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Abstract

Registering longitudinal infant brain images is challenging, as the infant brain undergoes rapid changes in
Size, shape and tissue contrast in the first months and years of life. Diffusion tensor images (DTI) have
relatively consistent tissue properties over the course of infancy compared to commonly used T1 or T2-
weighted images, presenting great potential for infant brain registration. Moreover, groupwise registration has
been widely used in infant neuroimaging studies to reduce bias introduced by predefined atlases that may not be
well representative of samples under study. To date, however, no methods have been devel oped for groupwise
registration of tensor-based images. Here, we propose a novel registration approach to groupwise align
longitudinal infant DTI images to a sample-specific common space. Longitudinal infant DTI images are first
clustered into more homogenous subgroups based on image similarity using Louvain clustering. DTI scans are
then aligned within each subgroup using standard tensor-based registration. The resulting images from all
subgroups are then further aligned onto a sample-specific common space. Results show that our approach
significantly improved registration accuracy both globally and locally compared to standard tensor-based
registration and standard fractional anisotropy-based registration. Additionally, clustering based on image
similarity yielded significantly higher registration accuracy compared to no clustering, but comparable
registration accuracy compared to clustering based on chronological age. By registering images groupwise to
reduce registration bias and capitalizing on the consistency of features in tensor maps across early infancy, our
groupwise registration framework facilitates more accurate alignment of longitudinal infant brain images.
Keywords: Image registration, Longitudinal infant brain images, groupwise registration, diffusion tensor

images, tensor-based registration, image similarity
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I ntroduction

Brain image registration — the alignment of individual brain images to a standard brain image (i.e., template)—
is important for establishing spatia correspondence and facilitating group-level inferences (Maintz &

Viergever, 1998; Oliveira & Tavares, 2014). A number of approaches have been proposed for registering

brain images, such as FMRIB's Linear Image Registration Tool (FLIRT) (Jenkinson & Smith, 2001), FMRIB's

nonlinear imageregistration tool (FNIRT) (]._Andersson, Smith, & Jenkinson, 2008), Symmetric

Normalization (SyN) algorithm (Avants, Epstein, Grossman, & Gee, 2008), Diffeomorphic Anatomical

Registration Through Exponentiated Lie Algebra (DARTEL) (Ashburner, 2007) and its predecessor, Unified

Segmentation (Ashburner & Friston, 2005) which isimplemented in the Statistical Parametric Mapping (SPM)

(Friston et al., 1994). While these algorithms have been successfully and routinely applied to register adult

brain images, registering longitudinal infant brain images presents unique challenges (Evans, Janke, Collins, &

Baillet, 2012; Shi et al., 2011). Over the course of infancy, the brain undergoes dramatic changes in size,

morphology, myelination, and function (Chugani, 1998; Gao, Alcauter, Smith, Gilmore, & Lin, 2015; Huang

et al,, 2015; Pfefferbaum et al., 1994; Shi et al., 2011), with significant changes occurring in the infant’ sbrain

amost every week (Devi, Chandrasekharan, Sundararaman, & Alex, 2015). Of particular relevance to

registration, the relative signal intensities of gray and white matter in anatomical T1- and T2-weighted MRI
images (the imaging modalities that are most commonly used for infant brain image registration (Dong, Wang,

Lin, Shen, & Wu, 2017; D. Holland et al., 2014; Wei et al., 2022)) reverse over the course of the first postnatal

months (Hayakawa, Konishi, Kuriyvama, Konishi, & Matsuda, 1991; B. A. Holland, Haas, Norman, Brant-

Zawadzki, & Newton, 1986; W. Zhang et al., 2015) (see supplementary Fig. S1). Given these rapid and

substantial changes in tissue contrast and brain shape, infant brain images vary tremendously over
developmental time, making it challenging to accurately identify and align corresponding brain features at
different developmental stages.

A related challenge is the difficulty associated with selecting a template that is representative of the

developmental variability within a longitudinal infant sample (Turesky, Vanderauwera, & Gaab, 2021).

Selection of a representative template is critical in longitudinal studies because templates with features that are
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not well matched to the sample can introduce unnecessary deformations that may bias results (Evans et al.

