

1 **Transcriptomic analysis of meiotic genes during the mitosis-to-
2 meiosis transition in *Drosophila* females**
3
4
5
6
7

8 Ana Maria Vallés^{1*}, Thomas Rubin^{1*}, Nicolas Macaisne^{1a}, Laurine Dal Toe^{1b}, Anahi Molla-
9 Herman¹, Christophe Antoniewski² and Jean-René Huynh^{1&}

10 1 Collège de France, PSL Research University, CNRS, Inserm, Center for
11 2 Interdisciplinary Research in Biology, Paris, France

12 2 ARTbio Bioinformatics Analysis Facility, IBPS, CNRS, Sorbonne Université,
13 2 Institut Français de Bioinformatique, Paris, France.

14 * equal contribution

15 &Corresponding author: jean-rene.huynh@college-de-france.fr

16 a present address: Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France.

17 b present address: CBS, Univ Montpellier, CNRS, INSERM, Montpellier, France

21 23 Keywords: germline, oocyte, Spo11, recombination, cell cycle, development.

26 **Abstract**

27 Germline cells produce gametes, which are specialized cells essential for sexual reproduction.
28 Germline cells first amplify through several rounds of mitosis before switching to the meiotic
29 program, which requires specific sets of proteins for DNA recombination, chromosome pairing
30 and segregation. Surprisingly, we previously found that some proteins of the synaptonemal
31 complex, a prophase I meiotic structure, are already expressed and required in the mitotic region
32 of *Drosophila* females. Here, to assess if additional meiotic genes were expressed earlier than
33 expected, we isolated mitotic and meiotic cell populations to compare their RNA content. Our
34 transcriptomic analysis reveals that all known meiosis I genes are already expressed in the
35 mitotic region, however, only some of them are translated. As a case study, we focused on *mei-*
36 *W68*, the *Drosophila* homologue of *Spo11*, to assess its expression at both the mRNA and
37 protein levels, and used different mutant alleles to assay for a pre-meiotic function. We could
38 not detect any functional role for Mei-W68 during homologous chromosome pairing in dividing
39 germ cells. Our study paves the way for further functional analysis of meiotic genes expressed
40 in the mitotic region.

41

42 **Article Summary**

43 Germline cells, crucial for sexual reproduction, were thought to switch to meiosis only after
44 several rounds of mitosis. Surprisingly, a few meiotic proteins were found active in the mitotic
45 phase of female flies. Here, we discovered that all known meiosis genes were expressed during
46 mitosis, but only some produced proteins. This study suggests that genes related to reproduction
47 are active earlier than expected, prompting further exploration into their functions during early
48 cell division.

49

50 Introduction

51 In organisms reproducing sexually, germline cells produce oocytes and sperms as gametes.
52 Germline cell differentiation starts by an amplification phase through mitosis to increase their
53 numbers and create a pool of precursor cells (CINALLI *et al.* 2008). They then switch to meiosis,
54 which comprises two rounds of nuclear divisions to produce haploid gametes. Meiosis is
55 specific to germline cells and requires the expression of unique molecular machineries to pair,
56 recombine and segregate homologous chromosomes. How germline cells switch from a mitotic
57 to a meiotic program is not fully understood.

58 Meiosis starts by an extended prophase I during which homologous chromosomes have
59 to find each other in the nuclear space to pair (BHALLA AND DERNBURG 2008; ZICKLER AND
60 KLECKNER 2015). Once homologous chromosomes are paired, their association is stabilized by
61 the synaptonemal complex (SC), the proteinaceous structure that holds homologous axes
62 together (synapsis) and promotes genetic recombination (CAHOON AND HAWLEY 2016).
63 Recombination starts by the formation of developmentally programmed double-strand breaks
64 (DSBs), which can be later repaired as crossovers. Meiotic DSBs are induced by the
65 topoisomerase-like Spo11, which is conserved in all species (KEENEY *et al.* 1997; DE MASSY
66 2013). These chromosome exchanges create physical links called chiasmata, which keep
67 homologues paired until they orient towards opposite poles of the spindle. This period is
68 subdivided in five classical stages (leptotene, zygotene, pachytene, diplotene, and diakinesis)
69 based on chromosome morphologies. The initiation of the pairing process has been defined at
70 the early zygotene stage in *Saccharomyces cerevisiae* (TSUBOUCHI 2005) and at the leptotene
71 stage in *C. elegans* (CRITTENDEN SL 2006; ROHOZKOVA *et al.* 2019) zebrafish (BLOKHINA *et*
72 *al.* 2019) and mice (ISHIGURO *et al.* 2014; SCHERTHAN *et al.* 2014), by FISH analysis and
73 chromosome axis protein imaging. Moreover, chromosome movements, forces and molecular
74 players that promote pairing have been well characterized by live imaging microscopy in these
75 species (RUBIN *et al.* 2020; KIM *et al.* 2022).

76 However, we and others have found that homologous chromosomes start to pair through
77 centromeres and euchromatic loci during the mitotic phases preceding leptotene in both
78 *Drosophila* males and females (CAHOON AND HAWLEY 2013; CHRISTOPHOROU N 2013; JOYCE
79 EF 2013; CHRISTOPHOROU *et al.* 2015; RUBIN *et al.* 2022). Moreover, we showed that this pre-
80 meiotic pairing requires components of the synaptonemal complex, a structure specific to
81 prophase I of meiosis (CHRISTOPHOROU N 2013; RUBIN *et al.* 2022). Indeed, the C(3)G and
82 Corona proteins, which form the central region of the SC, are transcribed and translated in the
83 mitotic region and localize on one side of centromeres. It is similar to the initiation of meiosis

84 in budding yeast, where centromeres become “coupled” before meiotic prophase (TSUBOUCHI
85 T 2005). This early association also depends on Zip1, a central component of the SC
86 functionally similar to C(3)G in flies and SYCP1 in mice. Furthermore, recent analyses in mice
87 have shown that meiotic genes involved in prophase I are expressed and translated long before
88 the initiation of the meiotic process (WANG *et al.* 2001; EVANS *et al.* 2014; ZHENG *et al.* 2022).
89 For example, the meiotic cohesin REC8, as in *C. elegans* (PASIERBEK *et al.* 2001) and
90 synaptonemal complex proteins are expressed and actively translated in spermatogonia, which
91 go through several mitotic divisions before meiotic entry. In addition, Spo11 protein is also
92 found at very low levels in spermatogonia (FANG *et al.* 2021).

93 Here, to assess if additional meiotic genes were expressed in the mitotic region of
94 *Drosophila* females, we analyzed the whole genome transcriptome of mitotic and meiotic
95 germline cells.

96

97 **Results**

98

99 **1. Meiotic genes are expressed in the mitotic region**

100 In *Drosophila* females, the processes of mitosis and meiosis occur sequentially throughout
101 the adult life in a structure called the germarium located at the tip of each ovary (SPRADLING
102 1993). At the anterior-most part is the mitotic zone, also known as region 1. In this zone,
103 germline stem cells (GSCs) proliferate and self-renew by receiving signals from adjacent
104 somatic tissue that induce the expression of stem cell promoting factors like *nanos*, which
105 mediate the translational repression of differentiation genes (SLAIDINA AND LEHMANN 2014).
106 GSCs divide mostly asymmetrically and generate a posterior daughter cell, which differentiates
107 into a precursor cell called cystoblast (CB). The CB undergoes four rounds of mitosis, resulting
108 in the formation of a germline cyst consisting of 16 cells (Figure 1A) (HUYNH AND ST JOHNSTON
109 2004). During these mitotic divisions, cells remain connected through ring canals and a
110 specialized organelle called the fusome. The branching pattern of the fusome is a useful marker
111 for distinguishing the different stages within the mitotic zone, i.e. GSCs, CBs, and cysts of 2,
112 4, 8, and 16 cells (DE CUEVAS AND SPRADLING 1998). The period of rapid synchronized
113 divisions marks the transition phase and the commitment to differentiation. The Bag of marble
114 (Bam) protein induces the differentiation of CBs and its expression is spatially restricted:
115 suppressed by self-renewal factors in GSCs and activated in CBs and 2, 4, 8-cell cysts (Fig. 1B
116 and C) (CHEN AND MCKEARIN 2003). After the last mitosis, cysts enter the meiotic zone, also

117 known as region 2a, where all 16 cells that look identical enter meiosis (CARPENTER 1975). The
118 presence of the synaptonemal complex (SC) in this early meiotic zone marks the initiation of
119 prophase I, with only two pro-oocytes progressing to form a complete SC (HUGHES *et al.* 2018).
120 At this stage, meiotic double-strand breaks (DSBs) are induced. As the cyst reaches region 2b,
121 only one cell within the cyst will become an oocyte, while the remaining 15 cells develop into
122 nurse cells and undergo DNA endoreplication. In this region, the cyst undergoes a significant
123 morphological change, adopting a disc-like shape that is one cell thick and spans the entire
124 width of the germarium. Concomitantly, somatic follicle cells begin to migrate and enclose the
125 cyst. As the cyst advances to region 3, also known as stage 1, it assumes a rounded shape
126 forming a sphere. At late pachytene, the oocyte stage is marked with SC and consistently
127 positioned at the posterior pole. Subsequently, the cyst exits the germarium and enters the
128 vitellarium (HUYNH AND ST JOHNSTON 2004).

129 Although meiosis is described as beginning in early region 2a of the germarium, several
130 proteins needed for homologous chromosomes pairing are already present in mitotically
131 dividing cells of region 1. The synaptonemal complex protein C(3)G is one example, which
132 localizes near the centromeres of chromosomes II and III and whose expression is required for
133 initiating centromeric pairing ((CHRISTOPHOROU N 2013); Figure 1 B,C). To gain a more
134 exhaustive view of the spatiotemporal expression of meiotic genes, we separated the mitotic
135 and meiotic cell populations by FACS and then processed the RNA for high-throughput
136 sequencing. The separation method relied on the restrictive expression pattern and properties
137 of Bam and Wcd transgenic proteins (VALLES AND HUYNH 2020): Bam::GFP is detectable only
138 in 2-8 cell cysts of region 1 and was used to label the mitotic region (MCKEARIN AND OHLSTEIN
139 1995). Wcd::RFP has a fast turnover and, when driven by *nanos*-Gal4, it labels a few GSCs,
140 and mostly region 2a/b cells; we therefore used it to identify cells in the first stages of meiosis
141 I. The transgenic line (Bam::GFP; nos>Wcd::RFP) labeled germaria and allowed efficient
142 separation of both mitotic and meiotic germ cell population (see Material and Methods section
143 Figure S1-S3; Table S5). We confirmed the efficiency of cell-sorting by qRT-PCR for specific
144 transcripts. We found that GFP cells were strongly enriched in GFP and *bam* RNA transcripts,
145 while RFP cells were enriched in RFP and *wcd* RNAs (Figure 1D, E). Endogenous Piwi protein
146 was shown to be strongly downregulated in 2- to 8-cell cysts forming a “piwi less pocket (pilp)”
147 (DUFOURT *et al.* 2014). Similarly, we found that *piwi* mRNA levels were lower in the mitotic
148 region compared to the meiotic region (Figure 1D). *matrimony* (*mtrm*) was reported to be very
149 lowly expressed in the mitotic region and higher in the meiotic region by different methods

150 such as single-cell RNAseq and synchronized germline cells (SLAIDINA *et al.* 2021; SAMUELS
151 *et al.* 2024). We confirmed these results by RT-qPCR and RNAseq (Figure 1D and 1E; Table
152 S1-4). As an additional control, we used *blanks*, as this gene was previously shown to display
153 the opposite trend with higher expression in mitotic cells than in meiotic cells (SLAIDINA *et al.*
154 2021; SAMUELS *et al.* 2024). Similarly, our results indicate that *blanks* expression levels are
155 higher in the GFP+ cell population than in the RFP+ population (Figure 1E). To evaluate the
156 contamination by other cell types, we searched for somatic cell markers such as *Robo3*, *vnd*
157 (neural cell), *twist* and *bap* (mesoderm) and *dpp*, *egfr*, *STAT92*, which are expressed in somatic
158 cells in the germarium but not germline cells. We found that *Robo3*, *vnd*, *twist* and *bap* RNAs
159 were absent from both cell populations, however, we found that *dpp*, *egfr* and *Stat92E* were
160 equally present in GFP+ and RFP+ cells (Figure 1E and Table S1-2). These results indicated
161 that there was no contamination by neural or mesodermal tissues, but that some ovarian somatic
162 cells were equally present in both isolated cell populations. Despite the presence of somatic
163 cells in both samples, our control experiments demonstrated that we were able to separate
164 germline mitotic cells from meiotic cells, and that our results were consistent with previously
165 published data.

166 We then took advantage of these transcriptome datasets to focus on genes required for the
167 initial stages of meiosis I. We used the single GO term “meiosis I” in Flybase and removed
168 male-specific genes to identify 69 genes. We found that all of these genes were expressed in
169 both mitotic and meiotic cell populations (Figure 1E, Table S1-2). As previously shown by
170 antibody staining, the synaptonemal complex components C(3)G, Corona and Ord were all
171 found expressed in the mitotic region. We used the DESeq2 package to analyze the differential
172 expression between these genes in the mitotic and meiotic cell populations. Except for a few
173 exceptions, we found that most meiotic genes were expressed at low levels in region 1, and that
174 their expression increase on average by 1.56 folds in region 2 (Figure 1E, Table S1). At one
175 end, *hdm* expression is downregulated 2.3 folds from mitosis to meiosis, almost as strongly as
176 our control gene *bam*, which expression is decreased by 2.7 folds (Figure 1E, Table S1). At the
177 other end, the expression of *cortex* is increased by 4.1 folds. Genes encoding proteins required
178 for homologous recombination such as *mei-W68* and *mei-P22* were among the least expressed
179 in both cell types; nevertheless, their expression increased by 1.5 and 1.6 folds respectively in
180 region 2.

181 To further validate our results, we performed a highly sensitive in situ hybridization (FISH)
182 using the Hybridization Chain Reaction (HCR) method for *C(3)G*, *Nipped-B* and *mei-W68*
183 RNAs (CHOI *et al.* 2018). To unambiguously distinguish the different stages within the mitotic
184 and meiotic regions (Figure 2, yellow dotted line), we labeled the fusome with an antibody
185 against α -Spectrin (Figure S2A-B). Consistent with our RNAseq data, we found that all three
186 genes were expressed in region 1 cells; at very low levels for *mei-W68* and higher levels for
187 *C(3)G* and *Nipped-B* (Figure 2A, C, E). Quantification of the fluorescent signals also revealed
188 an increase in RNA levels for all three genes as found by the RNAseq analysis (Figure 2B, D,
189 F).

190 Overall, we concluded that we were able to isolate the mitotic germline cells from the
191 meiotic cells, and that all meiotic genes started to be expressed in mitotic cells.

192

193 **2. mei-W68 gene is expressed in the mitotic region but Mei-W68 protein is only**
194 **detected in meiotic cells.**

195 Spo11 and TopoVIBL form a meiosis-specific complex, which is conserved across species. In
196 *Drosophila*, Mei-W68 is the homologue of Spo11, while Mei-P22 is a potential homologue of
197 TopoVIBL (ROBERT *et al.* 2016; VRIELYNCK *et al.* 2016). The conserved function of this
198 complex is to generate DSBs to initiate recombination between homologous chromosomes.
199 However, in some species such as mouse, zebrafish, and recently jellyfish, these DSBs are also
200 required for the formation of a SC (ROMANIENKO AND CAMERINI-OTERO 2000; BLOKHINA *et*
201 *al.* 2019; MUNRO *et al.* 2023), whereas it is not the case in *C. elegans* and *Drosophila* females
202 (DERNBURG *et al.* 1998; MCKIM *et al.* 1998). Here, we wanted to test whether Mei-W68 played
203 a role in homologous chromosome pairing in region 1 before the initiation of meiotic DSBs.

204 As shown above using RNAseq and RNA FISH, we found that *mei-W68* mRNA is present at
205 low levels in region 1. Next, we wanted to examine whether Mei-W68 protein was present in
206 region 1. Since there is no antibody against Mei-W68 available in *Drosophila* and that Spo11
207 homologues are also very hard to detect in other species, we decided to knock-in a small 3xHA-
208 6xHis tag by CRISPR-Cas9 at the C-terminus of the endogenous protein (Figure S4C). Despite
209 successful integration, we found that the fusion protein was not functional, as no DSBs could
210 be detected with an anti- γ H2Av antibody in *mei-W68-HA* flies (Figure S5). Furthermore, we

211 found that the frequencies of X and chromosome II non-disjunction were similar in *mei-W68-*
212 *HA/Df(BSC782)* and *mei-W68¹/Df(BSC782)* (Table S6A, S6B). However, *mei-W68-HA* RNAs
213 were nonetheless translated as we were able to detect a specific signal in region 2a using an
214 anti-HA antibody (Figure 3B). Quantification of this signal revealed that the levels of Mei-
215 W68-HA protein in region 1 were at background levels, and dramatically increased in meiotic
216 cells (Figure 3A', B', C). These results showed that Mei-W68 protein is probably not present
217 in region 1, and that *mei-W68* mRNA is translated only in *Drosophila* meiotic cells.

218

219 **3. Mei-W68 and Mei-P22 are dispensable for centromere pairing in the mitotic**
220 **region.**

221 The failure to detect Mei-W68 protein in the mitotic region could be due to limitations in our
222 detection methods combined with its low expression levels, as suggested by our transcriptome
223 analysis. We therefore used a functional assay to test for a requirement of Mei-W68 in region
224 1. In mouse germline cells, Spo11 has been proposed to be required for pre-meiotic pairing of
225 homologous chromosomes (BOATENG *et al.* 2013). We thus assayed whether Mei-W68 was
226 required for pre-meiotic pairing of centromeres in region 1. To this aim, we used three different
227 mutant conditions. Firstly, in *mei-W68¹/DfBSC782* mutant germaria, there is a 5kb insertion of
228 a transposable element in the first exon, and there is likely no protein made (MCKIM AND
229 HAYASHI-HAGIHARA 1998) (Figure S4A). Secondly, we replaced by CRISPR-Cas9 the
230 endogenous locus with a form of *mei-W68* mutated in the catalytic domain. Based on sequence
231 alignment of similar constructs in yeast and mouse, we replaced two Tyrosine (Y80 and Y81)
232 by two Phenylalanine in the catalytic domain (*mei-W68^{CD}* Figure S4B) (DIAZ *et al.* 2002;
233 BOATENG *et al.* 2013). In this mutant background (*mei-W68¹/DfBSC782* and *mei-W68^{CD}*) no
234 DSBs could be detected with an anti- γ H2Av antibody (Figure S6A, S6B, S6C). Furthermore,
235 we found high levels of non-disjunction for both the X and second chromosomes (Table S6A,
236 S6B), indicating that *mei-W68^{CD}* is a strong mutant allele of *mei-W68*. Thirdly, we used a *mei-*
237 *P22^{P22}* mutant allele and confirmed that DSBs were also completely absent (Figure S6D).

