl of silica beads (QIAEX Il Gel Extraction Kit,
Qiagen), washed and eluted in 22 pl of elution buffer. Plasmid concentrations were
measured by quantitative PCR with SYBR green (Merck) and primers annealing to the origin
of replication site of the PCUP1-Sup35N plasmid at 58 °C for 40 cycles (TSO_05 and
TSO_06, Supplementary Data File 5). The library for high-throughput sequencing was
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prepared in a two-step PCR (Q5 high-fidelity DNA polymerase, NEB). In PCR1, 160 million
of molecules were amplified for 15 cycles at 68°C with frame-shifted primers with homology
to lllumina sequencing primers (primers TSO_7 to TSO_20, Supplementary Data File 5).
The products were purified with ExoSAP treatment (Affymetrix) and by column purification
(MinElute PCR Purification Kit, Qiagen). They were then amplified for 10 cycles in PCR2
with lllumina-indexed primers (primers TSO_21 to TSO_54, Supplementary Data File 5). The
library was sequenced by 150 bp paired-end sequencing in an lllumina NextSeq500
sequencer at the CRG Genomics core facility.

Sequence data preprocessing

We processed each of the 4 NNK experiments separately using DiMSum?®. Briefly, DiMSum
comprises an end-to-end pipeline for processing deep mutational scanning datasets from
raw reads to measured sequences and their associated assay scores (plus errors). DiMSum
was run with the following parameters: cutadaptMinLength="60"; cutadaptErrorRate="0.2";
vsearchMinQual="30"; vsearchMaxee="0.5"; startStage="0"; fitnessMinInputCountAny="0";
maxSubstitutions="20"; mixedSubstitutions="TRUE";
experimentDesignPairDuplicates="TRUE". We then removed sequences with fewer than 100
reads in the input sequencing experiment. Next, we centered the fitness estimates
(nucleation scores) of each dataset individually by adding or subtracting the corresponding
mode fitness of the non-nucleating sequences. After centering each sequence, we next
labeled sequences as “nucleators” (or “non-nucleators”) by transforming their fitness
estimate to a Z-score composed of the fithess estimate scaled by the DiMSum error, and
performing a one-sided hypothesis test to check whether standardized score was
significantly larger than 0. We treated sequences whose p-values after FDR adjustment
were <= 0.05 as “nucleators”, and remaining sequences as “non-nucleators.” A proportion of
sequences produced no reads after the selection experiments, thus leading to NA scores
from DiMSum. We labeled these sequences as “non-nucleators.” If a sequence contained a
stop codon, we used only the component of the sequence preceding the stop for model
training. For cases in which this resulted in duplicate sequences (e.g.
FN*VILRDEGHGSYGFDNNN and FN*FVVMHTCIMVVFCLGDI are both mapped to “FN”),
we summarized the truncated sequence by taking its mean nucleation score or mode
nucleation status across observations. If a given truncated sequence had an equal number
of nucleator and non-nucleator status observations, we discarded this truncated sequence.
As a result we classified > 35,000 sequences for libraries NNK1-3 (35,456; 37,578; 38,893
respectively) and 7,040 for NNK4.

The architecture of CANYA

CANYA is a biologically motivated hybrid-neural network designed to discover motifs and
their interactions. More concretely, the architecture of CANYA is inspired by recent work that
suggests stacked convolution and attention layers serve as a reasonable inductive bias for
motif and motif-interaction discovery. The hyperparameters of CANYA were influenced by
summary statistics of interacting secondary structure elements in amyloids within the PDB
(Supplementary Fig. 4). Summarily, we chose the simplest architecture of our model such
that it is expressive, interpretable, and importantly, principled in biological knowledge.

