

1 Microbial consortia driving lignocellulose transformation in 2 agricultural woodchip bioreactors

3 Valerie C. Schiml¹, Juline M. Walter¹, Live H. Hagen¹, Aniko Varnai¹, Linda L. Bergaust¹,
4 Arturo Vera Ponce De Leon^{1,2}, Lars Elsgaard³, Lars R. Bakken¹, Magnus Ø. Arntzen^{1*}

5 ¹Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences
6 (NMBU), P.O. Box 5003, N-1432, Ås, Norway.

7 ²Faculty of Biosciences, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, N-
8 1432, Ås, Norway.

9 ³Department of Agroecology, Aarhus University, DK-8830 Tjele, Denmark

10

11

12 *Address correspondence to Magnus Ø. Arntzen, magnus.arntzen@nmbu.no

13 Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences
14 (NMBU), P.O. Box 5003, N-1432 Ås, NORWAY. Tel: +47 67 23 24 46,

15

16 **Running title:** Polysaccharide-degrading potential of microbiomes in agricultural woodchip
17 bioreactors

18

19 **Keywords:** Field denitrification beds, Woodchip bioreactor, Denitrification, Lignocellulose
20 degradation, 16S, Anaerobe

21

22 **List of abbreviations:**

23	ASV	Amplicon sequence variant
24	AA	Auxiliary activity
25	CAZyme	Carbohydrate active enzyme
26	CE	Carbohydrate esterase
27	DNRA	Dissimilatory nitrate reduction to ammonium
28	FDBs	Field denitrification beds
29	GH	Glycoside hydrolase
30	LPMO	Lytic polysaccharide monooxygenase
31	MAG	Metagenome-assembled genome
32	PL	Polysaccharide lyase
33	PULs	Polysaccharide utilization loci
34	WBR	Woodchip bioreactor

35

36 Abstract

37 Freshwater ecosystems can be largely affected by neighboring agriculture fields where potential
38 fertilizer nitrate run-off may leach into surrounding water bodies. To counteract this eutrophic
39 driver, farmers in certain areas are utilizing denitrifying woodchip bioreactors (WBRs) in which
40 a consortium of microorganisms convert the nitrate into nitrogen-gases in anoxia, fueled by the
41 degradation of lignocellulose. Polysaccharide-degrading strategies have been well-described for
42 various aerobic and anaerobic systems, including the use of carbohydrate-active enzymes,
43 utilization of lytic polysaccharide monooxygenases (LPMOs) and other redox enzymes, as well
44 as the use of cellulosomes and polysaccharide utilization loci (PULs). However, for denitrifying
45 microorganisms, the lignocellulose-degrading strategies remain largely unknown.

46 Here, we have applied a combination of enrichment techniques, gas measurements, multi-omics
47 approaches, and amplicon sequencing of fungal ITS and prokaryotic 16S rRNA genes to identify
48 microbial drivers for lignocellulose transformation in woodchip bioreactors, and their active
49 enzymes. Our findings highlight a microbial community enriched for lignocellulose-degrading
50 denitrifiers with key players from *Giesbergeria*, *Cellulomonas*, *Azonexus*, and UBA5070
51 (*Fibrobacterota*). A wide substrate specificity is observed among the many expressed
52 carbohydrate active enzymes (CAZymes) including PULs from Bacteroidetes. This suggests a
53 broad degradation of lignocellulose subfractions, even including enzymes with auxiliary
54 activities whose functionality is still puzzling under strict anaerobic conditions.

55

56 Importance

57 Freshwater ecosystems face significant threats from agricultural runoff, which can lead to
58 eutrophication and subsequent degradation of water quality. One solution to mitigate this issue is
59 using denitrifying woodchip bioreactors (WBRs), where microorganisms convert nitrate into
60 nitrogen gases utilizing lignocellulose as a carbon source. Despite the well-documented
61 polysaccharide-degrading strategies in various systems, the mechanisms employed by
62 denitrifying microorganisms in WBRs remain largely unexplored.

63 This study fills a critical knowledge gap by revealing the degrading strategies of denitrifying
64 microbial communities in WBRs. By integrating state-of-the-art techniques, we have identified
65 key microbial drivers including *Giesbergeria*, *Cellulomonas*, *Azonexus*, and UBA5070
66 (*Fibrobacterota*) playing significant roles in lignocellulose transformation and showcases a
67 broad substrate specificity and complex metabolic capability.

68 Our findings advance the understanding of microbial ecology in WBRs and by revealing the
69 enzymatic activities, this research may inform efforts to improving water quality, protecting
70 aquatic ecosystems, and reducing greenhouse gas emissions from WBRs.

71

72 1 Introduction

73 Elevated levels of nitrate (NO_3^-) and phosphorus (P) are drivers of eutrophication, habitat
74 degradation, and loss of biodiversity worldwide^{1,2}. Woodchip bioreactors (WBRs), also referred
75 to as field denitrification beds (FDBs), are a technology designed to reduce non-point sources of
76 nitrogen pollution, such as run-offs from agricultural and residential areas, by promoting
77 microbial denitrification. The WBR is a basin filled with organic matter where woodchips
78 typically serve as a carbon (C) source and its degradation is sustained by respiratory nitrogen
79 oxide reduction³ in two functional groups: denitrifying bacteria; these reduce NO_3^- stepwise to
80 dinitrogen (N_2) via nitrite (NO_2^-), nitric oxide (NO), and nitrous oxide (N_2O), using enzymes
81 encoded by the genes *napAB* and *narGHI* for NO_3^- reduction, *nirK* and *nirS* for nitrite (NO_2^-)
82 reduction, *norBC* for NO reduction, and *nosZ* for N_2O reduction. The other functional group is
83 bacteria with the DNRA pathway (dissimilatory nitrate reduction to ammonium), which reduce
84 NO_3^- to ammonium (NH_4^+) via NO_2^- , and use enzymes encoded by the genes *napAB* and *narGHI*
85 for NO_3^- reduction, and *NrfAH* and *NirBD* for NO_2^- reduction.

86 Woodchips are composed of lignocellulose, a recalcitrant co-polymer of lignin, cellulose, and
87 hemicelluloses, and is typically degraded by the concerted action of specialized microbes,
88 including bacteria and fungi, exploiting sophisticated enzyme systems. The most efficient
89 degradation of lignocellulose occurs when oxygen- or hydrogen peroxide-dependent enzymes
90 such as laccases, lignin peroxidases, and lytic polysaccharide monooxygenases (LPMOs) are
91 utilized together with glycoside hydrolases (GHs) and other carbohydrate-active enzymes
92 (CAZymes)⁴. However, woodchip bioreactors are traditionally maintained under water-saturated
93 conditions to promote denitrification (i.e., nitrate removal) which requires hypoxic/anoxic
94 conditions. This typically leads to lower bioavailability of C from wood in WBRs⁵, but
95 anaerobic cellulolytic bacteria have adapted strategies for efficient cellulose degradation under
96 such conditions. These strategies include the use of cellulosomes (large protein complexes
97 containing multiple enzymes for efficient and simultaneous lignocellulose degradation)⁶, and
98 polysaccharide utilization loci (PULs)⁷ that ensure coordinated production of “complete”
99 enzyme sets for degradation, as well as the use of outer membrane vesicles loaded with enzymes
100 for polysaccharide deconstructions⁸.

101 Previous studies have highlighted microbial populations in WBRs involved in both C- and N-
102 cycling (summarized by McGuire et. al. ⁹); however, only a few studies have reported on active
103 strategies for lignocellulose degradation under denitrifying conditions within the WBRs ⁹⁻¹¹. To
104 shed more light on the expressed enzymatic repertoire of the microbial community, we have
105 exploited an inoculum from an WBR that has been in continuous operation for three years, and
106 used this to enrich the microbial community for further seven months on lignocellulose under
107 denitrifying conditions in closed serum bottles, with the purpose of providing an in-depth
108 investigation of the indigenous microbes, their capacity for C- and N-transformations, as well as
109 their repertoires of active CAZymes for degradation of lignocellulose, while maintaining strict
110 control of available oxygen and nitrate.

111 **2 Methods**

112 **2.1 Samples and enrichments**

113 The samples studied in this work originated from the surface and waterlogged subsurface of a
114 WBR in Dundelum, Haderslev, Denmark (Figure 2A), where nitrate-rich agricultural drainage
115 water passes through a bed of woodchips ¹². Samples were collected in late November 2020 at
116 two depths, i.e., 15 cm, denoted as surface-samples (S) and 60-80 cm, denoted as underwater
117 samples (U). The WBR at Dundelum (544 m²) was established in 2018 with a vertical (top-
118 down) flow design and the filter matrix consisted of 100% willow woodchips (Ny Vraa I/S, DK,
119 chip sizes 0.4–6 cm). The wet filter matrix was 1.2 m deep and was overlain by an unsaturated
120 woodchip layer of 30-50 cm to allow for methane (CH₄) oxidation ¹². In 2019-2020, total water
121 flow to the WBR was 170 m³ m⁻³ yr⁻¹ with a total N load of 1702 g N m⁻³ yr⁻¹ and a total N
122 removal efficiency of 46% ¹².

123 Samples collected from the WBR were used directly for analysis of the WBR microbiome, as
124 well as used as inoculum for enrichment cultures under denitrifying conditions. For these
125 enrichments, samples from the WBR (a mix of woodchips, water and debris, ~1 mL) was
126 transferred to 120-mL serum bottles with 100 mg Whatman no.1 filter paper and 49 mL NRB
127 medium (1 g/L NaCl, 0.5 g/L KCl, 0.4 g/L MgCl₂, 0.25 g/L NH₄Cl, 0.11 g/L CaCl₂, 0.087 g/L
128 K₂SO₄ in 10 mM phosphate buffer pH 6.0 and amended with 1 mL each of Vit-7 solution, trace

129 element solution and Se-Wo solution, described in ^{13, 14} and 5 mM KNO₃). The serum bottles
130 were capped with a butyl stopper, and the headspace was He-flushed ¹⁵ and given a 1% O₂
131 atmosphere (to provide energy for subsequently switching to a denitrifying metabolism) and
132 incubated statically for 74 days at 17°C while monitoring the production of headspace gases as
133 depicted in Figure 2B and described below. Thereafter, we made a subculture by taking a 1:5
134 dilution to new media and monitored this for another 118 days (Figure 2B, Figure S1), primarily
135 to get rid of simple carbon substrates potentially available in the original samples and to promote
136 growth on complex lignocellulose. The cultures were terminated at the end of this period and
137 aliquots of 7 mL were frozen at -80°C for later meta-omics analyses.

138 To trace microbial growth and denitrification activity during the enrichment period, we
139 monitored the production of gases by sampling from the serum bottle headspaces. A
140 temperature-controlled robotized incubation system ¹⁵ connected to a 789A GC-system (Agilent
141 Technologies) and a chemiluminescence NO analyzer (Model 200A, Teledyne Instruments) was
142 used to monitor and measure the headspace concentrations of NO, N₂O, N₂, and O₂. The sampled
143 gas was replaced by an equal volume of He to maintain the pressure. Enrichment cultures were
144 initially provided with 5 mM KNO₃ (=250 μmol NO₃⁻-N bottle⁻¹) and N-gas production was
145 calculated as the sum of NO, N₂O and N₂. Another pulse of 5 mM KNO₃ was added when near-
146 stoichiometric concentrations of N₂-N were measured in the bottles.

147 **2.2 Metagenomic sample preparation and data acquisition**

148 Samples of 10 g of woodchips from the WBR were cut into pieces of 0.5 by 2 cm and shaken
149 over night with 25 mL M9 buffer (mixture of Na₂HPO₄, KH₂PO₄, NaCl, and MgSO₄) ¹⁰ at room
150 temperature. DNA were extracted using DNeasy PowerSoil Pro Kit (Qiagen, Germany)
151 according to the manufacturer's protocol. For both WBR and enrichment samples, the pellet of a
152 4 mL sample was re-suspended before mechanical cell disruption using FastPrep24 at 6.5 m/s for
153 40 s followed by a 3 min incubation on ice. The homogenized lysates were centrifuged, and
154 supernatants transferred to new tubes before subjected to DNA extraction as instructed. The
155 quality of DNA was analyzed with Nanodrop, quantity with Qubit, and DNA degradation by
156 electrophoresis on a 1 % agarose gel. Extracted DNA was prepared with Nextera DNA Flex
157 Tagmentation with 350 bp and sequenced with paired-ends (2 × 150 bp) on one lane of an

158 Illumina NovaSeq SP flow cell at the Norwegian Sequencing Center. Raw reads were trimmed,
159 and quality control performed with TrimGalore! v0.6.6 (phred < 33, length > 20 bp)
160 (https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/), and assembled (both co- and
161 individual assemblies) with MEGAHIT v1.2.9 (*k*-mers: 21, 29, 39, 59, 79, 99, 119, 141)¹⁶. The
162 quality-trimmed reads were mapped back to the assembled contigs using Minimap2 v2.17¹⁷
163 followed by Samtools v1.14¹⁸ to generate depth files for metagenomic binning. Binning was
164 carried out with MetaBAT v2.12.1 (contig lengths > 2000 nt)¹⁹ and MaxBin2 v2.2.7 (contig
165 lengths > 2000 nt)²⁰, followed by dereplication with dRep v3.2.2 (algorithm gANI, P_ani: 0.90,
166 S_ani: 0.97)²¹ and taxonomical annotation with GTDB-TK v1.5.0²² and database release 202.
167 The quality of dereplicated metagenome-assembled genomes (MAGs) were assessed with
168 CheckM v1.2.2²³ and their genomes mapped back to the high-quality trimmed reads using CoverM
169 v0.6.1 (<https://github.com/wwood/CoverM>). Protein-coding genes were predicted with Prodigal
170 v2.6.3²⁴ and functions were predicted using InterProScan²⁵, KoFamScan²⁶ providing enzyme
171 commission numbers (EC) and annotations from KEGG²⁷. CAZymes were predicted using the
172 Hidden Markov Models from dbCAN²⁸ v12, downloaded from <https://bcb.unl.edu/dbCAN2/> and
173 used with the software HMMER²⁹. PULs were predicted using PULpy³⁰ which predicts the
174 genomic location of PULs within each MAG (if present) as well as the PUL structure and
175 components (SusC, SusD, CAZymes). Only PUL predictions containing at least one CAZyme
176 and a SusC/D pair were considered. To quantify metabolic potential, module completion
177 fractions (mcf) were calculated for all MAGs using the KoFamScan annotations and the R-
178 package MetQy³¹ to reveal the involvement of each MAG in all general biological processes
179 (Figure S5), and in particular in denitrification and in dissimilatory nitrate reduction to
180 ammonium (DNRA). The mcf was used to determine which metabolic pathway
181 (denitrification/DNRA) was most likely executed by each MAG as indicated by a higher mcf-
182 value. Read abundances of genes involved in N-metabolism were calculated using the software
183 featureCounts³² which summarizes read counts to specific genes or functional gene-groups. The
184 phylogenetic tree of dereplicated MAGs was created with Phylophlan v3.0.60 (–
185 min_num_markers 50) based on predicted proteins.

