

1 Single-cell resolved differentiation of pre-Kranz 2 anatomy in maize leaf primordia

3
4 **Juan Yi^{1,2,8}, Hong Su^{1,2,8}, Shilong Tian^{1,2,8}, Olga Sedelnikova^{4,7}, Yonghe
5 Chen^{1,2}, Caiyao Zhao⁵, Jianzhao Yang^{1,2}, Yijing Zhang⁶, Xin-Guang Zhu^{1,3},
6 Jane A. Langdale⁴, Jia-Wei Wang^{1,3}, Peng Wang^{1,3*}**

7
8 ¹ CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese
9 Academy of Sciences. Shanghai 200032, China

10 ² University of Chinese Academy of Sciences, Beijing 101408, Beijing

11 ³ Key Laboratory of Plant Carbon Capture, CAS, Shanghai 200032, China

12 ⁴ Department of Biology, University of Oxford, South Parks Rd, Oxford, OX1
13 3RB, UK

14 ⁵ BGI-Shenzhen, Shenzhen 518083, Guangdong, China

15 ⁶ State Key Laboratory of Genetic Engineering, Collaborative Innovation
16 Center of Genetics and Development, Department of Biochemistry, Institute of
17 Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438,
18 China

19 ⁷ Current address: Syngenta Jealott's Hill International Research Centre,
20 Bracknell RG42 6EY, UK

21 ⁸ These authors contributed equally to this work

22
23 * Author for correspondence: Peng Wang

24 Email: wangpeng@cemps.ac.cn

25

26

27 **Summary**

28 Typical C₄ plants such as maize possess highly optimized Kranz-type leaf
29 anatomy, whereby concentric wreaths of mesophyll and bundle sheath cells
30 surround closely spaced veins. The veins and the cells that surround them are
31 derived from the middle ground meristem (mGM) through processes that are
32 as yet undefined. Here we distinguished the active zone of vascular
33 development within early leaf primordia, and used comparative transcriptomics
34 of sub-sectioned maize and rice primordia to identify cohorts of genes likely
35 involved in early Kranz development. Leveraging single-nucleus RNA

37 sequencing (snRNA-seq) we then explored the cell heterogeneity and
38 developmental trajectories within single maize leaf primordia. Assisted by *in*
39 *situ* hybridization, cell clusters of mGM and procambium were identified, with
40 candidate marker genes showing different yet inter-related expression patterns.
41 Localization of the vascular marker *ZmSHR1* was preceded by that of
42 *ZmEREB161* and *ZmEREB114* in terms of procambium initiation. Potential
43 subclusters of bundle sheath cells and different layer of mesophyll cells were
44 depicted from developing cells toward the tip of sub-sectioned maize primordia.
45 Collectively our results identify potential mGM derived or procambium
46 localized Kranz regulators and provide resources for investigating leaf vein
47 development in maize and rice, at sub-primordium and single-cell resolution.
48

49 **Introduction**

50 Photosynthesis is an important part of the carbon cycle in nature, providing
51 organic matter and oxygen to the entire biosphere. Plant photosynthesis
52 occurs via C₃, C₄, or CAM pathways. In C₃ photosynthesis, CO₂ enters
53 mesophyll (M) cells and is assimilated into carbohydrates by
54 Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) (Bassham,
55 2003). In C₄ photosynthesis, a CO₂ concentrating mechanism transfers C₄
56 acids from M cells into bundle sheath (BS) cells where Rubisco is specifically
57 enriched, such that CO₂ assimilation operates more efficiently, with greatly
58 improved radiation, water and nitrogen use efficiencies (Hatch and Slack, 1998;
59 Ghannoum et al., 2010). Although C₄ plants account for only 3% of land plant
60 species, they account for 25% of terrestrial primary productivity (Edwards and
61 Still, 2008). This high-efficiency photosynthetic mechanism is closely related to
62 the unique Kranz anatomy of C₄ leaves (Furbank, 2017; von Caemmerer et al.,
63 2017).

64

65 The typical Kranz anatomy of C₄ maize is exquisitely organized, with veins
66 (V) surrounded by a ring of chloroplast-rich BS cells which are themselves

surrounded by a layer of M cells, with many plasmodesmata connecting the two types of cells (Brown et al., 1975). Only two M cells separate adjacent veins, leading to a continuous V-BS-M-M-BS-V distribution across the medio-lateral leaf axis which maximizes the BS:M ratio to support the CO₂ concentration mechanism (Fouracre et al., 2014). With a view to understanding how Kranz anatomy develops, comparative studies have been carried out in a number of different contexts, which generally included three aspects of Kranz development: (i) initiation of procambium (Wang et al., 2013; Liu et al., 2013; Liu et al., 2022; Robil and McSteen, 2023); (ii) BS and M-cell specification (Li et al., 2010; Chang et al., 2012; Aubry et al., 2014; John et al., 2014; Tausta et al., 2014; Hendron et al., 2020; Singh et al., 2020; Bezrutczyk et al., 2021); and (iii) integration of the C₄ cycle (Brautigam et al., 2011; Furumoto et al., 2011; Gowik et al., 2011; Christin et al., 2013; Brautigam et al., 2014; Kulahoglu et al., 2014; Mallmann et al., 2014; Wang et al., 2014; Ding et al., 2015; Covshoff et al., 2016; Arrivault et al., 2019). Procambium initiation and BS/M-cell specification occurs early in maize leaf development (Wang et al., 2013), and little is known about the regulators of these early processes. Our previous study comparing transcriptional profiles of maize foliar and husk (with and without Kranz anatomy) leaf primordia proposed potential regulators including the SHOOT ROOT (SHR) / SCARECROW (SCR) regulatory module (Wang et al., 2013; Fouracre et al., 2014). Cell type-specific transcriptomes of early precursors of maize BS+V and M cells using laser capture microdissection (LCM) further identified genes encoding auxin transporters (PIN1a, PIN1d, and LAX2) and transcription factors (TFs) that are expressed during early Kranz development (Liu et al., 2022). Recent work indicated that a SHR-INDETERMINATE DOMAIN (IDD) regulatory circuit mediates auxin transport by negatively regulating PIN-FORMED (PIN) expression to modulate minor vein patterning in leaves of both C₃ and C₄ grasses (Liu et al., 2023); while the combined action of SCR and NAKED ENDOSPERM (NKD) IDD

96 controls the number of mesophyll cells specified between veins in the leaves of
97 C₄ but not C₃ grasses (Hughes et al., 2023). Fluorescent protein reporters
98 mapping auxin, cytokinin, and gibberellic acid response patterns in maize leaf
99 primordia further defined the roles of these hormones in medial-lateral growth
100 and vein formation (Robil and McSteen, 2023). Despite these advances critical
101 events in the development of Kranz anatomy remain to be uncovered.

102

103 Given that Kranz patterning begins with the specification of individual
104 procambial initials from within the middle ground meristem layer (mGM)
105 (Fouracre et al., 2014; Liu et al., 2022), tissue-level approaches are likely to
106 miss important steps in the developmental trajectory. To address this deficit,
107 we have investigated the early stages of Kranz development at the single cell
108 level. We first identified and separated the active and inactive domains of vein
109 formation within maize leaf primordia, and then performed comparative
110 transcriptomic analysis with corresponding rice tissues. We then used
111 single-nucleus RNA sequencing (snRNA-seq) to investigate the critical
112 developmental period within C₄ leaf primordia. These approaches together
113 revealed cell clusters specific to the initiating procambium and identified gene
114 expression profiles and developmental trajectories of essential cell types
115 during Kranz development.

116

117 **Results**

118 **Identification of regions within single maize leaf primordia where 119 intermediate veins are being actively initiated**

120 Previous studies on vein development in maize suggested that the midvein
121 and lateral veins develop/extend from the base toward the tip of leaf
122 primordium (acropetally), while the secondary/intermediate veins subsequently
123 start and extend from the tip toward the base (basipetally) (Sharman, 1942). To
124 identify regions where veins are being actively initiated within the developing

125 leaf, maize *pZmPIN1a::ZmPIN1a:YFP* reporter lines were examined. In
126 plastochron 3 (P3) and P4 primordium, intermediate veins had been initiated
127 but many had not extended into the base region (**Figure 1A; Supplemental**
128 **Figure 1**). Flattened P4 primordium of ~1.5 mm exhibited a wide conical shape,
129 and veins were distributed from the midvein towards both margins, forming a
130 distinguished spindle-shaped region. As the P4 primordium elongated
131 longitudinally to ~2.5 mm, both the number of veins and the leaf width
132 increased, with new veins initiated between the lateral veins. Between ~2.5
133 and ~5 mm, the leaf tip lengthened considerably, vein density increased
134 significantly, and the spindle area elongated (schematically illustrated in
135 **Figure 1B** and representative cross sections shown in **Figure 1C**). At P5 the
136 primordium was much larger in size and the development of intermediate veins
137 was more advanced. In P5 primordia of 10 mm, the spindle shaped region was
138 elongated, veins appeared to be near parallel, and the leaf shape was close to
139 that of mature leaves (**Supplemental Figure 1**).
140

141 Having established the time window for intermediate vein initiation, we
142 then serially sectioned P3, P4, and P5 leaf primordia from 2-week-old maize
143 seedlings. Transverse sections showed different distributions of smaller
144 intermediate veins between lateral veins across upper middle, lower middle,
145 and the base of P4 primordia (**Figures 1D-1F**). There was a similar but less
146 obvious gradient in P5 primordia, with more vein extension visible. In P4 and
147 P5 primordia, leaf sheaths are often not yet differentiated, while in the newly
148 differentiated sheath of P6, only the midrib and lateral veins are visible, with no
149 intermediate veins between them, similar to the base section of the blade. As a
150 comparison, serial sections of rice primordia were also examined. Notably, the
151 distribution of small intermediate relative to large lateral veins was similar
152 between upper middle and lower middle sections, unlike in maize primordia of
153 a similar size where a clear gradient was found (**Supplemental Figure 2**). The

154 vein pattern thus appears to establish more rapidly in the rice primordium
155 albeit with fewer intermediate veins forming in between lateral veins.

156

157 Statistical analysis of vein numbers from tip to base confirmed a larger
158 number of lateral and intermediate veins in the middle region of maize leaf
159 primordia (**Figure 2A**). By counting in both primordia and expanded blades of
160 the same leaves, the number of veins across the broadest part was found to
161 increase rapidly at the early primordium stage (P3-P5), and then only slowly
162 increase until maturity (**Figure 2A**). In order to screen for regulators of vein
163 formation in C₄ leaves, we conducted a transcriptomic analysis of different leaf
164 primordium regions. We first micro-dissected and divided 5 mm long P4 leaf
165 primordia into upper (M3tip), middle (M3middle) and lower (M3base) segments.
166 Notably, the middle part of the spindle-rich region was extending both
167 longitudinally and transversely with more veins initiating actively. We also
168 dissected 3 mm long P4 leaf primordia in which the tip was not significantly
169 elongated and the spindle-shaped area was concentrated in the middle and
170 upper part of the primordium. These primordia were divided into two segments:
171 M2top and M2base. Transcriptome sequencing was performed for each of the
172 above 5 segments plus early differentiated sheath from P6 leaf primordia
173 (Msheath) (**Figure 2B**). At the same time, in order to exclude common
174 regulators of vein formation in grass leaf primordia, we obtained the upper
175 (Rtip), middle (Rmiddle) and lower (Rbase) segments of 5 mm rice leaf
176 primordia, as well as the 2 mm primary leaf sheath (Rsheath) for comparison.

177

178 **Comparative transcriptomic analysis of segmented leaf primordium from**
179 **maize and rice to screen genes regulating Kranz-type vein development**

180 To determine the extent to which M3middle and M2top were different from
181 other samples in terms of gene expression, the numbers of differentially
182 expressed genes (DEGs) were obtained by pairwise comparisons. As

183 expected, M3middle exhibited large differences from M3tip (2,199 DEGs),
184 Msheath (2,965 DEGs), and M2base (2,878 DEGs), but smaller differences
185 from M3base (510 DEGs) and M2top (537 DEGs). The low numbers of DEGs
186 for M3middle_vs_M2top, M3middle_vs_M3base, and M2top_vs_M3base
187 compared to other groups (**Supplemental Figure 3A**) indicate the similarities
188 not only between M3middle and M2top, but also the similarities of both to
189 M3base. This is supported to certain extent by the correlation matrix shown in
190 **Supplemental Figure 3B**. Overlapping and GO enrichment analysis were
191 performed on 4 of the DEG lists: M3base, M3middle_vs_M3base,
192 M3middle_vs_M3tip, and M3tip. The biological functions enriched by M3base
193 mainly include transcriptional regulation. The biological functions enriched in
194 M3middle were more diverse with sequence-specific DNA binding,
195 transcription regulation, DNA biosynthesis and replication, protein interaction,
196 and other developmental or regulatory processes. M3tip enriched biological
197 functions were mostly related to photosynthetic processes (**Figure 2C**).
198

199 The gene enrichment results supported an active state of transcriptional
200 regulation and cell division in M3middle, although it is not clear how and to
201 what extent cell division occurs for vein formation and/or for mesophyll cell
202 development in this region. To explore the regulators of C₄ vein initiation and
203 development, screening of differentially expressed genes was carried out
204 following the filtration steps and principles shown in **Figure 3A**. After
205 considering the enrichment of active vein formation elements and excluding
206 those shared between maize and rice, we finally obtained 224 genes with high
207 expression in M3middle, and 142 genes with high expression in both M3middle
208 and M2top (**Supplemental Figure 4**). Among the 224 genes, there were 24
209 transcription factors, 7 transcription regulation related genes, 14 kinases, 3
210 auxin related genes, and 5 cell wall related genes. The functions and
211 characteristics of the remaining genes were mostly unknown.

212

213 In the screening process we found that some previously proposed
214 regulators of Kranz development (Wang et al., 2013; Fouracre et al., 2014)
215 were highly expressed in M3middle and M2top, including *ZmSHR1*, *ZmSHR2*,
216 *ZmSHR2-h*, *ZmSCR1*, *ZmSCR2*, *ZmMIL1*, *ZmC2H2-46*, and *ZmTML1*
217 (previously named *ZmDOT1*) (**Figure 3B**). Some of these genes also had
218 similar expression patterns in rice leaf primordia, including *ZmSHR1*, *ZmSCR1*,
219 and *ZmMIL1* (**Supplemental Figure 5A**), suggesting these genes may have
220 relatively conserved functions in grass leaf development. To identify potential
221 C₄ specific regulators we therefore further analysed the 224 genes that were
222 expressed highly in M3middle samples. Presented in **Figure 3C** were ten
223 genes highly expressed in M3middle and M2top samples (passed significance
224 test for all the pairwise comparisons, $P<0.05$) whereas their homologous
225 genes were not obviously expressed at higher levels in Rmiddle samples of
226 rice (**Supplemental Figure 5B**). Three of the 10 candidate genes encoded
227 transcription factors, including *EREB161* (Zm00001d048004) and *EREB114*
228 (Zm00001d018731) of the AP2 family, which were speculated to influence
229 auxin signalling during vein development (Kitomi et al., 2011; Liu et al., 2022),
230 and *ZmTML1* (Zm00001d020037) of the C2H2 family, which was recently
231 shown to specify vein rank (Vlad et al., 2024).

232

233 **Construction of a single-nucleus transcriptome atlas of maize early leaf
234 primordia**

235 To further explore the early development of maize leaves at a single-cell level,
236 we carried out single-nucleus RNA sequencing (snRNA-seq) using 3-4 mm
237 leaf primordia of P4 in which veins were actively developing. We obtained
238 7,473 effective cells with an average of 2,293 genes expressed in each
239 nucleus. In total, we identified 25,009 genes, which represented 78.2% of the
240 32,000 predicted protein coding genes in maize. Dimensionality reduction and

241 cluster analysis (t-SNE and UMAP) were performed on the snRNA-seq data,
242 and the 7,473 high quality nuclei were divided into 14 different clusters (**Figure**
243 **4A**). By analyzing DEGs between the clusters, we identified a series of
244 cluster-enriched or specific genes. Dot plots of the top 10 marker genes from
245 each of the different cell clusters were generated (**Supplemental Figure 6**)
246 and a subset is shown in **Figure 4B**. The cellular anatomy of leaf primordia
247 sampled for single cell analysis is such that five cell layers are identifiable
248 across the adaxial-abaxial leaf axis: the upper and lower epidermis and three
249 internal cell layers. The veins, bundle sheath cells and mesophyll cells
250 between veins all differentiate from the middle layer ground meristem (mGM)
251 (**Figures 1D-1F**). Using marker genes reported in existing references, we were
252 able to assign 14 clusters to the different cell-types observed.

253

254 First of all, *ZmPIN1* as a marker gene of procambium and vascular tissue,
255 was found in the cells of cluster 5 and cluster 12 in the UMAP (**Figure 5A**).
256 Cross-referencing to our candidate genes from comparative transcriptomic
257 analysis of segmented leaf primordia (**Figure 3C**, TFs) and to results from
258 [Vlad et al. \(2024\)](#), we presented here that *ZmTML1* was clearly located in
259 cluster 5, while *ZmEREB161* and *ZmEREB114* were enriched in both clusters
260 1 and 5, with the former more distributed in cluster 5 and latter more distributed
261 in cluster 1 (**Figures 4B, 5A and 5B**). *In situ* hybridization assays confirmed
262 that *ZmEREB114*, as well as *ZmEREB41* (both are co-orthologs of arabidopsis
263 *ANT1*), were expressed in both the undifferentiated mGM and the early
264 procambial cells (**Figures 5B, 5C and 6**), whereas a homolog of *AtSCPL46*
265 which is evident in cluster 1, was shown to be mainly restricted in
266 undifferentiated cells of the mGM (**Figure 5D**). *ZmEREB161* was expressed in
267 both the initiating procambial cells and the differentiated procambial cells,
268 while the expression of *SHR1* was detected predominantly in the developed
269 procambium although in lower level (**Figure 7; Supplemental Figure 7A**).

270 Futher, *ZmYAB3* and *ZmGLK6* transcripts were detected by *in situ*
271 hybridization in developing procambial cells in a way similar to that of
272 *ZmEREB161*, with their distribution more concentrated in cluster 5 in the
273 UMAP (**Supplemental Figure 7C and 7D**). Considering the continuity of
274 developmental status, we thus annotated cluster 1 as “middle ground
275 meristem” and cluster 5 as “procambial initial + procambial cell”.

276

277 Clusters 0 and 6 were identified to be related with epidermal cells, cluster
278 11 as primary phloem, cluster 12 as primary xylem, and cluster 13 as
279 undefined vascular cells (maybe related with phloem, xylem, and other
280 vascular cells). Cluster 10 was identified as palisade mesophyll cells, and
281 cluster 8 was identified to be related with middle layer mesophyll and/or
282 parenchyma cells. These annotations were verified by selecting the enriched
283 marker genes for *in situ* hybridization (**Figure 4; Supplemental Figure 8**).
284 *GLU3* which is enriched in cluster 10 and encodes a β -glucosidase that
285 participates in the metabolism of cellulose and modifies cell wall
286 polysaccharides during the elongation growth of cells (Bosch et al., 2011;
287 Nazipova et al., 2022), was specifically expressed in mesophyll cells adjacent
288 to the abaxial epidermis, or in mesophyll cells both adaxially and abaxially
289 close to the lateral veins (**Figure 8A**). *ZmWIP1* (encoding a Bowman-Birk type
290 wound-induced proteinase inhibitor) (Rohrmeier and Lehle, 1993) which is
291 enriched in cluster 8 (also present in cluster 0) was distributed in the swollen
292 parenchyma cells (also detected in epidermal cells) close to the midrib and in
293 the adaxial epidermis (**Figure 8B**). *In situ* hybridization further showed that
294 cluster 8 was composed of not only the enlarged parenchyma cells close to the
295 midrib, but also those surrounding other larger vascular strands (including
296 mesophyll cells in the middle layer), in which a cytochrome P450-dependent
297 monooxygenase gene *BX5* (required for 2,4-dihydroxy-1, 4-benzoxazin-3-one
298 biosynthesis, involved in chemical plant defense mechanism) was

299 preferentially expressed (**Figure 8C**) (Frey et al., 1997).

300

301 Cluster 9, which remains to be further characterized, may contain a group
302 of cells at the developmental junction between mGM and
303 mesophyll/parenchymal cells. Cluster 4 is also unknown, with enrichment of a
304 large number of ribosomal protein-related genes. *In situ* hybridization of
305 selected genes presenting in cluster 4 showed expression in veins, in cells
306 around veins, and in the epidermis (**Supplemental Figures 9A and 9B**). For
307 the other remaining clusters, the presence of cell division markers suggests
308 that cluster 3 is likely to represent proliferative cells in S phase, and clusters 2
309 and 7 proliferating cells in G2/M phase (**Supplemental Figures 9C and 9D**).

310

311 We have identified seven major cell types: epidermal cells, mesophyll
312 cells, parenchyma cells, proliferating cells, middle layer ground meristem,
313 procambium, and vascular tissue cells (including xylem and phloem).
314 Specifically, cluster 1 represents a larger group of cells containing the
315 pre-procambial cells and other middle layer ground meristem cells, whereas
316 cluster 5 contains cells derived from cluster 1 that are on a developmental
317 trajectory towards procambium and vein formation. Importantly, because the
318 3-4 mm leaf primordia showed strong cellular heterogeneity, new marker
319 genes for each cell type were suggested (**Supplemental Figure 6**) and early
320 stages of cell differentiation in the maize leaf have been revealed.

321

322 **Comparing the cell-specific expression of *ZmEREBs* and *ZmSHR1* in the**
323 **middle cell layer of leaf primordium**

324 To further investigate the early transition of mGM cells toward Kranz-type leaf
325 anatomy, we compared the expression patterns of *ZmEREB114*, *ZmEREB41*,
326 and *ZmEREB161* (they are co-orthologs of arabidopsis *ANT1*) at cellular
327 resolution by combination of *in situ* hybridization and fluorescent images.

328 *ZmEREB114* expression was not only detected in vascular procambia (white
329 triangle indicated), but also observed in the three or four-contiguous cells
330 (orange triangle indicated) between existing procambial centres (**Figure**
331 **6A-6E**). For *ZmEREB41*, with less developed *in situ* hybridization signals than
332 **Figure 5C**, its expression appeared with stronger signals in single procambial
333 initial cells (orange triangle indicated) flanking procambial centres, while less
334 strong signals (smaller orange triangle indicated) were found further away from
335 the procambial centres (**Figure 6F-6K**).

336

337 More clearly, *ZmEREB161* was strongly expressed in the single
338 procambial initials of intermediate veins, in addition to the procambia of mid
339 and lateral veins (**Figures 7A-7C**). Taking *ZmSHR1* for comparison, we
340 examined the expression of *ZmEREB161* in the context of cell division and
341 arrangement patterns (**Figure 7**). *In situ* hybridization showed that the
342 distribution of *ZmEREB161* expression appeared not only in different
343 developmental stages of procambium (white triangle indicated), but also
344 evidently in mGM cells that had not yet undergone peripheral division (orange
345 triangle indicated, may be equivalent to one of the three-contiguous cells, at
346 3C stage, in [Liu et al., 2022](#)) several cells away from the procambium (**Figures**
347 **7G-7J**). The peripherally divided cell in the middle of the three adjacent mGM
348 cells produced two cells, with one of them expressing the *ZmSHR1* gene. With
349 the second peripheral division, *ZmSHR1* gene expression was detected in the
350 middle of the three progeny cells. During subsequent cell division and
351 differentiation, *ZmSHR1* was confined to procambial cells within vascular
352 bundles (**Figures 7D-7F, 7K-7N**). Therefore, the localization of *ZmSHR1* was
353 preceded by that of *ZmEREB161* and *ZmEREB114* during procambium
354 initiation and development.

355

356 **Indication of bundle sheath related cell clusters by integrating M3tip**

357 **section and snRNA-seq data**

358 Most of the genes specifically expressed in M cells and BS cells are
359 photosynthesis related genes identified from mature leaves (Bezrutczyk et al.,
360 2021). Due to the low differentiation degree of the two types of cells in the leaf
361 primordium, these genes are generally not expressed. However, since M3tip
362 section seems enriched with photosynthesis-related genes, the photosynthetic
363 gene expressing cells could be clustered to see whether they display better
364 distinguished BS cell types, which may also serve as a good cross-linking of
365 the bulk and single-cell RNA-seq. As chloroplasts were not yet developed in
366 the proplastid state in the primordia (**Supplemental Figure 10A**),
367 photosynthetic genes (although enriched by GO term in M3tip) were
368 under-expressed in our snRNA-seq data, with no significant enrichment in the
369 total cell clusters. Dot plots show the expression distribution pattern of these
370 photosynthesis genes (**Supplemental Figures 10B and 10C**), with relatively
371 higher expression level and percentage of cells expressed in clusters 1, 4,
372 8,9,10, 13, but not 5, 11 and 12. This makes sense because cells in clusters 5,
373 11 and 12 are developing toward vascular cells while those in clusters 8, 9, 10
374 are developing toward photosynthetic cells. The interesting distribution of
375 photosynthesis genes in clusters 4 and 13 may provide special clues for
376 cluster annotation.

377

378 We have extracted cell groups (3681 cells) expressing the M3tip enriched
379 photosynthetic genes (91 genes) to perform clustering analysis. We then took
380 the top 20% of these genes, and new UMAP clusters (based on 535 cells
381 represented) were obtained as shown in **Figure 9A**. Importantly, we were able
382 to infer that bundle sheath (BS) cells (or BS precursors) were potentially
383 included in the new cluster 5, based on the enrichment of genes with high
384 BS/M ratio of expression. In contrast, mesophyll (M) cells were identified to be
385 included in clusters 0 and 2 of the new UMAP based on the enrichment of

386 genes with high M/BS ratio of expression (**Figures 9B and 9C; Supplemental**
387 **Figure 11**, BS/M data sourced from [Li et al., 2010](#)). Further, when looking back
388 in the total cell clusters, cluster 13 from the original UMAP (**Figure 4A**)
389 potentially also carried BS cell (or its precursor) identity. This was because
390 selected new cluster 5-enriched genes (*NADP-ME* for example) could be
391 re-plotted to the original cluster 13 (**Figures 9B and 9C**), and some
392 BS-enriched genes (*NDHU* for example) were also found accumulated in
393 cluster 13 (**Supplemental Figures 10B and 10C**). However, our *in situ*
394 hybridizations haven't detected distinctive BS specific expression of genes in
395 the primordia, although the BS-enrichment of transcripts was detected in
396 expended leaves (**Supplemental Figure 11E-11H**). It could be attributed to
397 low transcript levels, insufficient cell differentiation, or the lack of light-induction
398 for BS/M specific distribution of C₄ enzymes ([Langdale et al., 1988](#)), the
399 regulatory factors of which could be further investigated on the basis of our cell
400 clustering analysis described above.

401

402 **Projection of single-nucleus transcriptome to segmented primordium**
403 **RNA-seq — clusters 1 and 5 form the key group of cells for Kranz**
404 **initiation**

405 Due to the developmental gradient that exists between the tip, middle, and
406 base of the primordium, bundle sheath cells, mesophyll cells and mGM display
407 progressive stages of cellular differentiation from base to tip. For example,
408 many intermediate veins had been initiated in the middle of the primordium
409 whereas more undifferentiated mGM cells were located in the base of leaf
410 primordium (**Figures 1D-1F**). As part of the data verification, we performed a
411 comparative analysis between the bulk RNA-seq data from segmented
412 primordia and the snRNA-seq data. On the one hand, different tissue
413 segments should be associated with cell clusters of different differentiation
414 states in single-cell data. On the other hand, candidate Kranz regulators

415 screened based on comparison of segmented primordium may be more
416 enriched in the mGM and procambium cell clusters. The above hypothesis was
417 confirmed by the pair-wise comparison between differentially expressed genes
418 in segmented primordia and enriched genes in each of the 14 clusters from the
419 single-nucleus transcriptome (**Figure 10**).

420

421 Genes with higher expression in M2base than M2top, M3base than M3tip,
422 and M3base than M3middle were more concentrated in clusters 8/9
423 (parenchyma cells), which was consistent with the phenomenon that
424 parenchyma cells were mainly distributed around the midrib in the base of the
425 primordium. The genes with higher expression in M3tip than M3base, M3tip
426 than M3middle, and M3middle than M3base were enriched in clusters
427 11/12/13 (vascular tissue cells), corresponding to the higher degree of vein
428 development toward the tip. The distribution frequency of these DEGs are
429 marked by the dotted boxes in **Figure 10A**. Importantly, the genes with higher
430 expression in M2top than M2base, and M3middle than M3tip were more
431 concentrated in clusters 1 and 5 (mGM and procambial cells), and the 224
432 candidate genes screened from the segmented primordium RNA-seq were
433 more enriched in cluster 5 (procambial cells). This is consistent with the
434 hypothesis that the expression of the Kranz anatomy regulatory genes should
435 be up-regulated in the mGM and procambial cells in the middle or upper
436 middle part of the leaf primordium. The distribution frequency of these DEGs
437 are marked by the solid boxes in **Figure 10A**. **Figure 10B** shows heat map
438 grouping of the expression patterns of the boxed genes within the segmented
439 primordia. Dot diagram in **Figure 10C** shows the expression patterns of the
440 boxed genes among different cell clusters.

