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Abstract
Introduction: Trait mindfulness refersto one’ s disposition or tendency to pay attention to their
experiences in the present moment, in a non-judgmental and accepting way. Trait mindfulness has been
robustly associated with positive mental health outcomes, but its neural underpinnings are poorly
understood. Prior resting-state fMRI studies have associated trait mindfulness with within- and between-
network connectivity of the default-mode (DMN), fronto-parietal (FPN), and salience networks.
However, it isunclear how generalizable the findings are, how they relate to different components of trait
mindfulness, and how other networks and brain areas may be involved.
M ethods: To address these gaps, we conducted the largest resting-state fMRI study of trait mindfulness
to-date, consisting of a pre-registered connectome predictive modeling anaysisin 367 adults across three
samples collected at different sites.
Results: In the model-training dataset, we did not find connections that predicted overall trait
mindfulness, but we identified neural models of two mindfulness subscales, Acting with Awareness and
Non-judging. Models included both positive networks (sets of pairwise connections that positively
predicted mindfulness with increasing connectivity) and negative networks, which showed the inverse
relationship. The Acting with Awareness and Non-judging positive network models showed distinct
network representations involving FPN and DMN, respectively. The negative network models, which
overlapped significantly across subscales, involved connections across the whole brain with prominent
involvement of somatomotor, visual and DMN networks. Only the negative networks generalized to
predict subscale scores out-of-sample, and not across both test datasets. Predictions from both models
were also negatively correlated with predictions from a well-established mind-wandering connectome
model.
Conclusions: We present preliminary neural evidence for a generalizable connectivity models of trait

mindfulness based on specific affective and cognitive facets. However, the incomplete generalization of
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the models across all sites and scanners, limited stability of the models, as well as the substantial overlap
between the models, underscores the difficulty of finding robust brain markers of mindfulness facets.

Keywords: Trait mindfulness, resting-state fMRI, connectome, attention, predictive models, multi-site

Connectome predictive modeling of trait mindfulness

Mindfulness, often defined as the act of paying attention to the present moment without judgement
(Bishop et al., 2004), is a construct that has been researched intensely in recent years. Researchers have
sought to operationalize mindfulness as atrait, known as trait mindfulness, which refersto one's
disposition or tendency to pay attention to experiencesin a mindful way. Trait mindfulnessis often
measured by self-report scales, such as the Five Facet Mindfulness Questionnaire (FFMQ) (R. A. Baer et
al., 2004) and the Mindful Attention Awareness Scale (MAAS) (Brown & Ryan, 2003). Greater trait
mindfulness has been frequently associated with arange of positive mental health outcomes, including
more positive affect, improved self-compassion, greater openness to experience, and better quality of life
(Allen et al., 2021; Amundsen et a., 2020; Chu & Mak, 2020; Kong et a ., 2014; Schutte & Malouff,
2011), and negatively associated with outcomes like negative affect, stress, and anxiety (Carpenter et a.,
2019; Coffey & Hartman, 2008; de Bruin et al., 2014; Greco et al., 2011; Tomlinson et al., 2018; Treves
et al., 2023). Given the importance of trait mindfulness as a predictor of mental health, thereis aclear
need to understand its neural underpinnings. Neuroimaging of trait mindfulness could help us understand
mental health conditions (Zhuang et al., 2017), reveal pathways of action in mindfulness interventions
(Goldberg et a., 2019), and provide possible targets for neuromodulation (Cain et a., 2024; Zhang et 4.,
2023). Motivated by these possibilities, this study investigated the functional neuroimaging basis of trait
mindfulness.

Resting-state functional magnetic resonance imaging (fMRI) data, measured when participants lie

awake in the fMRI scanner in atask-free state, may provide brain-based measures correl ating with trait
mindfulness. A resting state does not explicitly engage cognitive or emotional processes. Instead, it is

used to study correlated self-generated brain signals, or functional connectivity, while a participant is at
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rest. These correlations, which can be reliable given sufficient data (Finn et al., 2015; Laumann et al .,
2015; Noble et a., 2017), are thought to reflect stable aspects of individual functional brain organization
(Shenet al., 2017; Smith et a., 2013). In addition, resting state data are relatively easy to collect and can
be compiled in large online databases to increase sample size (Biswal et al., 2010; Eickhoff et al., 2016;
Poldrack & Gorgolewski, 2017).