186 **2.3 16S rRNA sequencing and analysis**

187 To analyze the diversity of archaeal and bacterial species present in the WBR, 16S rRNA
188 amplicon sequencing of the V4 region was performed with Illumina MiSeq (2 × 300 paired-end)
189 at DNASense ApS, Denmark. DNA was retrieved from subsurface woodchips in the WBR by re-
190 extraction as described above. The quality of DNA was analyzed with Nanodrop and checked for
191 DNA degradation by electrophoresis on a 1 % agarose gel. Raw reads were trimmed with
192 TrimGalore! v0.6.6 (phred < 33, length > 20 bp). Read quality was further improved by adapter
193 trimming (truncLen=c(240,150), trimLeft=c(20,21)). The DADA2 v1.26.0 pipeline ³³, in R v
194 4.2.2, was used for denoising, merging and chimeric screening to finally produce 1406 amplicon
195 sequence variants (ASVs). ASVs were taxonomically assigned using the Silva v138.1 by the
196 *assignTaxonomy* function of DADA2. For diversity analyses, Phyloseq v1.42.0 ³⁴ was used.
197 Briefly, Alpha-diversity was measured in means of richness of three diversity indexes (Observed,
198 Chao1, and Shannon). For Beta-diversity, samples were rarefied to an even depth using a sample
199 size of 1000 with no-replacement by the Phyloseq function *rarefy_even_depth*. A Bray-Curtis
200 distance matrix was calculated from these filtered samples and then ordinated using non-metric
201 multidimensional scaling (NMDS). The statistical significance between the two different groups
202 (i.e., surface, and underwater) was assessed by the permutation-based ANOVA (PerMANOVA)
203 test ³⁵ using the adonis2 function from the R package Vegan v2.6-6-1.

204 **2.4 Analysis of fungal diversity**

205 To analyze the diversity of fungal species present in the WBR, the ITS2 region (fITS2-C)
206 amplicon was prepared, sequenced, analyzed, and taxonomically annotated at DNASense ApS,
207 Denmark. Amplicon library preparation was successful for 11/12 samples, each achieving \geq
208 8000 mapped reads. One sample (EU2) did not pass quality control and was excluded from
209 further analysis. Each sample was scaled for 50k raw reads and sequenced using an Oxford
210 Nanopore Technology R10.4.1 flow cell with the MinKNOW 22.12.7 software. The reads were
211 basecalled and demultiplexed using MinKNOW Guppy g6.4.2 with the most accurate
212 basecalling algorithm (config r10.4.1_400bps_sup.cfg) and custom barcodes. Sequenced reads
213 were filtered for length (320-2000 bp) and quality (phred score > 15) using Filtlong v0.2.1.
214 Quality-trimmed reads were mapped to the QIIME-formatted UNITE database (release 9.0)³⁶

215 with 99 % identity clustering using Minimap2 v2.24-r1122 ¹⁷ and further processed with
216 Samtools v1.14 ³⁷. Entries containing *uncultured*, *metagenome* or *unassigned* were considered
217 generic place holder or dead-end taxonomic entries and were replaced with blank entries.
218 Mapping results were filtered for alignment lengths > 125 bp and mapping quality > 0.75, and
219 low abundant OTUs (< 0.01 % of total mapped reads) were excluded.

220 To enable fungal detection in the later metaproteomics analysis, six genomes corresponding to
221 the most abundant fungal species based on ITS were downloaded from the JGI Mycocosm
222 database. As a complementary approach, eukaryotic contigs were extracted from the
223 metagenomic co-assembly using EukRep v0.6.6, analyzed with Kraken2 v2.1.2 to retrieve fungal
224 taxonomy, and their genomes downloaded from the JGI Mycocosm database. In total, fifteen
225 fungal species were included based on this combined ITS- and Kraken2 analysis. Their
226 proteomes were further annotated with InterProScan ²⁵, KoFamScan ²⁶, and dbCAN ²⁸ as
227 described above, and included in the database for metaproteomics. Differences in Alpha- and
228 Beta-diversity analyses from fungal OTUs were performed following the same protocol as
229 mentioned above for 16S sequencing.

230 **2.5 Metaproteomic sample preparation, data acquisition, and analysis**

231 For metaproteomic analyses, 850 mg of woodchips were mixed with 600 µL of lysis buffer (4%
232 SDS), and 1 mL of enriched culture broth were mixed with 300 µL lysis buffer. The samples
233 were kept on ice for 30 min, followed by mechanical cell disruption by beat-beating with
234 FastPrep24 for three cycles of 60 s at 4.5 m/s. The samples were then centrifuged for 15 min at
235 15,000 × g and the supernatants were recovered, amended with 200 µL cold 80 % TCA,
236 incubated over night at 4 °C, and centrifuged again at 15,000 × g for 15 minutes. The pellet was
237 washed with 90 % acetone in 0.01 M HCl, the sample was centrifuged, and the supernatant was
238 discarded. The pellet was air dried and re-dissolved in 50 µL of lysis buffer and DNA was
239 sheered by water bath sonification for 10 min. The sample was further processed based on S-
240 Trap 96-well plate digestion protocol (ProtiFi, USA) following the manufacturer's instructions.
241 The resulting peptides were re-dissolved in 0.1 % formic acid prior to LC-MS analysis.

242 Peptides were analyzed with a nano UPLC (nanoElute, Bruker) coupled to a trapped ion mobility
243 spectrometry/quadrupole time of flight mass spectrometer (timsTOF Pro, Bruker). The peptides

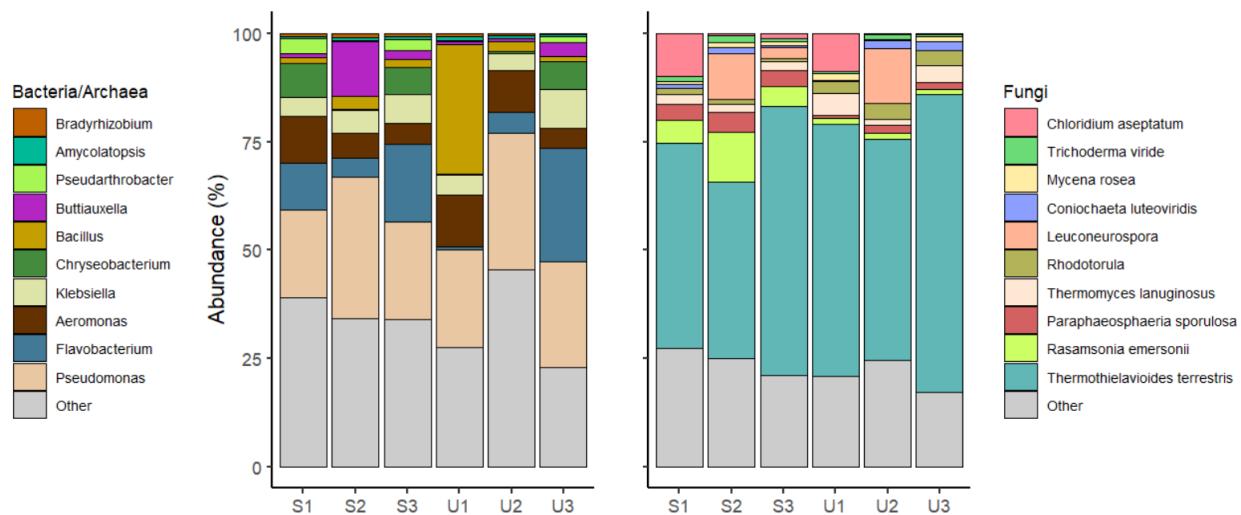
244 were separated by a PepSep Reprosil C18 reverse-phase (1.5 μ m, 100 \AA) 25 cm \times 75 μ m
245 analytical column coupled to a ZDV Sprayer (Bruker Daltonics, Bremen, Germany). The
246 temperature of the column was kept at 50 °C. Equilibration of the column was performed before
247 the samples were loaded (equilibration pressure 800 bar). The flow rate was 300 nL/minute and
248 the samples were separated using a solvent gradient, a mixture of Solvent A (0.1 % formic acid
249 in water) and Solvent B (0.1 % formic acid in acetonitrile). The gradient was from 2 - 25 %
250 solvent B over 70 minutes, followed by an increase to 37 % over 9 minutes. For washing, the
251 gradient was then increased to 95 % solvent B over 10 minutes and maintained at that level for
252 an additional 10 minutes. The total run time was thus 99 minutes per sample.

253 The timsTOF Pro was operated in positive mode with data dependent PASEF acquisition.
254 Compass Hystar v5.1.8.1 and timsControl v1.1.19 68 were used to control the LC-MS. The
255 acquisition mass range was set to 100 – 1700 m/z. The TIMS settings were: 1/K0 Start 0.85
256 V \cdot s/cm 2 and 1/K0 End 1.4 V \cdot s/cm 2 , Ramp time 100 ms, Ramp rate 9.42 Hz, and Duty cycle 100
257 %. The Capillary Voltage was set at 1400 V, Dry Gas at 3.0 l/min, and Dry Temp at 180 °C. The
258 MS/MS settings allowed for 10 PASEF ramps, total cycle time 0.53 sec, charge range 0-5,
259 Scheduling Target Intensity 20,000, Intensity Threshold 2,500, active exclusion release after 0.4
260 min, and CID collision energy ranging from 27-45 eV.

261 Protein quantification was performed with the MSFragger³⁸ v3.7 search engine within Fragpipe
262 v19.0, using the workflow LFQ-MBR and Top-N (n=3) algorithm. The predicted protein-coding
263 genes from the metagenomic analysis and the added fungal genomes were used as reference
264 database (671,850 protein sequences). N-terminal acetylation and methionine oxidation were set
265 as variable modifications while carbamidomethylation of cysteines were set as fixed
266 modifications. One missed cleavage was allowed. Within FragPipe, Percolator was selected for
267 PSM validation and FDR at 1% was allowed for ProteinProphet³⁹. The output was analyzed
268 further in Perseus v2.0.10.0⁴⁰. Identifications of potential contaminants and reversed sequences
269 were removed. The same was done for protein hits containing indistinguishable proteins
270 originating from other species, in order to remove cross-species protein-groups. The
271 metagenomic annotations (taxonomy, MAG) as well as functional annotations from
272 InterProScan, KoFamScan, and dbCAN databases were propagated to the metaproteomics data.

273 Quantitative LFQ values for all proteins were summed per MAG to generate MAG protein-
274 abundance (summed LFQ).

275


276 **3 Results and discussion**

277 **3.1 Microbial diversity in the woodchip bioreactor**

278 Microbial diversity within the WBR (Figure 2A) was investigated using 16S rRNA amplicon
279 sequencing in triplicates at two depths (15 cm, denoted as surface-samples (S), and 60-80 cm,
280 denoted as underwater-samples (U)) of the WBR. In total, 1,406 ASVs from 24 different phyla
281 and 309 different genera could be identified (Table S1). The triplicates from surface and
282 underwater samples showed at large a comparable and similar composition, indicating
283 *Pseudomonas* as being the most abundant bacterial genera in the woodchip bioreactor, as also
284 seen in several previous WBR studies ⁴¹⁻⁴³, followed by *Flavobacterium*, *Aeromonas*, *Klebsiella*,
285 *Chryseobacterium*, *Bacillus*, *Buttiauxella*, *Pseudarthrobacter*, *Amycolatopsis*, and
286 *Bradyrhizobium* (Figure 1).

