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Abstract

As genome sequencing technologies advance, the accumulation of sequencing data in public
databases necessitates more robust and adaptable data analysis workflows. Here, we present
Rocketchip, which aims to offer a solution to this problem by allowing researchers to easily
compare and swap out different components of ChiP-seq, CUT&RUN, and CUT&Tag data
analysis, thereby facilitating the identification of reliable analysis methodologies. Rocketchip
enables researchers to efficiently process large datasets while ensuring reproducibility and
allowing for the reanalysis of existing data. By supporting comparative analyses across different
datasets and methodologies, Rocketchip contributes to the rigor and reproducibility of scientific

findings. Furthermore, Rocketchip serves as a platform for benchmarking algorithms, allowing
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researchers to identify the most accurate and efficient analytical approaches to be applied to
their data. In emphasizing reproducibility and adaptability, Rocketchip represents a significant

step towards fostering robust scientific research practices.
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Introduction

As genome sequencing technologies and their applications continue to rapidly evolve to
include epigenomic information, a vast amount of sequencing data is accumulating (1). Journals
now commonly mandate the deposition of raw sequence data to public databases, such as the
International Nucleotide Sequence Database Collaboration Sequence Read Archive (SRA),
generating a substantial volume of sequencing data (2). These mandates are further supported
by funding agencies, such as the National Institutes of Health (NIH), which requires NIH-funded
research to publish sequence data as part of their Genomic Data Sharing Policy (3). Therefore,
there is an increasing need for more comprehensive and biologically relevant data analysis
workflows that promote reproducibility of results and allow for increased leverage and
comparisons of publicly available data. Although mandated availability of data is beneficial to
science, data analysis pipelines are often complicated, with divergent results due to variation in
analysis steps, parameter usage, software used, and software version. These problems can
partly be solved by workflow managers, which control for analysis step order, software versions
via virtual environments, software parameters, etc. This is especially important for workflows
requiring multiple analysis steps, such as sequence data produced by chromatin
immunoprecipitation assays, where small differences in analytical steps can yield different
results.

Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is a technique
commonly used to identify protein binding sites in the genome (4,5). Briefly, DNA associated
proteins are chemically fixed onto DNA via a crosslinking agent. The resulting chromatin is then
fragmented by either sonication or enzymatic digestion into 100-500 base pair fragments. Next,
chromatin fragments bearing the protein of interest are immunoprecipitated using protein-
specific antibodies. Typically, ChlP-seq experiments utilize two controls: (1) an input control to
correct for differences in sonication and genomic DNA sequence bias and (2) a mock IP to

account for nonspecific interactions of the antibody used (6-8). Finally, the chemical cross-link
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is reversed, allowing the DNA bound by the protein to be purified and then sequenced. In
addition to ChlP-seq, other chromatin immunoprecipitation assays, such as cleavage under
targets and release using nuclease (CUT&RUN) and cleavage under targets and tagmentation
(CUT&Tag) are similarly utilized to assess protein binding sites (9,10). In CUT&RUN, antibody
binding occurs directly on protein-bound DNA fragments within intact nuclei, with DNA
fragmentation accomplished enzymatically using a fusion protein containing Protein A and
micrococcal nuclease (MNase), contrasting with ChlP-seq's reliance on sonication for DNA
fragmentation. In CUT&Tag, a fusion protein combines Protein A and Tn5 transposase, allowing
for simultaneous tagging and binding of sequencing adapters to protein-bound DNA fragments.
Following the unique approaches of ChiP-seq, CUT&RUN, and CUT&Tag in isolating
protein-bound DNA, the generated DNA sequence data is aligned to a reference genome, and a
peak caller is typically used to identify regions of interest. These peaks are “broad” for proteins
with large areas of interactions with DNA, such as histones and DNA methylation interacting
proteins. Conversely, proteins like transcription factors such as CTCF, that have a sequence
specific region of interaction, produce “narrow” peaks. Analyzing these different types of DNA
binding proteins can sometimes call for different computational controls. Given the variation in
how peaks are generated, there is a significant amount of statistical noise in these experiments,
which can hinder the efficacy of peak calling algorithms. This is further complicated by
sequencing issues associated with strand bias, GC content, PCR amplification, library
preparation, primer choice, sequencing platform, and antibody choice (8,11-20). Consequently,
it is increasingly difficult to reproduce or replicate experimental findings. From this point forward,
“reproducibility” refers to an individual’s or group’s ability to generate the same findings as
another study, whereas “replicability” represents an individual’s or group’s ability to recreate
findings multiple times using the same data input. Overall, this highlights the need for consistent