Static functional connectivity (SFC) is measured by correlations between brain regions over the
course of aresting-state fMRI scan, and several networks of correlated brain regions are plausibly related
to variation in trait mindfulness. One network is the default-mode network (DMN), involved in internally-
focused, self-referential processing, and consisting of brain areas such as the precuneus, posterior
cingulate, and ventromedial prefrontal cortex (Raichle et al., 2001). Two other candidate networks are the
salience network (SN), involved in stimulus-driven attention and including the insula and mid-cingul ate
(Seeley et d., 2007); and the frontoparietal network (FPN), involved in externally focused, goal-directed
attention and consisting of lateral frontal and parietal areas (Dosenbach et a., 2008; Greicius et al., 2003;
MacDonald et a., 2000).

Despite at least nine studies on resting-state SFC and trait mindfulness (Bilevicius et a ., 2018; Doll et
al., 2015; Harrison et al., 2019; Hunt et al., 2022; Kong et al., 2016; Li et a., 2022; Parkinson et al., 2019;
Shaurya Prakash et a., 2013; Wang et a., 2014), there is no consistent relation between these networks
and trait mindfulness. For example, Bilevicius et a. (2018) found that decreased connectivity of the SN
and the cuneus (often considered part of the DMN) correlated with MAAS total scores, but Parkinson et
a. (2019), found that increased connectivity of the SN and cuneus correlated with FFMQ total scores.
Both studies were conducted with n ~30 participants. Some studies found that trait mindful ness correlated
with reduced within-DMN connectivity (Bilevicius et al., 2018; Doll et d., 2015; Harrison et al., 2019;
Wang et a., 2014), but a subsequent larger sample study (n~100) failed to replicate this finding (Hunt et
al., 2022). Sources of variability between studies could stem from variable sample characteristics, small
sample sizes, different methodologies (i.e., choice of seed regions), or alack of test-retest reliability in the

fMRI measures. A broader concern is that mindfulness may not be a unitary trait (Altgassen et a., 2023;
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Beloborodova & Brown, 2023) and, therefore, it is unlikely to involve unitary brain processes. It may be
that mindfulness involves related but distinct subcomponents like attention and non-judgement (Bishop et
al., 2004). Indeed, the Five Facet Mindfulness Questionnaire (FFMQ) was devel oped based on factor
analyses of previous mindfulness questionnaires, resulting in statistically dissociable facets of Acting with
Awareness, Non-judging, Non-reactivity, Describing, and Observing (Bager et a ., 2006, 2008; athough
Observing may show limited validity, Gu et d., 2016). These individual components may relate to
different patterns of resting-state brain connectivity.

Here we addressed these concernsin amultisite study of resting-state fMRI and trait mindfulness
to date. The present sample (n = 367) constitutes the largest sample size of any laboratory-based
neuroimaging study of trait mindfulness (for a systematic review, see Treveset al., in press). We used a
data-driven, whole-brain approach called connectome predictive modeling (CPM). CPM tests pairwise
connections across the whole brain (Shen et al., 2017), and can find positive and negative network models
that predict individual differences. A key feature of CPM is prediction — whereas correlation may inflate
the strength of an association, prediction of held-out datais more accurate (Gabridli et a., 2015). CPM
has proven predictive power for individua differencesin IQ, creativity, sustained attention, mind-
wandering, and other traits (Beaty et al., 2018; Finn et a., 2015; Kucyi et a., 2021; Rosenberg et dl .,
2015). In this study, we used CPM to investigate relationships between trait mindful ness, assessed with
the FFMQ, and resting-state SFC in functional networks across the whole brain (including the DMN,
FPN, and SN). We assessed whether the relationships generalized to independent samples, and we
examined the relations of brain networks to the overall FFMQ score as well as the five FFMQ facets. We

had no a priori hypotheses given the inconsistencies in the previous literature.