287 ITS sequencing was used to assess fungal diversity and identified in total 405 OTUs (Table S2)
288 where 63% belonged to Ascomycota, 16% to Basidiomycota, 11% to Chytridiomycota, and less
289 than 3% to Mortierellomycota, Mucoromycota, Rozellomycota, and Zoopagomycota. The fungal
290 community was by far dominated by *Thermothielavioides terrestris* (Sordariales) showing 50-
291 60% relative abundance among the fungi, followed by *Rasamsonia emersonii* (Eurotiales),
292 *Paraphaeosphaeria sporulosa* (Pleosporales), *Thermomyces lanuginosus* (Eurotiales),
293 *Rhodotorula* (Sporidiobolales), *Leuconeurospora* (Leotiomycetes), *Coniochaeta luteoviridis*
294 (Coniochaetales), *Mycena rosea* (Agaricales), *Trichoderma viride* (Hypocreales), and
295 *Chloridium aseptatum* (Chaetosphaeraiales). These findings are similar to prior studies on
296 woodchip bioreactors ^{9, 11}, with the exception of Heliotales which could not be detected in this
297 study. Fungal species from the classes Chaetosphaerales and Coniochaetales have been
298 previously found in freshwaters ^{44, 45}, while Sporidiobolales ⁴⁶, and Corticiales ⁴⁷ have been
299 detected in association with plants ^{46, 47}.

300

301

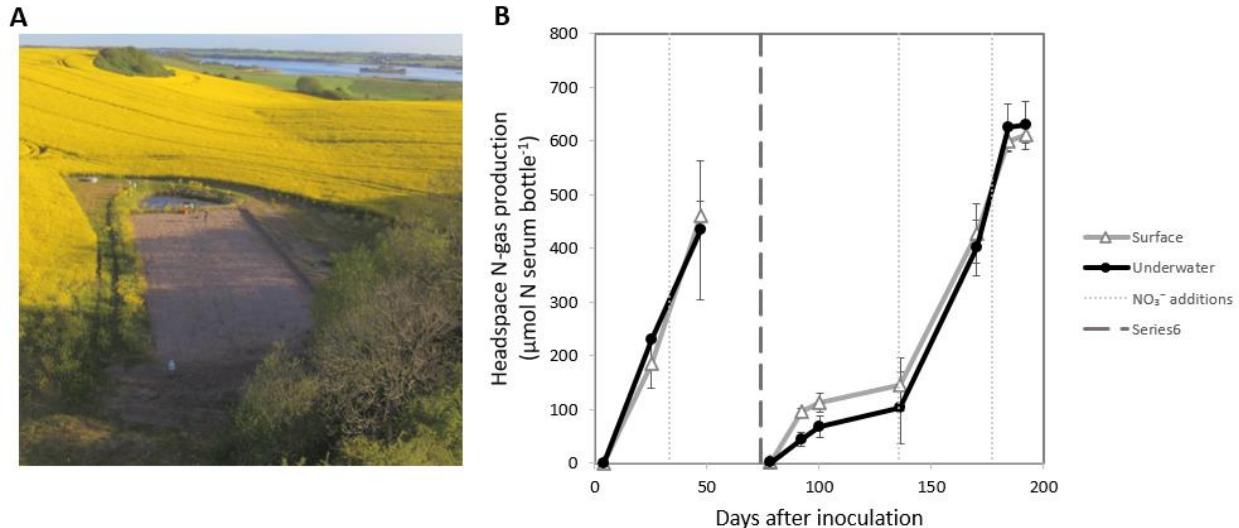
302 **Figure 1: Abundance of genera within the woodchip bioreactor.** The figure shows the 10 most abundant genera for
303 bacteria/archaea (left) and fungi (right). The sample names refer to triplicates of surface (S) or underwater (U) samples in the
304 WBR. More information about the ASVs and OTUs can be found in Table S1 and S2, respectively.

305 Due to the more permanent waterlogging in the lower area of the WBR, it is plausible that this
306 zone has been less frequently exposed to oxygen compared to the upper parts. Consequently, the
307 underwater zone could theoretically sustain a different set of microorganisms than those thriving
308 on the surface. At large, only minor trends in the microbial community composition can be
309 observed between these two locations: *Buttiauxella*, *Pseudarthrobacter*, and *Rasamonia*
310 *emersonii* seem to decline with depth, while *Thermothielavioides terrestris* slightly increase with
311 depth. Analysis of Alpha-diversity showed no significant differences in measurements of
312 Observed, Chao1 and Shannon indexes of the 16S ASVs or ITS OTUs (Figure S7). Furthermore,
313 NMDS ordination of the Bray-Curtis dissimilarity distance showed two clusters of bacterial
314 populations depending on the sampling site (i.e., U and S). Nonetheless, the PERMANOVA test
315 showed no-significant difference among the clusters (Figure S7). Of note, we only had three
316 samples in each category, making such statistical analyses less robust.

317

318 **3.2 Relative abundances of denitrification- and DNRA pathway genes**

319 Relative abundances of reads for denitrification and DNRA genes in the WBR ranged from <10
320 reads per million (rpm) to >200 rpm (Figure S2); these abundances are in the same range as
321 previous reports of WBRs⁹. The most abundant genes were *napA*, *narG*, *narH*, *nirB*, *norB*, and
322 *nasA*. *nirB* is among the most abundant genes, and this seems plausible given its role in nitrite
323 assimilation; there is ample C and nitrate in the WBR but very little NH₄⁺ as this is not leached
324 from soil. This may suggest that the WBR selects for microorganisms capable of assimilating
325 nitrate, as also indicated by the relatively high value for the assimilatory nitrate reductase *nasA*.
326 The low abundance of anammox genes is similar to what has been observed in previous WBR
327 studies^{3,9}.


328 For some of the denitrification genes (*napA* and *nirB*, and to some extent also for *napB*, *nosZ*,
329 *nirD*, and *nrfA*), there is a clear pattern of higher abundance for underwater samples (U)
330 compared to surface samples (S) (Figure S2). It is plausible that the more or less permanent
331 anoxia in the deeper layer of the WBR thus favored denitrifying organisms. However, when
332 samples from these locations were subjected to long-term enrichments under denitrifying
333 conditions (explained in next chapter), we did not observe a higher NO₃⁻ to N₂ conversion rate
334 for the underwater samples (Figure S1).

335

336 **3.3 A microbiome enriched for lignocellulose-degrading denitrifiers**

337 WBRs, especially those with longer operation times can be viewed as *in-situ* enrichment systems
338 that promote microbial communities that degrade wood chips and simultaneously convert nitrate
339 from agriculture runoff to nitrogen gases^{5,48}. To amplify the relative biomass of microorganisms
340 with these specific traits and allow for their in-depth characterization with meta-omics, we set up
341 enrichment cultures on lignocellulose (wood chips and filter paper) under denitrifying conditions
342 using the WBR samples as inoculums. These enrichment cultures showed continuous N-gas
343 production under denitrifying conditions (Figure 2B). After 74 days, subcultures were made, and
344 new enrichments were set up for another 118 days. At this point, the samples had converted all
345 available NO₃⁻ to N₂ (Figure S1), indicating that all nitrogen reductases required for full

346 denitrification were present within the microbial communities; likewise, the filter paper used as
347 carbon source was fully disintegrated suggesting the presence of various lignocellulose-
348 degrading enzymes.

349

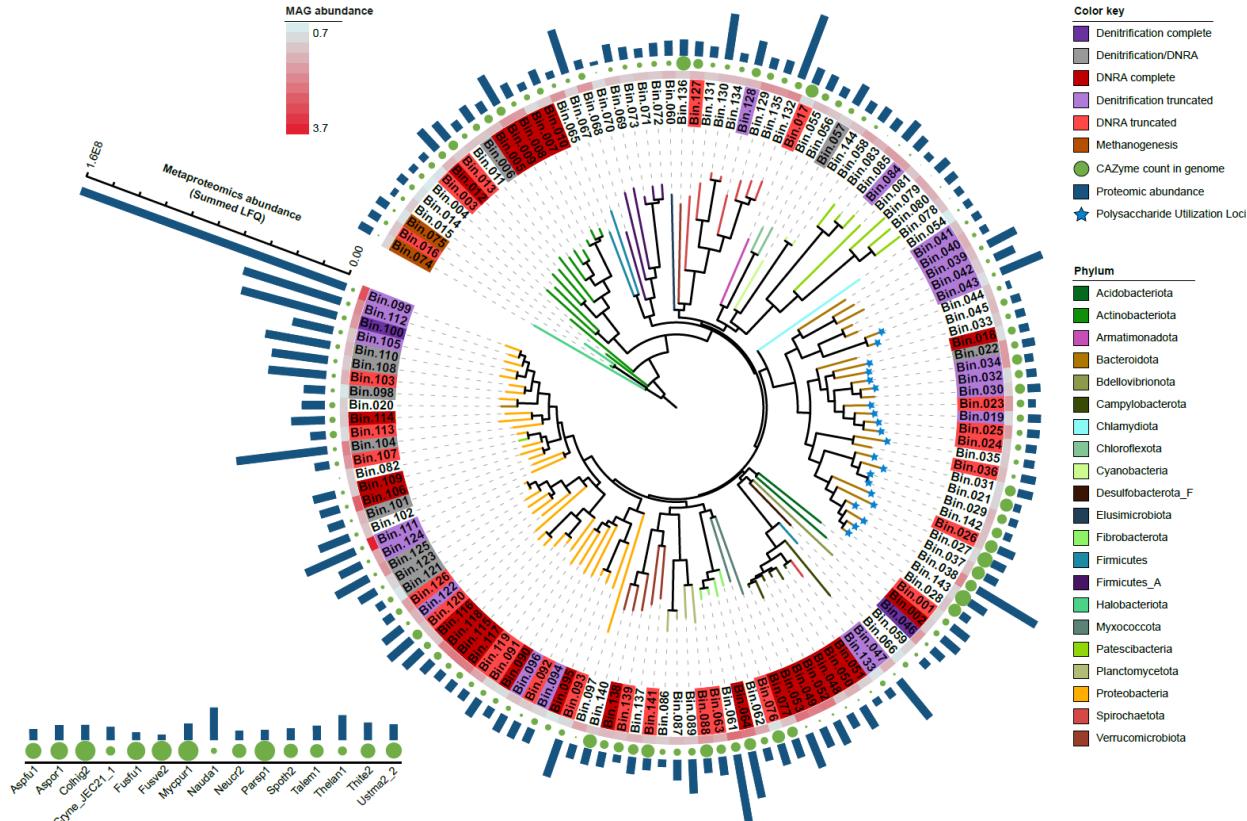
350 **Figure 2: Woodchip bioreactor and enrichment cultures.** **A)** Samples of woodchip filter matrix (woodchips, debris, and
351 liquid) were collected from a field-scale woodchip bioreactor measuring 41.2 m × 13.2 m. Surface samples were collected from
352 15 cm depth and underwater samples were collected from 60-80 cm depth. Photo: Henning C. Thomsen, Department of
353 Agroecology, Aarhus University, DK. **B)** Nitrogen-gas production (sum of NO, N₂O and N₂) in enrichment cultures with
354 woodchips incubated in closed He-washed serum bottles under denitrifying conditions with 5 mM KNO₃ for 74 days, followed
355 by subculture (to dilute out simple carbon substrates from the original samples) and further enrichment for 118 days to cultivate
356 for populations able to degrade lignocellulose under denitrifying conditions. N-gas production is averaged over three
357 measurements; error-bars represent one standard deviation ($n = 3$). NO and N₂O accumulated transiently and accounted for a
358 small fraction of the N-gas produced. For details of the individual gases and incubations, see Figure S1.

359

360 Samples from both the WBR and the enriched samples were subjected for shotgun
361 metagenomics and metaproteomics analyses. Assembly and binning of the metagenomes resulted
362 in the recovery of 144 medium-to-high-quality MAGs, refined after binning and dereplication
363 (Table S3). 12 MAGs were only present in the WBR in nature and did not survive enrichment
364 cultivation, while 43 MAGs were present in both the WBR and in the enriched cultures. 89
365 MAGs were only detected in the enrichments. Viewing the MAG abundances, the most
366 prominent community members in the enrichment cultures were classified as *Giesbergeria*

367 (Proteobacteria; Bin.099 and Bin.112), followed by *Microvirgula* (Proteobacteria; Bin.111), an
368 uncultured *Burkholderiaceae* bacterium (Proteobacteria; 84.4% ANI to AVCC01; Bin.104), an
369 uncultured *Rhodocyclaceae* bacterium (Proteobacteria; 79.2% ANI to CAJBIL01; Bin.106),
370 *Thermomonas* (Proteobacteria; Bin125), an uncultured *Prolixibacteraceae* bacterium
371 (Bacteroidota; 79.2% ANI to UBA6024; Bin.038), and *Cellulomonas* (Actinobacteria; Bin.009).
372 Metaproteomics were able to detect 5,429 expressed protein groups from 141 of these MAGs
373 (Table S4).

374 It was found that 92 of these 144 MAGs had the genetic potential for N-reduction, either through
375 denitrification or DNRA (Figure 3, Figure S3). Genes required for DNRA were detected in 52
376 MAGs (27 complete, i.e., all genes required for DNRA were present in the genome, and 25
377 truncated, i.e., a fraction of the required genes were present). DNRA is catalyzed by
378 microorganisms carrying cytochrome C₅₅₂ nitrite reductases (*nrfA* genes) or NADH-dependent
379 nitrite reductases (*nirB* genes), although the latter may serve as a detoxification of nitrite and
380 NADH regeneration in fermentation of complex organic material (respiratory vs. fermentative
381 DNRA)⁴⁹. For simplicity, our classification here places both pathways under DNRA. Looking at
382 the proteomics data, no enzymes were expressed for DNRA (Figure S4), possibly due to the high
383 nitrate-to-carbon availability benefiting denitrifying microorganisms instead⁵⁰.