441

442 **Pseudo-time trajectory analysis and prediction of gene regulatory**
443 **networks during Kranz development**

444 To further explore co-regulators along Kranz development in maize leaves, we
445 took the mGM cells as starting cells and carried out a pseudo-time analysis of
446 the vein related clusters 1/5/11/12/13 by Monocle2 (**Figure 11**). The
447 reconstructed trajectory showed that the whole cell population branched at
448 junction 1 and differentiated toward phloem (cluster 11) and xylem (cluster 12).
449 At junction 2, the trajectory exhibited another branching event, resulting in two
450 smaller branches. One of these eventually led to cluster 12, while the other
451 remained closely associated with cluster 11. It should be noted that cluster 5
452 cells were more closely associated with phloem and xylem clusters than
453 cluster 1, while cluster 1 cells were mainly aggregated at the early stage of
454 pseudo-time (**Figures 11A-11C**). This observation is in accordance with their
455 respective temporal properties, with cluster 1 representing “mGM” and cluster
456 5 representing “procambial initial + procambial cell”. Cluster 13 which
457 represents other vascular cells covers part of the early trajectory. We also tried
458 Monocle3 with the successive differentiation trajectory overviewed for the
459 whole 14 cell clusters along pseudo-time. A subset of clusters 1/5/11/12/13
460 plus clusters 10 and 9 showed that the differentiation trajectory of cell clusters
461 is in principle similar to Monocle2 results, while their pseudo-time
462 developmental relationships were better resolved compared to the whole set
463 (**Figures 11E and 11F**).

464

465 Dynamic gene expression patterns were inferred from the pseudo-time
466 trajectories (**Figure 11D**). *ZmEREB114* and *ZmEREB41* displayed high
467 expression at the beginning (mostly contributed by cluster 1 cells), then slightly
468 decreased before peaking (expression contribution from cluster 5 cells) at the
469 middle stage and then continuously declining to lower or no-expression. By
470 contrast *ZmEREB161* was initially expressed at a lower level but then also
471 peaked after the middle stage (mostly contributed by cluster 5 cells), followed
472 by continuous decline. *ZmPIN1*, however, showed very low expression at the

473 beginning, then gradually increased throughout the pseudo-time trajectory.
474 The expression of phloem system marker gene *ZmCALS2* (Zhong et al., 2023)
475 was also lower at the early stage but increased and peaked after middle stage,
476 while another marker gene homolog of *AtNEN3* displayed a prominent peak
477 erupted from very low base level (contribution of both mostly from cluster 11
478 cells) (**Figure 11D; Supplemental Figures 8A and 8B**). Xylem related genes
479 including homolog of *AtLOG6* and *ZmWAT1* (Xu et al., 2021) were not
480 expressed at the early stage, but expression levels increased steeply at later
481 stages of pseudo-time (the contribution of expression was clearly from cluster
482 12) (**Figure 11D; Supplemental Figures 8C and 8D**).
483

484 Given that cluster 5 cells appeared along most of the pseudo-time
485 developmental track, we took these cells for gene co-expression analysis to
486 understand how different gene cohorts were represented at this transitional
487 stage. To this end, we selected regulatory genes from clusters 1/5/11/12/13,
488 and after co-expression analysis with cluster 5 cells, a network of 33 genes
489 were obtained. The network included ARF, AP2 family transcription factor and
490 other auxin related genes, with many of them also showing protein interaction
491 relationships (**Figures 12A and 12B**). The expression patterns of 33 genes,
492 plus *ZmSHR1*, *ZmSCR1*, *ZmSCR2*, *ZmTML1* and *ZmEREV184* along
493 pseudotime are shown in the heatmap of **Figure 12C**. It can be seen that to a
494 certain extent hierarchical regulation corresponds to the pseudo-time
495 expression pattern: *ZmARF25*, *ZmEREV114*, and *ZmEREV41* are expressed
496 first; *ZmSHR1/2* and *ZmEREV161* are next; followed by another 14 genes
497 (including *ZmTUB4*, *ZmPIN4*, *ZmEREV200*, *ZmMYB121*, *ZmATL1*, *ZmSBP16*,
498 *ZmRLD1*, *ZmNAC131*, *ZmIAA45*, *ZmbHLH63*, *ZmBIF1*, *ZmGATA4*, *ZmIAA4*,
499 and *ZmLBD26*). A schematic model combining *in situ* arrangement of cell
500 clusters and distribution of potential regulators of Kranz organization, is
501 presented along a pseudo-time developmental axis in **Figure 12D**.

502

503 **Discussion**

504 Compared with the C₃ plant rice, the increased number of intermediate
505 veins leads to high vein density in maize leaves, which is an important
506 contributing factor for the formation of efficient C₄ leaves. As for the
507 development of typical Kranz anatomy in maize leaves, the key scientific
508 questions pending to be answered include: (1) How do the intermediate veins
509 in maize leaves initiate? (2) What regulatory factors are required, and in what
510 temporal-spatial manner, to regulate the extension and assembly of the
511 intermediate veins?

512

513 **Primordium sub-section facilitates identifying Kranz-propagation zone
514 and multi-level comparative transcriptomics**

515 After realizing the limitations of working at a tissue-level, we have moved
516 our focus to the active initiation/proliferation regions inside single C₄ leaf
517 primordia. Combining fluorescent labelling and sequential sectioning, we were
518 able to analyse vein development patterns in maize P4 leaf primordia in
519 proximal-distal (PD), medial-lateral (ML), and adaxial-abaxial contexts (**Figure**
520 **1**). This allowed us to capture the active zone within the leaf where the
521 initiation, and extension of intermediate veins was expected to be
522 concentrated. It laid a solid foundation for us to draw systematic cell
523 arrangement maps at the tissue and cell levels, and to separate active Kranz
524 development locations for comparative analysis of micro-tissue and single-cell
525 level transcriptomes.

526

527 We obtained gene expression signatures for sub-sectioned leaf primordia
528 of maize and rice, contributing to the early leaf primordium development
529 database at a sub-tissue level, which will facilitate further investigation of
530 monocotyledonous leaf development. For example, photosynthetic

531 competence was previously reported to be established in rice at the P3/P4
532 transition stage, and chlorophyll fluorescence signal was restricted to the distal
533 tip of the P4 stage leaves (van Campen et al., 2016). Correspondingly, in
534 maize primordia, M3tip enriched biological functions were mostly related to
535 photosynthetic processes (Figure 2C). These sub-tissue transcriptomic
536 profiles should help to shed light on early photosynthetic development of grass
537 leaves. We were also able to perform comparative analysis of early Kranz
538 development with species comparisons between C₄ vs C₃ (maize vs rice), and
539 tissue comparisons between Kranz vs non-Kranz (M3middle vs Msheath),
540 which was a significant extension to the relevant database (Wang et al., 2013;
541 Wang et al., 2014).

542

543 **SnRNA-seq identifies cell heterogeneity and clusters responsible for**
544 **intermediate vein initiation in maize leaf primordia**

545 Single-cell RNA sequencing (scRNA-seq) technology has revolutionized
546 molecular and cellular biology by improving the spatiotemporal resolution of
547 transcriptomic analysis to the level of individual cells, which is rapidly
548 expanding our ability to elucidate cell types, states, origins and differentiation
549 (Seyfferth et al., 2021). However, scRNA-seq analysis in maize leaf primordia
550 faces the challenge of obtaining high quality protoplasts. We therefore tested
551 the use of isolated nuclei for transcriptome sequencing, as single-nucleus
552 transcriptomes of various animal and plant systems has provided biologically
553 meaningful information (Bakken et al., 2018; Farmer et al., 2021). Although
554 some cytoplasmic message may be missed, but the extraction of nucleus
555 helps to better capture RNAs from cell types suffering from limited protoplast
556 integrity (vascular cells for example). Our single-cell resolution transcription
557 map revealed high cell heterogeneity in early maize leaf primordia, showing
558 continuity of the cell developmental trajectory during initial Kranz-type vein
559 formation. In the future, single-nucleus ATAC-seq (SnATAC-seq) or spatial

560 transcriptomic technology ([Farmer et al., 2021](#); [Xia et al., 2022](#); [Perico et al., 2024](#)) may assist to gain deeper or wider understanding of the regulatory
561 mechanisms controlling Kranz anatomy formation.
562

563

564 Cell clustering and annotation are other challenges for the single-cell
565 analysis of P4 leaf primordia of interest in this study. First, there are few known
566 cell type-specific marker genes in maize primordia. Second, the sample is
567 restricted to a specific leaf primordium which lacks single-cell data for
568 reference. For the single-cell data of maize SAM+P1+P2 ([Satterlee et al., 2020](#)), the clustering of cell types spans information among different tissues,
569 while our samples need to be subdivided into cell types within the P4 leaf
570 primordium. Therefore, *in situ* hybridization was heavily relied on for
571 subsequent annotation and validation. We retrieved 7 broad populations of
572 cells with 14 transcriptionally distinct clusters, representing strong cell
573 heterogeneity in maize leaf primordia during this critical period of C₄ Kranz
574 anatomy development. Importantly, we identified the cell groups (clusters 1/5)
575 involved in giving rise to the intermediate veins (**Figures 4-7**). The projection
576 of segmented primordium transcriptome to single-nucleus transcriptome
577 supports that cluster 1/5 cells initiate the core components of Kranz anatomy
578 (**Figure 10**). The pseudo-time trajectory analysis again showed that cluster 1/5
579 cells include transitional cells, which effectively linked multiple developmental
580 stages and branches such as the mGM that had not yet begun differentiation,
581 the procambial initial cells, and the early differentiating vascular tissues
582 (**Figures 11**). However, cell groups representing the bundle sheath cells
583 remains to be further confirmed. Due to limitations imposed by sequencing
584 depth and gene coverage, lowly expressed genes which could be specifically
585 expressed in bundle sheath cells, may not be effectively represented in the
586 current snRNA-seq datasets, nor be effectively picked out by *in situ*
587 hybridizations.
588

589

590 **Insights in the Kranz organization from middle ground meristem by**
591 **networking and mutation analysis**

592

593 A role for auxin in vascular tissue formation was identified many years ago.
594 Understanding the spatial and temporal patterns of auxin activity within and
595 between tissues or cells is required to elucidate the role of auxin in this
596 process ([Perico et al., 2022](#)). According to our analysis, the enrichment of
597 auxin-related genes during Kranz-type vein formation mainly included auxin
598 transporter (including *ZmAIC3*, *ZmPIN1*, and *ZmPIN4*) and auxin signaling
599 pathway (such as *ZmARF29*, *ZmARF25*, *ZmARF20*, *ZmARF3*, and several
600 *ZmIAAs*) genes (**Figure 12A**). *ZmPIN1* is expressed in pre-procambial,
601 procambial initial, and procambial cells, across the development stages ([Robil](#)
602 and [McSteen, 2023](#)), showing auxin as a major positional signal. Inspired by
603 the recent advances in the role of auxin in vein patterning ([Liu et al., 2023](#);
604 [Dong et al., 2023](#)), the genes of Aux/IAA and ARF families we identified here
605 are worth future investigation.

606

607 [Robil and McSteen \(2023\)](#) analyzed the expression of DR5, TCS, and
608 GAR2 reporters to investigate the roles of auxin, cytokinin (CK), and gibberellic
609 acid (GA) respectively in developing maize leaf primordia. They presented
610 evidence that auxin efflux precedes the CK response in procambial strand
611 development. We have collected about 83 genes related to the CK signalling
612 pathway, and found that the ones expressed in our snRNA-seq data were
613 relatively enriched in clusters 11, 12 and 13 (**Supplemental Figure 12A**). This
614 is consistent with the relatively late response of CK during vein formation.
615 Among the genes enriched in clusters 11, 12 and 13, there is a group of 5
616 genes which exhibited increased expression from M3base toward M3tip, as
617 well as from M2base toward M2top, but not in Msheath (**Supplemental Figure**

618 **12B).** Due to the blade preference of these DEGs, they are pending to be
619 tested for possible roles in intermediate vein development.

620

621 Notably as well, AP2 family transcription factor genes *ZmEREB114*,
622 *ZmEREB41* and *ZmEREB161* were identified and their expression location
623 were verified (**Figures 5-7**). We compared the expression patterns of
624 *ZmEREB161* and *ZmSHR1*, and found that *ZmSHR1* was expressed in
625 dividing procambial centres, similar to the pattern observed in rice primordia
626 ([Liu et al., 2023](#)). By contrast *ZmEREB161* was expressed not only in the
627 dividing procambium, but also more strongly in single procambial initials
628 recently specified from the mGM cells (**Figure 7**). The expression of the rice
629 homologue of *OsEREB161* was restricted to procambial centres, without clear
630 signs of expression in cells of the middle layer in between existing veins
631 (**Supplemental Figure 13**). Therefore, *EREB161* might be more related than
632 *SHR1* to pre-Kranz events in maize leaves, which is also supported by their
633 relative enrichment in intermediate veins and lateral veins respectively in
634 recent spatial transcriptomics of P4 primordium ([Perico et al., 2024](#)).

635

636 Arabidopsis has a single *AINTEGUMENTA1* (*ANT1*) gene, while maize
637 has four (*ZmANT1-4*, corresponding to *ZmEREB184*, 114, 41, 161
638 respectively), and setaria and rice have three. [Liu et al. \(2020\)](#) observed mild
639 and sporadically occurring defects in *Svant1* mutant (mutation of the homolog
640 of *ZmEREB184*) of *S. viridis*, and suggested that the lack of perturbations
641 might be attributed to the existence of two other *ANT* genes in the genome. To
642 determine the function of *ZmEREB161*, we first obtained maize mutants (point
643 mutation and premature stop codon) of *ZmEREB161*, and characterized the
644 phenotype of lines encoding the truncated protein. Although some instances of
645 directly adjacent veins and supernumerary bundle sheath cells were found,
646 vein density was not statistically significant between mutant and wild type

647 leaves (**Supplemental Figures 14A-14C**). Similarly, vein density was not
648 altered in rice when *ZmEREB161* was constitutively expressed
649 (*ZmUB1pro::ZmEREB161*) but exhibited reduced plant height, leaf length and
650 leaf width (**Supplemental Figures 14D-14H**). However, by transforming
651 *ZmEREB161pro::ZmEREB161* into Arabidopsis, increased vein density was
652 observed, together with increased leaf area (**Supplemental Figure 15**). It is
653 possible that co-regulation of gene targets by different EREB (ANT) proteins
654 may be important for venation patterning in grasses. The co-orthologs of
655 Arabidopsis ANT1 in maize (*ZmEREB 161, 41, 114, and 184*) may work in
656 combination during Kranz development. More in-depth and systematic
657 characterization of mutants in maize or different C₄ grasses is necessary for
658 the mGM and procambium related candidate genes. Promisingly, *TOO MANY*
659 *LATERALS* (*ZmTML1*), one of the 3 transcription factor encoding genes from
660 the 10 candidates we highlighted in **Figure 3C**, was recently shown to specify
661 vein rank in maize leaves ([Vlad et al., 2024](#)).

662

663 **Comparison between snRNA-seq and the transcriptome of laser capture**
664 **microdissection (LCM) isolated cells of maize embryonic leaf**

665 The work by [Liu et al. \(2022\)](#) used LCM-dissected maize embryonic leaf
666 primordia to generate transcriptomes of different stages of pre-Bundle sheath
667 cells and pre-Mesophyll cells. Regulators related to Kranz anatomy and/or
668 vascular development were suggested from gene expression analysis of the
669 middle ground meristem (mGM) cells. It is suggested that the differentiation of
670 pre-Kranz cells occurs largely before the three-contiguous cell (3C) stage,
671 whereas rapid differentiation of pre-Mesophyll cells continues until the
672 four-prepalisade mesophyll cell (4PM) stage. Importantly, by comparing
673 between [Liu et al. \(2022\)](#) and our current work, genes that are highly
674 expressed in mGM and 3C from the LCM-transcriptomes (Fig. 7A of Liu et al.,
675 2022) are also partly enriched in clusters 1 and 5, and enriched to less extent

676 in clusters 11 and 12 in our snRNA-seq data (**Supplemental Figure 16A**).

677

678 To further show that this overlap is more significant than random chance,
679 we have performed further grouping analysis taking into account of both the
680 LCM data and our snRNAseq clusters (**Supplemental Figure 16B**). The
681 sections framed in blue lines represent the selected LCM data modules
682 overlapping with our snRNAseq clusters. Importantly, we think these two
683 studies support each other not only in a way that they overlap to certain extent,
684 but also in a way that they compensate or help to adjust each other's
685 uncertainties. For example, despite chances of unavoidable contamination
686 between samples, the "PM" and "2M" samples of the LCM data are being
687 helpful in assisting us to further determine different types of mesophyll cells for
688 the single-cell clusters (**Supplemental Figure 17**). Accordingly, our clusters 0
689 and 6 were suggested to contain palisade mesophyll cells apart from
690 epidermal cells, and cluster 8 was identified to be related with middle layer
691 mesophyll in addition to parenchyma cells. Looking further ahead, together
692 with new data set such as spatial transcriptomics ([Perico et al., 2024](#)),
693 researchers in the field will benefit from more comprehensive resources for
694 dissecting C₄ leaf Kranz anatomy.

695

696 In summary, using a combination of cellular, developmental and system
697 biology approaches, this study provides both theoretical and practical
698 platforms for the exploration and verification of Kranz anatomy regulators and
699 their spatial-temporal combinations. We proposed a group of potential mGM
700 derived or procambium localized regulators associated with Kranz initiation
701 and development, and provided single-cell resolution resources for studying
702 the early division and differentiation of Kranz cells in maize leaves. Further
703 studies on the regulatory functions and the potential application on C₄ leaf
704 engineering need to be conducted using relevant genetic materials.

705

706 **Materials and methods**

707 **Plant material and growth conditions**

708 In Shanghai, *Zea mays* (L.) ssp. Mays cv. B73 and *pZmPIN1a::ZmPIN1a:YFP*
709 transgenic line (Yang et al., 2015), as well as *Oryza sativa* (L.) ssp. Japonica
710 cv. Nipponbare and *DR5::VENUS* line, were grown in a phytotron, 27 °C in day
711 and 25 °C at night, with 600 µmol photons m⁻² s⁻¹ light intensity, 16 h light and
712 8 h dark photoperiod. Tissue was harvested from 2-, 3- or 4-week-old maize
713 plants and 2-week-old rice plants.

714

715 *Zmerek161* mutant of maize by EMS (Ethyl methanesulfonate) chemical
716 mutation was obtained from <http://www.elabcaas.cn/memd/index.php>. The
717 M3-generation was used and genotyping was conducted by genomic PCR with
718 primers listed in **Supplemental Dataset 8**. PCR products were sequenced to
719 confirm the mutation of *zmerek161*, in which the peptide chain coding is
720 terminated prematurely from CAG to TAG.

721

722 To generate *ZmUBIpro::ZmEREK161* transgenic plants in rice, coding
723 sequence of *ZmEREK161* was PCR amplified from maize cDNA that had been
724 generated using RNA isolated from P1-5 leaf primordia. The amplified
725 sequence was subcloned into Gateway® donor vector, sequenced, and then
726 cloned into destination vector pSC310, downstream of the maize ubiquitin
727 promoter. The construct was transformed into japonica rice cultivar
728 Nipponbare, and after T1 genotyping and expression analysis, two lines of
729 *ZmUBIpro::ZmEREK161-15* and *ZmUBIpro::ZmEREK161-16* seedlings were
730 used for phenotypic analysis. Primers used are listed in **Supplemental**
731 **Dataset 8**

732

733 *Arabidopsis thaliana* cv. Columbia (Col-0) identified to be heterozygous for

734 a T-DNA insertion in *AtSHR1* (mutant line *shr-6*, [Yu et al., 2010](#)) (NASC) was
735 used for transformation of a *ZmEREB161pro::ZmEREB161* construct, but only
736 the non-mutant *SHR/SHR* progeny were characterized. The *ZmEREB161pro*
737 promoter consisted of a 2960 bp region upstream of the start codon and was
738 used instead of a constitutive promoter to reduce the risk of sterile transgenic
739 plants. After T2 genotyping and expression analysis to exclude lines with gene
740 silencing, two lines (*ZmEREB161pro::ZmEREB161-3* and
741 *ZmEREB161pro::ZmEREB161-4*) expressing *ZmEREB161* were used for
742 phenotypic analysis. Plants were grown in a glasshouse at 21°C with 16 h of
743 supplemental LED light.

744

745 Leaf 5 from 21 day old arabidopsis plants was cleared with chloral hydrate
746 solution (100% w/v chloral hydrate, 1% v/v glycerol) for 48 h, mounted on glass
747 slides using 50% glycerol and sealed with nail varnish. The leaves were
748 imaged using darkfield photography with a Nikon D300 camera, and vein
749 patterning analysed using LIMANI (Leaf Image Analysis Interface) software
750 ([Dhondt et al., 2012](#)).

751

752 **ClearSee and confocal imaging**

753 ClearSee assays were performed as previously described ([Kurihara et al.,](#)
754 [2015](#)). In brief, leaf primordium were immersed in fixation buffer (4% w/v
755 paraformaldehyde, Cat. No. AR-0211) under vacuum at 25 mbar for 1h,
756 washed once with 1× PBS, and then immersed in ClearSee reagent (10%
757 xylitol, 15% sodium deoxycholate, and 25% urea) for 3 days. The primordium
758 were flattened with the adaxial side facing up in ClearSee reagent, and
759 observed under a ZEISS LSM880 confocal microscope using a 514-nm laser
760 excitation and 520- to 560-nm emission for detection of the YFP.

761

762 **Histology**

763 Leaf primordium samples were fixed overnight in ethanol/acetic acid (3:1), and
764 embedded in Paraplast Plus (Sigma, Cat. No. P3683-1KG) using a modular
765 automated tissue processor (KD-TS3A and KD-BM/BL). Paraffin-embedded
766 samples were sectioned (5 μ m) with a Rotary microtome (Leica, RM2125).
767 Sections not dewaxed were viewed using an Olympus CX23 microscope.

768

769 ***In situ* hybridization and imaging**

770 For probe synthesis, templates of RNA probes were amplified from cDNAs
771 using gene-specific primers containing T7 promoter sequences at the 5' end.
772 *In vitro* transcription was performed with T7 RNA polymerase (Roche, Cat. No.
773 10881767001; Thermo, Cat. No. EP0111) and DIG RNA labeling mix (Roche,
774 Cat. No. 11277073910). The primers used to generate the probes are listed in
775 **Supplemental dataset 8.**

776

777 Tissue embedding and RNA *in situ* hybridization were performed as
778 described with modifications ([Langdale 1994](#); [Zeng et al, 2021](#); [Weigel et al.,](#)
779 [2002](#)). Briefly, leaf primordium were fixed with FAA (3.7% formaldehyde, 5%
780 glacial acetic acid, and 50% ethanol), embedded in paraffin and sectioned (5
781 μ m) as described above. The sections were dewaxed, digested with
782 proteinase K (Sigma, Cat. No. P6556), dehydrated with gradient ethanol, and
783 hybridized with RNA probes. After washing, the sections were incubated with
784 anti-digoxigenin-AP Fab fragments (Roche, Cat. No. 11093274910). The
785 signals were developed with the NBT/BCIP stock solution (Roche, Cat. No.
786 11681451001), and the sections were imaged using an Olympus
787 CX23/BX3-CBH microscope. Where necessary, the sections were also stained
788 with 10 mg/mL Calcofluor white for enhancing UV excited cell wall
789 autofluorescence, and imaged with a fluorescence microscope (DM6000B,
790 Leica).

791

792 **Transmission electron microscopy (TEM)**

793 Maize leaf primordium was fixed in 2.5% (w/v) glutaraldehyde overnight at 4°C.
794 Post fixation in osmium tetroxide, embedding in Spurr's resin, and other steps
795 were performed by the TEM platform in College of Life and Environmental
796 Science, Shanghai Normal University, following standard procedures. The
797 ultra-thin sections were imaged under a transmission electron microscope
798 (Tecnai Spirit G2 BioTWIN, FEI) using a voltage of 120 kV.

799

800 **Sample collection for bulk RNA-seq**

801 Maize leaf primordium of about 5 mm were partitioned under dissection
802 microscope into three parts: M3tip≈1.5 mm, M3middle≈2.5 mm, and
803 M3base≈1 mm. Maize leaf primordium of about 3 mm were partitioned into two
804 parts: M2top≈2 mm and M2base≈1 mm. About 200 leaf primordium and 10 leaf
805 sheath of 1-2 mm were obtained, partitioned, and pooled into different samples
806 with three biological replicates. The rice leaf primordium of about 5 mm were
807 also partitioned into R3tip≈1.5 mm, R3middle≈2.5 mm, and R3base≈1 mm.
808 Similarly, about 400 leaf primordium and 20 leaf sheath of 1-2 mm were
809 processed into different samples with three biological replicates. Total RNA
810 was extracted using the GeneJET Plant RNA Purification Mini Kit (Thermo
811 Scientific, Cat. No. K0801) according to the manufacturer's instructions.

812

813 **RNA-seq**

814 Six types of maize tissues and 4 types of rice tissues were sampled as
815 described above for bulk RNA sequencing. RNA-seq was performed using the
816 Illumina NovaSeq 6000 platform. Reads were mapped to the genome version
817 of *Zea mays* V4. Differentially expressed genes (DEGs) were determined by
818 DESeq2 ([Love et al., 2014](#)). Three biological replicates were used in the data
819 analyses. Pearson correlation coefficients were calculated by function "cor" in
820 the R package "stats" and visualized by function "pheatmap" in the R package

821 "pheatmap".

822

823 **Gene Ontology (GO) analysis**

824 The Plant Regulomics database was used to analyze the GO functions of
825 differentially expressed genes and FDR<0.05 was used as the selection
826 condition ([Ran et al., 2020](#)). The ggplot R package was used to visualize the
827 enrichment results.

828

829 **Sample collection and preparation of nucleus**

830 According to our pilot experiments, ~200 maize leaf primordium could yield
831 enough high quality nuclei, using the methods previously described with
832 modifications ([Thibivilliers et al., 2020](#); [Conde et al., 2021](#)). To isolate nuclei,
833 freshly collected leaf primordium of 3-4 mm (with group efforts to ensure
834 enough amount within 1 h) were placed on Petri dishes and vigorously
835 chopped with two razor blades for 5 minutes in ~500 μ L Nuclei Isolation Buffer
836 [NIB, 10 mM MES-KOH pH 5.7, 10 mM NaCl, 10 mM KCl, 2.5 mM EDTA, 250
837 mM sucrose, 0.1% protease inhibitor cocktail (Roche), and 0.1% BSA
838 (YESEN), finally adjust pH to 5.7]. Homogenized tissue was first filtered with
839 40 μ m cell strainers (Falcon, Cat. No. 352340), then filtered with 30 μ m cell
840 strainers (pluriSelect, Cat. No. 43-50030-01). Nuclei were spun down in a
841 swinging-bucket centrifuge (5 min, 500 rcf.) and re-suspended in 100 μ L
842 washing buffer (15 mM Tris-HCl pH 7.5, 160 mM KCl, 40 mM NaCl, finally
843 adjust pH to 7.0). Nuclei quantification was done by staining with trypan blue
844 (final concentration of ~0.1%), and counting on a hemocytometer for a total of
845 200,000 nuclei. Nuclei suspensions were then spun down (5 min, 500 rcf.) and
846 re-suspended in diluted nuclei buffer (10x Genomics) to a final concentration of
847 2,000~2,500 nuclei per μ L, and used as input for snRNA-seq library
848 preparation (~16,000 nuclei in total). Samples were kept on ice for all
849 intermittent steps.

850

851 **SnRNA-seq library construction**

852 Approximately 16,000 counted nuclei were loaded on Single Cell A Chip. The
853 libraries were constructed using a Chromium Controller and Chromium Single
854 Cell 30 Reagent Kits V3.1. Qualitative analysis of DNA library was performed
855 by an Agilent 2100 Bioanalyzer. Libraries were sequenced by an Illumina
856 NovaSeq 6000.

857

858 **SnRNA-seq data processing**

859 The raw scRNA-seq dataset was first analyzed by Cell Ranger 7.0.0 (10x
860 Genomics), to align reads and generate gene-cell matrices. The genome (V4)
861 and GTF annotation files (Zm-B73-REFERENCE-GRAMENE-4.0) of Zea
862 mays were downloaded from the Ensembl plant web-site.

863 The snRNA-seq data (10x Genomics Cell Ranger output) was corrected
864 for ambient RNA expression using SoupX (v1.5.0) ([Young et al., 2020](#)). SoupX
865 was run with clustering information derived from a generic processing workflow
866 in Seurat. Seurat v.4.2.1 (<https://satijalab.org/seurat/>) was used for filtering the
867 data ([Germain et al., 2021](#)), reducing dimensions, clustering cells and
868 identifying DEGs, which were implemented in R (v. 4.1.0). The UMI expression
869 matrix with genes expressed in at least 3 cells and cells expressing at least
870 200 genes was loaded into Seurat. Further cleaning steps were performed
871 using log10GenesPerUMI, and set the log10 fold change of the proportion of
872 number of genes per read counts more than 0.7 and mitochondria percentage
873 below 5%. We also used scDblFinder (v1.2.0) software for detection and
874 handling of doublets/multiplets in the snRNA-seq data ([Hao et al., 2021](#)). A
875 total of 7,473 cells with average of 2,424 genes after filtering were used for
876 downstream analysis. The SCTransform function with the default parameters
877 was used for data normalization, scaling and transformation. The dimensions
878 of the expression matrix were then reduced by the RunPCA function, and the

879 top 30 dimensions were used for FindNeighbors and UMAP analysis. The cell
880 clusters were identified by the FindClusters function with a resolution of 1.
881 Calculations for the DEGs were conducted using the FindAllMarkers function
882 with the default parameters.

883 Pseudo-time trajectory analysis of snRNA-seq data was conducted using
884 Monocle 2 ([Qiu et al., 2017](#)) or Monocle 3 ([Lee et al., 2021](#)). Gene expression
885 was plotted in Monocle 2 to track changes across pseudo-time. We also
886 plotted TFs and marker genes along the inferred developmental pseudo-time.
887

888 **SnRNA-seq versus bulk RNA-seq of primordium**

889 The overlap ratios of DEGs between different primordium partitions from bulk
890 RNA-seq with marker genes in each cell cluster from snRNA-seq were
891 obtained. The pheatmap R package was used to visualize the ratio matrix
892 results.