2012; Guimond, Meunier, & Thirion, 2000). Although several age-specific pediatric templates have been

created (Chen et al., 2022; Sanchez, Richards, & Almli, 2012; Shi et al., 2011), biases may till be introduced
if the age-specific template is not closely matched to or equally representative of the age range under

investigation (Van Hecke et al., 2011; Yoon, Fonov, Perusse, Evans, & Brain Development Cooperative,

2009). For instance, after creating an age-specific template for a relatively narrow age range (39- to 42-weeks
gestational age), Kazemi et a. demonstrated that even narrower age range templates (39-40 and 41-42 weeks)

improved registration performance(Kazemi, Moghaddam, Grebe, Gondry-Jouet, & Wallois, 2007). Given the

fast pace of brain development in early infancy (with significant changes occurring on the order of days and

weeks (Devi_et al., 2015)) and the fact that individual infants develop on different time scales (with brain

maturation unfolding more rapidly in some infants than others), registering infant images towards a sample-
specific common space that is optimally representative of and specific to the sample of interest may yield more

accurate registration than registering infant images to a predefined age-specific template (which may not be

equally representative of all ages under investigation)(Kazemi et al., 2007).

To address the challenges associated with aligning highly heterogeneous longitudinal infant images, we
developed and tested a novel approach for groupwise registration of diffusion tensor images (DTI) to a sample-
specific common space. Our approach leverages 2 key registration insights —each reviewed below—to create a
registration framework optimized for use in longitudinal infant research.

1. Registration of diffusion tensor images

Compared to T1 or T2-weighted images (which are most commonly used for infant brain image

registration), tensor images offer relatively stable tissue properties over development (Dubois et al., 2021; G. Li

et al, 2019; Tymofiyeva et al., 2013; Yoshida, Oishi, Faria, & Mori, 2013) and (unlike scalar maps) contain
information about the microstructural orientation of white matter tracts which can be used to further
differentiate brain structures, highlighting the potential of tensor images for more accurate alignment of infant
brain images (see supplementary Fig. S1). While it has been shown that standard tensor-based registration

(implemented in DTI-TK (https://dti-tk.sourceforge.net/)) outperforms scalar (fractional anisotropy or FA)-
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based registration for DTl scans of aging populations (H. Zhang et al, 2007; H. Zhang, Yushkevich,

Alexander, & Gee, 2006), its performance in rapidly developing infant populations remains unexamined.

Additionally, DTI-TK has not yet been implemented in a groupwise registration framework, an important
consideration for registration of longitudinal infant brain images (as described below).

2. Groupwiseregistration

Groupwise registration is commonly used in infant neuroimaging studies to enhance registration accuracy

(Ahmad et al., 2019; Dong, Cao, Yap, & Shen, 2019; Z. Tang & Fan, 2014; Q. Wang, Chen, Yap, Wu, & Shen,

2010). Groupwise registration first aligns subgroups of relatively more homogeneous images to their common
spaces and then registers the resulting images to a final common space (Fig. 1B). A common implementation of

this approach is to firgt align individual images to the closest predefined (age-matched) intermediary template

(Chen et al., 2022; G. Li et al., 2015; Sanchez et al., 2012; Shi et al., 2011), and then align these intermediary

templates to a final common space (Dubois et al., 2021; Gao et al.,, 2015; Jia, Yap, Wu, Wang, & Shen, 2011;

Mangin et al., 2016; S. Tang, Fan, Wu, Kim, & Shen, 2009). Deformations estimated during this hierarchical

process are then combined to transform each individual image from the native space to the final common space

(S. Tang et al., 2009). (Mangin et al., 2016; Shi et al., 2011; S. Tang et al., 2009; Wu et al., 2015). Whilethe

advantages of groupwise registration are well documented (Jia et al., 2011; Lebenberg et al., 2018; S. Tang et

al., 2009), it has not been implemented for registration of tensor-based images.

3. Our approach: Groupwise tensor-based registration to a sample-specific common space

To address the challenges associated with aligning highly heterogeneous longitudinal infant images, we
leveraged the developmentally stable tissue properties and abundant white matter microstructural information
within DTI images and the benefits of groupwise registration to a sample-specific common space. Unlike the
standard tensor-based registration approach (DTI-TK), where all tensor images are registered together at one
level to generate the sample-specific common space (Fig. 1A), our approach registers tensor maps at two levels,
first registering a group of scans to a subgroup-specific space and then registering al resulting images to a
sample-specific common space without assuming any predefined templates (Fig. 1B). We developed this

registration approach using longitudinal infant DTI data collected from birth to 7 months, the most dynamic


https://doi.org/10.1101/2024.07.12.603305
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.12.603305; this version posted July 16, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

period of postnatal brain growth, providing a rigorous test case for evaluating our approach. Our aims were to:
1) replicate findings from aging populations demonstrating that standard tensor-based registration (DTI-TK) (H.

