

1 Environmental differences impact *Acinetobacter*

2 *baumannii* phage isolation and infectivity

3 Ellinor O Alseth^{1,2*}, Carli Roush^{1,2,¶}, Iris Irby^{1,2,¶}, Mykhailo Kopylov³, Daija Bobe³, Kristy

4 Nguyen², Huaijin Xu², Anton V Bryksin^{2,4}, Philip N Rather^{5,6}

5

6 ¹Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta,
7 GA, USA

8 ²School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA

9 ³New York Structural Biology Center, New York, NY, USA

10 ⁴Molecular Evolution Core Facility, Georgia Institute of Technology, Atlanta, GA, USA

11 ⁵Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA

12 ⁶Atlanta VA Healthcare System, Decatur, GA, USA

13

14 * Corresponding author

15 E-mail: ealseth3@gatech.edu (EOA)

16

17 ¶ These authors contributed equally to this work.

18 Abstract

19 With the global rise of antimicrobial resistance, phage therapy is increasingly re-
20 gaining traction as a strategy to treat bacterial infections. For phage therapy to be
21 successful however, we first need to isolate appropriate candidate phages for both
22 clinical and experimental research. *Acinetobacter baumannii* is an opportunistic
23 pathogen known for its ability to rapidly evolve resistance to antibiotics, making it a
24 prime target for phage therapy. Yet phage isolation is often hampered by *A.*
25 *baumannii*'s ability to rapidly switch between capsular states. Here, we report the
26 discovery and structural characterisation of a novel lytic phage, Mystique. This phage
27 was initially isolated against the wild-type AB5075: a commonly used clinical model
28 strain against which no phage has previously been readily available for the capsulated
29 form. When screening Mystique on 103 highly diverse isolates of *A. baumannii*, we
30 found that it has a broad host range, being able to infect 85.4% of all tested strains
31 when tested on bacterial lawns – a host range which expanded to 91.3% when tested
32 in liquid culture. This variation between solid and liquid environments on phage
33 infectivity was also observed for several other phages in our collection that were
34 assumed unable to infect AB5075, and capsule negative mutants that initially seemed
35 completely resistant to Mystique proved susceptible when assayed in liquid. Overall,
36 through the discovery of a novel phage we demonstrate how environmental
37 differences can drastically impact phage infectivity with important consequences for
38 phage isolation and characterisation efforts.

39 **Author summary**

40 Bacterial infections caused by *Acinetobacter baumannii* are a major global health
41 concern due to high antibiotic resistance, earning it a critical priority pathogen ranking
42 by the WHO. Phage therapy is resurging as a treatment option, with some success
43 against *A. baumannii*. However, the wild-type clinical model strain used to assess new
44 therapies lacks an available phage, and isolating phages for *A. baumannii* is
45 challenging due to its complex capsule. Here, we report the discovery of a novel lytic
46 phage, Mystique, which exhibits a broad host range, infecting 94 out of 103 tested *A.*
47 *baumannii* strains. We conducted genomic sequencing and structural analysis to fully
48 characterise Mystique. Additionally, we found that the testing environment significantly
49 impacts results; some phages that do not form plaques on bacterial lawns can still
50 infect and amplify in liquid cultures of the same strain. Moreover, mutants resistant to
51 Mystique based on plaque assays were susceptible in liquid culture assays. This work
52 underscores the necessity of a multifaceted approach for phage isolation and
53 characterisation, as traditional phage assays may not be sufficient for studying
54 bacteria-phage dynamics in certain bacteria such as *A. baumannii*.

55

56 **Introduction**

57 *Acinetobacter baumannii* is an increasingly antibiotic resistant and virulent bacterium,
58 known to cause severe nosocomial infections [1–4]. With an estimated 63% of isolates
59 in the United States being considered multidrug resistant [5], infections due to *A.*
60 *baumannii* are difficult to overcome and often fatal [6]. An additional challenge is *A.*
61 *baumannii*'s ability to contaminate and persist in healthcare facilities, such as in
62 laminar flow systems [7], on care and medical equipment [8–10], and on other surfaces

63 like curtains, doors handles, and keyboards [10,11]. It is largely due to this challenge
64 of preventing and treating *A. baumannii* infections that the therapeutic application of
65 bacteriophages (phages, *i.e.* viruses that infect bacteria) is increasingly being
66 considered and – usually as a last resort – applied [12,13].

67

68 Microbial model systems play a crucial role in advancing science across various
69 biological disciplines [14,15], and are therefore important to increase our
70 understanding of bacteria-phage dynamics in ways that can help improve the efficacy
71 of phage therapy. For instance, model systems provide researchers with a highly
72 controlled environment for testing experimental predictions that may elucidate
73 fundamental principles underlying bacteria-phage interactions, such as mechanisms
74 of phage infection [16], phage resistance [17], and coevolutionary dynamics [18].
75 Additionally, microbial model systems serve as helpful tools when exploring the
76 application of phages as therapeutics and their potential consequences [19]. After all,
77 the arms race between phage ('predator') and bacteria ('prey') is fast paced, with a
78 strong selection pressure for the bacteria being targeted to evolve phage resistance
79 both *in vitro* and *in vivo* [20]. Well-characterised model systems for studying bacteria-
80 phage interactions have been developed for other opportunistic pathogens such as
81 *Escherichia coli* [21,22] and *Pseudomonas aeruginosa* [23,24], yet for some clinically
82 relevant strains of *A. baumannii* there are no phages available. This is the case for the
83 wild-type clinical isolate and model strain AB5075 in particular. AB5075 is a highly
84 virulent strain of *A. baumannii* that is commonly used in various animal models to study
85 pathogenesis, host-pathogen interactions, and to assess potential new treatments
86 [25].

87

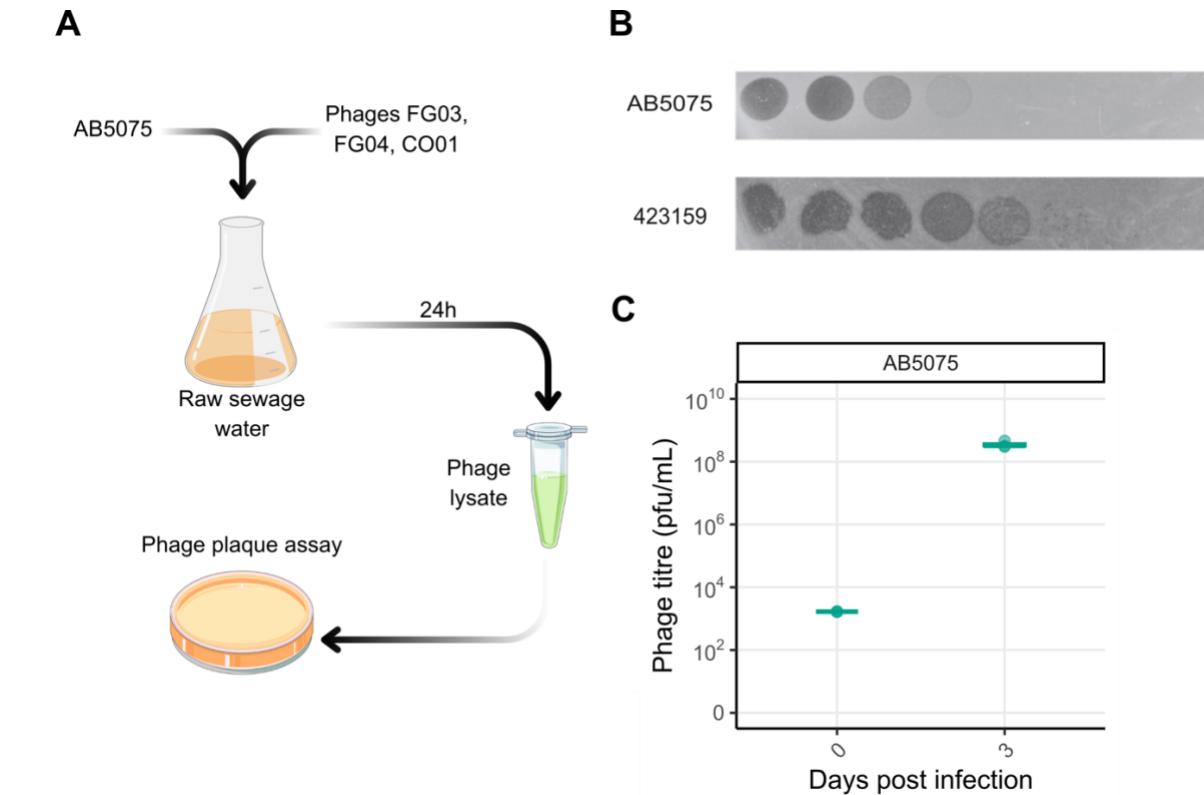
88 In an otherwise genetically homogenous population, AB5075 and other *A. baumannii*
89 strains exhibit phenotypic heterogeneity by rapidly switching between virulent opaque
90 (VIR-O) and avirulent translucent (AV-T) colonies [26–28]. This phenotypic switch is
91 associated with changes in capsule thickness, with AV-T cells exhibiting a twofold
92 decrease in capsule thickness compared to VIR-O cells [27]. While the switching
93 frequency is at ~4-13% over 24 hours for a single propagated colony, this rate is
94 potentially affected by the selection pressure imposed by the presence of phages
95 targeting one state but not the other. In other words, the process of isolating novel
96 phages can incur an increased selection pressure for rapid capsule modulation, at a
97 rate incompatible with commonly applied methods of phage isolation. For *A.*
98 *baumannii*, many phages have been found to select for reduced capsule production
99 [29,30], but most phage isolation attempts for AB5075 specifically have resulted in
100 phages targeting capsule negative mutants [31,32], but not the VIR-O state or the wild-
101 type. It is therefore possible that a thicker capsule might directly block phage
102 absorption; a characteristic found in other bacteria with similar capsule properties [33],
103

104 Here, we report our successful approach to phage isolation for AB5075, resulting in
105 the isolation of Mystique: a novel lytic phage against *A. baumannii*. In addition to
106 infecting AB5075, Mystique can readily infect 91.3% of a diverse set ($n = 103$, including
107 AB5075) of clinical *A. baumannii* isolates. This makes for a remarkably broad host
108 range, especially as the strains Mystique was tested on are specifically meant to
109 represent the full genetic diversity of *A. baumannii* as a species [34]. To isolate phage
110 Mystique, we combined raw sewage with a cocktail of known phages that can infect
111 but not plaque on AB5075, to limit resistance evolution occurring during the isolation
112 process. The isolation process for this phage also revealed how a structured

113 environment can result in false negative results when assessing phage infectivity, as
114 we discovered multiple phages in our collection were able to infect AB5057 in liquid
115 culture but not on a bacterial lawn. Additionally, capsule mutants of AB5075 that would
116 traditionally be classified as resistant to Mystique based on plaque assays proved
117 susceptible to the phage in liquid cultures. This has important implications for any
118 phage isolation attempt for *A. baumannii* and other bacteria with similar capsule
119 properties, seeing as most phage assays are performed on bacterial lawns: a method
120 that has not seen much change since the discovery of phages in the early 1900s
121 [35,36].