893

894 **Construction of co-expression network**

895 The regulation network was predicted by unsupervised learning method
896 (GENIE3) based on the expression matrix of corresponding cell clusters, and
897 was plotted by visNetwork according to the PlantTFDB database ([Jin et al.,](#)
898 [2017](#)).

899

900 **Quantification and statistical analysis**

901 One-way ANOVA with Tukey's HSD test was used to determine the statistical
902 significance among different samples. *P*-value < 0.05 is considered as
903 statistical significance, and different letters on the bar graphs indicate
904 statistically significant difference. All statistic results were generated by SPSS
905 22 and all graphs were generated by GraphPad Prism 8 (www.graphpad.com).
906 The numbers of samples and types of statistical analyses are given in figure
907 legends and the quantitative details can be found in Microsoft Excel

908 spreadsheets of the **Supplemental Dataset 10**.

909

910 **Accession numbers**

911 Accession numbers for the genes analyzed are listed in **Supplemental**
912 **dataset 7 and 8**.

913

914 **Data availability**

915 Single-cell and bulk RNA-seq data have been deposited at NCBI's Sequence
916 Read Archive (SRA) and are publicly available as of the date of publication.
917 Microscopy data reported in this paper will be shared by the lead contact upon
918 request.

919

920 **Supplemental data**

921 Supplemental Figure 1. The growth pattern of maize leaf primordia.

922 Supplemental Figure 2. The growth pattern and vein development of rice leaf
923 primordia.

924 Supplemental Figure 3. The DEGs of paired primordia samples from bulk
925 RNAseq.

926 Supplemental Figure 4. Heatmap showing the expression pattern of Kranz
927 anatomy related genes obtained after multiple filtration steps.

928 Supplemental Figure 5. The expression pattern of rice homologous genes of
929 interest in rice primodium.

930 Supplemental Figure 6. Dot map showing the top 10 marker genes from each
931 of the different cell clusters.

932 Supplemental Figure 7. The expression patterns of *ZmSHR1*, *ZmEREV184*,
933 *ZmYAB3* and *ZmGLK6*.

934 Supplemental Figure 8. *In situ* expression patterns of representative marker
935 genes from xylem and phloem related cell clusters.

936 Supplemental Figure 9. *In situ* expression patterns of representative marker

937 genes related with clusters 1 and 4.

938 Supplemental Figure 10. Transmission microscopy of maize leaf primordium

939 and M3tip enrichment of photosynthetic genes.

940 Supplemental Figure 11. Cell heterogeneity and putative bundle sheath cell

941 identity associated genes in the M3tip of maize leaf primordium.

942 Supplemental Figure 12. Expression of genes related to CK signaling pathway

943 in maize leaf primordium.

944 Supplemental Figure 13. *In situ* expression of *OsEREB161* transcripts in rice

945 leaf primordium.

946 Supplemental Figure 14. Characterization of maize *zmereb161* mutant and

947 *ZmUBIpro::ZmEREB161* transgenic rice plants.

948 Supplemental Figure 15. *ZmEREB161pro::ZmEREB161* transgenic

949 arabidopsis lines have more vasculature and a higher vein density compared

950 to wild-type.

951 Supplemental Figure 16. Comparison between current dataset and Liu et al.

952 (2022).

953 Supplemental Figure 17. “PM” and “2M” samples from the LCM data assisted

954 further annotation of mesophyll cell clusters for the snRNAseq data.

955

956 Supplemental Dataset 1. Maize-All_gene_fpkm

957 Supplemental Dataset 2. Rice-All_gene_fpkm

958 Supplemental Dataset 3. All-snRNA-seq data

959 Supplemental Dataset 4. Clustering analysis of the snRNA-seq data

960 Supplemental Dataset 5. Projection of snRNA-seq to bulk RNA-seq data of

961 leaf primordium

962 Supplemental Dataset 6. 475 DEGs involved in pseudotime analysis

963 Supplemental Dataset 7. List of marker genes and genes involved in Figure 3

964 and Figure 11

965 Supplemental Dataset 8. Primers used to generate probes for *in situ*

966 hybridization
967 Supplemental Dataset 9. The expression pattern of putative Kranz anatomy
968 regulators
969 Supplemental Dataset 10. Statistical analysis
970

971 **Author contributions**

972 JY and PW conceived the project; JY, HS, YC and PW performed the
973 experiments; OS and JAL worked on the *ZmEREB161* overexpression lines in
974 rice and Arabidopsis; JY, ST, HS, OS, CZ, JY and PW analyzed the data and
975 produced the figures; JY, YZ, XZ, JAL, JW and PW interpreted the results,
976 wrote, and revised the paper.

977

978 **Acknowledgments**

979 We thank Langdale lab for fruitful discussion. We thank Rui Zhang, Xiyu Zeng,
980 Jiachun Wu, and Qiqi Zhang for the team work of dissecting and collection of
981 maize and rice leaf primordium. We are grateful to Xiaotong Lv and Yutong Li
982 for helping with figure generation and mutant analysis. We thank Prof. Fang
983 Yang for providing the maize *pZmPIN1a::ZmPIN1a:YFP* transgenic line, and
984 Prof. Dabing Zhang for providing the rice *DR5::VENUS* line. We are grateful to
985 Dr. Hua Wang, Dr. Shuining Yin, and Dr. Naiying Yang for technical supports of
986 *in situ* hybridization, ZEISS LSM880 confocal microscope, and transmission
987 electron microscopy.

988

989 **Funding**

990 This research was funded by the STI 2030-Major Project (No. 2023ZD04072)
991 awarded to Peng Wang, the Bill and Melinda Gates Foundation C4 Rice grant
992 awarded to the University of Oxford (2015-2019) (OPP1129902), and the
993 starting grant from CEMPS.

994

995

996 **References**

- 997 Aubry S, Kelly S, Kuempers BM, Smith-Unna RD, Hibberd JM. 2014. Deep
998 evolutionary comparison of gene expression identifies parallel recruitment
999 of trans-factors in two independent origins of C4 photosynthesis. *PLoS*
1000 *Genet* 10: e1004365.
- 1001 Arrivault S, Alexandre Moraes T, Obata T, Medeiros DB, Fernie AR, Boulouis
1002 A, Ludwig M, Lunn JE, Borghi GL, Schlereth A, Guenther M, Stitt M. 2019.
1003 Metabolite profiles reveal interspecific variation in operation of the
1004 Calvin-Benson cycle in both C4 and C3 plants. *J Exp Bot.*
1005 70(6):1843-1858.
- 1006 Bassham JA. 2003. Mapping the carbon reduction cycle, a personal
1007 retrospective. *Photosynthesis Reseach* 76: 35-52.
- 1008 Bezrutczyk M, Zöllner NR, Kruse CPS, Hartwig T, Lautwein T, Köhrer K,
1009 Frommer WB, Kim JY. 2021. Evidence for phloem loading via the abaxial
1010 bundle sheath cells in maize leaves. *Plant Cell* 33(3): 531-547.
- 1011 Bräutigam A, Kajala K, Wullenweber J, Sommer M, Gagneul D, Weber KL,
1012 Carr KM, Gowik U, Mass J, Lercher MJ, Westhoff P, Hibberd JM, Weber
1013 AP. 2011. An mRNA blueprint for C4 photosynthesis derived from
1014 comparative transcriptomics of closely related C3 and C4 species. *Plant*
1015 *Physiol.* 155(1):142-56.
- 1016 Bräutigam A, Schliesky S, Külahoglu C, Osborne CP, Weber AP. 2014.
1017 Towards an integrative model of C4 photosynthetic subtypes: insights
1018 from comparative transcriptome analysis of NAD-ME, NADP-ME, and
1019 PEP-CK C4 species. *J Exp Bot.* 65(13):3579-93.
- 1020 Billakurthi K, Wrobel TJ, Bräutigam A, Weber AP, Westhoff P, Gowik U. 2018.
1021 Transcriptome dynamics in developing leaves from C3 and C4 Flaveria
1022 species reveal determinants of Kranz anatomy. *bioRxiv* doi:
1023 <http://dx.doi.org/10.1101/473181>
- 1024 Bosch M, Mayer CD, Cookson A, Donnison IS. 2011. Identification of genes
1025 involved in cell wall biogenesis in grasses by differential gene expression
1026 profiling of elongating and non-elongating maize internodes. *J Exp Bot.*
1027 62(10): 3545-3561.
- 1028 Brown WV. 1975. Variations in anatomy, associations, and origins of Kranz
1029 tissue. *American Journal of Botany* 62: 395-402.
- 1030 Burgess SJ, Granero-Moya I, Grangé-Guermente MJ, Boursnell C, Terry MJ,
1031 Hibberd JM. 2016. Ancestral light and chloroplast regulation form the
1032 foundations for C4 gene expression. *Nature Plants* 2(11): 16161.
- 1033 Bakken TE, Hodge RD, Miller JA, Yao Z, Nguyen TN, Aevermann B, Barkan E,
1034 Bertagnolli D, Casper T, Dee N, Garren E, Goldy J, Graybuck LT, Kroll M,
1035 Lasken RS, Lathia K, Parry S, Rimorin C, Scheuermann RH, Schork NJ,
1036 Shehata SI, Tieu M, Phillips JW, Bernard A, Smith KA, Zeng H, Lein ES,
1037 Tasic B. 2018. Single-nucleus and single-cell transcriptomes compared in

- 1038 matched cortical cell types. *PLoS One.* 13(12):e0209648.
- 1039 Chang YM, Liu WY, Shih ACC, Shen MN, Lu CH, Lu MYJ, Yang HW, Wang
1040 TY, Chen SCC, Chen SM, Li WH, Ku MSB. 2012. Characterizing
1041 regulatory and functional differentiation between maize mesophyll and
1042 bundle sheath cells by transcriptomic analysis. *Plant Physiol.* 160:
1043 165-177.
- 1044 Christin PA, Boxall SF, Gregory R, Edwards EJ, Hartwell J, Osborne CP. 2013.
1045 Parallel recruitment of multiple genes into c4 photosynthesis. *Genome
1046 Biol Evol.* 5(11):2174-87.
- 1047 Covshoff S, Szecowka M, Hughes TE, Smith-Unna R, Kelly S, Bailey KJ, Sage
1048 TL, Pachebat JA, Leegood R, Hibberd JM. 2016. C4 Photosynthesis in the
1049 Rice Paddy: Insights from the Noxious Weed *Echinochloa glabrescens*.
1050 *Plant Physiol.* 170(1):57-73.
- 1051 Conde D, Triozzi PM, Balmant KM, Doty AL, Miranda M, Boullosa A, Schmidt
1052 HW, Pereira WJ, Dervinis C, Kirst M. 2021. A robust method of nuclei
1053 isolation for single-cell RNA sequencing of solid tissues from the plant
1054 genus *Populus*. *PLoS One* 16(5): e0251149.
- 1055 Conklin PA, Strable J, Li S, Scanlon MJ. 2019. On the mechanisms of
1056 development in monocot and eudicot leaves. *New Phytol* 221(2): 706-724.
- 1057 Ding Z, Weissmann S, Wang M, Du B, Huang L, Wang L, Tu X, Zhong S,
1058 Myers C, Brutnell TP, Sun Q, Li P. 2015. Identification of
1059 Photosynthesis-Associated C4 Candidate Genes through Comparative
1060 Leaf Gradient Transcriptome in Multiple Lineages of C3 and C4 Species.
1061 *PLoS One.* 10(10):e0140629.
- 1062 Dhondt S, Van Haerenborgh D, Van Cauwenbergh C, Merks RMH, Philips W,
1063 Beemster GTS & Inze D. 2012. Quantitative analysis of venation patterns
1064 of *Arabidopsis* leaves by supervised image analysis. *The Plant Journal*,
1065 69, 553-563.
- 1066 Dong WT, Chang TG, Dai HL, Yang WB, Su Y, Chao DY, Zhu XG, Wang P, Yu
1067 N, Wang ET. 2023. Creating a C4-like vein pattern in rice by manipulating
1068 SHORT ROOT and auxin levels. *Science Bulletin* 68(24):3133-3136. doi:
1069 10.1016/j.scib.2023.10.005.
- 1070 Edwards EJ, Still CJ. 2008. Climate, phylogeny and the ecological distribution
1071 of C4 grasses. *Ecol Lett* 11(3): 266-276.
- 1072 Fouracre JP, Ando S, Langdale JA. 2014. Cracking the Kranz enigma with
1073 systems biology. *Journal of Experimental Botany* 65(13): 3327-3339.
- 1074 Furbank RT. 2017. Walking the C4 pathway: past, present, and future. *J Exp
1075 Bot* 68(2): 4057-4066.
- 1076 Furumoto T, Yamaguchi T, Ohshima-Ichie Y, Nakamura M, Tsuchida-Iwata Y,
1077 Shimamura M, Ohnishi J, Hata S, Gowik U, Westhoff P, Bräutigam A,
1078 Weber AP, Izui K. 2011. A plastidial sodium-dependent pyruvate
1079 transporter. *Nature.* 476(7361):472-5.
- 1080 Frey M, Chomet P, Glawischnig E, Stettner C, Grün S, Winklmair A, Eisenreich
1081 W, Bacher A, Meeley RB, Briggs SP, Simcox K, Gierl A. 1997. Analysis of

- 1082 a chemical plant defense mechanism in grasses. *Science* 277(5326):
1083 696-699.
- 1084 Farmer A, Thibivilliers S, Ryu KH, Schiefelbein J, Libault M. 2021.
1085 Single-nucleus RNA and ATAC sequencing reveals the impact of
1086 chromatin accessibility on gene expression in *Arabidopsis* roots at the
1087 single-cell level. *Mol Plant*. 14(3):372-383.
- 1088 Ghannoum, O., Evans, J.R., von Caemmerer, S. 2010. Chapter 8 Nitrogen and
1089 Water Use Efficiency of C4 Plants. In: Raghavendra, A., Sage, R. (eds)
1090 C4 Photosynthesis and Related CO₂ Concentrating Mechanisms.
1091 Advances in Photosynthesis and Respiration, vol 32. Springer, Dordrecht.
- 1092 Gowik U, Bräutigam A, Weber KL, Weber AP, Westhoff P. 2011. Evolution of
1093 C4 photosynthesis in the genus *Flaveria*: how many and which genes
1094 does it take to make C4? *Plant Cell*. 23(6):2087-105.
- 1095 Germain PL, Lun A, Garcia Meixide C, Macnair W, Robinson MD. 2021.
1096 Doublet identification in single-cell sequencing data using scDblFinder.
1097 *F1000Res* 10:979.
- 1098 Hao Y, Hao S, Andersen-Nissen E, et al. 2021. Integrated analysis of
1099 multimodal single-cell data. *Cell* 184(13): 3573-3587.
- 1100 Hatch MD, Slack CR. 1998. C4 photosynthesis, discovery, resolution,
1101 recognition and significance. In: Kung S, Yang S, eds. Discoveries in plant
1102 biology, Vol 1. Singapore: World Scientific Publishing, 175-196.
- 1103 Hendron RW, Kelly S. 2020. Subdivision of Light Signaling Networks
1104 Contributes to Partitioning of C4 Photosynthesis. *Plant Physiol*.
1105 182(3):1297-1309.
- 1106 Huang P, Brutnell TP. 2016. A synthesis of transcriptomic surveys to dissect
1107 the genetic basis of C4 photosynthesis. *Current Opinion in Plant Biology*
1108 31: 91-99.
- 1109 Hughes TE, Sedelnikova O, Thomas M, Langdale JA. 2023. Mutations in
1110 NAKED-ENDOSPERM IDD genes reveal functional interactions with
1111 SCARECROW during leaf patterning in C4 grasses. *PLoS Genet* 19(4):
1112 e1010715.
- 1113 Han M, Park Y, Kim I, Kim EH, Yu TK, Rhee S, Suh JY. 2014. Structural basis
1114 for the auxin-induced transcriptional regulation by Aux/IAA17. *Proc Natl
1115 Acad Sci U S A*. 111(52):18613-8.
- 1116 Jin J, Tian F, Yang DC, et al. 2017. PlantTFDB 4.0: toward a central hub for
1117 transcription factors and regulatory interactions in plants. *Nucleic Acids
1118 Res* 45(D1): D1040-D1045. doi:10.1093/nar/gkw982
- 1119 John CR, Smith-Unna RD, Woodfield H, Covshoff S, Hibberd JM. 2014.
1120 Evolutionary convergence of cell-specific gene expression in independent
1121 lineages of C4 grasses. *Plant Physiol* 165: 6275.
- 1122 Kitomi Y, Ito H, Hobo T, Aya K, Kitano H, Inukai Y. 2011. The auxin responsive
1123 AP2/ERF transcription factor CROWN ROOTLESS5 is involved in crown
1124 root initiation in rice through the induction of OsRR1, a type-A response
1125 regulator of cytokinin signaling. *Plant J*. 67(3):472-84.

- 1126 Külahoglu C, Denton AK, Sommer M, Maß J, Schliesky S, Wrobel TJ,
1127 Berckmans B, Gongora-Castillo E, Buell CR, Simon R, De Veylder L,
1128 Bräutigam A, Weber AP. 2014. Comparative transcriptome atlases reveal
1129 altered gene expression modules between two Cleomaceae C3 and C4
1130 plant species. *Plant Cell.* 26(8):3243-60.
- 1131 Kurihara D, Mizuta Y, Sato Y. & Higashiyama T. 2015. ClearSee: a rapid optical
1132 clearing reagent for whole-plant fluorescence imaging. *Development* 142,
1133 4168-4179.
- 1134 Langdale JA. 1994. *In situ Hybridization*. In: Freeling, M., Walbot, V. (eds) *The*
1135 *Maize Handbook*. Springer Lab Manuals. Springer, New York, NY.
1136 https://doi.org/10.1007/978-1-4612-2694-9_18.
- 1137 Langdale JA, Zelitch I, Miller E & Nelson T. 1988. Cell position and light
1138 influence C4 versus C3 patterns of photosynthetic gene expression in
1139 maize. *EMBO J.* 7: 3643-3651.
- 1140 Li P, Ponnala L, Gandotra N, Wang L, Si Y, Tausta SL, Kebrom TH, Provart N,
1141 Patel R, Myers CR, Reidel EJ, Turgeon R, Liu P, Sun Q, Nelson T,
1142 Brutnell TP. 2010. The developmental dynamics of the maize leaf
1143 transcriptome. *Nature Genetics* 42: 1060-1067.
- 1144 Liu Q, Teng S, Deng C, Wu S, Li H, Wang Y, Wu J, Cui X, Zhang Z, Quick WP,
1145 Brutnell TP, Sun X, Lu T. 2023. SHORT ROOT and INDETERMINATE
1146 DOMAIN family members govern PIN-FORMED expression to regulate
1147 minor vein differentiation in rice. *Plant Cell* doi: 10.1093/plcell/koad125.
- 1148 Liu WY, Chang YM, Chen SC, Lu CH, Wu YH, Lu MY, Chen DR, Shih AC,
1149 Sheue CR, Huang HC, Yu CP, Lin HH, Shiu SH, Ku MS, Li WH. 2013.
1150 Anatomical and transcriptional dynamics of maize embryonic leaves
1151 during seed germination. *Proc Natl Acad Sci U S A.* 110(10):3979-84.
- 1152 Liu WY, Lin HH, Yu CP, Chang CK, Chen HJ, Lin JJ, Lu MJ, Tu SL, Shiu SH,
1153 Wu SH, Ku MSB, Li WH. 2020. Maize ANT1 modulates vascular
1154 development, chloroplast development, photosynthesis, and plant growth.
1155 *Proc Natl Acad Sci U S A.* 117(35):21747-21756.
- 1156 Liu WY, Yu CP, Chang CK, Chen HJ, Li MY, Chen YH, Shiu SH, Ku MSB, Tu
1157 SL, Lu MJ, Li WH. 2022. Regulators of early maize leaf development
1158 inferred from transcriptomes of laser capture microdissection
1159 (LCM)-isolated embryonic leaf cells. *Proc Natl Acad Sci U S A* 119(35):
1160 e2208795119.
- 1161 Love MI, Huber W & Anders S. 2014. Moderated estimation of fold change and
1162 dispersion for RNA-seq data with DESeq2. *Genome Biol* 15, 550.
- 1163 Lee RD, Munro SA, Knutson TP, LaRue RS, Heltemes-Harris LM, Farrar MA.
1164 Single-cell analysis identifies dynamic gene expression networks that
1165 govern B cell development and transformation. *Nat Commun.* 2021 Nov
1166 25;12(1):6843.
- 1167 Mallmann J, Heckmann D, Bräutigam A, Lercher MJ, Weber AP, Westhoff P,
1168 Gowik U. 2014. The role of photorespiration during the evolution of C4
1169 photosynthesis in the genus *Flaveria*. *Elife.* 3:e02478.

- 1170 Majeran W, van Wijk KJ. 2009. Cell-type-specific differentiation of chloroplasts
1171 in C4 plants. *Trends in Plant Science* 14(2): 100-109.
- 1172 Nazipova A, Gorshkov O, Eneyskaya E, Petrova N, Kulminskaya A,
1173 Gorshkova T, Kozlova L. 2022. Forgotten Actors: Glycoside Hydrolases
1174 During Elongation Growth of Maize Primary Root. *Front Plant Sci* 12:
1175 802424.
- 1176 Ortiz-Ramírez C, Guillotin B, Xu X, Rahni R, Zhang S, Yan Z, Coqueiro Dias
1177 Araujo P, Demesa-Arevalo E, Lee L, Van Eck J, Gingeras TR, Jackson D,
1178 Gallagher KL, Birnbaum KD. 2021. Ground tissue circuitry regulates organ
1179 complexity in maize and *Setaria*. *Science* 374(6572): 1247-1252.
- 1180 Perico C, Tan S, Langdale JA. 2022. Developmental regulation of leaf venation
1181 patterns: monocot versus eudicots and the role of auxin. *New Phytologist*
1182 234:783-803.
- 1183 Perico C, Zaidem M, Sedelnikova O, Bhattacharya S, Korfhage C, Langdale
1184 JA. 2024. Spatial transcriptomics reveals distinct lineage identities for
1185 major and minor vein initiation during maize leaf development. *bioRxiv*
1186 2024.02.05.578898; doi: <https://doi.org/10.1101/2024.02.05.578898>
- 1187 Pick TR, Bra" utigam A, Schlu" ter U, Denton AK, Colmsee C, Scholz U,
1188 Fahnenschich H, Pieruschka R, Rascher U, Sonnewald U, Weber AP. 2011.
1189 Systems analysis of a maize leaf developmental gradient redefines the
1190 current C4 model and provides candidates for regulation. *Plant Cell* 23:
1191 4208-4220.
- 1192 Qiu X, Mao Q, Tang Y, et al. 2017. Reversed graph embedding resolves
1193 complex single-cell trajectories. *Nat Methods* 14(10): 979-982.
1194 doi:10.1038/nmeth.4402
- 1195 Robil JM, McSteen P. 2023. Hormonal control of medial-lateral growth and vein
1196 formation in the maize leaf. *New Phytol.* 238(1):125-141.
- 1197 Ran X, Zhao F, Wang Y, et al. 2020. Plant Regulomics: a data-driven interface
1198 for retrieving upstream regulators from plant multi-omics data. *Plant J*
1199 101(1): 237-248.
- 1200 Rohrmeier T, Lehle L. 1993. WIP1, a wound-inducible gene from maize with
1201 homology to Bowman-Birk proteinase inhibitors. *Plant Mol Biol* 22(5):
1202 783-792.
- 1203 Sharman BC. 1942. Developmental Anatomy of the Shoot of *Zea mays* L.
1204 *Annals of Botany* 6(2): 245-282.
- 1205 Singh P, Stevenson SR, Reyna-Llorens I, Reeves G, Schreier TB, Hibberd JM.
1206 2020. Upregulation and cell specificity of C4 genes are derived from
1207 ancestral C3 gene regulatory networks. *bioRxiv* 2020.07.03.186395.
- 1208 Satterlee JW, Strable J, Scanlon MJ. 2020. Plant stem-cell organization and
1209 differentiation at single-cell resolution. *Proc Natl Acad Sci U S A* 117(52):
1210 33689-33699.
- 1211 Seyfferth C, Renema J, Wendrich JR, Eekhout T, Seurinck R, Vandamme N,
1212 Blob B, Saeys Y, Helariutta Y, Birnbaum KD, De Rybel B. 2021 Advances
1213 and Opportunities in Single-Cell Transcriptomics for Plant Research.

- 1214 Annu Rev Plant Biol. 72:847-866.
1215 Tausta SL, Li P, Si Y, Gandotra N, Liu P, Sun Q, Brutnell TP, Nelson T. 2014.
1216 Developmental dynamics of Kranz cell transcriptional specificity in maize
1217 leaf reveals early onset of C4-related processes. J Exp Bot 65:
1218 3543-3555.
1219 Thibivilliers S, Anderson D, Libault M. 2020. Isolation of Plant Root Nuclei for
1220 Single Cell RNA Sequencing. Curr Protoc Plant Biol 5(4): e20120.
1221 von Caemmerer S, Ghannoum O, Furbank RT. 2017. C4 photosynthesis: 50
1222 years of discovery and innovation. J Exp Bot 68(2): 97-102.
1223 van Campen JC, Yaapar MN, Narawatthana S, Lehmeier C, Wanchana S,
1224 Thakur V, Chater C, Kelly S, Rolfe SA, Quick WP, Fleming AJ. 2016.
1225 Combined Chlorophyll Fluorescence and Transcriptomic Analysis
1226 Identifies the P3/P4 Transition as a Key Stage in Rice Leaf Photosynthetic
1227 Development. Plant Physiol 170(3):1655-1674.
1228 Vlad D, Zaidem M, Perico C, Sedelnikova O, Bhattacharya S, Langdale JA.
1229 2023. The WIP6 transcription factor *TOO MANY LATERALS* specifies
1230 vein type in C4 and C3 grass leaves. bioRxiv 2023.12.20.572592; doi:
1231 <https://doi.org/10.1101/2023.12.20.572592>
1232 Wang L, Czedik-Eysenberg A, Mertz RA, Si Y, Tohge T, Nunes-Nesi A,
1233 Arrivault S, Dedow LK, Bryant DW, Zhou W, Xu J, Weissmann S, Studer A,
1234 Li P, Zhang C, LaRue T, Shao Y, Ding Z, Sun Q, Patel RV, Turgeon R,
1235 Zhu X, Provart NJ, Mockler TC, Fernie AR, Stitt M, Liu P, Brutnell TP.
1236 2014. Comparative analyses of C4 and C3 photosynthesis in developing
1237 leaves of maize and rice. Nature Biotechnology 32: 1158-1165.
1238 Wang P, Kelly S, Fouracre JP, Langdale JA. 2013. Genome-wide transcript
1239 analysis of early maize leaf development reveals gene cohorts associated
1240 with the differentiation of C4 Kranz anatomy. Plant Journal 75(4):
1241 656-670.
1242 Wang P, Vlad D, Langdale JA. 2016. Finding the genes to build C4 rice.
1243 Current Opinion in Plant Biology 31: 44-50.
1244 Weigel, D. A. G. J. 2022. *Arabidopsis: A Laboratory Manual* (Cold Spring
1245 Harbor Laboratory Press).
1246 Young MD, Behjati S. 2020. SoupX removes ambient RNA contamination from
1247 droplet-based single-cell RNA sequencing data. Gigascience
1248 9(12):giaa151. doi:10.1093/gigascience/giaa151
1249 Xu X, Crow M, Rice BR, Li F, Harris B, Liu L, Demesa-Arevalo E, Lu Z, Wang L,
1250 Fox N, Wang X, Drenkow J, Luo A, Char SN, Yang B, Sylvester AW,
1251 Gingeras TR, Schmitz RJ, Ware D, Lipka AE, Gillis J, Jackson D. 2021.
1252 Single-cell RNA sequencing of developing maize ears facilitates functional
1253 analysis and trait candidate gene discovery. Dev Cell 56(4): 557-568.e6.
1254 Xia K, Sun HX, Li J, Li J, Zhao Y, Chen L, Qin C, Chen R, Chen Z, Liu G, Yin R,
1255 Mu B, Wang X, Xu M, Li X, Yuan P, Qiao Y, Hao S, Wang J, Xie Q, Xu J,
1256 Liu S, Li Y, Chen A, Liu L, Yin Y, Yang H, Wang J, Gu Y, Xu X. 2022. The
1257 single-cell stereo-seq reveals region-specific cell subtypes and

- 1258 transcriptome profiling in *Arabidopsis* leaves. *Dev Cell.*
1259 57(10):1299-1310.e4.
- 1260 Yang F, Bui HT, Pautler M, Llaca V, Johnston R, Lee BH, Kolbe A, Sakai H,
1261 Jackson D. 2015. A maize glutaredoxin gene, abphyl2, regulates shoot
1262 meristem size and phyllotaxy. *Plant Cell* 27(1): 121-131.
- 1263 Yu NI, Lee SA, Lee MH, Heo JO, Chang KS & Lim J. 2010. Characterization of
1264 SHORT-ROOT function in the *Arabidopsis* root vascular system.
1265 *Molecules and cells* 30, 113-119.
- 1266 Zeng J, Li X, Ge Q. et al. 2021. Endogenous stress-related signal directs shoot
1267 stem cell fate in *Arabidopsis thaliana*. *Nat Plants* 7, 1276-1287.
- 1268 Zhong W, Zheng C, Dong L et al. 2023. The maize callose synthase SLM1 is
1269 critical for a normal growth by controlling the vascular development. *Mol*
1270 *Breeding* 43, 2.
- 1271
- 1272

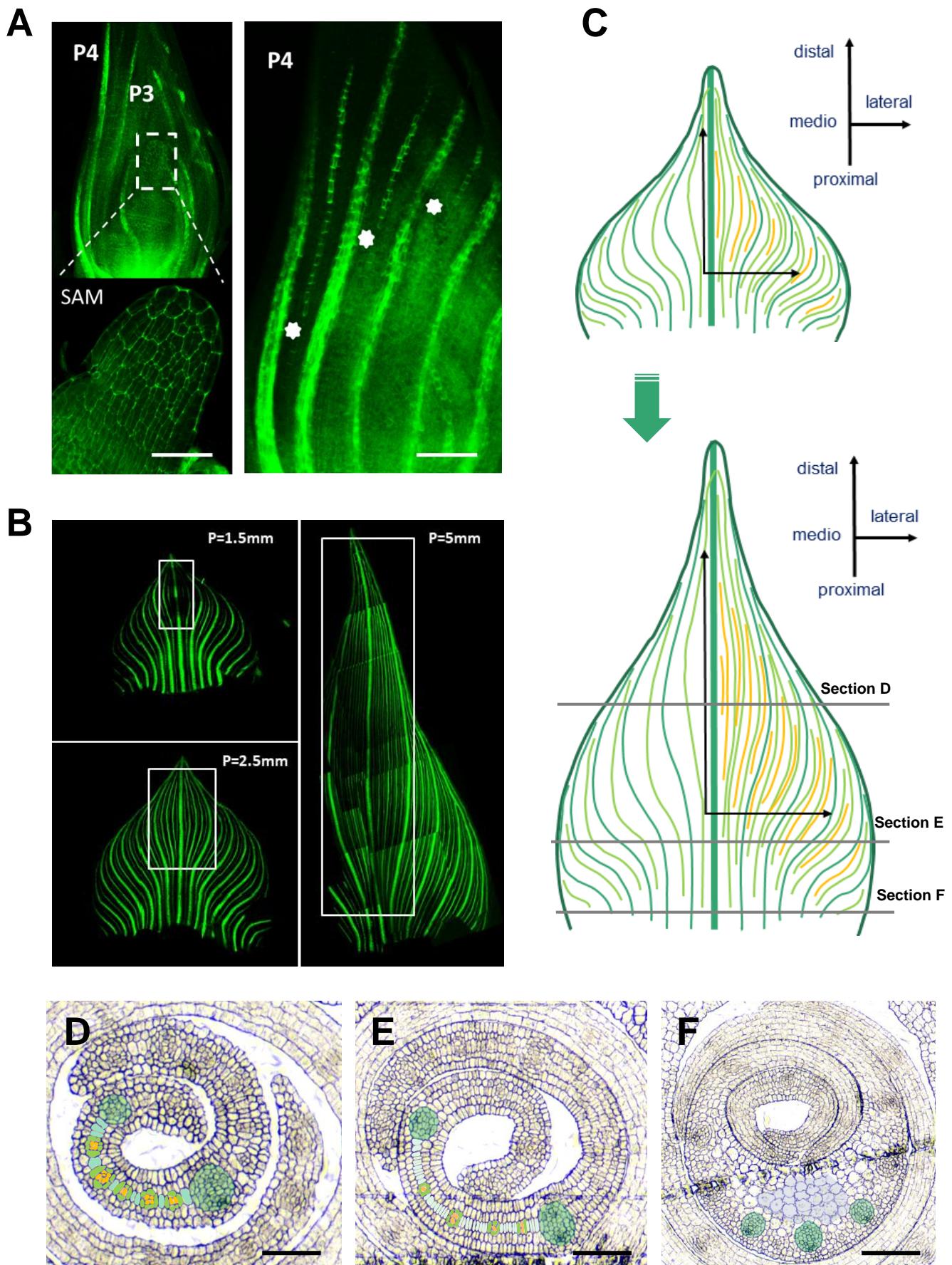


Figure 1. Analysis of vein development patterns in maize P4 leaf primordium with proximal-distal (PD), medial-lateral (ML), and cross-section dimensions.

