

1 Generation of human appetite-regulating neurons and tanyocytes from stem cells

2
3 Zehra Abay-Nørgaard^{1*}, Anika K Müller^{1*}, Erno Hänninen^{1*}, Dylan Rausch⁴, Louise Piilgaard¹,
4 Jens Bager Christensen¹, Sofie Peeters¹, Alrik L. Schörling^{1,2}, Alison Salvador¹, Viktoriia
5 Nikulina², Yuan Li², Janko Kajtez¹, Tune H Pers⁴, Agnete Kirkeby^{1,2,3}

6
7 ¹Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Faculty of Health and
8 Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark

9 ²Department of Experimental Medical Sciences, Wallenberg Centre for Molecular Medicine
10 (WCMM) and Lund Stem Cell Centre, Lund University- SE-221 84 Lund, Sweden

11 ³Department of Neuroscience, Faculty of Health and Medical Sciences, University of
12 Copenhagen, 2200, Copenhagen, Denmark

13 ⁴Novo Nordisk Foundation Center for Basic Metabolic Research (CBMR), Faculty of Health
14 and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark

15 * These authors contributed equally

16

17 Correspondence: agnete.kirkeby@sund.ku.dk

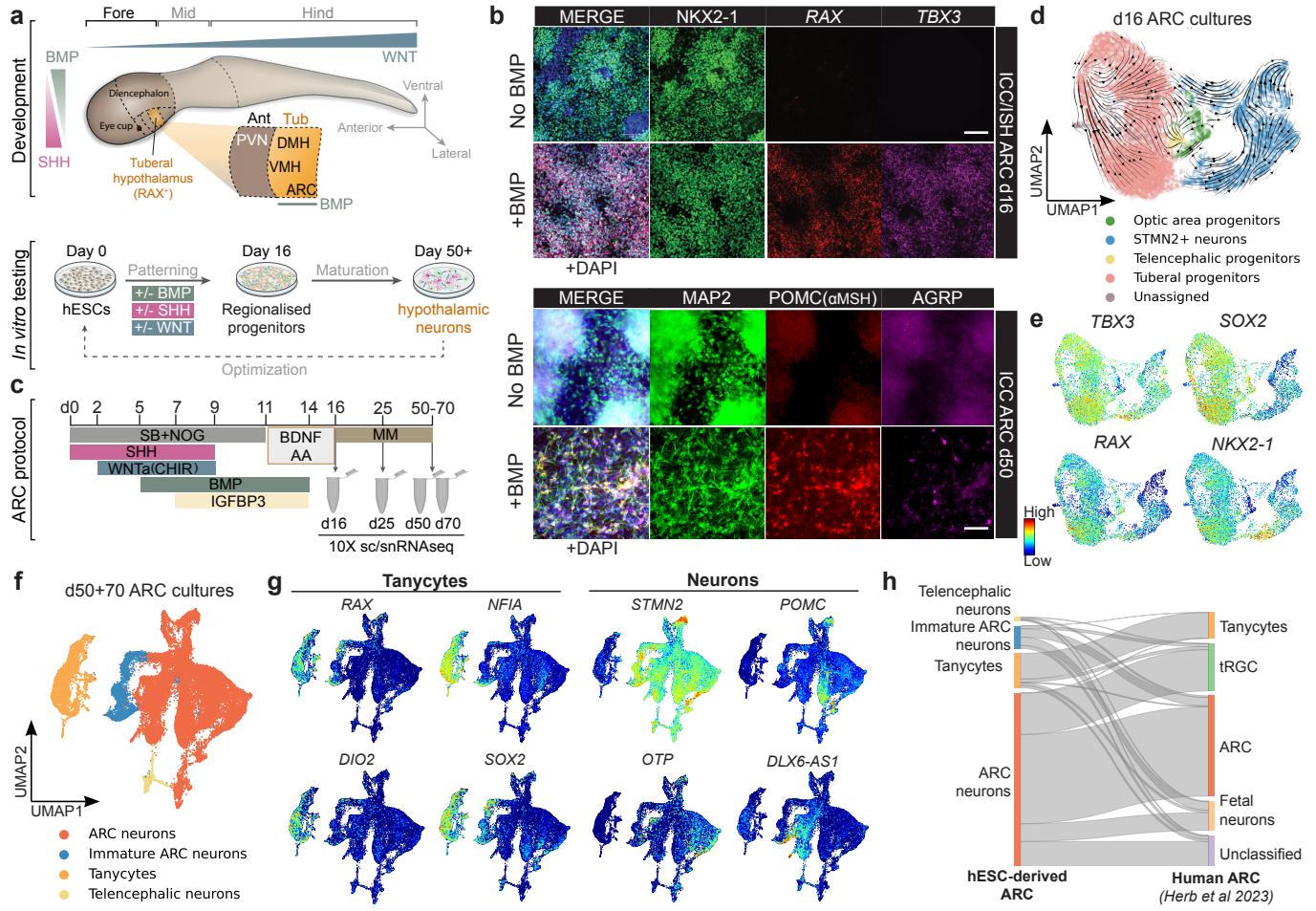
18 **Summary**

19 The balance between energy intake and expenditure is controlled by the hypothalamus, a
20 small brain region characterised by high neuronal diversity. Specifically, the arcuate nucleus
21 (ARC) and ventromedial hypothalamus (VMH) are key hypothalamic nuclei controlling appetite
22 through behavioural response to circulating humoral signals. Yet, despite their physiological
23 importance, the cellular and functional characteristics of this highly specialised neural region
24 has been studied mainly in animals due to a lack of human models. Here, we fine-tuned the
25 differentiation of human pluripotent stem cells toward the ARC and VMH hypothalamic nuclei
26 and identified key subtype-specific progenitor markers of these subregions. We demonstrate
27 that the timing for initiation and termination of bone morphogenetic protein (BMP) signalling is
28 essential for controlling subregional specification of tuberal hypothalamic progenitors along
29 the anterior-posterior axis, balancing VMH versus ARC fates. A particular population of SHH⁻
30 /NKX2.1⁺/FGF10^{high}/RAX^{high}/TBX3^{high} posterior tuberal progenitors was identified as the
31 source for generation of ARC-associated agouti-related peptide (AGRP) neurons and
32 tanycytes whilst anterior tuberal SHH⁺/NKX2.1⁺/FGF10^{low}/RAX^{low}/TBX3^{low} progenitors
33 generated VMH phenotypes including NR5A1 neurons. Upon maturation *in vitro* and in
34 xenografts, ARC-patterned progenitors gave rise to key appetite-regulating cell types including
35 those producing AGRP, prepronociceptin (PNOC), growth hormone-releasing hormone
36 (GHRH), thyrotropin-releasing hormone (TRH) and pro-opiomelanocortin (POMC), as well as
37 tanocyte glial cells. Differentiated ARC cultures showed high transcriptomic similarity to the
38 human ARC and displayed evidence of functionality by AGRP secretion and responsiveness
39 to leptin and fibroblast growth factor 1 (FGF1). In summary, our work provides insights into
40 the developmental lineages underlying hypothalamic subregional specification and enables
41 access to highly characterised human ARC and VMH cultures, which will provide novel
42 opportunities for investigating the cellular and molecular pathways triggered by obesity-
43 associated genetic variants and weight-regulating stimuli.

44 **Introduction**
45

46 Food intake and blood glucose homeostasis is heavily controlled by hypothalamic circuits,
47 especially by so-called first-order ARC neurons, AGRP and POMC, which integrate and relay
48 information about an organism's fed state to second-order neurons deeper into the
49 hypothalamus and other brain regions^{1–3}. The neighbouring VMH plays a similarly important
50 role as the satiety centre of the brain by sensing glucose levels and suppressing food intake^{4,5}.
51 In addition, non-neuronal cells, in particular tanycytes, which are specialised radial glial-like
52 cells lining the third ventricle of the ARC, play a key role in the relay of humoral cues into the
53 hypothalamus^{6–8}. Consequently, dysregulation of these hypothalamic cell populations is
54 coupled to metabolic diseases such as obesity and type 2 diabetes². In line with this, appetite-
55 regulating hormones such as leptin⁹ as well as recent appetite-lowering drugs for obesity
56 targeting the glucagon-like peptide 1 receptor (GLP1R), including semaglutide and tirzepatide,
57 are hypothesised to act on hypothalamic circuits, the mechanism of which is only partially
58 resolved^{10–13}.

59
60 While the development, cellular composition and molecular function of the hypothalamus has
61 been studied in the mouse and other animal models^{14,15}, the means to study the human
62 hypothalamus have been limited due to its inaccessibility. Consequently, functional *in vitro*-
63 derived hypothalamic neurons from human pluripotent stem cells constitute a unique tool to
64 study the molecular pathways involved in appetite regulation, obesity, and type 2 diabetes^{16,17}
65 as well as for targeted drug discovery^{18,19}. However, generating authentic cultures of
66 subregional hypothalamic neurons from stem cells remains a challenge due to the high
67 complexity of the hypothalamic nuclei. Furthermore, the lineage relationship between each
68 neural progenitor and its corresponding adult neuronal subtypes is unclear as the regional
69 anatomical partitioning during development and the occurrence of potential inter-regional
70 neuronal migration remains highly debated^{20–24}. Attempts to recreate complex hypothalamic
71 developmental patterning *in vitro* with human pluripotent stem cells (hPSCs) have generally
72 resulted in cultures of high neuronal heterogeneity containing cell types from various different
73 hypothalamic and non-hypothalamic regions, and a low yield or absence of important cells
74 types belonging to the ARC and VMH, including the key appetite-regulating AGRP,
75 prepronociceptin (PNOC), growth hormone-releasing hormone (GHRH) and NR5A1 neurons
76 as well as tanycytes^{17,25,26}. Access to reproducible and well-controlled human subregional
77 hypothalamic *in vitro* models would thereby address a critical unmet need in metabolic
78 research and allow for high-throughput studies on the cellular and molecular effects of genetic
79 variants, metabolic compounds, hormones and drug candidates relevant for obesity and
80 metabolic disease.


81
82 Here, we developed novel differentiation protocols for human pluripotent stem cell (hPSCs)
83 and showed that we could generate POMC, AGRP, GHRH, PNOC, NR5A1 and tanycyte
84 lineages by recapitulating early tuberal hypothalamic patterning events identified in the chick²⁷.
85 We found that timed addition of BMP was crucial for controlling patterning towards posterior
86 tuberal progenitors giving rise to ARC-related AGRP neurons and tanycytes versus anterior
87 tuberal progenitors giving rise to VMH-related NR5A1 neurons. We further validated the
88 functionality of our ARC cultures through calcium imaging, AGRP secretion and leptin
89 responsiveness and we confirmed authentic lineage commitment of the progenitors through
90 *in vivo* transplantation to rats. In summary, these novel human *in vitro* models of the ARC and
91 VMH nuclei provide important new insights into subregional hypothalamic development and
92 enable a novel platform for the molecular dissection of appetite control, including possibilities
93 for drug screening and large-scale genetic perturbation studies.

