

1 **Proton-pump inhibitors increase *C. difficile* infection risk by altering pH
2 rather than by affecting the gut microbiome based on a bioreactor model**

3 Julia Schumacher^{1,2 *} ORCID [0009-0001-4843-1075](https://orcid.org/0009-0001-4843-1075)

4 Patrick Müller^{1,3,4 *} ORCID [0000-0003-3290-8251](https://orcid.org/0000-0003-3290-8251)

5 Johannes Sulzer^{5,6} ORCID [0000-0002-2800-9328](https://orcid.org/0000-0002-2800-9328)

6 Franziska Faber^{5,6} ORCID [0000-0002-8700-6522](https://orcid.org/0000-0002-8700-6522)

7 Bastian Molitor^{1,2 #} ORCID [0000-0002-0776-1668](https://orcid.org/0000-0002-0776-1668)

8 Lisa Maier^{1,3,4 #} ORCID [0000-0002-6473-4762](https://orcid.org/0000-0002-6473-4762)

9

10 ¹Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of
11 Tübingen, Tübingen, Germany

12 ²Environmental Biotechnology Group, Department of Geosciences, University of Tübingen,
13 Tübingen, Germany

14 ³Interfaculty Institute for Microbiology and Infection Medicine Tübingen, University of
15 Tübingen, Tübingen, Germany

16 ⁴M3-Research Center for Malignome, Metabolome and Microbiome, University of Tübingen,
17 Tübingen, Germany

18 ⁵Helmholtz Centre for Infection Research, Helmholtz Institute for RNA-based Infection
19 Research (HIRI) Würzburg, Germany

20 ⁶Institute for Molecular Infection Biology, Julius-Maximilians-University of Würzburg, Würzburg
21 Germany

22

23 * both authors contributed equally to this work

24 # correspondence: bastian.molitor@uni-tuebingen.de, l.maier@uni-tuebingen.de

25 **Abstract**

26 *Clostridioides difficile* infections often occur after antibiotic use, but they have also been linked
27 to proton-pump inhibitor (PPI) therapy. The underlying mechanism—whether infection risk is
28 due to a direct effect of PPIs on the gut microbiome or changes in gastrointestinal pH—has
29 remained unclear.

30 To disentangle both possibilities, we studied the impact of the proton-pump inhibitor
31 omeprazole and pH changes on key members of the human gut microbiome and stool-derived
32 microbial communities from different donors *in vitro*. We then developed a custom multiple-
33 bioreactor system to grow a model human microbiome community in chemostat mode and
34 tested the effects of omeprazole exposure, pH changes, and their combination on *C. difficile*
35 growth within this community.

36 Our findings show that changes in pH significantly affect the gut microbial community's
37 biomass and the abundances of different strains, leading to increased *C. difficile* growth within
38 the community. However, omeprazole treatment alone did not result in such effects. These
39 findings imply that the higher risk of *C. difficile* infection following proton-pump inhibitor therapy
40 is probably because of alterations in gastrointestinal pH rather than a direct interaction
41 between the drug and the microbiome. This understanding paves the way for reducing
42 infection risks in proton-pump inhibitor therapy.

43

44

45

46 **Keywords**

47 proton-pump inhibitor, gut microbiota, *Clostridioides difficile* infection, bioreactor, colonization
48 resistance

49 **Introduction**

50 *Clostridioides difficile* has become the most common cause of antibiotic-associated diarrhea,
51 ranging from mild to life-threatening colitis ¹. Antibiotics favor *C. difficile* infections (CDIs) by
52 disrupting the gut microbiome's protective barrier, creating an environment that promotes
53 spore germination and *C. difficile* growth. While nearly all classes of antibiotics can increase
54 the risk of CDI, the highest risk is associated with broad-spectrum antibiotics, including
55 clindamycin, fluoroquinolones, and cephalosporins ²⁻⁵. However, *C. difficile* infections can
56 occur without prior antibiotic use ⁶⁻⁸. Other factors, such as the use of proton-pump inhibitors
57 (PPIs), have been shown to increase the risk of CDI in several clinical studies ⁹⁻¹². PPIs are
58 indicated for the treatment of conditions like gastroesophageal reflux disease and ulcers ¹³.
59 As such, they are typically used long-term¹⁴ and are among the most frequently prescribed
60 drugs worldwide, with omeprazole being the most common ¹⁵. PPIs inhibit the
61 proton/potassium (H⁺/K⁺)-ATPase enzyme in gastric parietal cells, thereby causing an
62 increase in gastric pH. The reasons why PPI consumption is associated with an increased risk
63 of CDI remain unclear.

64 PPI consumption, similar to antibiotic use, has been linked to alterations in the gut microbiome
65 composition in various studies ¹⁶⁻¹⁸. These changes include an increase in *Enterococcaceae*,
66 *Lactobacillaceae*, *Micrococcaceae*, *Pasteurellaceae*, *Staphylococcaceae*, and
67 *Streptococcaceae*, along with a decrease in *Ruminococcaceae* ^{10,16,17}. These findings imply
68 that PPIs, like antibiotics, disturb the protective barrier of the gut microbiome, fostering an
69 environment conducive to CDI. While the direct inhibitory effects of broad-spectrum antibiotics
70 on the gut microbiome have been known for decades ¹⁹, how PPIs cause changes in the gut
71 microbiome composition remains largely unexplored.

72 There are two plausible, not mutually exclusive, explanations for how PPIs affect the
73 microbiome: (1) through direct interaction with gut microbes and (2) by their effect on stomach
74 pH. Recent reports indicate that non-antibiotic drugs can directly inhibit members of the gut
75 microbiome, with an estimated 24% of human-targeted drugs inhibiting the growth of key
76 microbiome members ²⁰. By directly targeting gut microbes, PPIs could reduce diversity and
77 shift species abundance, explaining the compositional changes observed in microbiome
78 studies.

79 Alternatively, the effect of PPIs on the microbiome may be a secondary consequence of
80 changes in gastrointestinal pH. Treatment with PPIs, such as omeprazole, raises the gastric
81 pH above 6 and increases the pH of the proximal duodenum ^{21,22}. However, the pH-increasing
82 effect diminishes in the distal duodenum, and the pH normalizes when reaching the proximal
83 jejunum ^{21,23}. Although the pH change in the stomach is not thought to affect later parts of the
84 intestinal tract, PPI treatment could still lead to a pH change in the colon. Colonocytes express
85 a homolog of the H⁺/K⁺-ATPase found in gastric parietal cells, and omeprazole has been
86 proposed to inhibit also this enzyme. This could increase pH levels within the colon and stool
87 of individuals using PPIs ^{21,24-27}. Notably, CDI has been linked to more alkaline stool ²⁸. It is

88 tempting to speculate that the more alkaline colon environment created by PPI treatment may
89 promote *C. difficile* growth, thereby increasing the risk of infection.

90 In this study, we sought to understand how omeprazole influences the microbiome
91 composition to promote *C. difficile* growth. We focused on determining whether these effects
92 are solely mediated by the drug itself or whether changes in pH play a role. In humans and
93 animal models these effects are interconnected and, therefore, difficult to separate. Thus, we
94 employed various *in vitro* systems, ranging from batch cultivation to bioreactor systems, to
95 precisely quantify the consequences of pH changes and physiological omeprazole
96 concentrations on defined and human-stool-derived gut microbial communities. Subsequently,
97 we challenged pH- and drug-perturbed communities with *C. difficile* and monitored its growth
98 within these communities ²⁹. Our findings provide strong evidence that the increase in *C.*
99 *difficile* growth associated with omeprazole is primarily a result of pH changes rather than
100 direct interference of the drug with gut microbes.

101 **Results**

102 ***In monoculture, key members of the human gut microbiome respond to pH change but***
103 ***not to omeprazole***

104 To distinguish between the direct impact of PPIs on the human gut microbiome and the effect
105 of altered gastrointestinal pH, we investigated the PPI omeprazole and the pH sensitivity of
106 key microbiome members. Recognizing that gut microbes are most sensitive to perturbation
107 when grown in monoculture ³⁰, which is due to the lack of cross-protection found in
108 communities, we first examined the effects of pH and the drug in monocultures. We selected
109 21 prevalent and abundant members of the human gut microbiome, which can be studied both
110 in monoculture and as part of a community, referred to as Com21 (Suppl. Table 1). These 21
111 bacterial species represent 7 bacterial phyla, 11 families, and 18 genera, covering 68.6% of
112 the pathways detected in the human microbiome ²⁹.

113 To assess omeprazole sensitivity, we revisited previous data from our lab ²⁹, where bacterial
114 growth in mGAM was measured over 20 hours in the presence of varying omeprazole
115 concentrations. From the same dataset, we also examined the sensitivity of our strains to
116 clindamycin, an antibiotic that is associated with a high risk for CDI ²⁻⁵. We quantified drug
117 sensitivity by calculating the relative growth in the presence of the drug compared to an
118 untreated control based on the maximum optical density (OD) in the stationary phase. As
119 expected, clindamycin completely inhibited 15 of the 19 tested strains at the lowest
120 concentration of 1.25 μ M (Figure 1A).

121 *C. difficile* showed the highest resistance to clindamycin, maintaining growth with a relative
122 mean OD of 0.71 at 80 μ M and 0.31 at 160 μ M compared to untreated controls. *Escherichia*
123 *coli* also tolerated higher clindamycin concentrations, with relative mean ODs of 0.67 at 40 μ M
124 and 0.43 at 80 μ M. Additionally, *Enterocloster bolteae* (relative OD of 0.87 at 1.25 μ M and
125 0.44 at 2.5 μ M) and *Thomasmclavelia ramosa* (relative OD of 0.35 at 1.25 μ M) were able to
126 grow at the lowest clindamycin concentrations. In contrast, omeprazole did not significantly
127 affect the growth of any of the Com21 members or *C. difficile*; only at 160 μ M did some
128 *Bacteroidales* show a slight reduction in OD (relative mean OD 0.78 - 0.9) (Figure 1A). These
129 results indicate that the PPI omeprazole does not directly inhibit commensal bacterial growth.
130 Therefore, unlike clindamycin, the increased risk for CDI associated with omeprazole is likely
131 not due to growth inhibition of gut bacteria.

132 Next, we investigated the pH sensitivity of the strains. The normal pH in the gastrointestinal
133 tract varies depending on the intestinal site, diet, gender, and health status but generally falls

134 between 5.5 and 7.5^{21,31-34}. However, it can reach pH 8 to 9 in extreme cases³³. We quantified
135 pH sensitivity at pH 5 and pH 9 by measuring the maximum OD in the stationary phase and
136 normalizing it to growth at pH 7.4. Overall, pH 5 had a more severe impact on growth, with
137 several species being unable to grow at this pH (e.g., all *Bacteroidales*; Figure 1B). Only
138 *Streptococcus parasanguinis* was unaffected at pH 5. Growth at pH 9 was less impaired, with
139 all strains being able to grow. Some species, such as the *Bacteroidales*, *Agathobacter rectalis*,
140 and *Roseburia intestinalis*, even grew better at pH 9 compared to pH 7.4 (Figure 1B).
141 Our data shows that pH sensitivity varies across species, with lower pH (pH 5) more severely
142 inhibiting bacterial growth. This underscores the importance of low pH in the upper small
143 intestine and stomach as a barrier to incoming bacteria—a barrier that is compromised during
144 long-term PPI treatment, potentially leading to small intestinal bacterial overgrowth¹³. At pH
145 9, we observed some growth improvement but generally more growth impairment, indicating
146 that pH changes can affect community structure, abundance, and functions. Thus, our results
147 in monocultures suggest that pH has a more severe impact on individual community members
148 than omeprazole does.
149

150 **Batch-cultivated human stool-derived communities are insensitive to omeprazole and
151 subsequent *C. difficile* challenge.**

152 Monocultures of selected gut bacterial species fail to fully capture the species diversity,
153 interspecies variation, and individual compositional differences that characterize gut
154 microbiomes. Therefore, we examined microbial communities derived from human fecal
155 samples of healthy donors to assess their sensitivity to omeprazole. Subsequently, we
156 exposed omeprazole-treated communities to *C. difficile* and quantified its growth in these
157 communities.

158 We first revisited previous data on the omeprazole sensitivity of human fecal samples²⁹.
159 Consistent with single-species sensitivities, the growth of all stool-derived communities was
160 unaffected by omeprazole at all tested concentrations (Figure 2A). In contrast, clindamycin
161 sensitivity varied between donors. For example, the community from human fecal sample 5
162 still grew to a relative mean OD of 0.54 at the highest clindamycin concentration of 160 μ M.
163 In comparison, the community from human fecal sample 7 was already reduced to a relative
164 mean OD of 0.46 at the lowest concentration of 1.25 μ M (Figure 2A). This highlights the
165 inherent differences in antibiotic sensitivities among human gut microbiomes.

166 Furthermore, we investigated whether omeprazole exposure affects *C. difficile* growth within
167 stool-derived communities. We exposed the communities to various concentrations of
168 omeprazole (2.5 μ M to 160 μ M) for 24 hours before challenging them with *C. difficile* carrying
169 a constitutive plasmid-based luminescence reporter (Extended Data Figure 1A). The
170 untreated stool-derived communities were able to significantly reduce *C. difficile* growth after
171 5 hours compared to *C. difficile* grown in monoculture, as measured by luminescence (mean
172 relative *C. difficile* growth in communities: $1.79\% \pm 0.1$ standard error of the mean (SEM))
173 (Extended Data Figure 1B). Consistent with the omeprazole sensitivity data, the biomass/OD
174 of the community after 24 hours of omeprazole exposure did not change relative to
175 unperturbed controls. Additionally, omeprazole did not impact *C. difficile* growth (Figure 2B,
176 bottom right).