Figure 1. Analysis of vein development patterns in maize P4 leaf primordium with proximal-distal (PD), medial-lateral (ML), and cross-section dimensions.

A. Confocal image showing *pZmPIN1a::ZmPIN1a:YFP* fluorescence marked developing veins in maize leaf primordium. Left: SAM plus four most recently initiated leaf primordium (P1-P4). Right: greater magnification of P4, asterisks indicate the leading ends of elongating veins. P, plastochron; SAM, shoot apical meristem. Scale bar: 50 μ m.

B. The primodia of 1.5mm, 2.5mm, and 5mm in size are detached, unrolled, and flattened with the adaxial side facing up (P=1.5mm means the length of primordium is 1.5 mm). Developing veins and procambial strands marked by PIN1a-YFP fluorescence are shown to be most proliferative in the lance-shaped regions (indicated by white rectangles) closer to the mid-rib, along with PD elongation and ML expansion.

C. Schematic depiction (according to unrolled and flattened samples in B) of vein formation and organization along with PD elongation and ML expansion of maize primordia, highlighting the recently and densely proliferated intermediate veins (marked in orange colour, and enriched in lance-shaped regions closer to mid-rib and middle-upper part of the primordium). Mid-rib and lateral veins are coloured dark green; older intermediate veins are coloured light green.

D-F. Transverse sections of the upper middle (D), lower middle (E), and base (F) of P4 leaf primordia highlighting part of the middle layer of ground meristem cells, which give rise to the procambial strands and intermediate veins (orange) and eventually lead to the differentiation of Kranz-type bundle sheath (light green) and mesophyll cells (water green). The Kranz anatomy becomes evident in (D) with more developed bundle sheath and reduced number of mesophyll cells between veins, while in (E) multiple middle ground meristem cells or mesophyll precursors (water white) exist between veins, representing an actively developing stage of pre-Kranz anatomy. At the base section, parenchymal cells (light purple) next to the mid-rib (dark green) are indicated. Scale bar: 60 μ m.

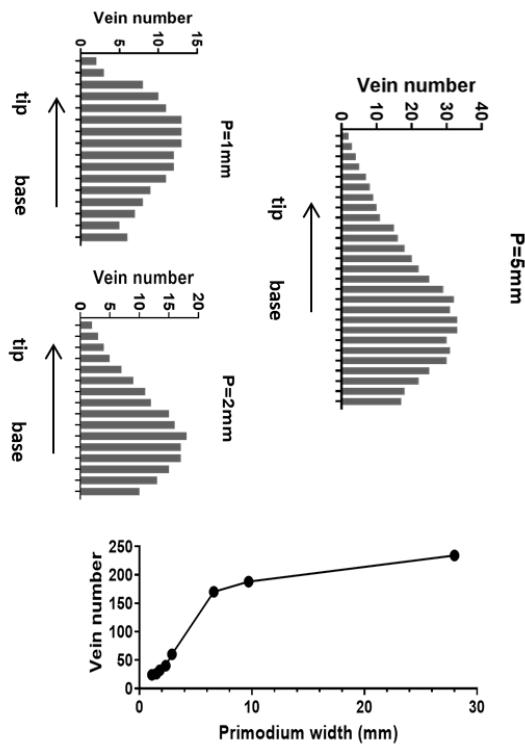
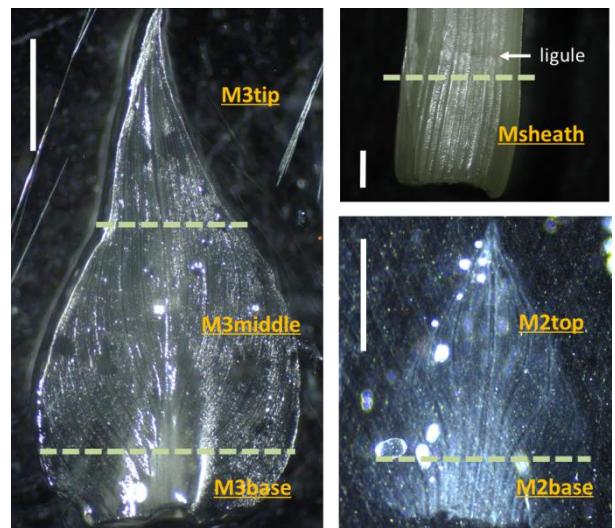
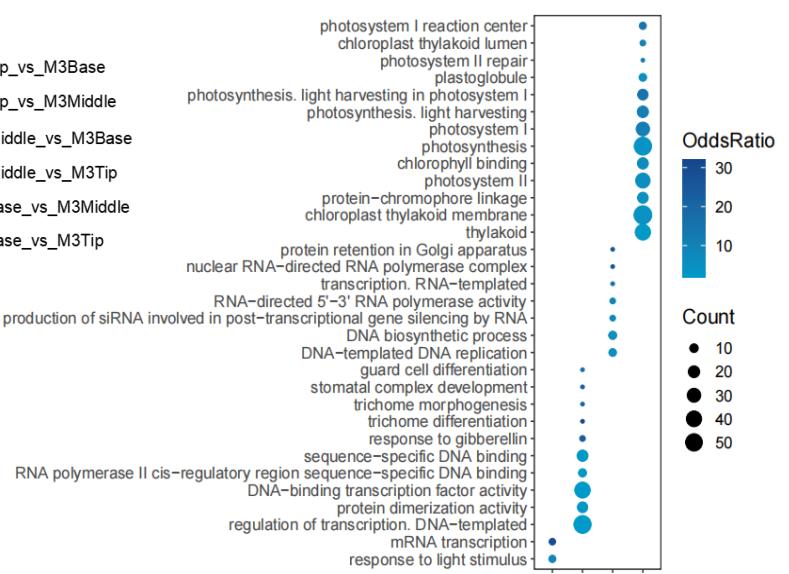
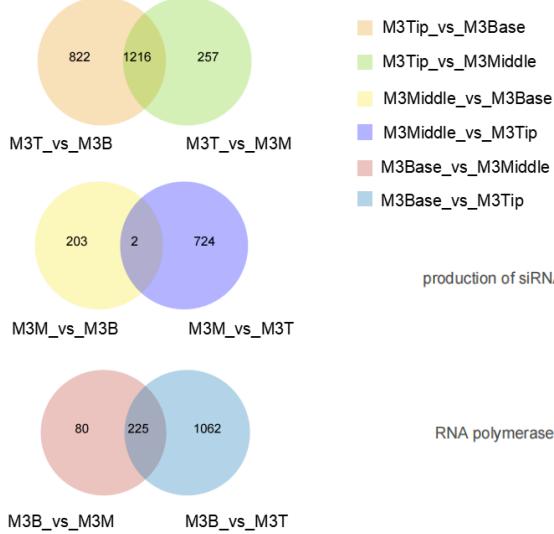




A**B****C**

Figure 2. Bulk RNA-seq of leaf primordia according to proximal–distal developmental gradients.

Figure 2. Bulk RNA-seq of leaf primordia according to proximal–distal developmental gradients.

A. Vein number distribution in maize leaf primordia from tip to base. Veins were counted from serial paraffin sections and half of the number from each section were presented in the column charts. The longitudinal length of leaf primordia were 1 mm, 2 mm, and 5mm, respectively. In addition, a vein number growing curve from primordia or leaves of different developmental stages is presented in the line chart. Vein numbers across the maximal primordium or leaf width were counted, from samples ranging from early primordia to fully expanded leaves.

B. Images indicating the 6 types of maize tissues sampled for bulk RNA sequencing. Left: the P4 leaf primordium of about 5 mm were partitioned under dissection microscope into three parts: M3tip≈1.5 mm, M3middle≈2.5 mm, and M3base≈1 mm. Bottom right: the P4 leaf primordium of about 3 mm were partitioned into two parts: M2top≈2 mm, and M2base≈1 mm. Top right: Msheath represents the leaf sheath of 1-2 mm, cut below the dashed line from P6. Scale bar: 1000 μ m. Note: Dashed lines indicate the position where it was partitioned; Sections D and E from Figure 1 represent the Kranz developmental gradients within M3middle or M2top.

C. Left: Venn diagram showing overlap of DEGs grouped on the basis of M3tip, M3middle, and M3base respectively. Right: Graph summarizing representative enriched GO terms describing the significantly upregulated genes in each type of tissue (from the overlap of M3tip group, the overlap of M3base group, and all of the M3middle group). Point size represents the gene counts.

A

Filtration

Step 1a: M3middle>M3tip **AND** M3middle>M3base **AND** M3middle>Msheath, **n=6044**

Step 1b: Step 1a **AND** M3tip>Msheath **AND** M3base>Msheath, **n=2580**

Step 2a: R3middle>R3tip **AND** R3middle>R3base **AND** R3middle>Rsheath, **x= 6250**

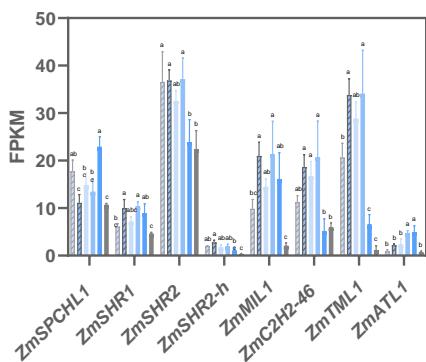
Step 2b: Step 1b – y^* (575), **n=2005**

Step 3a: M2top>M2base **AND** M2top>Msheath **AND** M2base>Msheath, **n=6493**

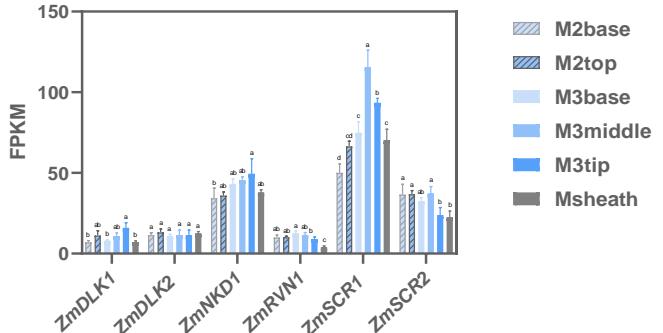
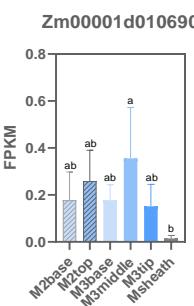
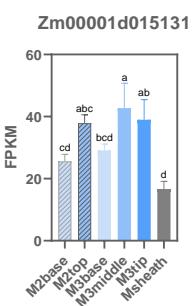
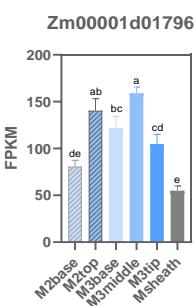
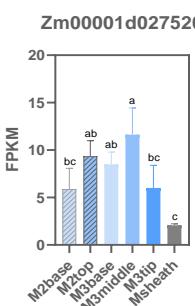
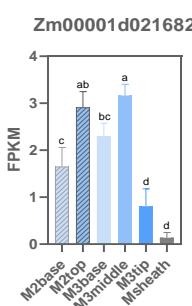
Step 3b: Step 2b **AND** Step 3a, **n=1001**

Step 4a: Step2b **AND** MFP3/4 >MHP3/4 **AND** MFP<MFP3/4>MFP5, **n=271**

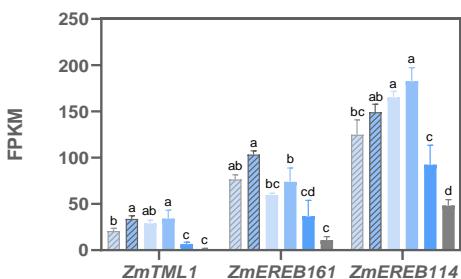
Step 4b: Step3b **AND** MFP3/4 >MHP3/4 **AND** MFP<MFP3/4>MFP5, **n=169**


Step 5a: RP3>RP4>RP5, **y=9535**

Step 5b: Step 4a – y^* (47), **n=224**







Step 5c: Step 4b – y^* (27), **n=142**

B


Genes proposed to function in procambial initiation

Genes proposed to function in BS- and M-cell specification

C

TFs

others

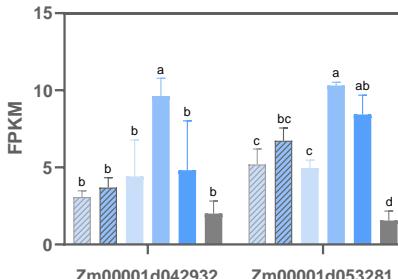


Figure 3. Candidate regulators of Kranz anatomy development.

Figure 3. Candidate regulators of Kranz anatomy development.

A. Filtration steps involving the maize and rice samples to identify putative regulators of Kranz anatomy. M: maize; R: rice; FP: foliar primordium; HP: husk primordium; RP: rice primordium. The transcriptome data from [Wang et al., 2013 \(SRS394616–SRS394626\)](#) and [van Campen et al., 2016 \(Supplemental Data S1\)](#) were used for comparison. The filtration was based on the differential transcript abundance of the given gene among the samples for comparison.

Step 1: By comparing FPKM values, 2580 genes were obtained with higher expression in 5 mm maize leaf primordia than in leaf sheath and highest expression in M3middle.

Step 2: In the 5 mm rice leaf primordium, 6250 genes were obtained with the highest expression in R3middle; By comparing and analysing the genes highly expressed in the middle of leaf primordia of maize and rice, and excluding the background of developmental gradient of grass leaves, 2005 genes specifically and highly expressed in M3middle were obtained.

Step 3: 6493 genes were obtained in 3 mm maize leaf primordium, with the highest expression in M2top; Considering the similarity of Kranz developmental status in M3middle and M2top, 1001 genes highly expressed in both samples after removing the grass leaf background were obtained.

Step 4: Previous work obtained 2935 genes highly expressed in P3/4 leaf primordia by comparing with P4, P5 leaf primordia, and husk primordia (Wang et al., 2013); After comparing with 2005 genes with high expression in M3middle (from step 2), 271 common highly expressed genes were obtained; Compared with 1001 genes highly expressed in both M3middle and M2top (from step 3), 169 common highly expressed genes were obtained.

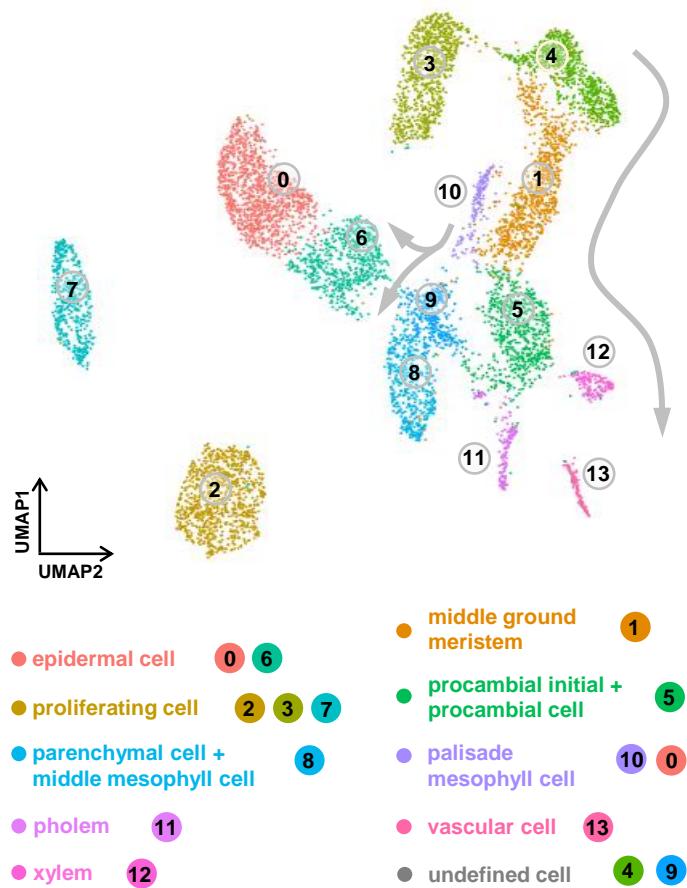
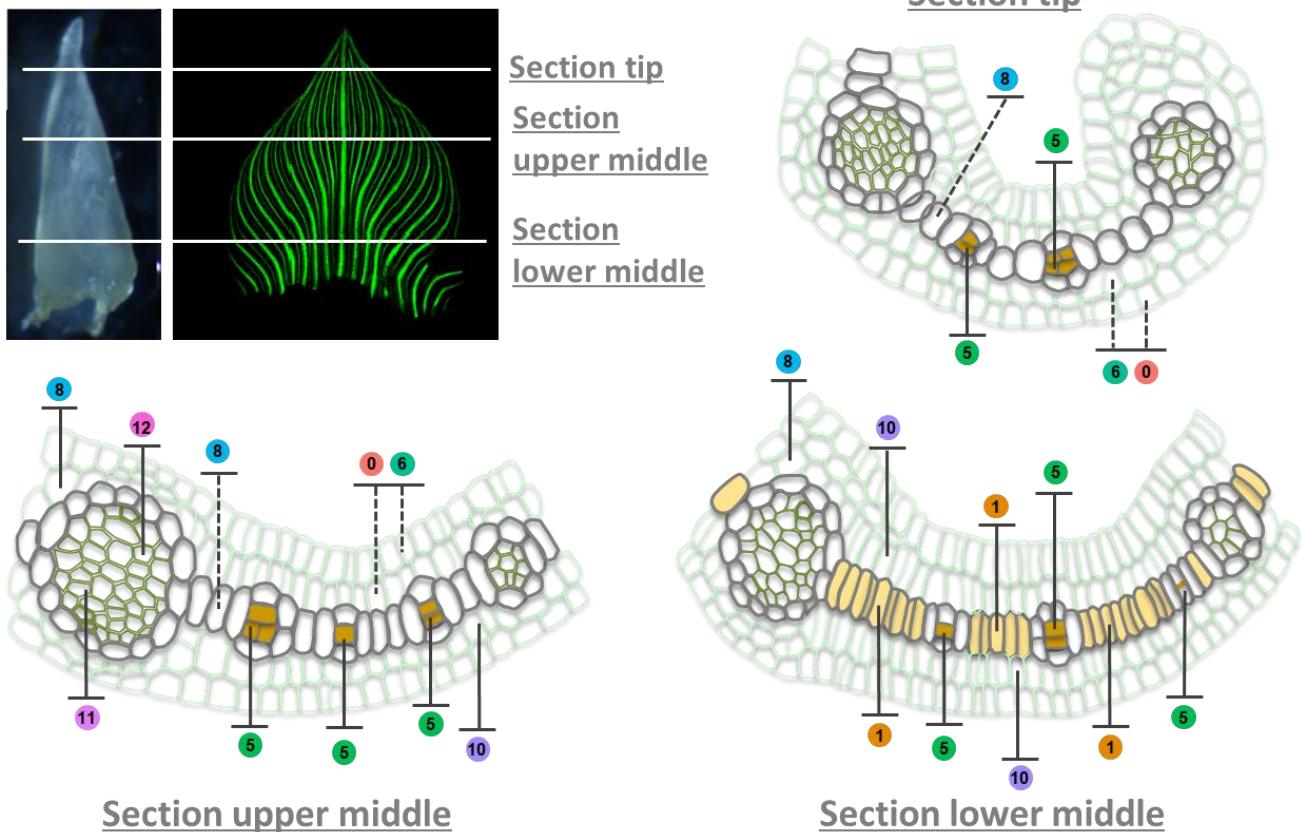
Step 5: Another previous work reported 9535 genes with higher expression in P3 than in P4 and P5 of rice leaf primordia (van Campen et al., 2016); Using the above information to further exclude developmental background of grass leaves, we finally obtained 224 genes with high expression in M3middle, and 142 genes with high expression in both M3middle and M2top.

Steps 2b, 5b, and 5c were performed to exclude the common background of maize and rice leaf development. In step 2b, x^* (575) is the number of maize homolog genes available out of the 6250 rice genes from step 2a, that were also found in the 2580 genes from step 1b. Similarly, y^* (47) is the number of maize homolog genes available out of the 9535 rice genes from step 5a, that were also found in the 271 genes from step 4a. $*y$ (27) is the number of maize homolog genes available out of the 9535 rice genes from step 5a, that were found in the 169 genes from step 4b.

B. Bar graph illustrating the expression patterns of previously proposed genes ([Wang et al., 2013](#); [Fouracre et al., 2014](#)) across 6 maize tissue types.

C. Bar graph illustrating the expression profiles of putative regulators of Kranz anatomy identified in this study.

The gene list of B and C is given in Supplemental dataset 7. Error bars represent $\text{mean} \pm \text{SD}$ ($n=3$). Statistical analysis in B and C was performed using one-way ANOVA with Tukey's HSD test; $P < 0.05$, different letters on the bar graphs indicate statistically significant difference.



A**B****C**

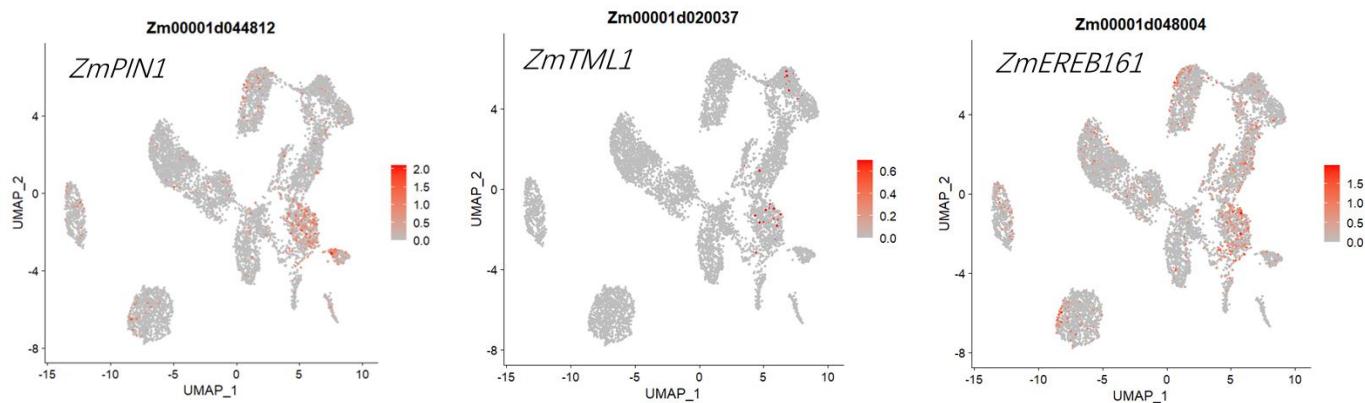
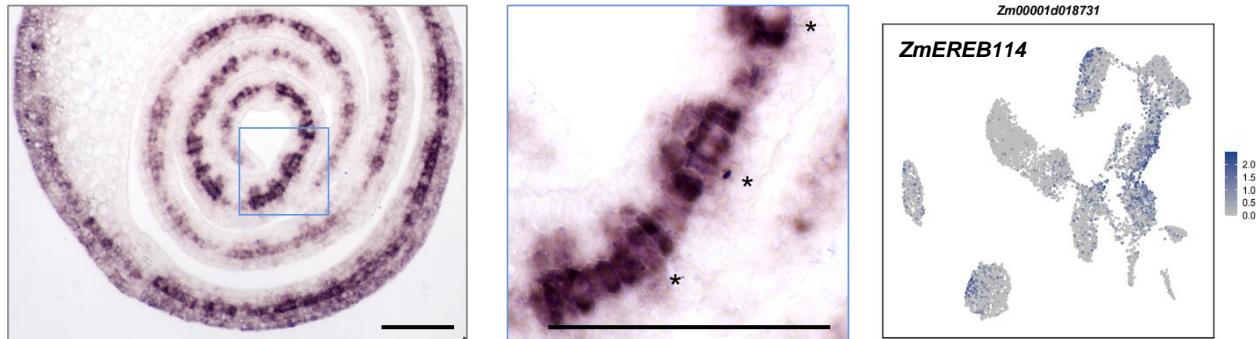
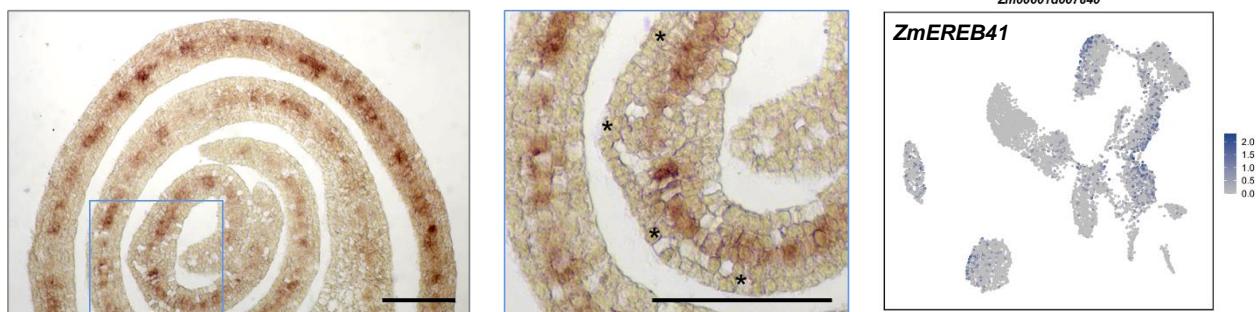
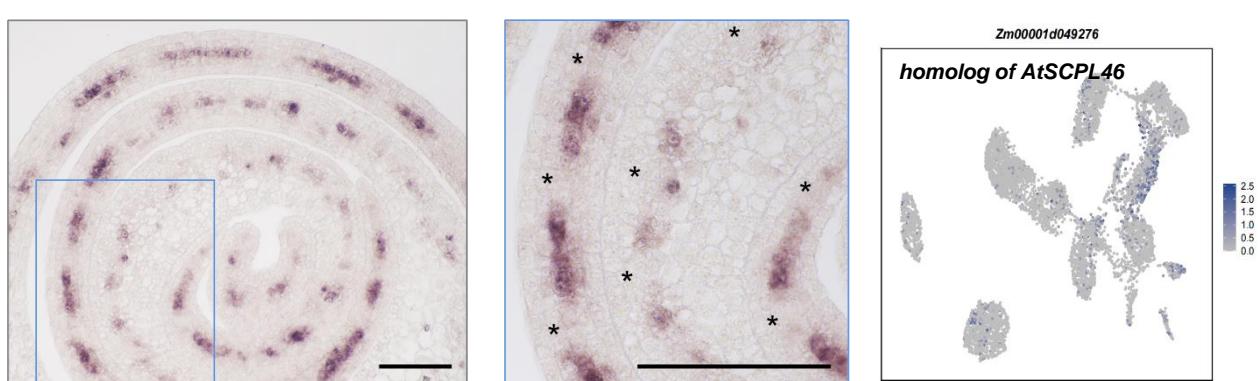




Figure 4. Cell heterogeneity in the maize P4 leaf primordium.