and controlled data analysis practices, ensuring reproducibility and replicability of results.
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Here, we present Rocketchip, available at hitps://github.com/vhaghani26/rocketchip, to

address key aspects of these problems. Rocketchip reduces variation in data analysis
methodologies, increase reproducibility and replicability of experimental results, and encourage

greater usage of publicly available sequence data.

Methods and Results

Implementation

Rocketchip is an automated bioinformatics workflow written in the Python-based
(v3.10.12) workflow manager, Snakemake (v7.32.4) (21) (Figure 1). Rocketchip downloads
ChliP-seq data directly from the SRA, the largest publicly available sequence database, using
the SRA Toolkit (sra-tools, 3.0.9) (2,22). The SRA Toolkit downloads data via the prefetch and
fasterg-dump functions, then splits the raw DNA sequence read file into respective paired-end
(PE) read files using the flag --split-files and converts them into FASTQ file formats, whereas for
single-end (SE) read files, the SRA Toolkit is utilized solely for the download and conversion of
raw read data into FASTQ format. Rocketchip also presents the option for users to use local
(i.e. non-SRA sourced) ChlP-seq data by providing their own FASTQ files. In parallel,
Rocketchip downloads and processes a reference genome of the user’s choice from the UCSC
Genome Browser (23). After downloading and converting files, files are stored in the local file
system in FASTA and FASTQ formats. Users also have the option of storing their own custom
genomes and sequencing reads that are not yet publicly available.

In Rocketchip, raw sequence data undergoes a quality control step using FastQC
(v0.12.1) with default parameters to assess levels of data duplication and sequence quality (24).
Raw sequence data is then aligned to the reference genome using the user’s choice of
alignment software from BWA-MEM (v0.7.17), Bowtie2 (v2.5.2), or STAR (v2.7.11a), each with
the default parameters (25-27). Intermediate data files are processed as necessary for

deduplication. PCR duplicates are removed from sequence data using a user’s choice of
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deduplication software from Samtools (v1.18) with --mode s (i.e. standard PCR duplicate
detection), Picard (v3.1.1) using MarkDuplicates, Sambamba (v1.0.0) with default parameters,
or no deduplication (28—-30). Deduplicated data files are subject to another quality control step
using FastQC to ensure data integrity. Next, Deeptools’ (v3.5.4) bamCoverage function with
default parameters is used to convert data from the BAM file format to the bigwig file format,
which can be used for visualization of ChlP-seq data in the UCSC Genome Browser or other
visualization tools (31). Finally, in Rocketchip, peaks are called with a user’s choice of software
from MACS3 (v3.0.0b3) with the --bdg option, Genrich (v0.6.1) using default parameters, PePr
(v1.1.24) using default parameters, or CisGenome (v2.0) (32-35). For CisGenome, if a control
was used, the seqpeak command was employed with the default options. Without a control,
CisGenome ran two rounds of peak calling using the hts_peakdetectorv2 command with options
“-w 100 -s 25 -c¢ 10 -br 1 -brl 30 -ssf 1.”

Peak-calling options in Rocketchip include narrow versus broad peak calling and use of
a control where appropriate. Software version control is handled using Conda to ensure
reproducibility of results (36). Software options were chosen based on options for command line

use, ease of installation, and their standard use in the field.