238 In previous studies, we observed that centromere pairing became prominent in 8-cell
239 germline cysts (CHRISTOPHOROU N 2013). *Drosophila* diploid cells have four pairs of
240 homologous chromosomes, resulting in eight chromosomes per cell. When all homologues are
241 paired, we can observe four distinct dots of CID (Centromere Identifier) corresponding to

242 centromere pairing (TAKEO *et al.* 2011; TANNETI *et al.* 2011). However, when centromeres are
243 not all paired, we can count more than four dots. In the nuclei of *mei-W68^{1/DfBSC782}*, *mei-W68^{CD}*
244 and *mei-P22^{P22}* 8-cell cysts, we counted an average of 4.2, 4.4 and 4.2 ± 0.9 -1.1, respectively,
245 of CID foci as compared to 4.2 ± 0.9 in the wild-type (Figure 4 A-E), indicating that most
246 chromosomes were paired at their centromeres in these three independent mutant conditions
247 compared to wild type germaria (two-tailed Student's t-test, $p=1$ for *mei-W68^{1/DfBSC782}*; $p=0.7$
248 for *mei-W68^{CD}*; and $p=0.8$ for *mei-P22^{P22}*).

249 We also examined the pairing behavior of individual chromosomes in order to determine
250 if pre-meiotic centromere pairing occurred between homologous chromosomes. To label the
251 pericentromeric regions of chromosome II and III, we used the AACAC and dodeca probes
252 respectively (JOYCE *et al.* 2012). To visualize pairing, we performed fluorescence *in situ*
253 hybridization (DNA FISH) in combination with immunostaining against the fusome marker, α -
254 Spectrin (Figure 4F-O). We defined chromosomes as paired when only one focus was detected
255 or when two foci were detected with a separation distance of less than or equal to 0.70 μm
256 (GONG WJ 2005; BLUMENSTIEL JP 2008). We found that in *mei-W68^{1/DfBSC782}*, *mei-W68^{CD}* and
257 *mei-P22^{P22}* mutant 8-cell cysts, the number of paired chromosomes II at the level of the
258 centromeric regions varies from 52.5% (wt) to 46.7% (*mei-W68^{1/DfBSC782}*; khi^2 , $p=0.5$), 61.4%
259 (*mei-W68^{CD}*; khi^2 , $p=0.3$) and 35.4% (*mei-P22^{P22}*; khi^2 , $p=0.07$) (Figure 4F-J); and for
260 chromosome III, pairing varies from 57.4%, (wt) to 57.4%, (*mei-W68^{1/DfBSC782}*; khi^2 , $p=1$),
261 64.4% (*mei-W68^{CD}*; khi^2 , $p=0.4$) and 60.8% (*mei-P22^{P22}*; khi^2 , $p=0.7$) (Figure 4K-O). These
262 results indicate that homologous chromosomes II and III were paired at their centromeres in all
263 mutant conditions similarly to the wild type condition.

264 From these results, we concluded that Mei-W68 and Mei-P22 are not required for early
265 centromere pairing.

266 **4. Sunn, C(2)M, Nipped-B and Stromalin are dispensable for centromere pairing in**
267 **the mitotic region**

268 We previously showed that SC proteins C(3)G and Corona were expressed and required for
269 centromere pairing in region 1 (CHRISTOPHOROU N 2013). Here, the RNAseq data indicated
270 that many more SC or chromosome-axis proteins could be present in region 1, such as Sunn,
271 C(2)M, Nipped-B or Stromalin (SA), which are meiotic cohesin or cohesin-associated proteins
272 (HUGHES *et al.* 2018). To test whether these genes were required for centromere pairing in

273 region 1, we expressed shRNAs targeting each of these genes in germline cells (Figure 5). On
274 average, we found that the numbers of centromere foci were similar between control germarium
275 (sh-white) and in germarium mutant for *sunn*, *C(2)M*, *Nipped-B* and *Stromalin*, indicating that
276 these genes are not required for the early pairing and clustering of centromeres (Figure 5A-F).
277 We further tested the efficiency of these shRNA lines by estimating the frequencies of X-
278 chromosome non-disjunction. We found that these lines induced efficiently between 8% and
279 14% of NDJ (Table S7). We concluded that, in contrast to SC proteins (C(3)G, Corona, Ord),
280 cohesins associated to meiotic chromosomes were not required for centromere pairing.

281

282 **5. DSBs activity is not detected in the premeiotic region**

283 We then investigated whether DSBs could be present in region 1 despite the absence of Mei-
284 W68 activity. In the *Drosophila* germline, the first sign of DSBs were described in region 2a
285 using an antibody recognizing the phosphorylated H2A variant, also known as γ H2Av
286 (MEHROTRA AND MCKIM 2006; LAKE *et al.* 2013). To avoid using an antibody, we tested a GFP-
287 tagged RPA transgene to label DSBs. RPA binds and protects single-strand DNA (ssDNA) just
288 after resection of the double strand break. It is one the earliest known event of DSB repair. The
289 coating of ssDNA by RPA is, however, transient as it is replaced by Rad51 filaments for DNA
290 repair. To compare the pattern of DSBs precisely in the premeiotic and meiotic regions, we
291 labeled the germarium with an antibody against α -spectrin recognizing 8cc stages, and against
292 C(3)G to identify meiotic cells. In meiotic cysts, we selected the two pro-oocytes that displayed
293 the brightest synaptonemal complex and counted their RPA::GFP dots in the early and late
294 regions 2a and in region 2b (HUYNH AND ST JOHNSTON 2000; PAGE AND HAWLEY 2001). In a
295 wild type germarium because RPA is rapidly replaced by Rad51, the GFP signal is expected to
296 be very rare (Figure 6). Indeed, in this genetic context (*RpA-70::GFP*), we counted an average
297 of 0 (8 cc), 0.7 (early 2a), 2.2 (late 2a) and 0.4 (region 2b) \pm 0.6-1.7 GFP foci (Figure 6 A, A',
298 C, D, D', G, G', Movie S1). Furthermore, we found that most RPA-GFP foci were associated
299 with γ H2Av, while the opposite was not (Figure S7A, S7B, S7E), indicating a rapid replacement
300 of RPA at DSBs sites.

301 We then introduced RpA-70 EGFP into a *spn-D* mutant background (*RpA-70::GFP*, *spn-D*²).
302 Spn-D is a meiosis-specific Rad51 homologue that is involved in removing and replacing RPA
303 for DSBs repair in germline cells (ABDU *et al.* 2003). In this genetic context, we observed

304 accumulation of GFP dots in the meiotic region (Figure 6B, B', Movie S2) and not in the mitotic
305 zone, counting an average of 0.2 (8 cc), 19 (early 2a), 16.7 (late 2a), 19.7 (2b pro-oocytes)
306 ± 0.4 -4.4 GFP foci (Figure 6B, B', C, E, E', H, H'), respectively. We rarely detected RPA::GFP
307 dots in the premeiotic region, indicating that neither Mei-W68 nor other sources induced
308 detectable DSBs in the premeiotic region. In addition, we observed a much greater overlap
309 between RPA and γ H2Av dots in the *spn-D* mutant background than in the wild type condition
310 (Figure S7C, S7D, S7E). This result confirmed the conserved role of Spn-D in RPA replacement
311 during meiotic DSBs repair. Finally, in the additional absence of Mei-W68 (*mei-W68*^{1/D}/*BSC782*;
312 *RpA-70::GFP*, *spn-D*²), we counted 0 (8 cc), 0.2 (early 2a) and 0.3 (late 2a) ± 0.3 -0.4 GFP foci
313 (Figure 6C, F, F', I, I'), indicating that Mei-W68 is responsible for most RPA dots in a *spn-D*
314 mutant background, and importantly, that its activity is restricted to the meiotic region.

315 Discussion

316 In this work, we explored the transcriptome of known meiotic genes at a key transition of
317 germline cell differentiation in *Drosophila* females. For this purpose, we used non-overlapping
318 mitotic and meiotic cell populations genetically labelled with fluorescence transgenes in an
319 otherwise completely wild type genetic background. Published methods for separating GSCs
320 and differentiating cysts are based on the enrichment of GSCs in *bam* mutant conditions, and
321 on the controlled expression of *bam* (*bam*RNAi; hs-*bam*) to enrich in differentiating cysts (KAI
322 *et al.* 2005; WILCOCKSON AND ASHE 2019; McCARTHY *et al.* 2022; SAMUELS *et al.* 2024). Wild
323 type ovaries have been used for single cell technology assigning differentiation stages with
324 known markers to cell clusters (JEVITT *et al.* 2020; SLAIDINA *et al.* 2021). These methods have
325 provided vast resources for functional analyses. However, they have limitations in resolving
326 with precision the distinct stages of mitosis and meiosis: the first produces mixed population of
327 cysts, the second generated very few cell clusters, but has expanded up to nine distinct states.
328 Our resulting transcriptome datasets reveal that in *Drosophila*, all the genes involved in the first
329 stages of meiosis are already expressed at low levels in the dividing germ cells before they enter
330 the meiotic prophase I. Importantly, we were able to recover from the RNA-seq datasets known
331 meiotic genes expressed in the mitotic compartment confirming and extending our previous
332 findings to the whole *Drosophila* genome (CHRISTOPHOROU N 2013).

333 Among these genes, we confirmed by in situ hybridization that *mei-W68* is transcribed in the
334 premeiotic region showing increasing levels in the meiotic region. These results are in
335 agreement with previous single cell transcriptome datasets in *Drosophila* ovaries, in which

336 germ cells in the germarium were staged using pseudotime analyses (SLAIDINA *et al.* 2021).
337 Our study also provides new insights into the regulation of *mei-W68* in the germline. We
338 inserted a small HA-His tag at the endogenous C-terminus of Mei-W68 and, although this
339 construct is not fully functional, it allowed us to follow the pattern of *mei-W68* RNA translation.
340 We found that Mei-W68 protein is detected mostly in early region 2a where meiotic DSBs
341 localized and never in region 1. Thus, the primary factors contributing to the presence of Mei-
342 W68 protein in the meiotic region are linked to the regulation of its translation. The importance
343 of translational regulation during germ cell differentiation is well-known (SLAIDINA AND
344 LEHMANN 2014; TEIXEIRA AND LEHMANN 2019). Recently, it has been quantified genomewide
345 using Ribo-seq, and this study showed that it is hard to predict the amount of any proteins from
346 the corresponding mRNA levels (SAMUELS *et al.* 2024). Nonetheless, the presence of meiotic
347 mRNAs in germline mitotic cells may allow a faster transition to meiosis than the activation of
348 meiotic transcription program at the onset of meiosis.

349 Interestingly, in the mouse, the role of SPO11 in the initiation of pairing was recently
350 challenged. Two independent studies found that early pairing occurred at the premeiotic stage
351 (BOATENG *et al.* 2013; SOLE *et al.* 2022), while two others detected pairing at early leptotene
352 (ISHIGURO *et al.* 2014; SCHERTHAN *et al.* 2014); however, they all agreed that early pairing
353 events were independent of DSBs. Moreover, Boateng and colleagues further showed that
354 pairing was dependent on SPO11 but not of its catalytic activity (BOATENG *et al.* 2013). On the
355 other hand, two independent labs found that SPO11 was not required at all for pairing (ISHIGURO
356 *et al.* 2014; SCHERTHAN *et al.* 2014). These conflicting findings led us to ask for the requirement
357 of Mei-W68 in premeiotic pairing in *Drosophila*. Here we show that neither Mei-W68 nor its
358 putative partner Mei-P22 are involved in centromere pairing in the mitotic region of *Drosophila*
359 females.

360 We used an Rpa70-GFP reporter as a new read-out of the initiation of meiotic recombination
361 by DSBs (BLYTHE AND WIESCHAUS 2015). Phosphorylation of the histone variant H2Av (H2AX
362 in mammals) is a widely-used mark for DSBs (MADIGAN *et al.* 2002). We found that in wild-
363 type germarium, the timing and repair of meiotic DSBs reported previously using antibodies
364 against γ -H2Av are in agreement with our results with Rpa70-GFP. RPA foci first appeared in
365 early region 2a, peaked in late region 2a, and then declined in 2b (MEHROTRA AND MCKIM
366 2006; LAKE *et al.* 2013). The number of detectable RPA foci at any one time is, however, much
367 smaller than with γ -H2Av, confirming that RPA coating of ssDNA is very transient (YADAV AND

368 CLAEYS BOUUAERT 2021). In contrast, in mutant conditions where DSBs are stabilized, we
369 counted similar number of foci (19.7 in *spn-D* mutant region 2b) as previously published using
370 antibody staining, 21.2 foci in *spn-D* mutant region 3 (MEHROTRA AND MCKIM 2006) and 19.3
371 foci in *okra* mutant region 2b (LAKE *et al.* 2013). As expected, in a *mei-W68* null background,
372 no or few Rpa70-GFP foci were detected as previously reported using the γ -H2Av antibody
373 (MEHROTRA AND MCKIM 2006; LAKE *et al.* 2013). Importantly, our results with fluorescently
374 labeled Rpa70 confirmed that *Mei-W68* does not exhibit early DSB activity in cysts before
375 entering meiosis in region 2. Finally, our results also showed that there is no significant DSBs
376 in the premeiotic region. In dividing embryos, the transient and rapid binding of Rpa70-GFP to
377 sites of replication stress has allowed to measure optically the dynamics of stalled DNA
378 replication during the mitotic cell cycle (BLYTHE AND WIESCHAUS 2015). Taking advantage of
379 the properties of this reporter, we aim to follow by live imaging the *Drosophila* germarium
380 events of initiation and repair of DSBs in the different genetic contexts.

381

382 **Data availability statement**

383 All fly strains are available upon request. Datasets are available from NCBI Sequence Reach
384 Archive (SRA) under BioProject: PRJNA1011850 entitled “Isolation of stage-specific germ
385 cells in *Drosophila* germarium”.

386
387

388 Acknowledgments

389 We are grateful to Shelby Blythe (U. Northwestern), Bloomington Stock Center, DSHB
390 Hybridoma Center, for antibodies and flies. We are grateful to the Orion Imaging facility at
391 CIRB (Collège de France).
392 JRH lab is supported by CNRS, Inserm, Collège de France, FRM (Equipe FRM
393 DEQ20160334884); ANR ANR-20-CE12-, BioPic) and the Bettencourt-Schueller foundation
394 (FBS).

395

396 Literature cited

397 Abdu, U., A. Gonzalez-Reyes, A. Ghabrial and T. Schupbach, 2003 The *Drosophila* spn-D gene
398 encodes a RAD51C-like protein that is required exclusively during meiosis. *Genetics*
399 165: 197-204.
400 Bhalla, N., and A. F. Dernburg, 2008 Prelude to a division. *Annu Rev Cell Dev Biol* 24: 397-
401 424.
402 Blokhina, Y. P., A. D. Nguyen, B. W. Draper and S. M. Burgess, 2019 The telomere bouquet is
403 a hub where meiotic double-strand breaks, synapsis, and stable homolog juxtaposition
404 are coordinated in the zebrafish, *Danio rerio*. *PLoS Genet* 15: e1007730.
405 Blumenstiel JP, F. R., Theurkauf WE, Hawley RS., 2008 Components of the RNAi machinery
406 that mediate long-distance chromosomal associations are dispensable for meiotic and
407 early somatic homolog pairing in *Drosophila melanogaster*. *Genetics* 180: 1355-1365.
408 Blythe, S. A., and E. F. Wieschaus, 2015 Zygotic genome activation triggers the DNA
409 replication checkpoint at the midblastula transition. *Cell* 160: 1169-1181.
410 Boateng, K. A., M. A. Bellani, I. V. Gregoretti, F. Pratto and R. D. Camerini-Otero, 2013
411 Homologous pairing preceding SPO11-mediated double-strand breaks in mice. *Dev
412 Cell* 24: 196-205.
413 Cahoon, C. K., and R. S. Hawley, 2013 Flies get a head start on meiosis. *PLoS Genet* 9:
414 e1004051.
415 Cahoon, C. K., and R. S. Hawley, 2016 Regulating the construction and demolition of the
416 synaptonemal complex. *Nat Struct Mol Biol* 23: 369-377.
417 Carpenter, A. T., 1975 Electron microscopy of meiosis in *Drosophila melanogaster* females. I.
418 Structure, arrangement, and temporal change of the synaptonemal complex in wild-
419 type. *Chromosoma* 51: 157-182.
420 Chen, D., and D. M. McKearin, 2003 A discrete transcriptional silencer in the bam gene
421 determines asymmetric division of the *Drosophila* germline stem cell. *Development*
422 130: 1159-1170.
423 Choi, H. M. T., M. Schwarzkopf, M. E. Fornace, A. Acharya, G. Artavanis *et al.*, 2018 Third-
424 generation *in situ* hybridization chain reaction: multiplexed, quantitative, sensitive,
425 versatile, robust. *Development* 145.
426 Christophorou N, R. T., Huynh JR., 2013 Synaptonemal complex components promote
427 centromere pairing in pre-meiotic germ cells. *PLoS Genet* 9: e1004012.
428 Christophorou, N., T. Rubin, I. Bonnet, T. Piolot, M. Arnaud *et al.*, 2015 Microtubule-driven
429 nuclear rotations promote meiotic chromosome dynamics. *Nat Cell Biol* 17: 1388-1400.
430 Cinalli, R. M., P. Rangan and R. Lehmann, 2008 Germ cells are forever. *Cell* 132: 559-562.

431 Crittenden SL, L. K., Byrd DT, Kimble J., 2006 Cellular Analyses of the Mitotic Region in the
432 *Caenorhabditis elegans* Adult Germ Line. *Molecular Biology of the Cell*.

433 de Cuevas, M., and A. C. Spradling, 1998 Morphogenesis of the *Drosophila* fusome and its
434 implications for oocyte specification. *Development* 125: 2781-2789.

435 de Massy, B., 2013 Initiation of meiotic recombination: how and where? Conservation and
436 specificities among eukaryotes. *Annu Rev Genet* 47: 563-599.

437 Dernburg, A. F., K. McDonald, G. Moulder, R. Barstead, M. Dresser *et al.*, 1998 Meiotic
438 recombination in *C. elegans* initiates by a conserved mechanism and is dispensable for
439 homologous chromosome synapsis. *Cell* 94: 387-398.