Zhang et al., 2007) outperforms scalar (FA)-based registration in infants;, and 2) compare the performance of

our groupwise tensor-based registration approach with standard tensor-based registration (DTI-TK) (H._Zhang

et al, 2007). Finally, we aso compared the impact of 3 different approaches for clustering images into

subgroups—clustering based on image similarity (which may yield more homogeneous subgroups, especially
during periods characterized by rapid developmental change and/or individual differences in developmental
timing), clustering based on chronological age (the predominant approach), and no clustering—on registration
accuracy.

2. Materials and Methods
2.1. Participants

Participants were 27 typically developing infants (19 male and 8 female) enrolled in a prospective
longitudinal study at the Marcus Autism Center, in Atlanta, GA, USA. Infants had a mean gestational age at
birth of 39.09 weeks (SD = 1.40 weeks) and were considered to be typically developing on the basis of family
history (no history of autism in up to 3" degree relatives and no history of developmental delay in 1% degree
relatives) and medical history (no pre- or perinatal complications, no history of seizures, no known medical
conditions or genetic disorders, and no hearing loss or visual impairment). Each participant was scanned at up
to three timepoints between birth and 7 months, for a total of 53 diffuson MRI scans. The distribution of
participant age at each scan is displayed in Fig. S2. The Emory University Institutional Review board approved
the research protocol for this study. Written informed consent was obtained from legal guardians for all infants
included in this study.

2.2. Diffuson MRI data acquisition

All participants were scanned at the Center for Systems Imaging Core at Emory University School of
Medicine using a 3T Siemens Trio Tim system with a 32-channdl head coil. All infants were scanned during

natural sleep, using the following procedure. First, infants were swaddled, rocked, and/or fed to encourage
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natural sleep. Once aslegp, the infant was placed on a pediatric scanner bed. Scanner noise was reduced below
80 dBA by using: 1) sound attenuating pediatric headphones, equipped with MR-safe optical microphones to
enable real-time monitoring of in-ear sound levels throughout the scan session; and 2) a custom-built acoustic

hood, inserted into the MRI bore (Valente, Shultz, Klin, & Jones, 2014). To mask the onset of scanner noise,

white noise—gradually increasing in volume—was played through the headphones prior to the first sequence.
An MRI-compatible camera (MRC Systems) was mounted on the head coil to enable monitoring of the infant
throughout the scan. A trained experimenter remained in the scanner room and the procedure was stopped if the
infant awoke or if an increasein sound level was observed.

Structural, diffusion, and resting state MRI scans were collected at each session but only diffusion data were

used in the current study. Diffusion MRI data were acquired using a multiband sequence (Feinberg et al., 2010;

Moeller et al., 2010)with the following parameters: TR/TE of 6200/74ms, a multiband factor of 2 combined

with a GRAPPA factor of 2, FOV of 184x184, Matrix of 92x92, b=0/700 Smm?, spatial resolution of 2mm
isotropic, 61 diffusion directions, 67 dlices covering the whole brain, extra 6 averages of bOs. The total scan
time for the diffuson MRI sequence was 7 minutes 26 seconds. A b0 image with the opposite phase encoding

direction (posterior-to-anterior) was also collected for correcting the susceptibility-related distortion in diffusion

MRI images (Glasser et al., 2013; L. Li, Rilling, Preuss, Glasser, & Hu, 2012).

2.3. Diffusion MRI data preprocessing

Diffuson MRI data were preprocessed using FSL 5.0.9 and in-house Matlab code (Matlab 2023).
Preprocessing steps included correction for eddy-current distortion and removal of susceptibility distortion

using the eddy and topup functionsin FSL (J._L. Andersson, Skare, & Ashburner, 2003;]. L. R. Andersson &

Sotiropoulos, 2016). Tensor maps and tensor-derived scalar maps, including maps of fractional anisotropy (FA)

and mean diffusivity (MD), were calculated using FSL'’s function dtifit with weighted |east-square tensor fitting.
Weighted least-square fitting was used to minimize the impact of motion on the infant data (Koay, Chang,

Carew, Pierpaoli, & Basser, 2006).

2.4. Diffuson MRI data registration
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Three different registration approaches—standard tensor-based registration, standard FA-based registration,
and our novel groupwise tensor-based registration approach—were used and are described below.