CANYA takes as input an amino acid sequence of length limit up to 145 residues, and

outputs a score related to the sequence’s propensity to form amyloids. Prior to passing the
sequence to the input layer, we first one-hot encode it, allowing only the 20 canonical amino
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acids. As we use filters of length 3 (See below for justification; Supplementary Fig. 4), we
pad the sequence with two Os both up- and downstream the sequence. Finally, if this padded
sequence is not of length 149, we add a mask with values of -1 downstream the sequence
until it reaches length 149. The input length restrictions of CANYA arise from the fact that a
given sequence in the assay is fused to a Sup35N construct of length 125, is (up to) length
20, and is padded with two Os on each side. Explicitly, the training data of CANYA looks as
follows:

00[one-hot encoded Sup35N][one-hot encoded random sequence]00
when there is no masking or stop codons, and as follows if so:
00[one-hot encoded Sup35N][one-hot encoded random sequence]@0[-1]

where the number of -1 values is the required quantity such that the sequence is length 149.
The input layer of CANYA correspondingly accepts a matrix of size 149x20
representing a one-hot encoded, padded, and potentially masked peptide sequence. The
output layer is a single unit with sigmoid activation. The hidden layers of CANYA are:
1. Convolution (100 filters, size 3, stride 1, exponential activation)

2. Self-attention (1 attention head, key-length 6)
3. Fully-connected layer (64 units, ReLU activation)

We selected an exponential activation function for the convolutional layer as this type of
activation is generally more robust for motif discovery®®. We chose filters of length 3 as this
was the mode length of beta-sheets in amyloid sequences with resolved structures in
Uniprot (Supplementary Fig. 4). We utilize dropout with probability 0.1 after the convolution
and attention layers, and 0.4 after the fully-connected layer. We use an elastic net
regularization (with value 0.01) when learning the weights between the attention and
fully-connected layers. Finally, to encourage the model to learn positional information, we do
not perform pooling after the convolution layer, and we include positional encodings prior to
taking the softmax in the attention layer. We trained CANYA for 100 epochs using the adam
optimizer with default values and the binary Kullbeck-Leibler divergence as a loss function.
We limited the learning rate of the model during training by monitoring the validation area
under precision-recall curve, decaying at a factor of 0.2 with patience 4, and performed early
stopping by monitoring the validation area under precision-recall curve with patience 10. For
sequences with length greater than 145, we collect the CANYA score at every overlapping
length-145 window of the sequence, then use its minimum CANYA score as its final score
(under the logic that nucleation-forming propensity is limited by a sequence’s most
nucleation-disrupting region).

Compilation of external datasets

We first collected 6-mers from the WALTZ-DB dataset®. Here, we assigned all sequences
whose “Classification” field was “amyloid” as a 1, and all other sequences as 0. We next
collected the collection of aggregating peptides from the CPAD repository*®. We used
sequences from the “Peptide” field, filtering for sequences of at least length 10 and for
sequences that did not contain a space in their sequences. We assigned sequences with
“Classification” field “Amyloid” a 1, and all other sequences 0. We then collected the Amy
dataset from the AMYPred-FRL server®. The Amy database contains literature-mined
amyloid precursor proteins with validated amyloidogenic sequence regions—portions of an
amyloid-forming protein that when isolated from the remaining sequence have been
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confirmed to form amyloids in external experiments. The median length of sequences in Amy
(539) is substantially longer than those of the previous datasets (next longest median
length=19 in NNK4, or 16 in CPAD), so this prediction task evaluates whether methods can
account for context-specific and distal effects when generating their propensity scores. Here,
we assigned all sequences in the negative sets a label of 0, and all sequences in the positive
sets a label of 1. Many of the sequences had lengths greater than 145, we therefore applied
a sliding window approach to these sequences in which we score every overlapping
length-145 region of a sequence, and assigned a final score to the entire sequence as the
minimum of the length-145 regional scores. The final external dataset we used was from the
AmyPro database®*. Though AmyPro contains overlapping sequences with the Amy dataset,
we treated this task differently than the previous tasks. Namely, all sequences in the AmyPro
dataset were amyloids, and so we sought to evaluate methods’ abilities to distinguish the
amyloidogenic region from the non-amyloidogenic regions of the sequences. First, we
collected all sequences from the “regions” field in the dataset. Next we removed each of
these “region” sequences from the main peptide sequence and concatenated the remaining
two portions of the main sequence together, comprising a set of positive sequences (labeled
1) from the “region” field and negative sequences (labeled 0) from the remaining peptide
sequences. Finally, we limited the length of all sequences to 100 by breaking sequences
longer than length 100 into non-overlapping subsequences of at most length 100. While this
task evaluates un-natural sequences, it evaluates the ability of each method to distinguish
amyloid cores from non-amyloid cores while also making the problem more amenable to
previous approaches, which generally underperformed on long sequences. We list
descriptive summary statistics (e.g. length, sample sizes, hydrophobicity) in Supplementary
Table 5.