440 Diaz, R. L., A. D. Alcid, J. M. Berger and S. Keeney, 2002 Identification of residues in yeast
441 Spo11p critical for meiotic DNA double-strand break formation. *Mol Cell Biol* 22:
442 1106-1115.

443 Dufourt, J., C. Dennis, A. Boivin, N. Gueguen, E. Theron *et al.*, 2014 Spatio-temporal
444 requirements for transposable element piRNA-mediated silencing during *Drosophila*
445 oogenesis. *Nucleic Acids Res* 42: 2512-2524.

446 Evans, E., C. Hogarth, D. Mitchell and M. Griswold, 2014 Riding the spermatogenic wave:
447 profiling gene expression within neonatal germ and sertoli cells during a synchronized
448 initial wave of spermatogenesis in mice. *Biol Reprod* 90: 108.

449 Fang, K., Q. Li, Y. Wei, C. Zhou, W. Guo *et al.*, 2021 Prediction and Validation of Mouse
450 Meiosis-Essential Genes Based on Spermatogenesis Proteome Dynamics. *Mol Cell*
451 *Proteomics* 20: 100014.

452 Fichelson, P., C. Moch, K. Ivanovitch, C. Martin, C. M. Sidor *et al.*, 2009 Live-imaging of
453 single stem cells within their niche reveals that a U3snoRNP component segregates
454 asymmetrically and is required for self-renewal in *Drosophila*. *Nat Cell Biol* 11: 685-
455 693.

456 Gong WJ, M. K., Hawley RS., 2005 All paired up with no place to go: pairing, synapsis, and
457 DSB formation in a balancer heterozygote. *PLoS Genet* 1: e67.

458 Gyuricza, M. R., K. B. Manheimer, V. Apte, B. Krishnan, E. F. Joyce *et al.*, 2016 Dynamic and
459 Stable Cohesins Regulate Synaptonemal Complex Assembly and Chromosome
460 Segregation. *Curr Biol*.

461 Hughes, S. E., D. E. Miller, A. L. Miller and R. S. Hawley, 2018 Female Meiosis: Synapsis,
462 Recombination, and Segregation in *Drosophila melanogaster*. *Genetics* 208: 875-908.

463 Huynh, J. R., and D. St Johnston, 2000 The role of BicD, Egl, Orb and the microtubules in the
464 restriction of meiosis to the *Drosophila* oocyte. *Development* 127: 2785-2794.

465 Huynh, J. R., and D. St Johnston, 2004 The origin of asymmetry: early polarisation of the
466 *Drosophila* germline cyst and oocyte. *Curr Biol* 14: R438-449.

467 Ishiguro, K., J. Kim, H. Shibuya, A. Hernandez-Hernandez, A. Suzuki *et al.*, 2014 Meiosis-
468 specific cohesin mediates homolog recognition in mouse spermatocytes. *Genes Dev* 28:
469 594-607.

470 Jevitt, A., D. Chatterjee, G. Xie, X. F. Wang, T. Otwell *et al.*, 2020 A single-cell atlas of adult
471 *Drosophila* ovary identifies transcriptional programs and somatic cell lineage regulating
472 oogenesis. *PLoS Biol* 18: e3000538.

473 Joyce EF, A. N., Beliveau BJ, Wu CT., 2013 Germline progenitors escape the widespread
474 phenomenon of homolog pairing during *Drosophila* development. *PLoS Genet* 9:
475 e1004013.

476 Joyce, E. F., B. R. Williams, T. Xie and C. T. Wu, 2012 Identification of genes that promote or
477 antagonize somatic homolog pairing using a high-throughput FISH-based screen. *PLoS*
478 *Genet* 8: e1002667.

479 Kai, T., D. Williams and A. C. Spradling, 2005 The expression profile of purified *Drosophila*
480 germline stem cells. *Dev Biol* 283: 486-502.

481 Keeney, S., C. N. Giroux and N. Kleckner, 1997 Meiosis-specific DNA double-strand breaks
482 are catalyzed by Spo11, a member of a widely conserved protein family. *Cell* 88: 375-
483 384.

484 Kim, H. J., C. Liu and A. F. Dernburg, 2022 How and Why Chromosomes Interact with the
485 Cytoskeleton during Meiosis. *Genes (Basel)* 13.

486 Lake, C. M., J. K. Holsclaw, S. P. Bellendir, J. Sekelsky and R. S. Hawley, 2013 The
487 development of a monoclonal antibody recognizing the *Drosophila melanogaster*
488 phosphorylated histone H2A variant (gamma-H2AV). *G3 (Bethesda)* 3: 1539-1543.

489 Madigan, J. P., H. L. Chotkowski and R. L. Glaser, 2002 DNA double-strand break-induced
490 phosphorylation of *Drosophila* histone variant H2Av helps prevent radiation-induced
491 apoptosis. *Nucleic Acids Res* 30: 3698-3705.

492 McCarthy, A., K. Sarkar, E. T. Martin, M. Upadhyay, S. Jang *et al.*, 2022 Msl3 promotes
493 germline stem cell differentiation in female *Drosophila*. *Development* 149.

494 McKearin, D., and B. Ohlstein, 1995 A role for the *Drosophila* bag-of-marbles protein in the
495 differentiation of cystoblasts from germline stem cells. *Development* 121: 2937-2947.

496 McKim, K. S., B. L. Green-Marroquin, J. J. Sekelsky, G. Chin, C. Steinberg *et al.*, 1998 Meiotic
497 synapsis in the absence of recombination. *Science* 279: 876-878.

498 McKim, K. S., and A. Hayashi-Hagihara, 1998 mei-W68 in *Drosophila melanogaster* encodes
499 a Spo11 homolog: evidence that the mechanism for initiating meiotic recombination is
500 conserved. *Genes & Development* 12: 2932-2942.

501 Mehrotra, S., and K. S. McKim, 2006 Temporal analysis of meiotic DNA double-strand break
502 formation and repair in *Drosophila* females. *PLoS Genet* 2: e200.

503 Munro, C., H. Cadis, S. Pagnotta, E. Houlston and J. R. Huynh, 2023 Conserved meiotic
504 mechanisms in the cnidarian *Clytia hemisphaerica* revealed by Spo11 knockout. *Sci
505 Adv* 9: eadd2873.

506 Page, S. L., and R. S. Hawley, 2001 c(3)G encodes a *Drosophila* synaptonemal complex protein.
507 *Genes Dev* 15: 3130-3143.

508 Pasierbek, P., M. Jantsch, M. Melcher, A. Schleiffer, D. Schweizer *et al.*, 2001 A *Caenorhabditis
509 elegans* cohesion protein with functions in meiotic chromosome pairing and disjunction.
510 *Genes Dev* 15: 1349-1360.

511 Robert, T., A. Nore, C. Brun, C. Maffre, B. Crimi *et al.*, 2016 The TopoVIB-Like protein family
512 is required for meiotic DNA double-strand break formation. *Science* 351: 943-949.

513 Rohozkova, J., L. Hulkova, J. Fukalova, P. Flachs and P. Hozak, 2019 Pairing of homologous
514 chromosomes in *C. elegans* meiosis requires DEB-1 - an orthologue of mammalian
515 vinculin. *Nucleus* 10: 93-115.

516 Romanienko, P. J., and R. D. Camerini-Otero, 1999 Cloning, characterization, and localization
517 of mouse and human SPO11. *Genomics* 61: 156-169.

518 Romanienko, P. J., and R. D. Camerini-Otero, 2000 The Mouse Spo11 Gene Is Required for
519 Meiotic Chromosome Synapsis. *Molecular Cell* 6: 975-987.

520 Rubin, T., N. Macaisne and J. R. Huynh, 2020 Mixing and Matching Chromosomes during
521 Female Meiosis. *Cells* 9.

522 Rubin, T., N. Macaisne, A. M. Valles, C. Guilleman, I. Gaugue *et al.*, 2022 Premeiotic pairing
523 of homologous chromosomes during *Drosophila* male meiosis. *Proc Natl Acad Sci U S
524 A* 119: e2207660119.

525 Samuels, T. J., J. Gui, D. Gebert and F. Karam Teixeira, 2024 Two distinct waves of
526 transcriptome and translatome changes drive *Drosophila* germline stem cell
527 differentiation. *EMBO J.*

528 Scherthan, H., K. Schofisch, T. Dell and D. Illner, 2014 Contrasting behavior of
529 heterochromatic and euchromatic chromosome portions and pericentric genome
530 separation in pre-bouquet spermatocytes of hybrid mice. *Chromosoma* 123: 609-624.

531 Slaidina, M., S. Gupta, T. U. Banisch and R. Lehmann, 2021 A single-cell atlas reveals
532 unanticipated cell type complexity in *Drosophila* ovaries. *Genome Res* 31: 1938-1951.
533 Slaidina, M., and R. Lehmann, 2014 Translational control in germline stem cell development.
534 *J Cell Biol* 207: 13-21.
535 Sole, M., J. Blanco, D. Gil, O. Valero, B. Cardenas *et al.*, 2022 Time to match; when do
536 homologous chromosomes become closer? *Chromosoma*.
537 Spradling, A. C., 1993 Developmental genetics of oogenesis. 1-70.
538 Takeo, S., C. M. Lake, E. Morais-de-Sa, C. E. Sunkel and R. S. Hawley, 2011 Synaptonemal
539 complex-dependent centromeric clustering and the initiation of synapsis in *Drosophila*
540 oocytes. *Curr Biol* 21: 1845-1851.
541 Tanneti, N. S., K. Landy, E. F. Joyce and K. S. McKim, 2011 A pathway for synapsis initiation
542 during zygotene in *Drosophila* oocytes. *Curr Biol* 21: 1852-1857.
543 Teixeira, F. K., and R. Lehmann, 2019 Translational Control during Developmental Transitions.
544 *Cold Spring Harb Perspect Biol* 11.
545 Tsubouchi T, R. G., 2005 A synaptonemal complex protein promotes homology-independent
546 centromere coupling. *Science* 308: 870-873.
547 Valles, A. M., and J. R. Huynh, 2020 Isolation of stage-specific germ cells using FACS in
548 *Drosophila* germarium. *Methods Cell Biol* 158: 11-24.
549 Vrielynck, N., A. Chambon, D. Vezon, L. Pereira, L. Chelysheva *et al.*, 2016 A DNA
550 topoisomerase VI-like complex initiates meiotic recombination. *Science* 351: 939-941.
551 Wang, P. J., J. R. McCarrey, F. Yang and D. C. Page, 2001 An abundance of X-linked genes
552 expressed in spermatogonia. *Nat Genet* 27: 422-426.
553 Wilcockson, S. G., and H. L. Ashe, 2019 *Drosophila* Ovarian Germline Stem Cell Cytocensor
554 Projections Dynamically Receive and Attenuate BMP Signaling. *Dev Cell* 50: 296-312
555 e295.
556 Yadav, V. K., and C. Claeys Bouuaert, 2021 Mechanism and Control of Meiotic DNA Double-
557 Strand Break Formation in *S. cerevisiae*. *Front Cell Dev Biol* 9: 642737.
558 Zheng, Y., L. Zhang, L. Jin, P. Zhang, F. Li *et al.*, 2022 Unraveling three-dimensional chromatin
559 structural dynamics during spermatogonial differentiation. *J Biol Chem* 298: 101559.
560 Zickler, D., and N. Kleckner, 2015 Recombination, Pairing, and Synapsis of Homologs during
561 Meiosis. *Cold Spring Harb Perspect Biol* 7.

562

563

564 **MATERIAL AND METHODS**

565

566 Flies were maintained on standard medium in 25°C incubators on a 12 h light/dark cycle. Wild-
567 type controls and in combination with additional transgenes of fluorescently tagged proteins
568 were in a *w¹¹¹⁸* background.

569

570 **Fly stocks and genetics**

571 Fly stocks used in this study: *bam::GFP/CyO; nos>UASp-RFP::wcd/TM6,tb*, is the full-length
572 *bam* fused to GFP at C-terminus, containing its own promoter and 3'UTR (CHEN AND
573 MCKEARIN 2003) and full-length *wicked* fused to RFP N-terminus, under the control of
574 germline specific UASp promoter and activated by *nanos-Gal::VP16* (BDSC_4937)
575 (FICHELSON *et al.* 2009). To compare *bam::GFP/CyO; nos>UASp-RFP::wcd/TM6,tb* line to
576 the wild type white- reference line, we first used Orb as a marker for developmental timing of
577 germline development (Figure S1A, S1B). We found no difference between the *bam-*
578 *Bam::GFP; nos>wcd::RFP* line and the white- control line. Orb is initially present in all
579 germline cells in early region 1 and 2a, then becomes restricted to the oocyte in region 2b, at
580 the anterior of the oocyte in region 3 and then switches to the posterior of the oocyte in stage 2
581 egg chambers. We found the two lines to be identical. We also analyzed the restriction of the
582 synaptonemal complex to a single cell using an antibody against C(3)G (Figure S1C and S1D).
583 We found that in region 1 and region 2a, C(3)G was identical in both genetic backgrounds.
584 However, in region 3, we noticed that the SC signal was less intense in the future oocyte in the
585 transgenic line (Figure S1E, “oocyte I”); and at the same time, we observed a stronger signal
586 of C(3)G in the reverting pro-oocyte in the transgenic line (Figure S1D, open arrowhead, Figure
587 S1E, “oocyte II”). Then at stage 2, the transgenic and control lines became identical. These data
588 indicate that there is a transient delay in the restriction of the SC to a single cell in the *bam-*
589 *Bam::GFP; nos>wcd::RFP* line compared to white- flies. We then tested whether this delay
590 could be caused by different number of germline cysts in the germarium, but we found no
591 difference in number of cysts in region 2 between the two genetic backgrounds (Figure S1F).
592 We also analyzed by RNA FISH whether we could detect differences in gene expression
593 between the two lines. We performed RNA FISH for meiotic genes found in RNAseq data,
594 such as *c(3)G*, *Nipped-B* and *mei-W68* (Figure S3A,B,C). Quantification of FISH signals in
595 region 2 found no difference in levels of expression of these three genes between the transgenic
596 and control line. Finally, we used a functional assay to test for meiotic differences between
597 these two lines, and we measured the occurrence of X-chromosome non-disjunction (Table S5).

598 In both lines, we found only background frequencies of chromosome non-disjunctions. Overall,
599 our thorough characterization of the *bam-Bam::GFP; nos>wcd::RFP* line revealed only a
600 transient delay in SC restriction to the oocyte. This does not change our transcriptomic analysis
601 of region 1 and 2.

602 *mei-W68^{HA}* is a C-terminal 3x HA-linker-6x His tagged *mei-W68* fly, homozygous viable and
603 sub-fertile generated by CRISPR/Cas9 mediated Tag knocking strategy (Well Genetics).
604 Catalytic dead *mei-W68^{CD}* was genome edited at the conserved catalytic domain (Y80F, Y81F)
605 (ROMANIENKO AND CAMERINI-OTERO 1999) using the seamless CRISPR/Cas9 strategy (Well
606 Genetics). Flies are homozygous viable and sub-fertile. *mei-W68¹* is a null mutation caused by
607 spontaneous 5kb TE insertion in exon 2, females have normal synaptonemal complex but show
608 elevated NDJ levels (MCKIM AND HAYASHI-HAGIHARA 1998). Df (2R) BSC782/SM6a
609 (BDSC_27354) is a *mei-W68* deficiency. *mei-P22^{P22}* (BDSC_4931). The shRNA lines were:
610 for *white*, P{TRiP.GL00094}attP2 (BDSC_35573); for *C(2)M* P{TRiP.GL01587}attP2
611 (BDSC_43977); for *SA* P{TRiP.GL00534}attP40 (BDSC_36794), for *Nipped-B* P{
612 TRiP.GL00574}attP40 (BDSC_36614), for *sunn* P{TRiP.HMJ21654} (BDSC_52969). *spn-D²*
613 (BDSC_3326). *y w; Rpa-70 EGFP[attP2]* (BLYTHE AND WIESCHAUS 2015) flies were used to
614 generate lines: *Rpa-70 EGFP spn-D²*, *mei-W68¹/CyO* ; *Rpa-70 EGFP spn-D²*, *Df*
615 (2R)BSC782/CyO ; *Rpa-70 EGFP spn-D²* /TM6,tb.

616

617 FACS sorted germ cells

618 We used the protocol for isolating mitotic and meiotic cell populations as detailed in Vallés and
619 Huynh 2020. In brief, for each FACS isolation, 800 adult ovaries from *bam::GFP/CyO*;
620 *nos>UASp-RFP::wcd/TM6,tb* flies were dissected and collected in complete medium
621 (Schneider's insect medium supplemented with 10% heat-inactivated fetal bovine serum,
622 Sigma-Aldrich), dissociated with elastase at 30°C for 30 min (1 mg/ml, Sigma-Aldrich), and
623 filtered twice (first in 40µ mesh size, then in 70µ mesh size, Corning Falcon). Cell suspensions
624 underwent FACS separation (Aria III, BD Biosciences), collecting GFP+ and RFP+ cells and
625 eliminating non-fluorescent cells, clumps, and dead cells. Cells were sorted directly into RNA
626 extraction buffer (ARCTURUS Pico RNA isolation Kit, Applied Biosystems) for purification
627 following manufacturer's protocol.

628 Library preparations were done by Fasteris SA (Geneva, Switzerland) using the RNA RiboZero
629 Stranded protocol. Indexed adapters were ligated and multiplexed sequencing performed using
630 Illumina HiSeq 2000 (125-bp single read). At least two independent biological samples were
631 prepared for each cell population. Sequences generated by Fasteris were aligned against the *D.*

632 *melanogaster* reference genome (UCSC dm6) <http://rohsdb.cmb.usc.edu/GBshape/cgi-bin/hgGateway>.

634

635 RT-qPCR

636 To validate FACS separations (Figure 1H), RFP+ and GFP+ sorted cells from *BAM::GFP*;
637 *nos>Wcd::RFP* ovaries were homogenized with a pestle and RNA extracted using the
638 ARCTURUS PicoPure RNA isolation kit.

639 To quantify gene expression in *mei-W68¹* / *Df(2R) BSC782* flies (Figure S4B), RNA was
640 extracted from 20 pairs of dissected ovaries using the RNeasy Micro Kit (QIAGEN). RNA from
641 *w¹¹¹⁸* ovaries served as control.

642 For all RT-qPCR reactions, reverse transcription was done using random hexamer
643 oligonucleotides with Superscript III Reverse Transcriptase (Invitrogen) according to
644 manufacturer's protocol, then by RT- PCR using *Power SYBR Green[®]* PCR Master Mix
645 (Applied Biosystems). Amplifications were done on a CFX Connect Real-Time PCR machine
646 (Bio-Rad). Two to three biological replicates per genotype were used for all RT-qPCR
647 experiments run in triplicate.