2.4.1. Standard tensor-based registration (DTI-TK)

Infants tensor maps were  registered usng the sandard routine  (https://dti-
tk.sourceforge.net/pmwiki/pmwiki.php/Documentation.FirstRegistration) in DTI-TK (H. Zhang et al., 2007; H.

Zhang et al, 2006). All participants tensor maps were first aligned to an initial target tensor template

(generation of theinitial target tensor template is described below) using a 6-degree of freedom (dof) rigid body
transformation. Aligned images from all participants were then averaged to generate a 6-dof rigid body
intermediate tensor template. This process was then repeated by aligning all participants tensor maps iteratively
to the above-generated 6-dof rigid body intermediate tensor template via 12-dof affine transformations. These
aligned images were then averaged to create a 12-dof affine intermediate tensor template. Lastly, all
participants tensor maps were iteratively registered to the 12-dof affine intermediate tensor template using
diffeomorphic transformation (via piecewise affine transformation that divides each image domain into uniform
regions and transforms each region affinely) to generate the sample-specific common space.

Generation of the initial target tensor template. The initial target tensor template was generated by
applying the abovementioned standard tensor-based registration method to align a subset of DTI scans (37 scans
ranging from O-7 months). A tensor map of an infant with relatively clear tissue contrast was chosen as the
tensor template for 6-dof rigid body transformation (selection of tensor template did not affect the shape and
size of the resulting initial target tensor template, see details in Effect of choosing different images for
generating the initial target template in Supplementary Materials). This selected tensor template was nudged to
closely match the origin of MNI space (the anterior commissure) and to be as straight as possible. Six-dof rigid
body transformation, 12-dof affine transformation and diffeomorphic transformation were applied, as described
above, to obtain diffeomorphically transformed tensor maps, which were then averaged to create the initial
target tensor template for standard registration of tensor images. For standard registration of scalar FA images
(see section 2.4.2), an FA map derived from the initial target tensor template was used as the initial target FA

template.
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2.4.2. Standard registration of scalar FA images
FSL’s linear registration tool “FLIRT” and deformable registration tool “FNIRT” were used to align infant
FA scalar images to a sample-specific common space. FNIRT is a medium-resolution nonlinear registration

algorithm that has been previously used in developmental neuroimaging studies (Deniz_Can, Richards, & Kuhl

2013; O'Gorman et al., 2015; Westlye et al., 2010). Theiterative registration approach for aligning al scans

onto a sample-specific common space (Fig. 1A) is similar to the approach implemented in DTI-TK. Note that
for each step of the registration, a single iteration was used as the magjority of the literature do not employ

multiple iterations for linear and non-linear registration for sample-specific scalar templates (Kazemi et al.,

2007; L. Lietal., 2010; Sanchez et al.,, 2012).

2.4.3. Groupwise tensor-based registration to a sample-specific common space

In our proposed groupwise registration framework, longitudinal infant DTI images are first clustered into
more homogenous subgroups based on image similarity using Louvain clustering. DTI scans in each subgroup
are then aligned separately using standard tensor-based registration (as in section 2.4.1). The resulting images
from all subgroups are further aligned onto a sample-specific common space. These steps are described in detail
below.

Defining smilarity matrices among images. All participants tensor maps were first aligned to the initial
target tensor template using 6-dof rigid body transformation. FA and media diffusivity (MD) maps were then
derived from the resulting tensor maps and used to compute pairwise distance between al aligned images
(equations 1 and 2). These two DTI-derived metrics (FA and MD) were selected because FA maps differentiate
between gray and white matter well, whereas MD maps show high contrast between brain tissue and

cerebrospinal fluid (Jia_et al., 2011). Next, the summed square of voxel-wise differences of FA and MD maps

between each image pair were calculated and normalized to range between 0 and 1, and then used to compute

the similarity index between image A and B asin equations 1-3.

D(AB)., = 3 (Arni)- B ) o

i=1
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wherem is the total number of voxels. Ap, (i) and By, (i) refer to the FA values of images A and B at brain
voxel i. D(4, B)g, is the distance of FA maps between images A and B. Ay, (i) and By, (i) refers to the MD
values of images A and B at brain voxd i. D(A, B)yp is the distance of MD maps between images A and B.
D(4,B)p4 and D(A, B),,p represent the normalized (values between 0 and 1) FA and MD distance value
between images A and B. S(4, B) isthe similarity index between images A and B.