122

123 **Results**


124 **Isolation of novel *A. baumannii* phage Mystique**

125 There is currently no lytic phage readily available against the wild-type clinical model
126 strain of *A. baumannii*: AB5075, and yet a well characterised phage is essential to
127 study clinically relevant bacteria-phage dynamics. To solve this issue, we isolated a
128 novel lytic phage, named Mystique, from local sewage water in Atlanta, USA, using
129 AB5075 as the bacterial target for phage infection (Fig 1). To aid in the isolation
130 attempt, other phages were added to the mixture, to limit the likelihood of resistance
131 evolution (Fig 1A and Fig 2).

132

133 While Mystique does cause bacterial clearance on a lawn of AB5075, it does not form
134 individual phage plaques, which made it difficult to verify the presence of a single
135 phage (Fig 1B). However, when pipetting a serial dilution of the sewage lysate on
136 various strains of *A. baumannii*, phage plaques were observed on *A. baumannii* MRSN
137 strain 423159 [34] (Fig 1B), from which an individual plaque was picked and purified

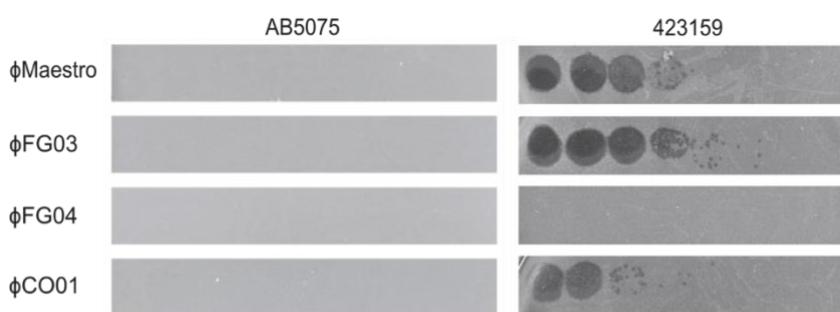
138 three times in liquid cultures of AB5075 to ensure the isolation of one individual phage.
139 Plaque assays on 423159 were also used to assess Mystique's infectivity in liquid
140 cultures of AB5075, which revealed the phage's ability to infect, amplify, and remain in
141 the population over the course of three days (Fig 1C).

142
143 **Figure 1. Mystique is a novel lytic phage targeting *A. baumannii* AB5075. A**
144 Illustration of the phage isolation process. **B** Serial dilution of Mystique phage lysate
145 after isolation and purification (always using AB5075 as host for phage amplification)
146 to ensure the presence of only one phage, pipetted onto lawns of *A. baumannii* strains
147 AB5075 and 423159. **C** Mystique phage titres after three days of co-inoculation and
148 daily passaging with AB5075.

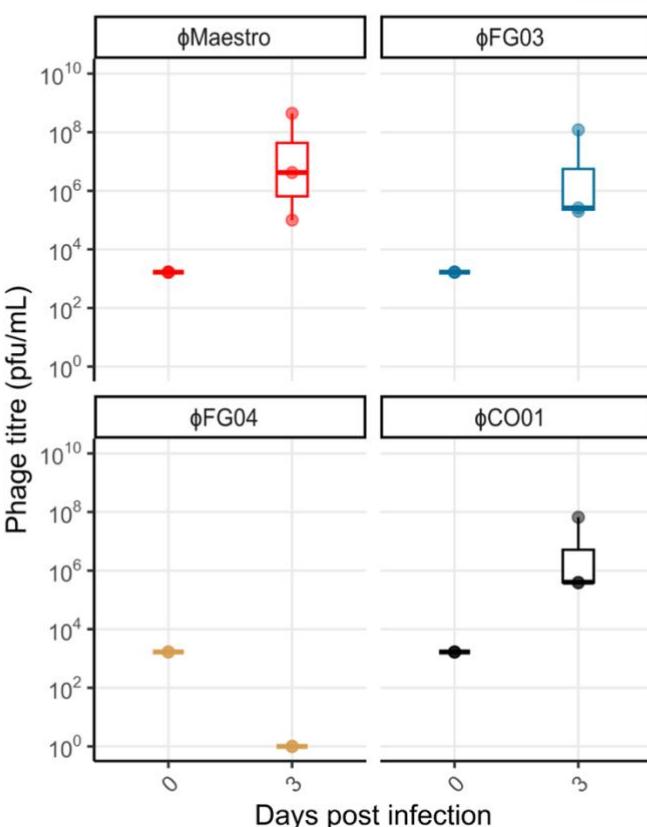
149
150 **The phage isolation process revealed how some phages can only**
151 **infect in liquid culture**

152 Initially, the isolation of phage Mystique seemed to have been in vain, as no phage
153 plaques were observed on a lawn of AB5075 after our first isolation attempt. We
154 hypothesised that the rapid phenotypic switching between VIR-O and AV-T states, as
155 a potential strategy to become phage resistant, could be a significant hindrance in the
156 initial phage amplification step. In an attempt to limit the evolution of phage resistance,
157 we then reasoned that the addition of other known phages against *A. baumannii* could
158 limit rapid capsule switching and the emergence of phage resistant mutants.

159


160 In our phage biobank we have three phages (Maestro [20], FG03, and CO01 [30]) that
161 also plaque on *A. baumannii* strain 423159 (Fig 2A). In particular, Maestro has been
162 used clinically against *A. baumannii* strain TP1 as part of a cocktail including several
163 phages that were initially isolated on AB5075 capsule negative mutants[13,20,31],
164 indicating that this phage might also be able to infect AB5075 – but only one capsule
165 state. To test the ability of these other phages to infect AB5075, we inoculated them
166 with AB5075 in liquid culture for three days with daily transfers into fresh medium.
167 FG04 [30] was included as a negative control as it does not plaque on MRSN strain
168 423159, and we consequently expected that it would not be able to infect AB5075
169 either (Fig 2A). We found that the phages Maestro, FG03, and CO01 all infect and
170 amplify on AB5075 in liquid culture, while FG04 did not (Fig 2B). All plaque assays
171 were performed on lawns of 423159 at three days post infection, to make plaque
172 counting possible.

173

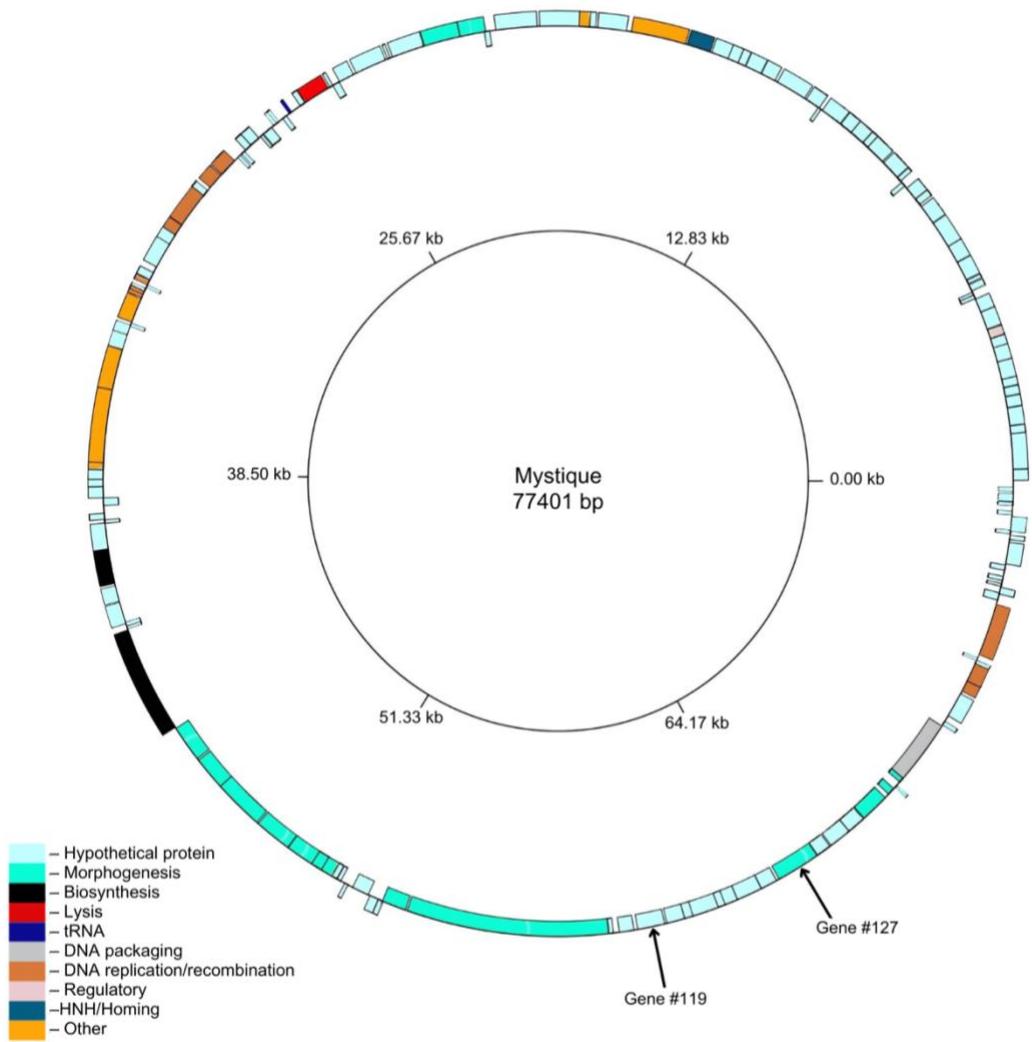

174 Based on these findings, we subsequently added phages Maestro, FG03, FG04, and
175 CO01 to the sewage before inoculation with AB5075, which resulted in the isolation of
176 phage Mystique (Fig 1). The addition of these phages to the sewage filtrate might

177 therefore have aided in the isolation of phage Mystique, with Maestro, FG03, and
178 CO01 constraining resistance evolution while not confusing the results due to their
179 inability to plaque on AB5075 – unlike Mystique. FG04 was also included to further
180 reduce the likelihood of drastic mutational changes to a potential phage surface
181 receptor, as any such change could potentially come at the cost of making the host
182 susceptible to this other phage.