648 Relative expression levels of tested genes were calculated by the Ct method with samples
649 normalized to *rp49* (Schmittgen and Livak, 2008). For each experiment, primer expression in
650 *mei-W68¹* was compared to *w¹¹¹⁸* equal 1. To compare gene expression levels between the two
651 isolated cell populations, we first normalized each target sample (2-3) with the Ct method (to
652 *rp49*). For each experiment, we then normalized the highest value of the two populations to 1.
653 Expression values collected from 3-5 experiments were analyzed and transformed into graphs
654 with Prism8 software. Mann-Whitney tests were applied to compare data.

655

656 The primers used for validation of isolated cell populations were:

657 GFP: F 5'AGAGGGCGAATCCAGCTCTGGAG 3', R

658 5'CCCAAATCGCGGTCAAGTGATC 3';

659 RFP: F 5' GTCCCCTCAGTTCCAGTACG 30, R 5' TGTAGATGAACCTGCCGTC 3';

660 *bam*: F 5'CTGCATATGATTGGTCTGCACGGC 3',

661 R 5'CCCAAATCGCGGTCAAGTGATC 3';

662 *piwi*: F 5' CAGAGGATCTTCATCAGGTG 3', R 5' ATCATATTGGTCACCCAC 3';

663 *mtrm*: F 5' GAAAGTGCCAACGAAGGTGC 3', R 5'

664 CTCCATATTGAGTCATCCGAAC 3';

665 The *mei-W68* primers were:

666 A: F 5' AGCTGCTGCTACTGCTGCTG 3', R 5'
667 CCGACTTTACCGAACGAAAACGAC 3';
668 B: F 5' GCTAGAACAAATG GATGAATTTCGG 3', R 5' GGAGAGCATGTAAAT
669 CAGCACG 3';
670 C: F 5' CGTGCTGATTACATGCTCTCC 3', R 5' GACCGGACTAGCAGAGGATT
671 3'.
672 *rp49*: F 5'ATCTCGCCGCAGTAAACGC 3', R 5'CCGCTTCAAGGGACAGTATCTG 3'.
673

674 **Data analysis and heatmap generation**

675 The DESeq2 method for differential analysis of RNA-seq data was used (Love et al 2014). As
676 input, we used three GFP and two RFP distinct biological replicates with counts normalized for
677 differences in sequencing depth using the DESeq normalization tool in Galaxy Mississipi²
678 platform (<https://mississippi.sorbonne-universite.fr>). The normalized raw counts were then
679 used to calculate the base mean for each gene expressed in the mitotic and meiotic cell
680 population to generate the “DESeq2 results extended with basemeans of conditions” file (Table
681 S3). Gene lengths were taken into account by calculating FPKM for each gene (Table S4). We
682 then extracted a subset of genes (meiotic, somatic and separation controls) and obtained Table
683 S1 (in FPKM Table S2) used for creating a heatmap (Figure 1E). To generate the heatmap, a
684 list of meiotic genes was compiled from FlyBase GO term (GO: 0007127), excluding genes
685 identified as male-specific and unannotated. Added to the list are known meiotic genes (*SMC1*,
686 *SMC3*, *sunn*, *solo*, *ord*), *RpA-70*, *dpp*, *egfr*, *Stat9e*, sorting (*bam* and *wcd*), and contamination
687 controls possibly derived from somatic tissues like gut, fat, introduced during dissection of
688 ovaries (*robo3*, *vnd*, *bap*, *twi*) (See Table S1). The resulting values were transformed to log2
689 and used to generate a heatmap with the heatmap2 tool in the Galaxy Mississipi² platform.
690

691 **Datasets repository**

692 Datasets are available from NCBI Sequence Reach Archive (SRA) under BioProject:
693 PRJNA1011850 entitled “Isolation of stage-specific germ cells in *Drosophila* germarium”.
694

695 **Nondisjunction Tests**

696 Sex chromosome nondisjunction was monitored by scoring the progeny of *y/BS Y* males mated
697 to females carrying meiotic mutations on the second or third chromosome. For crosses with
698 RNAi lines, the *nanos-Gal4::VP16* driver was used. In most cases, a male to female ratio of 5:10
699 was kept. From these crosses, exceptional diplo-X and nullo-X resulting from sex chromosome

700 nondisjunction and normal gametes are obtained. Frequency of X chromosome nondisjunction
701 was calculated as 2(X-ND progeny)/total progeny, where total progeny =[2(X-ND progeny) +
702 (regular progeny) (GYURICZA *et al.* 2016). To determine autosomal 2nd chromosome
703 nondisjunction, females carrying meiotic mutations were mated to *C(2)EN b pr* (BDSC: 1112)
704 males and the number of progeny scored. In most cases, a male to female ratio of 5:10 was kept.
705 From these crosses, only the exceptional diplo-2 and nullo-2 gametes are observed.

706

707 **Immunohistochemistry**

708 For confocal microscopy, ovaries were dissected in PBS, fixed in 4% PFA–PBS, and then
709 permeabilized in PBT (0.2% Triton) for 30 min. Samples were incubated overnight with
710 primary antibodies in PBT at 4 °C, washed 4 × 30 min in PBT, incubated with secondary
711 antibody for 2 h at room temperature, washed 4 × 30 min in PBT. DAPI (1:500) was added
712 during the last wash and then mounted in CityFluor.

713 For DNA FISH experiments, ovaries were dissected in PBS, fixed in 4% PFA in 1X fix buffer
714 (100 mm potassium cacodylate, 100 mm sucrose, 40 mm sodium acetate, and 10 mm EGTA).
715 Samples were then rinsed three times in 2X SSCT and incubated with the AACAC and dodeca
716 probes which target the pericentromeric regions of the 2nd and 3rd chromosomes, respectively,
717 as previously described (CHRISTOPHOROU N 2013). Samples were then rinsed in 2X SSCT,
718 twice in PBST and process for immunostaining as described above for confocal microscopy.

719 For RNA FISH experiments, we followed the HCR *in situ* hybridization protocol for ovaries as
720 described in (SLAIDINA *et al.* 2021), which was adapted from (CHOI *et al.* 2018) Custom
721 designed probes for *mei-W68* (NT_033778), hybridization buffer, wash buffer, and
722 amplification buffer came from Molecular Instruments Inc.

723 The following primary antibodies were used: mouse anti-C(3)G 1A8-1G2 (1:500) (gift from S.
724 Hawley, Stowers Institute, USA), rat anti-Cid (1:1,000) (gift from C. E. Sunkel, Universidade
725 do Porto, Portugal), rabbit anti- α -Spectrin (1:1,000 and 1:500 when used with DNA FISH) (gift
726 from R. Dubreuil, University of Chicago, USA), mouse anti- α -Spectrin (1:500, clone 3A9,
727 DSHB), mouse anti-orb (1:500, clone 6H4, DSHB), mouse anti- γ H2Av (1:200) (DSHB,
728 UNC93-5.2.1), rabbit anti-HA-Tag (1:100) (Cell Signaling Technologies, C29A4).

729 Secondary antibodies conjugated with Cy3, Cy5, (Jackson laboratories) were used at 1:200,
730 Alexa Fluor Plus 555, and 647 at 1:400 (Thermo Fisher Scientific).

731

732 **Image acquisition**

733 Ovaries for imaging were taken from 3-5 day-old flies. Confocal images of fixed germaria were
734 obtained with a Zeiss LSM 980 NLO confocal microscope except for Supplementary Figure 1.
735 All images were acquired with a PlanApo 63 \times /1.4 NA oil objective at 0.5 μ m intervals along
736 the z-axis operated by ZEN 2012 software. For supplementary Figure 1, confocal images of
737 fixed germaria were taken with a spinning-disc confocal microscope (Yokogawa) operated by
738 Metamorph software on an inverted Nikon Eclipse Ti microscope coupled to a Coolsnap HQ2
739 camera (Photometrics). All images were acquired with the PlanApo 60 \times /1.4 NA Oil objective.

740

741 **Live imaging in oil**

742 Ovaries were dissected in oil (10S, Voltalef, VWR) and transfer onto a coverslip. Germaria
743 were made to stick to the coverslip in oil. All images were acquired on an inverted spinning-
744 disc confocal microscope (Roper/Nikon) operated by Metamorph 7.7 coupled to an sCMOS
745 camera and with a 60X/1.4 oil objective. 1 z-stack acquired every 30sec.

746

747 **Data analysis of images**

748 For quantification of CID foci on fixed tissue, we counted the number of distinguishable CID
749 foci within each single nucleus. In all figures, micrographs represent the projections of selected
750 z-series taken from the first CID foci signal until the last one. For DNA FISH experiments, the
751 3D distances between the AACAC foci and between the dodeca foci were measured as
752 described (CHRISTOPHOROU N 2013). Pericentromeric regions of chromosomes were
753 considered as paired when only one foci was visible or when two foci were separated by a
754 distance less than 0.70 μ m, and as unpaired when \geq 0.70 μ m.

755

756 Fluorescence intensity measurements of RNA FISH were performed on Z-stack images
757 acquired with identical settings. To define a Region of Interest (ROI), a Z MAX projection of
758 3 successive images within a circle of 50 pixels in diameter was chosen at the center of each
759 analyzed cyst. The cyst stage was determined using the spectrin channel. Cysts located in region
760 2 were considered as meiotic cysts, while branched cysts of 2-cc, 4-cc, and 8-cc were classified
761 as mitotic cysts. As background control, the ROI was selected in the somatic cells of the nascent
762 stalk before the region 3 cyst of each analyzed germarium. For each cyst and control ROI, the
763 Raw Integrated Density was quantified using Fiji software. The raw data were then transformed
764 into graphs with Prism8 software. Mann-Whitney tests were used to compare fluorescence
765 intensity.

766 Fluorescence intensity measurements of C(3)G were performed on Z-stack images acquired
767 with identical settings. To define a Region of Interest (ROI), a Z MAX projection of 3
768 successive images within a circle of 50 pixels in diameter was chosen at the center of the C(3)G
769 marked nuclei. The cyst stage was determined using C(3)G staining location in the germarium.
770 As background control, the ROI was selected in the somatic cells of the nascent stalk before
771 the region 3 cyst of each analyzed germarium. For each cyst and control ROI, the Raw
772 Integrated Density was quantified using Fiji software. The raw data were then transformed into
773 graphs with Prism8 software. Mann-Whitney tests were used to compare fluorescence intensity.
774

775 Mean Cyst number estimation in meiotic region 2 were performed on Z-stack images acquired
776 with identical settings. Cysts boundaries were defined thanks to α -Spectrin staining, and
777 counted manually.

778
779 For the quantification of RPA and H2Av foci on fixed tissues, we counted the number of distinct
780 foci within each individual nucleus. For each channel, the signal was processed using the
781 difference of Gaussians tool available in the GDSC plugin for Fiji. Default Threshold was then
782 applied to the resulting stack, generating binary images reconstructed into a three-dimensional
783 stack using the 3D segmentation function of RoiManager3D 4.1.5. The counting of RPA and
784 H2Av dots and the percentage of 'overlap' were then calculated using the 'Measure 3D' analysis.
785

786 **Figure Legends**

787

788 **Figure 1. Meiotic genes are expressed in the mitotic region of the *Drosophila* germarium**

789 (A) Drosophila germarium depicting the mitotic and meiotic regions. In the anterior part

790 (Mitotic zone, also called region 1) at the base of the terminal filament (TF), somatic cap cells

791 surround germline stem cells (GSC) that divide four times giving rise to a 16-cells cyst. GSCs

792 and cystoblasts (CB) are marked by the spectrosome (red circle), and the developing two-, four,

793 and eight-cell cysts by the fusome (red-branched structure). After the last mitosis, cysts move

794 to the meiotic zone, subdivided in region 2a, 2b and 3. Early in region 2a, the synaptonemal

795 complex (red thin lines) marks the pro-oocytes with four ring canals. By region 2b, the oocyte

796 is selected and is the only cell (yellow) to remain in meiosis. The follicle cells (FC) start to

797 migrate and surround the germline cells as the cyst moves posteriorly to region 3.

798 (B-B'') Confocal Z-section of a germarium labelling the mitotic region with Bam::GFP (Green),

799 the meiotic region with Wcd::RFP (magenta), the synaptonemal complex with C(3)G (white)

800 and cell nuclei with DAPI (blue). (C, C') Magnification of hatched square in B showing C(3)G

801 nuclear labelling of a cell in the mitotic region (open arrows) adjacent to a synaptonemal

802 complex labelled pro-oocyte. Scale bar: 10 μ m in B-B'' 2 μ m in C, C'.

803 (D) RT-PCR gene expression levels of FACS-separated mitotic (green) and meiotic (magenta)

804 cells using primers to GFP, RFP, *bam*, *piwi* and *mtrm*. Gene expression levels are defined to 1

805 relative to the highest value within both population after rp49 normalization. * $p \leq 0.05$, ** $p \leq$

806 0.01, *** $p \leq 0.001$, **** $p \leq 0.0001$ (Mann-Whitney U-test)

807 (E) Heat map of known meiotic genes expressed in FACS-separated Bam::GFP (Mitotic) and

808 Wcd::RFP cells (Meiotic). In the upper pannel are the somatic genes, *robo3*, *vnd* (neural); *bap*,

809 *twi* (mesodermal); *dpp*, *Egfr*; *Stat92e* (follicle cells) and the sorting controls *bam*, *blanks*, *nos*

810 and *wcd*. The middle and lower panels represent the heat map of meiotic genes. Scale represents

811 log2 expression gradient for genes expressed in each of the two regions. Notice that neural and

812 mesodermal contaminants are not detected while follicle cells ones are equally present in both

813 cell populations.

814

815 **Figure 2. *c(3)G*, *Nipped-B* and *mei-W68* meiotic genes mRNA are detected in the mitotic**

816 region and their levels increase in the meiotic region

817 (A) Confocal Z-section projection of a *WT* germarium labelled for *c(3)G* mRNA by HCR *in*

818 *situ* hybridization. The yellow dashed line delimits the boundary of mitotic and meiotic regions.

819 Scale bar: 10 μ m. (B) Graph plots *c(3)G mRNA* Fluorescence Intensity in mitotic and meiotic
820 2a regions. *** $p \leq 0.001$ (Mann-Whitney U-test).
821 (C) Confocal Z-section projection of a *WT* germarium labelled for *Nipped-B* mRNA by HCR
822 *in situ* hybridization. The yellow dashed line delimits the boundary of mitotic and meiotic
823 regions. Scale bar: 10 μ m. (D) Graph plots *Nipped-B mRNA* Fluorescence Intensity in mitotic
824 and meiotic 2a regions. ** $p \leq 0.01$ (Mann-Whitney U-test).
825 (E) Confocal Z-section projection of a *WT* germarium labelled for *mei-W68* mRNA by HCR *in*
826 *situ* hybridization. The yellow dashed line delimits the boundary of mitotic and meiotic 2a
827 regions. Scale bar: 10 μ m. (F) Graph plots *mei-W68 mRNA* Fluorescence Intensity in mitotic
828 and meiotic regions. * $p \leq 0.05$ (Mann-Whitney U-test). (n) is the number of germaria analyzed
829 for each probe.
830

831 **Figure 3. Mei-W68 protein is only detected in the meiotic region.** (A-A') Confocal Z-section
832 projection of a *WT* germarium immunostained for HA (green) and the fusome (magenta). The
833 yellow dashed line delimits the boundary of mitotic and meiotic regions. Scale bar: 10 μ m.
834 (B, B') Confocal Z-section projection of a *mei-W68^{HA/+}* germarium immunostained for HA
835 (green) and the fusome (magenta). The yellow dashed line delimits the boundary of mitotic and
836 meiotic regions. Scale bar: 10 μ m. Note that HA immunostaining is barely detectable in both
837 regions (A, A') of *WT*, while HA is clearly confined to the meiotic region of *W68^{HA/+}* (compare
838 mitotic and meiotic region in in B, B').
839 (C) Graph plots HA Fluorescence Intensity in mitotic and meiotic regions. ns $p \geq 0.05$, *** $p \leq$
840 0.001, **** $p \leq 0.0001$ (Mann-Whitney U-test). Numbers below bars represent the germaria
841 analysed.
842

843 **Figure 4. *mei-W68* and *mei-P22* are dispensable for 8-cell cyst chromosome pairing in**
844 **females.**

845 A-E, Cid pairing in *mei-W68* and *mei-P22* mutant cysts. (A-D) Confocal Z-section projections
846 of wild type (*WT*), *mei-W68^{1/DfBSC782}*, *mei-W68^{CD}* and *mei-P22^{P22}* 8-cell cysts stained for
847 centromeres (CID, magenta), fusome (α -Spectrin, green), and DNA (DAPI, blue). (E) Graph
848 plots the number of CID foci per nucleus in *WT*, *mei-W68^{1/Df27354}*, *mei-W68^{CD}* and *mei-P22^{P22}*
849 8-cell cysts. (n) is the number of cells analyzed for each genotype. ns $p \geq 0.05$
850 (two-tailed Student's t test comparing mutants with WT).

851 F-O, Centromeres II and III are paired in the mitotic region of *mei-W68* and *mei-P22* mutant
852 cysts. (F-I) Confocal Z-section projections of *WT*, *mei-W68^{1/DfBSC782}*, *mei-W68^{CD}* and *mei-*
853 *P22^{P22}* 8-cell cysts labeled with chromosome II centromeric probe (AACAC, green) and DNA
854 (DAPI, blue). (J) Graph plots the percentage of paired chromosome II centromeres in *WT*, *mei-*
855 *W68^{1/DfBSC782}*, *mei-W68^{CD}* and *mei-P22^{P22}* 8-cell cysts. (n) is the number of cells analyzed for
856 each genotype. ns p ≥ 0.05 (khi2 test comparing mutants with WT)
857 (K-N) Confocal Z-section projections of *WT*, *mei-W68^{1/DfBSC782}*, *mei-W68^{CD}* and *mei-P22^{P22}* 8-
858 cell cysts labeled with chromosome III centromeric probe (dodeca, magenta) and DNA (DAPI,
859 blue). Scale bar: 1 μ m. (O) Graph plots the percentage of paired chromosome III centromeres
860 in *WT*, *mei-W68^{1/DfBSC782}*, *mei-W68^{CD2}* and *mei-P22^{P22}* 8-cell cysts. (n) is the number of cells
861 analyzed for each genotype. ns p ≥ 0.05 (khi2 test comparing mutants with WT)
862 Scale bar: 5 μ m in A-E; 1 μ m in F-O.