Grouping scans based on image similarity usng Louvain clustering. To stratify scans into more
homogeneous subgroups based on their image similarity, we applied Louvain clustering to the similarity

matrices estimated usng FA and MD maps. Louvain clustering maximizes within-group connections and

minimizes between-group connections (Reichardt & Bornholdt, 2006; Vincent D Blondel, Jean-Loup

Guillaume, Lambiotte, & Lefebvre, 2008). The number of groups was determined in an iterative manner,

starting with a negative initial modularity score and with one cluster. The partition process was repeated until

the observed increase in modularity score was less than a given threshold (1E-9) (Blondel, Guillaume,

Lambiotte, & Lefebvre, 2008).

Groupwise tensor-based registration: After the scans were clustered into more homogeneous subgroups
based on their shared image features, level 1 registration was performed within each subgroup using standard
tensor-based registration (described in section 2.4.1): the original tensor maps in each subgroup were aligned to
their respective common space to generate subgroup specific tensor templates via rigid body transformation,
affine and deformable transformations. In level 2 registration, the subgroup specific tensor templates from each
subgroup were then aligned onto the sample-specific common space using standard tensor-based registration
(Fig. 1B). Finally, the original tensor maps were transformed from each individual’s original space to the

sample-specific common space via the transformations derived in the two-level alignment process.


https://doi.org/10.1101/2024.07.12.603305
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.12.603305; this version posted July 16, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A B Original image _
o == Subgroup-specific common space
Original |mag_e_ == Sample-specific common space
== Sample-specific ~ Level1 o
common space ’
S i
7 a :'
7 \
I 8 4\
e S
\ /
\ | A | - 7
» ¢
. -

Figure 1. lllustration of (A) standard registration and (B) the proposed groupwise registration framework. In
standard registration, al original images were directly aligned to a sample-specific common space. In the
groupwise registration framework, original images were first clustered into subgroups based on shared image
characteristics. In the 1st level, images within each subgroup were registered to their subgroup specific common
space. In the 2™ level, images that were aligned to the subgroup specific template in the 1¥ level were further
aligned to a sample-specific common space.

Effect of clustering strategy on groupwise tensor-based registration. To compare the effect of different
clustering strategies on registration performance, we also considered (1) subgrouping scans based on
chronological age; and (2) no clustering (treating all scans as a single group and performing two rounds of
standard tensor-based registration on al scans). Registration performance following each clustering strategy
was compared against that from Louvain clustering based on image similarity.

Effect of brain masks and number of iterations in groupwise tensor-based registration. To evaluate
whether the proposed groupwise tensor-based registration was robust to different brain masks, we compared
registration performance when brain masks were selected with FA thresholds of 0.05 (i.e., whole-brain), 0.1
(white matter-enriched and some gray matter regions), and 0.25 (white matter heavy regions). Moreover, we
examined the effect of varying the number of iterationsin affine and deformable transformation stages.

2.4.4. Registration performance evaluation:
We employed three commonly used metrics to evaluate the performance of different registration methods.

The first metric is dyadic coherence, k, which quantifies the variability in the aligned principal eigenvectors
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across scans (Basser & Pajevic, 2000; Jones et al., 2002). Dyadic coherence ranges from 0 to 1, with O for

randomly oriented tensor directions and 1 for perfectly aligned tensors in each image voxel across scans. The
second metric is the voxel-wise normalized standard deviations across all FA (6ra) maps, which was computed
for each voxel within the FA mask. (H. Zhang et al., 2006). Suboptimal alignment strategies that overlap
different white matter structures onto each other are expected to have high normalized standard deviation of FA.
When plotting the empirical cumulative distribution functions (CDF), methods with better alignment are
expected to have CDFs of k and ora to the right and left, respectively. The third metric is the normalized mutual

information (NMI) value (Studholme, Hill, & Hawkes, 1999) between each FA map of the aligned tensor map

and the average FA map across all aligned tensor maps, which is computed by dividing their joint entropy by
the sum of the marginal entropies. NM|I values range from 0 to 1 and reflect the similarity between each aligned
FA map and their average. Larger NMI values indicate higher similarity (i.e., better registration) between each
aligned scan and their average. Pairwise two sample t-tests were used to compare the NM|I values from different
registration methods. Unless noted, all statistics were computed for brain voxels with FA>0.25 in the average
FA map that was rigidly aligned to the sample-specific common space for fair comparison. Maps of cra were
also generated and compared to evaluate the performance of the different registration methods.
3. Results