Figure 4. Cell heterogeneity in the maize P4 leaf primordium.

A. Visualization of 14 cell clusters using UMAP. Dots, individual cells; n = 7473 cells; cell clusters are coloured differently and labelled with circled numbers. The grey line and arrow points to the putative developmental direction from cluster 1 toward clusters 5, 11, 12 and 13, as well as from cluster 10 toward clusters 6 and 9.

B. Expression patterns of representative cluster-specific marker genes. Dot colour, proportion of cluster cells expressing a given gene; Dot size, the average expression level.

C. Schematics of the anatomy and cell types representing the tip, upper middle, and lower middle sections of P4 leaf primordium. Bundle sheath cells and the middle layer mesophyll cells were profiled in dark grey colour. In the bottom right schematic, the middle layer of ground meristem cells were filled with orange colour, to highlight their pre-differentiated status. Cell clusters identified in (A) were projected onto the related cell types with coloured cycles and numbers. Dotted lines indicate annotations cross-referenced from Liu et al. (2022).

A**B****C****D**

Figure 5. *In situ* expression profiles of representative marker genes from maize middle layer ground meristem cells.

A. Expression pattern of *ZmPIN1*, *ZmTML1* and *ZmEREV161* by UMAP plots.

B-D. Left column, *in situ* hybridization for the transcript localization of cluster 1 and 5-enriched genes on transverse sections of maize leaf primordia. Middle column, close-up images of the blue square framed regions from left column. Right column, expression pattern of selected genes by UMAP plots. Scale bar: 100 μ m. Asterisks indicate procambia.

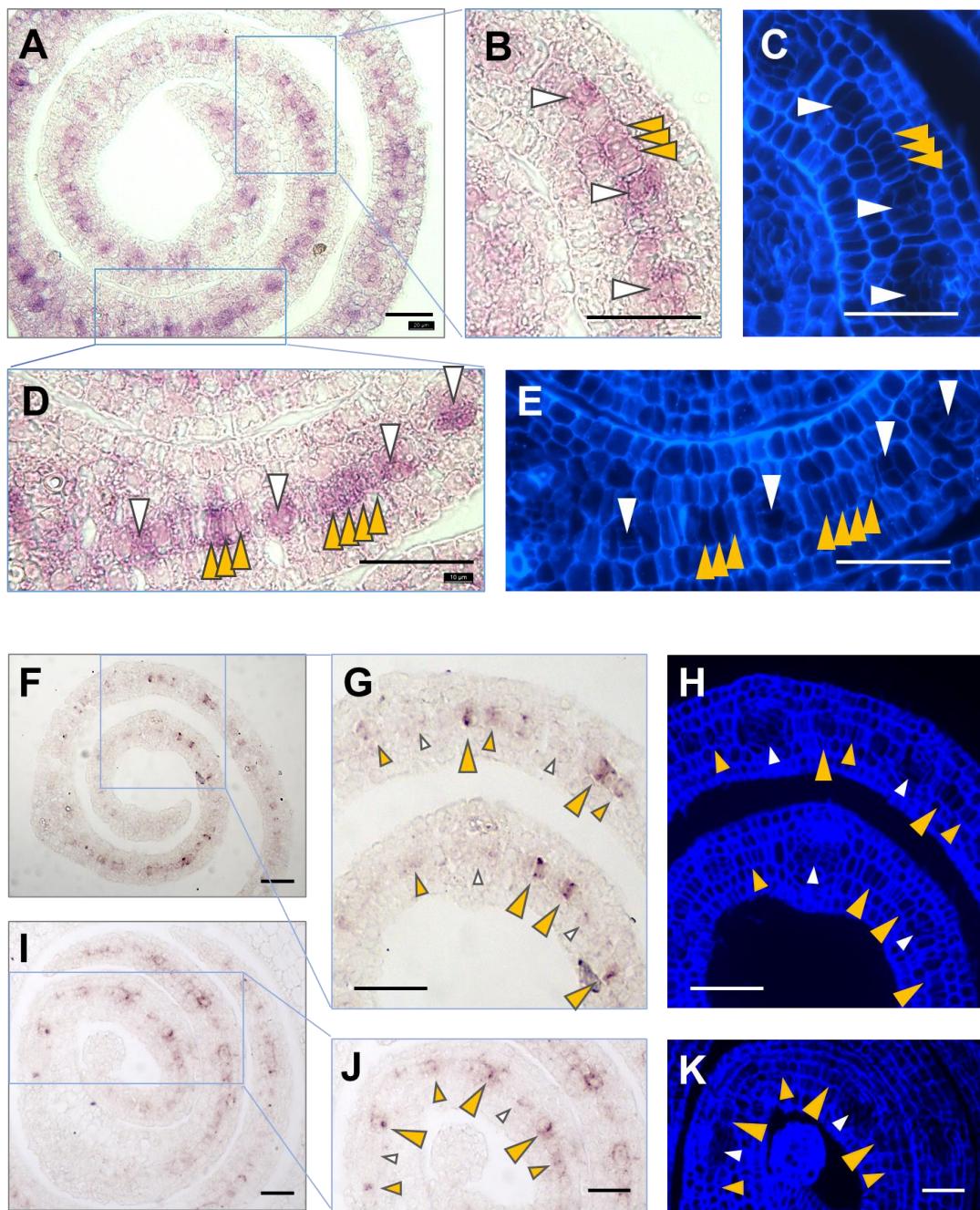


Figure 6. Localization of *ZmEREB114* and *ZmEREB41* transcripts in the middle cell layer of maize leaf primordium.

Figure 6. Localization of *ZmEREB114* and *ZmEREB41* transcripts in the middle cell layer of maize leaf primordium.

A. *In situ* hybridization showing the distribution of *ZmEREB114* transcript in the middle section of P4 leaf primordia. Scale bar: 40 μ m.

B and D. Magnified images of the blue square framed regions from (A), showing *ZmEREB114* signals at different cell types of early Kranz anatomy; **C and E.** UV activated fluorescent images of the corresponding regions from (B) and (D). Scale bar: 40 μ m.

F and I. *In situ* hybridization showing the distribution of *ZmEREB41* transcript in the middle section of P4 leaf primordia. Scale bar: 40 μ m.

G and J. Magnified images of the blue square framed regions from (F) and (I), showing *ZmEREB41* signals at different cell types of early Kranz anatomy; **H and K.** UV activated fluorescent images of the corresponding regions from (G) and (J). Scale bar: 40 μ m.

White arrows indicate the differentiating or differentiated procambium (including early differentiating ones with the primary adaxial and abaxial precursors of BS cells, generated by the 1st and 2nd periclinal divisions of a single procambial initial cell); orange arrows indicate the potential procambial initial cells (indicated by *in situ* hybridization signals) prior to periclinal division. Smaller sized arrows indicate less strong *in situ* hybridization signals.

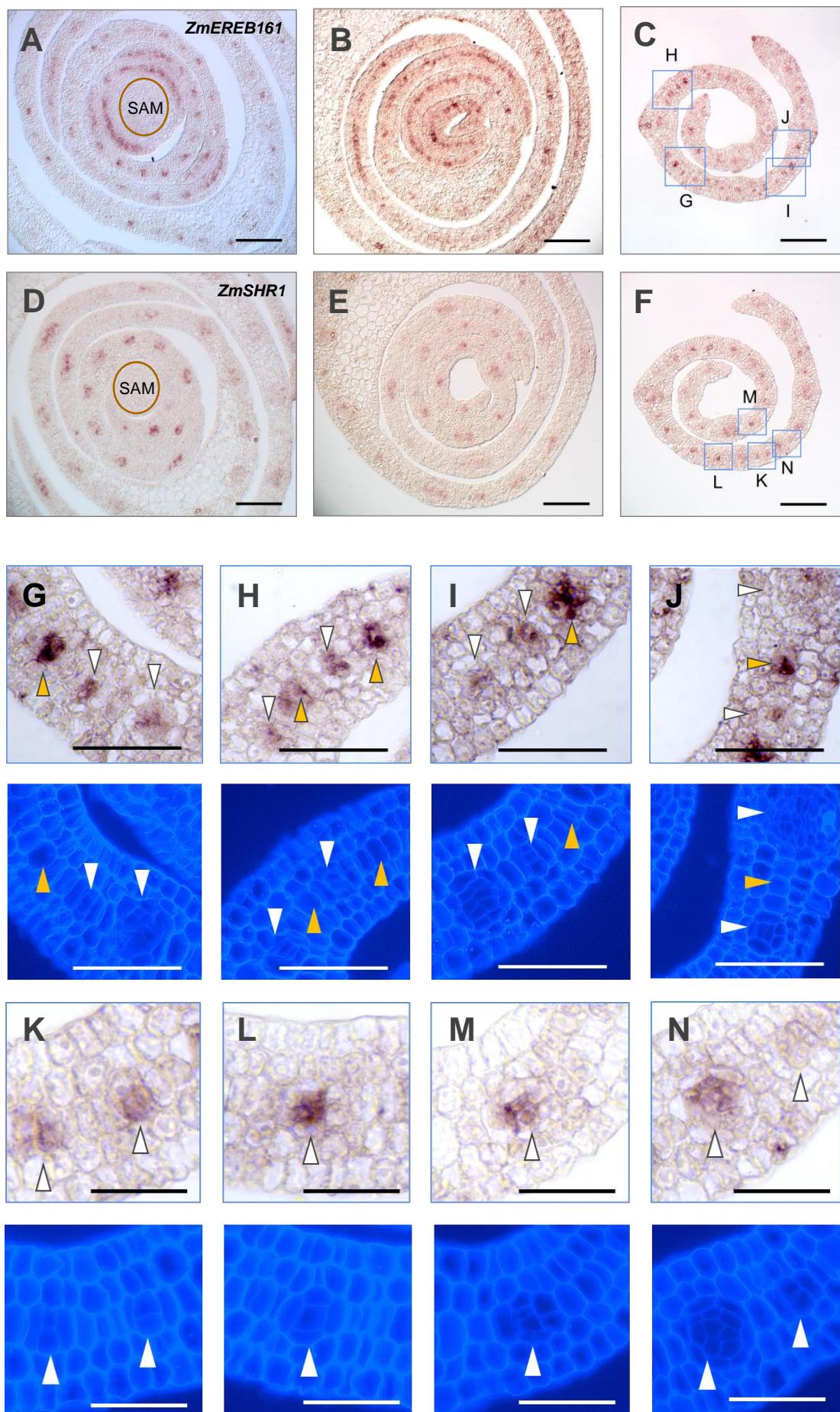
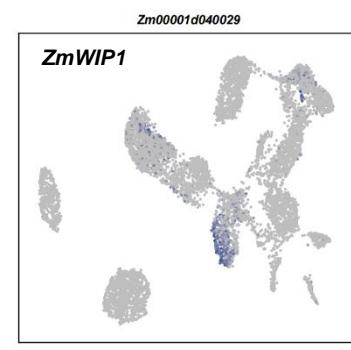
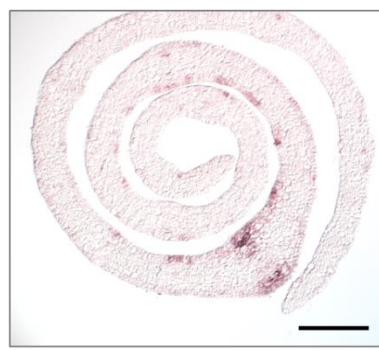
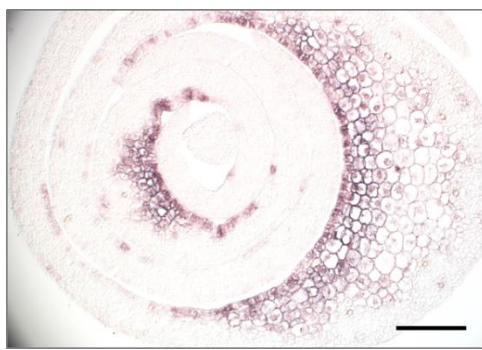
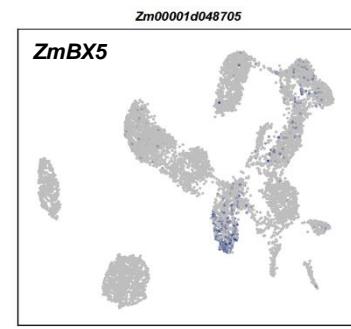
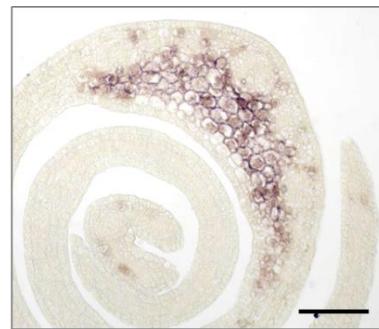
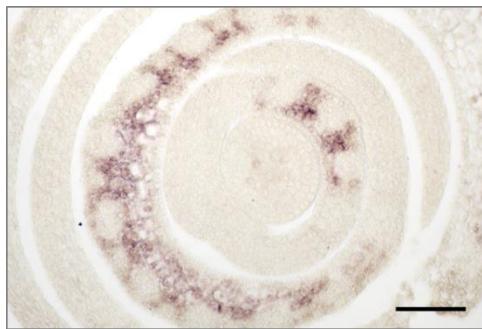


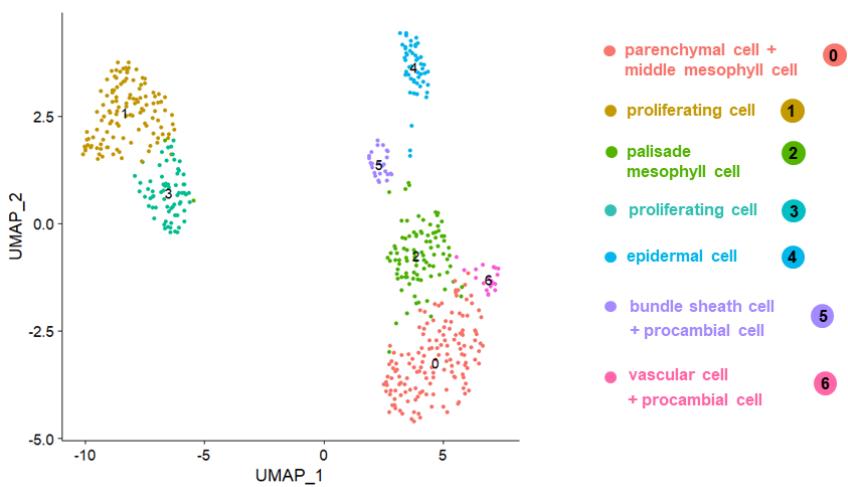
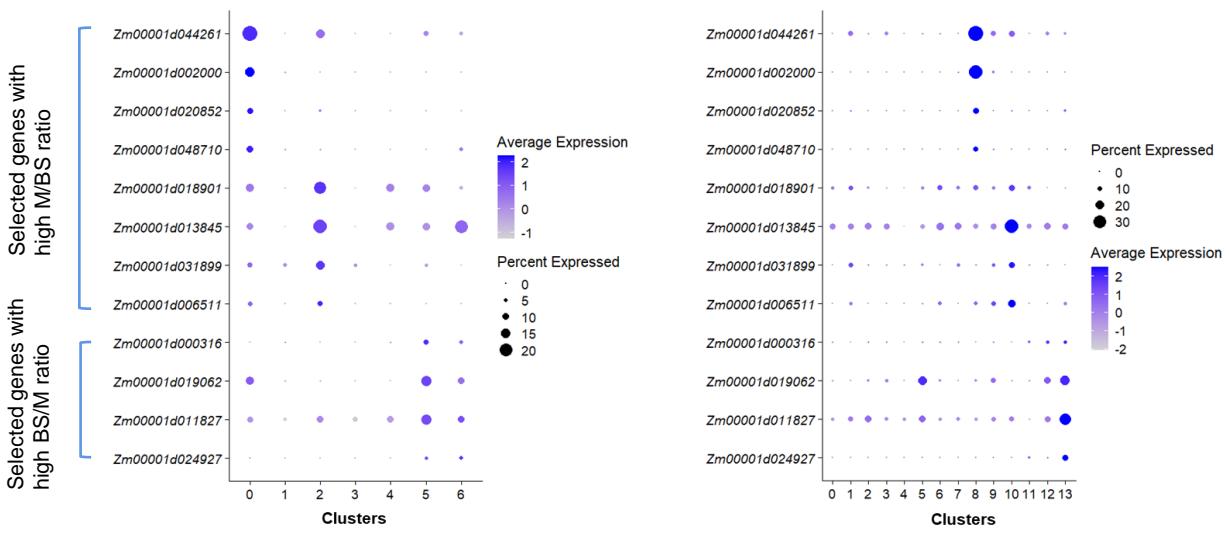
Figure 7. Localization of *ZmEREB161* and *ZmSHR1* transcripts in the middle cell layer of maize leaf primordium.

Figure 7. Localization of *ZmEREB161* and *ZmSHR1* transcripts in the middle cell layer of maize leaf primordium.







A-C. *In situ* hybridization showing *ZmEREB161* transcript densely distributed in younger leaf primordia (A), toward the margin of larger leaf primordia sectioned in the base (B), and in the middle section of P4 leaf primordia (C). Scale bar: 120 μ m.

D-F. *ZmSHR1* transcript distribution in the vascular bundles and larger procambium strands, found from similar tissue types of primordia as in (A), (B), and (C). Scale bar: 120 μ m.

G-J. Upper panel: Magnified images of the blue square framed regions from (C), showing *ZmEREB161* signals at different developmental stages of early Kranz anatomy; lower panel: UV activated fluorescent images of the corresponding regions from upper panel. Scale bar: 50 μ m.



K-N. Upper panel: Magnified images of the blue square framed regions from (F), showing *ZmSHR1* signals at different developmental stages of early Kranz anatomy; lower panel: UV activated fluorescent images of the corresponding regions from upper panel. Scale bar: 50 μ m.

White arrows indicate the differentiating procambium (including those with the primary adaxial and abaxial precursors of BS cells, generated by the 1st and 2nd periclinal divisions of a single procambial initial cell); orange arrows indicate the potential single procambial initial cell (indicated by *in situ* hybridization signals) prior to periclinal division.

A**B****C**

Figure 8. *In situ* expression patterns of representative marker genes from mesophyll and parenchymal cell related clusters.

Left column, *in situ* hybridization for the expression patterns of cluster 10 (A) and 8 (B and C)-enriched genes on transverse sections of maize leaf primordia. Middle column, *in situ* hybridization with extra transverse sections toward the middle-upper position of primordia. Right column, expression pattern of selected genes by UMAP plots. Scale bar: 120 μ m.

A**B****C**

Gene_ID	Description
Zm00001d044261	zinc finger, C2H2-type, putative, expressed
Zm00001d002000	lipoxygenase 4, putative, expressed
Zm00001d020852	CSLE6 - cellulose synthase-like family E, expressed
Zm00001d048710	cytochrome P450 71C4, putative, expressed
Zm00001d018901	protein containing PDZ domain a K-box domain and a TPR region
Zm00001d013845	cation transport protein chaC, putative, expressed
Zm00001d031899	malate dehydrogenase6
Zm00001d006511	glucose-6-phosphate/phosphate translocator 2, chloroplast precursor, putative, expressed
Zm00001d000316	NADP-ME
Zm00001d019062	membrane H(+)-ATPase3
Zm00001d011827	unknown
Zm00001d024927	protein binding protein, putative, expressed

Selected genes with high M/BS ratio

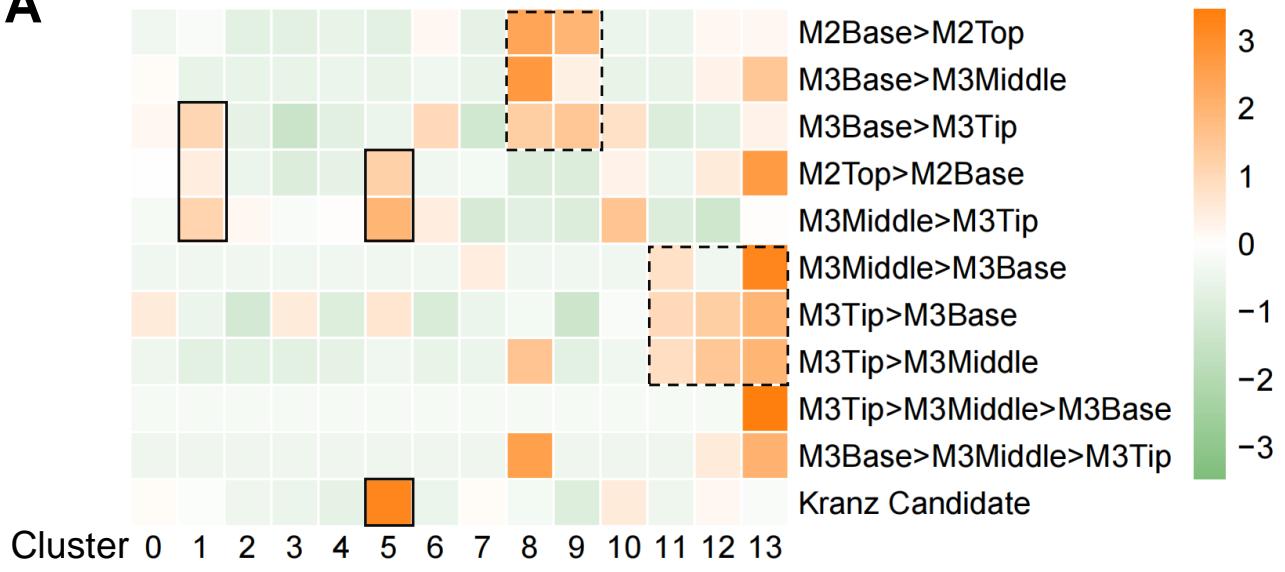
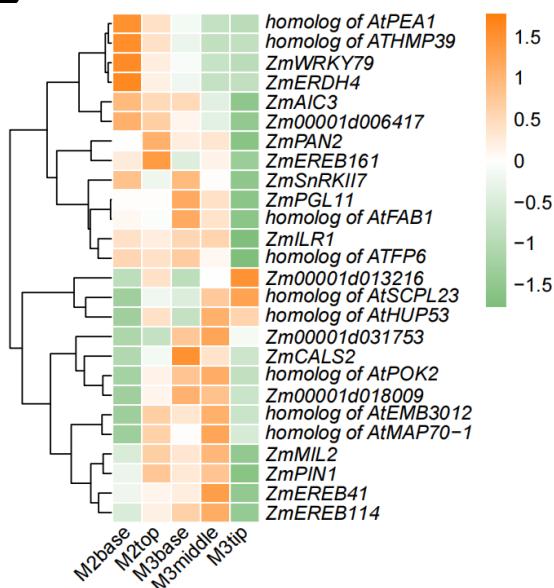
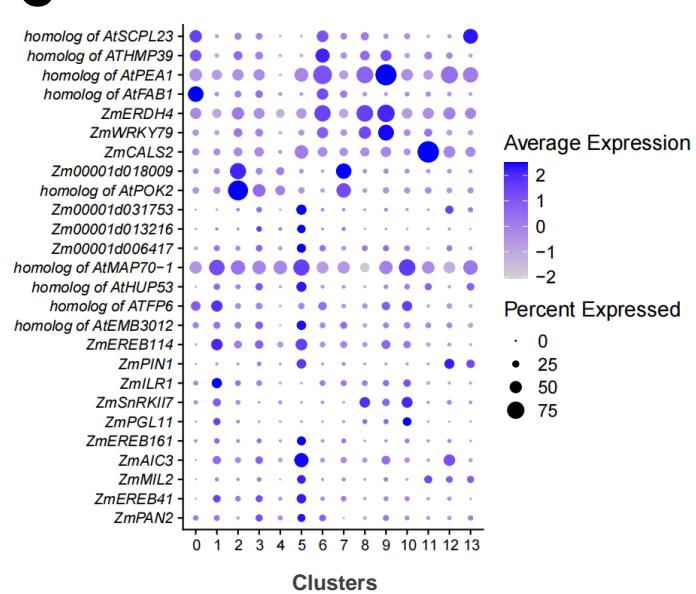

Selected genes with high BS/M ratio

Figure 9. Cross-reference of photosynthetic genes between total primordium and M3tip UMAP clusters.



A. Visualization of 7 cell clusters using UMAP. Dots, individual cells; n = 535 cells; cell clusters are coloured differently and labelled with numbers.

B. Distribution of selected genes with high BS/M or M/BS ratio of expression in the 7 clusters from (A) (left), and in the 14 clusters from **Figure 4A** (right).

C. Annotation and description of genes listed in (A).

A

Cluster 0 1 2 3 4 5 6 7 8 9 10 11 12 13

B**C**

Figure 10. SnRNA-seq versus gradient bulk RNA-seq of leaf primordium: finding spatial transcriptional signatures.

A. The distribution frequency of DEGs (number of overlapped divided by the number from corresponding subsection comparison on the right) between primordium subsections and each cluster of single cells. The analysis was partly drawn from **Figure 3A**, but instead of differential transcript abundance, here it was based on the number of differentially expressed genes. “Kranz candidate” represents the 224 genes obtained in **Figure 3A**. Kranz candidate genes and part of the DEGs enriched in M2top and M3middle were projected to clusters 1 and 5. The solid or dotted boxes help to indicate the different groups of projections.