Validation of all Software Options

In order to ensure that all combinations of software can be integrated seamlessly, we
selected a deeply sequenced experimental ChlP-seq study targeting a transcription factor,
MeCP2, in mouse main olfactory epithelium conducted by Rube et al. 2016, hereafter referred
to as “Rube”, (37) and a ChIP-seq study targeting NRF2 in human non-small lung cells
conducted by Namani et al. 2019, hereafter referred to as “Namani” (38). To facilitate this
comprehensive assessment, these data sets were run through Rocketchip using all four peak
callers, namely MACS3, CisGenome, Genrich, and PePr. This was used in combination with

each of the three aligners, BWA-MEM, Bowtie2, and STAR and four deduplication techniques,
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Samtools, Sambamba, Picard, and no deduplication. Additionally, to validate that Rocketchip
can be run with or without a control (i.e. input or IgG control), this analysis was conducted with
both the usage and omission of the corresponding control for each data set, with the exceptions
of CisGenome and PePr, which can only be run if a control is used in the analysis. Each test
was run three times to assess Rocketchip’s ability to replicate experimental results.

Each algorithm demonstrated varying peak-calling efficiency, influenced by several key
factors (Figure 2). Most notably, the source of the data (i.e, Namani vs. Rube) revealed dramatic
differences in the performance of peak-calling algorithms. For the Rube data, MACS3
consistently yielded the highest number of called peaks. All methods of deduplication produced
comparable peak counts. Bowtie2 and BWA-MEM performed similarly, identifying slightly more
peaks compared to STAR. CisGenome called the fewest peaks, significantly influenced by the
deduplicator and aligner used. Without deduplication, CisGenome identified the fewest peaks
across any software combination, while peak counts increased with any deduplication method.
When STAR was used as the aligner with CisGenome, peak counts were the lowest. BWA-
MEM vyielded a higher peak count than Bowtie2 but exhibited more non-deterministic behavior
compared to Bowtie2 and STAR. For Genrich, peak counts increased when the control was
omitted during peak calling. In contrast to CisGenome, Genrich had the highest peak counts
when no deduplication was used and when STAR was used for alignment. The other
deduplicators and aligners showed negligible differences in peak counts. When using PePr for
peak calling on the Rube data, no deduplication yielded the highest peak count, with other
deduplication methods yielding similar results. Unlike the other algorithms, each aligner
performed differently with PePr, with STAR identifying the most peaks, followed by BWA-MEM
and then Bowtie2. Both the narrow- and broad-peak-calling algorithms yielded negligible
differences, except for CisGenome, which had less deterministic results when peaks were

defined as narrow and run through Rocketchip.
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For the Namani data, notable contrasts in peak-calling outcomes were observed across
various algorithms. Genrich consistently yielded the highest number of peaks, contrasting with
the Rube data where MACS3 showed higher peak counts. Interestingly, PePr consistently
produced the lowest peak counts for the Namani dataset despite performing second best for the
Rube data. The choice of aligner did not significantly impact peak counts overall; however,
omitting deduplication generally resulted in slightly higher peak counts across all peak-callers.
Unlike the Rube data, where the distinction between narrow- and broad-peak calling showed
minimal differences across algorithms, the Namani data exhibited variability based on this
distinction. Specifically, MACS3 identified higher peak counts under the assumption of broad
peaks compared to narrow peaks.

In addition to assessing the results of the different algorithms, we also assessed
Rocketchip’s ability to replicate experimental findings. A total of 288 combinations were tested,
accounting for both data sets and software combinations. Among the 288 combinations tested,
274 trials (95.14%) demonstrated perfect replication of peak counts across all three trials.
Surprisingly, despite identical software versions, computational resources, and inputs, certain
combinations of data and software were non-deterministic, with 4.86% (14 out of 288) exhibiting
variability in peak counts (Table 1). The greatest variability in peak counts occurred when
CisGenome was used as the peak-caller, where the range between peak counts in these cases
were 20,356 and 159,544 peaks. Cases with lower variation (i.e. differences in peak counts
ranging from 1-6 peaks) occurred when the STAR aligner was used in the workflow.