A

B

183

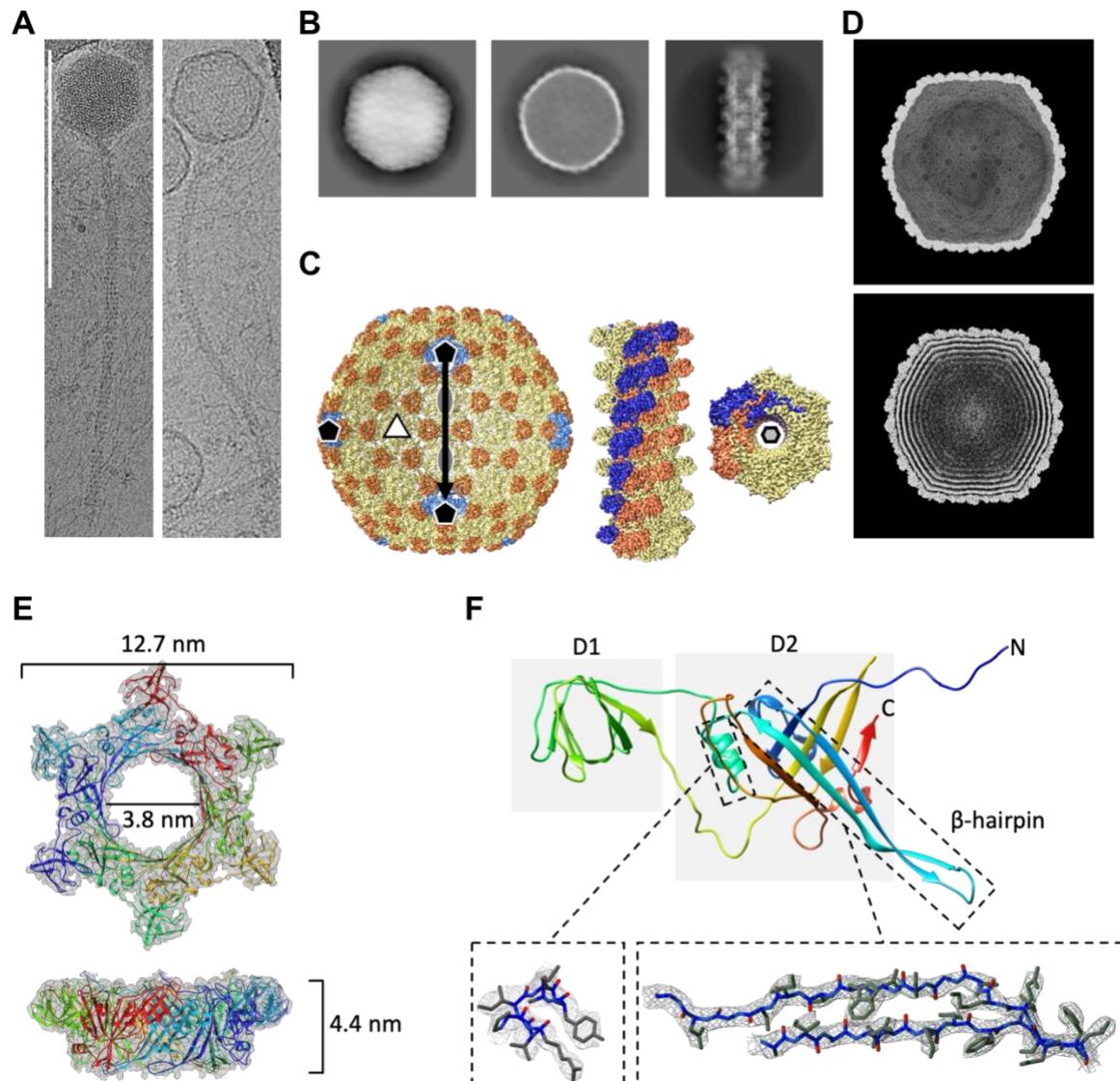

184 **Figure 2. Some phages can infect in liquid culture but not on a bacterial lawn of**
185 **the same host strain. A** Bacterial lawns of AB5075 and 423159 with serial dilutions
186 of phages Maestro, FG03, FG04, and CO01, illustrating how none of them plaque on

187 AB5075 but three do on 423159, which was used as an indicator for which strains
188 might be able to infect AB5075 in liquid cultures. **B** In liquid culture on the other hand,
189 Maestro, FG03, and CO01 are all able to infect AB5075 (phage plaques were counted
190 on lawns of *A. baumannii* strain 423159 as they do not plaque on AB5075 as shown
191 in A). FG04 cannot infect AB5075 on a lawn or in liquid culture.

192

193 **Mystique sequencing, annotation, and assembly**

194 After the isolation and purification of Mystique, DNA was extracted from the phage
195 lysate followed by Illumina and Oxford Nanopore sequencing. Once the hybrid (long
196 and short sequencing reads) assembly of the genome was complete, Mystique was
197 found to be a dsDNA phage closely related to two other *Acinetobacter* phages:
198 vB_AbaS_TCUP2199 (GeneBank accession number ON323491.1 [37]) shows
199 96.63% identity across 97% of the Mystique genome, and EAb13 (GeneBank
200 accession number OQ717042.1 [38]) has 84.47% identity across 8% of the Mystique
201 genome. The genome has a GC-content of 40%, with 154 predicted genes of which
202 115 are annotated as hypothetical proteins, while 38 have assigned putative functions.
203 Additionally, one tRNA gene was identified (Fig 3).



215 using polyethylene glycol (PEG) precipitation [40]. CryoEM data acquisition revealed
216 that phage particles were present in vitreous ice on CryoEM grids, yet most of the tails
217 were detached from the heads, possibly due to the harsh conditions of PEG
218 precipitation [41]. In total, 7200 head particles and 363,000 tail segments were picked
219 from micrographs for further analysis. Interestingly, the initial 2D classification revealed
220 that the Mystique head particles were in two distinct states – one empty and one full
221 (Fig 4A and B). A total of 6000 head and 191,150 tail segments were used for final
222 refinement, producing maps at 4.5 Å and 3.2 Å resolution respectively (Fig 4C).
223 Additionally, independent 3D reconstruction of particles from both empty and full states
224 (Fig 4B) produced lower resolution, but identical maps, suggesting that phage capsid
225 structure does not depend on the presence or absence of nucleic acids (Fig 4D).

226
227 Through cryoEM, we further found that Mystique's head has a icosahedral T=9
228 symmetry (h=3, k=0 [42]), and AlphaFold2 structure prediction of the protein encoded
229 by Mystique gene number 127 (Fig 3) revealed an HK97 fold [43], suggesting a similar
230 organisation to that of other phages with HK97 capsids (Fig S1A). However, the
231 resolution of the phage heads was not sufficient to unambiguously trace a backbone
232 model in cryoEM map density. Instead, we used rigid-body fitting to manually fit the
233 predicted model into the map, assembling an asymmetric unit (Fig S1B) before
234 applying icosahedral symmetry to produce a closed cage that matched the EM density
235 (Fig S1C). Unfilled densities may belong to a yet unidentified “cement” or “decoration”
236 protein common for bacteriophages with HK97-like folds [43].

237
238 Next, the cryoEM map of the phage tail was used for protein sequence prediction
239 though *de novo* modelling using ModelAngelo [44]. The resulting model was then used

240 to search through Mystique's genome, identifying gene number 119 as the tail protein
241 (Fig 3). The protein sequence derived from gene number 119 was further used to build
242 a model which was refined with C6 symmetry (Fig 4E) before being used as input for
243 Foldseek [45]. This revealed that YSD1, a phage infecting *Salmonella* [46], has a
244 highly homologous tail structure, despite low sequence similarity (Fig S2A and B). The
245 Mystique tail monomer is organised into two major domains: the external D1 domain
246 and a core D2 domain. A β -hairpin of each subunit in a hexamer interacts with a
247 preceding and two subsequent subunits, thus forming a highly interlocked assembly
248 (Fig 4F). A third domain (D3) is absent in the Mystique tail, but present in the YSD1
249 tail [46], although poorly resolved. Similar to YSD1, Mystique's tail also has a highly
250 negatively charged lumen necessary for translocation of nucleic acid from the head to
251 the host (Fig S2C).

252

253 **Figure 4. CryoEM reconstruction of bacteriophage **Mystique** and structural tail**

254 **details showing hexameric assembly.** **A** Individual phage particles from CryoEM

255 micrographs showing bacteriophages with a full head (left) and an empty head (right).

256 Scale bar 200 nm. **B** Selected 2D classes from data processing of phage particles (left

257 = full head, middle = empty head, right = tail). **C** Left: 3D reconstruction (with

258 icosahedral symmetry applied) of the **Mystique** head showing icosahedral symmetry

259 axes. For this map, particles from empty (2,793) and full (3,207) heads were combined

260 resulting in a 4.5 Å resolution reconstruction (blue = pentamers, yellow = hexamers,

261 orange = decorating protein). Right: helical reconstruction of **Mystique** tail with C6

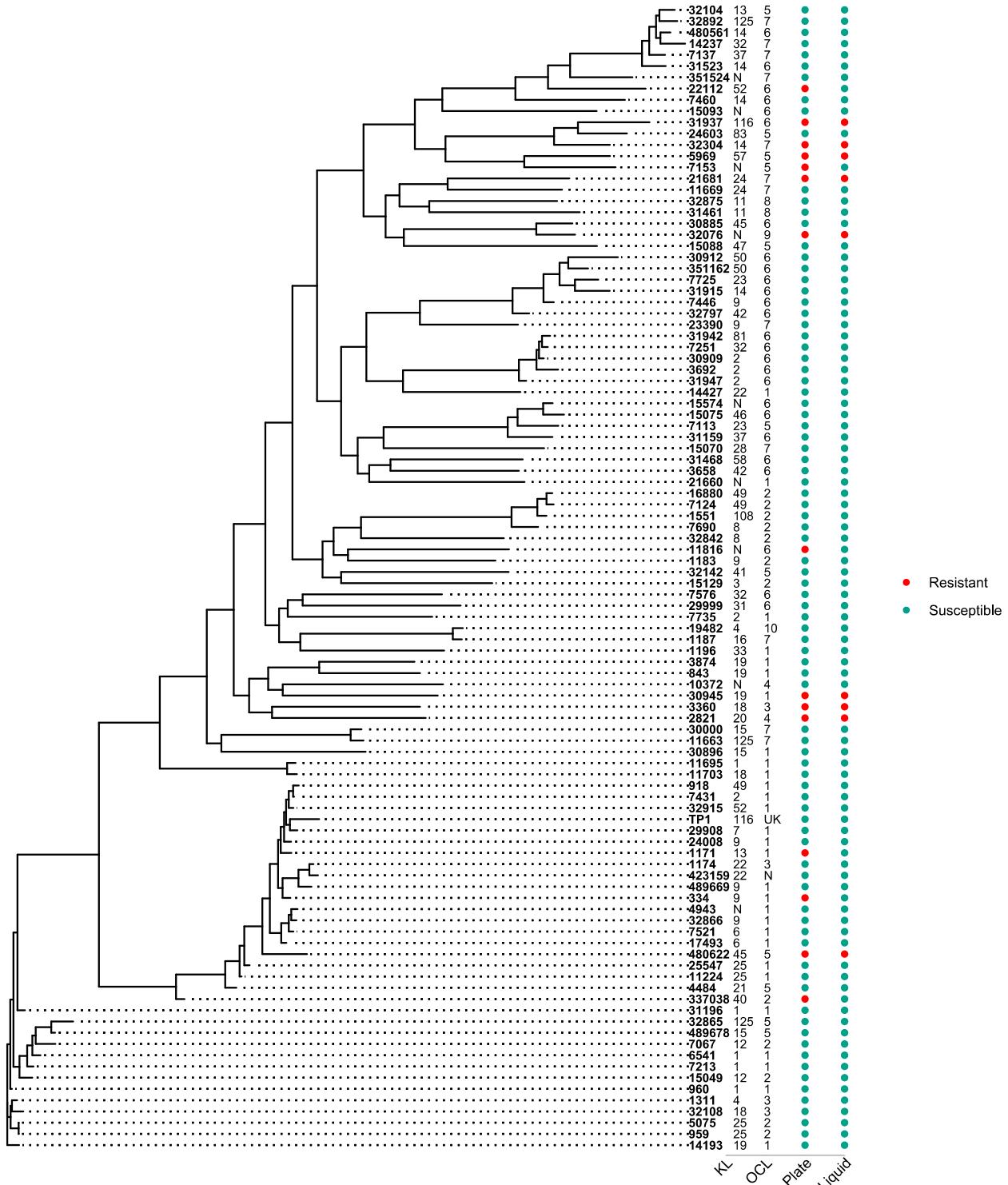
262 symmetry. Two adjacent individual helical strands are coloured in blue and orange. **D**

263 Independent CryoEM reconstructions of empty (top) and full (bottom) capsids
264 displayed at high thresholds. **E** Helical asymmetric unit of Mystique's tail unit with a 6-
265 fold symmetry. The final refinement had a helical twist of 17.9 degrees and a helical
266 rise of 42 Å. **F** Tail protein monomer with two main domains and a β-hairpin. Boxes
267 show the alpha helix and a β-hairpin fitted into a 3.2 Å map.