94

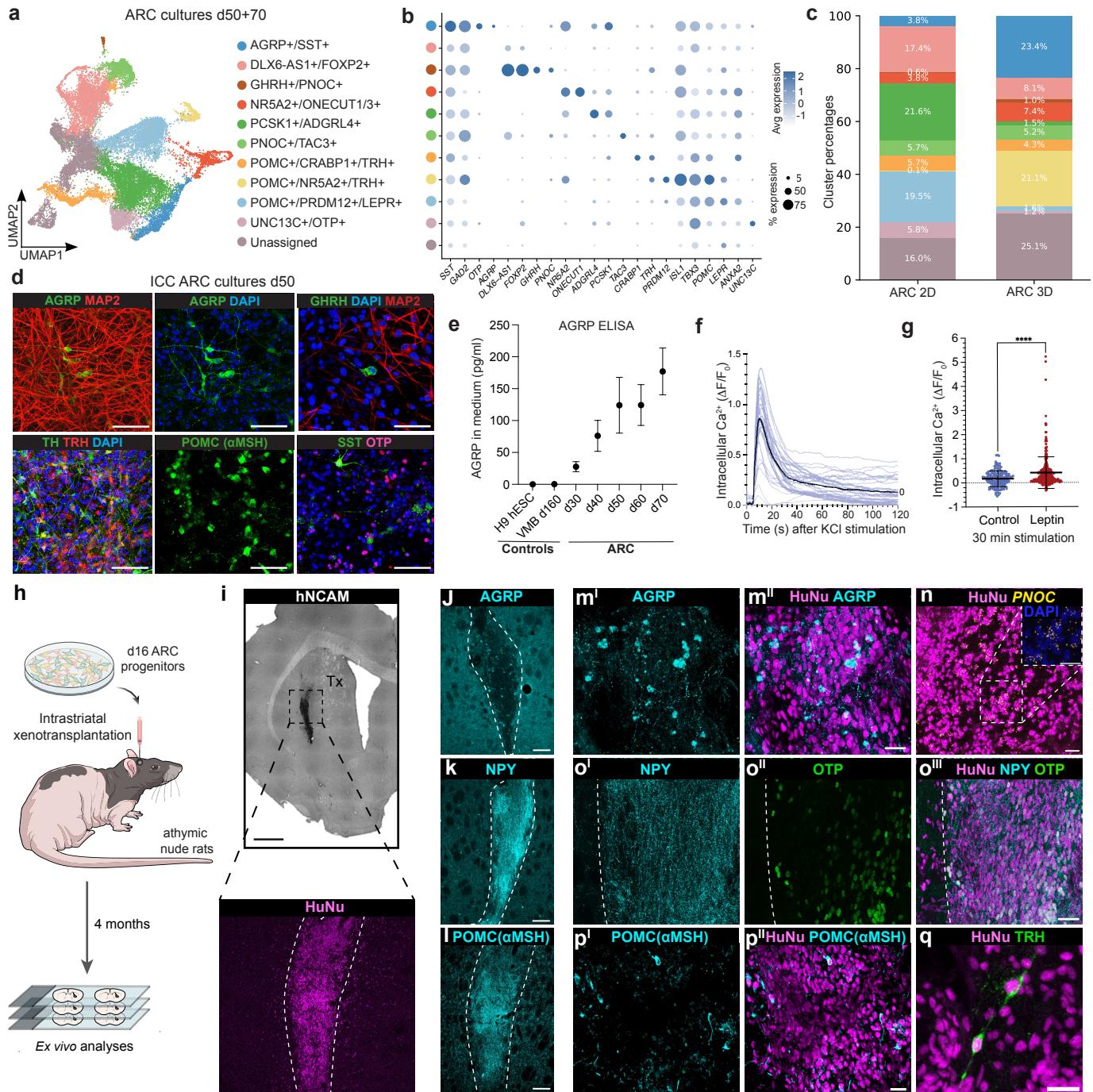
95 **Results**

96 ***In vitro* model of human ARC**

97 To produce human neurons from specific subregions of the hypothalamus, we subjected
98 human embryonic stem cells (hESCs) to a multitude of neural differentiation paradigms,
99 testing various timings and concentrations of molecules targeting the key neurodevelopmental
100 pathways WNT, BMP and sonic hedgehog (SHH) (**Fig. 1a**). Each differentiation (n = 113) was
101 analysed by quantitative reverse transcriptase PCR (qRT-PCR) using a primer panel of 64
102 genes marking the hypothalamus and its surrounding regions. To identify combinations of
103 factors that produced distinct hypothalamic fates, we applied Principal Component Analysis
104 (PCA), grouping the differentiation outcomes based on their gene expression profiles
105 (**Supplementary Fig. 1a**). Interestingly, PC1 separated samples based on the expression of
106 canonical ARC and paraventricular nucleus (PVN) genes. We next investigated how different
107 morphogens, added at various time points during differentiation, could drive regionalisation
108 towards ARC versus PVN fates (i.e., along the PC1 axis). Covariant analysis revealed that
109 early addition of CHIR99021 (an activator of canonical WNT signalling) at day 0 (d0) and late
110 addition of SHH at d6 favoured the derivation of PVN fates (**Supplementary Fig. 1b**). Based
111 on this information, we tested the validity of the analysis by designing a predicted optimal PVN
112 protocol (**Supplementary Fig. 1c**) and confirmed the generation of cultures containing PVN-
113 specific OTP/SIM1 and BRN2 progenitors, which upon maturation gave rise to thyrotropin
114 releasing hormone (TRH) and Corticotropin releasing hormone (CRH) neurons
115 (**Supplementary Fig. 1d-f**). In contrast, later addition of CHIR at d2 was predicted to favour
116 ARC specification, but only when combined with the addition of BMP (**Supplementary Fig.**

Fig. 1. hESC differentiation protocol generates NKX2-1⁺/RAX⁺/TBX3⁺ progenitors that give rise to ARC-specific neurons and tanycytes.

a, Top: Schematic representation of the developing neural tube and local growth factor gradients involved in hypothalamic patterning. Middle: Schematic representation of test conditions for *in vitro* hESC differentiation by manipulating morphogens and growth factors. **b**, Top: Combinatorial ICC (NKX2-1) and *in situ* hybridization (ISH) (RAX and TBX3) (ICC/ISH) on d16 ARC progenitors differentiated with and without BMP addition. Bottom: ICC of MAP2, POMC (αMSH) and AGRP on d50 ARC neurons differentiated with and without BMP treatment. Scale bars, 100 μM. **c**, Schematic overview of the optimised ARC differentiation protocol. Samples were taken at day (d) 16, 25, 50 and 70 for sc/snRNAseq. **d**, UMAP of scRNAseq data from d16 ARC progenitors showing annotated clusters and RNA velocity. **e**, Feature plots of highly expressed early ARC genes in the d16 scRNAseq dataset. **f**, UMAP of snRNAseq data from the ARC protocol at d50 and d70 with annotated clusters. **g**, Feature plots of marker genes for tanycytes (RAX, NFIA, DIO2, SOX2) neurons (STMN2) and ARC-specific neurons (OTP, POMC, DLX6-AS1) in the d50 and d70 snRNAseq dataset. **h**, Sankey diagram showing mapping of hESC-derived cell types from the d50+70 dataset against a compiled annotated dataset of human fetal and adult hypothalamic cells²⁸. AA, ascorbic acid; ARC, arcuate nucleus; BDNF, bone-derived neurotrophic factor; BMP, Bone morphogenic protein; DMH, dorsomedial hypothalamus; Fore, forebrain; Hind, hindbrain; Mid, midbrain; NOG, Noggin; PVN, paraventricular nucleus; SB, SB-431542; SHH, Sonic hedgehog; tRGC, transitional radial glial cells; VMH, ventromedial hypothalamus.


117 **1b**). Indeed, replicate experiments and *in situ* hybridisation (ISH) confirmed that the addition
118 of BMP in early stages of the protocol was essential for induction of key ARC transcription
119 factors *RAX* and *TBX3* (**Fig. 1b** and **Supplementary Fig. 1e**) as well as for the later
120 generation of mature neurons expressing α -melanocyte stimulating hormone (α -MSH, derived
121 from the POMC genes) and AGRP (**Fig. 1b**) – secreted neuropeptides which are centrally
122 involved in controlling food intake in mammals^{1,2}. From this information, we designed a
123 predicted optimal ARC differentiation protocol involving timed activation of SHH, WNT and
124 BMP pathways (**Fig. 1c**). We also added IGFBP3 - a developmentally secreted protein we
125 identified to be expressed in the pre- and post-mitotic populations of *TBX3*+ ARC precursors
126 in a human fetal hypothalamic dataset (**Supplementary Fig. 1g-i**)²⁸, and which appeared
127 beneficial for the generation of POMC and AGRP neurons (**Supplementary Fig. 1j**).

128
129 We next explored the cellular composition of our optimised ARC protocol cultures through
130 single cell and single nucleus RNA sequencing (sc/snRNAseq) of three biological replicates
131 at days 16, 25, 50 and 70 (**Supplementary Fig. 2a**). Analysis of the early-stage cultures at
132 d16 showed high reproducibility between replicate batches with cultures mainly composed of
133 *NKX2-1*⁺/*RAX*⁺/*TBX3*⁺ tuberal progenitors (70±1.4%, mean±SD) and postmitotic neurons
134 (23±3.7%) with minor contaminating populations of *CRABP1*⁺/*VSX2*⁺/*NR2F1*⁺ optic area
135 progenitors (3.4±2.9%), *FOXG1*⁺ telencephalic progenitors (1.3±0.3%), and some unassigned
136 cells (1.9±0.2%) (**Figure 1d,e, Supplementary Fig. 1k-m and Extended Data Table 1**).
137 Further maturation of the cells for 50 to 70 days under either 2D monolayer or 3D spheroid
138 conditions produced cultures of ARC neurons with a minor cluster of contaminating
139 telencephalic neurons and a larger cluster of non-neuronal cells expressing *RAX*, *NFIA*, *DIO2*,
140 *SOX2*, and *CRYM*, corresponding to tanycytes (**Fig. 1f,g and Supplementary Fig. 2b-d**). To
141 investigate the transcriptional similarity of our *in vitro* derived cells to the human ARC, we
142 mapped the d50+70 *in vitro* dataset to a compiled dataset of the entire human hypothalamus
143 from fetal and adult stages²⁸. This analysis showed that the hESC-derived ARC neurons
144 mapped predominantly to “ARC neurons” in the human dataset, with a subset mapping to the
145 human fetal “tRGC” (transitional radial glial cell) cluster representing early ARC progenitors
146 expressing *TBX3*, *RAX* and *SOX2* (**Figure 1h and Supplementary Fig. 2e-h**). Importantly,
147 the prospective tanycyte cluster mapped almost exclusively to “tanycytes” in the human
148 dataset, despite several other non-neuronal cells (i.e. astrocytes, pericytes, ependymal cells,
149 endothelial cells etc.) being present in the human dataset (**Supplementary Fig. 2g,h**). Less
150 than 2.1% of the hESC-derived ARC cells mapped to other neighbouring hypothalamic nuclei
151 and non-neuronal cell types from the human reference dataset (**Supplementary Fig. 2h**),
152 thereby confirming correctly specified ARC fate of our hESC-derived cultures.

153

154 **Neuronal diversity of human ARC cultures**

155 To assess the neuronal subtype composition of the hESC-derived ARC cultures, we extracted
156 the ARC neuron cluster from the d50+70 dataset and performed integration and subclustering
157 (**Fig. 2a and Supplementary Fig. 3b-d**). From this, we annotated 10 neuronal subtypes
158 associated with the ARC, including POMC, PNOC, AGRP, GHRH and TRH neurons, and we
159 confirmed the presence of several of these neuronal subtypes by immunocytochemistry (ICC)
160 in 2D and 3D cultures at d50 (**Fig. 2b-d and Supplementary Fig. 3a**). As expected from
161 mouse and human data, a subset of cells in the AGRP cluster also co-expressed the
162 neuropeptide somatostatin (SST)^{28,29} (**Supplementary Fig. 3e**). We further identified two
163 clusters of PNOC-expressing neurons, GHRH⁺/PNOC⁺ and PNOC⁺/TAC3⁺, representing
164 additional ARC neuron subtypes which in the mouse have been shown to have important
165 functions in controlling feeding behaviour³⁰. In addition to PNOC, the mature GHRH neurons
166 also co-expressed *PROX1*, *FOXP2* and the receptor for GLP1, *GLP1R* (**Supplementary**
167 **Fig.3e**) as previously described in mouse³¹. In addition to clusters like DLX-AS1⁺/FOXP2⁺ and
168 OTP⁺/UNC13C⁺, the data further revealed three subclusters of POMC neurons:
169 POMC⁺/PRDM12⁺/LEPR⁺, POMC⁺/NR5A2⁺/TRH⁺ and POMC⁺/CRABP1⁺/TRH⁺ (**Fig. 2a,b**).
170 The POMC/TRH co-expression was validated by ICC in 2D cultures (**Supplementary Fig. 3f**),
171 and this subtype was also found to co-express *GLP1R* (**Supplementary Fig.3e**). Even though
172 most neuronal subtypes were found in both 2D and 3D maturation conditions, the 3D
173 maturation was particularly beneficial for generation of AGRP neurons, with this cluster
174 comprising $23.4 \pm 1.18\%$ (mean \pm SD) of all neurons in 3D compared to $3.8 \pm 0.79\%$ in 2D (**Fig.**
175 **2c**). Another notable difference was a shift in proportions of POMC subtypes with the
176 POMC+/NR5A2+/TRH+ subtype being enriched in 3D, possibly reflecting a shift to more
177 mature phenotypes under spheroid conditions. We proceeded to perform functional
178 assessment of the ARC neuronal cultures through various assays. Analysis of the culture
179 medium by ELISA revealed AGRP peptide release from the cultures over time as the neurons
180 progressively matured (**Fig. 2e**). Furthermore, electrophysiological stimulation of the neurons
181 with potassium chloride (KCl) produced a robust response by calcium imaging, indicating that
182 the neurons were capable of responding to an action potential stimulus (**Fig. 2f**). Lastly, we
183 tested the ability of the cultures to respond to the leptin, a circulating hormone well-known to
184 regulate appetite through action on leptin receptors (LEPR) in the hypothalamus⁹. Indeed, we
185 confirmed the expression of *LEPR* in our ARC cultures (**Fig. 2b**), and we found that stimulation
186 with leptin for 30 minutes caused a significant calcium response in the cultures, indicating
187 functional leptin responsiveness (**Fig. 2g**).
188

Fig. 2. ARC progenitors mature to appetite-regulating neurons in 2D, 3D and in xenografts, and show responsiveness to leptin

a, UMAP of 'ARC neurons' cluster subsetted from day (d) 50 and d70 scRNASeq dataset (see Figure 1) with annotated clusters. **b**, Dot plot of key genes associated with ARC neuron clusters. **c**, Comparison of cluster percentages between 2D and 3D maturation. **d**, Immunocytochemistry (ICC) of 2D cultures at d50 depicting AGRP, GHRH, TRH, TH, POMC (αMSH), SST and OTP neurons. Scale bar, 50 µm. **e**, ELISA of secreted AGRP (pg/ml) detected in the culture medium (ARC: n=3 batches) compared to control (VMB, ventral midbrain organoid; hESC, human embryonic stem cells). **f**, Calcium imaging of d50 ARC cells stimulated with 50 mM KCl. Blue lines mark individual cells, black line marks average (n=35 cells). **g**, Calcium imaging of d50 ARC cultures after 30 min stimulation with 100 ng/mL leptin (control=169, leptin=304 neurons). Mann-Whitney, non-parametric test: ****p<0.0001. **h**, Schematic overview of ectopic xenotransplantation of d16 ARC progenitors into the striatum of athymic nude rats. **i**, Human graft of d16 ARC progenitors in the striatum of nude rats four months post-transplantation. Top: Human neural cell adhesion molecule (hNCAM) IHC staining. Scale bar, 1 mm. Bottom: human nuclear antigen (HuNu) immunofluorescence (IF) staining. Scale bar, 100 µm. **j-l**, IF images of AGRP (j), NPY (k) and POMC (αMSH) (l) within graft site (dotted lines). Scale bars, 100 µm. **m-q**, Close-up IF of AGRP (m-l), PNOC (n), NPY (o'), OTP (o''), POMC (p-l), and TRH (q) within the graft (with HuNu co-staining). Scale bars, 25 µm. ARC, arcuate nucleus.