177 As a positive control, we conducted the same challenge with clindamycin-treated stool-derived
178 communities (10 μ M to 100 μ M). Clindamycin reduced community biomass to varying degrees
179 among donors in a concentration-dependent manner. Consistent with clinical observations,
180 clindamycin also increased *C. difficile* growth after pathogen challenge in at least four of the
181 eight samples, up to 9-fold (Figure 2B, bottom left). Overall, communities that were more

182 sensitive to clindamycin exhibited higher levels of *C. difficile*, indicating that reduced biomass
183 correlates with increased *C. difficile* growth (Pearson's $\rho = -0.8612$, p -value = 9.986e-13).
184 We also investigated the effect of pH changes on stool-derived fecal communities. The
185 communities were grown at pH 5, pH 9, or physiological pH 7.4 for 24 hours before being
186 challenged with *C. difficile*. Growth at pH 5 reduced the biomass of some fecal communities
187 to a minimum relative OD of 0.68 (Figure 2C, top). However, neither pH 5 nor pH 9 affected
188 subsequent *C. difficile* growth within the communities (Figure 2C, bottom).
189 These results indicate that neither the PPI omeprazole nor pH changes directly affected *C.*
190 *difficile* growth in stool-derived communities from different donors. However, it is important to
191 note that both omeprazole and pH exposure were limited to 24 hours, with pH adjustments
192 made only at the beginning of the experiment. Since PPIs are typically used long-term, more
193 prolonged exposure to the drug and sustained pH changes would need to be investigated.
194

195 **Multiple-bioreactor system enables precise studies of microbiome perturbations**

196 To overcome the limitations of working with stool-derived communities in batch, we turned to
197 chemostats and our gut model community Com21. Chemostats allow precise, continuous
198 adjustment and monitoring of environmental conditions, such as pH, over long periods, making
199 them the ideal system to address our question. We chose a previously described system ³⁵
200 based on six bioreactor bottles (Figure 3A and 3B), which can be operated simultaneously,
201 individually at different conditions, or as replicates. Our multiple-bioreactor system (MBS) can
202 be operated under an aerobic or anaerobic atmosphere and can be used for batch cultivation
203 or in chemostat mode, where fresh medium is continuously supplied and spent medium is
204 removed at the same rate.

205 To demonstrate the functionality and reproducibility of our MBS with a gut microbial
206 community, we conducted a pilot experiment in three bioreactors using a reduced version of
207 Com21 ²⁹, referred to here as Com18. Com18 lacks *E. coli*, *Veillonella parvula*, and
208 *Eggerthella lenta* due to concerns about *E. coli* dominance and initial difficulties in growing
209 *Veillonella* and *Eggerthella* species. The MBS was operated anaerobically for 188.75 hours,
210 starting with 24 hours of batch mode followed by continuous operation in chemostat mode.
211 The OD increased during continuous operation until the 50-hour mark, after which it stabilized
212 (Extended Data Figure 2A). We noted fluctuations in the bioreactor volumes among the
213 individual replicates, which might explain the variations in OD. The pH remained stable at 7 (\pm
214 0.259) throughout the experiment. The community composition was determined by 16S rRNA
215 gene sequencing (Extended Data Figure 2B).

216 During the first few hours of batch mode, the community was dominated by *Sarcina*
217 *perfringens* and *Streptococcus salivarius*. By the end of the batch phase at 22 hours, the
218 abundance of *Fusobacterium nucleatum*, *Bacteroides thetaiotaomicron*, and *Phocaeicola*
219 *vulgatus* increased. During continuous operation, *Bacteroides uniformis* and *F. nucleatum*
220 further increased in abundance, while *S. perfringens*, *P. vulgatus*, *R. intestinalis*, *S. salivarius*,
221 and *S. parasanguinis* decreased, despite the overall biomass (OD) remaining constant. *R.*
222 *intestinalis* and *S. salivarius* were lost in all replicates at 116.75 hours and 22 hours,
223 respectively. *A. rectalis* and *Ruminococcus gnavus* were only detected in one replicate at the
224 final time point and were absent in the other two replicates. No contamination with non-Com18
225 species was observed with sequencing.

226 The community composition and biomass of all three replicates were similar. This pilot
227 experiment demonstrated the suitability of our MBS and evaluation methods for studying
228 microbial communities under controlled conditions.

229

230 ***In the MBS, pH changes promote C. difficile growth in Com21, whereas omeprazole***
231 ***treatment does not***

232 Next, we used the MBS with Com21 to investigate the effects of pH changes or exposure to
233 omeprazole on the subsequent growth of *C. difficile* (Figure 4). We allowed Com21 to stabilize
234 for six days, which corresponds to six hydraulic retention times (HRTs), before adjusting the
235 pH to 5 (bioreactors 1 and 4), 9 (bioreactors 3 and 6), or 7 (bioreactors 2 and 5). Following an
236 additional six days at the respective pH levels, five out of the six bioreactors (excluding control
237 bioreactor 5) were treated with 80 μ M omeprazole for three consecutive days (every 24 hours),
238 based on its estimated concentration in the human intestine²⁰. Afterwards, all bioreactors were
239 set to recover at pH 7 for six days. Samples for the pathogen challenge assay and 16S rRNA
240 gene sequencing were collected after stabilization, pH changes, each day of omeprazole
241 treatment, and after recovery, totaling six samples per bioreactor (Figure 4A). At each
242 sampling point, samples were challenged with *C. difficile* using the same assays described for
243 the stool-derived communities.

244 The untreated Com21 community from bioreactor 5 strongly inhibited *C. difficile* growth to
245 levels observed for stool-derived communities (mean relative *C. difficile* growth in Com21:
246 $1.58\% \pm 0.19$ SEM) (Extended Data Figure 1B). Initially, after six days at pH 7, all bioreactor
247 communities exhibited comparable biomass and similar protection against *C. difficile*
248 challenge, which remained consistent throughout the 21-day experiment in the control
249 bioreactor (Figure 4). When bioreactor 2's community, maintained at pH 7, was exposed to 80
250 μ M omeprazole, there was no observable change in OD or *C. difficile* growth, indicating that
251 omeprazole did not directly impact Com21 in our setup (Figure 4B and C). This is in line with
252 our observation that omeprazole did not strongly affect the growth of Com21 members in
253 monocultures (Figure 1A).

254 However, altering the pH of the bioreactors to either pH 5 (bioreactors 1 and 4) or pH 9
255 (bioreactors 3 and 6) resulted in reduced biomass and increased *C. difficile* growth in those
256 communities compared to the control (up to a 22-fold increase in *C. difficile*, Figure 4B and C).
257 Notably, omeprazole treatment of communities in altered pH did not further impact their
258 biomass or *C. difficile* growth. Overall, we observed a negative correlation (Pearson's $p = -$
259 0.8468 , p -value = $3.655e-09$) between the biomass of the community and the growth of *C.*
260 *difficile* in this community (Figure 4D), similar to what we observed for clindamycin in stool-
261 derived communities in Figure 2B.

262 The changes in pH were accompanied by strong shifts in microbial community composition,
263 while omeprazole treatment alone did not induce any changes (Figure 5A). Both pH 5 and pH
264 9 resulted in decreased levels of *F. nucleatum* and *B. uniformis*, the two most dominant
265 species in the bioreactor communities (Figure 5B). Communities at pH 5 showed increased
266 levels of *A. rectalis* and either *Collinsella aerofaciens* (bioreactor 1) or *B. thetaiotaomicron*
267 (bioreactor 4), whereas communities at pH 9 exhibited increased levels of either *B.*
268 *thetaiotaomicron* and *V. parvula* (bioreactor 3) or *E. lenta* and *T. ramosa* (bioreactor 6). *A.*
269 *rectalis* was initially absent from all bioreactors but was detected in pH 5-treated bioreactors,
270 where it persisted in low amounts after recovery. Similarly, *S. perfringens* was initially present
271 in low amounts in only one bioreactor but appeared in both pH 5 bioreactors and one pH 9
272 bioreactor (Figure 5B).

273 These changes in composition were only partially explained by the individual pH sensitivities
274 of the strains (Figure 1B). For instance, *Bacteroidales* were found to be acid sensitive, and
275 indeed, their relative abundance decreased in the bioreactors at pH 5. Conversely, *S.*
276 *perfringens* showed relatively greater resistance to acidity compared to other members,
277 resulting in its increased relative abundance in the pH 5 bioreactors. However, strains

278 sensitive to acidity, such as *A. rectalis*, increased in the pH 5 bioreactors but not in the pH 9
279 bioreactors, despite demonstrating substantially better growth at pH 9 in monoculture.
280 Additionally, *S. parasanguinis*, which exhibited acid resistance, was absent from all
281 bioreactors initially and did not increase at pH 5.
282 Remarkably, all bioreactor communities reverted to their original biomass, resistance against
283 *C. difficile* growth, and community composition after recovery at pH 7 for six HRTs (Figure 4
284 and 5). In summary, these findings indicate that a shift in pH modifies the composition of the
285 human gut microbial community, resulting in decreased biomass and reduced resistance to
286 *C. difficile* growth. Importantly, omeprazole does not induce such changes on its own,
287 suggesting that the reported association between PPI usage and an increased risk of CDI
288 could be attributed to the prolonged alterations in the pH of the gastrointestinal tract caused
289 by the drug rather than its direct interaction with gut microbes.

290 **Discussion**

291 CDI often occurs after antibiotic treatment, but the use of PPIs has also been strongly linked
292 to CDI. It was previously unclear whether this link was due to a direct effect of PPIs on *C.*
293 *difficile* or the microbiome, or if it resulted from altered gastrointestinal pH as a secondary
294 effect of PPIs acting on the host. Disentangling the direct effect of the drug from the secondary
295 pH effect is impossible in *in vivo* models or cohort studies. To address this, we used an MBS
296 to separate the effects of the PPI omeprazole from the effects of altered pH on the gut
297 microbial community. Our results showed that omeprazole does not directly affect the
298 composition of a synthetic community of human gut commensals or its ability to limit the growth
299 of *C. difficile*. In contrast, changes in pH were strongly correlated with altered community
300 compositions, reduced biomass, and, ultimately, increased growth of *C. difficile* in pH-
301 perturbed communities. Thus, our data support the hypothesis that PPIs increase the risk for
302 CDI not by direct drug-microbe interaction but by changing the pH of the gastrointestinal tract
303 ¹⁶.

304 In monocultures, we observed that only some *Bacteroidales* showed slight sensitivity to
305 omeprazole. However, this did not result in lower *Bacteroidales* levels in omeprazole-treated
306 MBS communities. This contrasts with clinical studies that reported a decrease in
307 *Bacteroidetes* after omeprazole treatment linked to CDI ^{9,21}. Therefore, our results suggest
308 that the reduction in *Bacteroidetes* seen in patients may be due to factors other than the drug's
309 direct inhibition.

310 Environmental factors, such as pH, strongly impact community composition due to the varying
311 pH sensitivities of different species. In this study, we deliberately used pH levels at the
312 extremes of what might be expected in a clinical context. This was done to mimic the potential
313 increase in gastrointestinal pH due to PPI administration and to fully assess the impact of
314 these pH changes on *C. difficile* growth in communities. These pH shifts can indicate which
315 species are more resilient to such changes. For example, *C. aerofaciens*, known for its acid
316 tolerance³⁶, thrived in our pH 5 communities. Conversely, and consistent with our findings on
317 pH sensitivity in monocultures, *Bacteroides* species showed acid sensitivity, decreasing in
318 numbers in our bioreactor experiments ^{9,36,37}. This aligns with clinical reports of decreased
319 *Bacteroidetes* following PPI treatment in patients ^{9,21}, suggesting that the association between
320 PPIs and CDI is due to pH changes rather than a direct effect of omeprazole.

321 Furthermore, species such as *A. rectalis*, which we found to be acid-sensitive in monoculture,
322 were able to thrive in our pH 5 bioreactors. These species have also been previously shown
323 to increase in bacterial communities at pH 5.5 ³⁴. The seemingly contradictory discrepancy in
324 pH sensitivity of monocultures versus bioreactor communities highlight that the presence and
325 abundance of certain species in a community cannot be inferred solely from their individual
326 sensitivity *in vitro*. These findings underscore that bacterial community properties are
327 emergent and cannot be fully explained by the sum of individual characteristics, such as pH
328 sensitivity.

329 The gut microbiota protects against *C. difficile* through various mechanisms. These include
330 producing inhibitory metabolites, such as secondary bile acids, short-chain fatty acids
331 (SCFAs), and antimicrobials, as well as competing for nutrients, particularly proline and other
332 amino acids essential for Stickland fermentation ^{13,38}. In our bioreactors, altered pH resulted
333 in reduced biomass and changes in species abundances, such as lower levels of
334 *Bacteroidetes*, potentially creating niches for *C. difficile*. However, associating specific species
335 or strains with increased or decreased resilience against *C. difficile* is challenging because
336 even in our controlled bioreactor setup, we observed different microbiome shifts when applying

337 the same pH shift. Thus, microbiome disturbances do not always result in the same effects at
338 the single species level but are more apparent on broader community properties, such as
339 impairing *C. difficile* growth. This shows that various deviations from the physiological
340 microbiome composition can lead to increased pathogen susceptibility, underlining the
341 importance of systems-based approaches to understand interactions at the microbial
342 community and microbe-host levels.

343 With increasing knowledge about microbiomes and their importance for human health, there
344 is a pressing demand for approaches to study them effectively. Although bioreactors constitute
345 simplified models, they allow for the detailed study of specific aspects by breaking down the
346 complex system into individually controllable parameters. Thus, bioreactor studies facilitate a
347 deeper understanding of biological processes. While commercial bioreactor systems are
348 expensive and require expertise from manufacturing companies for setup and operation, cost-
349 effective and off-the-shelf alternatives are available ^{35,39,40}. These setups can enhance early
350 drug discovery studies by providing systematic approaches to continuously monitor a drug's
351 effect on gut microbial communities over an extended period, either preceding or
352 accompanying *in vivo* models or clinical trials.