Standard FA-based registration vs. standard tensor-based registration. Figs. 2A, 2C and 2D plot the
performance of standard FA-based registration and standard tensor-based registration. Standard tensor-based
registration generated smaller ora than FA-based registration (Fig. 2A and the bottom row of Fig. 2D) for both
affine and deformable transformation stages, confirming previous findings in aging populations (H. Zhang et

al., 2007). Moreover, standard tensor-based registration achieved significantly larger NM1 values than FA-

based registration (Fig. 2C, p < 1e-16), indicating the similarity of FA maps derived from aligned tensor maps
using standard tensor-based registration was significantly higher than that from standard FA-based registration.
The mean and SD of FA maps from standard FA-based registration generated overall higher variability in gray

matter than standard tensor-based registration, resulting in less well-defined gyri and sulci boundaries (Fig. 2D).
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Overdl, standard tensor-based registration outperformed standard FA-based registration by generating less

variable and more similar FA maps across infant longitudinal DTI scans.
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Figure 2. Registration performance of standard FA-based registration, standard tensor-based registration, and
groupwise tensor-based registration. (A) CDF plots of normalized standard deviation of FA maps (cra) obtained
from standard FA-based registration (black), standard tensor-based registration (red), and groupwise tensor-
based registration (blue). For each of the registration method, dashed line represents the results from the affine
(linear) transformation stage and solid line represents the results from the diffeomorphic (diffeo, nonlinear)
transformation stage (the same for subplot (B)). (B) CDF plots of dyadic coherence (k) derived from standard
tensor-based registration (red) and groupwise tensor-based registration (blue). Dyadic coherence was not

evaluated for FA-based registration since tensor information was not used during FA-based registration. (C)
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NMI values and pairwise two-sample t-test statistics of FA maps derived from FA-based registration (black),
standard (red) and groupwise (blue) tensor-based registration. Groupwise tensor-based registration generated
the highest registration accuracy (as reflected by the smallest oga, the largest dyadic coherence, and the largest
NMI values), followed by standard tensor-based registration, and then standard FA-based registration. (D)
Mean, SD and ora Of voxels within FA maps derived using each approach. Voxels within FA maps derived
using standard FA-based registration show greater variability compared to (standard or groupwise) tensor-based
registration methods, especialy at the splenium of the corpus callosum (magenta circles), leading to less well-
defined gyri and sulci boundaries (green and purple circles).

Standard tensor-based registration vs. groupwise tensor-based registration. In groupwise tensor-based
registration, three subgroups (Fig. S3A) were identified using Louvain clustering based on image similarity with
the default resolution value (i.e., resolution = 1). As expected, cluster membership was correlated with scan age,
brain volume, and mean FA, but not driven by any single metric (Fig. S3B and Fig. $4).

Compared to standard 1-level tensor-based registration, groupwise (2-level) tensor-based registration
yielded smaller oea (Fig. 2A and the bottom row of Fig. 2D), larger dyadic coherence (Fig. 2B), and
significantly larger NM1 values for FA maps (Fig. 2C, p < 1E-16, i.e., significantly higher similarity between
the aligned FA maps and their group average derived from all the aligned DTI scans). These differences in
registration accuracy were observed in both affine and deformable alignment stages, but were particularly
pronounced in the affine stage (Figs. 2A and 2B), suggesting that the alignment to the subgroup specific space
during the first level registration may be critical for the improved accuracy in the 2™ level registration.

A closer look at the maps of the standard deviation and ora generated using the three registration methods
revealed that the splenium of the corpus callosum from standard FA-based registration yielded especially high
ora Values when compared to those from (standard or groupwise) tensor-based registration methods (Fig. 2D,
magenta circles). Examination of structures (Fig. 2D, inset) in this region illustrates that differentiation between
the splenium and the cerebellar tentorium—both of which have high FA values—can be achieved when using

the distinct orientation information available in tensor, but not FA, maps.
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Effect of different clustering strategies in groupwise tensor-based registration. (1) Clustering by image
similarity vs. by chronological age. Longitudinal infant scans were clustered into 3 subgroups based on their
chronological age: group 1: age <3 months (21 scans); group 2: age > 3 and age < 6 months (25 scans); group
3. age > 6 months (7 scans). For groupwise tensor-based registration, clustering by image similarity or by
chronological age yielded comparable registration performance: CDF plots of dyadic coherence and cra are
largely overlapping (Fig. 3A and 3B) and MNI values of FA maps were not significantly different between
clustering approaches (Fig. 3C, p = 0.24, t (52) = 1.19). This lack of difference may be explained by the
relatively large amount of overlap between subgroups generated by each approach: 18 out of 26 scans (69%) in
subgroup 1 clustered by image similarity were between 3 and 6 months of age; 17 out of 22 scans (77%) in

subgroup 2 clustered by image similarity were between O and 3 months of age (Fig. 3D).