Overall, these findings underscore four critical points. First, the choice of software
combination, including the algorithm, deduplication method, and aligner, has a significant impact
on peak-calling outcomes. Second, even with strict control of factors impacting the analysis, we
still observe some variability in peak calling, albeit in a small subset of cases. Third, dataset-
specific nuances significantly impact the performance of different software combinations,

resulting in a differing consensus on what the “best” software combination is. Finally, the results
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validate that all available software combinations can be successfully executed within

Rocketchip, ensuring flexibility and robustness in ChlP-seq analyses.

Assessing Run Times for Experimental ChlP-seq Data from Varying Genomes and Read Sizes

The UCSC Genome Browser has seven genomes displayed by default in the “Genomes”
tab: human (hg38), mouse (mm210), rat (rn6), zebrafish (danRerl11), fruitfly (dm6), worm (cel1l),
and yeast (sacCer3). Three published ChlIP-seq data sets on the SRA with varying read
coverage were selected per genome and run through Rocketchip (Figure 3) (39-50). These
experiments were run on an HPC with 64 CPUs and 250 GB of memory available. However,
jobs were run without being parallelized (i.e. one job at a time with one thread). Additionally,
genome copies were deleted between runs using the same genome to ensure that the run time
accounts for the full workflow. All data selected was run on Rocketchip for narrow-peak calling
using PE data. The software used was BWA-MEM for alignment, Samtools for deduplication,
and MACS3 for peak-calling. The results of this experiment validated the use of the seven major
genomes from the UCSC Genome Browser and use of sequence data hosted on the SRA.
Additionally, it provides users with estimates of how long Rocketchip should run for different
genomes to allow for appropriate computational resource requests. Run times ranged from 0.55

hours to 20.54 hours depending on the genome size and read data used.

Validating use of CUT&RUN and CUT&Tag with Rocketchip

As of June 18, 2024, there are 363,213 ChlP-seq, 494,128 CUT&RUN, and 19,492
CUT&Tag data sets available on the SRA. Due to the increasing use of CUT&RUN and
CUT&Tag, we wanted to assess Rocketchip’s ability to effectively process data generated by
these mapping techniques. Therefore, we applied Rocketchip to CUT&RUN and CUT&Tag data
generated by Akdogan-Ozdilek et al. that sought to characterize the zebrafish epigenome during

embryogenesis (51). This data set was chosen due to the thorough documentation of the results
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and high sequence data quality. In evaluating the performance of Rocketchip for CUT&RUN and
CUT&Tag data analysis, we assessed the percentage of reads aligned. The alignment
percentage was chosen as a metric due to its significance in assessing the overall data
processing efficiency and alignment accuracy. Alignment percentage serves as a key indicator
of how effectively Rocketchip handles the unique characteristics of CUT&RUN and CUT&Tag
data sets, ensuring that a substantial proportion of reads are appropriately mapped to the
reference genome and available for further analysis.

The CUT&RUN data set consisted of nine samples. Six samples were SE reads and
corresponded to two replicates each for detection of H3K4me3, H3K27me3, and H3K9me3
(SRR14850825 and SRR14850826, SRR14850827 and SRR14850828, and SRR14850829
and SRR14850830, respectively). The remaining three sets were PE read samples that
corresponded to two replicates for the detection of RNA polymerase Il and mock IP control
using the 1gG antibody (SRR14850831 and SRR14850832, and SRR14850833, respectively).
The study that originally produced these data sets employed Bowtie2 to align sequences,
Samtools to filter aligned sequences, and HOMER for peak-calling. Rocketchip was run using
Bowtie2, Samtools, and MACS3 for broad peak-calling. As the data was patrtially SE and
partially PE reads, analyses were conducted separately, with the control being used for the PE
analysis due to compatibility. Original alignment percentages were compared to those obtained
via Rocketchip (Figure 4). A paired t-test was conducted using each SRA input as an
observation, yielding a p-value of 0.00302, with Rocketchip consistently producing better
alignment percentages for the CUT&RUN data compared to the original analysis. The mean
difference in the alignment percentages was 32.66%. ‘We hypothesize that the alignment
accuracy differences are related to the use of different Bowtie2 versions, as the original study
used Bowtie 2.4.1 to align their CUT&RUN data, whereas Rocketchip used version 2.5.2. The
GitHub change log for Bowtie2 version 2.5.1, one version earlier than the one Rocketchip uses,

notes: “fixed an issue affecting bowtie2 alignment accuracy” and “fixed a segmentation fault that
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would occur while aligning SRA data.” This highlights the need to revisit and utilize publicly
available data, as software updates can improve data processing and thus yield more accurate
results. This also highlights Rocketchip’s ability to accurately and effectively process CUT&RUN
data.