M ethods

We preregistered this study before analysis at https.//osf.io/dtk9a/. All deviations are reported in

the Supplement.

Training Dataset: Wisconsin
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We obtained imaging and phenotypic data from the University of Wisconsin-Madison meditation
study (NCT02157766). The sample consisted of 206 meditation-naive participants (ageM = 30.9, D =
13.1 years, 85 male) who completed an eyes-open resting-state scan and the Five Facet Mindfulness
Questionnaire (FFMQ) (Baer et al., 2006). Of those 206 participants, 71 had asthma, and the full sample
was retained. One of the aims of the original trial was to evaluate the relationship between psychol ogical
factors and asthma, but this aim was not relevant to the present study. Asthma status was controlled for in
our analyses by conducting partial correlations with an indicator variable, given evidence for relationships
between chronic inflammatory conditions and functional connectivity (Aruldass et al., 2021; Labrenz et
al., 2019) aswell as mental health (Stanescu et a., 2019). No participants had psychiatric diagnoses.

Images were acquired on a GE MR750 3.0 Tesla MRI scanner with a 32-channel head cail.
Anatomical scans consisted of a high-resolution 3D T1-weighted inversion recovery fast gradient echo
image (450 msinversion time; 256 x 256 in-plane resolution; 256 mm field of view (FOV); 192 x 1.0
mm axia slices). A 12 min functional resting-state scan run was acquired using a gradient echo echo-
planar imaging (EPI) sequence (360 volumes; repetition time (TR)/echo time (TE)/Flip, 2000/20 ms/75°;
224 mm FOV; 64 x 64 matrix; 3.5 x 3.5 mm in-plane resolution; 44 interleaved sagittal slices; 3 mm slice
thickness with 0.5 mm gap). The in-plane resolution was decreased after the first 21 participants from 3.5
x 3.510 2.33 x 3.5 mm to better address sinus-related artifacts, resulting in a matrix of 96 x 64.
Resolution change was controlled for in subsequent analyses by partialling out an indicator variable.

Test Dataset: Stanford Science of Behavior Change

We obtained imaging and phenotypic data from the Stanford Science of Behavior Change project
(https://scienceofbehaviorchange.org/proj ects/pol drack-marsch/) (Bissett et al., 2023). The sample
consisted of 82 meditation-naive participants (age M = 23.6, SD = 4.9 years, 27 male) who completed an
8-min eyes-open resting state scan and the FFMQ (Baer et a., 2006). Of those 82 participants, 22 had
diagnoses of anxiety, depression, or other clinical conditions, and all participants were retained, as results

were no different when removing participants with diagnoses.
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Parti cipants were scanned in a GE Discovery MR750 3-Tesla system with a 32-channel Nova
Medical head coil at the Stanford center for Cognitive and Neurobiological Imaging. The T1-weighted
scan used a BRAV O sequence with the following parameters: duration (4 minutes and 50 seconds), TR
(7.24ms), TE (2.784ms), flip angle (12°), slice number (186), and resolution (.9mm isometric
voxels). The T2*-weighted, gradient-echo echo-planar imaging, scan parameters were as follows:
duration (8 min), multiband acceleration factor (8), TR (0.68 s), TE (30 ms), flip angle (53°), echo
gpacing (0.57 ms), slice number (64), resolution (2.2 mm isotropic), phase encoding anterior to posterior.
Test Dataset: Leipzig Mind-Brain-Body

We downloaded openly available imaging and phenotypic data from the functional connectome
phenotyping dataset (Babayan et al., 2019), a component of the MPI-Leipzig Mind-Brain-Body project
(Mendes et d., 2019). Procedures for this study were approved by the ethics committee at the medical
faculty of the University of Leipzig (097/15-ff). The sample consisted of 79 meditation-naive participants
(modal age range 20-25, 45 male) who completed four eyes-open resting-state scans and completed the
FFMQ (Beer et a., 2006), translated to German. No participants had psychiatric diagnoses.