863

864 **Figure 5. *sunn*, *c(2)M*, *Nipped-B* and *SA* are dispensable for 8-cell cyst chromosome
865 pairing in females.**

866 (A-D) Confocal Z-section projections of *nos>sh-w*, *nos>sh-sunn*, *nos>sh-c(2)M*, *nos>sh-*
867 *Nipped-B* and *nos>sh-SA* 8-cell cysts stained for centromeres (CID, magenta), fusome (α -
868 Spectrin, green), and DNA (DAPI, blue). (E) Graph plots the number of CID foci per nucleus
869 in *nos>sh-w*, *nos>sh-sunn*, *nos>sh-c(2)M*, *nos>sh-Nipped-B* and *nos>sh-SA* 8-cell cysts. (n)
870 is the number of cells analyzed for each genotype. ns p ≥ 0.05 (two-tailed Student's t test
871 comparing *nos>sh-sunn*, *nos>sh-c(2)M*, *nos>sh-Nipped-B* and *nos>sh-SA* with *nos>sh-w*).
872 Scale bar: 5 μ m.

873

874

875 **Figure 6. Rpa-70 foci are not detected in the pre-meiotic region of *Drosophila*.**

876 (A, A') Confocal Z-section projection of *RpA-70 EGFP* germarium (A, green; A', white)
877 stained for the fusome (α -Spectrin, magenta). Note that RpA-70 EGFP is evenly distributed in
878 the germline nucleoplasm with rare chromatin foci. Scale bar; 10 μ m
879 (B, B') Confocal Z-section projections of *RpA-70 EGFP*, *spn-D²* germarium (B, green; B',
880 white) stained for the fusome (α -Spectrin, magenta). In a *spn-D²* mutant germarium, many
881 RpA-70 EGFP foci are detectable in region 2 and in older egg chambers, here shown region 3.
882 Scale bar; 10 μ m. The yellow dashed line delimits the boundary of mitotic and meiotic regions,
883 with an 8-cell cyst and a 16-cell cyst, respectively, labelled with white dashed lines. (C) Mean

884 number of RpA-70 foci per cell counted in the mitotic 8cc (staged with α -Spectrin) and meiotic
885 pro-oocytes (staged with C(3)G in early 2A, late 2B and 2B regions) of *RpA-70 EGFP* control,
886 *RpA-70 EGFP, spn-D²* and in *mei-W68^{1/DfBSC782}*; *RpA-70 EGFP, spn-D²*. The number of
887 analyzed cells for each genetic context is labelled as *n/n/n/n*.

888 (D-F') Confocal Z-section projections of *RpA-70 EGFP* (D, green; D', white), *RpA-70 EGFP*;
889 *spn-D²* (E, green; E', white) and *mei-W68^{1/DfBSC782}*; *RpA-70 EGFP, spn-D²* (F, green; F', white)
890 stained for γ -H2Av (magenta) and for synaptonemal complex (C(3)G, white). Note that the
891 number of RpA-70 EGFP foci in region 2 is greatly reduced in *mei-W68^{1/k05603}*; *spn-D²* mutant
892 cells (compare E' and F'). Scale bar; 10 μ m

893 (G-I') Confocal Z-section projections of selected pro-oocyte nuclei of cysts from *RpA-70 EGFP*
894 (G, green; G', white), *RpA-70 EGFP; spn-D²* (H, green; H', white) and *mei-W68^{1/DfBSC782}*; *RpA-*
895 *70 EGFP, spn-D²* (I, green; I', white) stained for synaptonemal complex (C(3)G, magenta) and
896 DNA (DAPI, blue). Scale bar; 1 μ m.

897

898 **Figure S1. Progression of germ cells in Wcd-RFP germarium.**

899 Confocal Z-section projections of germaria from wild type (A) and bam-GFP; nos>wcd-RFP
900 (B) stained for ORB (white). Note that ORB localization in the meiotic region and in stage 2 is
901 similar in both genotypes . Scale bar; 20 μ m

902 Confocal Z-section projections of germaria from wild type (C) and bam-GFP; nos>wcd-RFP
903 (D) stained for C(3)G (green) and DNA (DAPI, blue). Note that C(3)G is restricted to the
904 selected oocyte (oocyte I) in meiotic region 3 and stage 2 in both genotypes (arrowheads, C and
905 D) , but the synaptonemal complex is not completely resolved in the second pro-oocyte (pro-
906 oocyte II) in nos>wcd-RFP (open arrowheads, D). Scale bar; 20 μ m

907 (E) Graph plots C(3)G Fluorescence Intensity in the mitotic region and in the meiotic region 2
908 (WT, green, nos>wcd-RFP, magenta), meiotic region 3 and stage 2 (WT pro-oocyte I, green,
909 WT pro-oocyte II , blue, nos>wcd-RFP pro-oocyte I, magenta and nos>wcd-RFP pro-oocyte II,
910 grey). NS p \geq 0.05, * p \leq 0.05 (Mann-Whitney U-test). Number of samples analysed are below
911 the bars.

912 (F) Graph plots the number of cysts in region 2 in wild type and bam-GFP, nos>wcd-RFP
913 calculated using spectrin antibody labelling (not shown) . NS p \geq 0.05 (Mann-Whitney U-test).
914 (*n*) is the number of germarium analyzed for each genotype.

915

916 **Figure S2. *mei-W68* mRNA signal is detected above background levels in the meiotic and**
917 **mitotic regions.**

918 (A, A') Confocal Z-section projection of a *WT* germarium labelled for *mei-W68* mRNA by HCR
919 *in situ* hybridization using *mei-W68* HCR-initiator probes (A, green; A', white). The yellow
920 dashed line delimits the boundary of mitotic and meiotic regions. α -Spectrin antibody labelling
921 is in magenta. Scale bar: 10 μ m.

922 (B, B') Confocal Z-section projection of a *WT* germarium labelled by HCR *in situ* hybridization
923 but excluding the HCR-initiator probes (compare with A, green; A', white). The yellow dashed
924 line delimits the boundary of mitotic and meiotic regions. α -Spectrin antibody labelling is in
925 magenta. Scale bar: 10 μ m.

926

927 (C) Graph plots the Fluorescence Intensity in the mitotic region of *WT* germarium labelled by
928 HCR *in situ* hybridization without (white) and with *mei-W68* HCR-initiator probes (green). (n)
929 is the number of germarium analyzed for each genotype.* $p \leq 0.05$ (Mann-Whitney U-test)

930 (D) Graph plots the Fluorescence Intensity in meiotic region of *WT* germarium labelled by
931 HCR *in situ* hybridization without (white) and with *mei-W68* HCR-initiator probes (green). (n)
932 is the number of germarium analyzed for each genotype. **** $p \leq 0.0001$ (Mann-Whitney U-
933 test).

934

935 **Figure S3. *c(3)G*, *Nipped-B* and *mei-W68* mRNA expression in the meiotic region of *Wcd-RFP* germarium.**

936 (A, B) Confocal Z-section projection of a *WT* (A) and *nos>wcd-RFP* (B) germarium labelled
937 for *c(3)G* mRNA by HCR *in situ* hybridization (white). The yellow dashed line delimits the
938 boundary of mitotic and meiotic regions. Scale bar: 10 μ m. (C) Graph plots *mei-W68* mRNA
939 Fluorescence Intensity in the meiotic region of *WT* (green) and *nos>wcd-RFP* (magenta)
940 germarium labelled by HCR *in situ* hybridization. (n) is the number of germarium analyzed for
941 each genotype. NS $p \geq 0.05$ (Mann-Whitney U-test).

942 (D, E) Confocal Z-section projection of a *WT* (D) and *nos>wcd-RFP* (E) germarium labelled
943 for *Nipped-B* mRNA by HCR *in situ* hybridization (white). The yellow dashed line delimits the
944 boundary of mitotic and meiotic regions. Scale bar: 10 μ m. (F) Graph plots the *Nipped-B* mRNA
945 Fluorescence Intensity in meiotic region of *WT* (green) and *nos>wcd-RFP* (magenta)
946 germarium labelled by HCR *in situ* hybridization. (n) is the number of germarium analyzed for
947 each genotype. NS $p \geq 0.05$ (Mann-Whitney U-test).

949 (G, H) Confocal Z-section projection of a *WT* (G) and *nos>wcd-RFP* (H) germarium labelled
950 for *mei-W68* mRNA by HCR *in situ* hybridization (white). The yellow dashed line delimits the
951 boundary of mitotic and meiotic regions. Scale bar: 10 μ m. (I) Graph plots the *mei-W68* mRNA
952 Fluorescence Intensity in the meiotic region of *WT* (green) and *nos>wcd-RFP* (magenta)
953 germarium labelled by HCR *in situ* hybridization. (n) is the number of germarium analyzed for
954 each genotype. NS p \geq 0.05 (Mann-Whitney U-test).

955

956 **Figure S4 Mei-W68 reagents**

957 (A) Schematic representation of *Drosophila melanogaster mei-W68* locus showing
958 neighbouring genes CG7744 and *par-1* (top in grey). Enlargement of *mei-W68* and *par-1* RNA
959 showing introns (black acute lines for *mei-W68* and dashed lines for *par-1*), untranslated
960 (magenta box) and translated regions (green box). Triangle represents *mei-W68^l* insertion site
961 of approximately 5kb (McKim and Hayashi-Hagihara). Positions of set of primers A, B and C
962 used for RT-PCR are indicated .

963 (B) RT-PCR gene expression levels of *mei-W68^{l/DfBSC782}* using primers A, B relative to *WT*.

964 (C) Representation of Mei-W68 catalytic (magenta box) and TOPRIM domains (blue box).
965 Mei-W68^{CD} is a substitution in the catalytic domain of the two conserved Tyrosine (Y80Y81)
966 into Phenylalanine (*F80*F81). Mei-W68^{HA} is tagged at the C-terminus with HA (green box)
967 connected by a linker to His (yellow box)

968

969 **Figure S5. Absence of DSBs in Mei-W68^{HA} flies**

970 Confocal Z-section projections of wild type (A, A'), *mei-W68^{HA}/+* (B, B') and *mei-W68^{HA}/mei-*
971 *W68^{HA}* (C, C') germaria stained for DSBs (γ -H2Av, magenta), fusome (α -Spectrin, green) and
972 DNA (DAPI, blue). The yellow dashed line delimits the boundary of mitotic and meiotic
973 regions. Note that DSBs are absent in *mei-W68^{HA}/mei-W68^{HA}*. Scale bar; 10 μ m

974

975 **Figure S6. Mei-W68 and Mei-P22 mutant flies do not produce DSBs**

976 Confocal Z-section projections of wild type (A, A'), *mei-W68^{l/DfBSC782}* (B, B'), *mei-W68^{CD/CD}*
977 (C, C') and *mei-P22^{P22/P22}* (D, D') germaria stained for DSBs (γ -H2Av, magenta), fusome (α -
978 Spectrin, green) and DNA (DAPI, blue). The yellow dashed line delimits the boundary of
979 mitotic and meiotic regions. Note that DSBs are absent in all the mutants. Scale bar; 10 μ m

980

981 **Figure S7. RPA::GFP foci transiently overlap with γ -H2Av.**

982 (A-A'') Confocal Z-section projection of *RpA-70 EGFP* pro-oocyte stained for DSBs (γ -H2Av,
983 A, A'', magenta) and DNA (DAPI, A'',blue). GFP is in green (A', A''). Scale bar= 10 μ m.

984 (B) Line profile plots the normalized intensity for γ -H2Av (magenta) and RPA::GFP (green)
985 from A'' (yellow dashed line). The RPA::GFP peak partially overlaps with the γ -H2Av peak on
986 the right side, but not with the γ -H2Av on the left side.

987 (C-C'') Confocal Z-section projection of *RpA-70 EGFP; spn-D²* pro-oocyte stained for DSBs
988 (γ -H2Av, C, C'', magenta) and DNA (DAPI, C'',blue). GFP is in green (C'', C''). Scale bar= 10 μ m.

989 (D) Line profile plots the normalized intensity for γ -H2Av (magenta) and RPA::GFP (green)
990 from C'' (yellow dashed line). The two RPA::GFP peaks overlap with the two γ -H2Av peaks.

991 (E) Percentages of γ -H2Av overlapping with RPA::GFP (magenta) and RPA::GFP overlapping
992 with γ -H2Av (green) in *RpA-70 EGFP* and *RpA-70 EGFP; spn-D²* pro-oocytes. The number of
993 analyzed nuclei is indicated under each genotype.

994
995
996 **Movie S1:** Live-imaging of RPA::GFP in wild type germarium. Maximum intensity
997 projection. (1 frame each 3 mn).

998
999 **Movie S2:** Live-imaging of RPA::GFP in *spn-D²* mutant germarium. Maximum intensity
1000 projection. (1 frame each 3 mn).

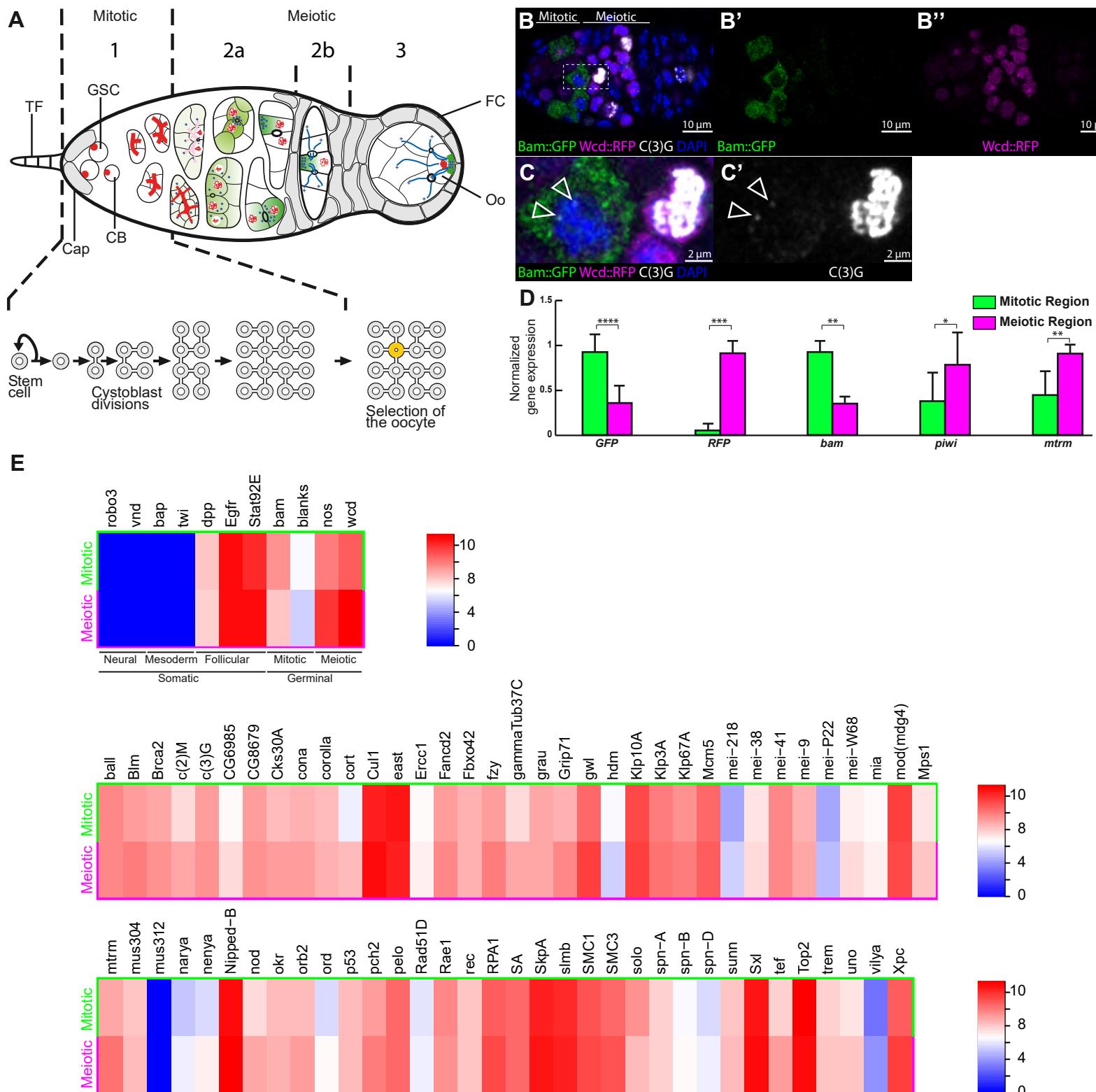


FIGURE 2

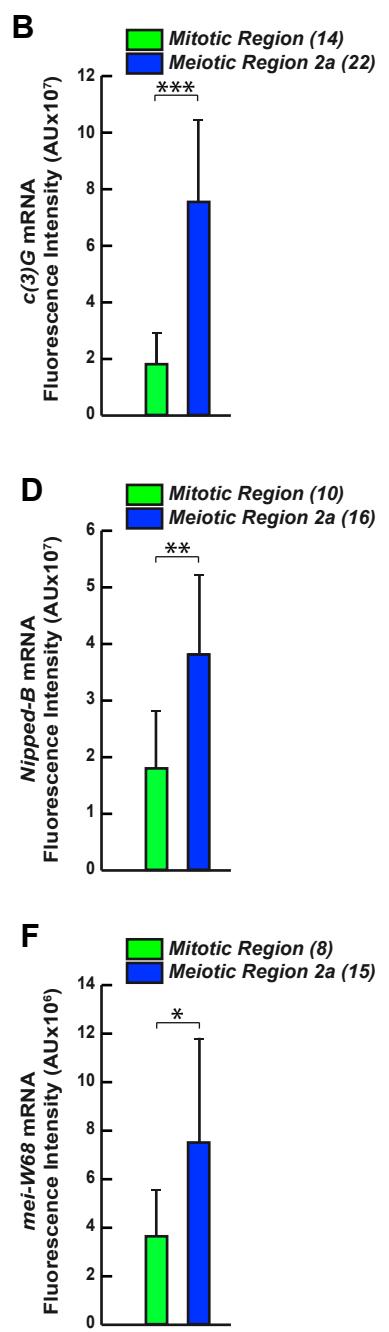
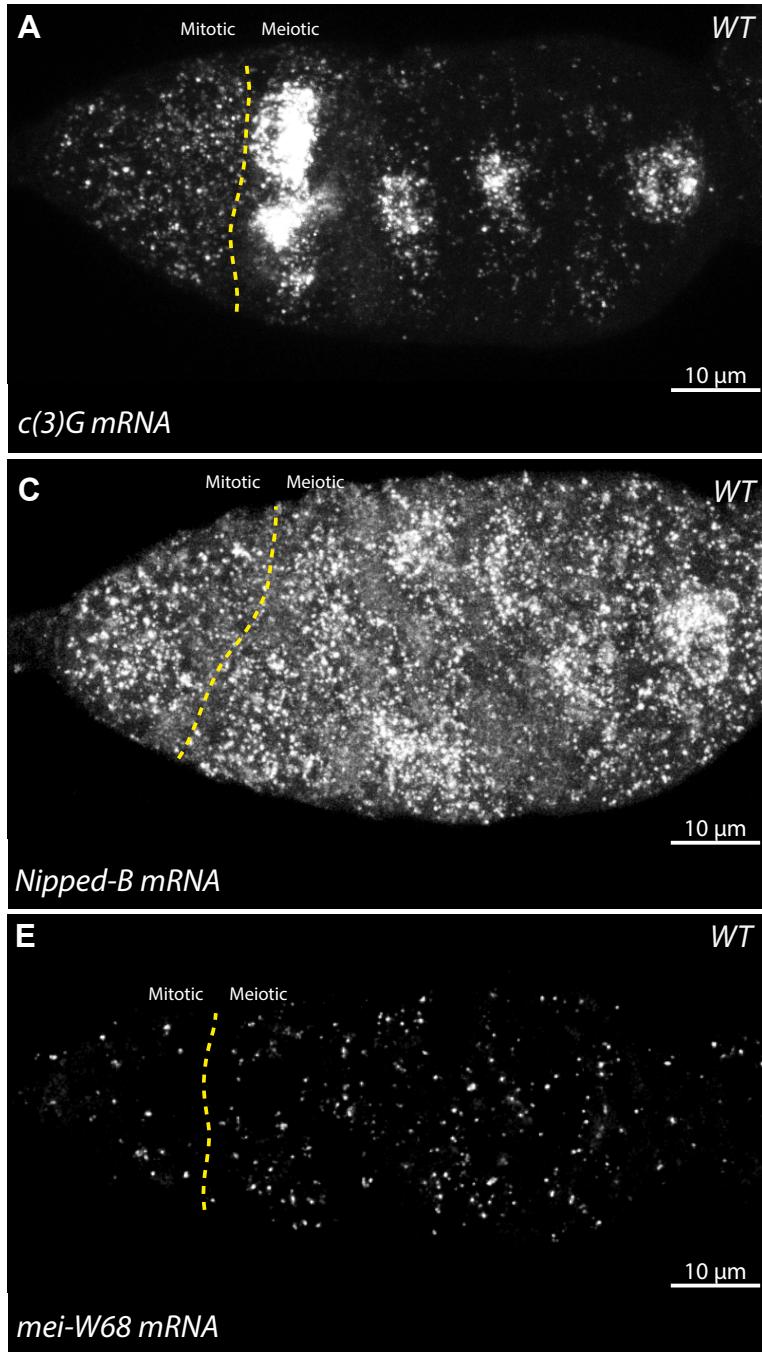