384 Genes for full-fledged denitrification were detected in seven MAGs where five of them also had
385 genes for DNRA. These included an uncultured Bacteroidales bacterium (91.2% ANI to
386 UBA6192; Bin.022), *Bacteriovorax* (Bin.046), *Giesbergeria* (Bin.100), *Azospira* (Bin.101) an
387 uncultured *Burkholderiaceae* bacterium (84.4% ANI to AVCC01; Bin.104), *Rhodoferax*
388 (Bin.108), and *Acidovorax* (Bin.110). Truncated gene sets for denitrification were found in
389 additional 27 MAGs. Expressed proteins for denitrification could be assigned to 20 of these
390 MAGs (Figure 4, Figure S4), while none for DNRA, suggesting that denitrification is the
391 dominant NO₃⁻ reducing pathway in our data, as also indicated in previous WBR studies<sup>9, 11, 51-
392 53</sup>. Expressed enzymes included *napAB* (one enzyme), *narGHI* (14 enzymes), *nirK* (one
393 enzyme), *nirS* (12 enzymes), *norBC* (six enzymes), *nosZ* (10 enzymes). The active denitrifying
394 community, i.e., those microorganisms with expressed enzymes, is dominated by
395 *Burkholderiaceae* as also shown previously by Jéglot et al.⁵⁴. Organisms with truncated

396 denitrification pathways, lacking 1-3 of enzymes catalyzing the four steps of denitrification
397 (NO_3^- , NO_2^- , NO , or N_2O reductases) are common in natural environments^{55, 56}. Hence, the
398 finding of MAGs with truncated denitrification gene sets in our materials is no surprise. The
399 propensity of a microbial consortium to emit N_2O to the atmosphere is plausibly proportional to
400 the relative abundance of organisms which lack N_2O reductase. In our data, Bin.106 and Bin.111
401 lacks *nosZ* (Figure S4) and both show relatively high MAG abundance in the enriched cultures
402 (Table S3); however, they have low abundance in the WBR. In the enrichment vial headspaces,
403 all N_2O were converted to N_2 (Figure S1), indicating that other *nosZ*-containing denitrifiers were
404 able to functionally compensate for the lack of this gene in these two MAGs. In an open WBR
405 however, this N_2O may escape as emission. Notably, under *in-situ* conditions in operating
406 WBRs, the risk of N_2O emissions is further controlled by factors such as the N-load, temperature
407 and the hydraulic retention time, all which may have an effect on the capacity for complete
408 denitrification^{53, 57}.

409 Diverse nitrate-reducing fungi has been reported in literature from the orders *Pleosporales*,
410 *Heliotales*, *Hypocreales* (in particular *Fusarium* strains⁵⁸), *Incerae sedis*, *Thelebolales*,
411 *Mucorales*, and *Mortierellales*⁵⁹, and although our metaproteomics analysis was able to detect
412 140 proteins from 15 different fungi (Table S4), none of these were involved in N-reduction.

413 Finally, the above 16S analysis showed that the genus *Pseudomonas* was dominant in WBRs
414 (Figure 1), yet we were not able to reconstruct any *Pseudomonas* MAGs (Table S3). When
415 investigating our list of contigs not assigned to any MAGs using Kraken2⁶⁰ we observed several
416 contigs belonging to *Pseudomonas*. Using genomes from the top-10 *Pseudomonas*-hits in our
417 metaproteomic searches identified additional 59 expressed proteins mapping to this genus.
418 However, none of these 59 proteins were involved in denitrification nor lignocellulose
419 degradation; hence, despite its presence, *Pseudomonas* was not a key player in our cultures.

420


Figure 3: Phylogenetic placement of MAGs within the WBR and enrichment cultures. The metagenomic functional analysis of 144 reassembled MAGs from 21 different phyla show the potential for DNRA for 25 MAGs (light red) and complete DNRA for 27 MAGs (dark red). Complete full-fledged denitrification is predicted for two MAGs (dark purple) and truncated denitrification for further 27 MAGs (light purple). The classification to denitrification/DNRA were inconclusive for 11 MAGs (grey). All MAGs have genes for CAZymes in varying numbers (green circles) and polysaccharide utilization loci (PUL) could be predicted for 21 Bacteroidota (blue stars). Methanogenesis pathways can be inferred to the two archaea (brown). The circular heatmap shows metagenomic coverage, a proxy for MAG abundance, and calculated using CoverM. The bars on the outer circle represent protein abundance detected by metaproteomics. The inset to the left displays the abundance of fungi in the WBR. Abbreviations: Aspful – *Aspergillus fumigatus*, Mycpur1 – *Mycena pura*, Parsp1 – *Paraconiothyrium sporulosum*, Talem1 – *Rasamonia emersonii*, Thite2 – *Thermothielavioides terrestris*, Aspor1 – *Aspergillus oryzae*, Cryne – *Cryptococcus neoformans* var *neoformans*, Colhig2 – *Colletotrichum higginsianum*, Fusfu1 – *Fusarium fujikuroi*, Fusve2 – *Fusarium verticillioides*, Nauda1 – *Naumovozyma dairenensis*, Neucr2 – *Neurospora crassa*, Spoth2 – *Thermotheleomyces thermophilus*, Thelan1 – *Thermomyces lanuginosus*, Ustma2 – *Ustilago maydis*.

436 3.4 Lignocellulose is degraded anaerobically by multiple community
437 members

438 While genes encoding CAZymes were found in the metagenome of all MAGs (Figure 3, green
439 circles), the expressed enzymes were predominantly found in 24 MAGs in the enrichment
440 samples (Figure S6). In particular, the active lignocellulose-degrading community (with

441 CAZymes identified at protein level) included bacteria belonging to *Cellulomonas* (Bin.005,
442 *Actinotalea* (Bin.006), an uncultured *Micromonosporaceae* bacterium (Bin.013),
443 uncultured *Prolixibacteraceae* bacteria (Bin.028, Bin.037, Bin.038, and Bin.143), an uncultured
444 *Lentimicrobiaceae* bacterium (Bin.030), *Paludibacter* (Bin.031), unclassified *Fibrobacterota*
445 annotated as UBA5070 (Bin.061, Bin.063, and Bin.064), an uncultured *Stellaceae* bacterium
446 (Bin.090), *Giesbergeria* (Bin.099, Bin.100, and Bin.112), *Microvirgula* (Bin.111), unclassified
447 *Polyangia* annotated as Fen-1088 (Bin.076), an uncultured *Treponemataceae* bacterium
448 classified as Spiro-10 (Bin.132), an uncultured *Opitutaceae* bacterium (Bin.139), *Amycolatopsis*
449 (Bin.012), *Azospira* (Bin.101), and an uncultured *Phycisphaerales* bacterium classified as
450 WQYP01 (Bin.089). In addition, CAZymes encoded in the genomes of six fungi (Table 1,
451 Figure S6), including *Aspergillus fumigatus*, *Colletotrichum higginsianum*, *Fusarium fujikuroi*,
452 *Neurospora crassa*, *Thermothelomyces thermophilus*, and *Thermothielavioides terrestris*, were
453 also detected at the protein level (Table S5). Accordingly, fungal species contributing to
454 lignocellulose degradation in WBRs have been suggested previously by Jéglot et al.⁵⁴

455

Figure 4: An overview of the most prominent metabolic processes in the enrichment cultures. The displayed metabolism of the microbiome is inferred using detected proteins from metaproteomics analysis and the measured headspace gases during the 7-month enrichment period. No proteins could be detected for the two archaea (Bin.074, Bin 075); however, CH₄ production could be measured by GC suggesting that these populations were active despite being below metaproteomics detection levels. Hence, the displayed pathways for methanogenesis are inferred from metagenomics and thus indicated with a dimmed bin color. Abbreviations: Aspfu1 - *Aspergillus fumigatus*, Colhig2 - *Colletotrichum higginsianum*, Fusful1 - *Fusarium fujikuroi*, Mycpur1 - *Mycena pura*, Neucr2 - *Neurospora crassa*, Spoth2 - *Thermothelomyces thermophilus*, Thite2- *Thermothielavioides terrestris*. More information about the N-reductases for the listed MAGs are available in Figure S3.

Lignocellulose, such as willow wood chips (and the cellulosic model substrate filter paper) used in this study, is a recalcitrant co-polymer of cellulose, hemicelluloses, pectin, and lignin and thus requires a multitude of enzymes with various substrate specificities for its coordinated deconstruction. The genes encoding these enzymes may be dispersed across various locations in the genome or clustered within CAZyme clusters⁶¹ or polysaccharide utilization loci (PULs)⁶².

471 PULs were originally identified in starch degradation (hence their name) and consist of a starch-
472 utilization system (Sus) responsible for coordinating the activities of a set of CAZymes and
473 carbohydrate-binding modules (CBM) involved in the degradation of a specific polysaccharide
474 ^{63, 64}. Key components of the Sus system include SusC and SusD, with SusD binding primarily to
475 polysaccharides or cyclic oligosaccharides, while SusC facilitates the transportation of
476 oligosaccharides into the periplasmic space of the bacterium ^{65, 66}. The recruitment of specific
477 CAZymes (including GHs, CEs and PLs) into PULs, along with the overall architecture of the
478 PUL, appears to be connected to the glycan specificity of the PUL. More than 13,000 PULs have
479 been identified in Bacteroidota genomes and categorized based on their specificity ⁶⁷. In our
480 investigation, we identified 21 Bacteroidota MAGs predicted to contain PULs. Among these, we
481 annotated a total of 229 SusC/SusD pairs in conjunction with CAZymes, and eight of these
482 MAGs expressed PUL components, including SusC, SusD, proteins of unknown function, or
483 CAZymes (Table 1, Table S6). Some PULs were predicted to contain only one CAZyme, while
484 others appeared more complex, with over 10 annotated CAZymes, often neighbored by domains
485 of unknown function. Further examination of the annotated CAZymes in PULs having expressed
486 components indicates that these target various plant cell wall constituents, including starch,
487 xyloglucan, and pectin.

488

489

490 **Table 1: Bacteroidota MAGs with PULs detected at protein level.** PULs were predicted by PULPy and were included when SusC/SusD pairs were detected together with CAZymes targeting polysaccharides. 21 Bacteroidota MAGs had predicted PULs in their genomes, only PULs with
491 components detected at protein level is shown here. More details about the predicted PULs can be found in Table S6.

Bin	Taxonomy (Genus)	Number of PULs in genome	PUL structure with detected component in bold	Predicted target polysaccharide
Bin.021	<i>Paludibacter</i>	19	GH76- susC -susD	Fungal cell wall [α -(1 \rightarrow 6)-mannan]
Bin.022	UBA6192 (Bacteroidales)	5	GH13-unk-unk-unk-susD- susC	Starch
Bin.028	UBA6024 (Prolibacteraceae)	16	CE1;CBM35-GH16-unk-unk-unk-unk-CBM9-susC-susD-unk- unk -unk-GH28-GH92-GH92-unk-unk- GH92-GH97-unk-unk-GH78-unk-unk-susC-susD-unk-unk-GH5-GH31	Rhamnogalacturonan I; Xylan; Galactomannan
Bin.031	<i>Paludibacter</i>	20	susC-susD-unk- unk -unk-GH31	
			GH3-susC-susD-unk-GH30- GH30 -unk-unk-GH30-unk-unk-susC	Xylan
Bin.037	UBA6024 (Prolibacteraceae)	18	GH31-GH5-unk-unk- susD - susC -unk-unk-GH78-unk-unk-GH97-GH130-GH92-unk-unk-GH92-GH92- GH28	Rhamnogalacturonan I; Galactomannan;
			susC -susC- susD -unk-GT51	Peptidoglycan
Bin.038	UBA6024 (Prolibacteraceae)	14	susC -unk-unk-GT2-unk-susD- susC	
			susC -susD- GH36 -unk-unk-unk-GT83	
			GH3-unk- susC - susD	
			susC -susD-GH51	Arabinoxylan
			GH42-GH43;CBM32-CE1- susD - susC	Arabinogalactan
			susC -susD-GH105-unk-unk-CE1	Rhamnogalacturonan I
			GH95-unk-unk-unk-susD- susC	Xyloglucan
Bin.142	<i>Paludibacter</i>	19	GH13-GH9-GH65-unk-unk-unk- susC -susD	Starch
			susC -susD-unk-unk-unk-GH3	
Bin.143	UBA6024 (Prolibacteraceae)	20	GH2-GH30-unk-susD- susC	Xylan

492

493

494 In accordance with the complexity of lignocellulose, using metaproteomics analysis, we detected
495 95 CAZymes, which could be traced back to the genomes of 24 MAGs and six fungi listed also
496 above (Table S4, Figure S6). Most of the detected CAZymes belong to glycoside hydrolase
497 families (GHs, 54), but auxiliary activities (AAs, 15), glycosyl transferases (GTs, nine),
498 carbohydrate esterases (CEs, eight), and polysaccharide lyases (PLs, three), as well as proteins
499 containing carbohydrate-binding modules (CBMs) without any identified CAZy domains (six)
500 were also identified among the detected CAZymes (Table 2).