Participants were scanned in a 3-Tesla Siemens Magnetom V erio system with a 32-channel head
coil at the University of Leipzig. The T1-weighted, 3DMP2RAGE, scan parameters were as follows:
duration (8.22 min), TR (5 9), TE (2.92 ms), flip angle 1/2 (4/5°), Tl 1/2 (700/2500 ms), slice number
(176), resolution (1.0 mm isotropic). The T2*-weighted, gradient-echo echo-planar imaging, scan
parameters were as follows for each of the four runs: duration (15 min 30 s), multiband acceleration factor
(4), TR (1.4 9), TE (39.4 ms), flip angle (69°), echo spacing (0.67 ms), slice number (64), resolution (2.3
mm isotropic). In thefirst and third runs, the phase encoding direction was anterior to posterior, whereas
in the second and fourth runs, the phase encoding direction was posterior to anterior.

M easures

The Five Facet Mindfulness Questionnaire consists of 39 questions, corresponding to five

statistically separable subscales: Acting with Awareness, Non-judging, Non-reactivity, Describing, and

Observing (Baer et al., 2006; Baer et a., 2008). Acting with Awareness (AA) refersto attending to one's
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actionsin the present moment, e.g., “ It seems | am running on automatic without much awareness of what
I’'m doing.” Non-judging (NJ) refersto not evaluating or judging one’ s thoughts or feelings, e.g., “I
criticize myself for having irrational or inappropriate emotions.” Non-reactivity (NR) is defined as
alowing thoughts to come and go without being caught up in them, e.g., “| perceive my feelings and
emotions without having to react to them.” Describing (D) refers to labeling experiences with words, e.qg.,
“1 am good at finding words to describe my feelings.” Finally, Observing (OBS) is defined as noticing or
attending to internal experiences, e.g., “| pay attention to sensations, such asthe wind in my hair or sun on
my face.” Each question on the FFMQ is rated on a5-point Likert scale, ranging from “ 1 = Never or very
rarely true’ to“5 = Very often or alwaystrue” . The Acting with Awareness (AA), Non-judging (NJ), and
Describing (D) subscales include reverse-scored questions. The lowest possible total score is 39 and the
highest possible score is 195, with higher scores representing higher levels of mindfulness. We used the
total scores, the total scale without observing (Baer et a., 2022; Gu et a., 2016; Pang & Ruch, 2019), and
the subscales. The FFM Q has demonstrated acceptable internal consistency across a range of samples
(.72—-.92, Baer et a., 2008). We assessed rel ationships between the subscales using Pearson’s correlations
in the Wisconsin dataset. For comparisons of the total FFMQ scores between the datasets, we conducted
simple unpaired, heteroskedastic t-tests.
Procedure

Preprocessing was identical to Kucyi et al. (2021) and details are provided. We preprocessed each
fMRI run individually using the same procedures across datasets, based on procedures implemented in the

CONN toolbox (version 21a (https.//www.nitrc.org/projects/conn) (Whitfield-Gabrieli & Nieto-Castanon,

2012) and SPM12 in Matlab R2019a (Mathworks Inc., Natick, MA). Preprocessing steps included
deletion of the first four volumes, realignment and unwarping (Andersson et al., 2001), and identification
of outlier frames (frame-wise displacement >0.9 mm or global BOLD signal change >5 SD) (Nieto-
Castanon, 2020). Functional and anatomica data were normalized into standard MNI space and, in a

unified step, segmented into gray matter, white matter (WM ), and cerebrospinal fluid (CSF) (Ashburner
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& Friston, 2005). Smoothing of fMRI data consisted of spatial convolution with a Gaussian kernel of 6
mm full-width half-maximum (FWHM).