268

269 **Mystique has a broad *A. baumannii* host range**

270 With Mystique sequenced and structurally characterised, we next set out to determine
271 its more exhaustive *A. baumannii* host range. We tested Mystique's killing ability using
272 plaque assays on 103 highly diverse clinical isolates of *A. baumannii*, 100 of which
273 were from the MRSN diversity panel [34] as well as FZ21 [17] and TP1 [13], with
274 AB5075 included as a positive control. The MRSN diversity panel in particular is meant
275 to represent the full genetic diversity of *A. baumannii* as a species [34].


276

277 Based on these plaque assays, we found that Mystique can infect at least 88 out of
278 the 103 strains tested (85.4%) (Supporting information 1), making it a broad host-
279 range lytic phage. However, because we previously showed that the environment for
280 assessing phage infectivity is significant (Fig 2), we hypothesised that Mystique might
281 have an even broader host range than indicated by plaque assays if tested in a liquid
282 culture rather than on a bacterial lawn. To determine this, we next inoculated Mystique
283 in broth culture with the 15 strains it does not plaque on, with daily transfers for three
284 days before phage titres were determined by plaque assays on 423159. In liquid
285 culture, in addition to the 88 already confirmed, Mystique could also infect MRSN
286 strains 334, 1171, 7153, 11816, 22112, and 337038 (Fig S3) for a total of 94 out of the
287 103 strains tested (91.3%). These results further highlight the importance of testing

288 phages in liquid culture, as there was once more a large discrepancy in the observed
289 results between environments (lawn vs liquid) used to test for phage infectivity (Fig
290 S3).

291

292 Next, we made a phylogenetic tree and tested for a potential phylogenetic signal
293 across strains by first assessing strains susceptible based on plaque assays (Fig 5).
294 This gave us a D value of 0.3 ($p = 0$), which is a measure of phylogenetic signal for a
295 binary trait, where a number closer to 1 indicates a trait evolved from random motion
296 [47]. With susceptibility in liquid as the binary trait on the other hand, the D value
297 decreased to 0.084 ($p = 0.02$), strongly indicating that resistance to Mystique is a non-
298 random and heritable trait (Fig S4). There were no clear similarities between the
299 susceptible strains' capsule serotype (KL) or lipooligosaccharide outer core locus
300 (OCL) that could answer why a specific strain is resistant or susceptible to Mystique
301 (Fig 5).

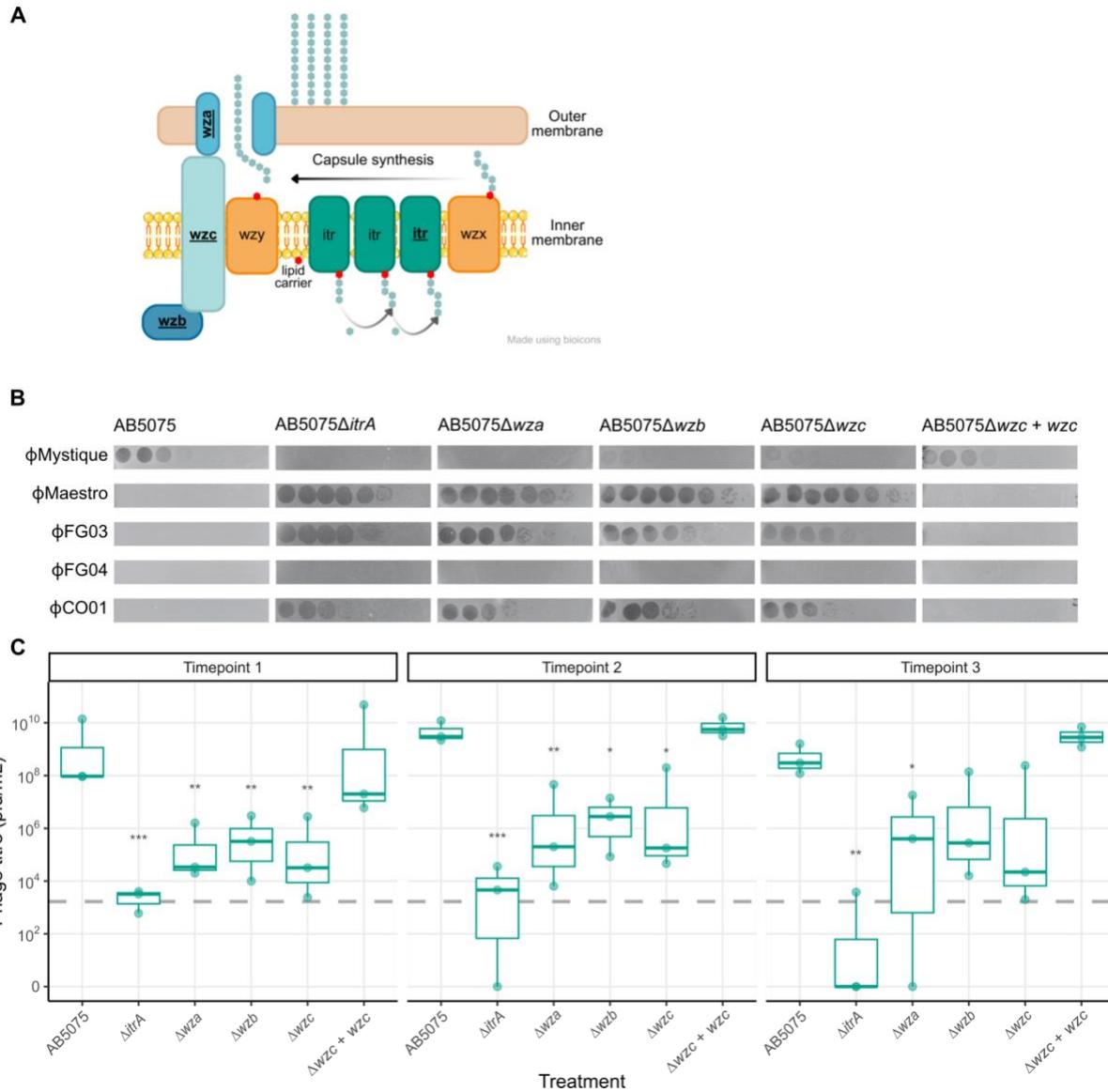
302
303 **Figure 5. Phylogenetic tree of strains that Mystique was tested on.** Phylogenetic
304 tree of *A. baumannii* stains that are susceptible or resistant to phage Mystique after
305 having been tested using both plaque (labelled as 'plate') and liquid assays (labelled

306 as 'liquid'). KL indicates the strain's capsule serotype, while OCL is the
307 lipooligosaccharide outer core locus (N = novel and UK = unknown).

308

309 **Mystique likely targets the *A. baumannii* capsule for infection**

310 Following the host range assay, we set out to determine the phage Mystique receptor.
311 Due to its broad host range, we anticipated that the receptor must be something all
312 strains have in common. This, combined with the knowledge that most other *A.*
313 *baumannii* phages use the capsule as a receptor [29–31], we hypothesised that the
314 bacterial capsule itself functions as the Mystique phage receptor. To test this, we used
315 mutants of various capsule synthesis genes, specifically the *itrA*, *wza*, *wzb*, and *wzc*
316 genes that encode important components of the capsular polysaccharide synthesis
317 pathway [48] (Fig 6A). For example, *ItrA* is the initiating transferase, which is required
318 for both capsule synthesis and protein O-glycosylation, while *Wza*, *Wzb*, and *Wzc*
319 together form a complex that coordinates the assembly and export of the capsular
320 polysaccharide [49,48,29].


321

322 Plaque assays revealed that for all four mutants there was a drastic decrease in phage
323 Mystique infectivity (Fig 6B). Specifically, disruption of the *itrA* and *wza* genes seemed
324 to confer complete phage resistance while we still observed some clearance on the
325 *wzb* and *wzc* mutants, implying partial resistance (Fig 6B). We also performed plaque
326 assay on a complemented strain: AB5075Δ*wzc* + *wzc*. Making the *wzc* gene functional
327 again fully reversed the previously observed phage resistance, resulting in it becoming
328 re-susceptible at the same level as the wild-type AB5075 (Fig. 6B). This further
329 supported our hypothesis that Mystique uses the capsule itself as its receptor.
330 Additionally, we assessed the other phages used during phage isolation on the same

331 capsule mutants and found an inverse pattern where the phages that can amplify in
332 liquid but not on a bacterial lawn of AB5075 (Fig 2) do cause lysis on all AB5075
333 capsule mutants (Fig 6B).

334

335 Finally, we tested how well Mystique would amplify on these mutants in liquid culture,
336 following our observations on the importance of environmental conditions when
337 assessing phage susceptibility/resistance (Figs 2B and 4). Doing this (with daily 1:100
338 dilutions into fresh media) revealed that Mystique can amplify in the population when
339 inoculated with all capsule mutants, but that this was to some degree mutant
340 dependent (Fig 6C). In particular, we observed two cases of phage extinction in the
341 presence of the $\Delta itrA$ mutant specifically as well as drastically limited phage
342 amplification, indicating this gene as being especially important in host resistance to
343 phage Mystique. Additionally, while all mutants negatively affected Mystique
344 amplification on day 1 and 2, by timepoint 3 there was only a significant effect of
345 treatment (wild-type or isogenic mutant) on phage titre for the $\Delta itrA$ and Δwza mutants,
346 with consistently lower levels of phage for the duration of the experiment. However,
347 across the board we never observed a complete inability of the phage to amplify as
348 would have been expected based on the plaque assays alone. This once more made
349 it abundantly clear how drastically environmental structure can influence observed
350 results, and the potential for false negative interpretation of experimental findings if
351 only conducting assays on bacterial lawns (Fig 6).

362

363 Discussion

364 Here, we report on the isolation and characterisation of *Mystique*, a novel lytic *A.*
365 *baumannii* phage – the first readily available phage against the wild-type of the clinical
366 model strain AB5075 – as well as underscoring the limitations of conventional phage
367 isolation techniques. *Mystique* is a double stranded DNA phage with a T=9 icosahedral
368 head and helical C6 symmetric tail structure, and is the first phage to be isolated to
369 specifically target the clinical model strain AB5075. While genetically similar to other
370 *A. baumannii* phages, cryoEM revealed that *Mystique* was more structurally similar to
371 other phages, such as YSD1 that infects *Salmonella* [46]. We speculate that the
372 particularly long phage tail may also be beneficial when binding to a thicker capsule,
373 such as the capsulated AB5075, but more work on the detailed structure of the tail tip
374 and receptor pair is needed for this to become clear.

375

376 In addition to targeting AB5075, *Mystique* has a remarkably broad host range, being
377 able to infect 88 (85.4%) of 103 highly diverse *A. baumannii* strains based on plaque
378 assays. During the phage isolation process, however, we also consistently observed
379 how some phages are able to infect AB5075 in liquid culture while simultaneously not
380 plaquing on bacterial lawns (Fig 2), the latter of which is the standard method for
381 isolating phages and testing infectivity [36]. When also assessing *Mystique* in liquid
382 culture, its final host range was at 94 (91.3%) out of the 103 strains tested.