Aggregation predictors

Aggregation predictors or physicochemical scales (Tango'?, Amypred®, Camsol', PLAAC™,
Aggrescan'®) were used to calculate a score for each sequence. When appropriate,
individual residue-level scores were summed to obtain a single score per sequence.
CamSol, Amypred and Aggrescan were run with the default parameters. PLAAC was run
using a core of length 6 and weightings from input sequences. Tango was run with pH 7.2,
no protection of termini, ionic strength = 0.1 and T = 298K (25°C). Some of the predictors
present sequence length limitations: Amypred runs only for sequences longer than 10 amino
acids, CamSol for sequences longer than 6 amino acids, and Aggrescan cannot be run for
sequences longer than 2004 amino acids. We note that several of these methods (including
TANGO, CamSol, and Aggrescan) were directly trained on sequences within CPAD, and
other datasets presented in the manuscript, violating the ability to evaluate their
out-of-sample predictive performance on these datasets. This complication is exacerbated
by several methods (e.g., TANGO, CamSol) also being ensemble methods (or extensions)
that leverage several algorithms for prediction—it is not trivial to account for, or remove,
these previously seen sequences, as any sequence that was used for training the main
algorithm or their antecedent ensemble methods is not out-of-sample.

Selecting a model for interpretability analyses

We trained CANYA with random weight initialization 100 times and recorded for each fitted
model the area under the curve (AUC) of the test data, area under the precision-recall curve
(AUPROC) of the test data, and interpretability score adapted from a recently developed
approach for interpretability analyses of genomic neural networks®'. Briefly, Majdandzic et al.
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propose an approach to quantify the consistency of the attribution maps of a trained model
by comparing the entire set of kmers in the training sequences to the set of kmers in
(adjusted**) attributed positions in the training sequences. These two distributions of
kmers—in the case of CANYA, 3-mers—are compared using the Kullbeck-Leibler (KL)
divergence, where a higher KL divergence suggests greater amenability to downstream
interpretability analyses. To calculate an interpretability score for each trained instance of
CANYA, we used this same approach, but rather than using kmers of nucleotides, we used
kmers from the input amino acids. As we saw that the test AUPROC was more consistent
across experiments, we used a models’ mean AUPROC across experiments and
interpretability score as model selection criteria. More rigorously, we selected the model with
the highest interpretability score, conditional on the fact that its mean AUPROC across
datasets was greater than the median of these mean scores across model training
instances.

Visualization of filters (motifs)

Notably, the use of random sequences in amino acid space poses difficulties for observing a
typical, lexicographic motif, and consequently, observing convergence toward a
lexicographic motif in first-layer convolutional filters. We elaborate as follows: using a filter
length of 3, there is a 1 in 8,000 (20%) chance of observing a given kmer. Ideally, for the
model to learn a stable feature, this kmer must not only exist in a sizable proportion of
sequences, but its effect must also not be masked out by surrounding contextual
information. Even if we were to ignore contextual information, this motif would need to occur
independently multiple times, an event whose probability quickly converges to O.
Consequently, we are much stricter than previous approaches when generating a position
weight matrix (PWM) for a given filter. For interpretability’s sake, we limit the kmers
comprising a PWM for a filter to the minimum of either the 10 most-activating kmers of a
filter, or the collection of kmers whose activation is at least 75% of the maximum-activating
kmer. Summarily, a filter is both visualized and represented numerically by its PWM
composed of at most the top 10 strongest activating kmers.

Motif clustering

Following the above logic, CANYA must learn physicochemical properties of amino acids
and understand how these properties interact amongst each other when constructing its
features at the convolution layer. Moreover, these physicochemical 3-mers, or motifs, may
often capture redundant physicochemical information, but independent sequences—for
example, two different motifs capturing hydrophobicity may separately comprise sequences
of “IVF” or “ALM.” To further improve interpretability and reduce the dimensionality of
downstream experiments leveraging the learned motifs of CANYA, we performed clustering
on the PWM matrices. More concretely, we calculated BLOSUM scores for each filter by
taking the dot product between its PWM and BLOSUM score matrix**. We next performed
affinity propagation on these calculated motif BLOSUM scores to cluster the motifs. Affinity
propagation discovered 10 clusters of motifs. However, after performing Global Importance
Analysis (GIA) experiments®, we found 7 discrepancies when evaluating whether a given
motif had the same effect size (importance score) direction compared to the effect size of the
motif with the greatest absolute effect within the cluster. As our goal was to interpret model
decisions and physicochemical clusters, we removed these 7 filters from their corresponding
clusters so that each cluster contained only filters with the same effect size direction. We
show the original and changed cluster assignments in Supplementary Figure 6.