The CUT&Tag data set used for testing in Rocketchip was comprised of six PE read
samples. There are three replicates each of H2A.Z at 6 hours and 24 hours post fertilization
(SRR14870792, SRR14870793, and SRR14870794 and SRR14870795, SRR14870796, and
SRR14870797, respectively). The original study used Bowtie2 for alignment, Samtools for
filtering, Picard for deduplication, and MACS2 for peak-calling. We ran Rocketchip using
Bowtie2, Samtools, and MACS3. Original alignment percentages were compared to those
obtained via Rocketchip (Figure 5). A paired t-test was conducted using each SRA input as an
observation, yielding a p-value of 0.00015, with Rocketchip resulting in lower alignment
percentages for the CUT&Tag data compared to the original analysis. The magnitude of
difference in alignment percentages, however, was less than that of the CUT&RUN data, as the
mean difference by Rocketchip was -8.41% for CUT&Tag as opposed to +32.66% for
CUT&RUN. However, the alignment percentages achieved in our Rocketchip CUT&Tag
analysis still surpassed every alignment percentage reported in the original study for their
CUT&RUN data, suggesting that Rocketchip is suitable for analyzing CUT&Tag data. We
hypothesize that the alignment difference may be due to the usage of both Samtools and Picard

in the original CUT&Tag analysis as opposed to just using Samtools in Rocketchip.

Discussion

Rocketchip is distinct as a novel and innovative tool due to its unique approach to
automating and allowing for flexibility in ChlP-seq, CUT&RUN, and CUT&Tag data analysis
workflows. Unlike traditional methods that often require manual intervention and lack

reproducibility, Rocketchip provides a straightforward solution by integrating existing software to
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automatically run analyses for large-scale datasets. Researchers can easily interchange
analysis components and rerun their analysis to identify the most appropriate software options
for their data. Additionally, Rocketchip was designed to be user-friendly, making it more
accessible to researchers with limited bioinformatics expertise compared to traditional methods
that require users to navigate software installation, parameter determination, and command
inputs from scratch, promoting broader utilization of publicly available sequence data.

In our analyses of Rocketchip using published experimental ChiP-seq, CUT&RUN, and
CUT&Tag data, we demonstrated Rocketchip's ability to handle diverse software combinations
seamlessly, which is critical given the variability observed in peak-calling efficiency across
different datasets and software tools. We found that the choice of peak caller, aligner, and
deduplication method significantly influenced peak-calling outcomes in a data-specific manor.
These disparities persisted even when identical software combinations were employed,
highlighting the significant impact of dataset-specific factors on the results.

These variations underscore the importance of selecting the appropriate software
combination tailored to specific experimental contexts. Moreover, Rocketchip's ability to
replicate results across multiple runs (95.14% perfect replication rate) is noteworthy,
demonstrating its reliability in ensuring reproducibility in peak calling. While minor variability
(4.86%) was observed in peak counts across some combinations, particularly with CisGenome,
this was mitigated with other software tools like MACS3 and Genrich, which exhibited more
consistent performance. This is consistent with another study that found that CisGenome
performed significantly worse with peak-calling compared to MACS, a prior version of MACS3,
as well as having lower consistency in peak-calling (52). Among the other cases where variation
was observed in peak-calling, the only consistent variable was that STAR was used as the
aligner. There is little documentation to suggest that STAR may Yyield non-deterministic results,
with the exception being a Google Groups thread titled “Reproducibility of alt/ref counts w/STAR

alignment (through RSEM)” (53), that suggests that the seed-searching portion of the algorithm
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is deterministic, but the parallelization (i.e. multithreading) may be the cause of the minor
differences observed. Ultimately, the persistence of any variation in results using Rocketchip,
which provides controlled software versions and parameters, highlights the need for the further
investigation of determinism in algorithms commonly used for analyzing genomic data.
Furthermore, there is a seemingly constant push to standardize pipelines and tools, but these
analyses demonstrate that standardization is likely not possible due to differences in genomic
data. There is, therefore, an increasing need for flexible workflows that provide a streamlined
approach to facilitate robust data analysis.