B. Heat map grouping of the expression patterns of the boxed genes among leaf subsections.

C. Dot diagram showing the expression patterns of the boxed genes among different cell clusters.

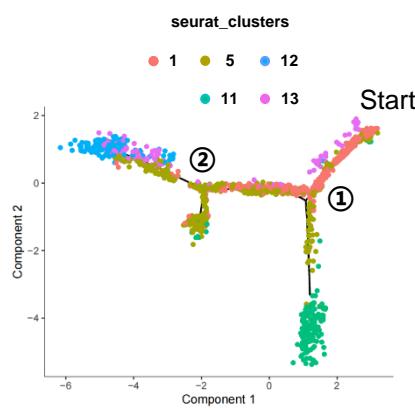
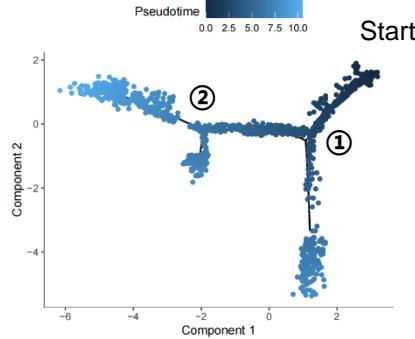
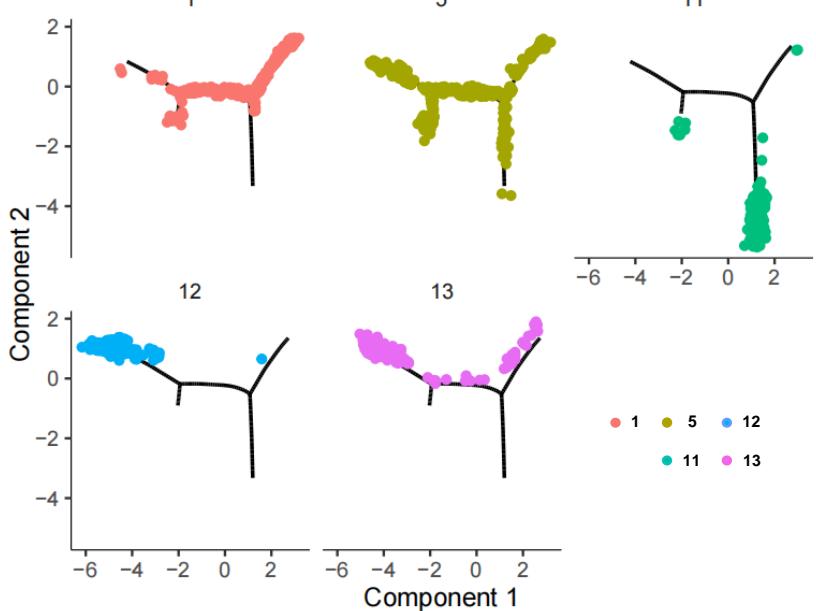
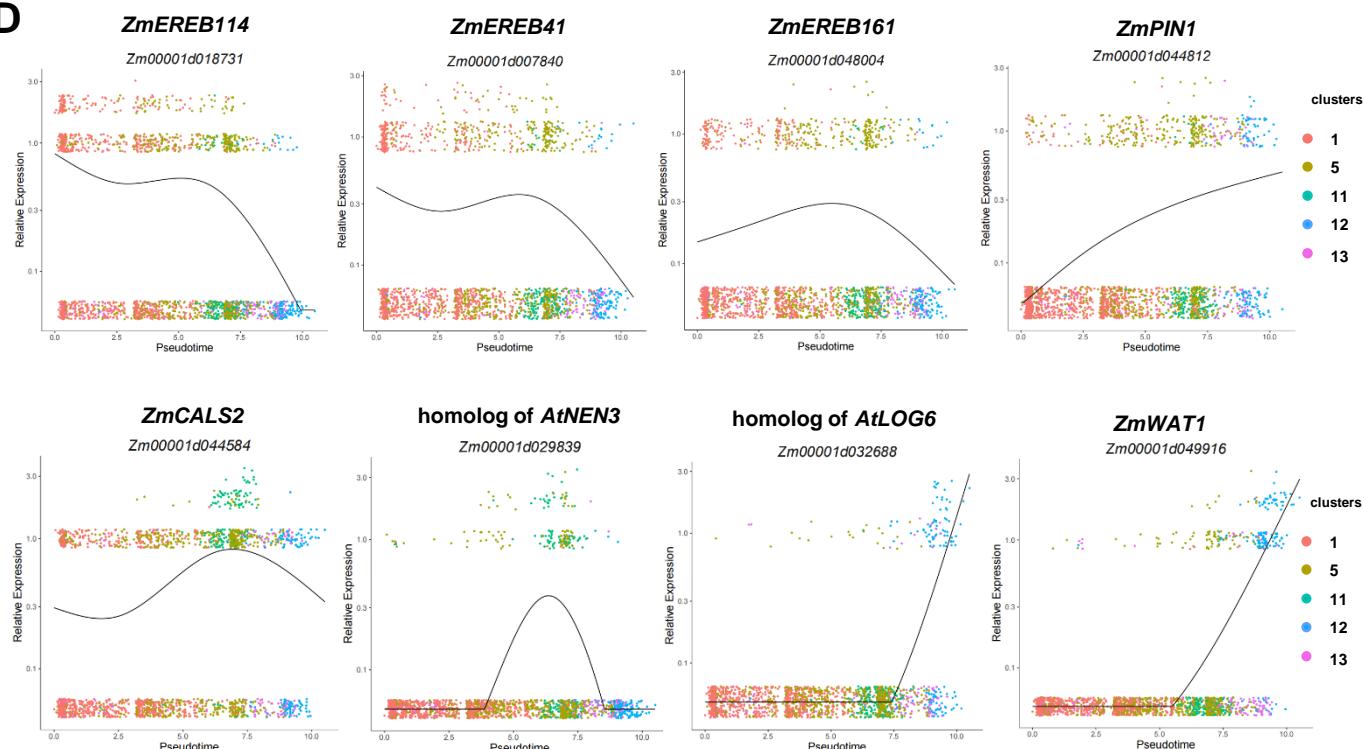
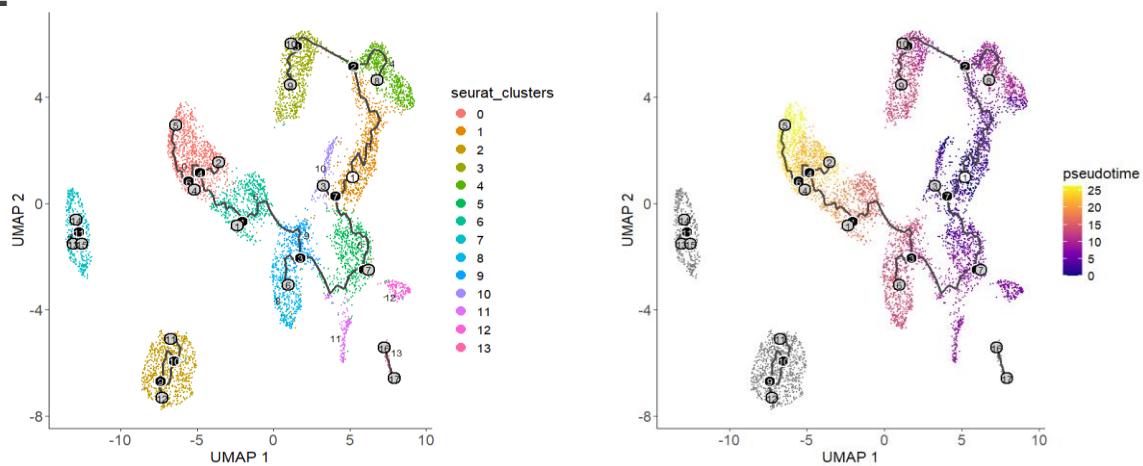
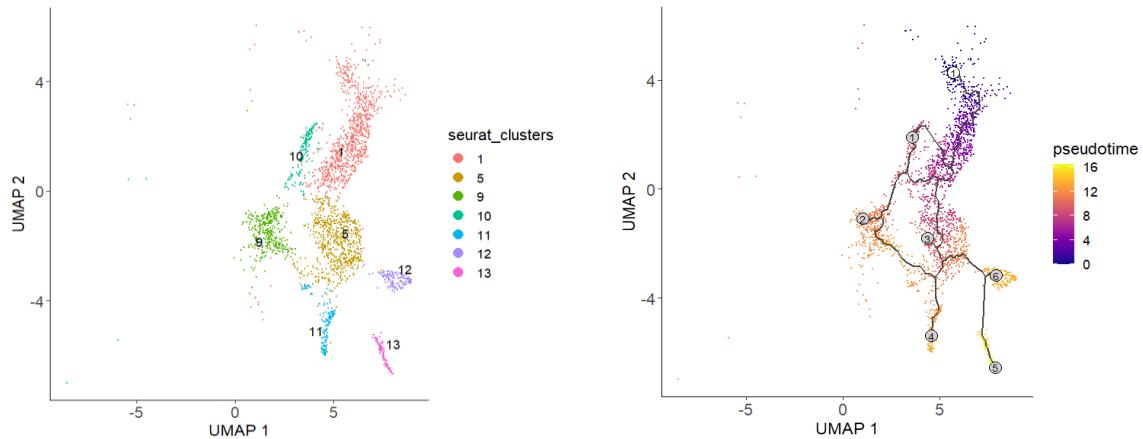
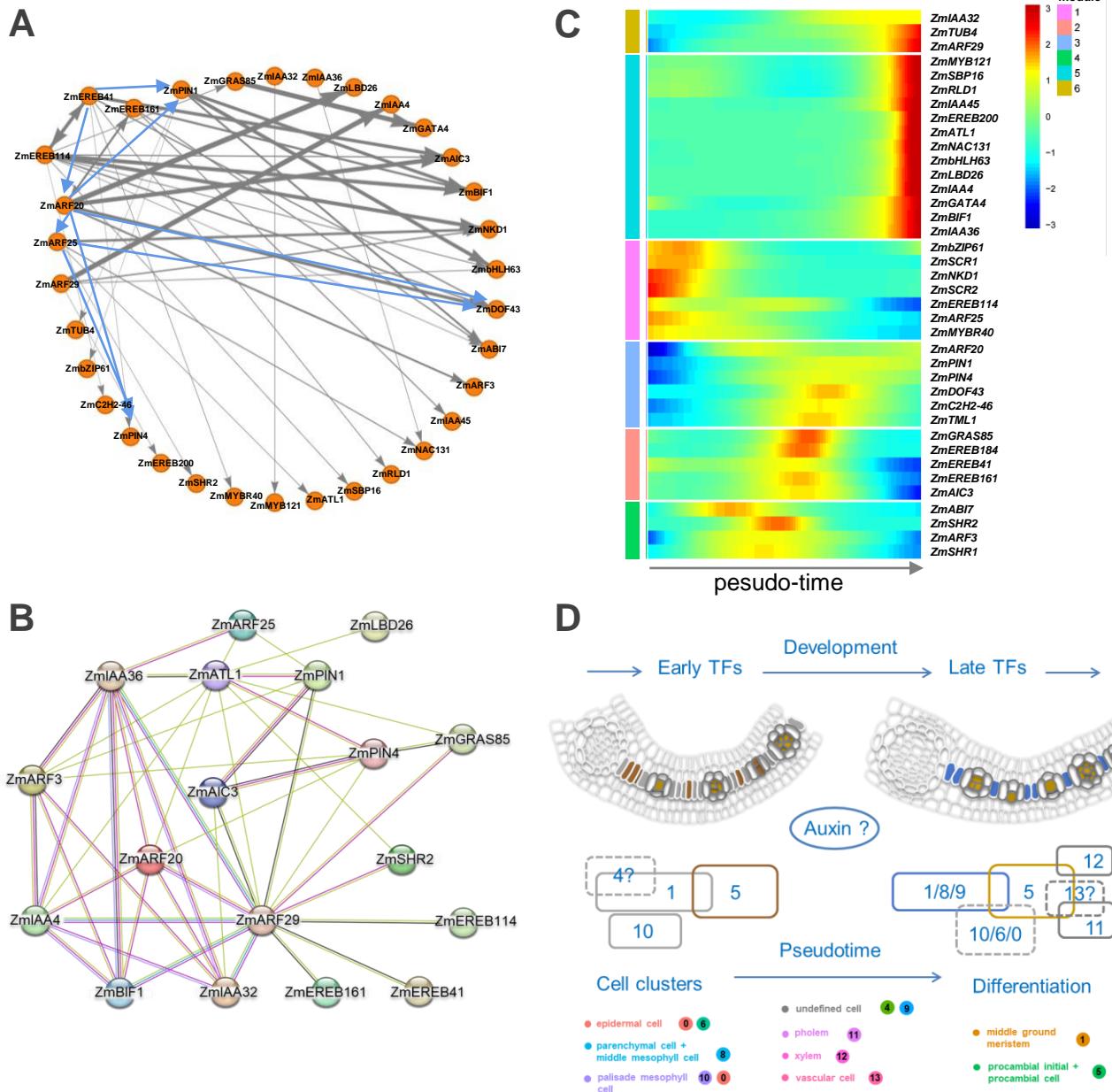






A**B****C****D**

Figure 11. Differentiation trajectory of Kranz anatomy in a P4 maize primodium.

E**F**

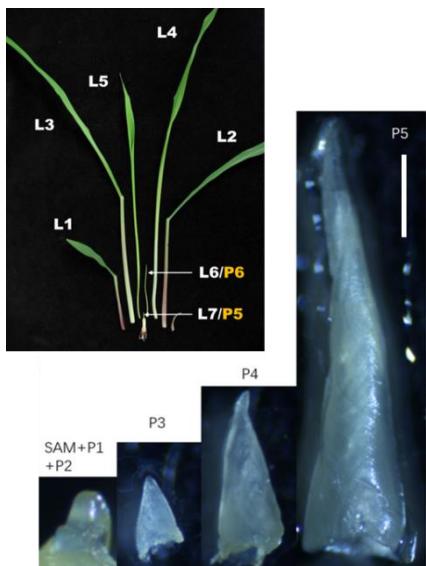
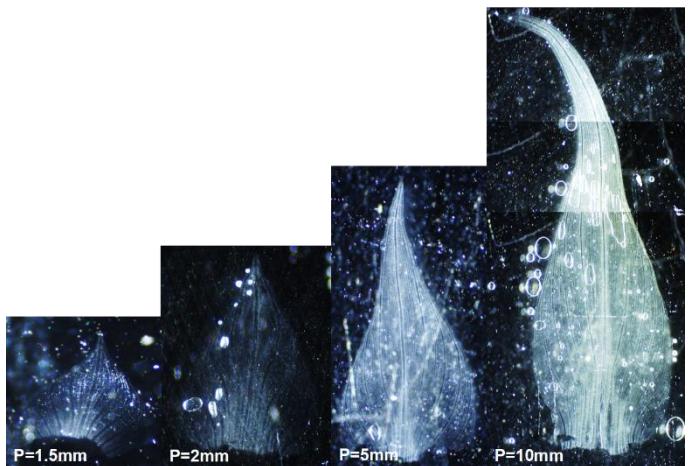
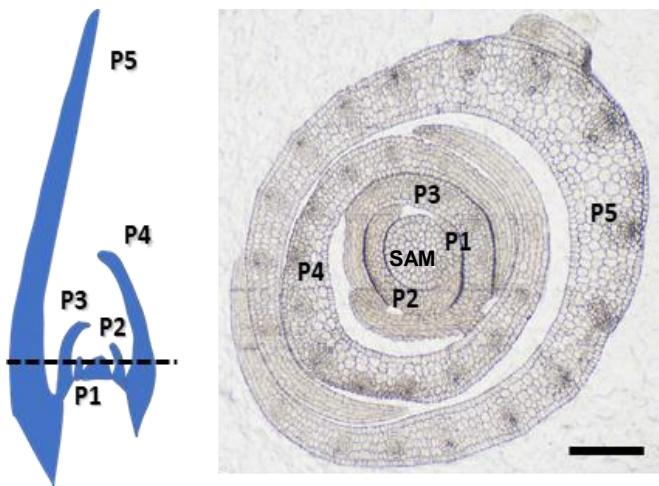

Figure 11. Differentiation trajectory of Kranz anatomy in a P4 maize primodium.

A and B. Simulation of the successive differentiation trajectory of Kranz cell over pseudotime (generated by “Monocle 2”), with “Start” indicating the beginning of the pseudo-time axis. Pseudo-time increases along the differentiation trajectory. The horizontal and vertical coordinates are two principal components, and different dots represent different cells, with different colors representing the cluster identity (A) or the pseudotime (B). Color from darkest to lightest blue in (B) represents pseudotime from beginning to end. The circled numbers represent different branch points.

C. The split pseudo-temporal distribution of different cell clusters showing that the middle ground meristem (1) and kranz procambium cells (5) are at the early stage of differentiation and gradually differentiate into phloem (11) and xylem (12).

D. Kinetics plot showing relative expression of representative genes from different clusters across developmental pseudotime. The abscissa represents the quasi-chronological order, and the ordinate represents the relative expression value of genes. The black line denotes the smoothed average expression. The colored dots on the top shows the major cluster of contributing cells to the expression, and the underneath stripes of cells contains all the clusters with different levels of expression.

E and F. The successive differentiation trajectory of the whole (E) and a subset (F) of the 14 cell clusters over pseudotime generated by “Monocle 3”. Dots, individual cells; cell clusters are coloured differently and labelled with numbers (refer to the circled numbers in **Figure 4A**). The white colour circled number “1” on cluster 1 indicates the beginning of the pseudo-time. Colour gradient on the right represents increasing pseudotime from beginning to end. The grey colour circled numbers represent different branches along the pseudotime trajectory, and the black colour circled numbers indicated the points where cell fate differentiates.




Figure 12. Predicted gene regulation network associated with the process of Kranz cell differentiation.

A. The regulatory network of 33 TF and auxin related genes from the co-expression network of clusters 1,5,11,12, and 13. Gray lines denote connections of co-expression inferred by WGCNA. The thickness of the gray line represents the level of correlation. The blue lines denote the TF binding validated by EMSA in Liu et al. (2022).

B. The protein-protein interaction network of 18 TF and auxin related proteins (hand selected with highlight on auxin regulation) based on String database. Strings: blue, interaction relationship from curated databases; magenta, experimentally determined; green, gene neighborhood; red, gene fusions; dark blue, gene co-occurrence; yellow green, textmining; black, co-expression; light purple, protein homology.

C. Heatmap showing the six gene modules (1–6) of 33 genes, plus *ZmSHR1*, *ZmSCR1*, *ZmSCR2*, *ZmEREBA184*, and *ZmTML1* along pseudotime. The list of 33 genes is given in Supplemental dataset 7. The list and heatmap of 475 top significant DEGs along pseudotime are given in Supplemental dataset 6.

D. Schematic model combining cell clusters, developmental trajectory, and potential regulators of Kranz anatomy. Clusters 4, 13 and 6/0 are drawn with dashed lines, meaning their locations or identities are under further investigation.

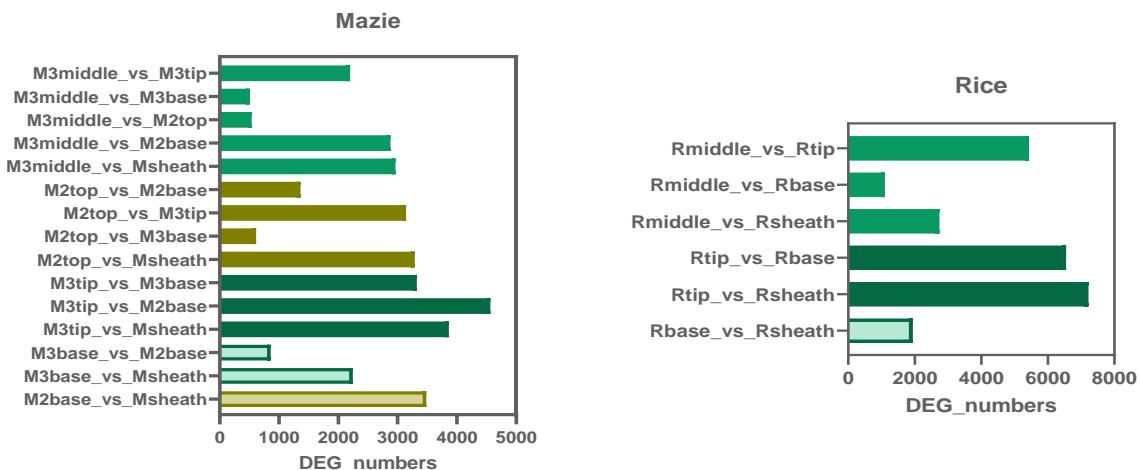
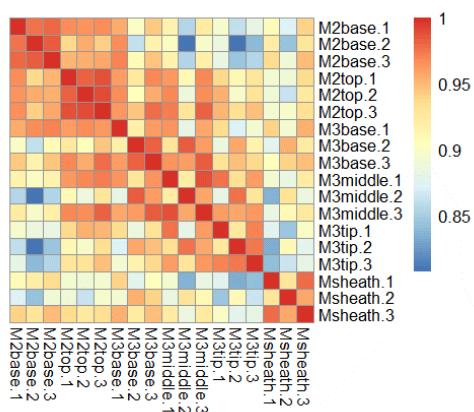
A**C****B**

Supplemental Figure 1. The growth pattern of maize leaf primordia.

A. Leaf primordia are initiated at time intervals known as plastochrons (P), such that the youngest primordium (P1) is closest to the SAM, and older primordia (P2, P3, etc.) are consecutively further away. The first leaf to be produced after germination (and hence the oldest) is L1, and subsequent leaves are L2, L3, etc. Each leaf thus has a “P” number to denote relative developmental stage and an “L” number to denote age. Leaf blades are separated from leaf sheath tissue by the ligule, which is established around P5 (Want et al., 2016). The image here shows the visible leaves: L1, L2, L3, L4, and L5. L6 is at P6 and L7 is at P5. Dissected leaf primordia are also shown: P1, P2, P3, P4, and P5. Scale bar: 1000 μ m.

B. Schematic on the left shows the longitudinal section of SAM plus five most recently initiated leaf primordia (P1-P5). Dashed line indicates the position of the transverse section shown on the right. Scale bar: 100 μ m.

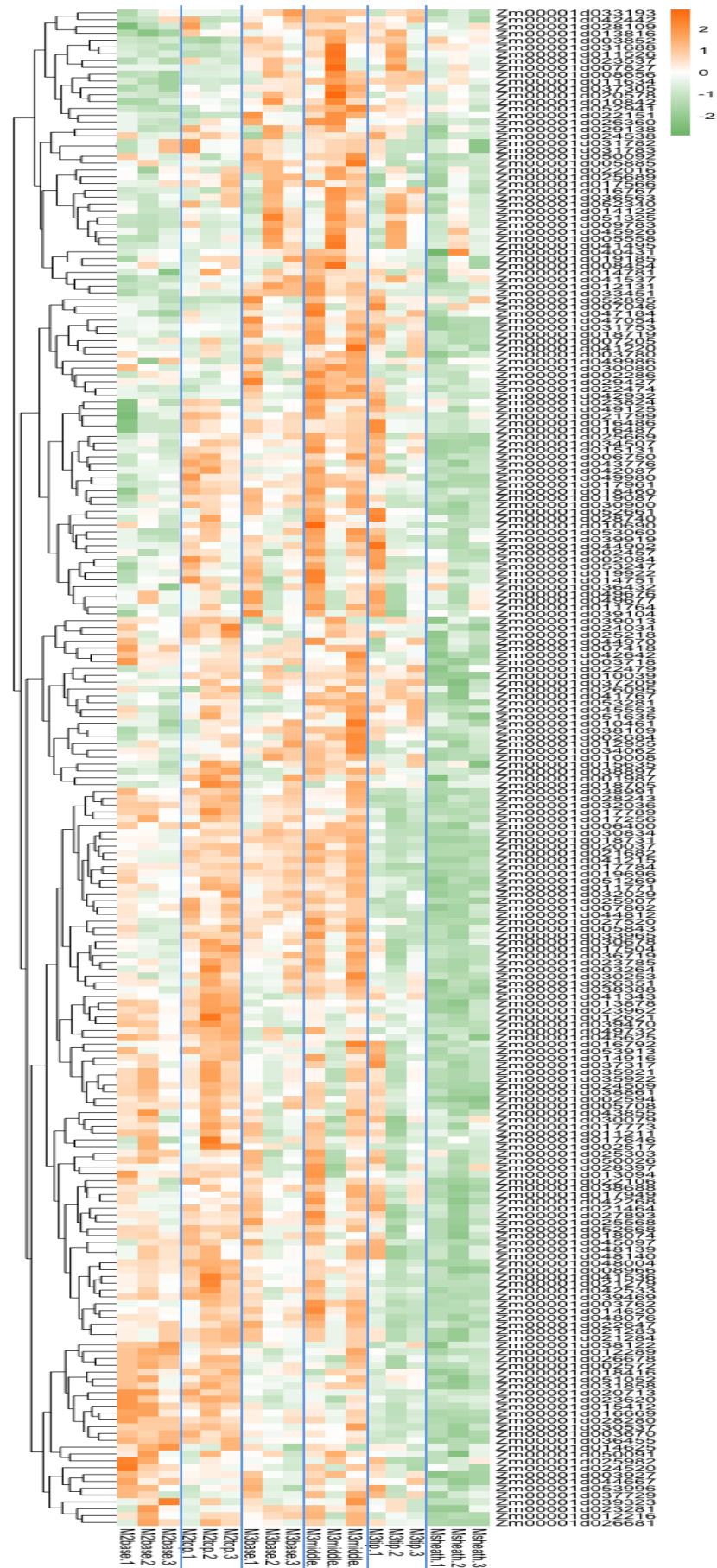
C. The primodium of 1.5mm, 2.5mm, 5mm and 10mm in size are detached, unrolled, and flattened with the adaxial side facing up (P=1.5mm means the length of primordium is 1.5 mm).

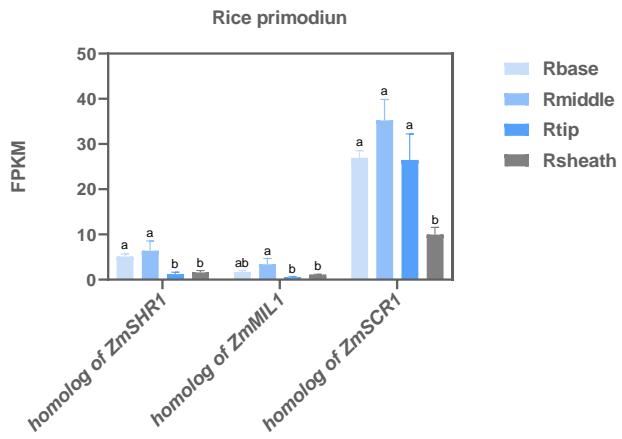
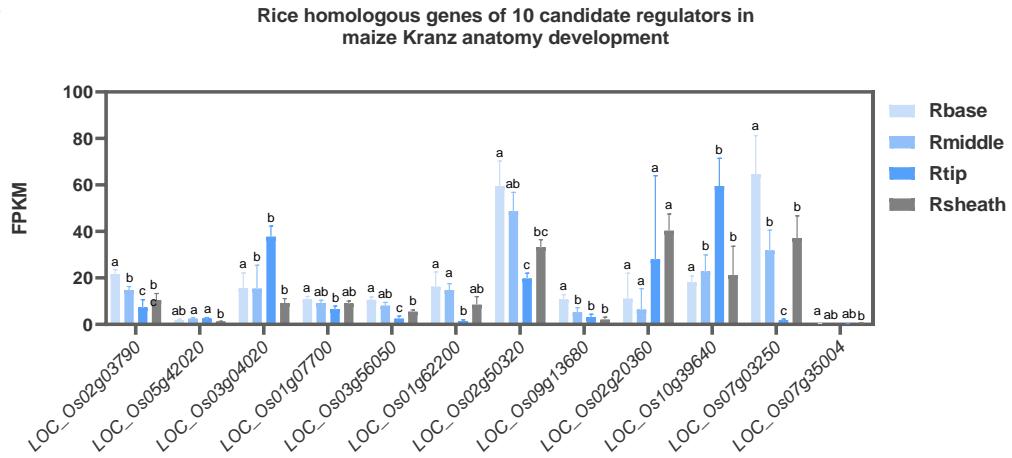
Supplemental Figure 2. The growth pattern and vein development of rice leaf primordia.

A. Upper: Images showing the visible leaves (L1-L3) and dissected leaf primordia (P1-P4) from rice seedlings. Note that P3 and P4 of rice are slimmer than those in maize. Scale bar: 500 μ m. Lower: The leaf sheath of 1-2 mm, cut below the dashed line from P6. Scale bar: 1000 μ m. Note: Dashed lines indicate the position where it was partitioned.

B. The primodia P=3mm and P=5mm are excised from the base, unrolled, and flattened with the adaxial side facing up. Vein strands were visualized by DR5::VENUS. P=3mm means the length of primodium is 3 mm. Upper panel: Positions of cross sections made for images in C, D and E were indicated. Lower panel: Image indicating the rice tissues segmented for bulk RNA sequencing. The leaf primordium of about 5 mm were partitioned under dissection microscope into three parts: R3tip \approx 1.5 mm, R3middle \approx 2.5 mm, and R3base \approx 1 mm. Note: Dashed lines indicate the position where it was partitioned.


C-E. Transverse sections showing vein patterning across the tip, upper middle, and lower middle of P =3mm rice leaf primordia. Larger and smaller green "+" mark larger and smaller lateral veins respectively, and indicate that the distribution of intermediate relative to lateral veins remained similar between middle and base sections.

A**B**

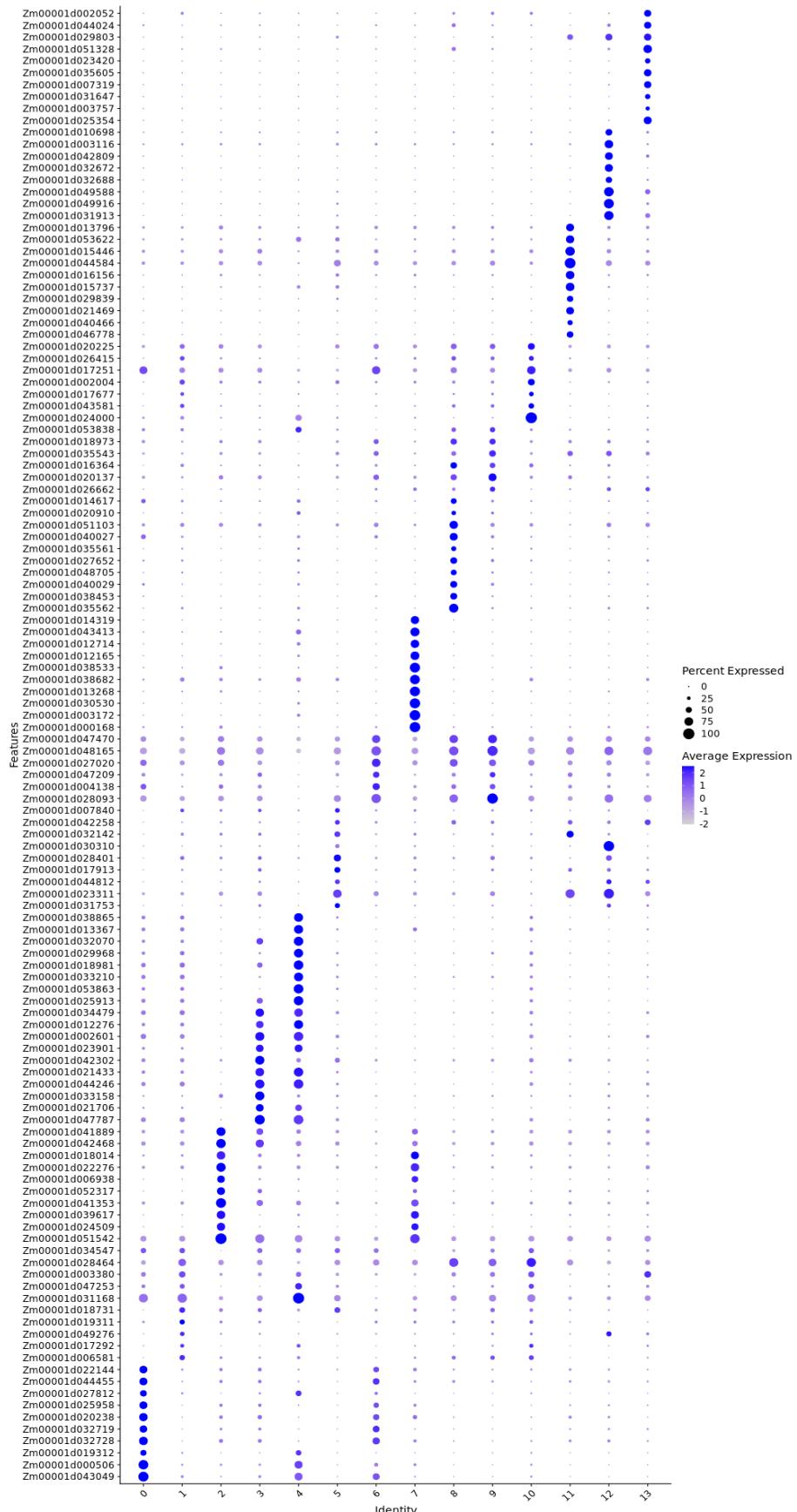


Supplemental Figure 3. The DEGs of paired primordia samples from bulk RNAseq.

A. The DEGs of paired samples across the 6 types of tissues in maize, and the 4 types of tissues in rice. Both up-regulated and down-regulated genes are included.