fMRI denoising involved linear regression of the following parameters from each voxel: (a) 5
noise components each from minimally-eroded WM and CSF, respectively, based on aCompCor
procedures (Behzadi et al., 2007; Chai et a., 2012) (b) 12 motion parameters (3 tranglation, 3 rotation,
and associated first-order derivatives); (c) all outlier frames identified within participants; and d) linear
BOLD signal trend within session. After nuisance regression (Hallquist et al., 2013), data were bandpass
filtered to 0.008-0.09 Hz. Denoising procedures have been shown to reduce the impact of head motion on
functional connectivity (Muschelli et al., 2014), but excessive head motion may confound estimates
(Power et al., 2015; Siegd et a., 2017). To avoid this possibility, we excluded participants with mean
overall frame-wise displacement (FD) of >0.15 mm (based on the Jenkinson method; Jenkinson et al .,
2002) for the Wisconsin dataset and Stanford dataset. In the Leipzig dataset in which four rs-fMRI runs
were obtained within participants, we removed runs with more than 0.15 mm of mean FD, and
participants based on the mean across runs.

In addition, given that FD can influence observed relationships between functional connectivity
and behavior (Siegel et a., 2017), we controlled for FD in analyses focused on relationships between
functional connectivity and FFMQ scores (see Methods: “Predictive modeling analysis’).

Functional connectivity featur e extraction

For each individual, we extracted the preprocessed BOLD time series from the mean across all
voxels within each node defined based on an intrinsic functional network atlasin MNI space, specificaly,
the Shen atlas of 268 whole-brain regions (Shen et al., 2013). This atlas has been frequently used in CPM
studies (e.g., Kucyi et al., 2021; Rosenberg et a ., 2015). We computed Fisher z-transformed Pearson
correlation coefficient of time series, giving amatrix of functional connectivity values between all region
pairs. We define region pairs as connections or edges.

Predictive modeing analysis
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We chose the Wisconsin sample for training asit isthe largest of the datasets in this study
(Poldrack et a., 2020). We performed CPM using publicly available code
(https://github.com/DynamicBrainMind/CPM_CONN). For each participant in the Wisconsin sample, we
generated model -based predictions of FFMQ or FFMQ subscales based on data from all other included
participants, i.e., leave-one-participant-out cross-validation (LOOCV)). In each cross-validation fold, we
computed the Pearson correl ation between each unique edge (pair of nodes) in the functional connectivity
matrix (derived from the Shen atlas) and participant FFMQ scores. We then ‘masked’ the brain-behavior
correlations: retaining only edges positively or negatively correlated with FFM Q scores at the
suprathreshold level of P < 0.01 (two-tailed). Thisresulted in positive and negative edge masks. For each
participant, we computed the dot product between the functional connectivity matrix and each mask. We
then calculated a single network strength value, the subtraction of negative edge from positive edge sums.
Finally, we fit alinear model, based on all participants within the fold, of the form:

FFM Q= p*network_strength + c.

In order to assess whether predicted versus observed scoresin LOOCV held-out participants were
statistically significant at the group level, we generated a distribution of null values. To do so, we
repeated all of the described CPM procedures, except the participant assignments of the FFM Q scores
were randomly permuted (1000 iterations) to generate null correlation values. To compute ap-value, we
then calculated the probability of finding anull correlation at or above the true correlation (predicted
versus observed FFM Q).

We repeated CPM procedures controlling for head motion by calculating partial correlations
(partialcorr in MATLAB) between predicted and observed FFM Q. Using these partial correlations, we
controlled for head motion, defined as the mean FD value per participant. We did not conduct
permutations for the partial correlation tests because effect sizes were comparable to those obtained in the
main analyses. We also controlled for participant asthma status by assessing partial correlations. Finally,
we repeated CPM procedures with 10-fold CV, which is a preferred approach for sample sizes > 100

(Poldrack et al., 2020).
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M odel selection

We trained models for each of the seven FFMQ scores (Total, Total w/o Observe, and 5
subscales). Models were selected for generalizability testing based on an uncorrected p threshold < 0.05
based on the permutation testing (for a similar approach, see Kim et ., 2023).