353 Of note, our study is limited by the inability to investigate host contributions relevant to CDI
354 risk within our *in vitro* systems. These include aspects of the innate and adaptive immune
355 responses, the host's metabolism, as well as other host-derived factors that influence the *C.*
356 *difficile* cycle, such as the enterohepatic circulation of bile acids and their interaction with the
357 microbiome ⁴¹. Our approach also does not account for the direct effects of pH changes or
358 omeprazole exposure on *C. difficile* virulence. Specifically, PPIs and non-physiological pH
359 levels have been reported to increase *C. difficile* toxin expression ⁴², which is crucial for
360 inducing colitis in patients. Thus, to thoroughly determine whether the PPI-mediated increased
361 risk of CDI is due to potential direct interactions of omeprazole with the gut microbiome or a
362 pH-shift dependent mechanism, further investigations are needed, including an exploration of
363 more subtle pH changes. Ultimately, such research will enhance our understanding of
364 microbiome-mediated side effects of PPIs, opening up broad possibilities for mitigating these
365 effects and improving drug safety.

366 **Methods**

367 *Bacterial cultivation*

368 The species and strains used in this study can be found in Supplementary Table 1. They were
369 purchased from DSMZ and ATCC or were a gift from the Denamur Laboratory (INSERM). In
370 the present manuscript, we use the taxonomic classification from the genome taxonomy
371 database (GTDB) release R06-RS202.

372 Bacterial cultivation in monoculture was conducted as described before ⁴³. In brief, all species
373 were cultivated in mGAM medium (HyServe GmbH & Co.KG, Germany) at 37°C except for *V.*
374 *parvula*, which was grown in Todd-Hewitt Broth supplemented with 0.6 weight-% sodium
375 lactate. The plasmid-carrying *C. difficile* strain (LM0061) was cultivated in mGAM with 15
376 µg/mL thiamphenicol. All media, glass, and plastic ware were pre-reduced for a minimum of
377 24 h under anaerobic conditions (2 vol-% H₂, 12 vol-% CO₂, 86 vol-% N₂) in an anaerobic
378 chamber (Coy Laboratory Products Inc.). Species were inoculated from frozen glycerol stocks
379 into liquid culture medium and passaged twice (1:100) overnight before being used in
380 subsequent experiments. To ensure no contamination of species occurred, their purity and
381 identities were regularly checked via 16S rRNA-gene sequencing and/or MALDI TOF mass
382 spectrometry (MS) ⁴⁴.

383 Stable communities from human fecal samples^{45,46} were inoculated from frozen glycerol stocks
384 into liquid culture medium (mGAM) and incubated at 37°C overnight before being used in
385 downstream assays.

386 Bacterial cultivation in bioreactors was conducted with mGAM medium. Fresh mGAM medium
387 for initial inoculation was sterilized directly in each bioreactor bottle to ensure sterility of all
388 tubings and ports. Upon sterilization, the bioreactor bottles were sparged with N₂ gas for at
389 least 12 h to achieve anaerobic conditions. No growth (change in OD) after overnight
390 incubation of the medium under a 100 vol-% nitrogen atmosphere at pH 7 and 37°C further
391 confirmed the sterility of the system.

392 Each species was incubated as described above in monocultures to assemble Com18 or
393 Com21 to inoculate the bioreactors. Afterward, the OD₆₀₀ of every species was measured
394 (Thermo Scientific™ BioMate™ 160 UV-Vis Spectrophotometer), and they were first combined
395 at equal OD₆₀₀ to a final OD₆₀₀ of 0.01 so that every species contributed 0.000556 OD₆₀₀
396 (Com18) or 0.000476 OD₆₀₀ (Com21) to the culture. The bioreactors were operated in batch
397 mode for the first 24 h to allow sufficient microbial growth. After 24 h the system was switched
398 to continuous mode.

399 *pH sensitivity of individual Com21 members, C. difficile LM0061, and human fecal samples*

400 To assess pH sensitivity of the community members and the plasmid-carrying *C. difficile* strain
401 (LM0061), bacteria were grown in mGAM for two subsequent overnight cultures as described
402 above. Human fecal samples were grown in mGAM for one overnight culture. Sensitivity to pH
403 was investigated for 19 out of the 21 community members. *E. lenta* is a slow grower with poor
404 growth in mGAM monoculture, and *V. parvula* has different media requirements in
405 monoculture. Thus, neither was analyzed in this assay. The pH of mGAM medium was
406 adjusted to pH 5 with hydrochloric acid, to pH 9 with sodium hydroxide, or left unchanged at
407 pH 7.4. The pH-adjusted media were transferred to sterile Nunclon 96-well U-bottom
408 microplates (Thermo Scientific, cat. no. 168136) inside the anaerobic chamber, and
409 prereduced for at least 24 h. In addition to 95µL of medium, each well was inoculated with 5
410 µL bacterial culture to a final OD₅₇₈ of 0.01. Growth was measured in a plate reader over 20 h

411 as described before ⁴³ and quantified by taking the maximum OD₅₇₈ during the stationary
412 phase and normalizing it to maximum OD₅₇₈ at pH 7.4.

413 *Bioreactor handling and operating conditions*

414 A list of all the equipment for the construction of the bioreactor system is summarized in
415 Supplementary Table 2. The 500-mL bioreactor bottles were operated with a working volume
416 of 250 mL. The bioreactors were continuously sparged with N₂ at approximately 2.5 mL min⁻¹
417 to minimize the risk of O₂ intrusion into the system. Agitation by a magnetic stirrer was set to
418 200 rpm. The cultivation temperature was set to 37°C (± 0.2 °C) and maintained at any time
419 by a water thermostat circulating water through the double-walled bioreactor bottles. The
420 starting pH was 7 (± 0.05), and the hysteresis was set to 0.01. The pH probes in each
421 bioreactor bottle were calibrated before autoclaving. The pH was measured daily with an
422 external pH probe (pH-electrode pHomenal® LS 221). For pH control, we used 0.5 M acid
423 and base solutions (the response of the pH probe and the pumps were too slow for molarities
424 above 0.5 M). The bioreactors were inoculated with a starting OD₆₀₀ of 0.01, such that each
425 strain equally contributed to the starting OD₆₀₀. Upon inoculation, the bioreactors were
426 operated in batch mode for 24 h before switching to continuous mode. For continuous mode,
427 we used a medium feed rate of 0.1736 mL min⁻¹, corresponding to an HRT of 24 h. Samples
428 to measure the OD₆₀₀ were taken at least every second day. Samples with an OD₆₀₀ higher
429 than 0.5 were diluted 1:10 prior to the measurement. The pH was continuously monitored by
430 the internal pH probe connected to a controller, which would trigger acid or base inflow if the
431 pH deviated ±0.05 from 7. The temperature and the working volume were manually monitored
432 regularly. We observed fluctuations in the bioreactor volumes in continuous mode. Those
433 fluctuations arise from either a medium inflow faster than the outflow or *vice versa*. Small
434 variations in the flow rate for each bioreactor occur due to differences between the cassettes
435 on the pump head. Variations in the flow rate are likely to affect the OD by either diluting out
436 the bacteria or providing more nutrients for faster growth, which becomes visible through
437 changes in the OD₆₀₀. For the omeprazole treatment of the Com21, we dissolved 6.908 mg/ml
438 omeprazole (TCI, CAS 73590-58-6) in DMSO, and added 1 ml of the solution to each
439 bioreactor, resulting in an overall concentration of 80 µM, except for the control reactor, which
440 was treated with 1 ml DMSO. For the *C. difficile* invasion assays, we took a 2-mL sample of
441 each bioreactor with a syringe and directly transferred the samples to anaerobic Hungate-type
442 culture tubes (ø16 x 125 mm, Glasgerätebau Ochs, Prod. No. 1020471) for transportation into
443 the anaerobic chamber.

444 *Construction of a luminescent *C. difficile* reporter strain*

445 A luminescent strain was constructed from *C. difficile* (Hall and O'Toole 1935) Lawson et al.
446 2016 strain 630 (DSM27543; NT5083), a virulent and multidrug-resistant strain (epidemic type
447 X), which was isolated from a hospital patient with severe pseudomembranous colitis and had
448 spread to several other patients on the same ward in Zurich, Switzerland ⁴⁷. To obtain a
449 luminescent *C. difficile* reporter strain expressing sLucOPT under the control of the constitutive
450 *fdxA* promoter (CD630_01721), the sequence upstream of (and including) the *fdxA*
451 transcription start site ⁴⁸ (CP010905.2: 234479-234578, reverse strand) was PCR-amplified
452 from *C. difficile* 630 genomic DNA using the S7 Fusion High-Fidelity Polymerase (Mobidiag,
453 Prod. No. MD-S7-100), HF Buffer (Mobidiag, Prod. No. MD-B704), and oligos FFO-772/FFO-
454 773 to append NheI- and SacI-restriction sites to the resulting PCR product. The PCR

455 fragment and the sLucOPT-encoding vector pAP24⁴⁹ were digested with FastDigest NheI
456 (cat. No. FD0974) and FastDigest SacI (cat. No. FD1133), purified from agarose gel, and
457 subsequently ligated using the T4 DNA ligase (Thermo-Fisher, cat. No. 15224017), resulting
458 in pFF-189. The plasmid was transformed to *E. coli* TOP10 for propagation, transformed to
459 the donor strain *E. coli* CA434 (HB101 carrying the IncPb conjugative plasmid R702), and
460 finally delivered to *C. difficile* 630 (DSM 27543) by conjugation as described previously⁵⁰. The
461 resulting plasmid-carrying strain, *C. difficile* [pFF-189], was designated FFS-515 (i.e., LM0061
462 in Supplementary Table 1).

463 *In vitro invasion assay for C. difficile*

464 To assess the ability of *C. difficile* to grow in drug- and/or pH-treated stool-derived and
465 bioreactor communities, we used a luminescent-based assay, which we had already
466 established before for *Gammaproteobacteria*²⁹. Here, we used the strain *C. difficile* LM0061.
467 *C. difficile* LM0061 was grown anaerobically in mGAM containing 15 µg/mL thiamphenicol
468 overnight and sub-cultured (1:100) in the same medium for another overnight culture before
469 being used in the invasion assay.

470 *Stool-derived bacterial communities from healthy human donors*

471 Drug master plates in DMSO were prepared as described before⁴³, with the difference that
472 the lowest omeprazole concentration was omitted. Instead, row E only contained DMSO and
473 served as a control. For clindamycin, the lowest two concentrations were omitted. A 96-well
474 deep-well plate was prepared with 95 µL mGAM per well, and 5 µL of the drug master plate
475 was transferred into it. These plates were stored frozen for a maximum of three weeks before
476 being used. To test the effect of different pH on bacterial communities of human fecal samples
477 on *C. difficile* growth, 96-well deep-well plates were prepared with 475 µL of mGAM at the
478 respective pH inside the anaerobic chamber.

479 Glycerol stocks from human stool samples were prepared as previously described⁴³.
480 Anaerobic overnight cultures from glycerol stocks were directly used for the assay. The drug-
481 mGAM deep-well plates were pre-reduced in the anaerobic chamber for 24 h before being
482 inoculated with 400 µL human fecal culture. Final drug concentration ranged from 2.5 µM to
483 160 µM for omeprazole and 10 µM to 100 µM for clindamycin with 1% DMSO and a starting
484 human fecal OD₅₇₈ of 0.01 per well. Wells containing communities from the same donor and
485 1% DMSO served as controls. The pH-mGAM plates were inoculated with 25 µL of the
486 overnight culture from stool-derived communities to a final starting human fecal OD₅₇₈ of 0.01
487 per well. Plates were grown for 24 h anaerobically at 37°C.

488 After the incubation, OD₅₇₈ of every well was measured, and a fresh deep-well plate was
489 prepared with 250 µL mGAM per well. Of the drug-treated- or pH-exposed human fecal
490 samples, 50 µL were transferred into the fresh deep-well plate. This assay deep-well plate
491 was used for pathogen challenge.

492 *Bioreactor communities*

493 At every sampling time point, the OD₆₀₀ of all bioreactors was measured, and a sample was
494 transferred into a pre-reduced deep-well plate containing 250 µL mGAM (50 µL sample per
495 well; 11 technical replicate wells per bioreactor; one plate per time point). This deep-well plate
496 was used for pathogen challenge assay.

497 *Pathogen challenge (human fecal samples and bioreactor communities)*

498 *C. difficile* LM0061 was diluted to an OD₅₇₈ of 0.0025, and 200 μ L were added to each well of
499 the assay deep-well plate. The final volume was 500 μ L (250 μ L fresh mGAM, 50 μ L drug-
500 perturbed or pH-exposed fecal sample/bioreactor community, 200 μ L *C. difficile*) and *C. difficile*
501 starting OD₅₇₈ was 0.001. The assay deep-well plate was sealed with an AeraSeal
502 breathable membrane (Sigma-Aldrich, cat. No. A9224) and incubated at 37°C anaerobically
503 for 5 h. After incubation, all wells were thoroughly mixed, and 100 μ L per well were transferred
504 to a white 96-well plate (Thermofisher 236105). This plate was brought out of the anaerobic
505 chamber, and luminescence was measured with the Nano-Glo Luciferase Assay system kit
506 from Promega (cat. No. N1110) in a Tecan Infinite 200 PRO microplate reader. The assay
507 was done in three biological replicates.

508 For human fecal samples, the OD₅₇₈ and luminescence were normalized to the values of the
509 respective unperturbed controls (per donor and replicate), and the mean was calculated per
510 drug concentration or pH, respectively.

511 For the bioreactor communities, the OD₆₀₀ of every bioreactor was normalized to the median
512 OD₆₀₀ across all time points of the untreated control bioreactor. Luminescence data was
513 analyzed per sampling time point. All values were normalized to the median of the untreated
514 control bioreactor before taking the mean of all 11 technical replicates per condition and
515 sampling time point.