B. Correlation matrix showing similarities among different maize samples.

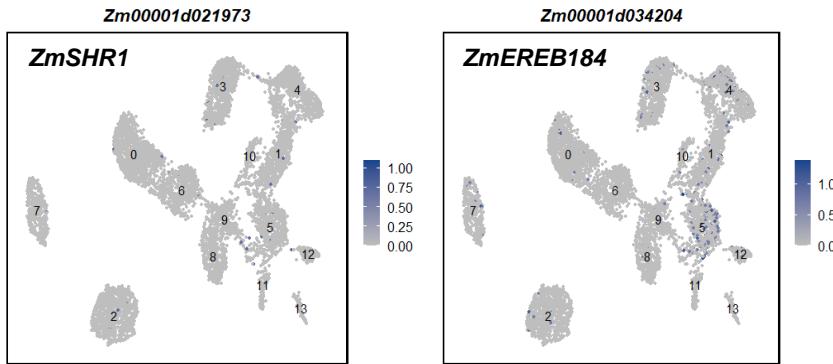
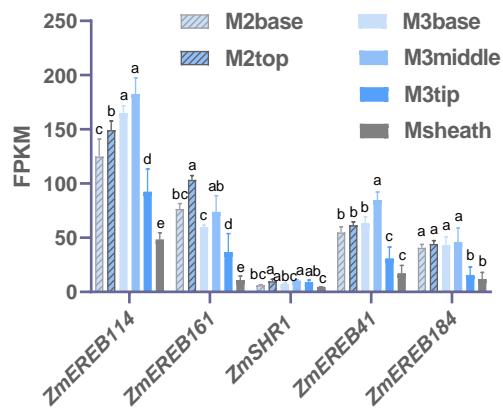
Supplemental Figure 4. Heatmap showing the expression pattern of Kranz anatomy related genes obtained after multiple filtration steps.
See Supplemental Dataset 9 for full size heatmap.

A**B**

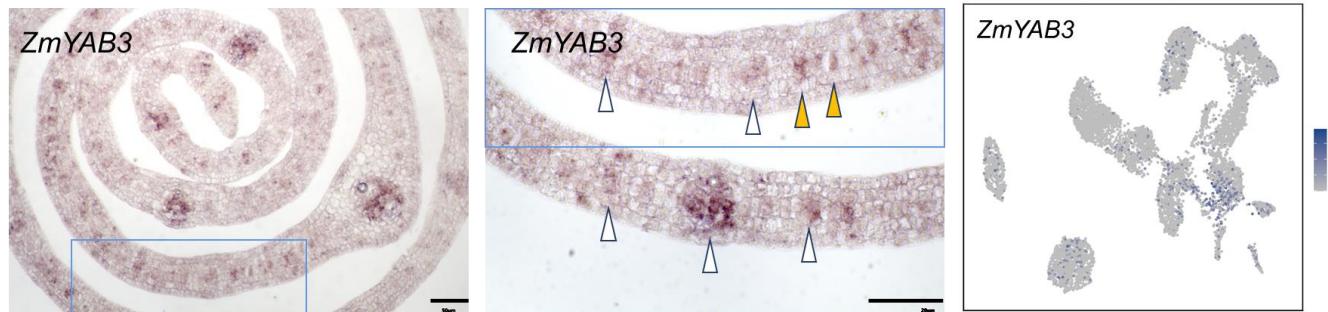

Supplemental Figure 5. The expression pattern of rice homologous genes of interest in rice primodium.

A. Bar graph illustrating the expression patterns of the homolog of *ZmSHR1*, *ZmSCR1*, and *ZmMIL1* across 4 rice primodium tissue types.

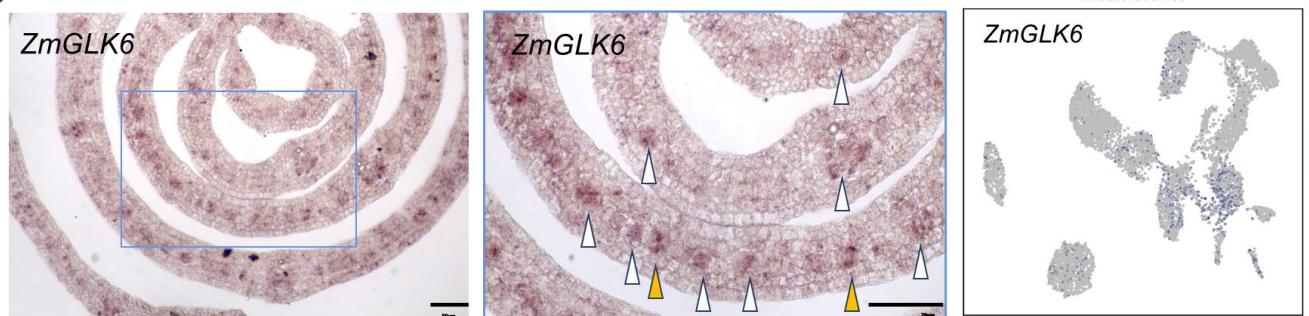
B. Bar graph illustrating the expression profiles of the homologs of 10 putative Kranz anatomy regulators identified in this study.



The gene list of B is given in Supplemental dataset 7.

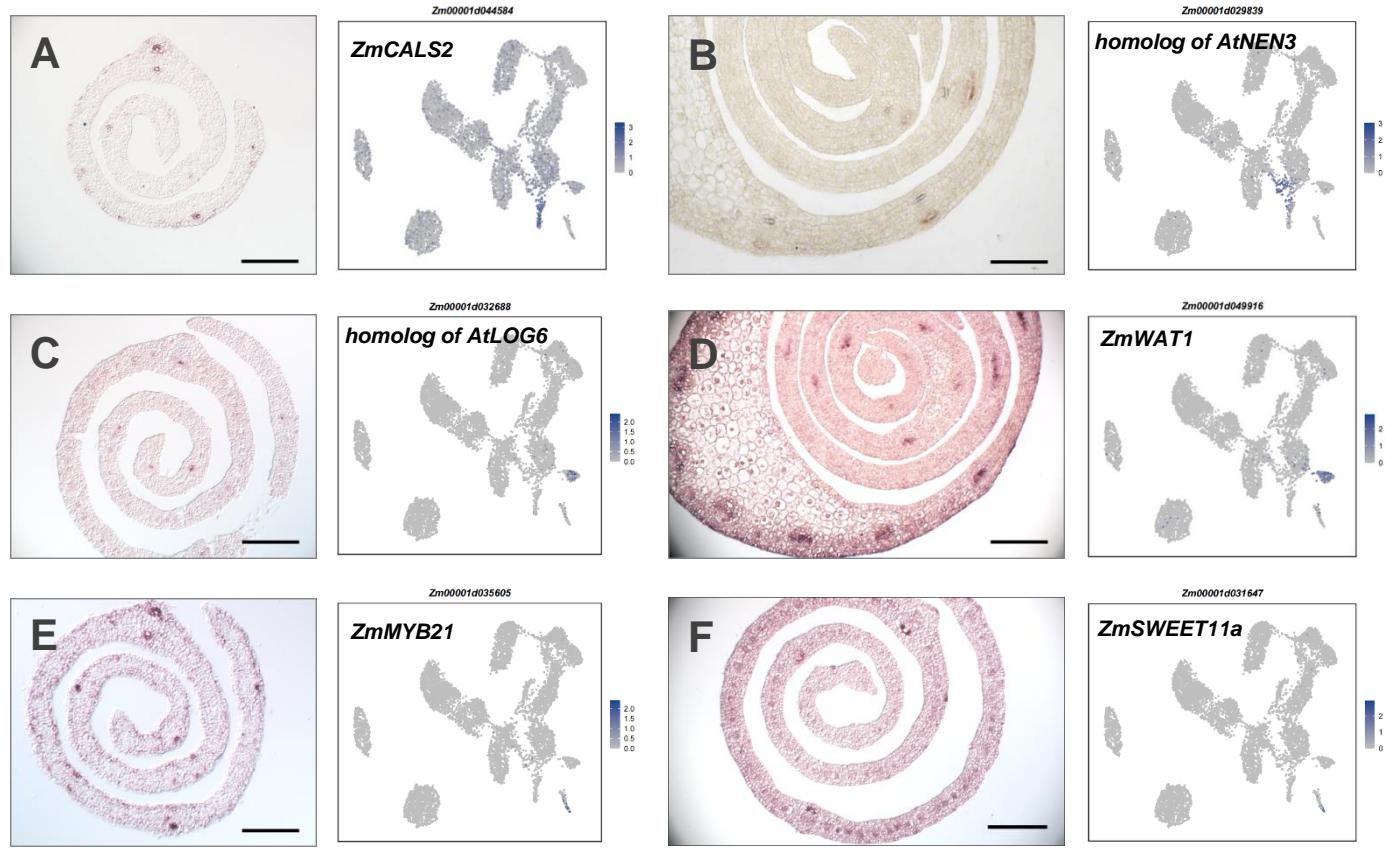
Error bars represent mean \pm SD (n=3). Statistical analysis was performed using one-way ANOVA with Tukey's HSD test; $P < 0.05$, different letters on the bar graphs indicate statistically significant difference.



Supplemental Figure 6. Dot map showing the top 10 marker genes from each of the different cell clusters.


A B

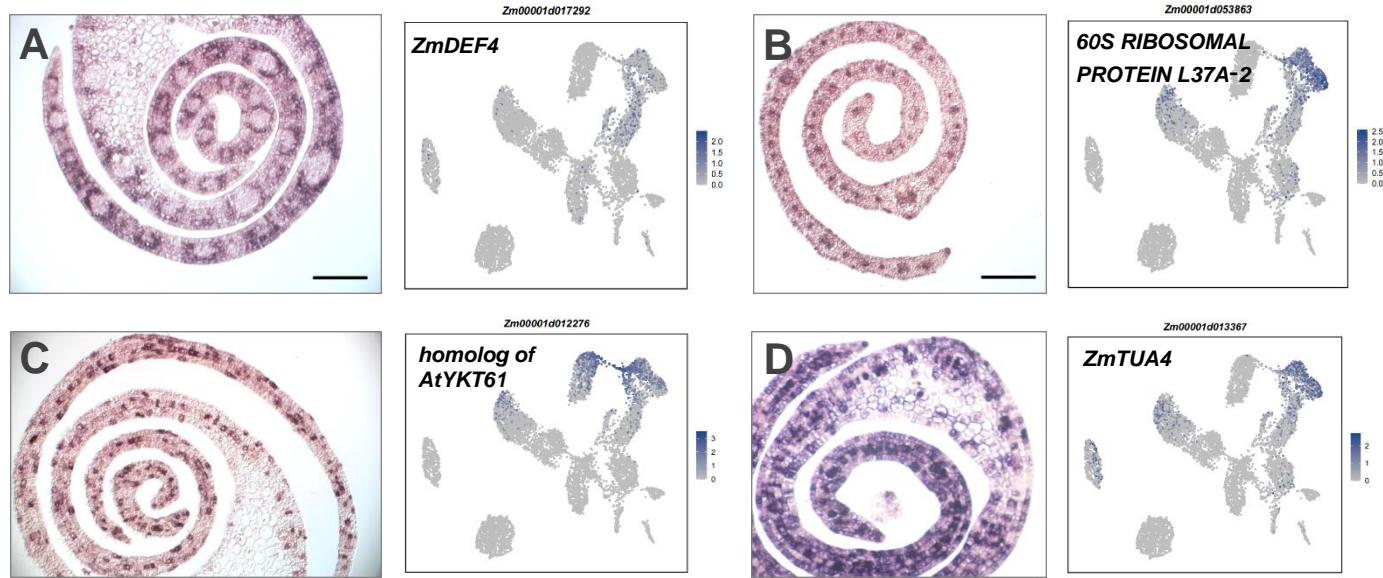
C D


D

Supplemental Figure 7. The expression patterns of *ZmSHR1*, *ZmEREB184*, *ZmYAB3* and *ZmGLK6*.

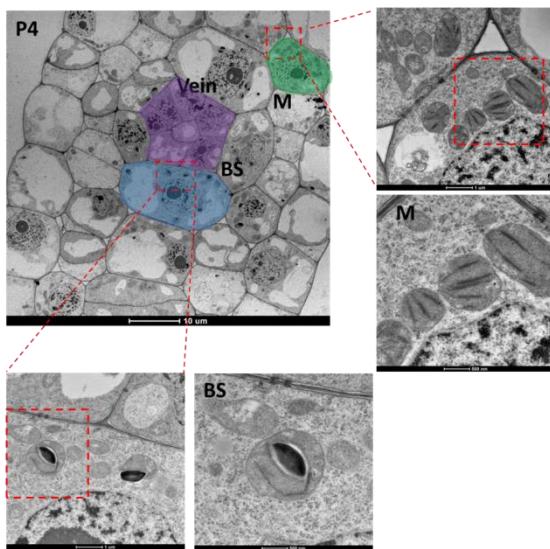
A and B. The expression patterns of *ZmSHR1* and *ZmEREB184* across 6 maize tissue types and by UMAP plots. *EREB114*, *EREB161* and *EREB41* were presented in the column chart for comparison. Refer to Figures 6, 7 and 8 for *in situ* expression profiles. Error bars represent mean \pm SD (n=3). Statistical analysis in A was performed using one-way ANOVA with Tukey's HSD test; $P < 0.05$, different letters on the bar graphs indicate statistically significant difference.

C and D. Left column, *in situ* hybridization for the transcript localization of *ZmYAB3* and *ZmGLK6* on transverse sections of maize leaf primordia. Middle column, close-up images of the blue square framed regions from left column. Right column, expression pattern of selected genes by UMAP plots. Scale bar: 50 μ m. White arrows indicate the differentiating procambium; orange arrows indicate the potential single procambial initial cell.

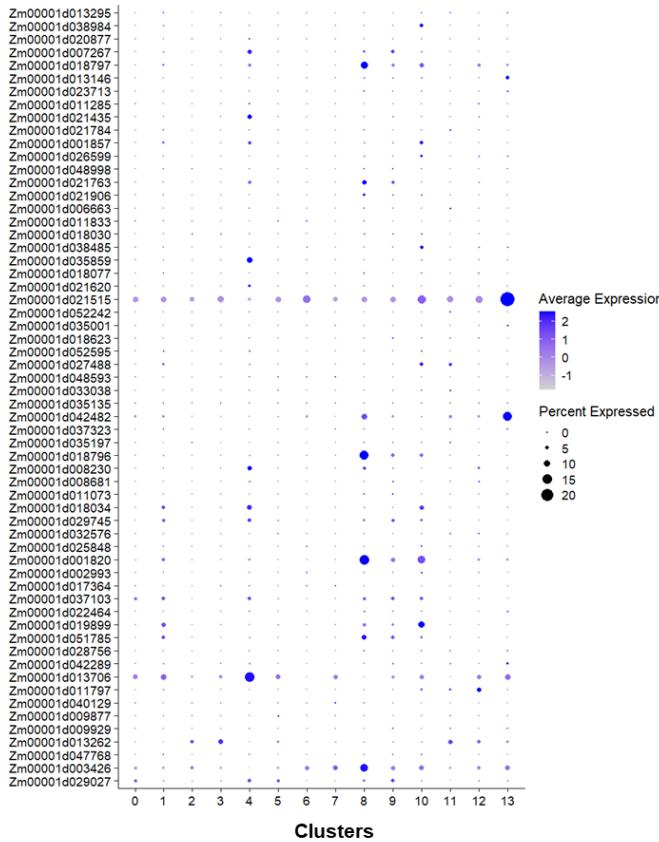

Supplemental Figure 8. *In situ* expression patterns of representative marker genes from xylem and phloem related cell clusters.

A and B. *In situ* hybridization and UMAP plots for the expression patterns of cluster 11 (phloem related)-enriched genes.

C and D. *In situ* hybridization and UMAP plots for the expression patterns of cluster 12 (xylem related)-enriched genes.


E and F. *In situ* hybridization and UMAP plots for the expression patterns of cluster 13-enriched genes.

Names of the cluster-enriched genes are indicated above the figures. Scale bar: 100 μ m.

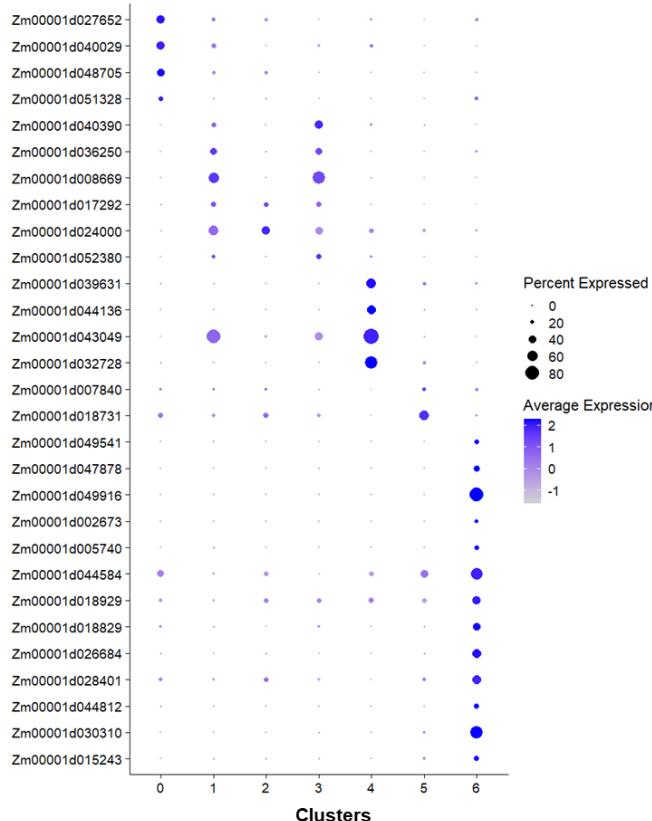


Supplemental Figure 9. *In situ* expression patterns of representative marker genes related with clusters 1 and 4.

A-D show *in situ* hybridization and UMAP plots for the expression patterns of clusters 0, 1, 3 and 4-enriched genes. Names of the cluster-enriched genes are indicated above the figures. Scale bar: 100 μm.

A**C**

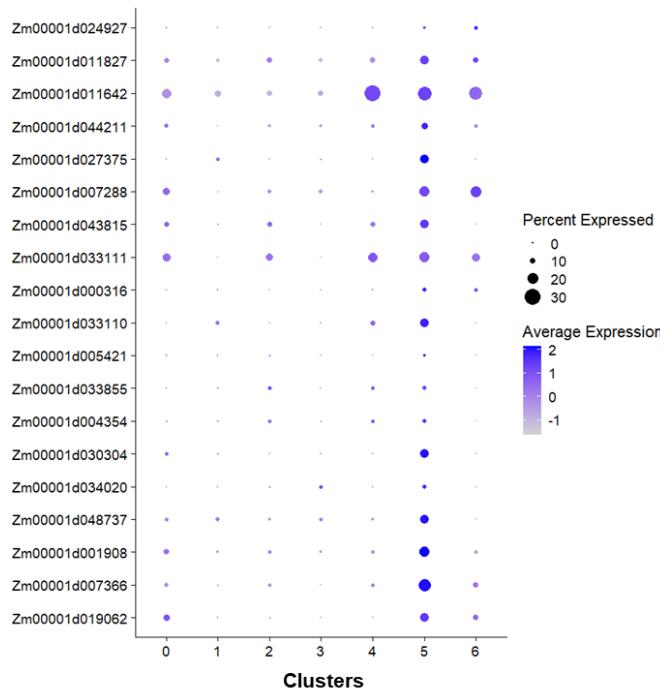
Gene_ID	Pathway	Description
Zm00001d013295	PS-I	photosystem I assembly factor PSA3
Zm00001d038984	PS-I	Photosystem I reaction center subunit VI (PSI-H)
Zm00001d013039	PS-I	Photosystem I reaction center subunit II (psaD)
Zm00001d020877	PS-I	PSI-G
Zm00001d007267	PS-I	Chlorophyll a-b binding protein (LHCII-5 - CP26)
Zm00001d018797	PS-I	PSI-K
Zm00001d013146	PS-I	PSI-F (psaF)
Zm00001d023713	PS-I	Photosystem I reaction center subunit N
Zm00001d01285	LHC-II	Chlorophyll a-b binding protein (LhcB10)
Zm00001d021435	LHC-II	Chlorophyll a-b binding protein (LhcB2)
Zm00001d021784	LHC-II	Chlorophyll a-b binding protein (LhcB3)
Zm00001d001857	LHC-II	Chlorophyll a-b binding protein (LHCII-6 - CP24-2)
Zm00001d026599	LHC-II	Chlorophyll a-b binding protein (LHCII-6 - CP24-1)
Zm00001d048398	LHC-II	Chlorophyll a-b binding protein (CP26)
Zm00001d021763	LHC-II	Chlorophyll a-b binding protein (LHCII-4.1 / CP29)
Zm00001d021906	LHC-I	Chlorophyll a-b binding protein (LhcA2)
Zm00001d006663	LHC-I	Chlorophyll a-b binding protein (LhcA1)
Zm00001d011833	ETC	Ferredoxin-NADP reductase (FNR-1)
Zm00001d018030	ETC	Photosynthetic NDH subunit of subcomplex B 4 chloroplastic (NDH F6 / PnsB4)
Zm00001d038485	ETC	Protein kinase domain-containing protein (Stn8)
Zm00001d035859	ETC	Plastocyanin (PC-2)
Zm00001d018077	ETC	photosynthetic NDH subunit of luminal location 4 (PnsL4)
Zm00001d021620	ETC	ATP synthase gamma chain (CF1 gamma subunit)
Zm00001d021515	ETC	Photosynthetic NDH subunit of subcomplex B 3 [NDH F4 (NDH U) - Fd domain]
Zm00001d052242	ETC	ATP synthase delta chain (CF1 delta subunit)
Zm00001d035501	ETC	Ferredoxin-1 (Fd2-1)
Zm00001d018623	ETC	photosynthetic NDH subunit of luminal location 3 (PnsL3)
Zm00001d052595	Calvin Cycle	Ribulose bisphosphate carboxylase small subunit (SSU1)
Zm00001d027488	Calvin Cycle	Glyceraldehyde-3-phosphate dehydrogenase (GAPB)
Zm00001d048593	Calvin Cycle	Rubisco activase small subunit (RCA)
Zm00001d030308	others	Stress enhanced protein 1 chloroplastic
Zm00001d035135	others	Transcription factor bHLH28
Zm00001d042482	others	CAAD domain-containing protein
Zm00001d037323	others	Tetratricopeptide repeat (TPR)-like superfamily protein
Zm00001d035197	others	High-light-induced protein
Zm00001d018796	others	Magnesium-protoporphyrin IX monomethyl ester (oxidative) cyclase
Zm00001d008230	others	Ultraviolet-B-repressible protein
Zm00001d008681	others	Heat shock protein DnAJ
Zm00001d011073	others	Geranylgeranyl reductase
Zm00001d018034	others	Thylakoid membrane phosphoprotein 14 kDa
Zm00001d032576	others	NADPH-protochlorophyllide oxidoreductase
Zm00001d025848	others	protein disulfide isomerase pTAC5
Zm00001d001820	others	NADPH-protochlorophyllide oxidoreductase
Zm00001d002993	others	psbQ-like protein 3
Zm00001d017364	others	Ferredoxin-thioredoxin reductase
Zm00001d037103	others	Thioredoxin-dependent peroxiredoxin
Zm00001d022464	others	Ultraviolet-B-repressible protein
Zm00001d035001	others	rhodanese-like domain-containing protein 9
Zm00001d018623	others	CAAD domain-containing protein
Zm00001d021620	others	Integrator complex subunit 11 like
Zm00001d042289	others	Rieske domain-containing protein
Zm00001d013706	others	Sec-independent protein translocase protein TATA
Zm00001d011073	others	Protein COFACTOR ASSEMBLY OF COMPLEX C SUBUNIT B CCB3
Zm00001d018034	others	Phosphoenolpyruvate carboxylase
Zm00001d029745	others	Protein plastid transcriptionally active 16
Zm00001d028756	others	UPF0603 protein
Zm00001d025848	others	Phytochrome
Zm00001d001820	others	FKBP-type peptidyl-prolyl cis-trans isomerase
Zm00001d002993	others	PDZ domain-containing protein
Zm00001d017364	others	Fragile histidine triad isoform 1


B

Supplemental Figure 10. Transmission microscopy of maize leaf primordium and M3tip enrichment of photosynthesis-related genes.

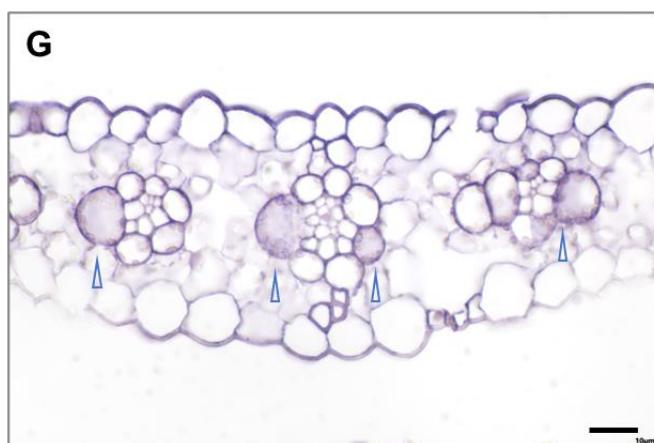
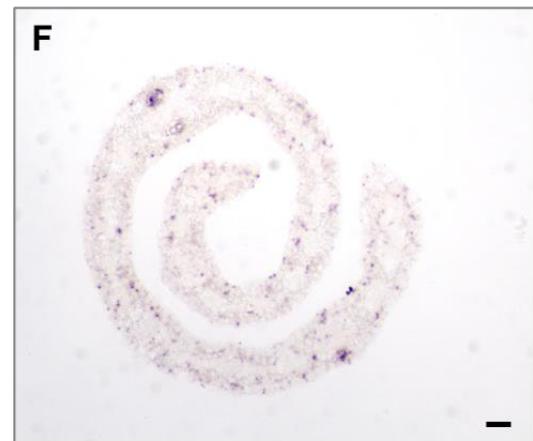
A. Transmission microscopy showing under-developed plastid in P4 leaf primordium. BS, bundle sheath cell; M, mesophyll cell; Scale bars: 10 μ m, 1 μ m, or 500 nm.

B. Expression patterns of M3tip enriched photosynthetic genes. Dot colour, proportion of cluster cells expressing a given gene; Dot size, the average expression level.