383

384 The broad host range observed is likely due to *Mystique* using the *A. baumannii*
385 capsule as its receptor, which is a common receptor for other *A. baumannii* phages as
386 well. Interestingly, most phages seem restricted by capsule serotype [29] in a way

387 Mystique is not. The capsule being the phage receptor was supported by how several
388 AB5075 capsule mutants conferred either complete resistance or drastically reduced
389 infectivity compared to the wild-type using plaque assays (Fig 6B). Yet we still found
390 that Mystique was able to amplify, although to a lesser extent, on all capsule mutants
391 when tested in liquid (Fig 6C). Making the *itrA* gene non-functional resulted in the
392 strongest effect, with two out of three populations showing phage extinction by
393 timepoint 3. Nonetheless, this ability of the phage to persist and amplify on seemingly
394 resistant bacteria may increase the likelihood of escape phages (phages with
395 mutational changes that overcome host resistance) to emerge over time[50].

396

397 Overall, this disconnect between the standard assays on bacterial lawn and liquid
398 culture likely means we are missing a fundamental property when it comes to phages
399 against *A. baumannii* and potentially also other bacteria with similar ability to regulate
400 capsule thickness. For instance, *E. coli* was recently found to regulate capsule
401 thickness and consequent masking of the phage receptor in response to cell surface
402 pressure with downstream effects on phage susceptibility [51]. This effect was lost if
403 using an *E. coli* Δ wza mutant [51], which we note is one of the same genes disrupted
404 in our work. It is therefore not unlikely that a similar effect may be involved for *A.*
405 *baumannii*, and more work should be done to elucidate what causes some phages to
406 be unable to infect on bacterial lawns but not in liquid environments.

407

408 This imperfect mapping between testing environments further highlights the complex
409 nature of bacteria-phage dynamics and the need for research on the finer mechanistic
410 details at play when phages use the *A. baumannii* capsule as their receptor. This was
411 made clear by our results showing how multiple phages in our collection that use the

412 capsule as their receptor[20,30] were also only able to lyse AB5075 capsule negative
413 mutants. Overall, this indicates that we are still missing crucial pieces of the puzzle
414 regarding how various phages interact with a diverse and plastic surface structure like
415 the *A. baumannii* capsule [26,27,48].

416

417 In conclusion, the Mystique phage isolation, structural analysis, and characterisation
418 process highlights the importance of re-evaluating traditional phage isolation
419 techniques and adopting a multifaceted approach to phage research. By interrogating
420 the interplay between phages and their bacterial hosts in diverse environmental
421 contexts we can gain deeper insights into the mechanisms of phage resistance in ways
422 that will aid us in devising more robust strategies for phage therapy against *A.*
423 *baumannii* and other bacteria with complex capsules.

424

425 **Materials and Methods**

426 **Bacterial strains and phages**

427 The strain used for isolating phage was *A. baumannii* AB5075_UW [25]. An additional
428 102 *A. baumannii* strains were used to assess phage host range. These included 100
429 diverse clinical isolates from the Multidrug-Resistant Organism Repository and
430 Surveillance Network (MRSN) [34], clinical isolate FZ21 from Queen Astrid Military
431 Hospital, Belgium [17], and clinical isolate TP1 from UC San Diego, USA [20]. The
432 capsule mutants *wza*::T26, Δwzb ::T26, and $\Delta itrA$::T26) were obtained from the AB5075
433 transposon mutant library [52] while the Δwzc mutant and complemented $\Delta wzc + wzc$
434 are both previously described [53]. The additional phages used for this study were
435 Maestro [20], FG03, FG04, and CO01 [30].

436

437 **Phage isolation**

438 Mystique was isolated from raw sewage water from the R.L. Sutton Water Reclamation
439 Facility in Atlanta, USA. Methods for isolation were adapted from previously used
440 methods [31]. In brief, for a final concentration of 3 g of powdered LB medium (VWR)
441 was mixed with 100 mL of raw sewage water before 100 μ L of AB5075 was added.
442 Bacteria were grown to exponential phase before being added the sewage, after which
443 they were incubated in the sewage mixture overnight at 37°C at 180rpm.

444

445 After inoculation overnight, 1 mL of the sewage/LB mixture was sampled and
446 centrifuged for 5 minutes at 8000 x g before the supernatant was filtered through a
447 0.22 μ M spin-X centrifuge tube filter (Corning) at 6000 x g to remove any remaining
448 bacterial cells. 10 μ L of this filtrate was added to 100 μ L of AB5075 in exponential
449 growth phase before incubation for 20 minutes at 37°C and 180 rpm. After this second
450 round of inoculation, the 100 μ L mixture was combined with 2.5 mL of top agar (0.5%
451 LB agar, VWR) before being poured over LB agar plates and placed in an incubator at
452 37°C overnight. This, however, yielded no phage plaques and so 100 μ L of supernatant
453 from the raw sewage water/LB powder mixture was added to 6 mL of LB medium with
454 AB5075 at exponential growth. In addition to the sewage filtrate, other known *A.*
455 *baumannii* phages were added to the mixture in an attempt at limiting the rapid
456 evolution of phage resistance overnight. These phages were Maestro [20], FG03,
457 FG04, and CO01 [30]. These cultures were subsequently grown overnight, before
458 taking 1mL of the culture to be centrifuged at 8000 x g for 5 minutes and filtering the
459 resulting supernatant through a 0.22 μ M filter. 5 μ L of the filtrate was then pipetted on
460 top of a lawn of AB5075 before incubation at 37°C overnight. This resulted in bacterial

461 clearance, and a 1-10 μ L pipette tip was used to transfer a small amount from the
462 centre of the zone of clearance into a fresh bacterial culture of AB5075. This was done
463 three times, but no individual phage plaques were seen on AB5075.

464
465 To ensure the isolate only contained one phage, the lysate after three days of
466 passaging and purification was also tested on an *A. baumannii* host for some of the
467 other phages initially added in the cocktail: MRSN strain 423159 [34]. Clear individual
468 phage plaques were observed on 423159 from which one was picked and purified
469 three times (repeated plaque assays on 423159 followed by inoculation with AB5075).

470

471 **Phage sequencing, annotation, and assembly**

472 Phage DNA was extracted following already established methods for extracting phage
473 DNA[54]. In short: 500 μ L of filter-sterilised phage lysate was incubated statically with
474 50 μ L DNase I 10x buffer, 1 μ L DNase I (1 U/ μ L), and 1 μ L RNase A (10 mg/mL) for
475 1.5 h at 37 °C. Following this step, 0.5 M EDTA was added for a final concentration of
476 20 mM before 1.25 μ L of Proteinase K was added after which the sample was
477 inoculated at 56°C for another 1.5 h. After this second incubation step, DNA was
478 extracted using following the instruction of the DNeasy Blood and Tissue Kit (Qiagen).

479 Following extraction, DNA fragmentation was performed using the NEBNext® Ultra™
480 II FS DNA Library Prep Kit (New England Biolabs), an enzymatic fragmentation assay
481 with an average fragment size of 380 bp. After fragmentation, the fragmented DNA
482 was end-repaired, A-tailed, and ligated with Illumina-compatible adaptors using the
483 same NEBNext® kit. The ligated products were then amplified via PCR to enrich the

484 library. The amplified libraries were purified using AMPure XP beads (Beckman
485 Coulter) to remove any unbound adaptors and smaller fragments.

486 The prepared libraries were evaluated for size distribution and concentration using the
487 Agilent 2100 Bioanalyzer (Agilent Technologies) with a High Sensitivity DNA Kit.
488 Libraries exhibiting the desired size range and absence of primer-primer dimers were
489 selected for sequencing on the Illumina NovaSeq 5000 platform, employing a paired-
490 end 150 bp (PE150) read configuration to generate high-quality short reads.

491 For long-read sequencing, the extracted DNA was prepared for sequencing using the
492 Ligation Sequencing Kit (SQK-LSK109) from Oxford Nanopore Technologies (ONT,
493 Oxford, UK). The extracted DNA was quantified using a Qubit 4 Fluorometer (Thermo
494 Fisher Scientific) to ensure an adequate amount of input material. The DNA was
495 subjected to end-repair and dA-tailing using the NEBNext® Ultra™ II End Repair/dA-
496 Tailing Module (New England Biolabs). Following end-repair and dA-tailing, ONT's
497 proprietary sequencing adaptors were ligated to the DNA fragments using the Blunt/TA
498 Ligase Master Mix (New England Biolabs) provided in the Ligation Sequencing Kit.
499 The ligation reaction mixture was purified using AMPure XP beads (Beckman Coulter)
500 to remove unligated adaptors and small DNA fragments, ensuring that only high-
501 molecular-weight DNA with ligated adaptors proceeded to sequencing. The purified
502 library was quantified again using the Qubit 4 Fluorometer to confirm the concentration
503 and ensure that an adequate amount of library was available for sequencing. The
504 prepared library was loaded onto a Flow Cell (R9.4.1) and sequenced on the Oxford
505 Nanopore MinION device. Sequencing was performed according to the
506 manufacturer's standard operating procedures, and run conditions were monitored
507 using ONT's MinKNOW software. Sequencing continued until sufficient data was
508 generated to achieve the desired genome coverage.

509
510 The sequencing data from both platforms were processed and analysed using
511 standard bioinformatics pipelines. Short reads from the Illumina platform were trimmed
512 and assembled using SPAdes, while long reads from the Nanopore platform were
513 basecalled using Guppy and assembled using Canu.
514
515 Following sequencing, hybrid genome assembly and annotation were conducted on
516 the Galaxy [55] and Web Apollo [56] phage annotation platforms. Unless otherwise
517 noted, default parameters were used for all software. Long reads under 1kb were
518 filtered out using Filtlong v.0.1.2 [57] and were subsequently quality checked using
519 Nanoplot v.1.41.0 [58,59]. Flye v.2.9.1 [60,61] was used with –nano-hq and
520 metagenomic assembly parameters [62] to obtain a consensus draft assembly. One
521 circular contig 77,172bp in length with 3,257x coverage was obtained. Short
522 sequencing reads were rarefied to 100x coverage to improve assembly quality using
523 FastQ Subset v.1.1 [63,64] and trimmed using the Trim Sequences tool v.1.0.2 [65].
524 Short reads were quality checked using FastQC v.0.72 [66] and aligned with the long
525 read draft assembly using the Map with BWA-MEM tool v.0.7.17.2 [67,68]. That output
526 was then used with pilon v.1.20.1 [69] to create a consensus hybrid assembly. The
527 complete assembled contig was 77,401 bp long and was reopened using Reopen
528 Fasta Sequences v.2.0 [64] in order to avoid interrupting genes. BLASTn [70] was
529 used to find similarity to previously-identified phages.
530
531 The final Mystique assembly was imported into Apollo using the Galaxy Structural
532 Phage Annotation Workflow v.2023.01 and the locations of genes were predicted as
533 described in Ramsey *et al.* [63] using GLIMMER3 v.0.2 [71], MetaGeneAnnotator

534 v.1.0.0 [72], and SixPack v.5.0.0 [73]. The criteria weighed in order to manually make
535 final gene calls were assessment of gaps and overlaps between genes, the presence
536 of a valid Shine-Dalgarno sequence, and the presence of a valid start codon. The
537 presence of tRNAs was assessed using tRNAscan-SE v.0.4 [74] and ARAGORN v.0.6
538 [75]. When structural annotation was complete, functional annotation was conducted
539 using the Galaxy Functional Phage Annotation Workflow v.2023.01 [63]. BLASTp
540 [76,77] results were compared from the canonical phages, nonredundant-all phages,
541 and Swiss-Prot databases to manually annotate putative functions. The geecee tool
542 v.5.0.0 [78] was used to determine the GC content of the Mystique genome.