516 *16S rRNA gene amplicon sequencing*

517 At every sampling point, 1 mL of the bioreactor cultures were harvested, and the pellets were
518 frozen at -80°C for subsequent 16S rRNA gene amplicon sequencing. DNA extraction and
519 sequencing were then conducted as described previously²⁹.

520 In brief, DNA was isolated with the DNeasy UltraClean 96 Microbial Kit (Qiagen 10196-4).
521 Library preparation and sequencing were performed at the NGS Competence Center NCCT
522 (Tübingen, Germany) with the 515F⁵¹ and 806R⁵² primers (covering a ~350-bp fragment of
523 the 16S V4 region). Initial PCR products were purified, and indexing was performed in a
524 second step PCR. After another bead purification, the libraries were checked for correct
525 fragment length, quantified, and pooled equimolarly. The pool was sequenced on an Illumina
526 MiSeq device with a v2 sequencing kit (input molarity 10 pM, 20% PhiX spike-in, 2×250 bp
527 read lengths).

528 *Computational processing of 16S rRNA gene amplicon sequences*

529 16S rRNA analysis was conducted using the *Dieciseis* R package from our lab, which uses
530 the standard DADA2 workflow (<https://benjineb.github.io/dada2/bigdata.html>). The *Dieciseis*
531 pipeline is optimized for the analysis of our synthetic community Com21 and is derived from
532 the workflow described in our previous work²⁹.

533 Briefly, quality profiles of the raw sequences were examined, trimmed, and paired-end reads
534 filtered using the following parameters: trimLeft: 23, 24; truncLen: 225, 200; maxEE: 2, 2;
535 truncQ: 11. The filtered forward and reverse reads were dereplicated separately, and amplicon
536 sequence variants (ASVs) were inferred using default parameters. Subsequently, the reads
537 were merged on a per-sample basis, and the merged reads were filtered to retain only those
538 with a length between 244 and 245 bp before undergoing chimera removal.

539 Taxonomic assignment was carried out in two stages. First, the final set of ASVs was classified
540 up to genus level using a curated DADA2-formatted database based on the genome taxonomy

541 database (GTDB) release R06-RS202 53 at
542 https://scilifelab.figshare.com/articles/dataset/SBDI_Sativa_curated_16S_GTDB_database/14869077. Next, ASVs belonging to genera expected to be in Com21 were further classified at
543 the species level using a modified version of the aforementioned database that contained only
544 full-length 16S rRNA sequences of the 21 members of the synthetic community. The sequence
545 of each ASV was aligned against this database using the R package DECIPHER v. 2.24.0⁵⁴;
546 we classified an ASV as a given species if it had sequence similarity >98% to the closest
547 member in the database for 20/21 species. For *V. parvula* we had to change it to >95%. The
548 abundance of each taxon of Com21 was obtained by aggregating reads at the species level.
549

550 **Data Availability**

551 All 16S rRNA sequencing data generated in this study is available at the European
552 Nucleotide Archive, accession ID PRJEB76870.

553 **Acknowledgments**

554 The authors thank the NGS Competence Center Tübingen (NCCT, Germany). This work was
555 supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
556 under Grant EXC 2124 – 390838134 and Grant MA 8164/1-2, DZIF, and CEGIMIR.

557 **Author contributions**

558 Conceptualization: B. M. and L. M.; Methodology: P. M., J. Sc. and J. Su.; Formal analysis: P.
559 M. and J. Sc.; Investigation: P. M. and J. Sc.; Writing-Original Draft: P. M., J. Sc., B. M. and L.
560 M.; Writing-Review & Editing: all; Supervision: F. F., B. M and L. M.; Funding Acquisition: F.
561 F., B. M. and L. M.

562 **Declaration of interest**

563 The authors declare no competing interests.

564 **References**

- 565 1. Balsells, E. *et al.* Global burden of *Clostridium difficile* infections: a systematic review and
566 meta-analysis. *J. Glob. Health* **9**, 010407 (2019).
- 567 2. Guh, A. Y. *et al.* Risk Factors for Community-Associated *Clostridium difficile* Infection in
568 Adults: A Case-Control Study. *Open Forum Infect. Dis.* **4**, ofx171 (2017).
- 569 3. Furuya-Kanamori, L. *et al.* Comorbidities, Exposure to Medications, and the Risk of
570 Community-Acquired *Clostridium difficile* Infection: a systematic review and meta-analysis.
571 *Infect. Control Hosp. Epidemiol.* **36**, 132–141 (2015).

- 572 4. Miller, A. C. *et al.* Comparison of Different Antibiotics and the Risk for Community-
573 Associated *Clostridioides difficile* Infection: A Case-Control Study. *Open Forum Infect. Dis.*
574 **10**, ofad413 (2023).
- 575 5. Deshpande, A. *et al.* Community-associated *Clostridium difficile* infection and antibiotics: a
576 meta-analysis. *J. Antimicrob. Chemother.* **68**, 1951–1961 (2013).
- 577 6. Kutty, P. K. *et al.* Risk factors for and estimated incidence of community-associated
578 *Clostridium difficile* infection, North Carolina, USA. *Emerg. Infect. Dis.* **16**, 197–204 (2010).
- 579 7. Bauer, M. P. *et al.* Clinical and microbiological characteristics of community-onset
580 *Clostridium difficile* infection in The Netherlands. *Clin. Microbiol. Infect. Off. Publ. Eur. Soc.*
581 *Clin. Microbiol. Infect. Dis.* **15**, 1087–1092 (2009).
- 582 8. Wilcox, M. H., Mooney, L., Bendall, R., Settle, C. D. & Fawley, W. N. A case-control study
583 of community-associated *Clostridium difficile* infection. *J. Antimicrob. Chemother.* **62**, 388–
584 396 (2008).
- 585 9. Clooney, A. G. *et al.* A comparison of the gut microbiome between long-term users and
586 non-users of proton pump inhibitors. *Aliment. Pharmacol. Ther.* **43**, 974–984 (2016).
- 587 10. Imhann, F. *et al.* Proton pump inhibitors affect the gut microbiome. *Gut* **65**, 740–748
588 (2016).
- 589 11. Kiecka, A. & Szczepanik, M. Proton pump inhibitor-induced gut dysbiosis and
590 immunomodulation: current knowledge and potential restoration by probiotics. *Pharmacol.*
591 *Rep.* **75**, 791–804 (2023).
- 592 12. Tian, L. *et al.* Proton pump inhibitors may enhance the risk of digestive diseases by
593 regulating intestinal microbiota. *Front. Pharmacol.* **14**, 1217306 (2023).
- 594 13. Morris, N. & Nighot, M. Understanding the health risks and emerging concerns associated
595 with the use of long-term proton pump inhibitors. *Bull. Natl. Res. Cent.* **47**, 134 (2023).
- 596 14. Hayes, K. N., Nakhla, N. R. & Tadrous, M. Further Evidence to Monitor Long-term Proton
597 Pump Inhibitor Use. *JAMA Netw. Open* **2**, e1916184 (2019).

- 598 15. Shanika, L. G. T., Reynolds, A., Pattison, S. & Braund, R. Proton pump inhibitor use:
599 systematic review of global trends and practices. *Eur. J. Clin. Pharmacol.* **79**, 1159–1172
600 (2023).
- 601 16. Jackson, M. A. *et al.* Proton pump inhibitors alter the composition of the gut microbiota.
602 *Gut* **65**, 749–756 (2016).
- 603 17. Freedberg, D. E. *et al.* Proton Pump Inhibitors Alter Specific Taxa in the Human
604 Gastrointestinal Microbiome: A Crossover Trial. *Gastroenterology* **149**, 883-885.e9 (2015).
- 605 18. Hojo, M. *et al.* Gut Microbiota Composition Before and After Use of Proton Pump Inhibitors.
606 *Dig. Dis. Sci.* **63**, 2940–2949 (2018).
- 607 19. Blaser, M. J. Antibiotic use and its consequences for the normal microbiome. *Science* **352**,
608 544–545 (2016).
- 609 20. Maier, L. *et al.* Extensive impact of non-antibiotic drugs on human gut bacteria. *Nature*
610 **555**, 623–628 (2018).
- 611 21. Freedberg, D. E., Lebwohl, B. & Abrams, J. A. The impact of proton pump inhibitors on
612 the human gastrointestinal microbiome. *Clin. Lab. Med.* **34**, 771–785 (2014).
- 613 22. Laine, L., Shah, A. & Bemanian, S. Intragastric pH with oral vs intravenous bolus plus
614 infusion proton-pump inhibitor therapy in patients with bleeding ulcers. *Gastroenterology*
615 **134**, 1836–1841 (2008).
- 616 23. Gan, K. H., Geus, W. P., Lamers, C. B. & Heijerman, H. G. Effect of omeprazole 40 mg
617 once daily on intraduodenal and intragastric pH in H. pylori-negative healthy subjects. *Dig.*
618 *Dis. Sci.* **42**, 2304–2309 (1997).
- 619 24. Lameris, A. L. L., Hess, M. W., van Kruijsbergen, I., Hoenderop, J. G. J. & Bindels, R. J.
620 M. Omeprazole enhances the colonic expression of the Mg(2+) transporter TRPM6.
621 *Pflugers Arch.* **465**, 1613–1620 (2013).
- 622 25. Crowson, M. S. & Shull, G. E. Isolation and characterization of a cDNA encoding the
623 putative distal colon H⁺,K⁽⁺⁾-ATPase. Similarity of deduced amino acid sequence to gastric
624 H⁺,K⁽⁺⁾-ATPase and Na⁺,K⁽⁺⁾-ATPase and mRNA expression in distal colon, kidney, and
625 uterus. *J. Biol. Chem.* **267**, 13740–13748 (1992).

- 626 26. Gommers, L. M. M., Hoenderop, J. G. J. & de Baaij, J. H. F. Mechanisms of proton pump
627 inhibitor-induced hypomagnesemia. *Acta Physiol.* **235**, e13846 (2022).
- 628 27. Rechkemmer, G., Frizzell, R. A. & Halm, D. R. Active potassium transport across guinea-
629 pig distal colon: action of secretagogues. *J. Physiol.* **493** (Pt 2), 485–502 (1996).
- 630 28. Gupta, P. *et al.* Does Alkaline Colonic pH Predispose to *Clostridium difficile* Infection?
631 *South. Med. J.* **109**, 91–96 (2016).
- 632 29. Grießhammer, A. *et al.* Non-antibiotic drugs break colonization resistance against
633 pathogenic *Gammaproteobacteria*. 2023.11.06.564936 Preprint at
634 <https://doi.org/10.1101/2023.11.06.564936> (2023).
- 635 30. Garcia-Santamarina, S. *et al.* Emergence of community behaviors in the gut microbiota
636 upon drug treatment. 2023.06.13.544832 Preprint at
637 <https://doi.org/10.1101/2023.06.13.544832> (2023).
- 638 31. Maurer, J. M. *et al.* Gastrointestinal pH and Transit Time Profiling in Healthy Volunteers
639 Using the IntelliCap System Confirms Ileo-Colonic Release of ColoPulse Tablets. *PLoS One*
640 **10**, e0129076 (2015).
- 641 32. McNeil, N. I., Ling, K. L. & Wager, J. Mucosal surface pH of the large intestine of the rat
642 and of normal and inflamed large intestine in man. *Gut* **28**, 707–713 (1987).
- 643 33. Wang, Y. T. *et al.* Regional gastrointestinal transit and pH studied in 215 healthy volunteers
644 using the wireless motility capsule: influence of age, gender, study country and testing
645 protocol. *Aliment. Pharmacol. Ther.* **42**, 761–772 (2015).
- 646 34. Duncan, S. H., Louis, P., Thomson, J. M. & Flint, H. J. The role of pH in determining the
647 species composition of the human colonic microbiota. *Environ. Microbiol.* **11**, 2112–2122
648 (2009).
- 649 35. Klask, C.-M., Kliem-Kuster, N., Molitor, B. & Angenent, L. T. Nitrate Feed Improves Growth
650 and Ethanol Production of *Clostridium ljungdahlii* With CO₂ and H₂, but Results in
651 Stochastic Inhibition Events. *Front. Microbiol.* **11**, 724 (2020).
- 652 36. Ng, K. M. *et al.* Single-strain behavior predicts responses to environmental pH and
653 osmolality in the gut microbiota. *mBio* **14**, e00753-23.

- 654 37. Walker, A. W., Duncan, S. H., McWilliam Leitch, E. C., Child, M. W. & Flint, H. J. pH and
655 peptide supply can radically alter bacterial populations and short-chain fatty acid ratios
656 within microbial communities from the human colon. *Appl. Environ. Microbiol.* **71**, 3692–
657 3700 (2005).
- 658 38. Reed, A. D. & Theriot, C. M. Contribution of Inhibitory Metabolites and Competition for
659 Nutrients to Colonization Resistance against *Clostridioides difficile* by Commensal
660 *Clostridium*. *Microorganisms* **9**, 371 (2021).
- 661 39. Jin, Z., Ng, A., Maurice, Cf. & Juncker, D. The Mini Colon Model: a benchtop multi-
662 bioreactor system to investigate the gut microbiome. *Gut Microbes* **14**, (2022).
- 663 40. Fernandes, P., Carvalho, F. & Marques, Mp. Miniaturization in biotechnology: speeding
664 up the development of bioprocesses. *Recent Pat. Biotechnol.* **5**, (2011).
- 665 41. Abt, M. C., McKenney, P. T. & Pamer, E. G. *Clostridium difficile* colitis: pathogenesis and
666 host defence. *Nat. Rev. Microbiol.* **14**, 609–620 (2016).
- 667 42. Stewart, D. B. & Hegarty, J. P. Correlation between virulence gene expression and proton
668 pump inhibitors and ambient pH in *Clostridium difficile*: results of an in vitro study. *J. Med.*
669 *Microbiol.* **62**, 1517–1523 (2013).
- 670 43. Müller, P. et al. High-throughput anaerobic screening for identifying compounds acting
671 against gut bacteria in monocultures or communities. *Nat. Protoc.* **19**, 668–699 (2024).
- 672 44. Asare, P. T. et al. A MALDI-TOF MS library for rapid identification of human commensal
673 gut bacteria from the class *Clostridia*. *Front. Microbiol.* **14**, (2023).
- 674 45. Aranda-Díaz, A. et al. Establishment and characterization of stable, diverse, fecal-derived
675 *in vitro* microbial communities that model the intestinal microbiota. *Cell Host Microbe* **30**,
676 260-272.e5 (2022).
- 677 46. Aranda-Díaz, A. et al. Assembly of gut-derived bacterial communities follows 'early-bird'
678 resource utilization dynamics. *BioRxiv* *Prepr. Serv. Biol.* (2023)
679 doi:10.1101/2023.01.13.523996.
- 680 47. Wüst, J., Sullivan, Nm., Hardegger, U. & Wilkins, Td. Investigation of an outbreak of
681 antibiotic-associated colitis by various typing methods. *J. Clin. Microbiol.* **16**, (1982).