501 More than half of the detected CAZymes (53) could be traced back to six bacterial species,
502 namely: Bin.038 (fifteen) Bin.009 (twelve), Bin.111 (nine), Bin.037 (six), Bin.099 (six), Bin.005
503 (five CAZymes detected). Of these species, Bin.009 (a Gram-positive *Cellulomonas* bacterium)
504 stood out as one of the main cellulose decomposers as it secreted processive glucanases.
505 Specifically, endoglucanases (a GH9 with an N-terminal CBM4 and a GH9 with a C-terminal
506 CBM2), which randomly cleave cellulose in the middle of the polysaccharide chain and continue
507 releasing cello-oligosaccharides sequentially from one of the generated chain ends ⁶⁸, and further
508 exoglucanases (i.e., cellobiohydrolases), which target cellulose chain ends to release glucose,
509 cellobiose or celooligosaccharides from either the reducing end (a GH48 with a C-terminal
510 CBM2) or the non-reducing end (a GH6 with an N-terminal CBM2 and potentially also the
511 single-domain GH6 with a partial Fibronectin type-III module at the C-terminus) of a cellulose
512 chain ⁶⁹. In addition, Bin.009 also secreted an AA10 lytic polysaccharide monooxygenase
513 (LPMO) with a C-terminal CBM2, which can oxidatively cleave crystalline cellulose in an endo
514 fashion. Furthermore, Bin.009 seems to depolymerize celooligosaccharides and utilize glucose
515 as a carbon source through the phosphorolytic pathway, as it expressed a GH94 cellobextrin
516 phosphorylase ⁷⁰. Notably, Bin.005 and Bin.006, two other Gram-positive bacteria belonging to
517 the same *Cellulomonadaceae* family, expressed similar enzymes for cellulose depolymerization,
518 including a cellobiohydrolase (GH48 with a C-terminal CBM2 by Bin.005), processive
519 endoglucanases (a GH9 with an N-terminal CBM4 by Bin.005 and a GH9 with a C-terminal
520 CBM2 by Bin.006) and a cellobextrin phosphorylase (GH94 by Bin.005). In addition to
521 cellulose, Bin.009 potentially degraded starch, as exemplified by a GH13_9 amylase with an N-

522 terminal CBM48 and a GT35 α -1,4-glucan phosphorylase. Similarly, Bin.005 also expressed a
523 GH13_9 amylase with an N-terminal CBM48.

524 Interestingly, Bin.038 (a Gram-negative *Prolixibacteraceae* bacterium belonging to the
525 Bacteroidota phylum), the other major lignocellulose decomposer in the consortium, utilized
526 cellulose-derived oligosaccharides by a different approach, secreting a β -glucosidase (belonging
527 to both GH3 and GH30_1) to convert cello-oligosaccharides to glucose. In addition to the β -
528 glucosidase, Bin.038 also secreted GH9 and GH44 endoglucanases (the former potentially being
529 a processive endoglucanase and the latter being a xyloglucan-specific endoglucanase) that can
530 depolymerize cellulose. Notably, Bin.038 secreted enzymes with activity towards a broad range
531 of plant cell wall components, including xyloglucan, xylan, galacto(gluco)mannan, and pectin.
532 For xyloglucan depolymerization, in addition to the family GH44 xyloglucan-specific endo- β -
533 1,4-glucanase, cleaving β -(1 \rightarrow 4)-linkages between the glucosyl units in the main chain, we
534 detected a GH31_4 α -xylosidase, cleaving the xylosyl substitutions from the β -(1 \rightarrow 4)-glucan
535 backbone, and a GH2 β -galactosidase, cleaving galactosyl substitutions linked to the xylosyl
536 substitutions. Furthermore, the genome of Bin.038 also contains a GH95 α -1,2-L-fucosidase,
537 which can cleave fucosylations in xyloglucan. While the GH95 enzyme was not detected at
538 protein level, we identified a potential PUL in the genome of Bin.038 that encodes a GH95 and
539 the SusC component of which was identified at protein level (Tables 1, S6). Regarding
540 galactoglucomannan depolymerization, some of the detected endoglucanases (GH44 and GH9)
541 may potentially be able to cleave the glucomannan backbone adjacent to glucosyl units in the
542 glucomannan backbone, while the detected GH36 α -galactosidase removes the galactosylations
543 and the GH2 β -mannosidase and the GH3 and GH30_1 β -glucosidases monomerize the
544 glucomannan-derived oligosaccharides. Bin.038 took part in pectin depolymerization, as
545 exemplified by the secreted GH78 α -rhamnosidase with an N-terminal CBM67. Furthermore,
546 Bin.038 also expressed two CE1 esterases, which most probably are xylan-specific deacetylases
547 or feruloyl esterases.

548 Regarding depolymerization of xylan, we detected several secreted xylan-depolymerizing
549 enzymes from various organisms, while we could not pinpoint any single organisms that would
550 have played an accentuated role in xylan degradation. In particular, we detected three fungal

551 GH10 (two from *N. crassa* and one from *C. higginsianum*) and two bacterial GH8 endo- β -1,4-
552 xylanases (one from Bin.063 and Bin.064 each), which can cleave the xylan backbone.
553 Moreover, we detected two CE1 esterases (one from Bin.111 and *T. thermophilus* each) in
554 addition to the two CE1 esterases by Bin.038 discussed above. Among the xylan-active enzymes,
555 we detected two enzymes that act on (4-*O*-methyl)-glucuronoyl groups that potentially crosslink
556 xylan with lignin: a GH115 (4-*O*-methyl)-glucuronidase (from Bin.139), which cleaves (4-*O*-
557 methyl)-glucuronoyl substitutions from the 2-hydroxyl groups of the xylan backbone, and a
558 CE15 (4-*O*-methyl)-D-glucuronate–lignin esterase (from *T. terrestris*), which cleaves ester bonds
559 formed between the carboxyl group of (4-*O*-methyl)-glucuronoyl units and phenolic hydroxyls in
560 lignin.

561

562 **Table 2: Carbohydrate-active enzymes detected at protein level that may take part in anaerobic woodchip**
563 **degradation and interaction between microbial species.** The table organizes the detected enzymes based on their
564 predicted activity and target substrate and shows the CAZy modules identified in the domain structure and the
565 MAGs/fungi expressing such proteins. Abbreviations: Aspfu1, *Aspergillus fumigatus*; Colhig2, *Colletotrichum*
566 *higginsianum*; Fusfu1, *Fusarium fujikuroi*; Neucr2, *Neurospora crassa*; Spoth2, *Thermothelomyces thermophilus*;
567 Thite2, *Thermothielavioides terrestris*; AA, auxiliary activity; CBM, carbohydrate-binding module; GH, glycoside
568 hydrolase; GT, glycoside transferase; PL – polysaccharide lyase; CE, carbohydrate esterase.

Substrate*	Predicted enzyme activity	CAZy annotation	MAGs/Fungi
Cellulose	Cellobiohydrolase, reducing end-acting	GH7	Spoth2
		GH48;CBM2	Bin.005, Bin.009
	Cellobiohydrolase, non-reducing end-acting	CBM2;GH6	Bin.009
	Endo- β -1,4-glucanase*	GH5_2	Bin.064
		GH6;CBM2	Bin.005, Bin.006
		GH44*	Bin.038
		(CBM30;CBM11;CBM11;GH51_3	Bin.063, Bin.064
	Endo- β -1,4-glucanase, processive	GH8**	Bin.063, Bin.064
		CBM4;GH9	Bin.005, Bin.009
		GH9;CBM2	Bin.006, Bin.009
	β -Glucosidase	GH9	Bin.038, Bin.064
		Cellobextrin phosphorylase	Bin.005, Bin.009, Bin.037
		GH94	Bin.012, Bin.030, Bin.031, Bin.038
		GH3***	
	Pyrroloquinoline quinone-dependent (glucose) dehydrogenase	GH30_1	Bin.038
		AA12	Neucr2

	Lytic polysaccharide monooxygenase	AA10;CBM2	Bin.009
	Cellobiose dehydrogenase with an iron reductase domain	AA3_1;AA8	Thite2, Aspfu1
	FAD-dependent gluco-oligosaccharide oxidase	AA7	Bin.099
	Glucose oxidase / Glucose dehydrogenase****	AA3_2	
Xyloglucan	Pyranose 2-oxidase	AA3_4	Bin.099
	(Xyloglucan-specific) endo- β -1,4-glucanase	GH44*	Bin.038
	α -Xylosidase	GH31_4	Bin.028, Bin.038
	β -Galactosidase	GH2	Bin.038, Bin.089
	Pectate lyase	PL1_7	Aspfu1
Pectin		PL9_3	Bin.013
	Pectate disaccharide-lyase / Oligogalacturonate lyase	PL22	Bin.111
	α -Rhamnosidase	CBM67;GH78	Bin.038
	Pectin methylesterase	CE8	Bin.076
	β -Mannosidase	GH2	Bin.038
Galacto(gluco)mannan	α -Galactosidase	GH36	Bin.038
	Endo- β -1,4-xylanase	GH10	Colhig2, Neucr2
		GH8	Bin.063, Bin.064,
	Acetylxyran esterase / Feruloyl esterase*****	CE1	Spoth2, Bin.038, Bin.111
	α -1,2-(4-O-methyl)-glucuronidase	GH115	Bin.139
Lignin–carbohydrate complexes	(4-O-methyl)-D-glucuronate–lignin esterase	CE15	Thite2
	Peroxidase	AA2	Bin.013
	Aryl alcohol oxidase / Aryl alcohol dehydrogenase****	AA3_2	Bin.099, Bin.112, Thite2, Colhig2
	Alcohol oxidase	AA3_3	Colhig2; Fusfu1
	NAD(P)H:quinone oxidoreductase (not secreted)	AA6	Bin.100
Starch	Amylase, 1,4- α -glucan branching enzyme	CBM48;GH13_9	Bin.005, Bin.009
	α -1,4-Glucan phosphorylase	GT35	Bin.009
Trehalose	α , α -Trehalase	GH37	Colhig2
	Trehalose-6-phosphate synthase	GT20	Bin.009
Bacterial cell wall	Peptidoglycan transferase, monofunctional	GT51	Bin.111
	Peptidoglycan transferase, bifunctional	GT51;penicillin-binding transpeptidase	Bin.099, Bin.101, Bin.111
	Peptidoglycan lytic transglycosylase	GH102	Bin.111
	<i>N</i> -Acetylgalactosaminidase	GH109	Bin.038, Bin.090
	Endo- α -1,4- <i>N</i> -acetylgalactosaminidase	GH135	Bin.099, Bin.100

(fungal exopolysaccharide)			
Chitin (fungal cell wall)	Chitinase	GH18	Bin.111
	β-Hexosaminidase	GH3	Bin.112
Protein glycosylation (N-glycans in plants)	α-Mannosidase, non-reducing end-acting	GH92	Bin.037
Glycosaminoglycans, glycoproteins	β-N-Acetylhexosaminidase	GH20	Bin.037, Bin.038
		GH179	Bin.009
Other	UDP-3-O-acyl-N-acetylglucosamine deacetylase	CE11	Bin.038, Bin.111
	Polysaccharide synthase	GT2	Bin.061, Bin.111

569 *Some enzyme-classes may also exhibit activity towards other substrates, including xyloglucans, xylans and mannans.

570 **Some enzymes in the GH8 family are endo-β-1,3-xylanases or reducing end-active xylose-releasing exo-oligoxyylanases.

571 ***Some enzymes in the GH3 family are β-xylosidases.

572 ****Some AA3_2 enzymes listed under aryl alcohol oxidases or dehydrogenases may be glucose oxidases or dehydrogenases.

573 *****Some CE1 deacetylases may also deacetylate other acetylated polysaccharides, such as mannans.

574

575

576 It is noteworthy that despite our strict control of anaerobic conditions throughout the experiment
577 (Figure S1), we detected a number of carbohydrate- or lignin-active oxidoreductases that require
578 O₂ or H₂O₂ as a co-substrate for their catalysis. Of the 30 species identified expressing
579 CAZymes, one bacterial species (Bin.099, *Giesbergeria*) and four of the five fungal species (*A.*
580 *fumigatus*, *C. higginsianum*, *F. fujikuroi*, *N. crassa*, and *T. terrestris*) expressed 11 of the 15
581 detected enzymes with known AA families and a potential role in oxidative degradation or
582 depolymerization of lignocellulosic biomass. These included the following carbohydrate-active
583 enzymes: a FAD-dependent AA7 gluco-oligosaccharide oxidase by Bin.099, two cellobiose
584 dehydrogenases with an N-terminal AA3_1 dehydrogenase and a C-terminal AA8 cytochrome
585 domain by *A. fumigatus* and *T. terrestris*, an AA12 pyrroloquinoline quinone-dependent
586 (glucose) dehydrogenase from *N. crassa*, and an AA3_4 pyranose 2-oxidase by Bin.099. In
587 addition to oxidation of cellulose-derived cello-oligosaccharides and glucose, many of these
588 enzymes could potentially serve as a redox partner of bacterial AA10 (such as the AA10 LPMO
589 by Bin.009 detected at protein level) or fungal AA9 LPMOs in cellulose depolymerization or of
590 other AA family oxidoreductases through the generation and consumption of reactive oxygen
591 species. Our analysis also revealed a number of oxidoreductases that are potentially active on
592 lignin or small lignin-derived compounds, including an AA2 peroxidase (by Bin.013), five
593 AA3_2 aryl alcohol oxidases or dehydrogenases (two AA3_2s by Bin.099 and one AA3_2 by

594 Bin.112, *C. higginsianum*, and *T. terrestris*), and two AA3_3 alcohol oxidases (by *C.*
595 *higginsianum* and *F. fujikuroi*), and an AA6 NADP(H):quinone oxidoreductase, also known as
596 2-hydroxy-1,4-benzoquinone reductase. Of these, at least two fungal AA3_2s (from *T. terrestris*
597 and *C. higginsianum*) were secreted according to SignalP-5.0. For completeness, lignin can also
598 be depolymerized by laccases (AA1) and dye-decolorizing peroxidases (DyPs)⁷¹, and although
599 many genes encoding DyPs were detected in the MAGs (e.g., four in Bin.003 and Bin.013) and
600 fungal genomes (11 in *Mycena pura*), none of these were found expressed.