FIGURE 3

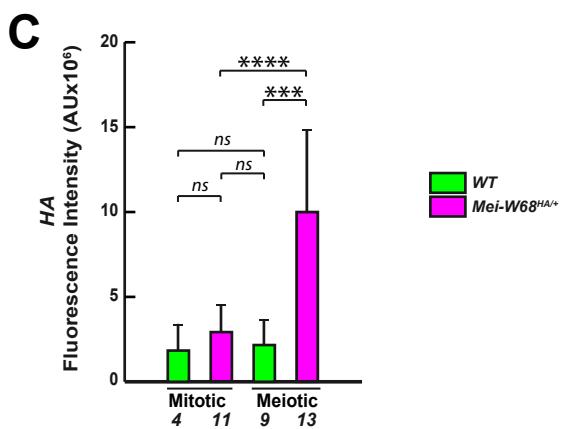
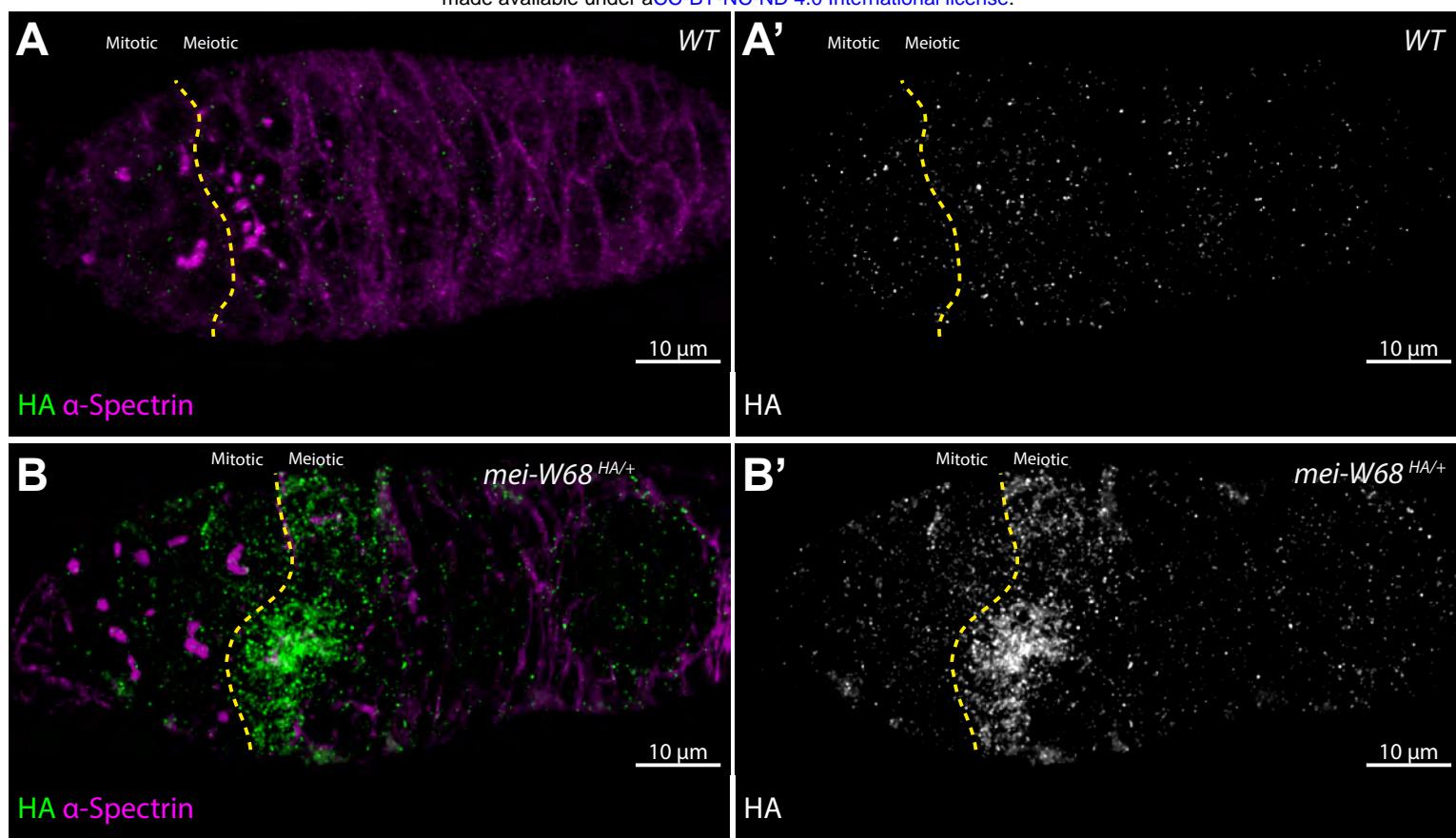



FIGURE 4

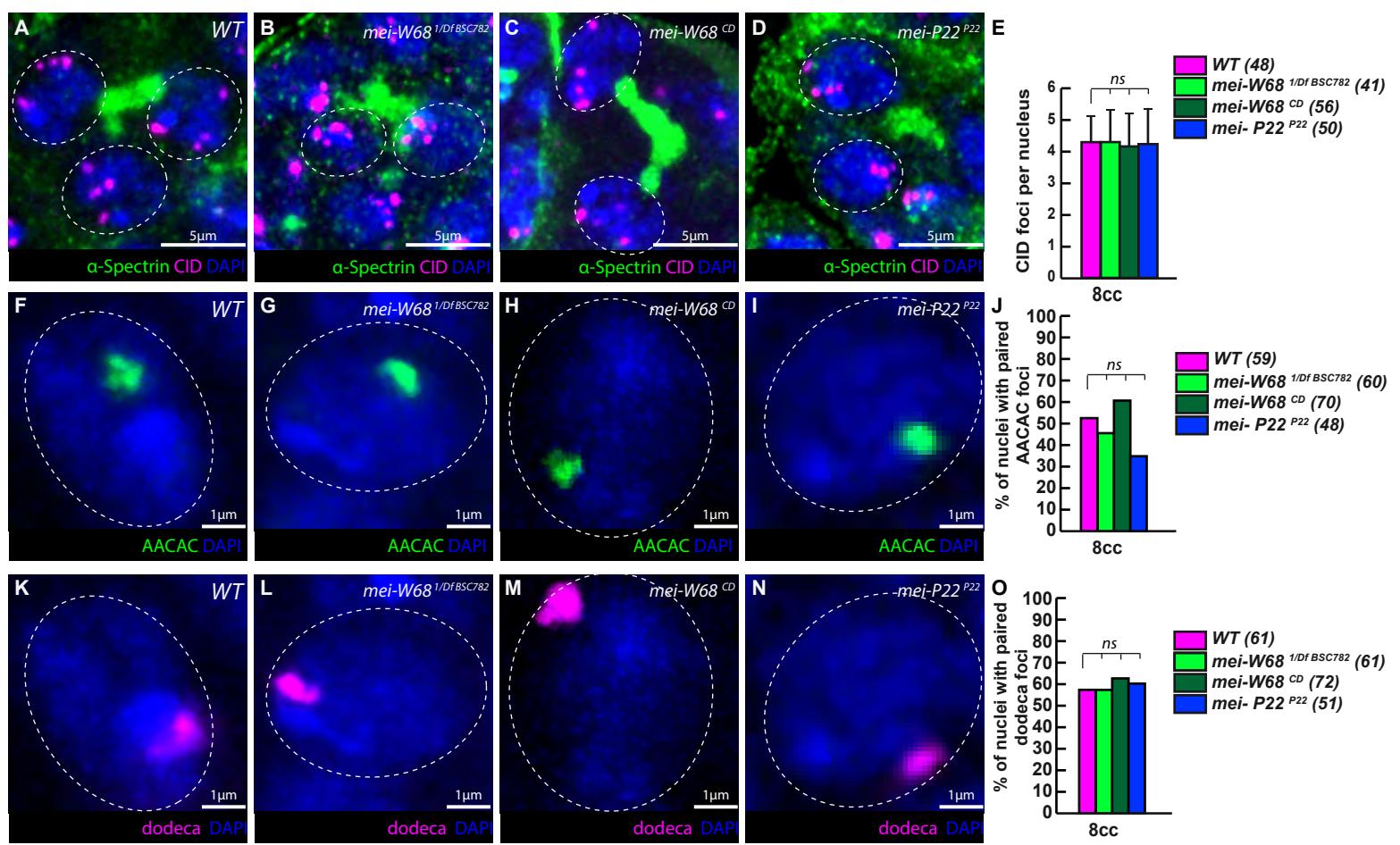
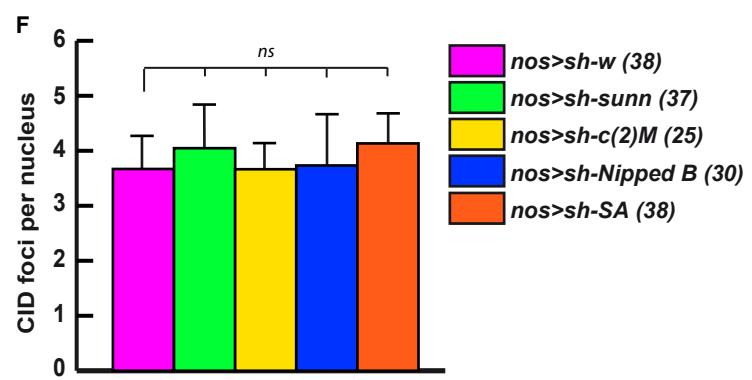
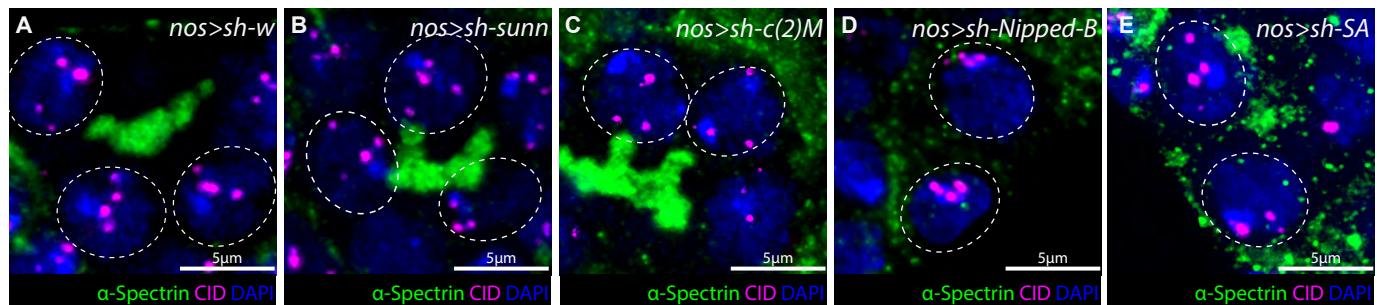
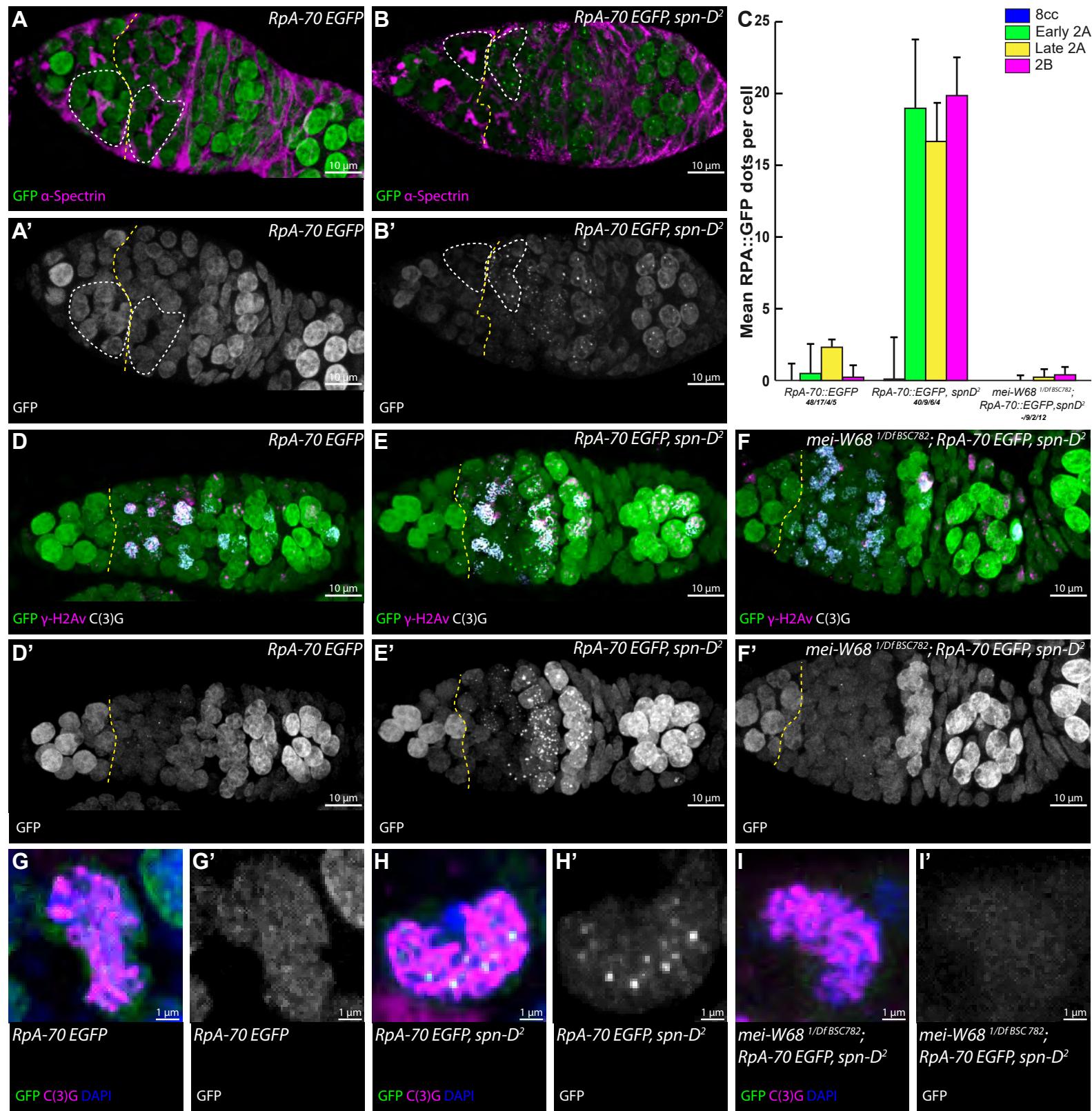
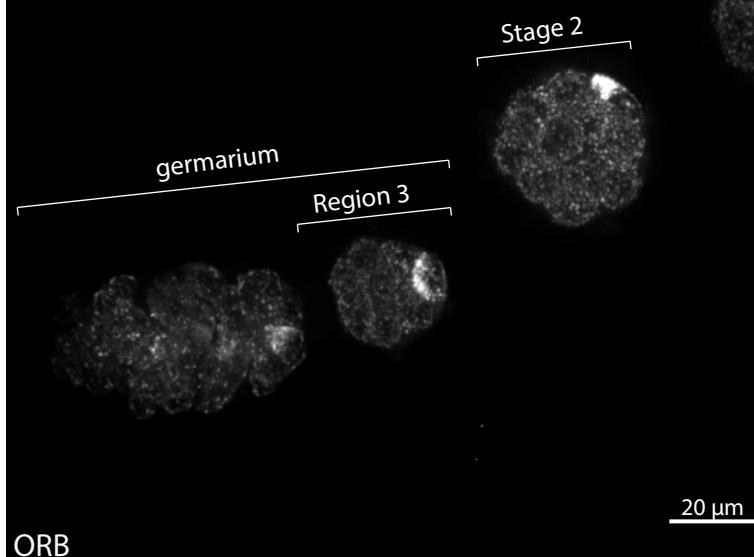
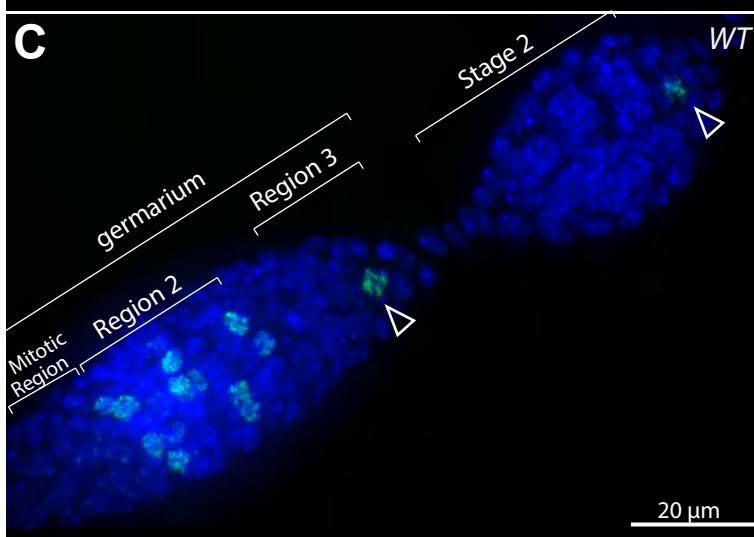
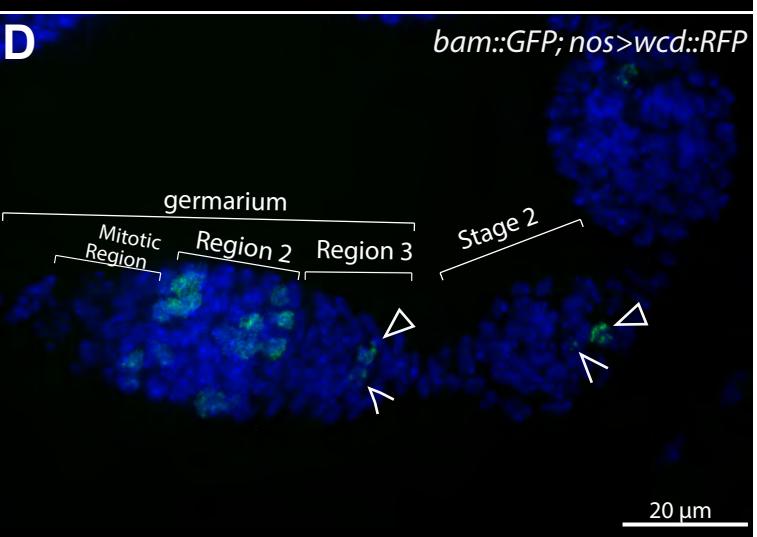