- 682 48. Fuchs, M. *et al.* An RNA-centric global view of *Clostridioides difficile* reveals broad activity
683 of Hfq in a clinically important gram-positive bacterium. *Proc. Natl. Acad. Sci. U. S. A.* **118**,
684 e2103579118 (2021).
- 685 49. Oliveira Paiva, A. M., Friggen, A. H., Hossein-Javaheri, S. & Smits, W. K. The Signal
686 Sequence of the Abundant Extracellular Metalloprotease PPEP-1 Can Be Used to Secrete
687 Synthetic Reporter Proteins in *Clostridium difficile*. *ACS Synth. Biol.* **5**, 1376–1382 (2016).
- 688 50. Lamm-Schmidt, V. *et al.* Grad-seq identifies KhpB as a global RNA-binding protein in
689 *Clostridioides difficile* that regulates toxin production. *microLife* **2**, uqab004 (2021).
- 690 51. Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small
691 subunit rRNA primers for marine microbiomes with mock communities, time series and
692 global field samples. *Environ. Microbiol.* **18**, 1403–1414 (2016).
- 693 52. Apprill, A., McNally, S., Parsons, R. & Weber, L. Minor revision to V4 region SSU rRNA
694 806R gene primer greatly increases detection of SAR11 bacterioplankton. *Aquat. Microb.*
695 *Ecol.* **75**, 129–137 (2015).
- 696 53. Callahan, B. J. *et al.* DADA2: High-resolution sample inference from Illumina amplicon
697 data. *Nat. Methods* **13**, 581–583 (2016).
- 698 54. Wright, E. S. Using DECIPHER v2.0 to Analyze Big Biological Sequence Data in R. *R J.*
699 **8**, 352–359 (2016).

700 **Tables**

701 **Supplementary Table 1.** Strains used in this study.

Lab code	Species ¹	Alternative name	Strain	Source
NT5001	<i>Phocaeicola vulgatus</i>	<i>Bacteroides vulgatus</i>	type strain	DSM No.: 1447
NT5002	<i>Bacteroides uniformis</i>		VPI 0061	DSM No.: 6597
NT5003	<i>Bacteroides fragilis</i> nontoxigenic		EN-2, VPI 2553	DSM No.: 2151
NT5004	<i>Bacteroides thetaiotaomicron</i>		E50(VPI 5482)	DSM No.: 2079

NT5006	<i>Thomasclavelia ramosum</i>	<i>Clostridium ramosum</i>	type strain	DSM No.: 1402
NT5009	<i>Agathobacter rectalis</i>	<i>Eubacterium rectale</i>	A1-86	DSM No.: 17629
NT5011	<i>Roseburia intestinalis</i>		L1-82	DSM No.: 14610
NT5017	<i>Veillonella parvula</i>		type strain	DSM No.: 2008
NT5024	<i>Eggerthella lenta</i>		type strain	DSM No.: 2243
NT5025	<i>Fusobacterium nucleatum</i> ssp. nucleatum		type strain	DSM No.: 15643
NT5026	<i>Enterocloster bolteae</i>	<i>Clostridium bolteae</i>	type strain	DSM No.: 15670
NT5032	<i>Sarcina perfringens</i>	<i>Clostridium perfringens</i>	C36	DSM No.: 11782
NT5037	<i>Lacrimispora saccharolytica</i>	<i>Clostridium saccharolyticum</i>	type strain	DSM No.: 2544
NT5038	<i>Streptococcus salivarius</i>		type strain	DSM No.: 20560
NT5046	<i>Ruminococcus_B gnavus</i>	<i>Ruminococcus gnavus</i>	type strain	ATCC No.: 29149
NT5048	<i>Bariaticus comes</i>	<i>Coprococcus comes</i>	type strain	ATCC No.: 27758
NT5071	<i>Parabacteroides merdae</i>		VPI T4-1, CIP 104202T	DSM No.: 19495
NT5072	<i>Streptococcus parasanguinis</i>		type strain	DSM No.: 6778
NT5073	<i>Collinsella aerofaciens</i>		type strain	DSM No.: 3979
NT5076	<i>Dorea formicigenerans</i>		VPI C8-13	DSM No.: 3992
NT5078	<i>Escherichia coli</i>		ED1α	Denamur Lab (INSERM)
LM0061 ²	<i>Clostridioides difficile</i>		FFS-515, Cm ^R ; carrying pFF189	Faber lab (Uni Würzburg)

702 ¹ taxonomic classification based on the genome taxonomy database (GTDB) release R06-
 703 RS202

704 ² based on strain 630; Cm^R, chloramphenicol acetyl-transferase for
705 chloramphenicol/thiamphenicol selection
706
707 **Supplementary Table 2.** Materials for the MBS.
708

Item	Reference number	Supplier	Quantity
Heating thermostat (CC-104A)	461-1056	HUBER <i>via</i> VWR	1
Masterflex L/S® Multichannel Cartridge Pump Head with Reduced Pulsation for Microbore 2-Stop Tubing, 12-Channel, 8-Roller	HV-07519-25	Cole-Parmer	1 or 2
Masterflex L/S® Small Cartridges for Multichannel Cartridge Pump Head with Reduced Pulsation for Microbore 2-stop Tubing	SI-07519-85	Cole-Parmer	12
DURAN® double walled, wide mouth bottle GLS 80®, 500mL	215-4156	VWR	6
BOLA GLS 80 Vessel Closure PTFE 5 x GL 14 1 x GL 25	XZ019-182117	Zinsstag	6
Multi-position magnetic stirrers, MIX series	442-0752	VWR	1
Masterflex L/S® Variable-Speed Digital Drive with Remote I/O, 1 to 100 rpm; 90 to 260 VAC	HV-07528-30	Cole-Parmer	1 or 2
Masterflex C/L® Analog Variable-Speed Pump with Single-Channel Pump Head for Microbore Tubing Pump, 13 to 80 rpm; 90 to 260 VAC	77122-32	Cole-Parmer	12
MV5010 pH / Redox / ISE-Transducer with display in wall-mounting case	90278080	Xylem/Si-analytics	6
Item stand for MBS	Offer Nr.: AN00178860-1	ITEM	1
Screws for MBS system	6834886	Hornbach	1 pck
Power strip	3882931	Hornbach	2
Tygon tubing A-60-G, I/P 73, 50 ft.	MFLX06404-73	VWR	2

Flexible Cable H05VV-F 4 x 1 mm ² , black, sold by meter	1499067	Conrad	10m
Ferrule 1 mm ² Partially Insulated	617836 - 62	Conrad	1 pck
Octagon 8 port - manifold	343938	Huber	1
Masterflex® Ismatec® Pump Tubing, 2-Stop, Viton®, 2.06 mm ID, 15" L; 12/PK	MFLX96428-42	VWR	1
Laboratory Screw Joints, GL14 cap, 3-parts, including PTFE/ETFE fittings (6mm)	D590-06	Bola	30
Laboratory Screw Joints, GL25 cap, 3-parts, including PTFE/ETFE fittings (12mm)	D590-34	Bola	6
Hose connectors ROTILABO® Y-shape with conical ends, hose inner Ø 9-11mm	TT53.1	Carl Roth	1 pck
Hose connectors ROTILABO® T-shape, Hose inner Ø 10-11 mm	E767.1	Carl Roth	1 pck
Hose connectors ROTILABO® angle shape, Hose inner Ø 10-11 mm	E788.1	Carl Roth	1 pck
Rapid couplings, male connections, hose nipples with hose nozzles, Ø9.5mm	8771-1060	Bürkle	8
ATEX II 1/2G pH-single-rod measuring cell	SL 81-225 pHT VP	Xylem/Si-analytics	6
Variopin cable	85442000	Xylem/Si-analytics	6
Disposable needles Sterican® long bevel facet, 30 mm, 0.60 mm, blue	X129.1	Carl Roth	6 per experiment
Button Once Canulla, 45 mm length	KK45R21S	CLS Medizintechnik und Vertrieb	6 per experiment
Gas trap	114100	Ochs	6
Pump Tubing, PharMed® BPT, 1,14 mm ID; 100 ft	MFLX95809-30	VWR	1 pck
Masterflex L/S Norprene Food-Grade Tubing, L/S 16, 50ft.	MFLX06402-16	VWR	2 pck

Magnetic bars ROTILABO® Economy, Ø: 8 mm, 25 mm	XA18.1	Carl Roth	6
Set of customized stainless-steel tubing, Ø 6mm, tube (240 mm) with sparger, sample tubing (200 mm), off-gas tubing (100 mm)	Offer Nr.: BZV-2022111600511	bbi-biotech	6 of each
5 L Tedlar® Gas sampling bags, 2-in-1 PP valve Thermogreen® LB-2 Septa	24655	VWR	1
J.T.Baker®, Syringe Filters, pore size 0,22 µm	SF02-60	VWR	100
Luer/Lock fittings in different sizes	CT59.1-64.1	Carl Roth	150
5-L duran bottle	215-0057	VWR	2
1-L duran bottle	215-1595	VWR	2

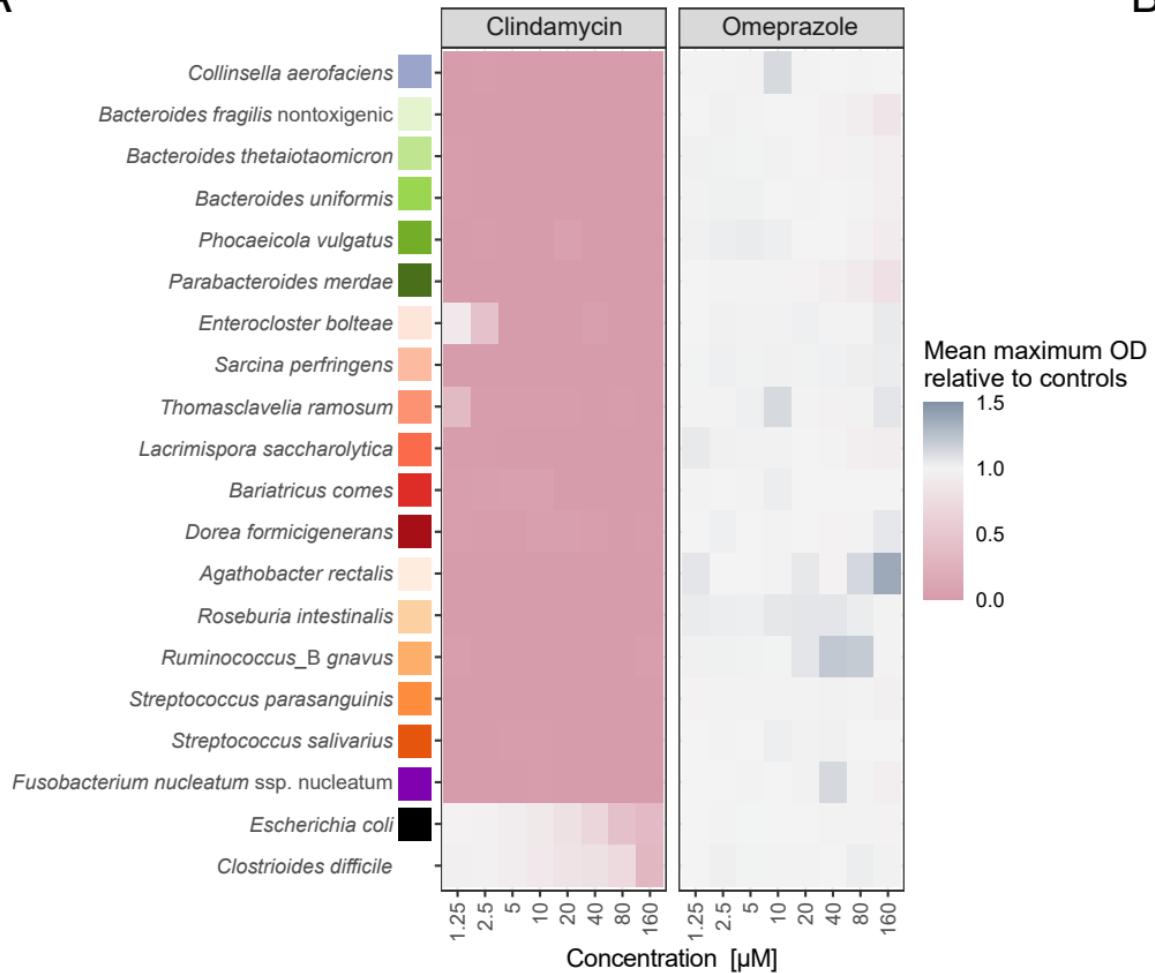
709 **Figure Legends**

710 **Figure 1. Individual sensitivity of 19 Com21 members to omeprazole and pH. A)** Growth
711 of Com21 members in the presence of different concentrations of clindamycin and omeprazole
712 in monoculture. Heatmap depicts the mean maximum optical density (OD) of cultures in the
713 stationary phase compared to untreated controls (N = 3). **B)** Growth of Com21 members at
714 different pH in monoculture. Heatmap depicts the mean maximum OD of cultures in the
715 stationary phase compared to OD at pH 7.4. Values outside the legend range are written within
716 the heatmap tile (N = 3).