601 While the detection of expressed oxidoreductases remains puzzling, others have also reported the
602 expression of similar AA enzymes in anoxia during lignocellulose deconstruction, some
603 suggesting their potential role in Fenton chemistry⁷². In any case, more targeted experiments are
604 required to prove if any of these oxidoreductases would, in fact, be active during denitrifying
605 conditions (as studied here), or if they are merely expressed due to their transcription being
606 regulated by common inducers with e.g., glycoside hydrolases.

607 Last but not least, the proteomics analysis also revealed the presence of enzymes that target
608 polysaccharides that are components of bacterial or fungal cell wall, and many of these enzymes
609 were produced by Bin.111, a Gram-negative *Microvirgula*. The proteins active against
610 peptidoglycan in bacterial cell wall from Bin.111 included a monofunctional GT51 and a
611 bifunctional GH51 peptidoglycan transferase (the latter one containing a C-terminal penicillin-
612 binding transpeptidase) and a GH102 peptidoglycan lytic transglycosylase. Furthermore, we
613 detected a GH18 chitinase active against chitin that is present in fungal cell walls. These could
614 be an indication of interaction between a Gram-negative bacterium and fungal species present in
615 the WBR. Similar GH51 peptidoglycan transferases were also detected from Bin.099 and
616 Bin.101 (one each), as well as three GH109 *N*-acetylgalactosaminidases (two by Bin.038 and one
617 Bin.090). Corroborating the potential role of these enzymes in cross-species interactions, four of
618 these peptidoglycan-active enzymes (a GT51 from Bin.101, a GH102 from Bin.111, and two
619 GH109s from Bin.038) were identified to be secreted via the classical secretion pathways
620 identified by the SignalP-5.0 server.

621

622 **3.5 Two archaeal MAGs responsible for methanogenesis**

623 While monitoring the gas composition in the head space of the anaerobic culture bottles, we
624 measured an increase of methane, after all available N had been converted to N₂ by the
625 community (data not shown). These results are consistent with the thermodynamic preference for
626 denitrification at low H₂ pressure compared to methanogenesis ^{73, 74} and previous analysis of
627 woodchip bioreactors ^{51, 54}. In the WBR, we detected 26 archaeal ASVs where 21 are potentially
628 methanogens (Table S1). All these 21 ASVs were exclusively detected in the underwater
629 samples where more permanent anoxic conditions can be expected. *Methanosarcina* was by far
630 the dominating genus, followed by *Methanospirillum* and *Methanospaerula*.

631 Using metagenomics, we were able to reconstruct only two methanogen MAGs (Bin.074 and
632 Bin.075). They were detected with low metagenomic coverage and few proteins (Figure 3), none
633 of which belonged to the methanogenesis pathways; however, the MAG abundances suggest that
634 they not only were present in the WBR but also survived in the enrichment cultures, as also
635 evident from the gas production. However, looking at the genome reconstructions, Bin.074 is a
636 *Methanospaerula* population, a genus previously classified as strictly hydrogenotrophic ⁷⁵ and
637 herein indeed showing genes supporting hydrogenotrophic methanogenesis. Bin.075
638 (*Methanosarcina*) has genes for hydrogenotrophic-, acetoclastic-, and methylotrophic
639 methanogenesis. Without detection of expressed enzymes for the methanogens, it is not possible
640 to pinpoint which methanogenic pathways that were active under these conditions, but a likely
641 scenario is depicted in Figure 4 and suggests that the degraded polysaccharides, now alcohols,
642 VFA, and sugars, are being fermented into methanol, acetate and H₂. Fermentation could be
643 detected by expressed proteins for Bin.099, Bin.104, Bin.018, Bin.038, Bin.009, and Bin.128.
644 Meanwhile, longer chain VFAs could be oxidized via β-oxidation (by Bin.111 and Bin.099) to
645 acetyl-CoA, or propionyl-CoA, releasing CO₂, which could be further converted to acetate by the
646 acetogenic Wood-Ljungdahl pathway (Bin.009). Acetate, methanol, and CO₂ is thus available for
647 methanogenesis by *Methanosarcina* and *Methanospaerula*. Due to the high level of available
648 nitrate in the WBR and the thermodynamic preference for denitrification at low H₂ pressure, as
649 well as methanogenesis inhibition by N₂O ⁷⁶, methane emissions from the WBR to the

650 atmosphere can generally be assumed to be low. To this end, Jéglot et al. showed only minimal
651 methane emissions from their woodchip bioreactors⁵¹.

652

653 4 Conclusions

654 This multi-omics investigation has highlighted prevailing microorganisms involved in
655 lignocellulose transformation within WBRs. Most community members were able to respire
656 nitrate, either through denitrification or DNRA. Still, surprisingly many MAGs did not harbor
657 the required N-reductases and thus likely utilize an alternative respiration/fermentation strategy,
658 potentially being strict anaerobic lignocellulose degraders, such as e.g. the *Prolixibacteraceae*
659 bacterium Bin.038 (UBA6024). Among the MAGs capable of denitrification or DNRA, we also
660 found several members not contributing to lignocellulose transformation but perhaps rather
661 scavenging fermentation products from other community members, such as e.g. the *Holophaga*
662 Bin.002. Yet, a large repertoire of CAZymes were expressed by multiple MAGs, targeting a
663 large variety of lignocellulose subfractions, demonstrating a broad degradation of lignocellulose
664 under denitrifying conditions. Among these denitrifying lignocellulose degraders, we find
665 *Giesbergeria*, *Cellulomonas*, *Azonexus*, and UBA5070 (*Fibrobacterota*) to be the most abundant
666 and active community members.

667 This study has presented a rich set of expressed enzymes contributing to the understanding of
668 both nitrogen and lignocellulose transformation in WBRs and may inform efforts to optimize
669 WBRs for improving water quality, protecting aquatic ecosystems, and reducing greenhouse gas
670 emissions from WBRs.

671

672 4.1 Data availability

673 Raw shotgun metagenomic data has been deposited to the European Nucleotide Archive (ENA)
674 with the accession number PRJEB73557. The mass spectrometry proteomics data have been
675 deposited to the ProteomeXchange Consortium via the PRIDE⁷⁷ partner repository with the

676 dataset identifier PXD050137. All annotated prokaryote MAGs are available publicly at
677 <https://figshare.com/projects/DENITRO-FDB/201375>.

678

679 **5 Acknowledgements**

680 This research was supported by the Novo Nordisk Foundation through grant NNF20OC0061313,
681 by the European Research Council (ERC) through a Consolidator grant (NOD-AOL,
682 101125376), and by the Research Council of Norway INFRASTRUKTUR-program grant
683 number 295910. The Galaxy server that was used for some calculations is in part funded by
684 Collaborative Research Centre 992 Medical Epigenetics (DFG grant SFB 992/1 2012) and
685 German Federal Ministry of Education and Research (BMBF grants 031 A538A/A538C RBC,
686 031L0101B/031L0101C de.NBI-epi, 031L0106 de.STAIR (de.NBI)). Parts of the computations
687 were performed on resources provided by Sigma2 – the national infrastructure for high
688 performance computing and data storage in Norway. We thank Arnaud Jéglot for field sampling
689 at the WBR in Dundelum, Denmark.

690

691

692 6 References

- 693 1. Nixon, S.W., Coastal marine eutrophication: A definition, social causes, and future concerns. *Ophelia*,
694 1995. **41**(1): p. 199-219.
- 695 2. Galloway, J.N., et al., The Nitrogen Cascade. *BioScience*, 2003. **53**(4): p. 341-356.
- 696 3. Nordström, A., et al., Microbial controls on net production of nitrous oxide in a denitrifying woodchip
697 bioreactor. *Journal of Environmental Quality*, 2021. **50**(1): p. 228-240.
- 698 4. Wilhelm, R.C., et al., Bacterial contributions to delignification and lignocellulose degradation in forest soils
699 with metagenomic and quantitative stable isotope probing. *ISME J*, 2019. **13**(2): p. 413-429.
- 700 5. Warneke, S., et al., Nitrate removal, communities of denitrifiers and adverse effects in different carbon
701 substrates for use in denitrification beds. *Water Research*, 2011. **45**(17): p. 5463-5475.
- 702 6. Bayer, E.A., et al., The cellulosomes: multienzyme machines for degradation of plant cell wall
703 polysaccharides. *Annu Rev Microbiol*, 2004. **58**: p. 521-54.
- 704 7. Naas, A.E., et al., Do rumen Bacteroidetes utilize an alternative mechanism for cellulose degradation?
705 *mBio*, 2014. **5**(4): p. e01401-14.
- 706 8. Arntzen, M., et al., Outer membrane vesicles from *Fibrobacter succinogenes* S85 contain an array of
707 carbohydrate-active enzymes with versatile polysaccharide-degrading capacity. *Environ Microbiol*, 2017.
708 **19**(7): p. 2701-2714.
- 709 9. McGuire, P.M., et al., Oxic-anoxic cycling promotes coupling between complex carbon metabolism and
710 denitrification in woodchip bioreactors. *Environ Microbiol*, 2023. **25**(9): p. 1696-1712.
- 711 10. Jéglot, A., et al., Temperature Sensitivity and Composition of Nitrate-Reducing Microbiomes from a Full-
712 Scale Woodchip Bioreactor Treating Agricultural Drainage Water. *Microorganisms*, 2021. **9**(6): p. 1331.
- 713 11. Griebelmeier, V., et al., Assessing and modeling biocatalysis in field denitrification beds reveals key
714 influencing factors for future constructions. *Water Research*, 2021. **188**: p. 116467.
- 715 12. Plauborg, F., et al., Cost effectiveness, nitrogen, and phosphorus removal in field-based woodchip
716 bioreactors treating agricultural drainage water. *Environ Monit Assess*, 2023. **195**(7): p. 849.
- 717 13. Widdel, F. and N. Pfennig, Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I.
718 Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of
719 *Desulfobacter postgatei* gen. nov., sp. nov. *Arch Microbiol*, 1981. **129**(5): p. 395-400.
- 720 14. Widdel, F., G.-W. Kohring, and F. Mayer, Studies on dissimilatory sulfate-reducing bacteria that
721 decompose fatty acids. *Archives of Microbiology*, 1983. **134**(4): p. 286-294.
- 722 15. Molstad, L., P. Dörsch, and L.R. Bakken, Robotized incubation system for monitoring gases (O₂, NO, N₂O
723 N₂) in denitrifying cultures. *J Microbiol Methods*, 2007. **71**(3): p. 202-11.
- 724 16. Li, D., et al., MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly
725 via succinct de Bruijn graph. *Bioinformatics*, 2015. **31**(10): p. 1674-6.
- 726 17. Li, H., Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics*, 2018. **34**(18): p. 3094-
727 3100.
- 728 18. Li, H., et al., The Sequence Alignment/Map format and SAMtools. *Bioinformatics*, 2009. **25**(16): p. 2078-
729 2079.
- 730 19. Kang, D.D., et al., MetaBAT, an efficient tool for accurately reconstructing single genomes from complex
731 microbial communities. *PeerJ*, 2015. **3**: p. e1165.
- 732 20. Wu, Y.W., B.A. Simmons, and S.W. Singer, MaxBin 2.0: an automated binning algorithm to recover
733 genomes from multiple metagenomic datasets. *Bioinformatics*, 2016. **32**(4): p. 605-7.
- 734 21. Olm, M.R., et al., dRep: a tool for fast and accurate genomic comparisons that enables improved genome
735 recovery from metagenomes through de-replication. *The ISME journal*, 2017. **11**(12): p. 2864-2868.
- 736 22. Chaumeil, P.-A., et al., GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database.
737 *Bioinformatics*, 2019. **36**(6): p. 1925-1927.
- 738 23. Parks, D.H., et al., CheckM: assessing the quality of microbial genomes recovered from isolates, single
739 cells, and metagenomes. *Genome Research*, 2015. **25**(7): p. 1043-1055.

740 24. Hyatt, D., et al., Prodigal: prokaryotic gene recognition and translation initiation site identification. *BMC Bioinformatics*, 2010. **11**(1): p. 119.

741 25. Quevillon, E., et al., InterProScan: protein domains identifier. *Nucleic Acids Research*, 2005. **33**(suppl_2): p. W116-W120.