24


https://paperpile.com/c/v8Y3GH/uZm1P
https://paperpile.com/c/v8Y3GH/QFkPy
https://paperpile.com/c/v8Y3GH/3IsJm
https://doi.org/10.1101/2024.07.13.603366
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.13.603366; this version posted October 1, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Global Importance Analysis (GIA) Experiments

To learn the effect of motif presence on CANYA's decision-making, we turned to Global
Importance Analysis (GIA) in-silico experiments®. Briefly, GIA is a post-hoc interpretability
method applied to genomic neural networks that enables users to learn importance scores
(i.e. effect sizes) of a given sequence feature on a model’s output score. The importance
score is derived from taking the average difference in model score between a set of
background sequences, and this same set of background sequences but with a functional
element, such as a motif, placed in the background sequence (sequence length is
maintained, i.e. a window of the sequence is replaced by the functional element). For all
experiments, we limited our analyses to 25,000 randomly selected, full-length (length-20 and
and absent of stop codons) training sequences that were confidently predicted by CANYA.
We defined “confidently predicted” as nucleators with CANYA score above 0.3 and
non-nucleators with CANYA score below 0.2 (see Supplementary Fig. 9 for prediction score
distributions). Finally, we emphasize that owing to the random nature of our experiment, the
training sequences serve as a valid set of background sequences for GIA as they span an
extremely wide range of contexts.

In the first set of GIA experiments, we sought to characterize the importance score of each
filter individually. To do so, we first randomly selected 25,000 sequences from the training
set, comprising sequences from across all three experiments. Next, for a given filter, we
collected the activation energy of each kmer used to represent the PWM, and used the ratio
of the activation energy of each kmer to the activation energy of the kmer with the maximum
activation energy in this PWM to generate kmer sampling probabilities. For each sequence,
we randomly sampled one kmer using this normalized ratio as the kmer’'s sampling
probability, and embedded this kmer into the sequence. Afterward, we calculated for all
25,000 background sequences and all 25,000 modified sequences the CANYA nucleation
score prior to applying the softmax function. We calculated each filter’'s importance score as
the mean paired difference in scores between the 25,000 background and modified
sequences.

After clustering the learned motifs, we next wished to validate whether the clusters could be
utilized to simplify further interpretability analyses by reducing the scale of in-silico
experiments performed. To do so, we conducted a GIA experiment within each cluster to
determine a cluster-level importance score. The experiment follows the same logic as the
original, filter-level GIA experiment, only that we first randomly selected a filter within a
cluster prior to sampling a kmer from its PWM. The filters were randomly selected according
to the ratio of their absolute GIA importance score to the maximum absolute GIA importance
score across filters of the corresponding cluster. Indeed, cluster-level scores recapitulated
the scores of the motifs from which they were composed (Supplementary Table 5). We
therefore performed all following GIA analysis at the cluster level, using this filter-first,
kmer-second sampling scheme.

We next performed an experiment to evaluate the additivity of motif-clusters on nucleation
propensity. Here, we collected 25,000 background sequences from the training dataset, then
embedded into these background sequences 1 to 4 kmers in non-overlapping positions
where each of the 4 kmers was sampled using the filter-first, kmer-second sampling scheme.
Each sequential kmer addition (from kmers 2-4) was embedded in the sequence such that
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the sequence with antecedent kmer multiplicity maintained the kmer(s) at its (their) original
embedded position(s). We calculated the cluster importance score for a given multiplicity by
taking the mean difference in prediction score between the sequences with the injected
kmer(s) and their corresponding background sequences—in other words, each importance
score is generated by taking the mean difference between 25,000 background sequences
and 25,000 modified background sequences with either 1, 2, 3, or 4 embedded kmers.