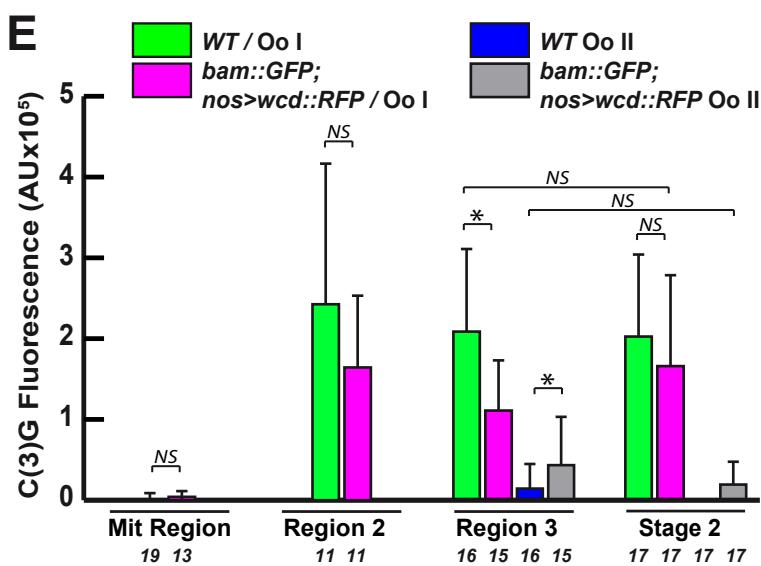
Figure 5



A


ORB

C


C(3)G DNA

D

C(3)G DNA

E

F

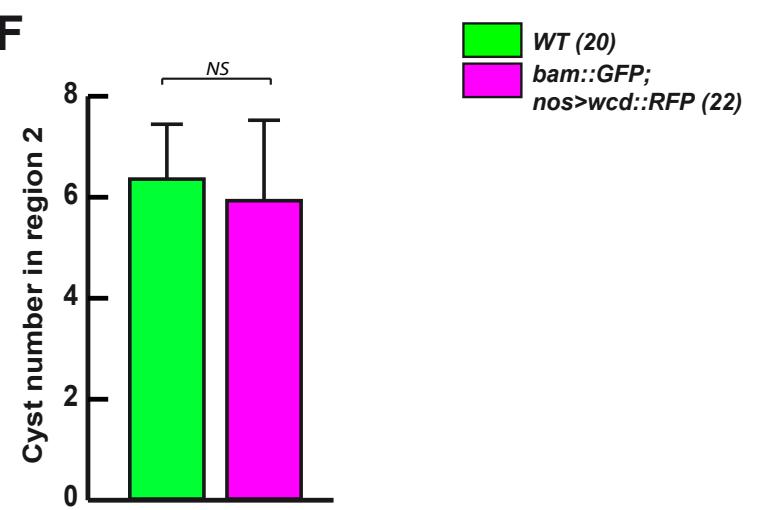
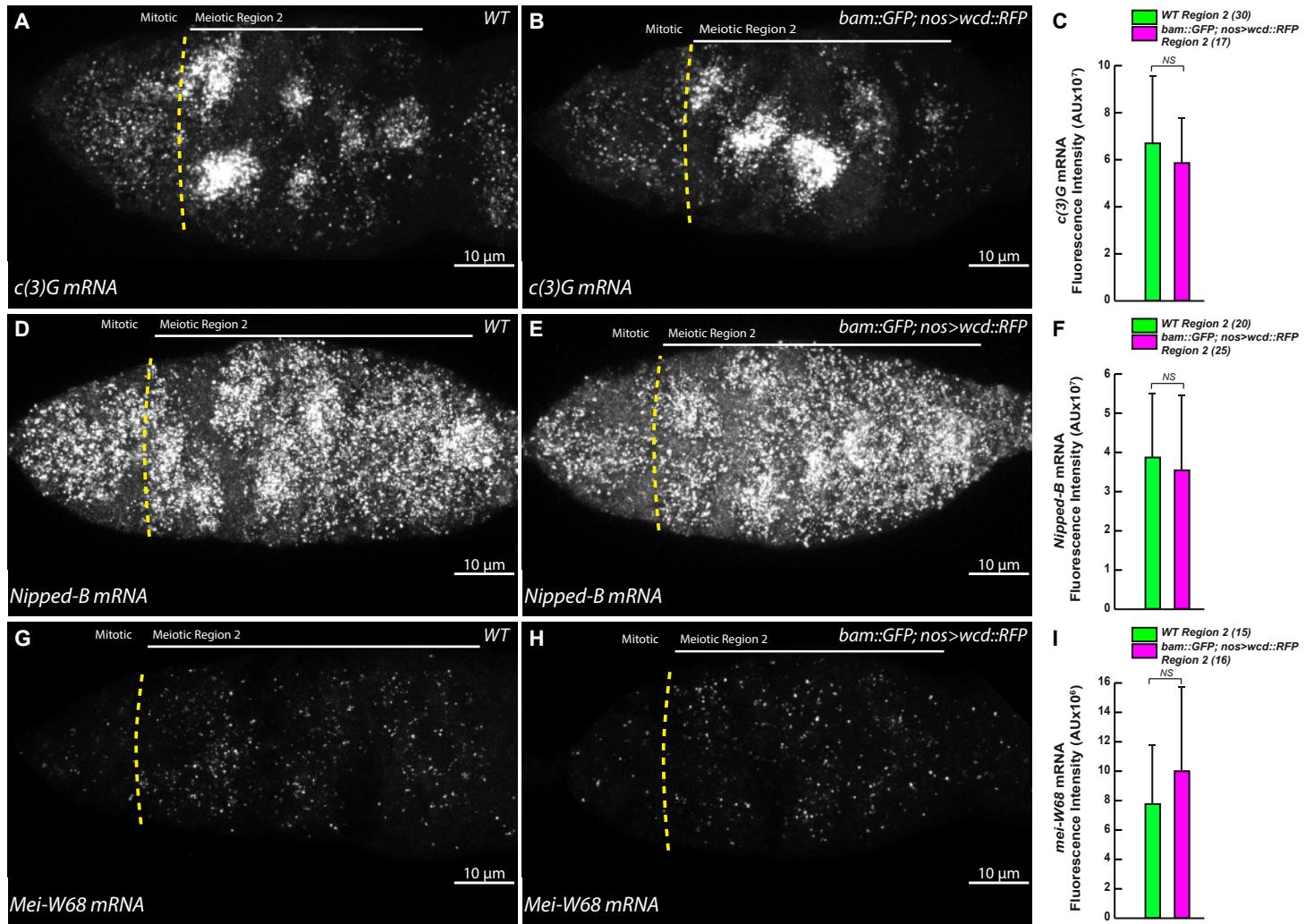
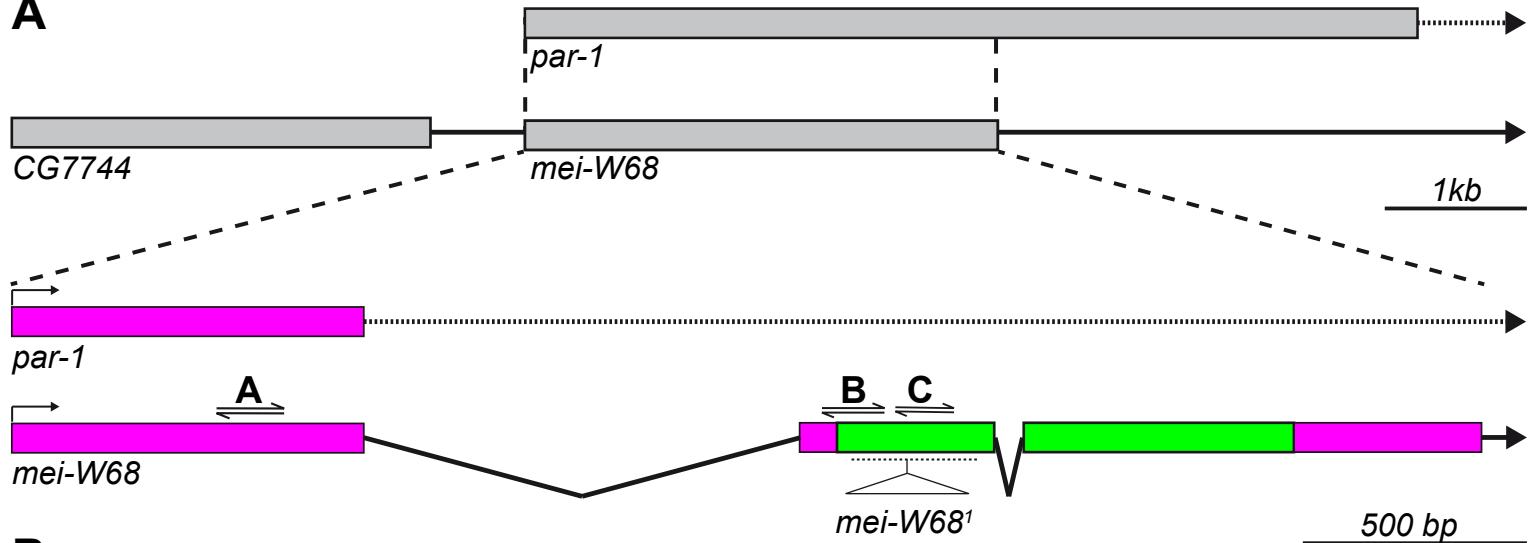
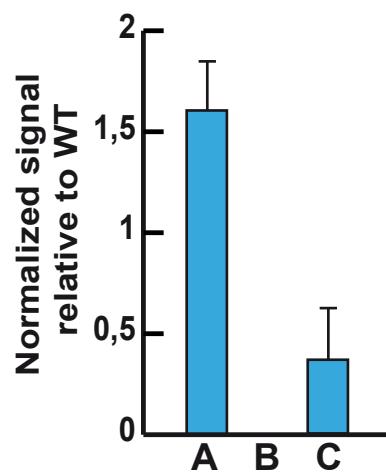