A 1r P e e e B 1
0.8 0.8
) &
0 0.6 O 06
© ©
£ £
o o |
£ 0.4 £ 0.4
w = = No cluster(affine) w
= No cluster(diffeo)
0.2 = = Age(affine) 0.2}
Age(diffeo)
= = Louvain(affine)
Louvain(diffeo)
0" : : 0
0 0.2 0.4 0.6 0.8 1 0.2 : 4
oFA K
Co.4999 ' D Overlap of clusters by image similarity vs. by age
p =4.77e-15,1(52) = 10.90
=0.24,t(52) =-1.19 ag‘
D488 p =1.01e-14, t(52) = 10.68 |
2
% I e
E - L ] \
< ® ] ° .0
w 04997+ ¢ 72 oyt Tt
‘E . ll’ 5 ..'k‘.?} )“. .
= ™ ‘e
=z . .._' .'-5 's
0.4996 + \ .::,_.
el
0.4995" : ! : E
Louvain Age Mo cluster

Figure. 3. CDF plots of (A) normalized standard deviations of FA (cra) and (B) dyadic coherence (i) derived

from groupwise tensor-based registration clustered by image similarity (Louvain, red lines) or chronological age
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(Age, bluelines) or without clustering (No cluster, black lines). For each of the clustering methods, dashed lines
represent the results from the affine (linear) transformation stage and solid lines represent the results from the
diffeomorphic (diffeo, nonlinear) transformation stage (the same for subplot (B)). (C) NMI values and pairwise
two-sample t-test statistics of FA maps derived from groupwise tensor-based registration clustered by image
similarity (Louvain, red) or chronological age (Age, blue) or without clustering (No cluster, black), and (D)
Overlap between clusters generated by image similarity (C1-C3, the inner circle) and by chronological age (the
outer circle, where 0-3m denotes age <3 months, 3-6m represents age > 3 and age < 6 months, and 6m+
denotes age > 6 months). Compared to no clustering, clustering by image similarity or by chronological age
yielded significantly improved registration accuracy, as indexed by smaller ora and significantly larger NM|
values. This indicates that creation of relatively homogenous subgroups on the basis of shared features (image
similarity or age) is critical for improving accuracy in groupwise tensor-based registration. For groupwise
tensor-based registration, clustering by image similarity or by chronological age yielded similar registration
performance as indicated by largely overlapping CDF plots, possibly due to the large overlap in clusters
resulting from the two clustering methods.

(2) Clustering based on image similarity vs. no clustering. Performing groupwise tensor-based
registration without clustering (treating all 53 longitudinal infant DTI scans as a single group) did not provide
comparable registration accuracy at both affine and diffeomorphic transformation stages compared to clustering
by image similarity (Fig. 3(A)-(C)), indicating that the improved accuracy of groupwise tensor-based
registration compared to standard tensor-based registration is not ssmply driven by running two rounds of affine
and deformable registrations (i.e., initial clustering of images into more homogeneous subgroupsis critical).
Effect of varying brain masks and varying the number of iterations in groupwise tensor-based registration.
Groupwise tensor-based registration outperformed standard tensor-based registration across a range of masking
approaches (see details in Effects of brain masks with different FA thresholds in Supplementary Materials).
Moreover, increasing the number of iterations to register individual tensor images during the affine and

diffeomorphic transformation stages increased registration accuracy, but the improvement was negligible when
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the number of iterations was greater than 2 (see details in Effects of increasing number of iterations in

groupwise tensor-based registration in Supplementary Materials).

4. Discussion

Building on previous research demonstrating the advantages of tensor-based over scalar-based registration (Y.

Wang et al,, 2016; H. Zhang et al., 2007; H. Zhang et al., 2006; Hui Zhang, Yushkevich, Rueckert, & Gee,

2009) and the benefits of groupwise over standard registration (Jia_et al., 2011; Lebenberg et al, 2018; S.