For the CUT&RUN analysis, Rocketchip significantly improved the percentage of
mapped reads, likely due to the use of the updated Bowtie2 version. However, for CUT&Tag,
Rocketchip resulted in lower read alignment that could not be easily explained by differences in
the aligner or deduplicator used prior to peak-calling. This unsolved discrepancy highlights the
necessity of documenting software versions and parameters used in analyses to enable
replication of results.

When using Rocketchip, a few possible limitations to Rocketchip should be considered.
First, it should be noted that broad and narrow-peak-calling must be done in separate
Rocketchip runs. This is due to the inherent variability in how peaks are represented via read
counts. Similarly, SE and PE data sets must be run separately, as these data types are
processed differently at the start of the analysis. Additionally, updating software may yield
incompatibilities between dependencies; however, Rocketchip ensures version control via
Conda to eliminate potential problems with version incompatibilities.

Future goals for Rocketchip include packaging it to be directly pip or conda installable
rather than having a user clone the environment from a YAML file. We are also interested in
making a Nextflow adaptation to facilitate cloud computing options. We also look forward to
expanding Rocketchip’s selection of software, including other peak-calling algorithms, to provide

further user customization options. For instance, WASP (54) has recently become a leading
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method for deduplication of sequence data. It takes an allele-aware approach to mapping reads
back to the reference genome, and discards reads that fail to map to the same region of the
genome when the complementary read is considered. This approach reduces false positives for
allele imbalance and can help improve peak quality in ChlP-seq data. This algorithm has
already been incorporated into STAR alignment. Thus, we aim to release a future version of
Rocketchip with an option of using WASP, which will thereby circumvent the following
deduplication step in the pipeline. Furthermore, because ChlIP-seq can be used for various
reasons, such as motif finding or differential binding analysis, automation of further analysis is
particularly difficult. For future updates of Rocketchip, we hope to include options for motif
analysis via HOMER (55) and differential binding analysis via BEDTools (56) followed by gene
ontology enrichments.

Future goals for Rocketchip analyses include using Rocketchip to conduct a meta-
analysis of all published data sets for a specific transcription factor. With increased sample sizes
and varying coverage, this may yield improved accuracy of transcription factor motifs and in vivo
binding properties. Additionally, we hope to conduct tests on simulated ChlP-seq data to better
understand what factors impact ChlP-seq data and how they do so. This includes modeling
narrow vs. broad peak regions, as well as varying peak density and coverage, GC-rich regions,
overlapping and bimodal peak regions, and levels of PCR duplication. Synthetic data with these
modeled characteristics can be run through the various software combinations within
Rocketchip to better understand which tools are better suited for different types of data.
Ultimately, this would further researchers’ ability to better tailor specific analysis tools to their

data.

Key Points
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o We've developed Rocketchip, a Python-based command-line tool that integrates existing
software, enabling automated ChIP-seq, CUT&RUN, and CUT&Tag data analysis with ease
and efficiency.

o Rocketchip allows for increased leverage of publicly available ChIP-seq, CUT&Tag, and
CUT&RUN sequence data.

o Rocketchip is designed to facilitate replicability and reproducibility in molecular analyses of
protein-DNA interactions by enabling head-to-head comparisons across published data and

software.

Data Availability
The synthetic sequence data sets, all analysis scripts, and usage instructions can be found in

this GitHub repository: https://github.com/vhaghani26/rocketchip_tests. The Rocketchip source

code, installation instructions, and usage instructions can be found in the main Rocketchip

GitHub repository: https://github.com/vhaghani26/rocketchip.
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Figures and Tables

Figure 1. Rocketchip Pipeline for ChIP-seq Data Analysis. Raw sequencing data is aligned
to a reference genome and processed to generate bigwig files for data visualization and
delineate ChIP-seq peaks.