189 To test the lineage fate commitment of the early d16 tuberal progenitors in our cultures, we
190 performed intracerebral xenotransplantation of d16 NKX2.1⁺/RAX⁺/TBX3⁺ cultures to the adult
191 striatum of immunodeficient athymic rats to allow the progenitors to mature in an ectopic *in*
192 *vivo* environment without exogenously provided growth factors. The human xenografts were
193 analysed at four months post-transplantation and characterised with respect to ARC neuron
194 subtypes through a combination of immunofluorescence and ISH (**Fig. 2h,i**). The transplanted
195 ARC progenitors survived and matured into AGRP, POMC, PNOC, OTP, TRH, and PNOC
196 neurons (**Fig. 2j-q**). We also observed a strong NPY fibre staining in the graft closely
197 resembling the diffuse NPY fibre innervation found in the endogenous rat ARC and PVN
198 regions, which was distinctly different from the NPY+ interneuron cell bodies found in cortex
199 and striatum (**Fig. 2k,o and Supplementary Fig. 3i**). This data confirmed that the hESC-
200 derived tuberal progenitors were committed towards ARC neuron fate already at d16 of
201 differentiation, and that the cells matured to a similar diversity of ARC neurons under *in vitro*
202 and *in vivo* conditions. In summary, we show that our tuberal progenitor have the potential to
203 develop into functional ARC-specific populations involved in energy homeostasis and appetite
204 regulation, including neurons expressing AGRP, NPY, POMC, PNOC and GHRH.
205

206 ***In vitro* derived tanycytes respond to FGF1**

207 In addition to neurons, our ARC cultures also contained a substantial population of tanycytes.
208 To investigate the developmental trajectories of the tanycyte lineage, we integrated all cells
209 from the d16 scRNASeq dataset with the tanycyte-annotated cluster from d25 and d50+70
210 (**Fig. 3a,b and Supplementary Fig 4a-d**). Pseudotime analysis showed bidirectional
211 maturation trajectories from the d16 tuberal progenitors towards either neurons or tanycytes,
212 indicating multipotential differentiation capacity of the early tuberal progenitors (**Fig. 3b-d**).
213 Investigation of gene expression patterns along the tanycyte maturation trajectory revealed a
214 gradual downregulation of *RAX* and *SOX2*, and transition through an intermediate *NOSTRIN*⁺
215 progenitor state towards mature tanycytes expressing *CRYM*, *COL25A1*, *HTR2C* and *DIO2*
216 together with the pan-glial markers *NFIA* and *NFIB* (**Fig. 3d,e**). Notably, whereas *SOX2*, *NFIA*
217 and *NFIB* were also found to be expressed in human fetal astrocytes, *RAX*, *CRYM*, *DIO2*,
218 *COL25A1* and *HTR2C* showed restricted expression to only the tanycyte population in the
219 Herb *et al.* human fetal tissue dataset (**Supplementary Fig. 4g,h**). The mature tanycytes
220 segregated into subpopulations expressing either *CRYM*, *GFPT1* or the serotonin receptor
221 *HTR2C* (**Fig. 3e**). Through ICC, we confirmed the presence of tanycytic cells labelling positive
222 for S100b and Vimentin but negative for the astrocytic marker AQP4 (**Supplementary Fig.**
223 **4e**). Stainings of four months old ARC grafts further confirmed the presence of human
224 tanycytes indicated by the co-expression of human nuclear antigen (HuNu) with *RAX*, *NFIA*
225 and Vimentin (**Fig. 3f**).

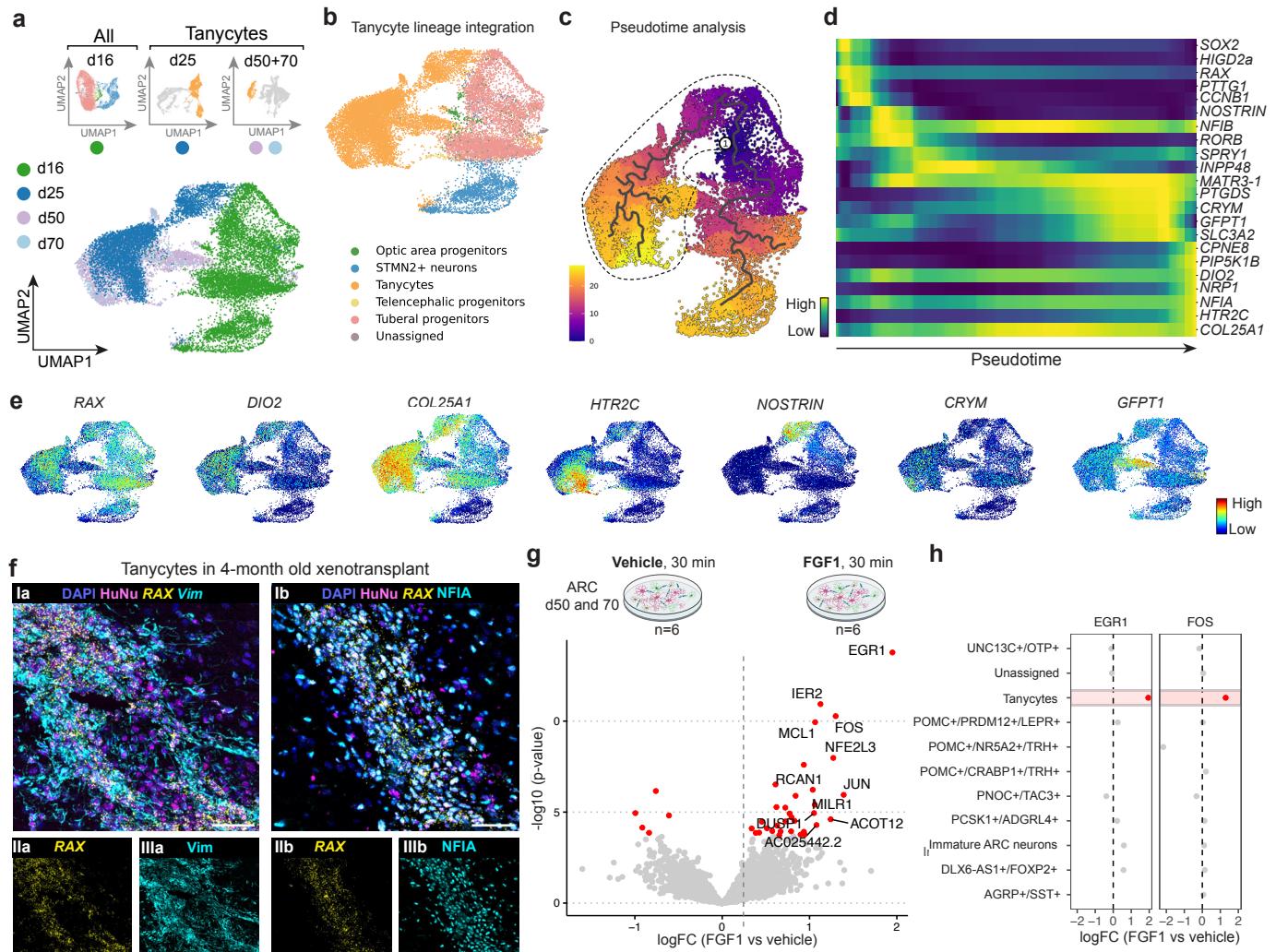
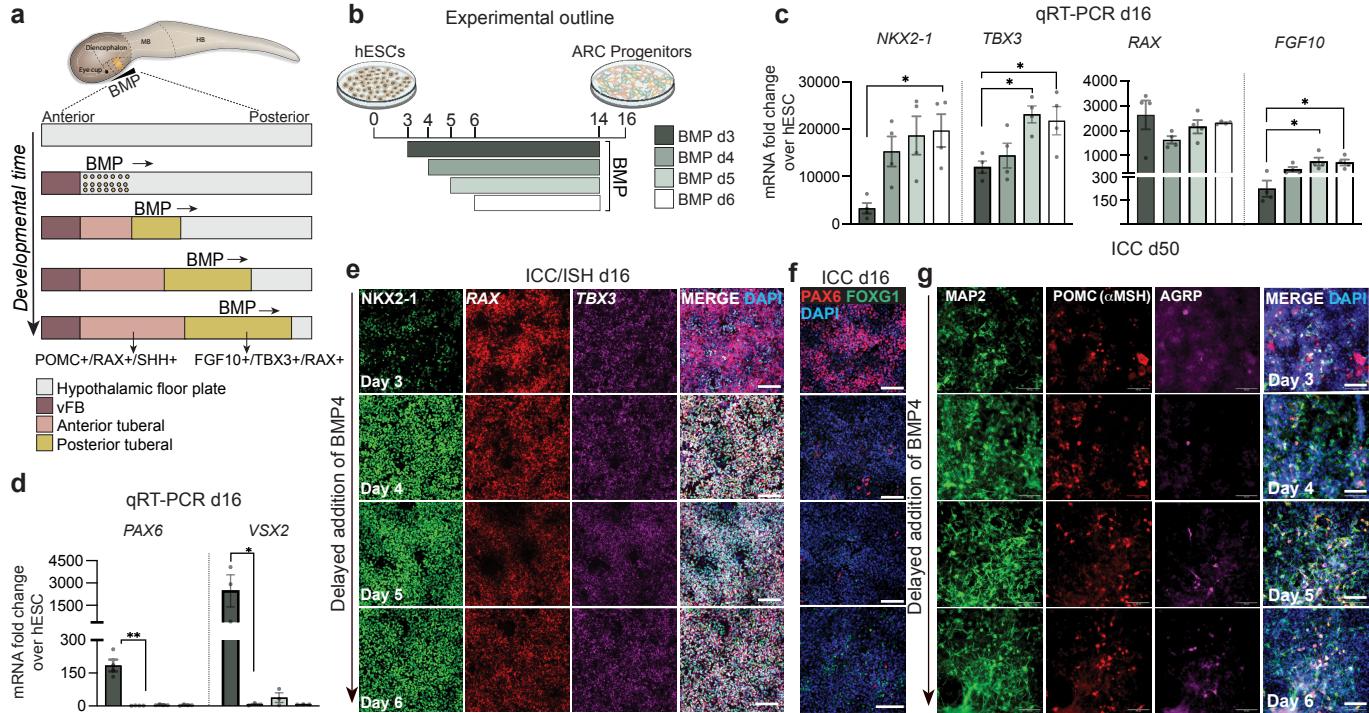


Fig. 3. ARC protocol gives rise to mature tanycytes *in vitro* and in xenografts.

a, Integration of day (d) 16 progenitor scRNASeq dataset with tanyocyte cluster of d25, 50 and 70 snRNASeq datasets for analysis of the tanyocyte lineage. **b**, Resulting integrated tanyocyte dataset with annotated clusters. **c**, Pseudotime trajectory (Monocle 3) of integrated tanyocyte dataset. (1) indicates pseudotime root. The dotted line encircles the tanyocyte lineage used in d. **d**, Gene expression of key tanyocyte and glial markers along the pseudotime trajectory. **e**, Feature plots of key markers expressed in the tanyocyte dataset. **f**, Combinatorial immunofluorescence/*in situ* hybridization (IHC/ISH) of *RAX* (IIa and IIb), Vimentin (Vim; IIIa,), and *NFIA* (IIlb) within graft site (human nuclear antigen (HuNu) co-stain [Ia and Ib]). Scale bars, 50 μ m. **g**, Top: Schematic overview of d50 and d70 arcuate nucleus (ARC) cultures treated with either vehicle or 50 ng/mL FGF1 for 30 min prior to nuclei extraction for snRNASeq (n=6 replicates per treatment, 3 from d50 and 3 from d70). Bottom: Volcano plot depicting differentially expressed genes in tanyocyte cluster after stimulation. **h**, Differential expression (vehicle vs. FGF1 stimulation) of early response genes (*EGR1* and *FOS*) across all annotated cell types in the dataset showing significant upregulation in tanyocytes in red.

226

227 Having gained direct access to human tanycytes and ARC neurons in the dish, we next
228 investigated if the cultures could recapitulate ARC-mediated responses to FGF1; a growth
229 factor which has been shown to mediate sustained remission of diabetic hyperglycaemia upon
230 injection into the brain in mouse^{32,33}. To this end, we treated d50 ARC cultures with FGF1 for
231 30 minutes and performed snRNAseq analysis of all cells in the culture (**Fig. 3g**). The treated
232 cultures showed a FGF1 response exclusive to tanycytes as evidenced by strong induction of
233 the early response genes *FOS* and *EGR1* in this cluster compared to the vehicle control (**Fig.**
234 **3h**). We thereby confirmed that the ARC protocol presented in this study produced fully mature
235 and functionally responsive human tanycytes, originating from human tuberal progenitors.


236

237 **BMP timing for fine-tuning ARC fate**

238 Previous data from the chick has uncovered that a BMP wave in the early embryo is
239 responsible for patterning of the tuberal hypothalamus into an anterior POMC⁺/RAX⁺/SHH⁺
240 domain and a posterior FGF10⁺/TBX3⁺/RAX⁺ domain²⁷ (**Fig. 4a**). Using our human stem cell
241 model, we investigated whether this developmental phenomenon could be recapitulated *in*
242 *vitro* through timed addition of BMP to the cultures between d3 and 6 of differentiation (**Fig.**
243 **4b**). In our d16 progenitors, we showed that while *RAX* was highly expressed in all conditions,
244 only the delayed addition of BMP4 at d5 or d6 induced high levels of posterior tuberal markers
245 *TBX3* and *FGF10* while early BMP4 addition at d3 caused a profound patterning shift towards
246 eye field as indicated by *PAX6* and *VSX2* expression (**Fig. 4c,d**). These findings were
247 confirmed by combinatorial ICC/ISH, which also showed that late addition of BMP4 at d6
248 resulted in contaminating cell populations of telencephalic *FOXG1*⁺ phenotype (**Fig. 4e,f**).
249 Comparison of mature d50 cultures derived from the BMP timing conditions showed that while
250 all BMP-stimulated tuberal progenitors had the potential to generate POMC neurons, only the
251 posterior fates stimulated with BMP from d5 or d6 could generate AGRP neurons (**Fig. 4g** and
252 **Supplementary Fig. 5a**). Thereby, we conclude that progenitors with high *FGF10* and *TBX3*
253 expression are required for the generation of AGRP neurons, and that initiation of BMP
254 stimulation on d5 was most optimal for obtaining such cells without eye field and telencephalic
255 contamination.