543

544 **Transmission electron microscopy and cryogenic electron
545 microscopy**

546 The Mystique phage sample was prepared using PEG precipitation[40] before being
547 added to a plasma cleaned continuous carbon grid (30s, hydrogen, oxygen) and
548 stained with 2% uranyl formate. The grids were imaged on a Hitachi 7800 TEM
549 operated at 100kV, and data were collected at a pixel size of 1.77Å with a TVIPS
550 XF416 (Gatan).

551

552 The phage sample was further concentrated 50-fold using Amicon Ultra 100k
553 concentrators (100k MWCO). Grids were frozen on Quantifoil R2/2 Cu 300 mesh grids
554 using a Vitrobot Mark IV (ThermoFisher Scientific) at 20°C and 100% humidity with a
555 wait time of 0s, a blot time of 6.5s and a blot force of 1. The grids were then clipped
556 into Autogrids and imaged on a Titan Krios G2 (ThermoFisher Scientific) equipped with
557 a Gatan K3 direct electron detector and BioQuantum energy filter set to 20 eV slit
558 width. Data were collected at a pixel size of 1.083Å, a dose of 49.90 e-/Å², and a

559 nominal defocus range of -1 to -2 μ m. With fringe-free imaging (FFI), we were able to
560 collect 6 images per hole, totalling in 8565 images for the data collection. Data were
561 acquired using Leginon [79,80] on NYSBC Krios1, dataset m23oct30a.

562

563 All data were processed in cryoSPARC v4 [81] using standard workflow starting with
564 raw frames. Frames were imported and motion-corrected using patch motion job and
565 CTF was estimated using patch CTF job. Micrographs were sorted to exclude any with
566 CTF estimation >4.6 \AA . For both heads and tails, particles were first manually picked,
567 then initial 2D classification was used to generate templates. For heads template
568 particle picking was used resulting in \sim 26,000 particles picked that were triaged by 2D
569 classification to yield a subset of 6000 particles. Initial models were generated using
570 *ab-initio* jobs and resulting models were used for homogeneous refinement with
571 icosahedral symmetry applied. For tails we used filament tracer and initially extracted
572 \sim 1 million segments that were triaged by 2D classification to 191,000 particles. To
573 generate an initial model first *ab-initio* job was used, followed by homogeneous
574 refinement. The resulting map was used to identify initial helical parameters and was
575 also used as an initial model for helical refinement. After initial helical refinement in a
576 second round C6 symmetry was enforced.

577

578 For *de novo* structure prediction of the tail we used ModelAngelo with a no_seq flag
579 [44]. The resulting prediction was used to first identify the gene in the Mystique
580 genome using NCBI tBLASTN. The identified protein was manually built into the tail
581 density using COOT[82] and further refined with *Phenix* [83]. A structural similarity
582 search was done with Foldseek with default parameters. The structure prediction of
583 Mystique head major capsid protein was done using AlphaFold2 [84] collab notebook

584 using the sequence annotated in Mystique genome. CryoEM maps of an empty and
585 full head are uploaded to EMDB with the following codes: EMD (pending). Tail model
586 was deposited to PDB (pending).

587

588 ***A. baumannii* phylogenetic analysis**

589 Host genomes were downloaded from NCBI, accessed in May of 2024. A maximum
590 parsimony tree based on whole-genome single nucleotide polymorphisms (SNPs) was
591 constructed using kSNP4.1 [85], with a Kmer size of 17. The tree was rooted on strain
592 11669 (accession number GCF_006493685.1), as described in Galac *et al.* 2022 [34].
593 The resulting tree was visualized in R using ggtree v3.12.0 [86] and ggtreeExtra
594 v1.14.0 [87]. To generate a chronogram from the phylogram, we utilized the chronos
595 function in ape v5.0 [88]. We tested all available models (correlated, discrete, relaxed,
596 and clock), and found that the tree generated under a strict clock was favoured. Using
597 the chronogram, we calculated the phylogenetic D statistic [47] using function phylo.d
598 from caper v1.0.3 [89].

599

600 **Testing of phage host range and receptor**

601 The initial experiment to test Mystique host range were done using plaque assays.
602 These plaque assays on 103 highly diverse clinical *A. baumannii* strains were done by
603 growing the bacterial strains overnight in glass microcosms containing 6 mL of LB
604 broth while shaking at 180 rpm at 37°C. The following day, 200 µL of each individual
605 bacterial culture was mixed with 10 mL of 0.5% LB agar before gentle mixing and
606 pouring on top of LB agar plates. This top layer was left to dry for approximately 30
607 minutes, followed by pipetting 5 µL of serial diluted phage Mystique on top of the dried
608 top agar layer ($n = 3$ per plate). 1:10 serial dilutions of Mystique were prepared in 96-

609 well plates, with approximately 1×10^9 pfu/mL as the undiluted phage concentration.

610 These plates were then incubated overnight at 37°C before being checked for phage

611 clearance the following day.

612

613 All phage host range and infectivity experiments in liquid were done by inoculating 60

614 μ L from overnight cultures of *A. baumannii* strains into glass microcosms containing 6

615 mL of LB medium. 10^4 pfu/mL of phage Mystique (Figs 1, 6, and S3) or Maestro, FG03,

616 FG04, or CO01 (Fig 2) were then added to the glass microcosms followed by

617 incubation overnight at 37°C at 180 rpm ($n = 3$ per treatment). Transfers of 1:100 into

618 fresh LB were done daily for a total of three days, and phage titres were either tracked

619 daily (Fig 6) or assessed by the end of the experiment (Figs 1, 2, and S3) by pipetting

620 serial dilutions of chlorophorm-treated lysate on lawns of *A. baumannii* 43159.

621

622 Experiments to test for the phage receptor was done using plaque assays of phage

623 Mystique on lawns of Δwza ::T26, Δwzb ::T26, Δwzc , and $\Delta itrA$::T26 as well as Δwzc +

624 wzc and the AB5075 wild-type. Additionally, an evolution experiment tracking phage

625 titres over time when inoculated with all isogenic mutants and the wild-type strain was

626 done as described above.

627

628 All data is available at (pending): 10.6084/m9.figshare.26180200

629

630 Acknowledgements

631 The authors would like to thank David Pride for providing us with *A. baumannii* strain

632 TP1, Ry Young for phage Maestro, and Jeremy Barr for phages FG03, FG04, and

633 CO01. EOA would like to thank her mentors Marvin Whiteley, Steve Diggle, Sam

634 Brown, and Brian Hammer for support and feedback on experimental design and the
635 final manuscript. Funding for this research was provided to EOA by the Center for
636 Microbial Dynamics and Infection's Early Career Award Fellow award. The structural
637 analyses by MK and DB were performed at the Simons Electron Microscopy Center
638 at the New York Structural Biology Center, with major support from the Simons
639 Foundation (SF349247). PNR is supported by Department of Veterans Affairs grants
640 I01BX001725 and IK6BX004470 (Senior Research Career Scientist award).

641

642 Competing interests

643 The authors have no competing interests to declare.

644

645 References

- 646 1. Antunes LCS, Visca P, Towner KJ. *Acinetobacter baumannii*: evolution of a global
647 pathogen. *Pathog Dis.* 2014;71: 292–301. doi:10.1111/2049-632X.12125
- 648 2. Cain AK, Hamidian M. Portrait of a killer: Uncovering resistance mechanisms and
649 global spread of *Acinetobacter baumannii*. *PLOS Pathog.* 2023;19: e1011520.
650 doi:10.1371/journal.ppat.1011520
- 651 3. Perez F, Hujer AM, Hujer KM, Decker BK, Rather PN, Bonomo RA. Global
652 Challenge of Multidrug-Resistant *Acinetobacter baumannii*. *Antimicrob Agents
653 Chemother.* 2007;51: 3471–3484. doi:10.1128/aac.01464-06
- 654 4. Zin EB-BR, Towner KJ. *Acinetobacter* spp. as Nosocomial Pathogens:
655 Microbiological, Clinical, and Epidemiological Features. *CLIN MICROBIOL REV.*
656 1996;9. doi:10.1128/cmrr.9.2.148
- 657 5. Centers for Disease Control and Prevention. Antibiotic Resistance Threats in the
658 United States, 2013. Atlanta, Georgia: U.S. Department of Health and Human

- 659 Services, CDC; 2013. Available: <https://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf>
- 660
- 661 6. Ibrahim S, Al-Saryi N, Al-Kadmy IMS, Aziz SN. Multidrug-resistant *Acinetobacter*
662 *baumannii* as an emerging concern in hospitals. *Mol Biol Rep.* 2021;48: 6987–
663 6998. doi:10.1007/s11033-021-06690-6
- 664 7. Lei J, Han S, Wu W, Wang X, Xu J, Han L. Extensively drug-resistant
665 *Acinetobacter baumannii* outbreak cross-transmitted in an intensive care unit and
666 respiratory intensive care unit. *Am J Infect Control.* 2016;44: 1280–1284.
667 doi:10.1016/j.ajic.2016.03.041
- 668 8. Aygün G, Demirkiran O, Utku T, Mete B, Ürkmez S, Yılmaz M, *et al.* Environmental
669 contamination during a carbapenem-resistant *Acinetobacter baumannii* outbreak
670 in an intensive care unit. *J Hosp Infect.* 2002;52: 259–262.
671 doi:10.1053/jhin.2002.1300
- 672 9. Bernards AT, Harinck HJJ, Dijkshoorn L, Reijden TJK van der, Broek PJ van den.
673 Persistent *Acinetobacter baumannii*? Look Inside Your Medical Equipment. *Infect*
674 *Control Hosp Epidemiol.* 2004;25: 1002–1004. doi:10.1086/502335
- 675 10. Cruz-López F, Martínez-Meléndez A, Villarreal-Treviño L, Morfín-Otero R,
676 Maldonado-Garza H, Garza-González E. Contamination of healthcare
677 environment by carbapenem-resistant *Acinetobacter baumannii*. *Am J Med Sci.*
678 2022;364: 685–694. doi:10.1016/j.amjms.2022.07.003
- 679 11. Wilks M, Wilson A, Warwick S, Price E, Kennedy D, Ely A, *et al.* Control of an
680 Outbreak of Multidrug-Resistant *Acinetobacter baumannii-calcoaceticus*
681 Colonization and Infection in an Intensive Care Unit (ICU) Without Closing the
682 ICU or Placing Patients in Isolation. *Infect Control Hosp Epidemiol.* 2006;27: 654–
683 658. doi:10.1086/507011