FIGURE S2



A

B

C

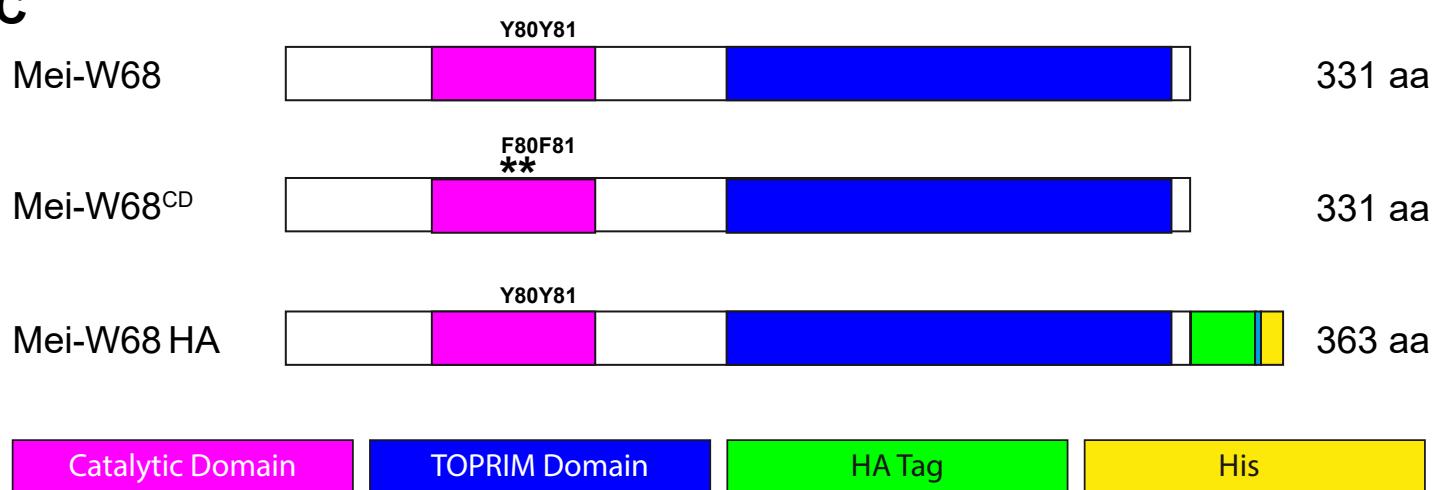
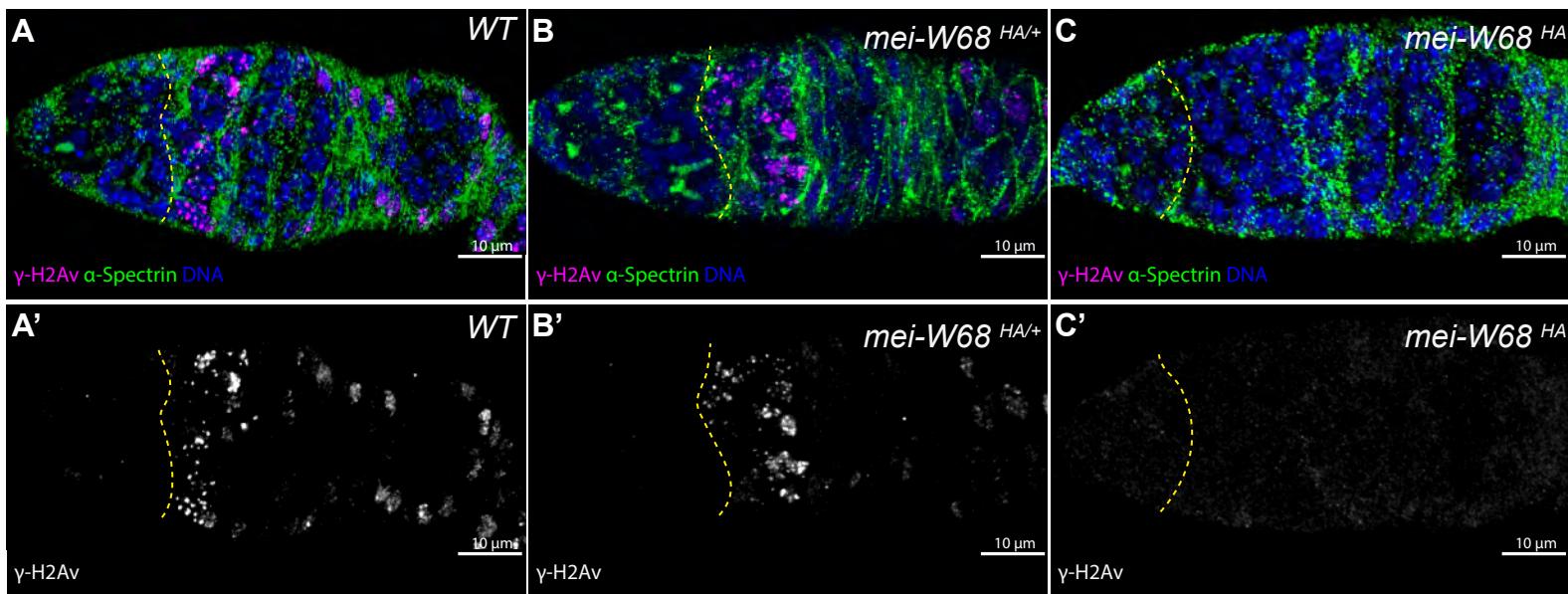
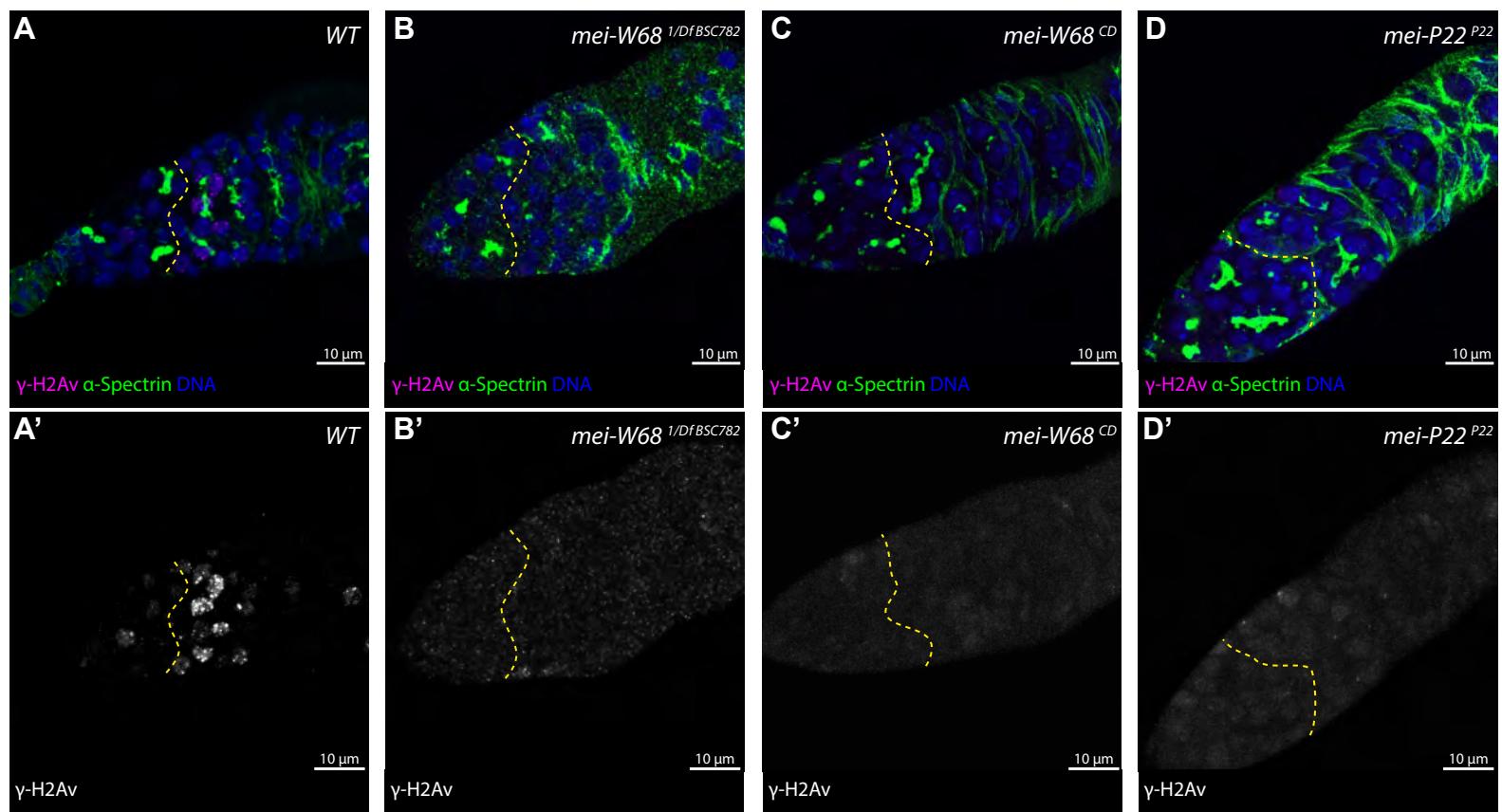
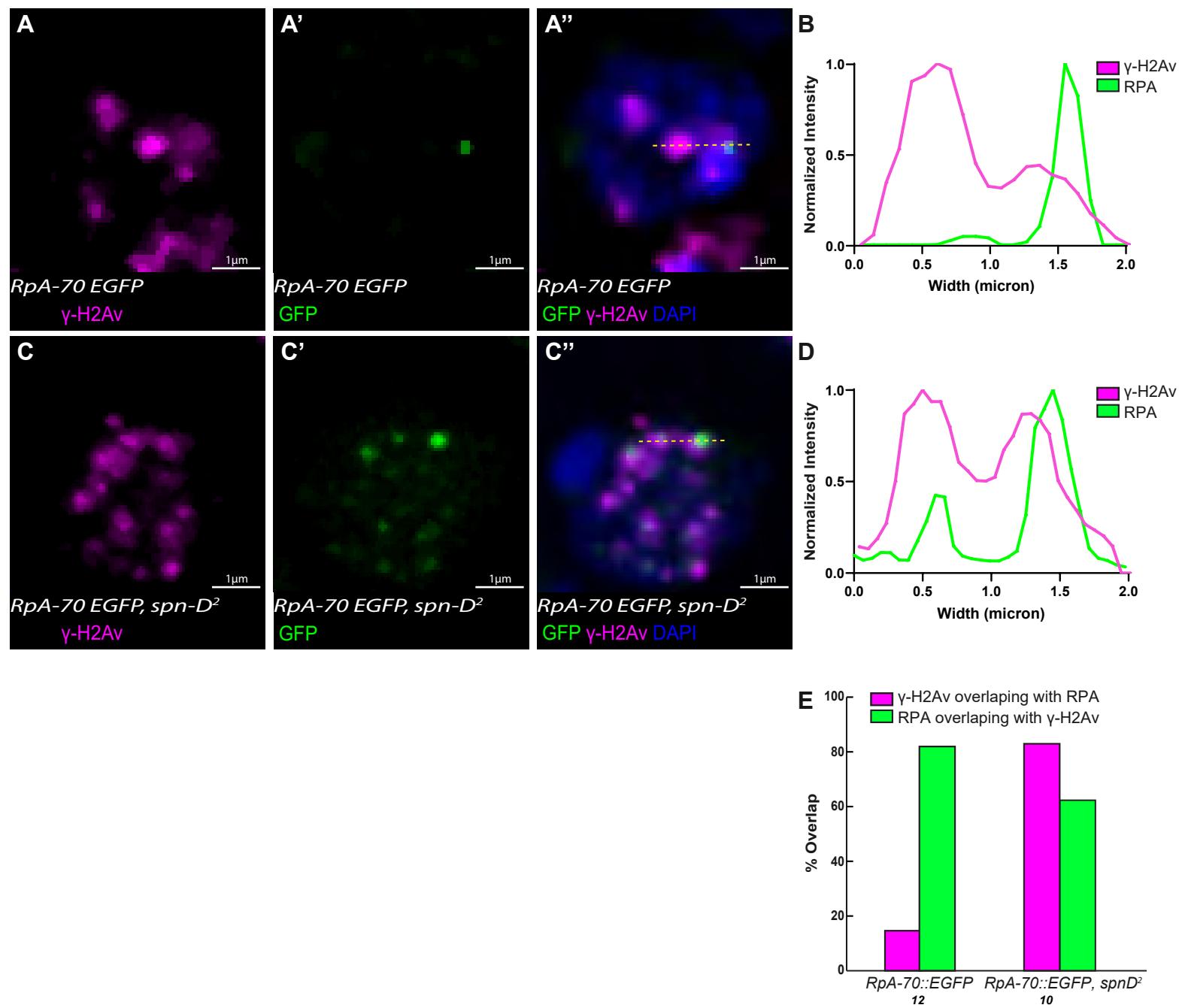





FIGURE S5

Supplemental Table S1 - Meiotic genes are expressed in mitotic region

Tab 1 - Meiotic genes compiled from FlyBase GO term (GO: 0007127), excluding genes identified as male-specific. Included in the list were sorting (bam, blanks, nos and wcd), and tissue contamination (robo3, vnd, bap, twi, dpp, Egfr and Stat92E) controls

Table columns: GeneID; BaseMean_MIT; BaseMean_MEI; Fold-Change (Green <1, Red > 1); Pvalue (

GeneID	basemeanMITOSIS	basemeanMEIOSIS	FC	Pvalue	Gene8name
robo3	0	0	#DIV/0!	NA	<i>robo3</i>
vnd	0	0	#DIV/0!	NA	<i>vnd</i>
bap	0	0	#DIV/0!	NA	<i>bap</i>
twi	0	0	#DIV/0!	NA	<i>twi</i>
dpp	281,8288704	213,3202867	0,756914245	2,17E-01	<i>dpp</i>
Egfr	7807,632041	7543,856239	0,966215646	8,58E-01	<i>Egfr</i>
Stat92E	4711,71483	7212,509959	1,530761139	5,32E-03	<i>Stat92E</i>
bam	730,6639492	269,4691812	0,368800434	5,46E-02	<i>bam</i>
blanks	91,09768961	41,21081093	0,452380418	1,89E-01	<i>blanks</i>
nos	990,9177712	3738,674353	3,772941067	3,20E-20	<i>nos</i>
wcd	1769,707111	9471,017057	5,35174267	5,61E-08	<i>wcd</i>
ball	880,2963858	803,6406877	0,912920581	7,36E-01	<i>ball</i>
Blm	607,2924757	1034,604345	1,703634387	9,18E-03	<i>Blm</i>
Brca2	479,6619339	758,0115539	1,580303752	8,08E-03	<i>Brca2</i>
c(2)M	194,7446541	442,24078	2,27087507	5,31E-03	<i>c(2)M</i>
c(3)G	628,2986357	750,4303538	1,194384822	5,84E-01	<i>c(3)G</i>
CG6985	100,9792309	193,2552985	1,913812344	1,37E-02	<i>CG6985</i>
CG8679	589,0147164	678,94307	1,152675903	4,09E-01	<i>CG8679</i>
Cks30A	336,3332698	583,3106724	1,734323437	4,31E-02	<i>Cks30A</i>
cona	422,7600976	576,8662139	1,364523798	5,68E-01	<i>cona</i>
corolla	344,2825957	372,9445962	1,083251378	8,51E-01	<i>corolla</i>
cort	78,4953099	317,7518291	4,048035857	3,08E-07	<i>cort</i>
Cul1	5606,077582	7551,760477	1,347066709	7,10E-02	<i>Cul1</i>
east	6184,65249	5692,575824	0,920435842	6,83E-01	<i>east</i>
Ercc1	104,2694458	142,7652119	1,369195077	2,66E-01	<i>Ercc1</i>
Fancd2	568,2569004	824,1802943	1,45036566	1,96E-01	<i>Fancd2</i>
Fbxo42	363,6324801	372,1317804	1,023373326	9,37E-01	<i>Fbxo42</i>
fzy	574,9221203	978,6279939	1,702192279	3,16E-02	<i>fzy</i>
gammaTub37C	208,4513745	478,9412384	2,29761612	8,08E-04	<i>gammaTub37C</i>
grau	485,1535591	485,7075555	1,001141899	9,97E-01	<i>grau</i>
Grip71	432,1083855	818,9286825	1,895192757	5,97E-03	<i>Grip71</i>
gwl	1337,511593	2862,755907	2,140359697	8,36E-03	<i>gwl</i>
hdm	91,7340959	39,66825137	0,432426471	2,35E-01	<i>hdm</i>
Klp10A	2626,397374	2956,55932	1,12570906	4,57E-01	<i>Klp10A</i>
Klp3A	953,7489433	1200,350565	1,258560309	3,09E-01	<i>Klp3A</i>
Klp67A	686,0465332	1004,233086	1,463797333	1,69E-01	<i>Klp67A</i>
Mcm5	1541,39132	1639,713515	1,063787952	7,79E-01	<i>Mcm5</i>
mei-218	21,00815102	38,96380404	1,85469935	1,78E-01	<i>mei-218</i>
mei-38	152,8540135	176,3177538	1,153504247	7,92E-01	<i>mei-38</i>
mei-41	793,5206952	844,259554	1,063941444	8,12E-01	<i>mei-41</i>
mei-9	412,6763782	470,077229	1,139094103	5,01E-01	<i>mei-9</i>
mei-P22	18,73142554	29,97026408	1,599999104	6,23E-01	<i>mei-P22</i>
mei-W68	120,0394972	176,3007259	1,468689306	2,65E-01	<i>mei-W68</i>
mia	106,2384582	134,703881	1,267938967	5,78E-01	<i>mia</i>
mod(mdg4)	2900,984966	2430,648854	0,8378702	3,45E-01	<i>mod(mdg4)</i>
Mps1	153,232169	278,7081998	1,818862198	5,64E-02	<i>Mps1</i>
mtrm	437,1554699	1119,012534	2,559758738	6,22E-08	<i>mtrm</i>
mus304	271,1724424	359,7809682	1,326760806	2,12E-01	<i>mus304</i>
mus312	0	0	#DIV/0!	NA	<i>mus312</i>

narya	35,97019178	70,21136504	1,951931907	2,02E-01	<i>narya</i>
nanya	48,80659677	121,0444724	2,480084258	1,00E-02	<i>nanya</i>
Nipped-B	7428,242749	10050,8051	1,35305286	8,79E-02	<i>Nipped-B</i>
nod	181,6257799	522,1903895	2,875089592	3,02E-04	<i>nod</i>
okr	330,8717399	399,6599534	1,207899936	5,13E-01	<i>okr</i>
orb2	334,2960075	531,9504851	1,591255872	9,97E-02	<i>orb2</i>
ord	48,908937	100,6944375	2,058814681	7,67E-02	<i>ord</i>
p53	345,1952124	346,8628188	1,004830908	9,80E-01	<i>p53</i>
pch2	617,9542897	936,8238603	1,516008346	8,10E-02	<i>pch2</i>
pelo	1379,40458	1462,625958	1,060331377	7,43E-01	<i>pelo</i>
Rad51D	63,03231676	78,47929553	1,24506443	6,24E-01	<i>Rad51D</i>
Rae1	816,8423394	688,2189004	0,842535784	3,45E-01	<i>Rae1</i>
rec	294,5195615	277,5298231	0,942313718	8,92E-01	<i>rec</i>
RPA1	1803,562756	2357,140947	1,306935918	2,14E-01	<i>RPA1</i>
SA	1377,776629	1363,006843	0,989279985	9,56E-01	<i>SA</i>
SkpA	5509,782723	6513,064293	1,18209095	2,41E-01	<i>SkpA</i>
slmb	4602,087073	4858,358166	1,055685842	7,61E-01	<i>slmb</i>
SMC1	2195,496974	2392,540879	1,089749113	6,82E-01	<i>SMC1</i>
SMC3	1430,047804	1948,816202	1,362762977	1,54E-01	<i>SMC3</i>
solo	687,4800873	330,2416201	0,480365361	1,97E-01	<i>solo</i>
spn-A	216,8014786	239,8603438	1,106359354	6,49E-01	<i>spn-A</i>
spn-B	97,63089149	117,9593533	1,208217517	6,14E-01	<i>spn-B</i>
spn-D	48,55932791	82,19454918	1,692662413	2,16E-01	<i>spn-D</i>
sunn	271,0365832	303,0175888	1,117995162	8,05E-01	<i>sunn</i>
Sxl	6546,815137	7219,741937	1,102786895	5,01E-01	<i>Sxl</i>
tef	246,1993578	632,0700059	2,567309726	1,16E-04	<i>tef</i>
Top2	9818,887772	7933,941627	0,808028548	3,44E-01	<i>Top2</i>
trem	247,4028146	300,5448873	1,21479979	4,47E-01	<i>trem</i>
uno	156,3918711	297,0587735	1,899451496	6,58E-03	<i>uno</i>
vilya	6,761964214	12,47965379	1,845566376	5,71E-01	<i>vilya</i>
Xpc	1626,867463	3196,493288	1,964814812	6,06E-04	<i>Xpc</i>

t-test, Red < 0,1); Gene_name

Supplementary Table S5. X-NDJ in *nos>wcd-RFP* females

A. Sex chromosome NDJ :

Progeny:	Regular		Exceptional			% NDJ
	XX	XY	XXY	X0	Nc	
WT	252	186	1	0	440	0.5
<i>nos>wcdRFP/+</i>	212	204	0	1	418	0.5
<i>nos>UAS-GFP</i>	234	237	0	0	471	0

Indicated females were crossed to *w/BsYy+* males. Surviving exceptional aneuploids are Bar-eyed *y/y/B^sY* females and wild-type *yw/0* males

Percentage of X-NDJ: $100 \times 2(\text{X-NDJ progeny})/\text{total progeny}$, where total progeny (Nc) was calculated as $2(\text{X-NDJ progeny}) + \text{regular progeny}$ (Gyuricza et al 2016).

Supplementary Table S6. NDJ in *mei-W68* mutant females

A. Sex chromosome NDJ Frequencies :

Progeny:	Regular		Exceptional			%NDJ
	XX	XY	XXY	XO	Nc	
Maternal genotype						
+/+	254	288	0	0	542	0
<i>mei-W68¹</i> / <i>Df²⁷³⁵⁴</i>	166	118	78	44	528	46.21
<i>mei-W68^{CD}</i>	236	220	44	38	620	26.45
<i>mei-W68^{HA}</i>	193	166	25	53	515	30.29
<i>mei-W68^{HA}</i> / <i>Df²⁷³⁵⁴</i>	218	207	68	68	697	39.02
<i>mei-W68^{HA}</i> / +	325	323	0	3	654	0.92
<i>mei-P22</i>	197	209	44	41	576	29.51

Females with indicated second or third chromosome were crossed to *w/BsYy+* males.

Surviving exceptional aneuploids are Bar-eyed *y/y/B^sY* females and wild-type *yw/0* males.

Percentage of X-NDJ: 100 x 2(X-NDJ progeny)/total progeny, where total progeny (Nc) was calculated as 2(X-NDJ progeny) + regular progeny (Gyuricza et al 2016)

B. 2nd chromosome NDJ Frequencies :

Maternal genotype :	Diplo-2	Nullo-2	F1/n
+/+	0	0	0
<i>mei-W68¹</i> / <i>Df²⁷³⁵⁴</i>	103	42	3.62
<i>mei-W68^{CD}</i>	22	52	14.8
<i>mei-W68^{HA}</i>	84	73	7.85
<i>mei-W68^{HA}</i> / <i>Df²⁷³⁵⁴</i>	55	35	4.5
<i>mei-W68^{HA}</i> / +	0	0	0
<i>mei-P22</i>	3	4	1.4

Females with indicated second or third chromosome were crossed to *C(2)EN b¹ pr¹* males.

F1/n is the frequency of NDJ/total number of females crossed.

Supplementary Table S7. X-NDJ in females mutant for meiotic genes

A. Sex chromosome NDJ :

Progeny:	Regular		Exceptional			% NDJ
	XX	XY	XXY	X0	Nc	
<i>nos>sh-w</i>	393	169	0	1	564	0.35
<i>nos>sh-sunn</i>	322	313	29	24	741	14.30
<i>nos>sh-c(2)M</i>	172	157	15	15	389	15.42
<i>nos>sh-Nipped-B</i>	126	92	5	4	236	7.63
<i>nos>sh-SA-1</i> ^a						

Indicated females were crossed to *w/BsYy+* males. Surviving exceptional aneuploids are Bar-eyed *y/y/B^sY* females and wild-type *yw/0* males

Percentage of X-NDJ: $100 \times 2(\text{X-NDJ progeny})/\text{total progeny}$, where total progeny (Nc) was calculated as $2(\text{X-NDJ progeny}) + \text{regular progeny}$ (Gyuricza et al. 2016)

^a many embryonic lethal