To evaluate whether CANYA learned position-specific importance of motifs, we performed an
additional GIA experiment in which we systematically embedded a motif-cluster at each
position of a random sequence. In these experiments, we performed a single GIA
experiment with 25,000 background sequences and 25,000 modified sequences for each
position from positions 1-18, so that the entire 3-mer could be contained within the
sequence.

In a final GIA experiment, we characterized interaction effects between motif-clusters. For a
given motif-cluster pair, we sampled a kmer (as mentioned above) from each cluster as well
as a corresponding position randomly from positions 1-18 in which to embed each kmer. We
evaluated the CANYA score for the background sequence, the background sequence with
the kmer from the first cluster at the first sampled position, the background sequence with
the kmer from the second cluster at the second sampled position, and the background
sequence with both kmers at both positions. We called the interaction importance as the
result of subtracting the sum of CANYA predictions of the sequences with each marginal
kmer embedding from the sum of the CANYA predictions of the background sequence and
sequence with both motifs. The final importance was calculated as the mean interaction
importance across 25,000 sequences.

Secondary structure enrichment scoring of motifs

To examine whether certain motifs were characteristically similar to sequences found in
specific secondary elements of amyloids, we examined activation energies of filters across
secondary structure elements in a set of amyloids with resolved structures in the PDB.
Concretely, we collected 114 entries from the STAMP dataset®’, then downloaded their
structural information from the PDB (see Supplementary Table 7 for entries and
corresponding proteins). Next, we passed all sequences through CANYA, and extracted their
filter activation energies (i.e., output from the convolution layer). At each position, we
summarized a cluster’s activation energies as the maximum activation energy across filters
within a cluster, generating a vector of maximum activation energies for each cluster. Next,
we encoded each secondary structure (coil, beta strand, or disorder) as a binary vector
where 1 indicated positions in the corresponding secondary structure, and 0 indicated
otherwise. We collected this set of secondary structure vectors and activation energy vectors
for all sequences, then concatenated them across sequences. Finally, we generated
secondary structure enrichment scores by calculating the AUC between a given secondary
structure element and cluster activation energy across all sequences.
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Supplementary Data

Supplementary Data File 1 All sequences recorded spanning each experiment with
reported fitnesses, error, and nucleation status

Supplementary Data File 2 Sequences used to train and test CANYA

Supplementary Data File 3 Sequences used in replication experiments with their original
measured fitness and fitness from the replication experiment

Supplementary Data File 4 Validation sequences and their corresponding nucleotide
sequences

Supplementary Data File 5 Oligo pool and primer sequences for the NNK experiments
Supplementary Data File 6 Transformants measured across each experiment
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Supplementary Figure 1 Nucleation scores are replicable across experiments. Nucleation
scores from the corresponding original experiment are plotted on the x-axis, and the replication
nucleation score is plotted on the y-axis. Sizes are proportional to the inverse error
measurement from the original experiment as reported by DiMSum. The x-axis scores were all
calculated independently within their respective experiment—(A) NNK1, (B) NNK2, (C) NNK3,
(D) NNK4, the validation set—and altogether in the replication set (n=100), as 100 sequences
were taken from each experiment.
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Supplementary Figure 2 Dimensionality techniques fail to distinguish nucleation status. (A-C)
Contour plots of Principal Component Analysis (PCA) scores on PCs 1 and 2 when sequences are
represented by (A) overall amino acid composition, (B) 533 amino acid indices calculated from python
package protlearn (C) one-hot (position-maintained) amino acid composition. (D) UMAP projection when
using amino acid composition as input.
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Supplementary Figure 3 CANYA performance on the held-out test portion of the training datasets.
Evaluation metrics across the all 100 model fits of CANYA. (B) The area under receiver operating
characteristic curve (AUC) for held-out testing sequences. (C) The area under precision recall curve
(AUPROC) for held-out testing sequences. (D) The interpretability score (KL divergence; Methods)
calculated on all held-out test sequences plotted against the mean AUPROC across experiments.
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Supplementary Figure 4 Secondary structure lengths of resolved amyloids. We downloaded data
from the WALTZ-DB data portal, filtered for amyloids, then manually parsed the Uniprot entries of each
sequence to obtain the distribution of (A) beta strands and (B) turns across 80 sequences.