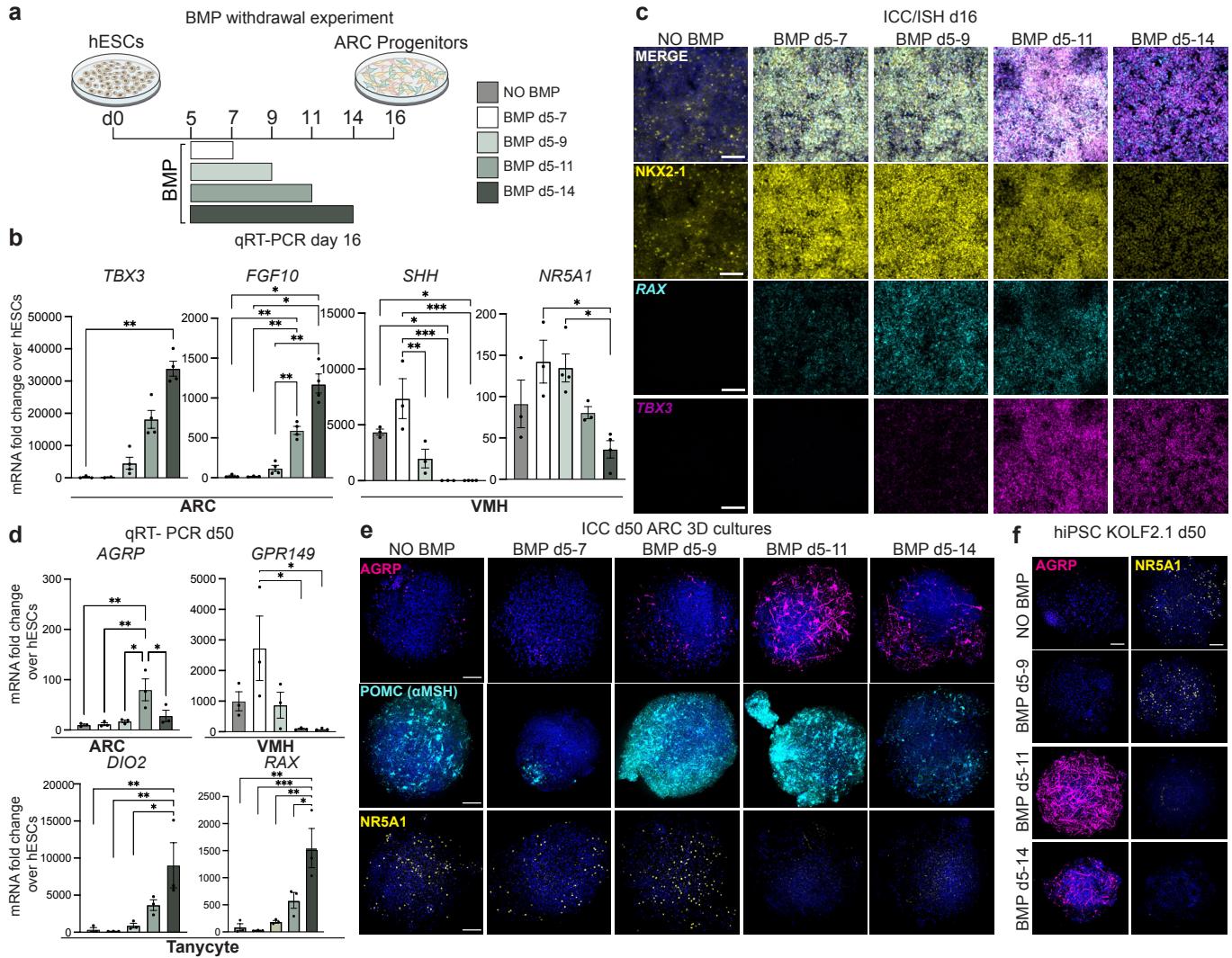
256

257 BMP7, in addition to BMP4, has been equally implicated in hypothalamic development in
258 animal models²⁰. Thus, we investigated if BMP7 could also induce early tuberal ARC
259 specification. We found no significant difference in the expression of NKX2-1, *RAX*, *TBX3*,
260 *ISL1* and *FGF10* when substituting BMP4 with BMP7, suggesting that these two factors can
261 act redundantly and with equal efficiency in the specification of early tuberal fates
262 (**Supplementary Fig. 5b,c**). Collectively, these data show that it is the timing rather than the

Fig 4. Early BMP addition induces eye field development at the expense of ARC neurons

a, Schematic representation of the BMP wave in the tuberal hypothalamus of the developing chick embryo specifying anterior (POMC⁺/SIX6⁺/SHH⁺) and posterior (FGF10⁺/TBX3⁺/RAX⁺) in a time-dependent manner. Adapted from Chinnaia *et al.*, 2023²¹. **b**, Schematic representation of the experimental design used to simulate BMP temporal patterning *in vitro*. BMP4 was added to cultures from either day (d) 3, 4, 5 or 6 until d14. **c-d**, qRT-PCR for early ARC (*NKX2-1*, *TBX3*, *RAX*, *FGF10*) and eye (*PAX6*, *VSX2*) markers from d16 ARC progenitors differentiated with BMP4 added on different starting days. Brown-Forsythe ANOVA with Dunnett's T3 multiple comparisons test: *NKX2-1*: DAY3vsDAY5 *p= 0.0443, DAY3vsDAY6 *p= 0.0141. One-way ANOVA with Tukey's multiple comparisons test: *TBX3*: DAY3vsDAY5 *p= 0.0208, DAY3vsDAY6 *p=0.0432; *FGF10*: DAY3vsDAY5 p=0.0293, DAY3vsDAY6 *p=0.0437. Kruskal-Wallis with Dunn's multiple comparisons test: *PAX6*: DAY3vsDAY4 **p= 0.0050; *VSX2*: DAY3vsDAY4 *p= 0.0140. **e**, Combinatorial immunocytochemistry (ICC) (*NKX2-1*) and *in situ* hybridisation (ISH) (*RAX*, *TBX3*) on d16 ARC cultures treated with BMP4 starting at different start days. Scale bar, 100 μm. **f**, ICC of FOXG1 and PAX6 in d16 ARC progenitors treated with BMP4 starting at different time points. Scale bar, 100 μm. **g**, ICC of d50 ARC cultures for POMC(αMSH), AGRP, and MAP2. Scale bar: 100 μm. ARC, arcuate nucleus; BMP, bone morphogenetic protein; FB, forebrain; HB, hindbrain; MB, midbrain; vFB, ventral forebrain.

263 subtype of BMP which is crucial for correct posterior tuberal induction and generation of AGRP
264 neurons *in vitro*.

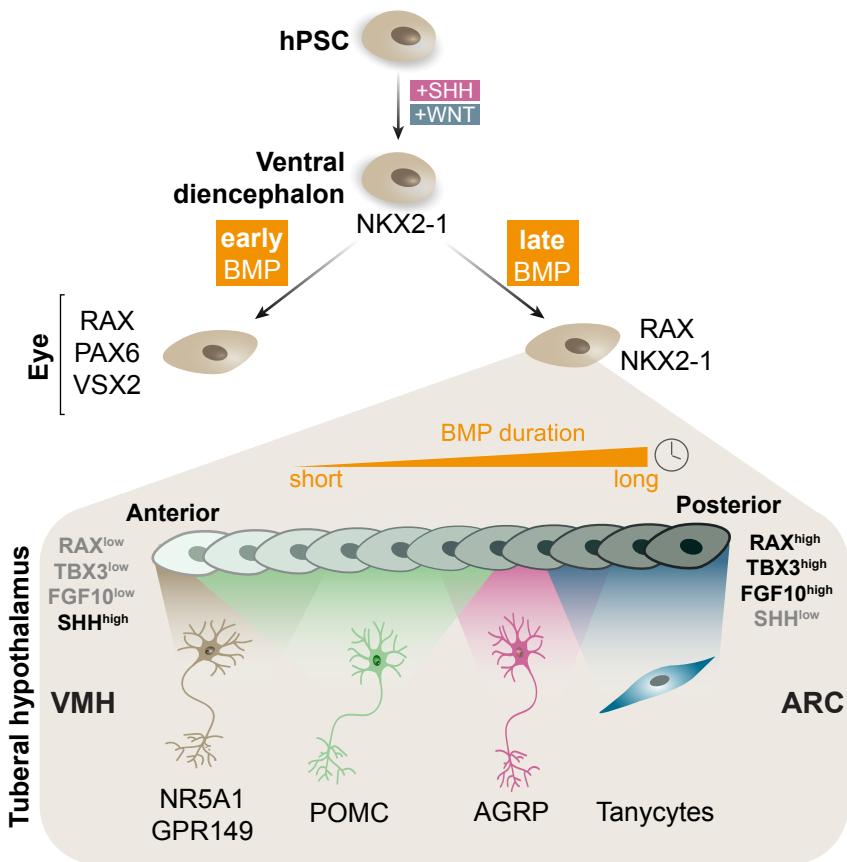

265

266 **Early BMP withdrawal generates VMH**

267 Further investigating the BMP wave hypothesis (**Fig. 4a**), we reasoned that the cells might be
268 affected not only by the onset but also by the duration of BMP signalling. A simple way to test
269 this *in vitro* was to add BMP at d5, and then withdraw it again at different timepoints between
270 d7-14, including a control condition without BMP (**Fig. 5a**). Combined ICC/ISH of the
271 progenitors at d16 showed that only conditions where BMP was kept in the medium until d11
272 or d14 displayed high expression of *TBX3*, which is a downstream target of BMP (**Fig. 5b,c**).
273 In contrast, earlier withdrawal of BMP4 at d7 or d9 caused a gradual decrease in *TBX3* and
274 *RAX* expression levels (**Fig. 5c** and **Supplementary Fig. 6a**). The posterior marker *FGF10*
275 was also significantly reduced in the shorter BMP treatment conditions, while the anterior
276 marker *SHH* was upregulated (**Fig. 5b**). Analysis of the same BMP withdrawal conditions at
277 d50 showed that while the posterior progenitors receiving BMP4 from d5-11 or d5-14 were
278 capable of generating ARC-related AGRP and TRH neurons, the anterior progenitors
279 receiving shorter BMP stimulation (d5-7 or d5-9) were largely devoid of these neuronal
280 subtypes (**Fig. 5d,e** and **Supplementary Fig. 6b,c**). We further found that the longest BMP4
281 treatment (d5-14), generating the most posterior tuberal fates, induced the highest expression
282 of ARC tanycyte markers *DIO2* and *RAX* (**Fig. 5d**). In contrast, the anterior conditions
283 displayed characteristic features of the neighbouring VMH nucleus as evidenced by the
284 expression of VMH markers *SOX14*, *GPR149* and *NR5A1* (**Fig. 5d,e**). In contrast, *PRDM12*
285 and *POMC/αMSH* expression was found in a broader range of BMP conditions, including also
286 in the condition where no BMP was added (**Fig. 5e** and **Supplementary Fig. 6b**), indicating
287 a broader developmental origin of POMC-expressing neurons. To investigate robustness of
288 the findings across both hESC and human induced pluripotent stem cell (hiPSC) lines, we
289 replicated the BMP withdrawal experiment in a widely used induced pluripotent stem cell
290 (hiPSC) line, KOLF2.1. This data from a separate hPSC line confirmed that only posterior
291 tuberal progenitors generated by prolonged BMP stimulation had the capacity to generate
292 AGRP neurons whereas shorter BMP treatment (d5-9) generated *NR5A1*⁺ VMH cells (**Fig. 5f**
293 and **Supplementary Fig. 6b-d**).

294

295 In summary, we show that by manipulating the timing and duration of BMP stimulation, we
296 could mimic the anterior-to-posterior BMP wave that has been shown to pattern distinct areas
297 along the hypothalamic floorplate in the tuberal hypothalamus of the chick²⁷. Through this
298 approach, we were able to control subregional patterning of human pluripotent cells into either
299 anterior *SHH*⁺/*SOX14*⁺/*NR5A1*⁺ VMH progenitors or posterior *RAX*⁺/*TBX3*⁺/*FGF10*⁺ ARC


Fig 5: BMP from d5-11 is ideal for generation of posterior tuberal-derived AGRP neurons. **a**, Schematic representation of the experimental design used to simulate BMP temporal withdrawal *in vitro*. BMP4 was added to cultures from day (d) 5 to either d7, 9, 11, or 14 or omitted (neg. control). **b**, qRT-PCR of early posterior (*TBX3*, *FGF10*) and anterior (*SHH*, *NR5A1*) tuberal markers in d16 ARC progenitors differentiated with different termination days of BMP4 treatment. Kruskal-Wallis with Dunn's multiple comparisons test: *TBX3*: noBMPvsd5-14 **p=0.0088. Brown-Forsythe ANOVA with Dunnett's T3 multiple comparisons test: *FGF10*: noBMPvsd5-14 *p=0.0125, d5-7vsd5-14 *p=0.0122, noBMPvsd5-11 **p=0.0079, d5-9vsd5-14 **p=0.0069, d5-9vsd5-11 **p=0.0021, d5-7vsd5-11 **p=0.0072. One-way ANOVA with Tukey's multiple comparisons test: *SHH*: noBMPvsd5-14 *p=0.0180, d5-7vsd5-14 ***p=0.0003, noBMPvsd5-11 *p=0.0272, d5-7vsd5-11 ***p=0.0006, d5-7vsd5-9 **p=0.0068; *NR5A1*: d5-7vsd5-14 *p=0.0115, d5-9vsd5-14 *p=0.0112. **c**, Combinatorial immunocytochemistry (ICC) (NKX2-1) and in situ hybridisation (ISH) (RAX, TBX3) on d16 ARC cultures with different days of BMP4 withdrawal. Scale bars, 100 µm. **d**, qRT-PCR of d50 ARC cultures with markers for ARC (AGRP), VMH (GPR149), and tanyocytes (DIO2, RAX). One-way ANOVA with Tukey's multiple comparisons test: *AGRP*: noBMPvsd5-11 **p=0.0086, d5-7vsd5-11 **p=0.0098, d5-9vsd5-11 *p=0.0173, d5-11vsd5-14 *p=0.0493; *GPR149*: d5-7vsd5-14 *p=0.0335, d5-7vsd5-11 *p=0.0340; *DIO2*: noBMPvsd5-14 **p=0.0100, d5-7vsd5-14 **p=0.0084, d5-9vsd5-14 *p=0.0150; *RAX*: noBMPvsd5-14 **p=0.0012, d5-7vsd5-14 ***p=0.0009, d5-9vsd5-14 **p=0.0021, d5-11vsd5-14 *p=0.207. **e**, ICC of AGRP, POMC(αMSH), and VMH marker NR5A1 in d50 ARC 3D cultures of BMP withdrawal experiment. Scale bars, 100 µm. **f**, BMP withdrawal experiment performed using a human induced pluripotent stem cell (hiPSC) line (KOLF2.1). ICC of ARC marker, AGRP, and VMH marker, NR5A1, in d50 ARC 3D cultures. Scale bars, 100 µm.