742 26. Aramaki, T., et al., KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. *Bioinformatics*, 2020. **36**(7): p. 2251-2252.

743 27. Kanehisa, M., Y. Sato, and M. Kawashima, KEGG mapping tools for uncovering hidden features in biological data. *Protein Sci*, 2022. **31**(1): p. 47-53.

744 28. Yin, Y., et al., dbCAN: a web resource for automated carbohydrate-active enzyme annotation. *Nucleic Acids Res*, 2012. **40**(Web Server issue): p. W445-51.

745 29. Finn, R.D., J. Clements, and S.R. Eddy, HMMER web server: interactive sequence similarity searching. *Nucleic Acids Research*, 2011. **39**(suppl_2): p. W29-W37.

746 30. Stewart, R.D., et al., Open prediction of polysaccharide utilisation loci (PUL) in 5414 public Bacteroidetes genomes using PULpy. *bioRxiv*, 2018: p. 421024.

747 31. Martinez-Vernon, A.S., F. Farrell, and O.S. Soyer, MetQy-an R package to query metabolic functions of genes and genomes. *Bioinformatics*, 2018. **34**(23): p. 4134-4137.

748 32. Liao, Y., G.K. Smyth, and W. Shi, featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. *Bioinformatics*, 2014. **30**(7): p. 923-30.

749 33. Callahan, B.J., et al., DADA2: High-resolution sample inference from Illumina amplicon data. *Nature Methods*, 2016. **13**(7): p. 581-583.

750 34. McMurdie, P.J. and S. Holmes, phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. *PLOS ONE*, 2013. **8**(4): p. e61217.

751 35. Anderson, M.J., A new method for non-parametric multivariate analysis of variance. *Austral Ecology*, 2001. **26**(1): p. 32-46.

752 36. Nilsson, R.H., et al., The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. *Nucleic Acids Res*, 2019. **47**(D1): p. D259-d264.

753 37. Danecek, P., et al., Twelve years of SAMtools and BCFtools. *Gigascience*, 2021. **10**(2).

754 38. Kong, A.T., et al., MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics. *Nature Methods*, 2017. **14**(5): p. 513-520.

755 39. Nesvizhskii, A.I., et al., A Statistical Model for Identifying Proteins by Tandem Mass Spectrometry. *Analytical Chemistry*, 2003. **75**(17): p. 4646-4658.

756 40. Tyanova, S., et al., The Perseus computational platform for comprehensive analysis of (prote)omics data. *Nature Methods*, 2016. **13**(9): p. 731-740.

757 41. Schaefer, A., et al., Comparison of microbial communities in replicated woodchip bioreactors. *J Environ Qual*, 2022. **51**(2): p. 205-215.

758 42. Grießmeier, V. and J. Gescher, Influence of the Potential Carbon Sources for Field Denitrification Beds on Their Microbial Diversity and the Fate of Carbon and Nitrate. *Frontiers in Microbiology*, 2018. **9**: p. 1313.

759 43. Jéglot, A., et al., Isolation and characterization of psychrotolerant denitrifying bacteria for improvement of nitrate removal in woodchip bioreactors treating agricultural drainage water at low temperature. *Environmental Science: Water Research & Technology*, 2022. **8**(2): p. 396-406.

760 44. Zheng, H., et al., *Anacraspedodidymum submersum* sp. nov. (*Chaetosphaeriaceae*, *Chaetosphaerales*), a new species of freshwater hyphomycetes from southwest China. *Int J Syst Evol Microbiol*, 2021. **71**(2).

761 45. Raja, H.A., et al., Freshwater ascomycetes: *Coniochaeta gigantospora* sp. nov. based on morphological and molecular data. *Mycoscience*, 2012. **53**(5): p. 373-380.

762 46. Urbina, H. and M.C. Aime, A closer look at Sporidiobolales: Ubiquitous microbial community members of plant and food biospheres. *Mycologia*, 2018. **110**(1): p. 79-92.

763 47. Ghobad-Nejhad, M., et al., Digging Up the Roots: Taxonomic and Phylogenetic Disentanglements in *Corticaceae* s.s. (*Corticiales*, *Basidiomycota*) and Evolution of Nutritional Modes. *Frontiers in Microbiology*, 2021. **12**: p. 704802.

764 48. Grießmeier, V., K. Leberecht, and J. Gescher, NO₃⁻ removal efficiency in field denitrification beds: key controlling factors and main implications. *Environmental Microbiology Reports*, 2019. **11**(3): p. 316-329.

791 49. Heo, H., et al., Involvement of NO(3)(-) in Ecophysiological Regulation of Dissimilatory Nitrate/Nitrite
792 Reduction to Ammonium (DNRA) Is Implied by Physiological Characterization of Soil DNRA Bacteria
793 Isolated via a Colorimetric Screening Method. *Appl Environ Microbiol*, 2020. **86**(17): p. e01054-20.

794 50. van den Berg, E.M., et al., DNRA and Denitrification Coexist over a Broad Range of Acetate/N-NO₃-
795 Ratios, in a Chemostat Enrichment Culture. *Frontiers in Microbiology*, 2016. **7**: p. 1842.

796 51. Jéglot, A., et al., Nitrate removal and environmental side-effects controlled by hydraulic residence time in
797 woodchip bioreactors treating cold agricultural drainage water. *Environ Technol*, 2022: p. 1-10.

798 52. Manca, F., et al., Nitrate Removal Performance of Denitrifying Woodchip Bioreactors in Tropical
799 Climates. *Water*, 2021. **13**(24): p. 3608.

800 53. Audet, J., et al., Nitrogen removal and nitrous oxide emissions from woodchip bioreactors treating
801 agricultural drainage waters. *Ecological Engineering*, 2021. **169**: p. 106328.

802 54. Jéglot, A., et al., Microbiome Structure and Function in Woodchip Bioreactors for Nitrate Removal in
803 Agricultural Drainage Water. *Frontiers in Microbiology*, 2021. **12**: p. 678448.

804 55. Lycus, P., et al., Phenotypic and genotypic richness of denitrifiers revealed by a novel isolation strategy.
805 *ISME J*, 2017. **11**(10): p. 2219-2232.

806 56. Roco, C.A., et al., Modularity of nitrogen-oxide reducing soil bacteria: linking phenotype to genotype.
807 *Environ Microbiol*, 2017. **19**(6): p. 2507-2519.

808 57. Davis, M.P., et al., Nitrous oxide and methane production from denitrifying woodchip bioreactors at three
809 hydraulic residence times. *Journal of Environmental Management*, 2019. **242**: p. 290-297.

810 58. Keuschnig, C., et al., NO and N(2) O transformations of diverse fungi in hypoxia: evidence for anaerobic
811 respiration only in Fusarium strains. *Environ Microbiol*, 2020. **22**(6): p. 2182-2195.

812 59. Aldossari, N. and S. Ishii, Isolation of cold-adapted nitrate-reducing fungi that have potential to increase
813 nitrate removal in woodchip bioreactors. *Journal of Applied Microbiology*, 2021. **131**(1): p. 197-207.

814 60. Wood, D.E., J. Lu, and B. Langmead, Improved metagenomic analysis with Kraken 2. *Genome Biol*, 2019.
815 **20**(1): p. 257.

816 61. Zheng, J., et al., dbCAN-seq update: CAZyme gene clusters and substrates in microbiomes. *Nucleic Acids
817 Res*, 2023. **51**(D1): p. D557-D563.

818 62. Ndeh, D., et al., Complex pectin metabolism by gut bacteria reveals novel catalytic functions. *Nature*,
819 2017. **544**(7648): p. 65-70.

820 63. McBride, M.J., et al., Novel features of the polysaccharide-digesting gliding bacterium *Flavobacterium
821 johnsoniae* as revealed by genome sequence analysis. *Appl Environ Microbiol*, 2009. **75**(21): p. 6864-75.

822 64. Terrapon, N. and B. Henrissat, How do gut microbes break down dietary fiber? *Trends Biochem Sci*, 2014.
823 **39**(4): p. 156-8.

824 65. Koropatkin, N.M., et al., Starch catabolism by a prominent human gut symbiont is directed by the
825 recognition of amylose helices. *Structure*, 2008. **16**(7): p. 1105-15.

826 66. Shipman, J.A., J.E. Berleman, and A.A. Salyers, Characterization of four outer membrane proteins
827 involved in binding starch to the cell surface of *Bacteroides thetaiotaomicron*. *J Bacteriol*, 2000. **182**(19):
828 p. 5365-72.

829 67. Lapébie, P., et al., Bacteroidetes use thousands of enzyme combinations to break down glycans. *Nature
830 Communications*, 2019. **10**(1): p. 2043.

831 68. Wu, S. and S. Wu, Processivity and the Mechanisms of Processive Endoglucanases. *Appl Biochem
832 Biotechnol*, 2020. **190**(2): p. 448-463.

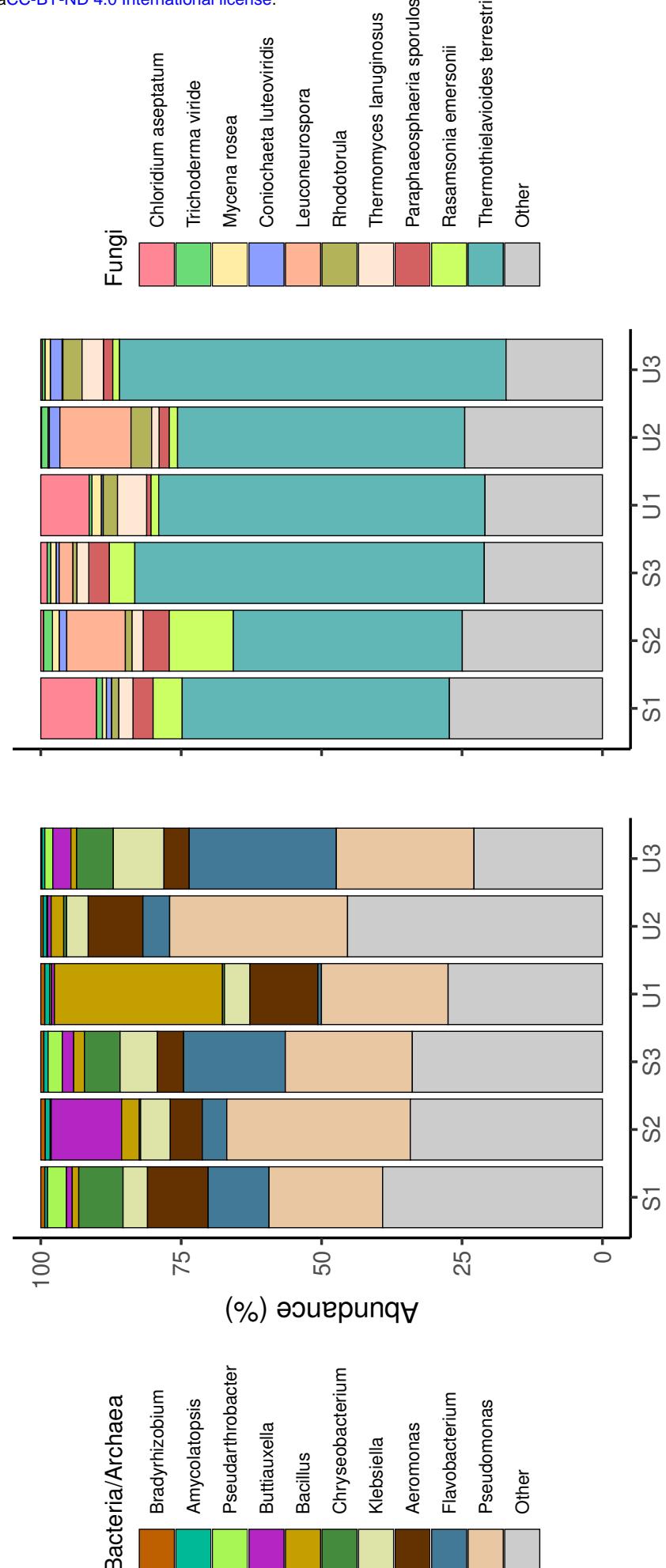
833 69. Shen, H., et al., Cellobiohydrolase B, a second exo-cellobiohydrolase from the cellulolytic bacterium
834 *Cellulomonas fimi*. *Biochemical Journal*, 1995. **311**(1): p. 67-74.