https://doi.org/10.1101/2024.07.13.603366
http://creativecommons.org/licenses/by-nc-nd/4.0/

AUC
IS
PROC
IS

0.8+ 0.8
061 0.6
0.4+ 0.4+
0.2+ 0.2+
0.0 0.0

Amy Context—free CPAD  NNK4  Waltz Amy Context-free CPAD  NNK4  Waltz
Amypro Amypro

Dataset Dataset

Method . CANYA . Compostion . Counts

Supplementary Figure 5 The performance of CANYA compared to simpler models. Area under the
receiver-operating characteristic and precision-recall curves (AUC, AUPROC respectively) of each
method on a corresponding testing set (Methods, Supplementary Table 6). “Composition” corresponds to
training a simple logistic regression model using amino acid composition (between 0.0 and 1.0,
proportions) over the training NNK dataset, and “Counts” corresponds to training the same model with
raw, unnormalized amino acid counts (between 0 and 20, integer values).
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Supplementary Figure 6 The performance of CANYA compared to previous approaches on testing

datasets. Area under the precision-recall curve (AUPROC) of each method on a corresponding testing

set. Low-opacity bars represent cases in which the method used data from the testing dataset to do its

training, and thus are not valid out-of-sample evaluations. See text for additional descriptions of datasets

(Methods, Supplementary Table 6).


https://doi.org/10.1101/2024.07.13.603366
http://creativecommons.org/licenses/by-nc-nd/4.0/

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 Cluster 9 Cluster 10

e =]JE CNe Nzw BeY Fee El= cER Q- ENK

1.07 0.998 0.264 0.168 0.102 —0.733 0516 Z0.443 ~0.332 ~0.264
ik BER Hw W=E
§T§ GEQ EEK e EPLD WSy
0.403 0.657 0.204 0.139 0.096 ~0.716 —0.144 ~0.429 0.238 -0.074
D
§é1 IEE EPE HE£ o
0.391 0.656 0.197 0.068 0.056 ~0.708 0.128 -0.38 —0.167 -0.066
DD w EP
V%:I ¥!§! SPE Wii= =S
0.382 0.597 0.176 -0.06 0.046 ~0.704 ~0.087 —0.353 —0.14 -0.048
INL CsX PDs bl BP
-— L —— [ 8 = = =
0.315 0.577 0174 -0.037 0.046 —0.672 ~0.062 —0.202 -0.063 -0.047
YV oFy EP= HE= Ko< EliE
LV & BFe =K =ik
0.237 0.568 0.169 -0.001 0.041 -0.671 -0.001 -0.255 0.056
B —
0.23 0.539 0.15 0.038 -0.637 -0.199 -0.046
wLy EY= =E L=
_— _—— =~ =_Fa—=
0.199 0.383 0.142 —0.621 ~0.193 ~0.041
= DIl )—
E%F KD:% =
0.378 0.116 —0.587 Z0.16 ~0.041
%EC QE% P W=
0.358 0.001 Z0.578 —0.159 0.041
IN< =
v 2 DQEE e
0.322 0.024 —0.541 ~0.153 -0.037
B2
- =<
0313 —~0.491 -0.035
NF REP
= RXYE
0.297 -0.401 -0.014
=Nz
0.275 ~0.013
0.274 ~0.003
va
il
0.251
0.221 Positive effect Negative effect
FBY M Acidic [l Basic [l Hydrophobic [l] Neutral il Polar
=2
0129

Supplementary Figure 7 Physicochemical motifs discovered by CANYA prior to performing quality
control. We removed filters from clusters if their GIA effect direction was opposite the sign of the effect of
the strongest filter. We highlight which motifs were excluded from downstream xAl analysis in yellow.
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Supplementary Figure 8 Secondary structure enrichment of motifs discovered by CANYA. We
collected sequences from the StAmP dataset then collected their convolution layer activation energies
from CANYA. Across all sequences, we examined whether a specific cluster had higher activation
(pattern matching) within a specific secondary structure by calculating the AUC between the activation
energy on a specific secondary structure (Methods). Asterisks represent structures for which the
enrichment was significantly higher than both 0.50 and the second most-enriched structure.
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Supplementary Figure 9 Distribution of CANYA scores across training sequences. The distribution
of output scores for non-nucleators (n=79,910) and nucleators (n=20,826).
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