300 progenitors giving rise to AGRP neurons. Across two different hPSC lines, BMP stimulation
301 from d5-11 proved to be the ideal condition for generating ARC cultures enriched for AGRP
302 neurons. In line with what has been suggested from the chick²⁷, our data further suggests that
303 human tanycytes arise from posterior FGF10⁺ tuberal progenitors, potentially even more
304 posterior than the progenitors giving rise to AGRP neurons (**Fig. 6**).
305

306 **Discussion**

307 The generation of stem cell-derived *in vitro* models of the hypothalamus has been challenged
308 by a lack of knowledge on subregional lineage trajectories and of specific markers identifying
309 lineage-committed progenitors. While a few hypothalamic lineages have been tracked through
310 lineage fate mapping^{34,35}, the developmental origin of most hypothalamic subtypes is still
311 unaccounted for, and speculative presumptions on progenitor-to-neuron lineages have been
312 based mainly on anatomical gene expression patterns. *In vitro* stem cell models can fill this
313 gap by allowing longitudinal access to individual lineages without the confounding effects of
314 anatomical folding and inter-regional migration that can occur in the hypothalamus during
315 development^{36,37}. Through data-driven protocol optimisation we show here that we could
316 successfully optimise protocols towards PVN versus ARC fates, an approach which is
317 applicable to generate future protocols towards other regions of the hypothalamus in a similar
318 manner. This data showed us that a posterior tuberal combinatorial expression profile of
319 NKX2-1, TBX3 and RAX was required for the derivation of key ARC lineages, including AGRP,
320 PNOC and tanycyte subtypes. Whilst previous differentiation protocols have yielded high
321 purity of NKX2-1 expressing progenitors, they have been heterogenous in their sub-regional
322 fates with the highest reported purity being 35% for RAX¹⁷ and 10% for TBX3¹⁶. In line with
323 our findings showing a broader developmental origin of POMC-expressing neurons, these
324 previous protocols have generated mainly POMC neurons, but lacked the presence of other
325 important ARC-derived cell types such as AGRP and PNOC neurons, as well as tanycytes.
326

327 Here, we could generate such specific ARC cell types through both *in vitro* and *in vivo*
328 xenograft maturation of lineage-committed d16 posterior tuberal progenitors, and we further
329 validated the transcriptional profile of the mature neurons and tanycytes against human
330 arcuate nucleus snRNAseq data. We identified several subtypes of human POMC neurons,
331 including two canonical POMC clusters, namely POMC⁺/NR5A2⁺/TRH⁺ and
332 POMC⁺/PRDM12⁺/LEPR⁺, enriched in 3D and 2D, respectively. Both subtypes expressed high
333 levels of *PRDM12* and *LEPR*, likely corresponding to the well-characterised murine POMC
334 neurons known to regulate energy and blood glucose homeostasis^{2,38,39}. We further validated
335 our model by showing that a subset of the POMC⁺/LEPR⁺/PRDM12⁺ population also co-

Fig 6. Anteroposterior patterning of the tuberal hypothalamus is dependent on BMP

WNT and SHH activation together with dual SMAD inhibition for neural induction patterns human pluripotent stem cells (hPSC) towards ventral diencephalic fate (NKX2-1⁺). Early onset of BMP induces optic fate (PAX6, VSX2, RAX) whereas later BMP generates NKX2-1⁺/RAX⁺ hypothalamic progenitors. These tuberal hypothalamic progenitors can be patterned towards an anterior versus posterior fate depending on the duration of BMP exposure. Early withdrawal of BMP generates anterior progenitors with high expression of SHH and low expression of RAX/TBX3/FGF10. In contrast, longer exposure to BMP induces high RAX, TBX3 and FGF10 expression and downregulates SHH. The most anterior tuberal progenitors give rise to VMH populations defined by NR5A1 and GPR149. Within the ARC-committed cells, the more anterior populations generate high numbers of POMC neurons whereas AGRP neurons and tanyctyes can only develop from the more posterior regions with long BMP exposure.

336 expressed *NR5A2*, consistent with data from the mouse⁴⁰. Moreover, we found multiple ARC
337 populations expressing *PNOC*, including the *GHRH*⁺/*PNOC*⁺ cluster as well as a
338 *PNOC*⁺/*TAC3*⁺ cluster. These ARC *PNOC*-expressing neurons showed similarities to a
339 recently discovered GABAergic *PNOC* population in the mouse, which has been shown to
340 promote food intake when activated^{29,30,41}.

341

342 The derivation of the human ARC lineage was highly dependent on the timing of BMP
343 stimulation, comparable to the anterior-to-posterior BMP wave which has been identified in
344 the chick tuberal hypothalamus²⁷. Whilst sequential addition of BMP has been employed to
345 study neural tube patterning of the dorsoventral axis in an *in vitro* mouse ESC differentiation
346 system⁴², its application in human ARC-oriented differentiation has not previously been
347 explored. As in the chick^{27,43}, we found that the induction of *TBX3* by BMP was essential for
348 downregulation of *SHH* and upregulation of *FGF10* to obtain correctly patterned posterior
349 tuberal hypothalamic fates. While the study in the chick did not uncover the resulting adult
350 hypothalamic nuclei or neuronal subtypes arising from each tuberal progenitor domain, our
351 human *in vitro* system demonstrates that the anterior to posterior tuberal progenitor domains
352 are likely to underlie the developmental origins of the VMH and the ARC, respectively. We
353 further show that it is possible to fine-tune *in vitro* patterning with BMP timing to a degree
354 where we could enrich the ARC cultures for either AGRP or tanycyte lineages, indicating that
355 tanycytes are derived from a tuberal domain which is posterior to that giving rise to AGRP
356 neurons. These findings corroborate indicative data from the chick showing that *FGF10*⁺
357 posterior tuberal progenitors at late developmental stages upregulate tanycytic markers²⁷.
358 Although the *in vitro* derived tanycytes expressed several mature tanycyte markers, we were
359 not able to identify equivalents to the α or β tanycyte subtypes that have been identified in the
360 mouse⁴⁴. It is conceivable that region-specific spatial cues along the 3rd ventricle *in vivo* are
361 required to obtain distinct α and β tanycytic identity. Also, tanycyte subclassification has not
362 been transcriptomically characterised in the human, so it is uncertain if subtype-specific
363 markers are conserved between mouse and human. We further leveraged our cultures for
364 functional testing and provided evidence from a human perspective to support previous data
365 from the mouse identifying tanycytes as the primary responders to *FGF1* in the adult
366 hypothalamus^{33,45}.

367

368 In sum, our novel protocol and proof-of-concept functional experiments provide a foundation
369 for efficient screening of molecular effects of biological and pharmacological molecules on
370 human subtype-specific hypothalamic functions. We have developed that system by applying
371 developmental insights from model organisms to fine-tune protocols for the directed

372 subregional differentiation of hypothalamic fates from human stem cells. Access to *in vitro*
373 models of this type will enable detailed investigation of the cellular and molecular responses
374 to relevant nutrients, hormones and drug candidates, as well as CRISPR-based perturbation
375 screens of obesity-associated genetic loci, to identify and characterise hypothalamic energy
376 homeostatic pathways in humans.

377

378 **Reporting summary**

379 Further information on research design is available in the Nature Portfolio Reporting Summary
380 linked to this article.

381

382 **Acknowledgements**

383 We want to especially thank Helle Lilja-Fischer, Kristoffer L. Egerod and the Single-Cell Omics
384 platform at the Novo Nordisk Foundation Center for Basic Metabolic Research (CBMR) for
385 technical support on scRNASeq and snRNASeq experiments, the Microscopy and Genomics
386 platforms at reNEW Copenhagen and Arun Thiruvalluvan for help with imaging, Jette Pia
387 Larsen and Sonia Araujo for technical assistance, Lorenzo Fedrizzi for cell culture
388 maintenance and Gaurav Rathore for advice on bioinformatic analysis. This study was
389 supported by the Danish Research Council (grant no. 0169-00073B), the European Union
390 (H2020, NSC-Reconstruct GA no 874758), the Lundbeck Foundation (R350-2020-963 and
391 R380-2021-1267) and the Knut and Alice Wallenberg Foundation. The Novo Nordisk
392 Foundation Center for Stem Cell Medicine (reNEW) and Center for Basic Metabolic Research
393 (CBMR) are supported by donations from the Novo Nordisk Foundation (Grant number
394 NNF21CC0073729 and NNF23SA0084103).

395

396 **Competing interests**

397 AK is the owner of Kirkeby Cell Therapy APS and performs paid consultancy for Novo Nordisk
398 A/S, Somite Therapeutics and CRM Nordic. AK, ZA and JBC are co-inventors on submitted
399 patent applications related to the generation of human hypothalamic cell types from stem cells.
400 THP has previously received funding from Novo Nordisk A/S for conducting research.

401

402 **Author contributions**

403 AK, ZA, AKM and EH conceived the study. ZA, AKM, JBC, VN and SP performed the *in vitro*
404 differentiations and downstream analyses. EH, DR and YL performed all bioinformatic
405 analysis. AS and ALS performed *in vivo* transplantation of cells and LP did analysis of rat brain
406 sections. JK performed the calcium imaging. ZA, AKM, SP, JBC collected the data and AK,
407 AKM, ZA and EH wrote the manuscript with input from DR and THP.

408

409 **Ethics declaration**

410 This study uses previously derived hESC and hiPSC cell lines RC17 and KOLF2.1,
411 respectively. The RC17 and KOLF2.1 cell lines have been derived under local ethical approval
412 at the original derivation sites and with informed consent from donors. No new hESC or hiPSC
413 lines were derived in this study. The Kirkeby lab holds a relevant ethical approval to work with
414 hPSC lines (H-21043866). Xenotransplantation studies to rats were approved by a local
415 animal research committee and performed under animal ethics license 2022-15-0201-01236.

416

417

418

419 **References**

420 1. Brüning, J. C. & Fenselau, H. Integrative neurocircuits that control metabolism and food
421 intake. *Science* **381**, eabl7398 (2023).

422 2. Myers, M. G., Affinati, A. H., Richardson, N. & Schwartz, M. W. Central nervous system
423 regulation of organismal energy and glucose homeostasis. *Nat Metab* **3**, 737–750 (2021).

424 3. Saper, C. B. & Lowell, B. B. The hypothalamus. *Current Biology* **24**, R1111–R1116 (2014).

425 4. Zhang, J., Chen, D., Sweeney, P. & Yang, Y. An excitatory ventromedial hypothalamus to
426 paraventricular thalamus circuit that suppresses food intake. *Nature Communications* **11**,
427 6326 (2020).

428 5. Tu, L., Fukuda, M., Tong, Q. & Xu, Y. The ventromedial hypothalamic nucleus: watchdog
429 of whole-body glucose homeostasis. *Cell Biosci* **12**, 71 (2022).

430 6. Prevot, V. *et al.* The Versatile Tanyocyte: A Hypothalamic Integrator of Reproduction and
431 Energy Metabolism. *Endocrine Reviews* **39**, 333–368 (2018).

432 7. Bolborea, M. & Dale, N. Hypothalamic tanycytes: potential roles in the control of feeding
433 and energy balance. *Trends in Neurosciences* **36**, 91–100 (2013).

434 8. Benevento, M. *et al.* A brainstem–hypothalamus neuronal circuit reduces feeding upon
435 heat exposure. *Nature* **628**, 826–834 (2024).

436 9. Pan, W. W. & Myers, M. G. Leptin and the maintenance of elevated body weight. *Nat Rev
437 Neurosci* **19**, 95–105 (2018).

438 10. Dong, Y. *et al.* Time and metabolic state-dependent effects of GLP-1R agonists on
439 NPY/AgRP and POMC neuronal activity in vivo. *Molecular Metabolism* **54**, 101352 (2021).

440 11. Rupp, A. C. *et al.* Suppression of food intake by Glp1r/Lepr-coexpressing neurons
441 prevents obesity in mouse models. *Journal of Clinical Investigation* **133**, e157515 (2023).

442 12. Sisley, S. *et al.* Neuronal GLP1R mediates liraglutide's anorectic but not glucose-lowering
443 effect. *J. Clin. Invest.* **124**, 2456–2463 (2014).

444 13. Ludwig, M. Q. *et al.* A genetic map of the mouse dorsal vagal complex and its role in
445 obesity. *Nat Metab* **3**, 530–545 (2021).

446 14. Kim, D. W. *et al.* The cellular and molecular landscape of hypothalamic patterning and
447 differentiation from embryonic to late postnatal development. *Nature Communications* **11**,
448 4360 (2020).

449 15. Kim, D. W. *et al.* Single-cell analysis of early chick hypothalamic development reveals that
450 hypothalamic cells are induced from prethalamic-like progenitors. *Cell Reports* **38**, 110251
451 (2022).