Figure 2. Peak Counts for all Software Combinations. ChIP-seq data from Namani et al.
2019 and Rube et al. 2016 were run through all software combinations in Rocketchip three
times each. Raw peak counts were log2 transformed and plotted in the heatmap. Darker red
corresponds to higher peak counts while darker blue corresponds to lower peak counts. Gray
corresponds to “NA” values, as PePr and CisGenome cannot be run without a control. The
heatmap was created using R (v4.2.3) with a kernel (r-irkernel v1.3.2) in Jupyter Notebook
(v1.0.0) using the following packages: ComplexHeatmap (v2.14.0), dplyr (v1.1.4), tidyr (v1.3.1),
reshape2 (v1.4.4), stringr (v1.5.1), and MASS (v7.3.60.0.1).

Table 1. Variation in Called Peaks. ChIP-seq data from Namani et al. 2019 and Rube et al.
2016 were run through all software combinations in Rocketchip three times each. This table
depicts all combinations of software and data in which peak counts were not replicated perfectly
each of the three runs, exhibiting variation in peak-calling. “Project” details the source of the
data set. “Control” refers to whether a control was used or excluded during peak-calling.
“Aligner”, “Peak Caller”, and “Deduplicator” correspond to the sequence aligner, peak caller, and
deduplicator tool used for the Rocketchip run, respectively. “Peak Count Range” represents the
minimum and maximum peak counts for the Rocketchip run. “Difference in Called Peaks”
represents the range between the minimum and maximum peak counts, highlighting the
magnitude of variation in peak-calling across each of the three trial runs.

Figure 3. Rocketchip Execution Times per Genome. This is a horizontal bar plot representing
how long (in hours) each sample per genome took to run. The label on the bars represents
strictly hours (i.e. not hours and minutes). The color of the bars corresponds to which organism

the sample comes from and which genome it was run with. The bar plot was created using R
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(v4.2.3) with a kernel (r-irkernel v1.3.2) in Jupyter Notebook (v1.0.0) using the following
packages: ggplot2 (v3.4.4) and dplyr (v1.1.4).

Figure 4. Rocketchip Alignment Percentages for CUT&RUN Data. This is a grouped bar plot
comparing the percent of raw reads aligned by Akdogan-Ozilek et al. 2023 (red) compared to
Rocketchip (blue) for the CUT&RUN data. The bar plot was created using R (v4.2.3) with a
kernel (r-irkernel v1.3.2) in Jupyter Notebook (v1.0.0) using the following packages: ggplot2
(v3.4.4), dplyr (v1.1.4), and tidyr (v1.3.1).

Figure 5. Rocketchip Alignment Percentages for CUT&Tag Data. This is a grouped bar plot
comparing the percent of raw reads aligned by Akdogan-Ozilek et al. 2023 (red) compared to
Rocketchip (blue) for the CUT&Tag data. The bar plot was created using R (v4.2.3) with a
kernel (r-irkernel v1.3.2) in Jupyter Notebook (v1.0.0) using the following packages: ggplot2

(v3.4.4), dplyr (v1.1.4), and tidyr (v1.3.1).
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Project | Control ?;;2 Aligner g:l?:r Deduplicator Peak Count Range 8;']2;22;2
Genrich Sambamba 252158-252160 2
No Broad | STAR ™ ACS3 | Sambamba | 1157876-1157882 6
Control Narrow STAR Genrich Sambamba 252158-252160 2
MACS3 Sambamba 1168345-1168346 1
Genrich Sambamba 127542-127543 1
No
Broad STAR MACS3 Deduplication 1002670-1002671 !
Rube Sambamba 1004044-1004045 1
PePr Sambamba 568554-568556 2
With Genrich Sambamba 127542-127543 1
Control MACS3 Sambamba 1143541-1143542 1
STAR No
Narrow PePr Deduplication 1713483-1713484 1
Sambamba 721307-721309 2
BWA- Cisgenome Picard 15553-175097 159544
MEM Sambamba 15553-35909 20356
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