717
718 **Figure 2. Neither omeprazole treatment nor changes in pH promote the growth of *C. difficile* within human stool-derived microbial communities. A)** Growth of communities
719 derived from eight human fecal samples in the presence of different concentrations of
720 clindamycin (left) and omeprazole (right). Heatmap depicts the mean maximum optical density
721 (OD) of cultures in the stationary phase compared to untreated control growth (N = 3). **B) Top:**
722 Mean OD of the eight communities relative to untreated controls after treatment with different
723 concentrations of clindamycin (left) or omeprazole (right) for 24 h. Red horizontal line depicts
724 the mean per fecal sample across all concentrations (N = 3) **Bottom:** Mean log2 fold change
725 (FC) of *C. difficile* growth as determined by *C. difficile* luminescence after 5 h in clindamycin
726 (left) or omeprazole (right) treated communities relative to untreated controls. Red horizontal
727 line depicts the mean per fecal sample across all concentrations (N = 3). **C) Top:** Mean OD
728 of eight human stool-derived communities relative to controls at pH 7.4 after growth at different
729 pH for 24 h. Red horizontal line depicts the mean per community (N = 3) **Bottom:** Mean FC
730 of *C. difficile* growth as determined by *C. difficile* luminescence after 5 h in pH-exposed
731 communities relative to controls at pH 7.4. Red horizontal line depicts the mean per fecal
732 sample (N = 3).

734
735 **Figure 3. Overview of the multiple-bioreactor system. A)** Schematic overview of a single
736 bioreactor bottle. Each double-walled bioreactor bottle has a volume of 500 mL. 1: Fresh
737 medium is introduced at a desired flow rate through the feeding port from a feeding bottle; 2:
738 The desired gas mix is introduced into the bottle through a stainless steel tube with an attached
739 sparger; 3: Spent medium is removed through a stainless steel tube. This port is also used as
740 a sampling port where samples can be taken with a syringe; 4: A syringe punched through a
741 rubber stopper is used as base port; 5: The acid port is a button once cannula punched through
742 the same rubber stopper as the base port; 6: The gas-out port is connected to a foam trap; 7:
743 An autoclavable pH/pt1000-electrode measuring the pH and temperature is connected to a
744 multi-parameter controller. Each controller is connected to two mini-pumps that are triggered
745 to pump acid or base when the pH falls out of range. All bioreactor bottles are placed on a
746 multi-stirrer plate and stirred with a magnetic stirrer. Temperature is maintained by a water
747 jacket connected to a water thermostat. As indicated by the brackets and the x6 we have 6
748 bioreactors which can be used simultaneously. Created with BioRender.com. **B)** Picture of the
749 complete setup. BR: bioreactor.
750

751 **Figure 4. Change in pH decreases community biomass and increases growth of *C. difficile*. A)** Schematic overview of the bioreactor workflow. Com21 was grown for six HRTs
752 in chemostat mode with mGAM at pH 7. After this period, the pH was either changed to pH 5
753 or pH 9 for six HRTs or left unchanged. Subsequently, omeprazole was added daily at 80 μ M
754 to five of the six bioreactors for three consecutive HRTs, after which all bioreactors were
755 returned to pH 7 for other six HRTs. Sampling points are indicated with arrows. Created with
756 BioRender.com. **B)** Relative OD of the bioreactors over time at every sampling time point
757 compared to the median OD of the untreated control (bioreactor 5). Bioreactors 1 and 4 were
758 switched to pH 5, bioreactors 3 and 6 to pH 9, and bioreactor 2 remained at pH 7. All
759 bioreactors, except the control bioreactor 5 used for normalization, underwent omeprazole
760 treatment at 80 μ M. **C)** Log2 fold change in *C. difficile* growth in the bioreactor communities at
761 every time point. *C. difficile* growth was quantified by luminescence measurement after 5 h
762 and normalized to the median luminescence of *C. difficile* in the untreated control (bioreactor
763 5) at the same time point. The mean with standard deviation of 11 technical replicates is
764 shown. **D)** Correlation of relative community OD to log2 fold change in *C. difficile* growth.
765 Values from plots B and C are shown with colors indicating the corresponding bioreactor. The
766 red line represents the linear trendline, with its function, R^2 value, Pearson correlation, and p-
767 value provided in the plot.
768


769 **Figure 5. Change in pH causes significant changes in community composition. A)** Principal
770 Coordinate Analysis of Bray-Curtis dissimilarity. Data points are color-coded by
771 bioreactor and grouped by treatment (colored ellipses). The untreated control (bioreactor 5),
772 initial compositions of all bioreactors, and pH 7 treatment of bioreactor 2 are grouped as
773 'Unperturbed'. The three Omeprazole treatment sampling points of bioreactor 2 are grouped
774 as 'pH7, Omeprazole'. Sampling points at pH 5 (with and without omeprazole) for bioreactors
775 1 and 4 are grouped as 'pH 5 Omeprazole'. Sampling points at pH 9 (with and without
776 omeprazole) for bioreactors 3 and 6 are grouped as 'pH 9 Omeprazole'. All recovery sampling
777 points (except bioreactor 5) are grouped under 'Recovery'. **B)** Relative abundance of each
778 member of Com21 at the indicated sampling time points. Panels are grouped by bioreactor:
779 Bioreactors 1 and 4 were changed to pH 5 with omeprazole, bioreactors 3 and 6 were changed
780

781 to pH 9 with Omeprazole, bioreactor 2 was treated with Omeprazole, and bioreactor 5 was left
782 untreated.

783
784 **Extended Data Figure 1. A)** Growth curves for *C. difficile* LM0061 based on plating on mGAM
785 agar (top) or luminescence (bottom). The lines indicate the mean of three biological replicates.
786 Red vertical lines mark the endpoint of the *C. difficile* invasion assay, which falls within the
787 linear range of the curves, allowing luminescence to be used as a proxy for *C. difficile* levels.
788 **B)** Relative growth of *C. difficile* during co-culture with untreated Com21 from bioreactor 5 or
789 human fecal samples compared to pure culture. Pathogen levels were quantified via
790 luminescence after 5 h. For Com21 values are shown from each sampling point of the multiple-
791 bioreactor system (six in total) from bioreactor 5 (pH 7, untreated). For human fecal samples
792 the mean of three biological replicates is shown per fecal sample. Red points and bars
793 represent mean (M) \pm standard error of the mean (SEM). No significant (ns) difference in
794 relative *C. difficile* growth between Com21 from bioreactor 5 (M = 0.0158, SEM = 0.0019) and
795 human fecal samples (M = 0.0179, SEM = 0.001). Two-sided t-test: $t(12) = -1.026$; $p = 0.3251$;
796 $d = 0.5541$.

797
798 **Extended Data Figure 2. Continuous growth of Com18 in the MBS. A)** OD of the
799 bioreactors throughout the entire operation period. The community was grown in batch mode
800 for one day before switching to continuous mode (indicated by the gray dashed line). **B)**
801 Relative abundance of each strain in the Com18 at the indicated time points. Triplicates are
802 presented in one panel. The first two sampling time points were during batch mode, while the
803 subsequent sampling time points were during continuous mode.

A

B

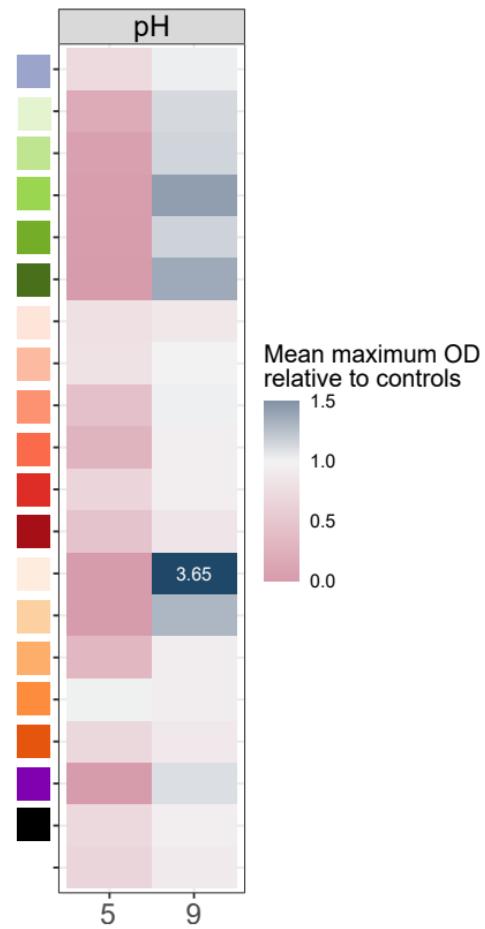
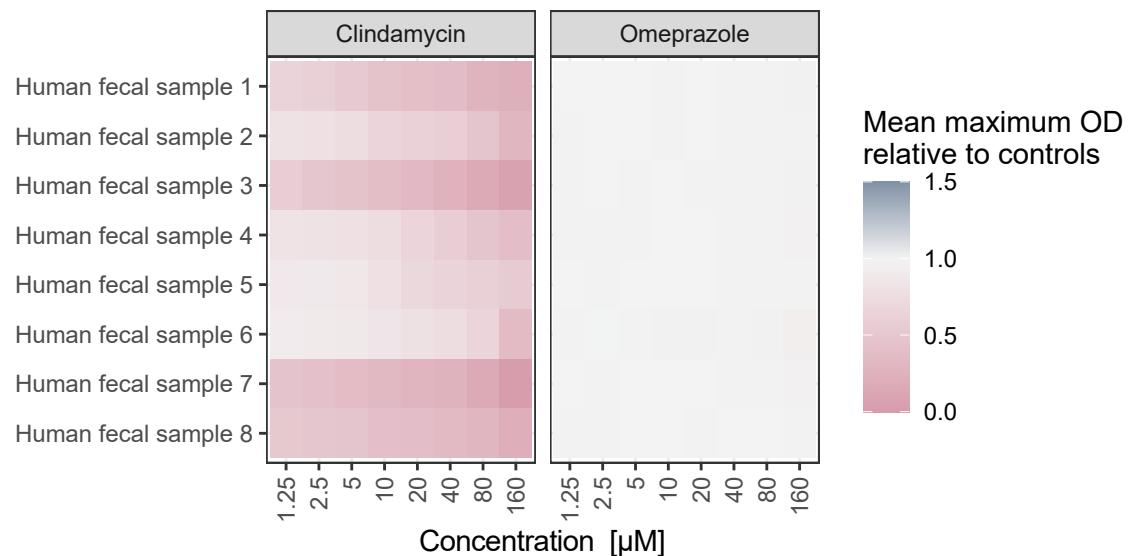
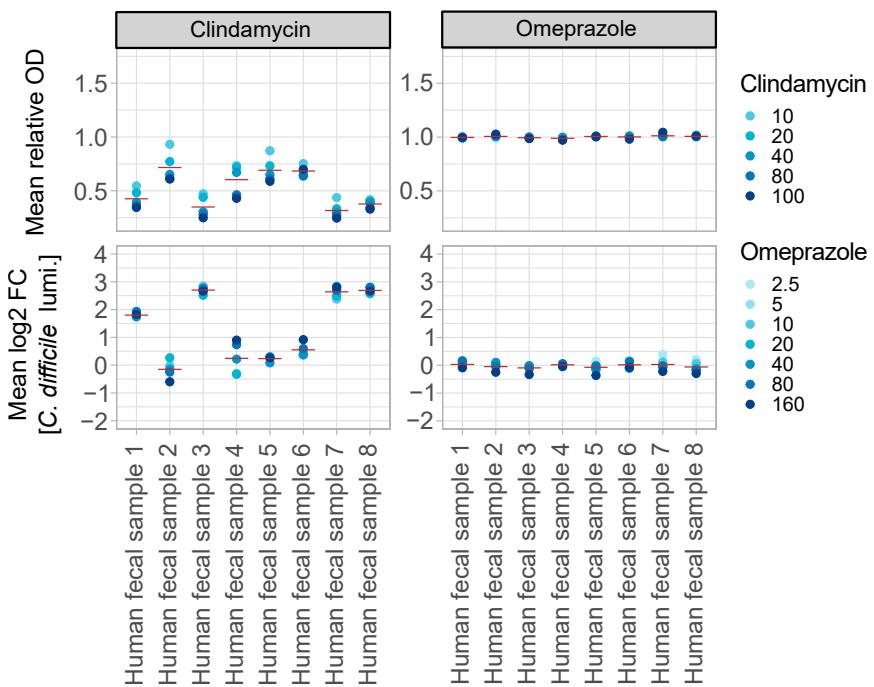