452 16. Huang, W. K. *et al.* Generation of hypothalamic arcuate organoids from human induced
453 pluripotent stem cells. *Cell Stem Cell* **28**, 1657–1670.e10 (2021).

454 17. Rajamani, U. *et al.* Super-Obese Patient-Derived iPSC Hypothalamic Neurons Exhibit
455 Obesogenic Signatures and Hormone Responses. *Cell Stem Cell* **22**, 698-712.e9 (2018).

456 18. Chen, H.-J. C. *et al.* Profiling human hypothalamic neurons reveals a candidate
457 combination drug therapy for weight loss. Preprint at
458 <https://doi.org/10.1101/2023.07.18.549357> (2023).

459 19. Torz, L. *et al.* NPFF Decreases Activity of Human Arcuate NPY Neurons: A Study in
460 Embryonic-Stem-Cell-Derived Model. *IJMS* **23**, 3260 (2022).

461 20. Bedont, J. L., Newman, E. A. & Blackshaw, S. Patterning, specification, and differentiation
462 in the developing hypothalamus. *Wiley Interdisciplinary Reviews: Developmental Biology*
463 **4**, 445–468 (2015).

464 21. Cobos, I., Shimamura, K., Rubenstein, J. L. R., Martínez, S. & Puelles, L. Fate Map of the
465 Avian Anterior Forebrain at the Four-Somite Stage, Based on the Analysis of Quail–Chick
466 Chimeras. *Developmental Biology* **239**, 46–67 (2001).

467 22. Puelles, L. & Rubenstein, J. L. R. A new scenario of hypothalamic organization: Rationale
468 of new hypotheses introduced in the updated prosomeric model. *Frontiers in
469 Neuroanatomy* **9**, (2015).

470 23. Ma, T., Wong, S. Z. H., Lee, B., Ming, G. li & Song, H. Decoding neuronal composition
471 and ontogeny of individual hypothalamic nuclei. *Neuron* **109**, 1150-1167.e6 (2021).

472 24. Padilla, S. L., Carmody, J. S. & Zeltser, L. M. Pomc-expressing progenitors give rise to
473 antagonistic neuronal populations in hypothalamic feeding circuits. *Nat Med* **16**, 403–405
474 (2010).

475 25. Merkle, F. T. *et al.* Generation of neuropeptidergic hypothalamic neurons from human
476 pluripotent stem cells. *Development (Cambridge)* **142**, 633–643 (2015).

477 26. Sarraha, L. *et al.* Novel human pluripotent stem cell-derived hypothalamus organoids
478 demonstrate cellular diversity. *iScience* **26**, 107525 (2023).

479 27. Chinnaiya, K. *et al.* A neuroepithelial wave of BMP signalling drives anteroposterior
480 specification of the tuberal hypothalamus. *eLife* **12**, e83133 (2023).

481 28. Herb, B. R. *et al.* Single-cell genomics reveals region-specific developmental trajectories
482 underlying neuronal diversity in the human hypothalamus. *Science Advances* **9**, eadf6251.

483 29. Steuernagel, L. *et al.* HypoMap—a unified single-cell gene expression atlas of the murine
484 hypothalamus. *Nat Metab* **4**, 1402–1419 (2022).

485 30. Jais, A. *et al.* PNOCARC Neurons Promote Hyperphagia and Obesity upon High-Fat-Diet
486 Feeding. *Neuron* **106**, 1009-1025.e10 (2020).

487 31. Huisman, C. *et al.* Single cell transcriptome analysis of developing arcuate nucleus
488 neurons uncovers their key developmental regulators. *Nature Communications* **10**,
489 (2019).

490 32. Scarlett, J. M. *et al.* Central injection of fibroblast growth factor 1 induces sustained
491 remission of diabetic hyperglycemia in rodents. *Nature Medicine* **22**, 800–806 (2016).

492 33. Bentsen, M. A. *et al.* Transcriptomic analysis links diverse hypothalamic cell types to
493 fibroblast growth factor 1-induced sustained diabetes remission. *Nat Commun* **11**, 4458
494 (2020).

495 34. Alvarez-Bolado, G., Paul, F. A. & Blaess, S. Sonic hedgehog lineage in the mouse
496 hypothalamus: from progenitor domains to hypothalamic regions. *Neural Dev* **7**, 4 (2012).

497 35. Skidmore, J. M., Cramer, J. D., Martin, J. F. & Martin, D. M. Cre fate mapping reveals
498 lineage specific defects in neuronal migration with loss of Pitx2 function in the developing
499 mouse hypothalamus and subthalamic nucleus. *Molecular and Cellular Neuroscience* **37**,
500 696–707 (2008).

501 36. López-González, L., Martínez-de-la-Torre, M. & Puelles, L. Populational heterogeneity
502 and partial migratory origin of the ventromedial hypothalamic nucleus: genoarchitectonic
503 analysis in the mouse. *Brain Struct Funct* **228**, 537–576 (2023).

504 37. Kim, D. W. *et al.* The cellular and molecular landscape of hypothalamic patterning and
505 differentiation from embryonic to late postnatal development. *Nature Communications* **11**,
506 (2020).

507 38. Caron, A. *et al.* POMC neurons expressing leptin receptors coordinate metabolic
508 responses to fasting via suppression of leptin levels. *eLife* **7**, e33710 (2018).

509 39. Biglari, N. *et al.* Functionally distinct POMC-expressing neuron subpopulations in
510 hypothalamus revealed by intersectional targeting. *Nature Neuroscience* **24**, 913–929
511 (2021).

512 40. Yao, Z. *et al.* A Single-Cell Roadmap of Lineage Bifurcation in Human ESC Models of
513 Embryonic Brain Development. *Cell Stem Cell* **20**, 120–134 (2017).

514 41. Sotelo-Hitschfeld, T. *et al.* GABAergic disinhibition from the BNST to PNOC ARC neurons
515 promotes HFD-induced hyperphagia. *Cell Reports* **43**, 114343 (2024).

516 42. Lehr, S. *et al.* Self-organised pattern formation in the developing neural tube by a temporal
517 relay of BMP signalling. Preprint at <https://doi.org/10.1101/2023.11.15.567070> (2023).

518 43. Manning, L. *et al.* Regional Morphogenesis in the Hypothalamus: A BMP-Tbx2 Pathway
519 Coordinates Fate and Proliferation through Shh Downregulation. *Developmental Cell* **11**,
520 873–885 (2006).

521 44. Campbell, J. N. *et al.* A molecular census of arcuate hypothalamus and median eminence
522 cell types. *Nature Neuroscience* **20**, 484–496 (2017).

523 45. Brown, J. M. *et al.* Role of hypothalamic MAPK/ERK signaling and central action of FGF1
524 in diabetes remission. *iScience* **24**, 102944 (2021).

525

526 **Methods**

527 *Cell culturing and neuronal differentiation*

528 One hESC line called RC17 (Roslin Cells, hPSCreg: RCe021-A) and one hiPSC lines called
529 KOLF2.1J¹ were used in this study. Stem cells were maintained in IPS-Brew (Miltenyi, #130-
530 104-368) on plates coated with 1 μ g/cm² Laminin-521 (Biolamina, #LN521-02) in phosphate-
531 buffered saline with Mg²⁺ + Ca²⁺ (PBS+/+). Cells were passaged at 70-90% confluence with
532 75 μ L/cm² 0.5 mM EDTA (Thermo Fisher Scientific, #15575020) for 5-7 min, then detached
533 and replated in IPS-Brew. Medium was supplemented with 10 μ M Y-27632 (ROCK inhibitor
534 [ROCKi], Miltenyi, #130-106-538) for 24 hours with daily media changes thereafter. For
535 differentiation into regionalized hypothalamic progenitors, we adapted the protocol from
536 Nolbrant *et al.*, 2017². All cultures received N2 medium from d0 to 11 (50% MACS
537 Neuromedium, 50% DMEM/F12 containing 1% N-2 supplement [Thermo Fisher Scientific,
538 #17502048] 1% GlutaMAX [Thermo Fisher Scientific, #35050061], 10 U/mL
539 Penicillin/Streptomycin (Gibco, #15070063) and NB21 maturation medium from d11 until end
540 of experiment (MACS Neuromedium containing 2% NB-21 supplement, 1% GlutaMAX,
541 Penicillin/Streptomycin]. Medium was changed every 2-3 days and whenever cells were
542 replated, 10 μ M ROCKi was supplemented. At d0, hESC were dissociated as described,
543 washed in DMEM/F12 with 5% KOSR (Gibco, #10828-028) and plated at 10K/cm² in plates
544 coated with 2 μ g/cm² laminin-111 (Biolamina, #LN111-02) in PBS+/+. At d11, progenitors were
545 dissociated with accutase (Thermo Fisher Scientific, #A11105-01) for 10 min and replated at
546 800k/cm² onto plates coated with 2 μ g/cm² laminin-111 in PBS+/+. After the last replating at
547 d16, cells were replated at 700k/cm² onto 2 μ g/cm² laminin-521 in PBS +/+ coated plates. All
548 differentiations received 10 μ M SB413542 (Miltenyi, #130-106-543), and 100 ng/mL Noggin
549 (Miltenyi, #130-103-456) in N2 basal medium from day 0 to 9, 0.2 mM ascorbic acid (Sigma-
550 Merck, #A4403-100MG) and 20 μ g/mL BDNF (Miltenyi, #130-096-286) from d11 and 500 μ M
551 dibutyryl-cAMP (Sigma-Merck, #D0627-1G), 1 μ M DAPT (Miltenyi, #130-110-489), 10 ng/mL
552 GDNF (Miltenyi, #130-098-449) from d16 onwards. The NB21 medium supplemented with
553 factors (AA, BDNF, db-cAMP, DAPT, GDNF) from d16 was named maturation medium (MM).
554 For the PVN protocol, 0.3 μ M CHIR was added day 0 to 9 and 150ng/ml SHH from day 6 to
555 14. The ARC protocol included 0.3 μ M CHIR d2-9, 300 ng/mL SHH day 0 to 9 and 400 ng/mL
556 IGFBP-3 (R&D systems, #675-B3-025) from day 7 to 14. In addition, 50 ng/mL BMP4 (Miltenyi,
557 #130-111-168) was supplemented at varying timepoints. In the ARC protocols, cells received
558 100 ng/mL BMP-7 (R&D systems, #354-BP-500/CF) and 4mM dimethyl 2-oxoglutarate (dm-
559 aKG, Sigma, #349631) from day 25 to 50 of maturation.

560

561 For the generation for spheroids, patterned d16 hypothalamic progenitors were thawed and
562 diluted in pre-warmed DMEM/F12 with 5% KOSR. Cells were counted, centrifuged at 400 xg

563 for 5 min and resuspended in NB21 medium with 20 ng/mL BDNF, 0.2 mM ascorbic acid, 500
564 μ M Db-cAMP and 1 μ M DAPT at 250 000 cells/mL. The cell suspension was transferred to an
565 ultralow attachment U-bottom 96-well plate (Costar) at 200 μ L/well, centrifuged at 100 xg for
566 5 min and maintained at 37 °C with 5% CO₂. 75% of maturation medium was changed every
567 2-3 days until termination of the experiment.

568

569 *Xenotransplantation of day 16 ARC progenitors*

570 All procedures were conducted in accordance with the European Union Directive
571 (2010/63/EU) and had approval by the local ethical committee at Lund University and the
572 Swedish Department for Agriculture (Jordbruksverket). Seven adult, female, athymic nude rats
573 (Hsd:RH-Foxn1^{mu}, Inotiv (Prev. Envigo), Indiana, USA) were housed on a 12:12-hr light:dark
574 cycle with *ad libitum* access to food and water. ARC cells were prepared for transplantation
575 by thawing day 16 cryopreserved progenitors in wash buffer (0.5% human serum albumin
576 (HSA) in HBSS-/-) and centrifuged at 400 xg at RT. Cells were reconstituted to 167,000
577 cells/ μ L in Neurobasal (Thermo Fisher Scientific, #21103049) with 20 U/mL pulmozyme,
578 1x B27 supplement (Thermo Fisher Scientific, #17504044), 10 μ M ROCKi, 0.2 mM ascorbic
579 acid and 20 ng/mL BDNF.

580 For unilateral intrastriatal xenotransplantations, the rats (>225 g) underwent general
581 anesthesia (Fentanyl (45 mg kg⁻¹)-Domitor (0.03 mg kg⁻¹) mix, Apoteksbolaget, i.p.). A glass
582 capillary was inserted into the striatum at the following coordinates for two deposits: AP₁: +0.9,
583 ML₁: -3.0, DV₁: -5.0; AP₂: +1.4, ML₂: -2.6, DV₂: -5.0. The cells were infused in a volume of 0.1
584 μ L per 12 s over 3 min (1.5 μ L of 250,000 cells in total) followed by 2 min diffusion time per
585 deposit.

586

587 *RNA extraction and qRT-PCR (quantitative real time PCR)*

588 Approx. 300-500K cells were lysed using 350 μ L of RLT buffer (QIAGEN, #74034) containing
589 0.5 mM beta-mercaptoethanol (Thermo Fisher Scientific, #31350010), snap frozen and stored
590 at -80°C. RNA isolation was performed with a QIAcube using the RNeasy plus micro kit
591 (Qiagen, #74034). Approx. 1ug of RNA was reverse transcribed using the Maxima first strand
592 cDNA synthesis kit (Thermo Fisher Scientific, #K1642). cDNA was diluted in 250ul EB buffer
593 (Qiagen, #19086) and stored at -20°C degrees. For qRT-PCRs, SYBR green (Roche,
594 #04887352001), primers (see sequences in **Supplementary Table 1**) and cDNA sample were
595 pipetted by an iDOT liquid handler and run on a Light Cycler 480 II instrument (Roche,
596 #05015243001) with 40 cycles- 60°C for 60 s annealing/elongation step and 95°C, 30s
597 denaturation. The average CT of technical duplicates was used to calculate the relative
598 expression and this was normalized to a reference consisting of the average expression of

599 undifferentiated H9 and RC17 cells. Genes of interest were normalized to both *GAPDH* and
600 *ACTB*. Resulting change in fluorescence intensity was plotted in Prism (GraphPad v10.2.3).