Tang et al., 2009), we developed a groupwise tensor-based registration framework for aligning longitudinal
infant brain images collected between birth and 7 months, a period marked by very rapid postnatal brain growth
and change. Briefly, longitudinal infant DTI maps were first clustered into several smaller and homogenous
subgroups based on image similarity using Louvain clustering. Then, standard tensor-based registration was
implemented groupwise: first to align all tensor images within a subgroup to their subgroup-specific common
space, and then to register the images in the subgroup common space to the sample-specific common space.
Compared to scalar (FA)-based registration, both standard and groupwise tensor-based registration
improved registration accuracy globally (as quantified by smaller normalized standard deviations of FA, and
larger NM1 values between aligned FA images and their average) and locally (as indicated by more sharply
defined gyri and sulci boundaries, especialy in the splenium of the corpus callosum), confirming that
differentiation of distinct brain structures with smilar anisotropic FA values can be achieved using the

orientation information embedded in tensor maps, but not FA maps (Y. Wang et al, 2016; H. Zhang et al,,

2007).

Compared to both standard FA-based and standard tensor-based registration, groupwise tensor-based
registration significantly improved registration accuracy globally, as quantified by larger dyadic coherence of
the principal eigenvector of the tensor maps, smaller normalized standard deviations of FA, and larger NMI
values between aligned FA images and their average. These improvements in registration accuracy were

observed in both affine and deformable alignment stages, but were particularly pronounced in the affine stage,
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suggesting that 1%-level registration of tensor images within subgroups may be critical for the improved
accuracy in the affine stage at the 2™ level registration.

Importantly, clustering of images into subgroups impacted groupwise registration accuracy. Clustering
based on image similarity and clustering based on chronological age outperformed no clustering (i.e., applying
standard tensor-based registration to all images twice), suggesting that creating more homogeneous subgroups
with shared features (in this case, image similarity or chronological age) is critical for yielding improved
registration performance. Contrary to our initial predictions, clustering based on image similarity did not
improve registration accuracy compared to clustering based on chronological age, a null result that may be
explained by the largely overlapping subgroups generated by each approach. Given that clustering by image
similarity performs as well as clustering by chronological age, it may be advantageous to adopt the former
approach when faced with uncertainty about which age cutoffs are most likely to yield homogeneous subgroups,
or when working across developmental periods characterized by pronounced individual differences in
developmental timing (with some infants maturing on different time scales than others).

While the present study focused primarily on registration of diffusion scans, our approach can also be useful
for registering infant anatomical and functional images collected within the same session as diffuson scans.
Specifically, the warping/deformation fields derived from groupwise registration of DTl maps can be readily
applied to anatomical and functional images collected in the same session, potentially providing more accurate
alignment for these imaging modalities especially during early infancy when gray and white matter tissue
contrasts are isointense in T1- and T2-weighted images. Additionally, while we developed this registration
approach using data collected from birth to 7 months—a particularly dynamic period of growth, providing a
rigorous test case for this approach—this registration strategy can be readily applied to infants outside of our
age range and can accommodate a variety of longitudinal sampling designs.

It should be noted while sample-specific templates have the advantage of minimizing deformations between
individual images and the sample-specific common space, sample-specific templates usually lack standardized

stereotaxic coordinates, making stereotaxic mapping and cross-study comparisons challenging (Evans et al.

2012). A potential solution is to report findings based on brain regions (instead of coordinates) using standard
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parcellations (Akivama et al., 2013; Shi et al., 2011). If coordinate-based reporting of resultsis necessary, a

transformation from the sample-specific template to standard stereotaxic space can be performed (Andersen et

al., 2005; Chen et al., 2022; Shi et al., 2011).

As research increasingly focuses on mapping trajectories of brain development during infancy (Deoni et al.

2022; Edwards et al,, 2022; Fitzgibbon et al., 2020; Howell et al., 2019)—a highly dynamic period that

likely exerts a strong influence on neurodevelopmental disorders (Shen & Piven, 2017)—there is a growing
need for methodological tools designed to address the unique challenges inherent to longitudinal infant
neuroimaging research. Here we present a novel groupwise tensor-based registration approach (made publicly
available at https://github.com/Luckykathy6/groupwiseRegister), specifically designed to address challenges
inherent to registration of rapidly changing longitudinal infant brain images. Given that accurate alignment of
brain structures across participants is a cornerstone for atlas-based analyses of developing brains, we believe
that the proposed method will aid in advancing understanding of early brain development, a critical imperative

for supporting children with neurodevelopmental disorders.
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