Figure 1

A

B

C

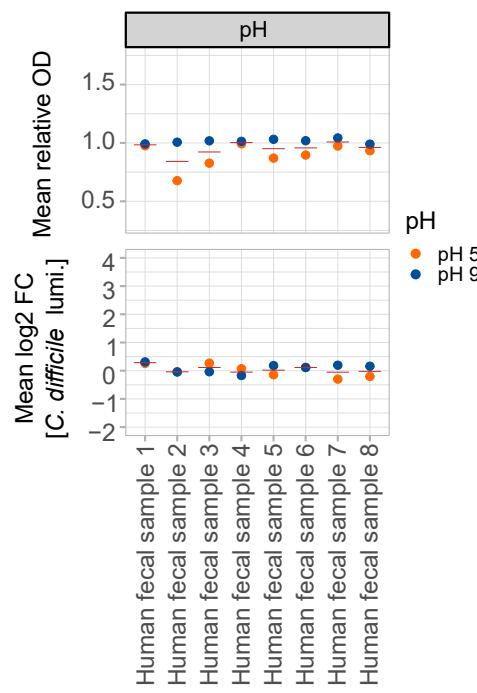
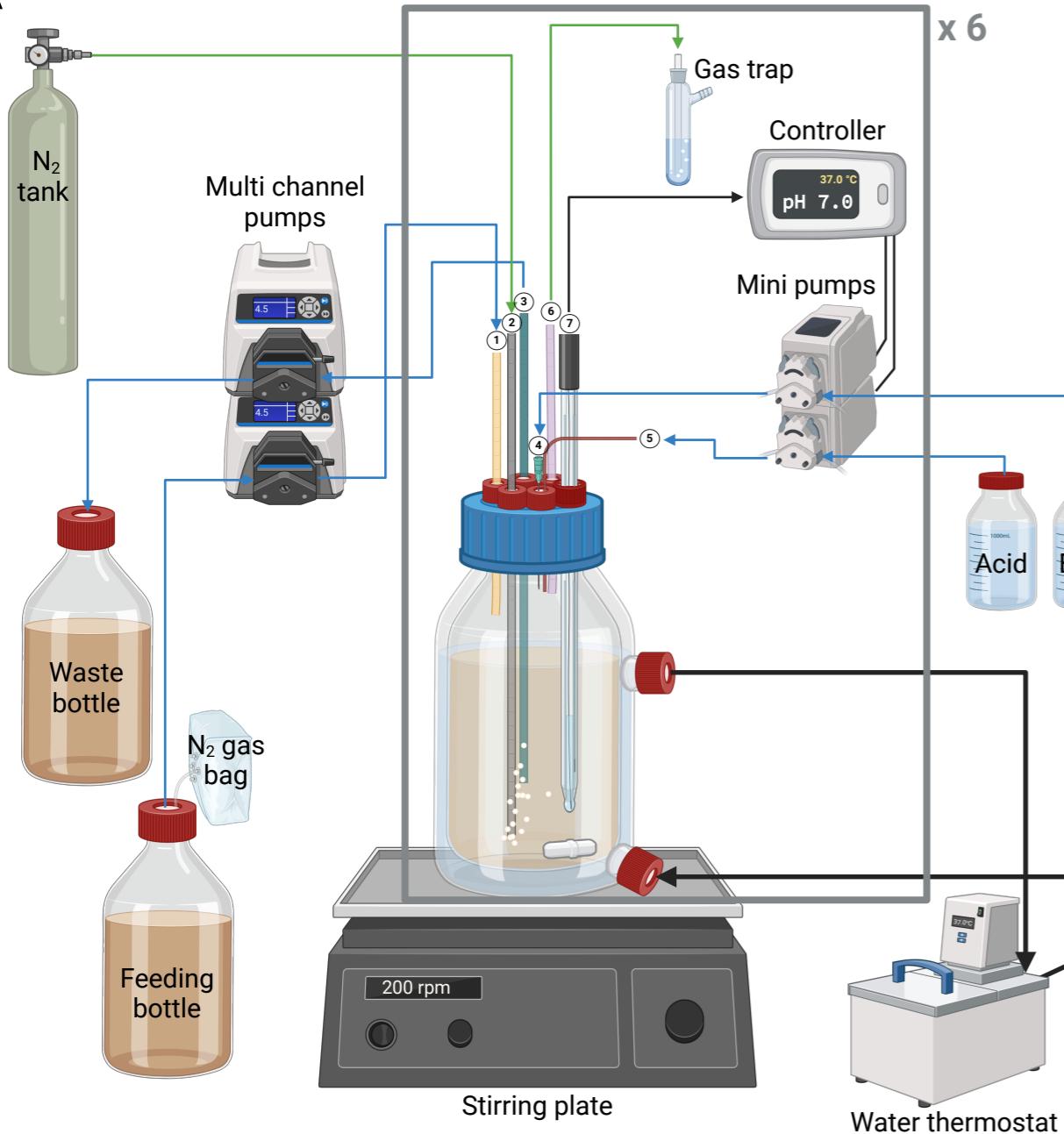



Figure 2

A

B

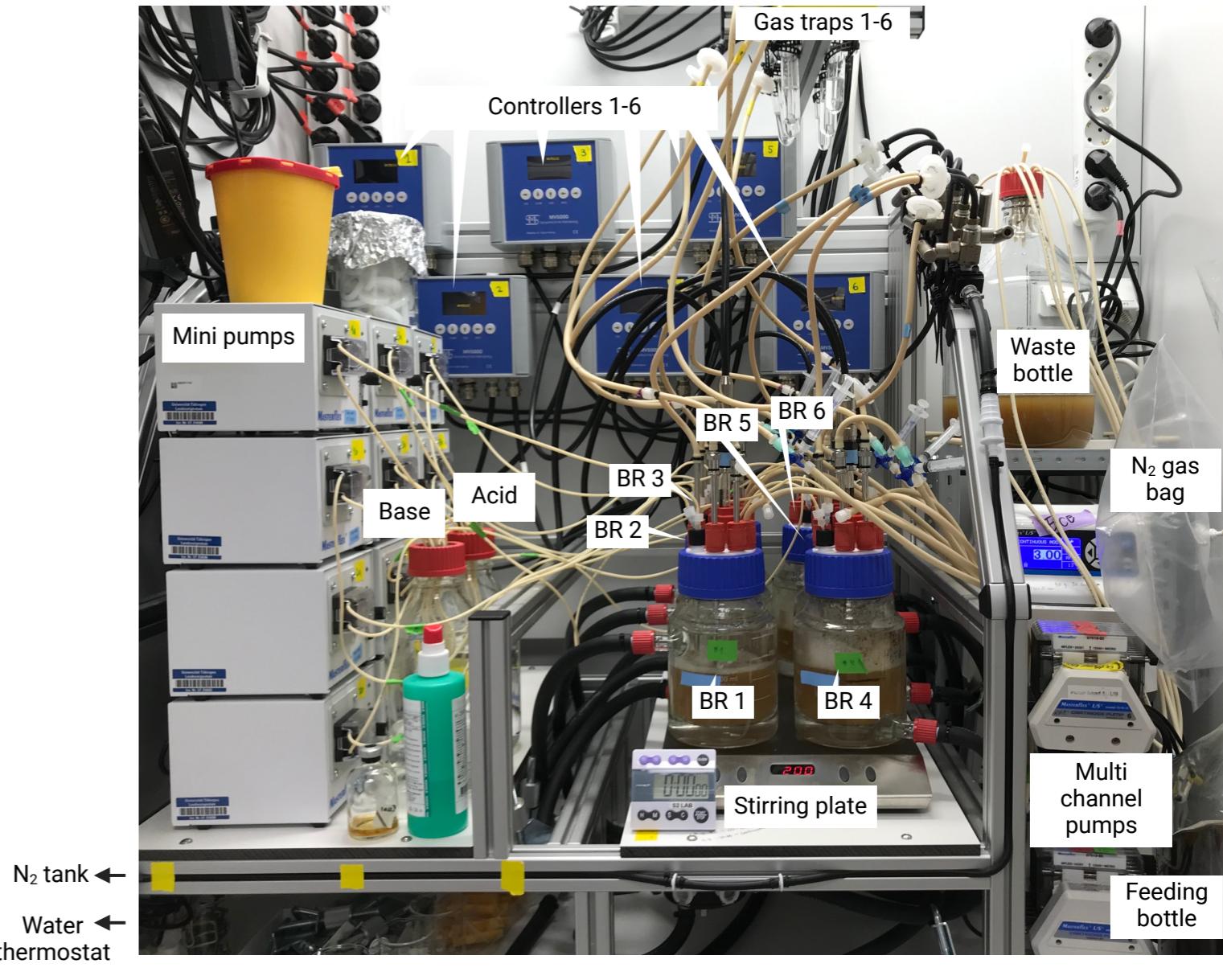
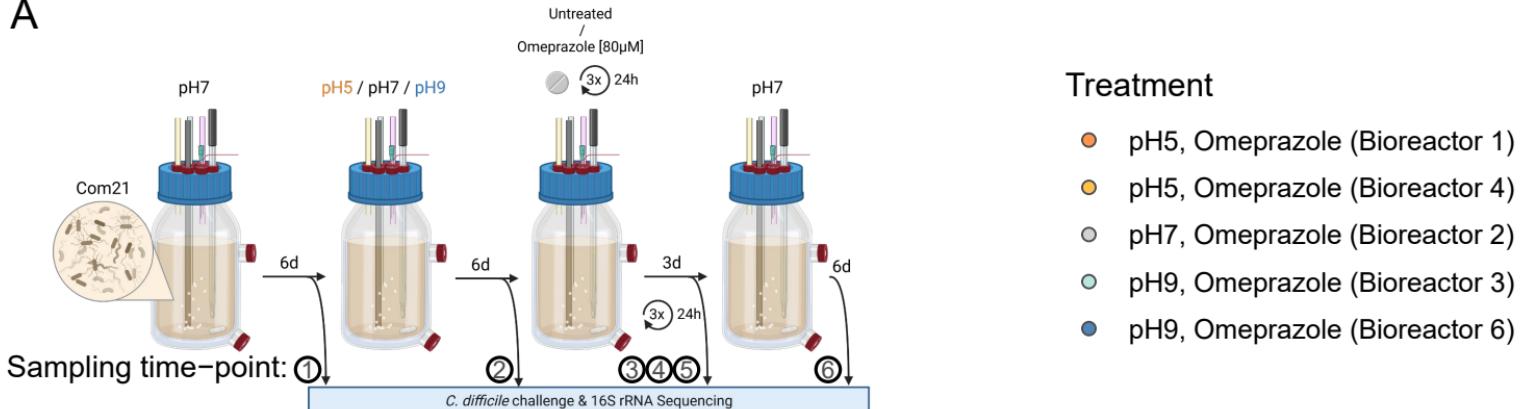
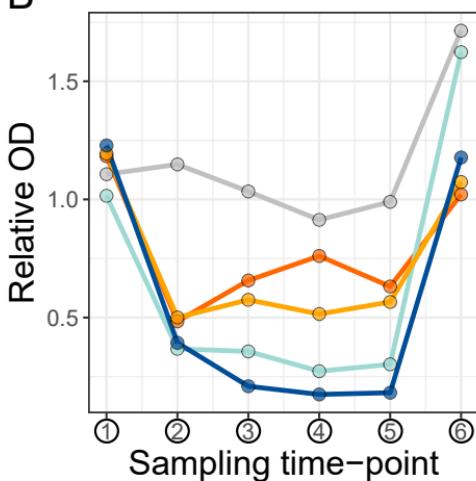



Figure 3


A

Treatment

- pH5, Omeprazole (Bioreactor 1)
- pH5, Omeprazole (Bioreactor 4)
- pH7, Omeprazole (Bioreactor 2)
- pH9, Omeprazole (Bioreactor 3)
- pH9, Omeprazole (Bioreactor 6)