- 684 12. LaVergne S, Hamilton T, Biswas B, Kumaraswamy M, Schooley RT, Wooten D.
685 Phage Therapy for a Multidrug-Resistant *Acinetobacter baumannii* Craniectomy
686 Site Infection. Open Forum Infect Dis. 2018;5: ofy064. doi:10.1093/ofid/ofy064
- 687 13. Schooley RT, Biswas B, Gill JJ, Hernandez-Morales A, Lancaster J, Lessor L, *et*
688 *al.* Development and Use of Personalized Bacteriophage-Based Therapeutic
689 Cocktails To Treat a Patient with a Disseminated Resistant *Acinetobacter*
690 *baumannii* Infection. Antimicrob Agents Chemother. 2017;61: e00954-17,
691 e00954-17. doi:10.1128/AAC.00954-17
- 692 14. Jessup CM, Kassen R, Forde SE, Kerr B, Buckling A, Rainey PB, *et al.* Big
693 questions, small worlds: microbial model systems in ecology. Trends Ecol Evol.
694 2004;19: 189–197. doi:10.1016/j.tree.2004.01.008
- 695 15. McDonald MJ. Microbial Experimental Evolution – a proving ground for
696 evolutionary theory and a tool for discovery. EMBO Rep. 2019;20: e46992.
697 doi:10.15252/embr.201846992
- 698 16. Conners R, León-Quezada RI, McLaren M, Bennett NJ, Daum B, Rakonjac J, *et*
699 *al.* Cryo-electron microscopy of the f1 filamentous phage reveals insights into viral
700 infection and assembly. Nat Commun. 2023;14: 2724. doi:10.1038/s41467-023-
701 37915-w
- 702 17. Alseth EO, Pursey E, Luján AM, McLeod I, Rollie C, Westra ER. Bacterial
703 biodiversity drives the evolution of CRISPR-based phage resistance. Nature.
704 2019;574: 549–552. doi:10.1038/s41586-019-1662-9
- 705 18. Guillemet M, Chabas H, Nicot A, Gatchich F, Ortega-Abboud E, Buus C, *et al.*
706 Competition and coevolution drive the evolution and the diversification of CRISPR
707 immunity. Nat Ecol Evol. 2022; 1–9. doi:10.1038/s41559-022-01841-9

- 708 19. Romeyer Dherbey J, Bertels F. The untapped potential of phage model systems
709 as therapeutic agents. *Virus Evol.* 2024;10: veae007. doi:10.1093/ve/veae007
- 710 20. Liu M, Hernandez-Morales A, Clark J, Le T, Biswas B, Bishop-Lilly KA, *et al.*
711 Comparative genomics of *Acinetobacter baumannii* and therapeutic
712 bacteriophages from a patient undergoing phage therapy. *Nat Commun.* 2022;13:
713 3776. doi:10.1038/s41467-022-31455-5
- 714 21. Bull JJ, Molineux IJ. Predicting evolution from genomics: experimental evolution
715 of bacteriophage T7. *Heredity*. 2008;100: 453–463. doi:10.1038/sj.hdy.6801087
- 716 22. Wichman HA, Brown CJ. Experimental evolution of viruses: Microviridae as a
717 model system. *Philos Trans R Soc B Biol Sci.* 2010;365: 2495–2501.
718 doi:10.1098/rstb.2010.0053
- 719 23. Budzik JM, Rosche WA, Rietsch A, O'Toole GA. Isolation and Characterization of
720 a Generalized Transducing Phage for *Pseudomonas aeruginosa* Strains PAO1
721 and PA14. *J Bacteriol.* 2004;186: 3270–3273. doi:10.1128/JB.186.10.3270-
722 3273.2004
- 723 24. Cady KC, Bondy-Denomy J, Heussler GE, Davidson AR, O'Toole GA. The
724 CRISPR/Cas Adaptive Immune System of *Pseudomonas aeruginosa* Mediates
725 Resistance to Naturally Occurring and Engineered Phages. *J Bacteriol.* 2012;194:
726 5728–5738. doi:10.1128/JB.01184-12
- 727 25. Jacobs AC, Thompson MG, Black CC, Kessler JL, Clark LP, McQueary CN, *et al.*
728 AB5075, a Highly Virulent Isolate of *Acinetobacter baumannii*, as a Model Strain
729 for the Evaluation of Pathogenesis and Antimicrobial Treatments. *mBio.* 2014;5:
730 10.1128/mbio.01076-14. doi:10.1128/mbio.01076-14

- 731 26. Tipton KA, Dimitrova D, Rather PN. Phase-Variable Control of Multiple
732 Phenotypes in *Acinetobacter baumannii* Strain AB5075. *J Bacteriol.* 2015;197:
733 2593–2599. doi:10.1128/JB.00188-15
- 734 27. Chin CY, Tipton KA, Farokhyfar M, Burd EM, Weiss DS, Rather PN. A high-
735 frequency phenotypic switch links bacterial virulence and environmental survival
736 in *Acinetobacter baumannii*. *Nat Microbiol.* 2018;3: 563–569.
737 doi:10.1038/s41564-018-0151-5
- 738 28. Pérez-Varela M, Singh R, Colquhoun JM, Starich OG, Tierney ARP, Tipton KA, et
739 al. Evidence for Rho-dependent control of a virulence switch in *Acinetobacter*
740 *baumannii*. Biswas I, editor. *mBio*. 2023; e02708-23. doi:10.1128/mbio.02708-23
- 741 29. Bai J, Raustad N, Denoncourt J, Opijnen T van, Geisinger E. Genome-wide
742 phage susceptibility analysis in *Acinetobacter baumannii* reveals capsule
743 modulation strategies that determine phage infectivity. *PLOS Pathog.* 2023;19:
744 e1010928. doi:10.1371/journal.ppat.1010928
- 745 30. Gordillo Altamirano F, Forsyth JH, Patwa R, Kostoulias X, Trim M, Subedi D, et
746 al. Bacteriophage-resistant *Acinetobacter baumannii* are resensitized to
747 antimicrobials. *Nat Microbiol.* 2021; 1–5. doi:10.1038/s41564-020-00830-7
- 748 31. Regeimbal JM, Jacobs AC, Corey BW, Henry MS, Thompson MG, Pavlicek RL,
749 et al. Personalized Therapeutic Cocktail of Wild Environmental Phages Rescues
750 Mice from *Acinetobacter baumannii* Wound Infections. *Antimicrob Agents
751 Chemother.* 2016;60: 5806–5816. doi:10.1128/AAC.02877-15
- 752 32. Peters DL, Davis CM, Harris G, Zhou H, Rather PN, Hrapovic S, et al.
753 Characterization of Virulent T4-Like *Acinetobacter baumannii* Bacteriophages
754 DLP1 and DLP2. *Viruses.* 2023;15: 739. doi:10.3390/v15030739

- 755 33. Scholl D, Adhya S, Merril C. *Escherichia coli* K1's Capsule Is a Barrier to
756 Bacteriophage T7. *Appl Environ Microbiol.* 2005;71: 4872–4874.
757 doi:10.1128/AEM.71.8.4872-4874.2005
- 758 34. Galac MR, Snesrud E, Lebreton F, Stam J, Julius M, Ong AC, *et al.* A Diverse
759 Panel of Clinical *Acinetobacter baumannii* for Research and Development.
760 *Antimicrob Agents Chemother.* 2020;64: e00840-20. doi:10.1128/AAC.00840-20
- 761 35. d'Herelle F. An invisible microbe that is antagonistic to the dysentery bacillus.
762 *Comptes Rendus Acad Sci.* 1917;165: 373–375.
- 763 36. van Charante F, Holtappels D, Blasdel B, Burrowes B. Isolation of
764 Bacteriophages. In: Harper DR, Abedon ST, Burrowes BH, McConville ML,
765 editors. *Bacteriophages: Biology, Technology, Therapy.* Cham: Springer
766 International Publishing; 2019. pp. 1–32. doi:10.1007/978-3-319-40598-8_14-1
- 767 37. Mardiana M, Teh S-H, Lin L-C, Lin N-T. Isolation and Characterization of a Novel
768 Siphoviridae Phage, vB_AbaS_TCUP2199, Infecting Multidrug-Resistant
769 *Acinetobacter baumannii*. *Viruses.* 2022;14: 1240. doi:10.3390/v14061240
- 770 38. Margulieux KR, Bird JT, Kevorkian RT, Ellison DW, Nikolich MP, Mzhavia N, *et al.*
771 Complete genome sequence of the broad host range *Acinetobacter baumannii*
772 phage EAb13. *Microbiol Resour Announc.* 2023;12: e00341-23.
773 doi:10.1128/MRA.00341-23
- 774 39. Conant GC, Wolfe KH. GenomeVx: simple web-based creation of editable circular
775 chromosome maps. *Bioinformatics.* 2008;24: 861–862.
776 doi:10.1093/bioinformatics/btm598
- 777 40. Luong T, Salabarria A-C, Edwards RA, Roach DR. Standardized bacteriophage
778 purification for personalized phage therapy. *Nat Protoc.* 2020;15: 2867–2890.
779 doi:10.1038/s41596-020-0346-0

- 780 41. Carroll-Portillo A, Coffman CN, Varga MG, Alcock J, Singh SB, Lin HC. Standard
781 Bacteriophage Purification Procedures Cause Loss in Numbers and Activity.
782 *Viruses*. 2021;13: 328. doi:10.3390/v13020328
- 783 42. Caspar DLD, Klug A. Physical Principles in the Construction of Regular Viruses.
784 *Cold Spring Harb Symp Quant Biol*. 1962;27: 1–24.
785 doi:10.1101/SQB.1962.027.001.005
- 786 43. Suhannovsky MM, Teschke CM. Nature's favorite building block: Deciphering
787 folding and capsid assembly of proteins with the HK97-fold. *Virology*. 2015;479–
788 480: 487–497. doi:10.1016/j.virol.2015.02.055
- 789 44. Jamali K, Käll L, Zhang R, Brown A, Kimanis D, Scheres SHW. Automated model
790 building and protein identification in cryo-EM maps. *Nature*. 2024;628: 450–457.
791 doi:10.1038/s41586-024-07215-4
- 792 45. van Kempen M, Kim SS, Tumescheit C, Mirdita M, Lee J, Gilchrist CLM, *et al.*
793 Fast and accurate protein structure search with Foldseek. *Nat Biotechnol*.
794 2024;42: 243–246. doi:10.1038/s41587-023-01773-0
- 795 46. Hardy JM, Dunstan RA, Grinter R, Belousoff MJ, Wang J, Pickard D, *et al.* The
796 architecture and stabilisation of flagellotropic tailed bacteriophages. *Nat
797 Commun*. 2020;11: 3748. doi:10.1038/s41467-020-17505-w
- 798 47. Fritz SA, Purvis A. Selectivity in mammalian extinction risk and threat types: a
799 new measure of phylogenetic signal strength in binary traits. *Conserv Biol J Soc
800 Conserv Biol*. 2010;24: 1042–1051. doi:10.1111/j.1523-1739.2010.01455.x
- 801 48. Singh JK, Adams FG, Brown MH. Diversity and Function of Capsular
802 Polysaccharide in *Acinetobacter baumannii*. *Front Microbiol*. 2019;9. Available:
803 <https://www.frontiersin.org/articles/10.3389/fmicb.2018.03301>