C. Annotation and description of genes listed in (B).

A**B**

Gene_ID	Description	Cell_type
Zm00001d027652	ZmTIP1	parenchymal cell
Zm00001d040029	Bowman-Birk type wound-induced proteinase inhibitor WIP1	parenchymal cell
Zm00001d048705		
Zm00001d051328		
Zm00001d040390		
Zm00001d036250		
Zm00001d008669		
Zm00001d017292		
Zm00001d024000		
Zm00001d052380		
Zm00001d039631		
Zm00001d044136		
Zm00001d043049		
Zm00001d032728		
Zm00001d007840		
Zm00001d018731		
Zm00001d049541		
Zm00001d047878		
Zm00001d049916		
Zm00001d002673		
Zm00001d005740		
Zm00001d044584		
Zm00001d018929		
Zm00001d018829		
Zm00001d026684		
Zm00001d028401		
Zm00001d044812		
Zm00001d030310		
Zm00001d015243		



C

Genes with high BS/M ratio

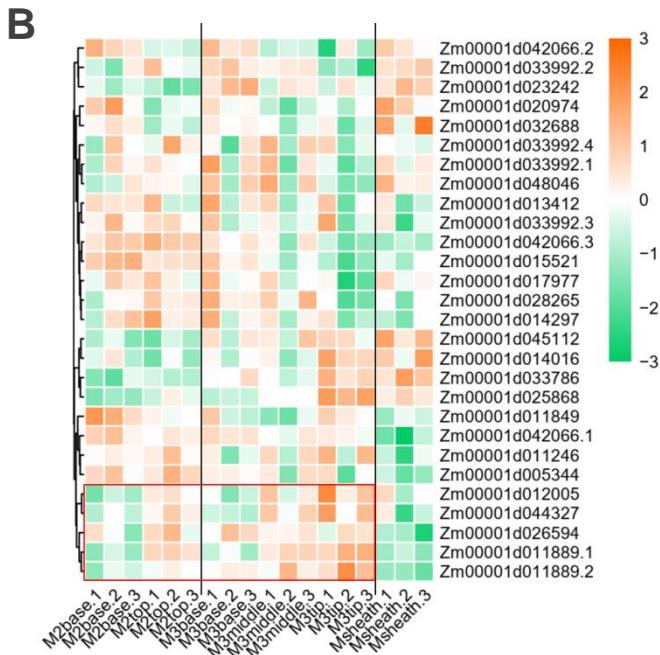
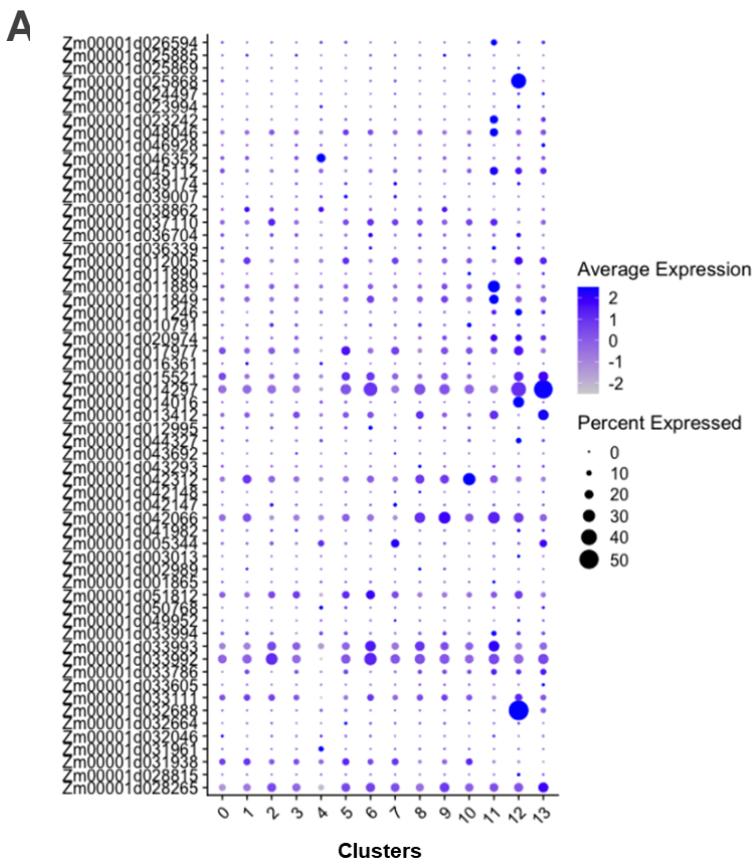
D

Genes with high BS/M ratio

Gene_ID	Description	Log2FC
Zm00001d024927	protein binding protein, putative, expressed	2.537287474
Zm00001d011827	unknow	2.18492086
Zm00001d011642	unknow	2.17071194
Zm00001d044211	phosphoglucomutase	2.790257213
Zm00001d027375	lysM domain containing protein	4.231616658
Zm00001d007288	unknow	1.037594358
Zm00001d043815	Methionyl-tRNA formyltransferase	2.318108183
Zm00001d033111	decarboxylase family protein	1.02116385
Zm00001d000316	NADP-ME	3.225268622
Zm00001d033110	Inositol-phosphate phosphatase	1.024500623
Zm00001d005421	Aquaporin PIP2-2	1.02683259
Zm00001d033855	Sulfite exporter TauE/SafE family protein	1.125512735
Zm00001d004354	CBS domain-containing protein CBSX1 chloroplastic	1.126155863
Zm00001d030304	Pathogenesis-related thaumatin superfamily protein	1.253909117
Zm00001d034020	DCL protein	1.3255173
Zm00001d048737	unknow	1.119134914
Zm00001d001908	Alternative oxidase	1.48737638
Zm00001d007366	Halocid dehalogenase-like hydrolase domain-containing protein	1.577843575
Zm00001d019062	membrane H(+)-ATPase3	1.62806524

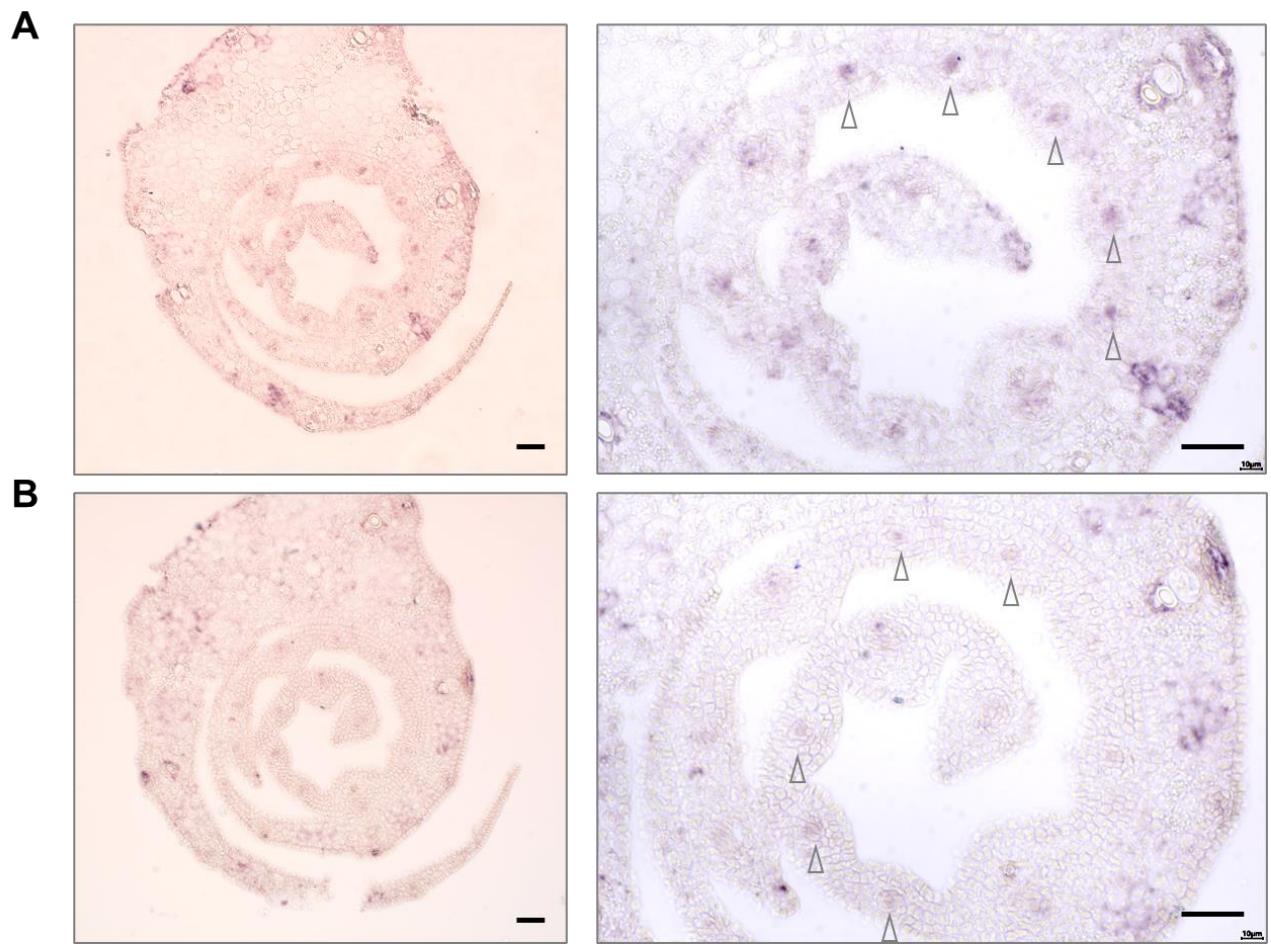
Supplemental Figure 11. Cell heterogeneity and putative bundle sheath cell identity associated genes in the M3tip of maize leaf primordium.

A. Expression patterns of representative cluster-specific marker genes. Dot colour, proportion of cluster cells expressing a given gene; Dot size, the average expression level.

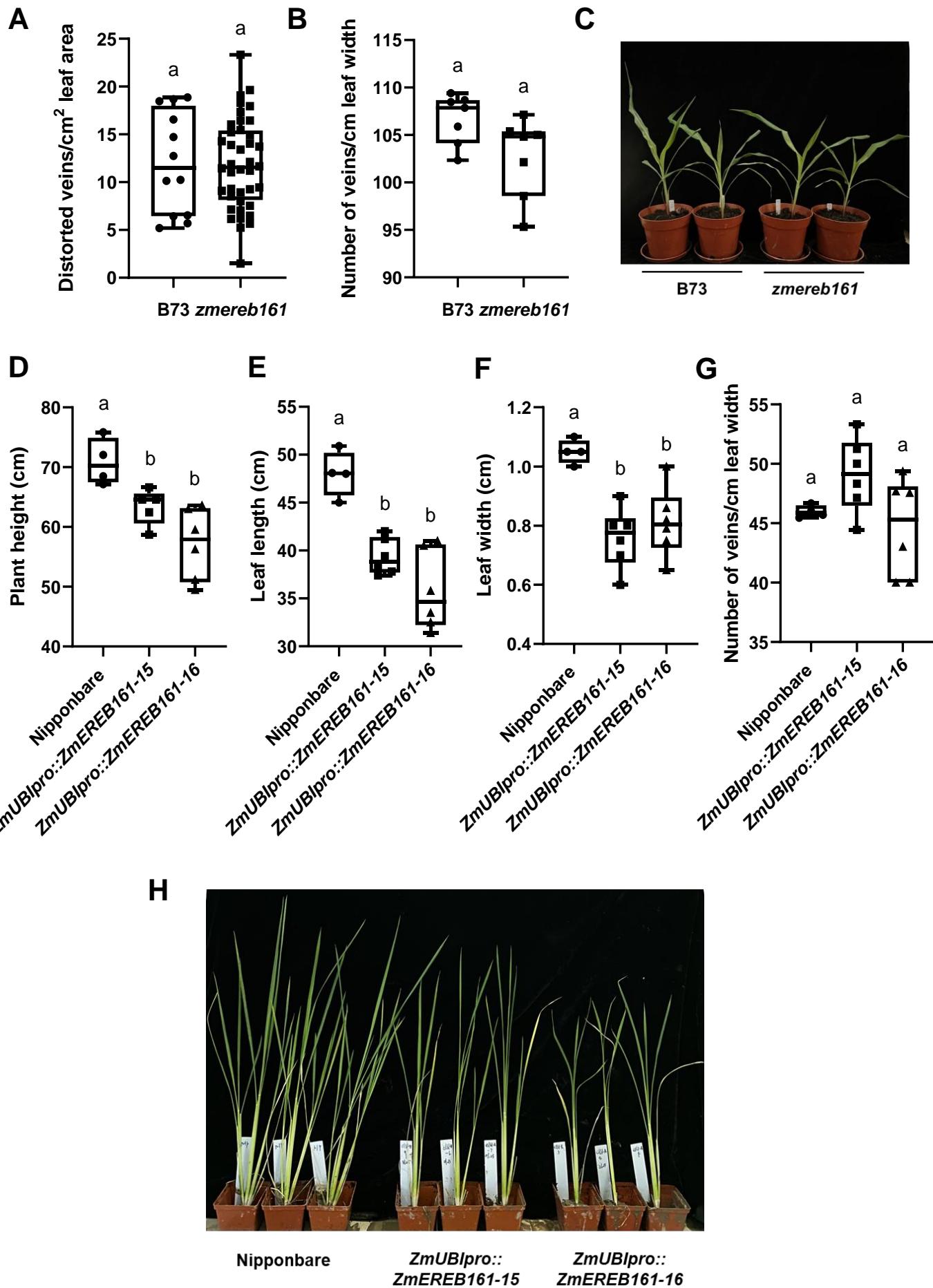


B. Annotation and description of genes listed in (A).

C. Genes with high BS/M ratio of expression were potentially included in cluster 5 of **Figure 9A**.

D. Annotation and description of genes listed in (C).


E and F. *In situ* hybridization for the transcript localization of *ZmNADP-ME* on transverse sections of maize expanded leaf (E) and leaf primordium (F). Scale bar: 20 μm. Blue arrows indicate bundle sheath cells with transcript enrichment.

G and H. *In situ* hybridization for the transcript localization of *ZmNDHU* on transverse sections of maize expanded leaf (G) and leaf primordium (H). Scale bar: 20 μm. Blue arrows indicate bundle sheath cells with transcript enrichment.


Supplemental Figure 12. Expression of genes related to CK signaling pathway in maize leaf primordium.

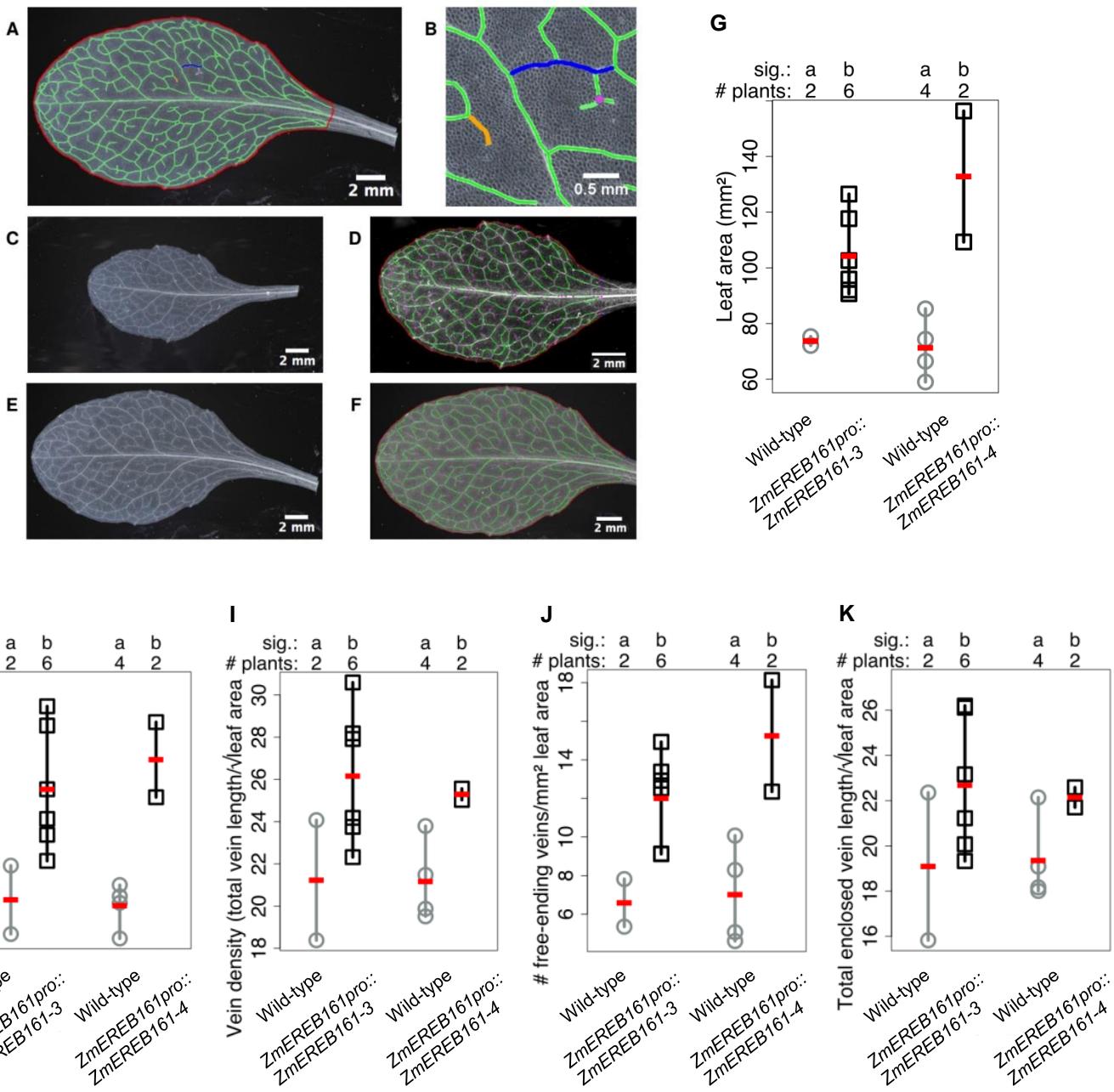
(A) and (B) show the distribution of gene expression in the total primordium cell clusters and tissue subsections respectively.

Supplemental Figure 13. *In situ* expression of *OsEREB161* transcripts in rice leaf primordium.

(A) and (B) are images from 2 different sections of 5mm rice primordium. Scale bar: 30 μ m. Arrows indicate the widely spaced vascular procambia where the *OsEREB161* expression is restricted in.

Supplemental Figure 14. Characterization of maize *zmereb161* mutant and *ZmUBIpro::ZmEREB161* transgenic rice plants.

Supplemental Figure 14. Characterization of maize *zmereb161* mutant and *ZmUBIpro::ZmEREB161* transgenic rice plants.

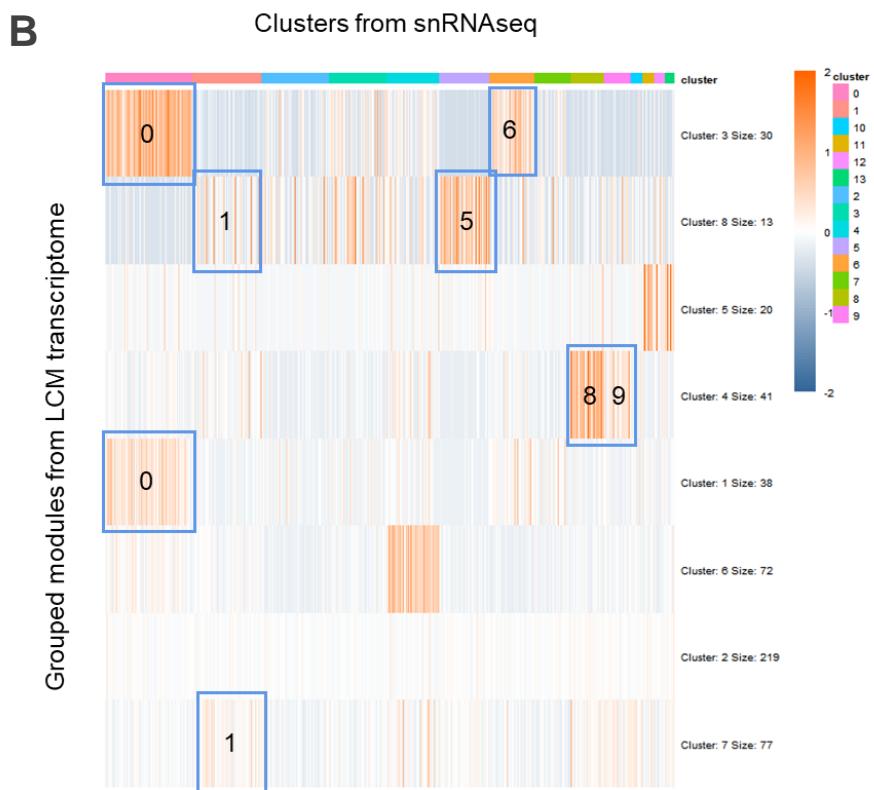
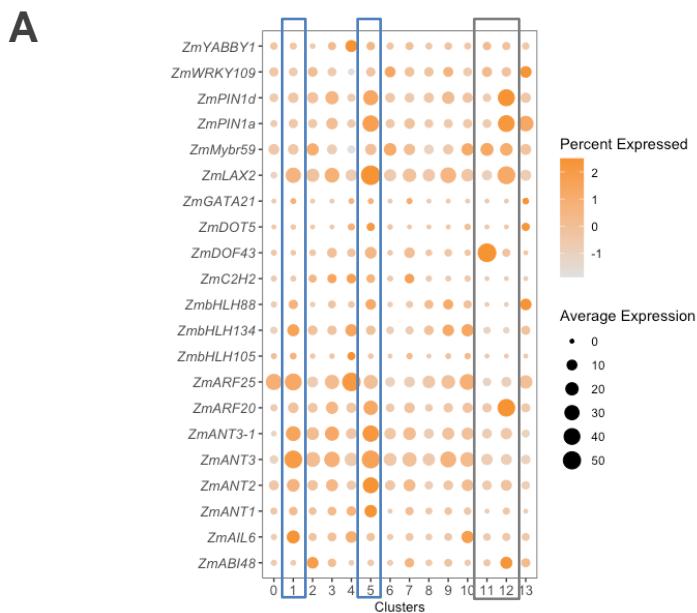

A and B. Quantification of leaf vascular traits of maize wild-type (B73) and *ereb161* mutant. Boxplots show emergence rate of distorted veins (A) and vein density (B) in the middle sections of 2nd fully expended leaves from the top of 4-weeks-old plants.

C. The phenotype of maize wild-type and *zmereb161* mutant plants.

D-G. Quantification of plant growth and leaf traits of rice wild-type (Nipponbare) and *ZmUBIpro::ZmEREB161* transgenic plants. Boxplots show plant height (D), leaf length (E), leaf width (F), and vein density (G). (F) and (G) were measured in the middle sections of the 2nd fully expended leaves from the top of 6-weeks-old T1 plants.

H. The phenotype of rice wild-type and *ZmUBIpro::ZmEREB161* plants.

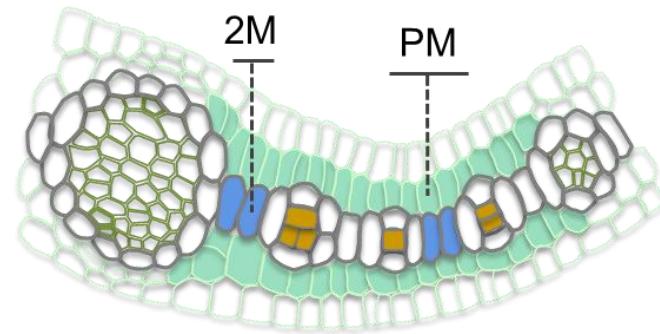
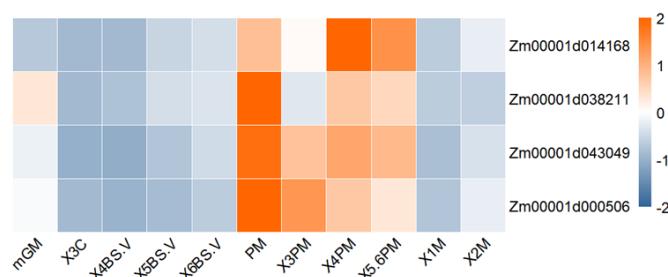
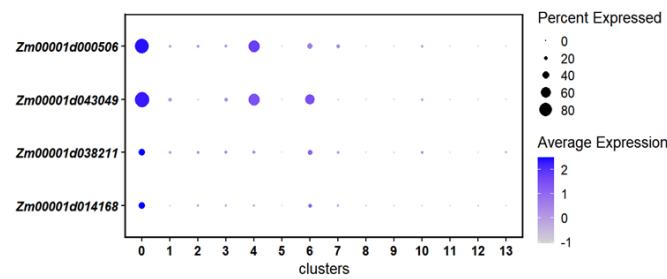
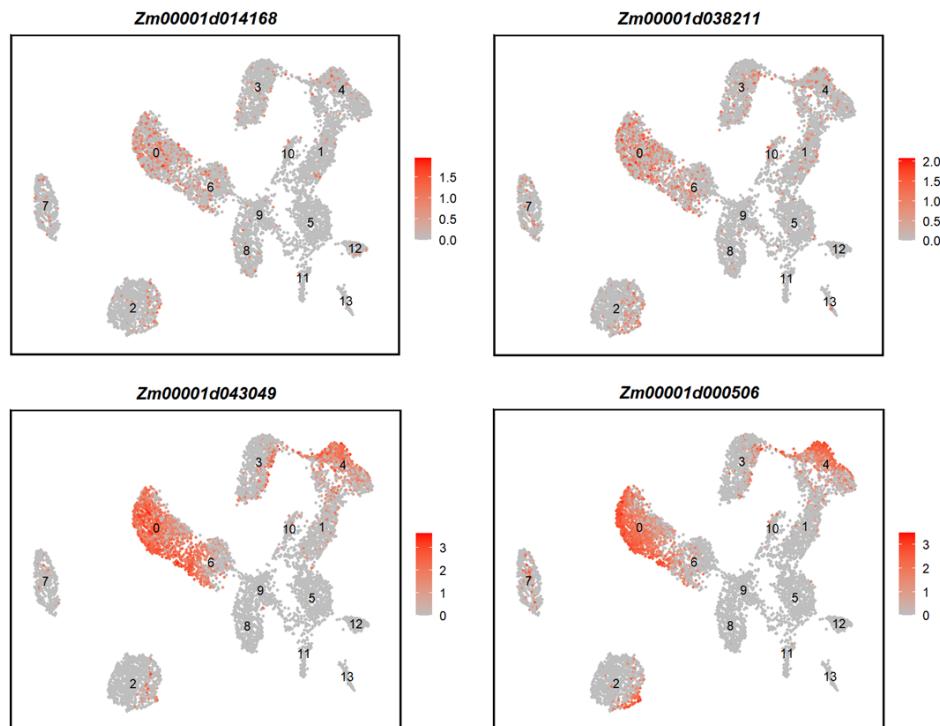
The box, black horizontal line, and whiskers indicate data within interquartile range (IQR, 25th-75th percentiles), the median, lowest and highest value within 1.5 times the IQR, respectively; the data represent means \pm SD and *P* values are calculated using an unpaired *t* test (A and B, *n* > 6) or 1-way ANOVA with Tukey's HSD test (C-F, *n* = 4 for wild-type, and *n* = 6 for over-expression lines); different letters above the bars indicate significant differences (*P* < 0.05).

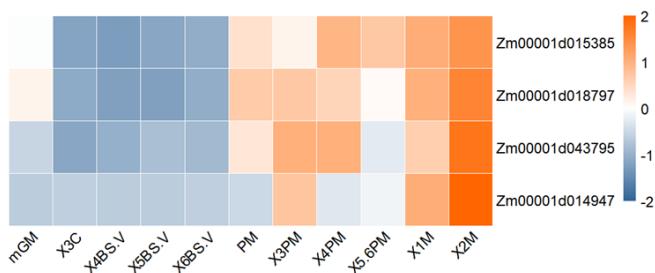
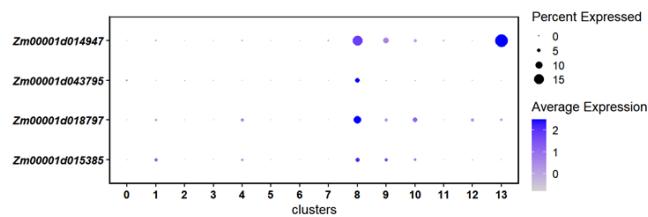
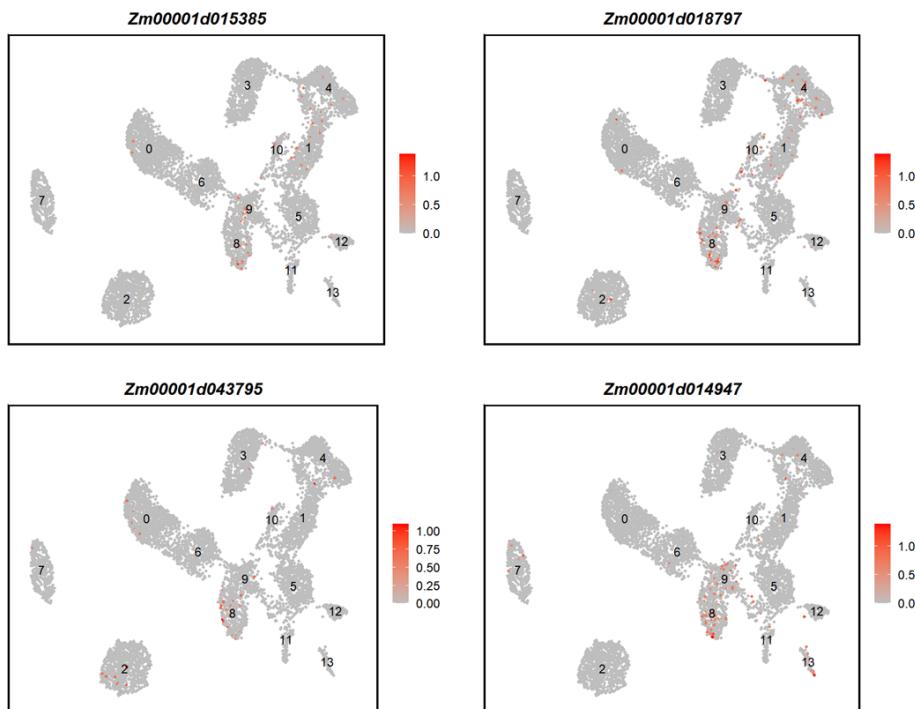



Supplemental Figure 15. *ZmEREB161pro::ZmEREB161* transgenic arabidopsis lines have more vasculature and a higher vein density compared to wild-type.

A and B. Dark field photographs of cleared arabidopsis leaf 5 overlaid with the leaf traits measured: leaf area (red), total vasculature (green), enclosed veins (blue), free-ending veinlets (orange) and vein branching points (purple)- in a whole leaf (A) and a magnified image (B).

C-F. Darkfield photograph of a segregating *ZmEREB161pro::ZmEREB161* (wild-type) T2 sibling (C) overlaid with LIMANI output (D), and darkfield photograph of a *ZmEREB161pro::ZmEREB161* T2 sibling (E) overlaid with LIMANI output (F).





G-K. Strip charts showing whole leaf - total leaf 5 area (mm^2) (G), total vasculature (mm) (H), vein density (mm/mm^2) (total vein length/leaf area) (I), free-ending veinlet number per mm^2 leaf area (J) and enclosed vein density (total enclosed vein length/leaf area) (K). "Sig." - different letters indicate significant differences in group means ($P<0.05$). # plants - number of individual plants used for analysis. Square/circle - individual data point, vertical line - range of data, red dash - mean.

Supplemental Figure 16. Comparison between current dataset and Liu et al. (2022).

A. Cell cluster (of the 14 clusters from **Figure 4A**) distribution of genes that are highly expressed in median ground meristem (mGM) and three-contiguous cell (3C) from the LCM-transcriptomes (Fig. 7A of Liu et al., 2022).

B. A comprehensive comparison of current snRNA-seq data with the LCM-transcriptomic data of Liu et al. (2022). Blue frames with numbers indicate genes in different clusters of current snRNA-seq data overlapping with grouped modules from the LCM-transcriptome data.

A**B****C****D**

E**F****G**

Supplemental Figure 17. “PM” and “2M” samples from the LCM data assisted further annotation of mesophyll cell clusters for the snRNAseq data.

A. Schematics of the anatomy and cell types representing the upper middle section of P4 leaf primordium. “2M” and “PM” cells described in Liu et al. (2022) were filled in blue and light green colors respectively.

B-D. Heat maps showing the selected “PM” cell enriched genes (B); Dot plots (C) and UMAP plots (D) showing the “cluster 0” enrichment of the selected genes.

E-G. Heat maps showing the selected “2M” cell enriched genes (E); Dot plots (F) and UMAP plots (G) showing the “cluster 8” enrichment of the selected genes.

Dot colour, proportion of cluster cells expressing a given gene; Dot size, the average expression level.