601

602 *Analysis of hypothalamic expression matrix from qPCR data*

603 qRT-PCR expression data from early differentiations were log-normalized prior to principal
604 component analysis. To identify the effects of distinct factors on PC1 embedding, a linear
605 model was constructed to predict PC1 embedding values, including all tested compounds.
606 The resulting model was analyzed using estimated marginal means to identify the average
607 effects of different factors while adjusting for other covariates in the model. To identify genes
608 in early differentiations which are predictive of marker genes in late differentiations, a linear
609 model was constructed to test the relationship between each individual gene and the selected
610 late marker. Gene expression values were log normalized and scaled prior to analysis. Only
611 differentiations in which the two genes had been measured at the early and late timepoints
612 were included.

613

614 *Immunocytochemistry (ICC)*

615 All 2D cultured cells were fixed in 4% paraformaldehyde for 15 min at 37°C followed by three
616 washes with phosphate-buffered saline (PBS-/-) and stored at 4°C until staining. Cells were
617 blocked for 1-3 h at room temperature (RT) in blocking buffer (0.1%, Triton X-100 and 5%
618 (vol/vol) donkey serum in PBS-/-). Primary antibodies (see **Supplementary Table 2**) were
619 diluted in blocking buffer and incubated at 4°C overnight. Following incubation, cells were
620 washed three times with PBS-/- before incubation with secondary conjugated fluorophores
621 (1:200, see **Supplementary Table 3**) and 2 µg/mL DAPI for 2 h at RT on a shaker. A final
622 three PBS washes were performed before imaging.

623

624 Spheroids were fixed with 4% PFA for 30 min at RT, washed twice with PBS and blocked for
625 6 h at 4°C with blocking buffer. Thereafter, they were incubated with primary antibodies
626 diluted in blocking buffer (200µL/tube) on a shaker at 4°C for 48 h. The primary antibody
627 solution was removed and the samples were washed with 300 µL blocking buffer, once for 2
628 min and then for 6 h at 4°C. All subsequent steps were performed under the exclusion of
629 light. The secondary antibodies and 2 µg/mL DAPI for nuclear counterstaining were diluted
630 in 200 µL blocking buffer and added to the tissues. The samples were again incubated on a
631 shaker at 4°C for 48 h. Subsequently, the tissues were washed for 2 min and then at 4°C for
632 6 h on a shaker. After two more washes in PBS, the tissues were transferred to 18-well ibidi
633 chambers and stored at 4°C until visualization.

634

635 *Multiplexed immunohistochemistry*

636 The nude rats were anaesthetized with Sodium Pentobarbital (250-350 mg/kg, 1.4 mL of 60
637 mg/mL per rat, Apotek, Sweden) and transcardially perfused with 0.1 M phosphate buffer. The
638 brains were removed, post-fixed in 4% PFA for 24 h at RT and immersed in 25% sucrose
639 solution until fully dehydrated. For sectioning, the brains were cut into 35 μ M coronal sections
640 using a cryostat (Leica Microsystems, CM1950 cryostat) and systematically sampled in series
641 of eight. The sections were stored in cryoprotectant at -20 °C until use. Sections
642 encompassing the striatum (site of xenotransplant), and the ARC/PVH (endogenous positive
643 controls) were used for immunostainings.

644

645 For immunostainings, the sections were initially rinsed in PBS-/- and subjected to antigen
646 retrieval in pre-heated (80°C) TRIS-EDTA buffer (10 mM Tris Base, 1 mM EDTA Solution,
647 0.05% Tween-20, pH 9) for 30 min, and left to cool to RT before rinsing in PBS-/. For SG
648 chromogenic staining, endogenous peroxidase activity was blocked by incubation in 1%
649 hydrogen peroxidase (H_2O_2) in PBS-/- for 20 min at RT, prior to pre-incubation in blocking
650 buffer (5% donkey or goat serum, 1% bovine serum albumin, 0.3% Triton X-100 (TX) (0.1%
651 TX for SG chromogenic staining) in PBS-/-) for 30 min at RT. Next, the sections were
652 incubated overnight (2 h for anti-hNCAM) at RT in primary antibodies diluted in blocking buffer.
653 After primary antibody incubation, the sections were rinsed in washing buffer (0.25% bovine
654 serum albumin, 0.1% Triton X-100 in PBS) or in 0.1% TX-PBS for SG chromogenic staining,
655 followed by incubation for 1 h at RT in fluorophore-conjugated or biotin-coupled secondary
656 antibodies diluted in washing buffer. See **Supplementary Table 2 and 3** for information on
657 primary and secondary antibodies, respectively.

658

659 For immunofluorescence, the sections were thereafter rinsed once in washing buffer and twice
660 in PBS-/-, mounted on glass slides, and coverslipped using FluorSave™ (Millipore, #345789).
661 For SG chromogenic staining, the sections were rinsed in 0.1% TX-PBS and incubated for 1
662 h at RT in avidin-biotin complex solution (Vector Laboratories, #AK-5000) diluted in TX-PBS
663 according to manufacturer's instructions. After incubation, the sections were rinsed once in
664 TX-PBS and twice in PBS-/- before color development for 10 min in ImmPACT Vector SG
665 Substrate chromogen solution (Vector Laboratories, #AK-4705) without H_2O_2 , and for
666 additional 2 min with H_2O_2 . The sections were next mounted on gelatin-coated microscope
667 glass slides, dehydrated in a series of ethanol (70%, 96%, 99%), cleared in xylene,
668 immediately cover slipped using DPX New mountant (Merck, #1.00579), and left to dry
669 overnight.

670

671 *In situ hybridization (ISH) assay on cell cultures*

672 Cells were fixed for 30 min at RT. *In situ* hybridization was performed using the RNAscope®
673 Multiplex Fluorescent Kit v2 (ACD BioTechne, #323100) according to manufacturer's
674 instructions for cultured adherent cells in 96-well plates. The probes and fluorophores used in
675 this study can be found in **Supplementary Table 4**. For combinatory ICC/ISH, the standard
676 ICC protocol was performed after the RNAscope protocol.

677

678 *In situ Hybridization (ISH)/immunofluorescence (IF) on brain sections*

679 Rats were deeply anaesthetized with CO₂ gas and sacrificed by decapitation. The brain was
680 quickly removed and immediately immersed in dry ice and stored at -80°C until sectioning.
681 The brains were sectioned into 12 µM coronal sections using a cryostat (Leica, CM1950
682 cryostat) and directly mounted onto SuperFrost® Plus glass slides (Thermo Scientific,
683 #J1800AMNZ) and stored at -80°C. ISH was performed according to the RNAscope®
684 Multiplex Fluorescent v2 Assay combined with Immunofluorescence (Doc. No. MK51-150 Rev
685 B/Appendix C-D) with several changes. The sections were first fixed in pre-chilled 4% PFA at
686 4°C overnight prior to dehydration and incubation in hydrogen peroxide (ACD Bio-Techne,
687 #322330 or 3% H₂O₂ in RNase-free water). Next, the sections were subjected to co-detection
688 target retrieval (#323166, ACD Bio-Techne, Milan, Italy) for 5 min at 98-100°C, rinsed in
689 ddH₂O, and transferred to 100% ethanol for 3 min. The sections were then incubated in
690 primary antibodies at 4°C overnight. According to protocol, the sections were rinsed post-fixed
691 and subjected to protease treatment (RNAscope® Protease Plus (ACD Bio-Techne,
692 #322330), 1:5 diluted in RNase-free water) for 15 min at 40°C. Next, RNA-specific
693 oligonucleotide target probes were hybridized, amplified, and developed using Opal Dye
694 fluorophore 570. Following the RNAscope protocol, the sections were rinsed and incubated in
695 secondary antibodies for 60 min at RT. Lastly, the sections were rinsed and coverslipped using
696 VectaShield Vibrance antifade Mounting medium with DAPI (#H-1800, Vector
697 Laboratories, CA, USA). See **Supplementary Table 2-4** for information on primary and
698 secondary antibodies, probes and fluorophores.

699

700 *Imaging and processing*

701 Imaging of ICC of *in vitro* derived cells was performed on the Leica AF600 widefield
702 epifluorescence microscope (Plan-Fluotar 20x/0.40 Dry) and for the main figures, the confocal
703 microscope Leica Stellaris 5 (Plan-apochromat 40x/1.25 GLYC). All imaging of 3D tissue
704 staining was performed using either the Zeiss LSM880 (EC Plan-Neofluar 20x0.50 WD 2.0mm
705 and C-Plan-Apochromat 63x1.40 Oil UV-IR WD 0.14mm) or an inverted confocal microscope
706 (ECLIPSE Ti2-E, Nikon with CFI Plan Apochromat Lambda 20X/0.75, WD 1.0mm) equipped
707 with a spinning disk module (CSU-W1, Yokogawa). Images were processed using ImageJ
708 (version 2.1.0).

709 Images of xenotransplantation sections (single and stacks) were acquired by confocal
710 fluorescence (Leica Stellaris 5, Plan-Fluotar 10x/0.30 Dry or Plan-apochromat 40x/1.25
711 GLYC), widefield fluorescence (AF6000, Plan-Fluotar 10x/0.30 Dry or Plan-Fluotar 20x/0.40
712 Dry) or widefield brightfield microscopy (Leica DM5500, plan-apochromatic 10x/0.40, DFC450
713 color camera). The images were processed using ImageJ and brightness/contrast were
714 adjusted using Adobe Photoshop 2024.

715

716 *Calcium Imaging*

717 Before the start of the experiment, cells cultured in 18-well μ -Slide (ibidi, #81826) were
718 incubated for 30 min with 3 μ M Calbryte 520 AM calcium indicator (AAT Bioquest, #20650) in
719 BrainPhys Imaging Optimized Medium (STEMCELL Technologies, #5796) with 0.02%
720 Pluronic F-127 (Sigma Aldrich) for 30 min at 37°C. Cells were then rinsed with BrainPhys
721 Imaging Optimized Medium and transferred to an inverted confocal microscope (ECLIPSE
722 Ti2-E, Nikon) equipped with a spinning disk module (CSU-W1, Yokogawa) and environmental
723 chamber. 40x water immersion objective (N.A. 1.25) was used for imaging. For potassium
724 chloride (KCl) stimulation, cells were continuously imaged at 5 Hz. After 5 seconds, KCl
725 (SigmaAldrich) at 50 mM final concentration was added to the well during imaging and
726 corresponding response recorded for 2 minutes. For leptin stimulation experiment, baseline
727 images were acquired first and then half of the medium in the well was replaced with the
728 stimulant (leptin in BrainPhys Imaging Optimized Medium at 100 ng/ml final concentration) or
729 vehicle (BrainPhys Imaging Optimized Medium). A second set of images was acquired after
730 30 min. Images were analyzed in ImageJ where mean fluorescence intensity per cell was
731 extracted before and after stimulation. Resulting change in fluorescence intensity was plotted
732 in Prism (GraphPad v10.2.3).

733

734 *AGRP ELISA*

735 To measure the concentration of secreted AGRP in the media of developing ARC neurons,
736 we used the AGRP Quantikine ELISA kit (R&D Systems, #DAGR00), which employs a solid
737 phase sandwich ELISA that contains Sf 21- expressed recombinant human AGRP that has
738 previously been shown to quantitate the recombinant factor. Cell culture supernatants we
739 collected between 48-72h post media change, and they were measured in duplicates with an
740 assay range of 7.5-500 pg/mL.

741

742 *FGF1 stimulation experiment*

743 Human FGF1 (Miltenyi, #130-095-789) was reconstituted in water to 100 ug/ml. Accutase was
744 pre-warmed at 37°C for 10 min. Half the media on d50 and d70 ARC cultures was removed
745 and 100 ng/ml of FGF1 was added to the treated well for a 50ng/ml final concentration. For

746 the control condition, the vehicle media had no FGF1. Cells received FGF1 treatment for 30
747 min before one wash with PBS and 150 μ L of warm accutase was added and incubated at
748 37°C for 5 min. Cells were taken off with ice-cold NB21 medium and placed on ice before
749 centrifugation at 700g for 10 min. Supernatant was removed and the pellet snap frozen on dry
750 ice, kept at -80°C until snRNAseq.

751

752 *Single-cell/single-nucleus RNA sequencing sample preparation*

753 Batch-0, batch-1, batch-2 and batch-4 d16 progenitors, which underwent scRNA sequencing,
754 were thawed in wash media (DMEM/F12 + 5%KOSR). After counting, cells were centrifuged
755 at 500xg for 5 min before resuspension at 5 mio cells/mL in PBS-/- with 0.5% BSA. Cells were
756 stained with 0.5 μ g of unique TotalSeq™-A anti-Nuclear Hashtags (HTO) (Biolegend) and
757 incubated for 30 min at 4°C. After antibody tagging, cells underwent three washes with PBS-
758 /-, with final resuspension at 1000 cells/ μ L in PBS-/- with 0.5% BSA. Samples were FACS
759 sorted and pooled at equal ratios for one 10X lane using the 10X v3.1 chemistry kit.