B

C

D

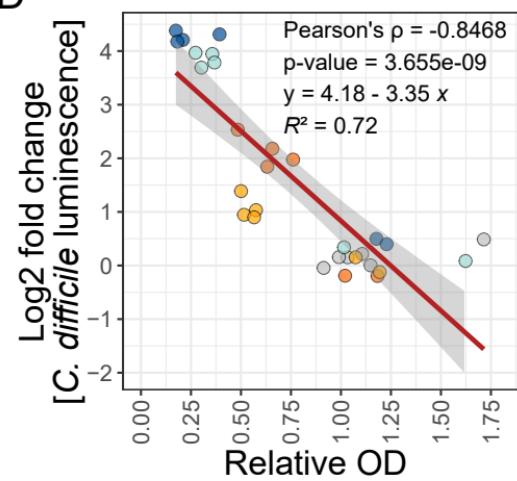
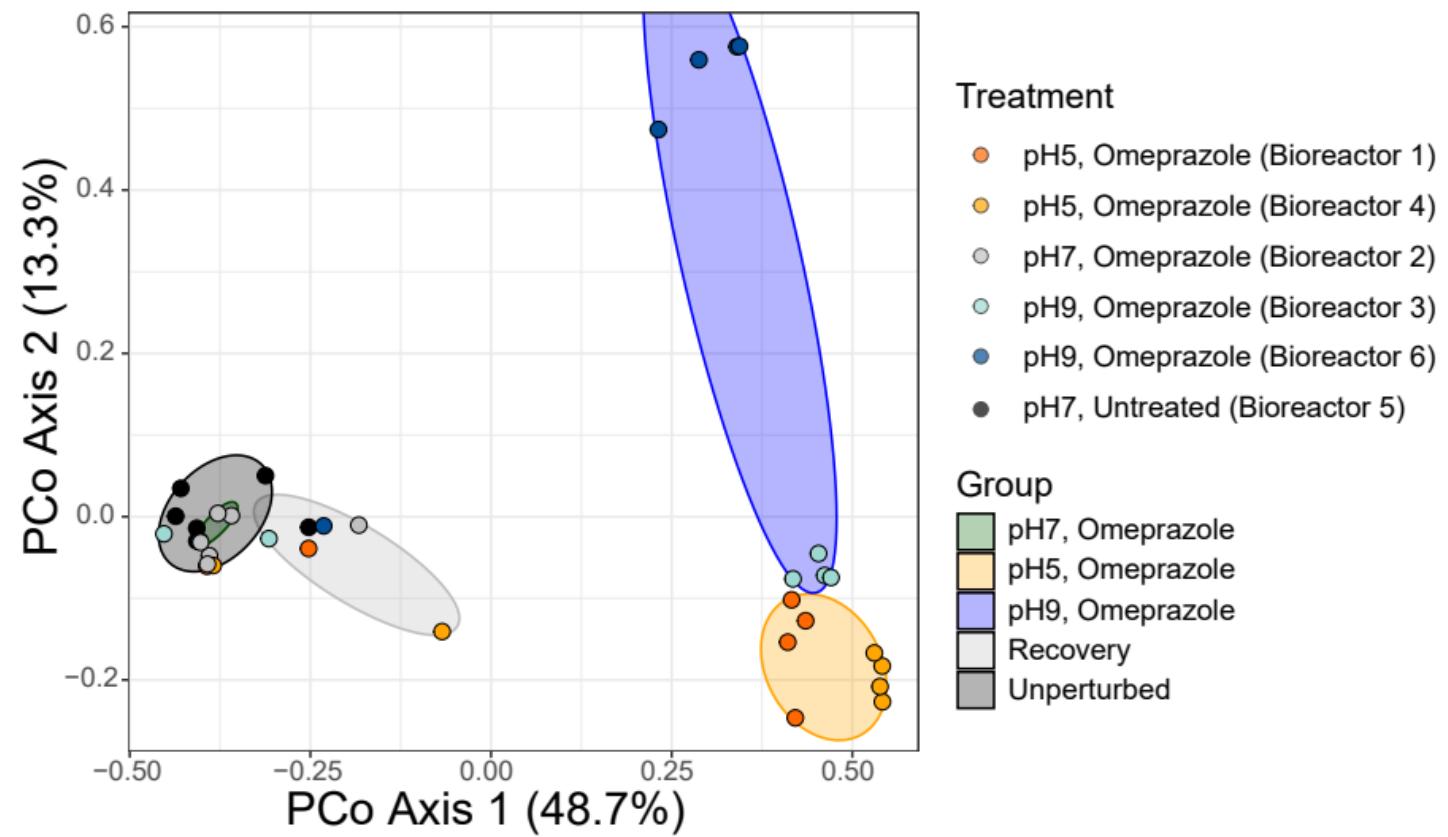
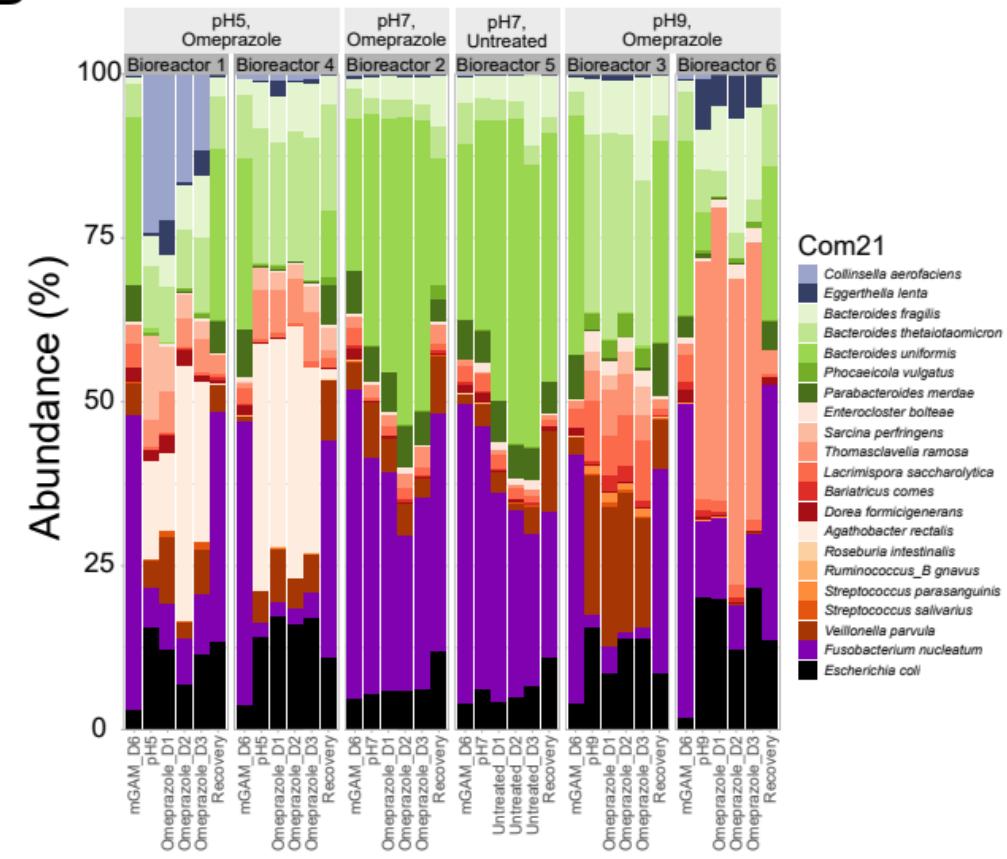
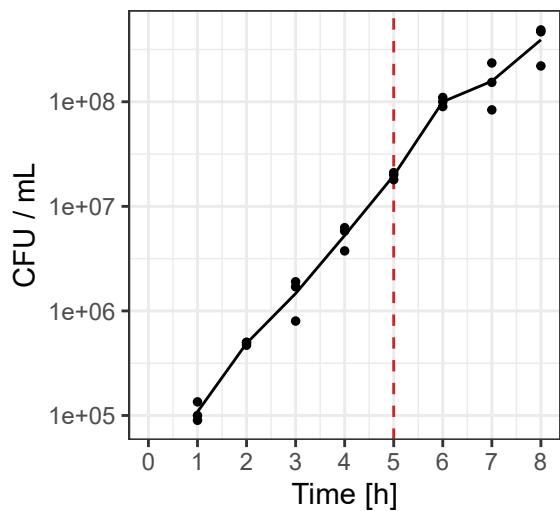
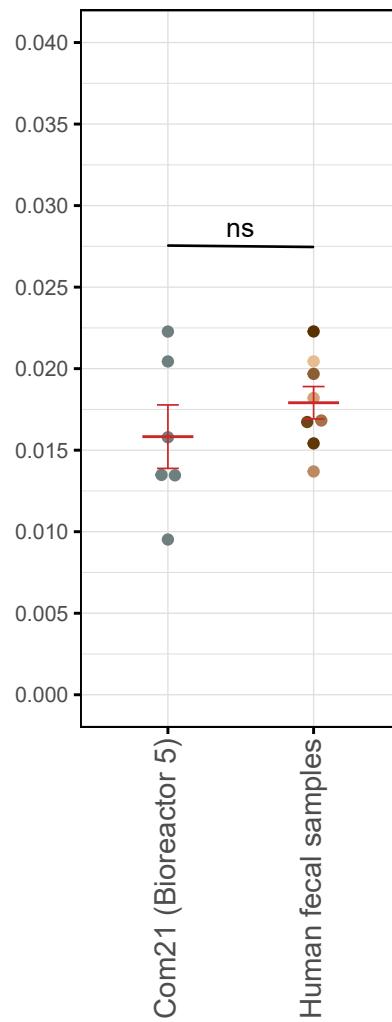
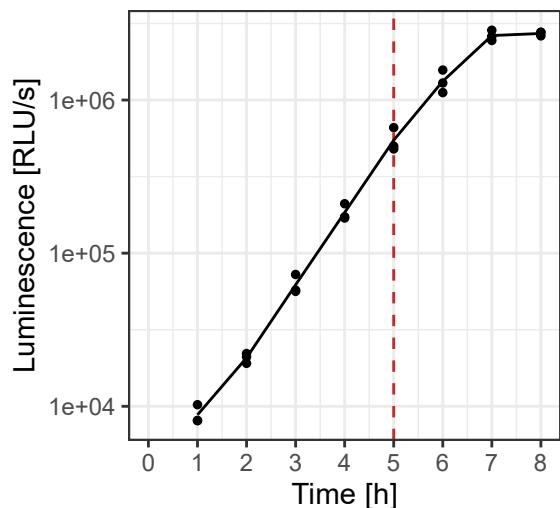
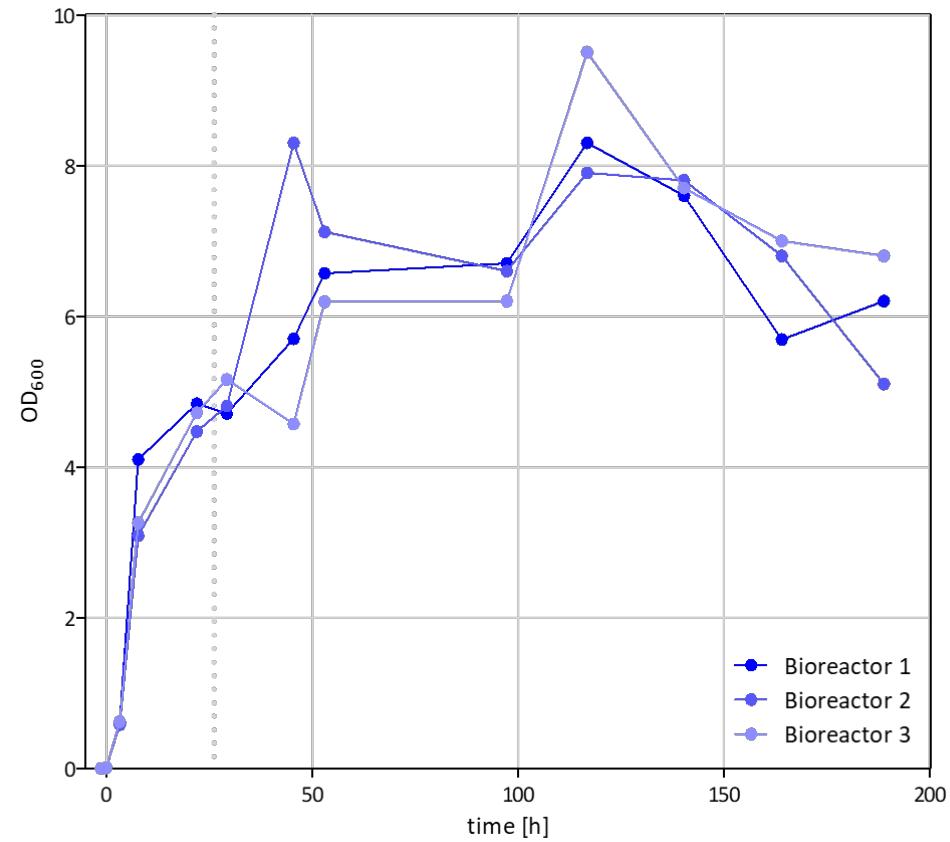
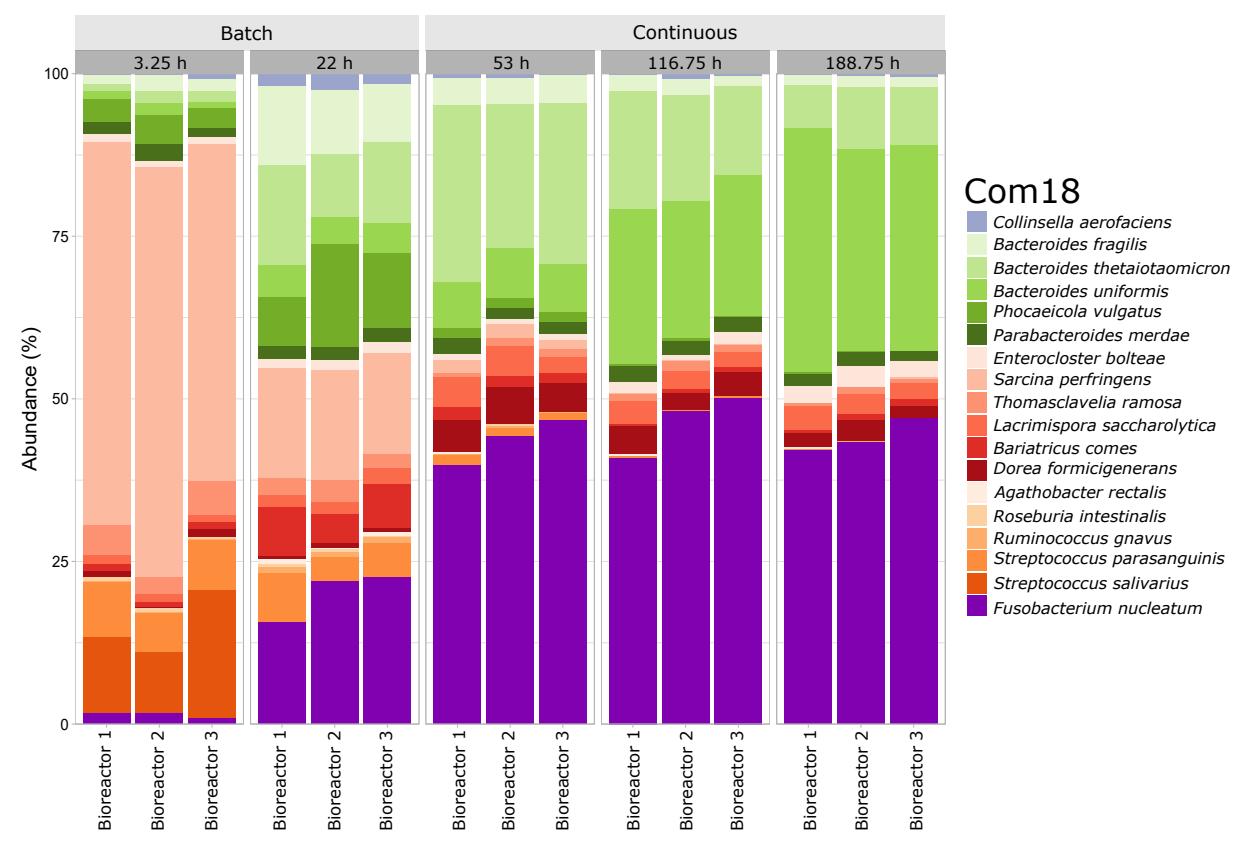



Figure 4

A

B



Figure 5

A

C. difficile

B

rel. *C. difficile* growth (compared to pure culture)*C. difficile*

A**B**