- 804 49. Kenyon JJ, Hall RM. Variation in the Complex Carbohydrate Biosynthesis Loci of
805 *Acinetobacter baumannii* Genomes. PLoS ONE. 2013;8: e62160.
806 doi:10.1371/journal.pone.0062160
- 807 50. Hampton HG, Watson BNJ, Fineran PC. The arms race between bacteria and
808 their phage foes. Nature. 2020;577: 327–336. doi:10.1038/s41586-019-1894-8
- 809 51. Mason G, Footer MJ, Rojas ER. Mechanosensation induces persistent bacterial
810 growth during bacteriophage predation. mBio. 2023;14: e02766-22.
811 doi:10.1128/mbio.02766-22
- 812 52. Gallagher LA, Ramage E, Weiss EJ, Radey M, Hayden HS, Held KG, et al.
813 Resources for Genetic and Genomic Analysis of Emerging Pathogen
814 *Acinetobacter baumannii*. J Bacteriol. 2015;197: 2027–2035.
815 doi:10.1128/JB.00131-15
- 816 53. Tipton KA, Chin C-Y, Farokhyfar M, Weiss DS, Rather PN. Role of Capsule in
817 Resistance to Disinfectants, Host Antimicrobials, and Desiccation in
818 *Acinetobacter baumannii*. Antimicrob Agents Chemother. 2018;62: e01188-18.
819 doi:10.1128/AAC.01188-18
- 820 54. Jakočiūnė D, Moodley A. A Rapid Bacteriophage DNA Extraction Method.
821 Methods Protoc. 2018;1: 27. doi:10.3390/mps1030027
- 822 55. The Galaxy Community. The Galaxy platform for accessible, reproducible and
823 collaborative biomedical analyses: 2022 update. Nucleic Acids Res. 2022;50:
824 W345–W351. doi:10.1093/nar/gkac247
- 825 56. Lee E, Helt GA, Reese JT, Munoz-Torres MC, Childers CP, Buel RM, et al. Web
826 Apollo: a web-based genomic annotation editing platform. Genome Biol. 2013;14:
827 R93. doi:10.1186/gb-2013-14-8-r93
- 828 57. Wick R. rrwick/Filtlong. 2024. Available: <https://github.com/rrwick/Filtlong>

- 829 58. De Coster W, D'Hert S, Schultz DT, Cruts M, Van Broeckhoven C. NanoPack:
830 visualizing and processing long-read sequencing data. *Bioinformatics*. 2018;34:
831 2666–2669. doi:10.1093/bioinformatics/bty149
- 832 59. De Coster W. [wdecoster/NanoPlot](https://github.com/wdecoster/NanoPlot). 2024. Available:
833 <https://github.com/wdecoster/NanoPlot>
- 834 60. Lin Y, Yuan J, Kolmogorov M, Shen MW, Chaisson M, Pevzner PA. Assembly of
835 long error-prone reads using de Bruijn graphs. *Proc Natl Acad Sci*. 2016;113:
836 E8396–E8405. doi:10.1073/pnas.1604560113
- 837 61. Kolmogorov M. [fenderglass/Flye](https://github.com/fenderglass/Flye). 2024. Available:
838 <https://github.com/fenderglass/Flye>
- 839 62. Zablocki O, Michelsen M, Burris M, Solonenko N, Warwick-Dugdale J, Ghosh R,
840 *et al.* VirION2: a short- and long-read sequencing and informatics workflow to
841 study the genomic diversity of viruses in nature. *PeerJ*. 2021;9: e11088.
842 doi:10.7717/peerj.11088
- 843 63. Ramsey J, Rasche H, Maughmer C, Criscione A, Mijalis E, Liu M, *et al.* Galaxy
844 and Apollo as a biologist-friendly interface for high-quality cooperative phage
845 genome annotation. *PLOS Comput Biol*. 2020;16: e1008214.
846 doi:10.1371/journal.pcbi.1008214
- 847 64. TAMU-CPT/galaxy-tools. Center for Phage Technology; 2022. Available:
848 <https://github.com/TAMU-CPT/galaxy-tools>
- 849 65. Gordon A. FASTQ/A short-reads pre-processing tools. 2010 [cited 20 Mar 2024].
850 Available: http://hannonlab.cshl.edu/fastx_toolkit/
- 851 66. Andrews S. Babraham Bioinformatics - FastQC A Quality Control tool for High
852 Throughput Sequence Data. 2010 [cited 20 Mar 2024]. Available:
853 <https://www.bioinformatics.babraham.ac.uk/projects/fastqc/>

- 854 67. Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler
855 transform. *Bioinformatics*. 2009;25: 1754–1760.
856 doi:10.1093/bioinformatics/btp324
- 857 68. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-
858 MEM. *arXiv*; 2013. doi:10.48550/arXiv.1303.3997
- 859 69. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, *et al.* Pilon: An
860 Integrated Tool for Comprehensive Microbial Variant Detection and Genome
861 Assembly Improvement. *PLOS ONE*. 2014;9: e112963.
862 doi:10.1371/journal.pone.0112963
- 863 70. NCBI Resource Coordinators. Database resources of the National Center for
864 Biotechnology Information. *Nucleic Acids Res.* 2018;46: D8–D13.
865 doi:10.1093/nar/gkx1095
- 866 71. Delcher AL, Harmon D, Kasif S, White O, Salzberg SL. Improved microbial gene
867 identification with GLIMMER. *Nucleic Acids Res.* 1999;27: 4636–4641.
868 doi:10.1093/nar/27.23.4636
- 869 72. Noguchi H, Taniguchi T, Itoh T. MetaGeneAnnotator: Detecting Species-Specific
870 Patterns of Ribosomal Binding Site for Precise Gene Prediction in Anonymous
871 Prokaryotic and Phage Genomes. *DNA Res.* 2008;15: 387–396.
872 doi:10.1093/dnares/dsn027
- 873 73. Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, *et al.* The EMBL-
874 EBI search and sequence analysis tools APIs in 2019. *Nucleic Acids Res.*
875 2019;47: W636–W641. doi:10.1093/nar/gkz268
- 876 74. Lowe TM, Chan PP. tRNAscan-SE On-line: integrating search and context for
877 analysis of transfer RNA genes. *Nucleic Acids Res.* 2016;44: W54–W57.
878 doi:10.1093/nar/gkw413

- 879 75. Laslett D, Canback B. ARAGORN, a program to detect tRNA genes and tmRNA
880 genes in nucleotide sequences. *Nucleic Acids Res.* 2004;32: 11–16.
881 doi:10.1093/nar/gkh152
- 882 76. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, *et al.*
883 BLAST+: architecture and applications. *BMC Bioinformatics.* 2009;10: 421.
884 doi:10.1186/1471-2105-10-421
- 885 77. Cock PJA, Chilton JM, Grüning B, Johnson JE, Soranzo N. NCBI BLAST+
886 integrated into Galaxy. *GigaScience.* 2015;4: 39. doi:10.1186/s13742-015-0080-
887 7
- 888 78. Blankenberg D, Taylor J, Schenck I, He J, Zhang Y, Ghent M, *et al.* A framework
889 for collaborative analysis of ENCODE data: making large-scale analyses
890 biologist-friendly. *Genome Res.* 2007;17: 960–964. doi:10.1101/gr.5578007
- 891 79. Suloway C, Pulokas J, Fellmann D, Cheng A, Guerra F, Quispe J, *et al.* Automated
892 molecular microscopy: The new Leginon system. *J Struct Biol.* 2005;151: 41–60.
893 doi:10.1016/j.jsb.2005.03.010
- 894 80. Cheng A, Negro C, Bruhn JF, Rice WJ, Dallakyan S, Eng ET, *et al.* Leginon: New
895 features and applications. *Protein Sci Publ Protein Soc.* 2021;30: 136–150.
896 doi:10.1002/pro.3967
- 897 81. Punjani A, Rubinstein JL, Fleet DJ, Brubaker MA. cryoSPARC: algorithms for
898 rapid unsupervised cryo-EM structure determination. *Nat Methods.* 2017;14:
899 290–296. doi:10.1038/nmeth.4169
- 900 82. Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot.
901 *Acta Crystallogr D Biol Crystallogr.* 2010;66: 486–501.
902 doi:10.1107/S0907444910007493

- 903 83. Liebschner D, Afonine PV, Baker ML, Bunkóczki G, Chen VB, Croll TI, *et al.*
904 Macromolecular structure determination using X-rays, neutrons and electrons:
905 recent developments in Phenix. *Acta Crystallogr Sect Struct Biol.* 2019;75: 861–
906 877. doi:10.1107/S2059798319011471
- 907 84. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, *et al.* Highly
908 accurate protein structure prediction with AlphaFold. *Nature.* 2021;596: 583–589.
909 doi:10.1038/s41586-021-03819-2
- 910 85. Gardner SN, Slezak T, Hall BG. kSNP3.0: SNP detection and phylogenetic
911 analysis of genomes without genome alignment or reference genome. *Bioinforma*
912 *Oxf Engl.* 2015;31: 2877–2878. doi:10.1093/bioinformatics/btv271
- 913 86. Xu S, Li L, Luo X, Chen M, Tang W, Zhan L, *et al.* Ggtree: A serialized data object
914 for visualization of a phylogenetic tree and annotation data. *iMeta.* 2022;1: e56.
915 doi:10.1002/imt2.56
- 916 87. Xu S, Dai Z, Guo P, Fu X, Liu S, Zhou L, *et al.* ggtreeExtra: Compact Visualization
917 of Richly Annotated Phylogenetic Data. *Mol Biol Evol.* 2021;38: 4039–4042.
918 doi:10.1093/molbev/msab166
- 919 88. Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and
920 evolutionary analyses in R. *Bioinformatics.* 2019;35: 526–528.
921 doi:10.1093/bioinformatics/bty633
- 922 89. Orme D, Freckleton R, Petzoldt T, Fritz S, Isaac N, Pearse W. caper: Comparative
923 Analyses of Phylogenetics and Evolution in R. R package version 1.0.3. 2023
924 [cited 17 May 2024]. Available: <https://cran.r-project.org/web/packages/caper/caper.pdf>
- 925
- 926

927 **Supplemental figure 1. Structure prediction of Mystique's major capsid protein**

928 **structure suggests HK97 fold.** **A** AlphaFold2 structure prediction shows major
929 structural features of HK97 fold: A- and P-domains with a characteristic backbone helix
930 and E-loop. **B** Rigid-body fitting of the predicted structure into the experimental density
931 forming an asymmetric unit. **C** Icosahedral symmetrisation of the asymmetric unit fills
932 most of the capsid's density, while unfilled densities located at trifold or pseudotrifold
933 locations suggest an unidentified cement or decoration protein.

934

935 **Supplemental figure 2. Structure of a Mystique's tail monomer is highly similar**
936 **to a phagellotrophic bacteriophage YSD1.** **A** Side by side comparison of a YSD1 tail
937 protein monomer (top, yellow) and Mystique phage tail protein monomer (bottom,
938 blue). These proteins appear structurally very similar yet share very low primary
939 sequence similarity as shown by the **B** sequence alignment of YSD1 tail protein (upper
940 sequence) and Mystique tail protein (lower sequence). Additionally, Mystique's tail
941 protein lacks a C-terminal domain and has a truncated N-terminal domain. **C** Cross-
942 section view of the tail model where residues were coloured by their electronegativity
943 showing the negatively charged central cavity.

944

945 **Supplemental figure 3. Mystique can infect and amplify on strains in liquid that**
946 **it does not lyse on a lawn.** Out of the 15 strains Mystique was unable to lyse on a
947 bacterial lawn, six proved to be susceptible in liquid culture.

948

949 **Supplemental figure 4. Testing for phylogenetic signal across Mystique**
950 **susceptible strains.** D values (black vertical lines) as a measure of phylogenetic
951 signal, where a D value of 1 (red lines) indicates randomness and 0 (blue lines) implies

952 departure from the randomness expected under a Brownian evolution threshold
953 model. Calculated for *A. baumannii* strains susceptible to phage Mystique either on **A**
954 plate or in **B** liquid (Fig. 5).