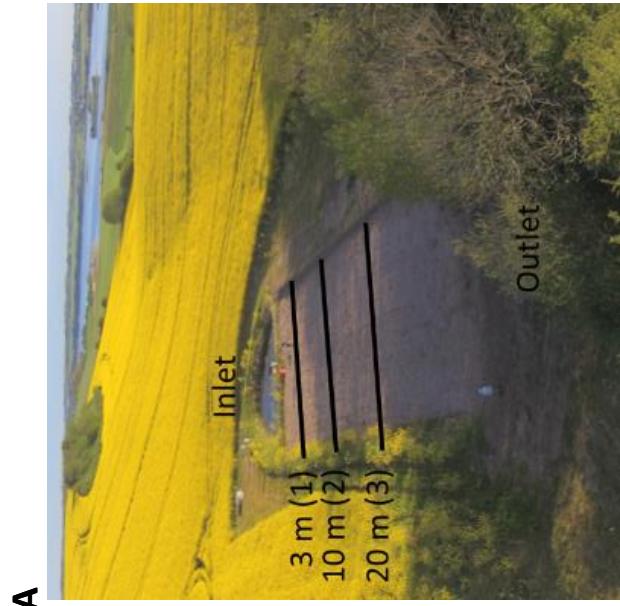
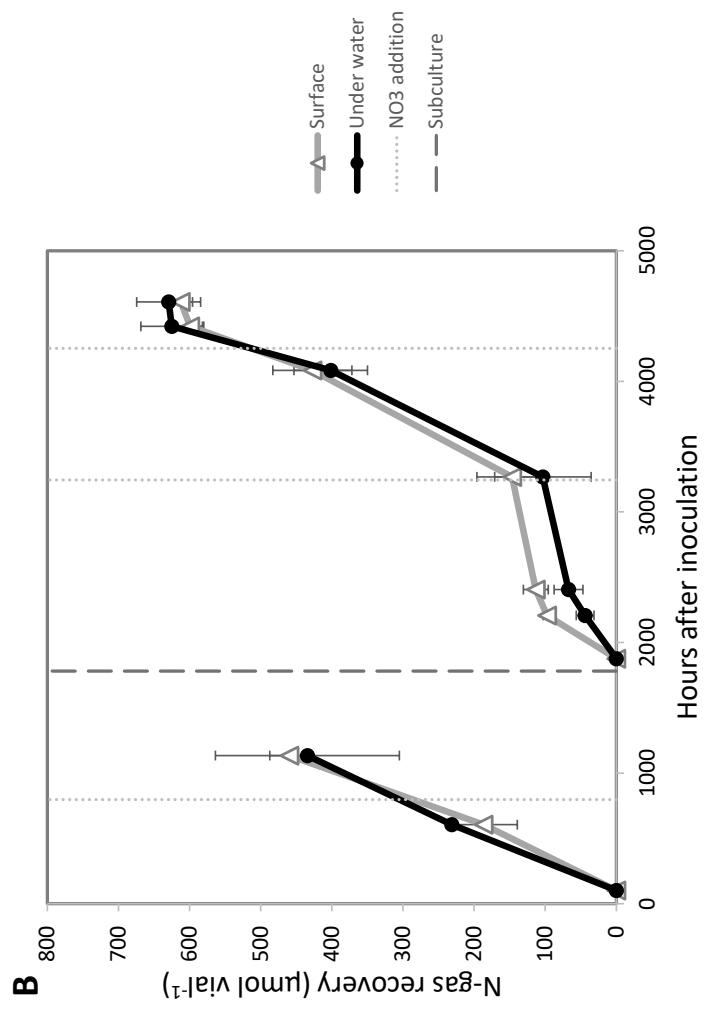
835 70. Lou, J., K.A. Dawson, and H.J. Strobel, Role of phosphorolytic cleavage in cellobiose and cellobextrin
836 metabolism by the ruminal bacterium *Prevotella ruminicola*. *Appl Environ Microbiol*, 1996. **62**(5): p. 1770-
837 3.

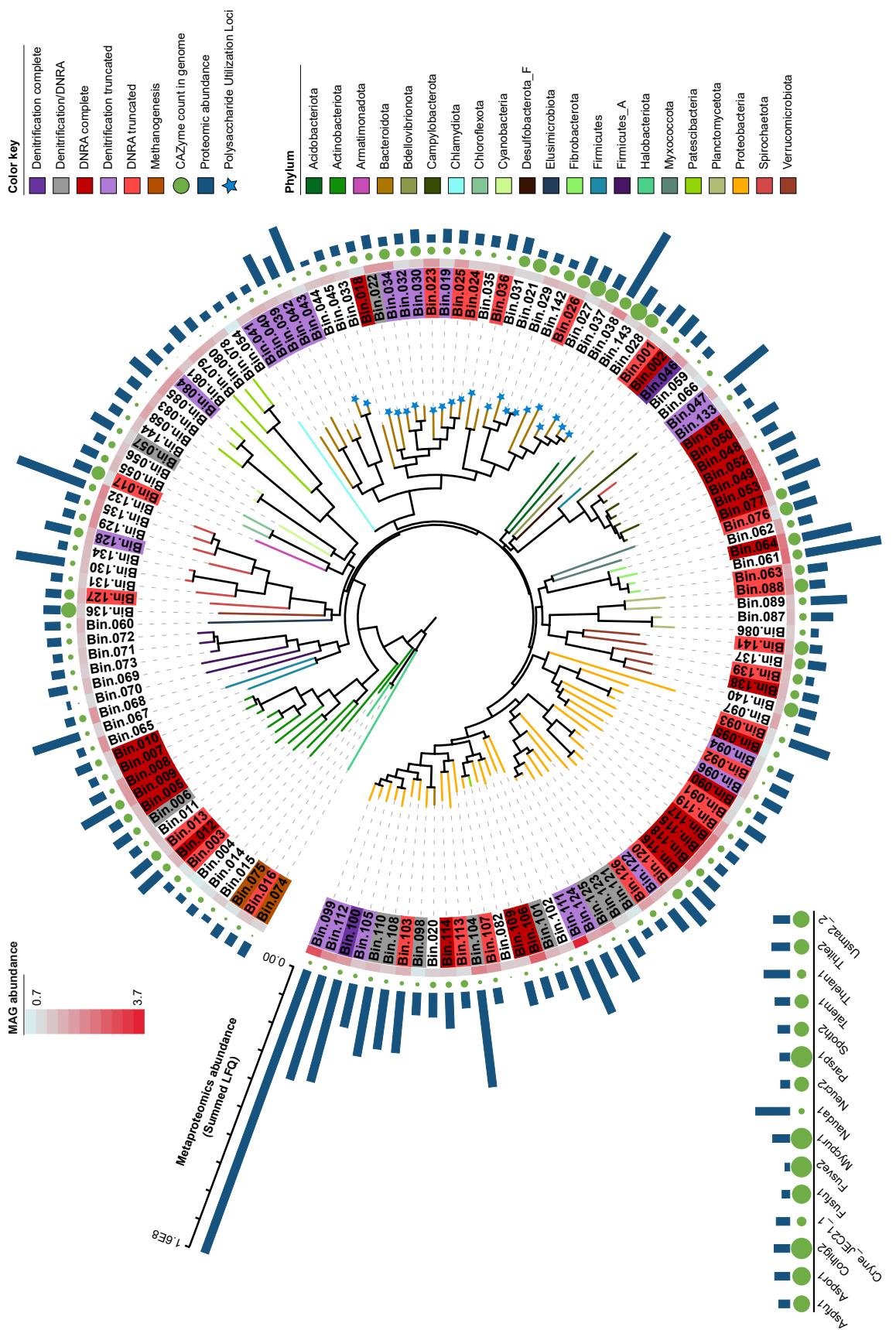
838 71. Gu, J., et al., Bacterial transformation of lignin: key enzymes and high-value products. *Biotechnology for
839 Biofuels and Bioproducts*, 2024. **17**(1): p. 2.

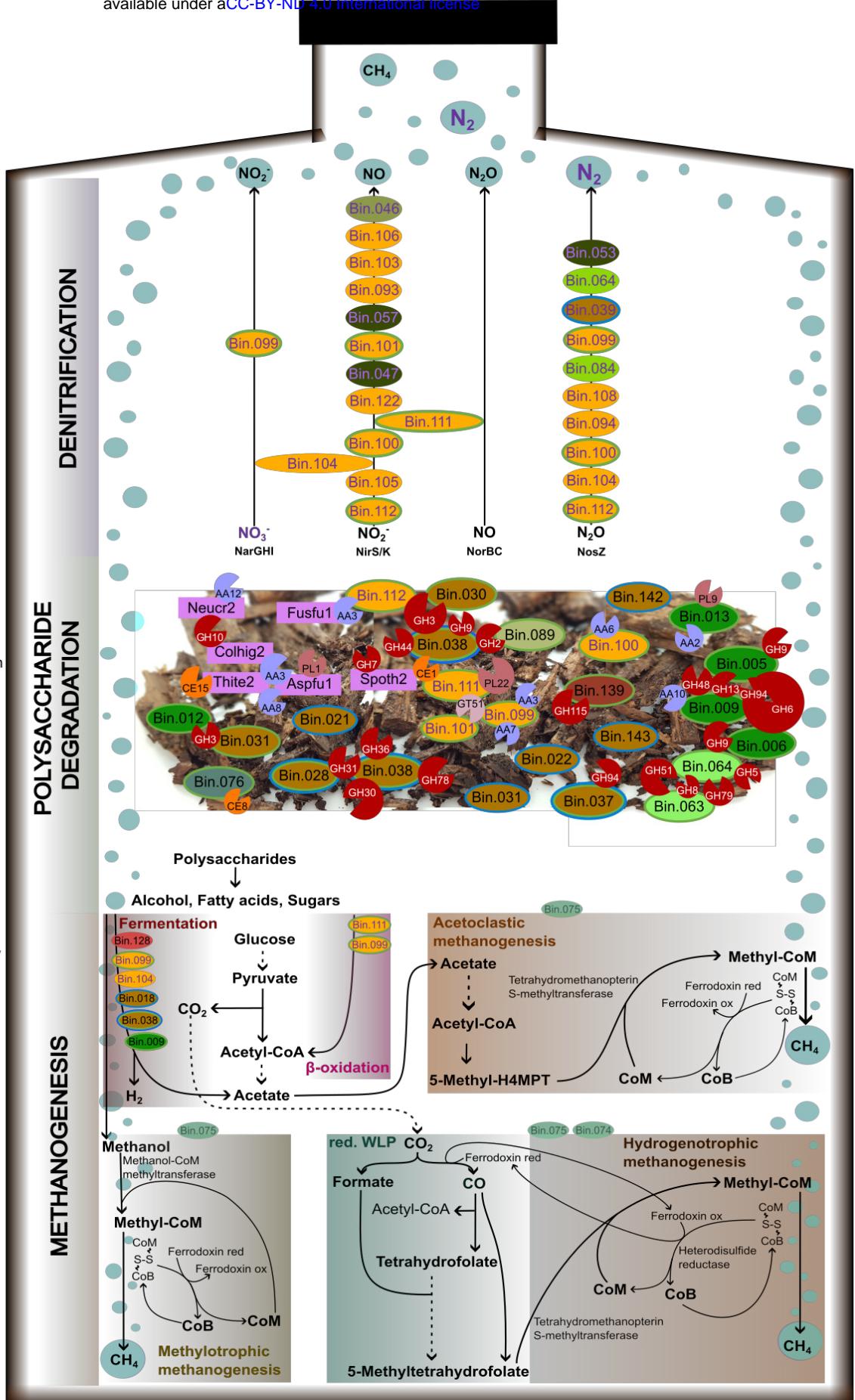
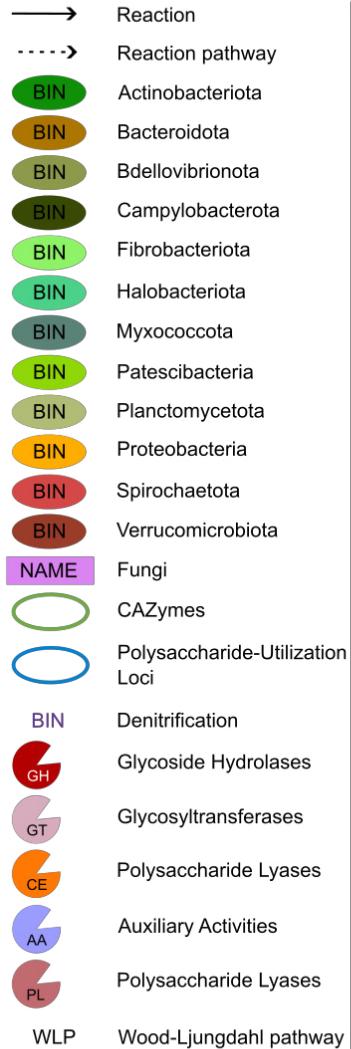
840 72. Chirania, P., et al., Metaproteomics reveals enzymatic strategies deployed by anaerobic microbiomes to
841 maintain lignocellulose deconstruction at high solids. *Nat Commun*, 2022. **13**(1): p. 3870.

842 73. Thauer, R.K., K. Jungermann, and K. Decker, Energy conservation in chemotrophic anaerobic bacteria.
843 *Bacteriological reviews*, 1977. **41**(1): p. 100-180.


844 74. Conrad, R., Contribution of hydrogen to methane production and control of hydrogen concentrations in
845 methanogenic soils and sediments. *FEMS Microbiology Ecology*, 1999. **28**(3): p. 193-202.



846 75. Cadillo-Quiroz, H., J.B. Yavitt, and S.H. Zinder, *Methanospaerula palustris* gen. nov., sp. nov., a
847 hydrogenotrophic methanogen isolated from a minerotrophic fen peatland. *Int J Syst Evol Microbiol*, 2009.
848 **59**(Pt 5): p. 928-35.


849 76. Yin, Y., et al., Nitrous oxide inhibition of methanogenesis represents an underappreciated greenhouse gas
850 emission feedback. *ISME J*, 2024. **18**(1): p. wrae027.



851 77. Perez-Riverol, Y., et al., The PRIDE database resources in 2022: a hub for mass spectrometry-based
852 proteomics evidences. *Nucleic Acids Res*, 2022. **50**(D1): p. D543-D552.

853