760

761 The d25, 50 and 70 batch-0, batch-1, batch-2 and batch-4 were profiled using snRNA-
762 sequencing. The samples were kept on ice and always centrifuged in cooled centrifuges. The
763 nuclei were thawed on ice for 2 min and lysed with EZ Lysis Buffer (Nuclei EZ Prep nuclei
764 isolation kit, Sigma, #NUC101-1KT). The lysed sample incubated on ice for 5 min, suspended
765 in nuclei buffer (PBS-/- with 1% BSA, 2.5 mM MgCl (Sigma, #M1028), 0.2U/ μ L RNase inhibitor
766 (Sigma, #3335399001)) and centrifuged for 5 min at 500xg. Then it was filtered using 40 μ m
767 cell strainer (PluriSelect, #43-10040-40) into a 2mL Protein LoBind tube (Sigma,
768 #EP0030108132) and incubated on ice for 15 min. Next the sample was incubated together
769 with unique TotalSeq™-A anti-Nuclear Hashtags (HTO) for multiplexing for 30 min. The
770 hashtagged nuclei from each batch were washed twice with Nuclei Buffer and stained with 7-
771 AAD (ThermoFisher Scientific, #00-6993-50) before FACS sorting (SONY SH800S cell sorter)
772 with a 70 μ m sorting chip (Sony Biotechnologies, cat. no.: LE-C3207) into a 2mL Protein
773 LoBind tube with 18.8 μ L RT Reagent B (10X Genomics, Chromium Next GEM Single Cell 3'
774 Kit v3.1, cat. no.: PN-1000268). Following sorting, the volume was adjusted to 43.1 μ L with
775 Nuclei Buffer and the final GEM Master Mix reagents were added as per manufactures
776 procedure, which was followed from then on for library preparation with dual indexing. Each
777 sample was divided into three 10X lanes.

778

779 HTO libraries were prepared by following the procedure from BioLegend. In short, for
780 generating GEM cDNA, the reaction was added 1 μ L of 0.2 μ M HTO primer (5'-
781 GTGACTGGAGTTCAGACGTGTGC*T*C) prior to PCR cycling and cleaned up using
782 SPRISelect magnetic beads (Beckman Coulter, #B23318), 80% ethanol, and eluted with

783 Buffer EB (Qiagen, #1014609). The concentration was determined with Qubit (Thermo
784 Fisher Scientific) and Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific, #Q32854).
785 Libraries reactions were generated with the following mixture: 20ng HTO cDNA, 2.5µL 10µM
786 SI PCR primer (5'-
787 AATGATACGGCGACCACCGAGATCTACACTCTTCCCTACACGACGC*T*C), 2.5µL 10µM
788 TruSeq D7XX_s (5'-
789 CAAGCAGAAGACGGCATACGAGAT[8X]GTGACTGGAGTTCAGACGTGT*G*C), 50µL
790 KAPA HiFi HotStart ReadyMix (Roche, #KK2602), nuclease free water to 100µL. The
791 following PCR reaction was used: 98°C, 2 min; 15x[98°C, 20 sec; 64°C, 30 sec; 72°C, 20
792 sec], 72°C, 5 min. Cleanup and quantification was as above. The libraries were quantified by
793 Qubit and TapeStation (Agilent TapeStation 4200 System) with TapeStation High Sensitivity
794 D1000 DNA (Agilent, #5067-5584 and #5067-5585).
795 All sc/snRNA samples were sequenced on SP/S2 flow cells (Illumina) on NovaSeq6000. All
796 libraries were sequenced using recommended settings aiming for a depth of 50k reads per
797 cell (28bp R1; 10bp I1; 10bp I2; 90bp R2).
798

799 *Sequence alignment and sample assignment*

800 The raw cDNA libraries from all single cell/nucleus samples were processed using
801 CellRanger³ count pipeline v7.1.0 by aligning the day 16, 25, 50, and 70 reads against a
802 recently published human reference with optimized genome annotations⁴. The obtained gene
803 count matrices were corrected with CellBender⁵ v0.3.0 to remove ambient RNA. The
804 CellRanger BAM file for d16 data was processed with STARsolo⁶ (STAR, v2.7.10b) to
805 generate intronic and exonic counts required for RNA velocity. CITE-seq-Count⁷ v1.45 was
806 used to identify the hashtag oligo (HTO) tags from the cell/nucleus hashing FASTQ files. To
807 assign the sample-of-origin for each cell the HTO demultiplexing was performed using an
808 optimized cell classification strategy (based on the HTODemux Seurat function) implemented
809 in the COMMUNEQAID pipeline (<https://github.com/CBMR-Single-Cell-Omics-Platform/COMMUNEQAID>).
810

811 812 *Single cell/nucleus data processing and cluster annotation*

813 The cells classified as doublets or negatives and cells from incorrectly patterned batch-0 were
814 excluded from the further analysis. The resulting count matrices were filtered and processed
815 with Scanpy⁸ v1.9.5. Genes occurring in less than three cells, and cells with high mitochondrial
816 content or outliers in gene counts, were removed from each batch individually by manually
817 adjusted thresholds. To address bias arising from metabolism-related factors, ribosomal
818 (RPS/RPL genes) and mitochondrial genes (MT-genes) were excluded from downstream
819 analysis. The resulting data was log-normalized, and the d25 batches and the d50 and 70

820 batches were concatenated together. This led to three different datasets, d16, d25, and
821 d50+70, each of which was processed and analyzed separately.

822

823 The d16 data underwent highly variable gene selection (n_top_genes=2000), dimensionality
824 reduction (PCA and UMAP), and clustering (leidenalg v0.9.0). The d25 and d50+70 batches
825 were further processed using Seurat⁹ v4.3.0, including highly variable gene selection,
826 integration (RPCA), clustering, and annotation. To investigate the neuronal heterogeneity in
827 d50-70 data, the cluster annotated as ARC neurons was subtracted and processed with
828 Seurat as described above. The resulting clusters in all the described datasets were identified
829 and annotated based on our previous knowledge and markers described in the literature.
830 Clusters deemed to be transcriptionally similar were merged. Consult the available code for
831 the exact steps and parameters used in processing, clustering, and annotation. These
832 processed datasets (d16, d25, d50+70, d50+70 neurons) formed the basis of the rest of the
833 analysis. Lists of differentially expressed genes (DEGs) for each cluster at each time point can
834 be found in **Extended Data Table 1**.

835

836 *Trajectory inference with RNA velocity and Monocle3*

837 To unravel the differentiation direction of day 16 cells, we conducted RNA velocity analysis
838 using the stochastic model from scVelo¹⁰ v0.3.2. The resulting velocity stream was visualized
839 using UMAP embedding. To further examine the lineage separation of neuronal and tanyocyte
840 lineages, we used FastMNN¹¹ implemented in batchelor package v1.18.1 to integrate all d16
841 cells together with cells annotated as tanyocytes from d25 and d50_70 datasets. Monocle3¹²
842 v1.3.7 was used to infer pseudotime lineages of developing tanyocytes. For the identified
843 tanyocyte lineage gene expression of genes of interest was approximated along pseudotime
844 using polynomial fit (polyfit function from numpy v1.26.4) and visualized using heatmap.

845

846 *Differential gene expression analysis*

847 We performed differential gene expression analysis using edgeR¹³ v4.0.16. To analyze the
848 response for FGF1 stimulation a pseudo-bulk gene expression matrix was generated by
849 summing the transcript counts for all cells within the same cell type, differentiation, and
850 treatment combination. Respectively, to identify genes with differential expression between
851 cell types, we summed transcript counts within each cell type and differentiation batch. The
852 pseudo-bulk gene expression matrix was then filtered and normalized. We used a generalized
853 linear model implemented in glmQLFTest function (edgeR) to test for differential expression
854 including treatment group and differentiation batch, or cell type and differentiation batch as
855 variables in the design matrix.

856

857 *Single cell transcriptomic comparison with human data*

858 We used a publicly available sc/snRNA-seq dataset¹⁴ containing samples from prenatal
859 (gestational weeks 6 to 25) and adult human hypothalamus to unravel transcriptional similarity
860 through reference predictions and to compare gene expression profiles observed *in vitro*. To
861 compare gene expression profiles of canonical marker genes for ARC development and
862 tanycyte identity we used the fetal dataset described in their study. To see whether our
863 d50+70 dataset resembles data from human arcuate nucleus we used their fetal (neuronal
864 and non-neuronal hypothalamic lineages) and neuronal (hypothalamic nuclei, fetal and adult)
865 datasets. Each batch in both datasets underwent quality control, where we depleted the
866 remaining outlier cells with automatic thresholding based on median absolute deviations
867 (MAD) (median_abs_deviation from scipy v1.11.2) (consult the available code for MAD
868 cutoffs). To ensure correspondence with our data, genes occurring in less than three cells,
869 and ribosomal (RPS/RPL genes), and mitochondrial genes (MT- genes) were excluded. To
870 integrate all batches into a human fetal and adult hypothalamic reference, we used scANVI,
871 which was initialized with integrated scVI model from scvi-tools^{15,16} v1.1.2. scANVI projects
872 cells into a low-dimensional space and generates a model of learned features which allows
873 the prediction of unobserved cell types by retraining the scANVI reference model together with
874 unseen data. Using this strategy, we applied scANVI's functionality to predict cell types from
875 our *in vitro* data to assess whether our data corresponds human hypothalamus. To visualize
876 the distribution of predicted cell types, we used a bar plot to display the percentage of cells
877 predicted to belong to certain labels. We used a Sankey plot to illustrate the correspondence
878 between our *in vitro* cell type annotations and the predicted labels from the human reference.
879 For the Sankey plot we only included those cell types that represented more than 1% of the
880 total predicted cells. To project our data to the scANVI integrated reference UMAP-space we
881 used mapscvi¹⁷v0.0.2 function.

882

883 *Statistical analysis*

884 All statistical methods appoint a significance level of alpha=0.05. All quantitative values are
885 shown as mean SEM and asterisks denotes the level of significance based on statistical test.
886 Normality of data was assessed using Shapiro-Wilk test. Normally distributed data was
887 analyzed with one-way ANOVA and Tukey's multiple comparison test, if SD was unequal,
888 Brown-Forsythe ANOVA with Dunnett's T3 multiple comparisons test was performed. For non-
889 normal distributions, Kruskal-Wallis test and Dunn's multiple comparison test was used. For
890 statistical analysis between two groups a student t-test was used, if they were non-normally
891 distributed a Mann-Whitney test was applied.

892

893 **Data availability**

894 All data necessary for the conclusions of the study are provided with the Article.
895 Sc/snRNAseq data are available upon request.
896

897 **Code availability**

898 The scripts used to analyze the RNAseq data are available at GitHub
899 (https://github.com/kirkeby-lab/ARC_VMH_analysis).

900

901 **Methods references**

- 902 1. Pantazis, C. B. *et al.* A reference human induced pluripotent stem cell line for large-scale
903 collaborative studies. *Cell Stem Cell* **29**, 1685–1702.e22 (2022).
- 904 2. Nolbrant, S., Heuer, A., Parmar, M. & Kirkeby, A. Generation of high-purity human
905 ventral midbrain dopaminergic progenitors for in vitro maturation and intracerebral
906 transplantation. *Nat Protoc* **12**, 1962–1979 (2017).
- 907 3. Zheng, G. X. Y. *et al.* Massively parallel digital transcriptional profiling of single cells. *Nat*
908 *Commun* **8**, 14049 (2017).
- 909 4. Pool, A.-H., Poldsam, H., Chen, S., Thomson, M. & Oka, Y. Recovery of missing single-
910 cell RNA-sequencing data with optimized transcriptomic references. *Nat Methods* **20**,
911 1506–1515 (2023).
- 912 5. Fleming, S. J. *et al.* Unsupervised removal of systematic background noise from droplet-
913 based single-cell experiments using CellBender. *Nat Methods* **20**, 1323–1335 (2023).
- 914 6. Kaminow, B., Yunusov, D. & Dobin, A. STARsolo: accurate, fast and versatile
915 mapping/quantification of single-cell and single-nucleus RNA-seq data. Preprint at
916 <https://doi.org/10.1101/2021.05.05.442755> (2021).
- 917 7. Stoeckius, M. *et al.* Cell Hashing with barcoded antibodies enables multiplexing and
918 doublet detection for single cell genomics. *Genome Biol* **19**, 224 (2018).
- 919 8. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression
920 data analysis. *Genome Biol* **19**, 15 (2018).
- 921 9. Hao, Y. *et al.* Integrated analysis of multimodal single-cell data. *Cell* **184**, 3573–3587.e29
922 (2021).
- 923 10. Bergen, V., Lange, M., Peidli, S., Wolf, F. A. & Theis, F. J. Generalizing RNA velocity to
924 transient cell states through dynamical modeling. *Nat Biotechnol* **38**, 1408–1414 (2020).
- 925 11. Haghverdi, L., Lun, A. T. L., Morgan, M. D. & Marioni, J. C. Batch effects in single-cell
926 RNA-sequencing data are corrected by matching mutual nearest neighbors. *Nat*
927 *Biotechnol* **36**, 421–427 (2018).
- 928 12. Cao, J. *et al.* The single-cell transcriptional landscape of mammalian organogenesis.
929 *Nature* **566**, 496–502 (2019).
- 930 13. Chen, Y., Chen, L., Lun, A. T. L., Baldoni, P. L. & Smyth, G. K. edgeR 4.0: powerful
931 differential analysis of sequencing data with expanded functionality and improved
932 support for small counts and larger datasets. Preprint at
933 <https://doi.org/10.1101/2024.01.21.576131> (2024).
- 934 14. Herb, B. R. *et al.* Single-cell genomics reveals region-specific developmental trajectories
935 underlying neuronal diversity in the human hypothalamus. *Science Advances* **9**,
936 eadf6251.

937 15. Gayoso, A. *et al.* A Python library for probabilistic analysis of single-cell omics data. *Nat*
938 *Biotechnol* **40**, 163–166 (2022).

939 16. Xu, C. *et al.* Probabilistic harmonization and annotation of single-cell transcriptomics
940 data with deep generative models. *Molecular Systems Biology* **17**, e9620 (2021).

941 17. Steuernagel, L. *et al.* HypoMap—a unified single-cell gene expression atlas of the
942 murine hypothalamus. *Nat Metab* **4**, 1402–1419 (2022).

943

944

945 **Extended Data**

946 **Extended Data Table 1:** List of differentially expressed genes (DEGs) in all clusters from all
947 time points of scRNAseq and snRNAseq datasets

948

949