Our main subsequent anal yses focus only on the selected models. For external validation analyses
assessing generalizability in the other dataset, as well as anal yses of edge network identities, we
computed CPM parameters and positive and negative masks based on data from all participantsin the
Wisconsin sample (i.e., asingle fold).

Validation in test samples

We took the selected trained models and applied them on the Leipzig resting-state data (averaged
across runs, excluding runs with head motion, as described previously) and Stanford resting-state data
(excluding participants with head motion). Each functional connectivity matrix was masked with the
positive and negative masks, and then those FC values from the selected edges were either applied
independently or summed to form a network strength value. The connectivity predictor or network
strength was then used in the linear model to predict the FFMQ scores. We compared FFMQ predicted
and observed values using Pearson’s correlation. We also conducted partial correlations controlling for
FD values.

Test-retest stability

There are some indications that CPM predictions may be more reliable and stable than individual
edges (Taxali et a., 2021). To test this, we leveraged the Leipzig dataset, which had multiple 15-minute
runs. We examined Pearson’s correlations between the CPM network strengths for the first two runs and
the last two runs. Additionally, we randomly selected 1000 individual edges, and estimated the
probability of the CPM correlation compared to the distribution of random edges.

Analysis of functional connectivity patterns contributing to Mindfulness CPM s
To gain insight into the neuroanatomical patterns that contributed to the CPM's, we examined

brain networks, nodes, and regions. The principal measure for display is ‘degree’, where a high degree
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means that a node/network/region isinvolved in many edges. First, we used the WASHU network 1abels
to assign nodes to ten networks (Power et a., 2011). The WASHU networks consist of SMN:
somatomotor network, CO: cingular-opercular network, AUD: auditory network, DMN: default-mode
network, VIS: visual network, FPN: frontoparietal network, SAL: salience network, SUB: subcortical
network, VAN: ventral attention network, and DAN: dorsal attention network. A proportion of the nodes
are not assigned to a network. Despite this limitation, the WASHU network labels were chosen because
they include networks of interest (FPN, DMN, SAL, SMN, and VIS). We examined the number of
connections within each network in matrix plots. Further, we plotted the specific node ‘ degrees' on the
brain medial and lateral surfaces using Biolmage Suite

(https://bioi magesuiteweb.github.io/webapp/connviewer.html). Finally, connectograms were plotted to
display connections between brain regions using Biolmage Suite.

Comparisons of models were assessed, specifically the overlaps between edges selected by the
models. We conducted non-parametric permutation tests (shuffling the edges) to assess whether the
degree of overlap was higher than chance.

Exploratory analysis

We conducted exploratory analyses to identify whether different analysis approaches lead to
improvementsin generalizability. First, we considered whether generalization to dataset acquired with a
different MRI scanner type may be ahigh bar. Thus we combined the data across scanners before
conducting training-test splits. In one analysis of this combined data, we conducted partia correlations
using the means of the FFMQ within each dataset to control for dataset differences. Second, we examined
whether other predictive modeling methods previously used in neuroimaging applications were more
powerful than CPM, including tangent parameterization of connectivity, Brain Basis Sets and Elastic Net
Regression. See Supplement for Full Methods.

Results

Behavioral measures
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The mean FFMQ in the Wisconsin sample was 134.8 (SD = 17.8), in the Stanford sample 126.8
(SD =17.4), and the in the Leipzig sample 107.2 (SD = 11.3) (Supplementary Figure 1). Wisconsin
FFMQ scores were significantly higher than Stanford scores as assessed by atwo-tailed Welch's t-test
(t(153.46) = 3.50, p < .001, Cohen'sd = 0.44), and Leipzig's (t(221.96) = 15.45, p < .001, Cohen'sd =
1.35). Stanford FFM Q scores were significantly higher than Leipzig FFM Q scores (t(139.68) = 8.49, p <
.001, Cohen’sd = 1.10). This differencein the trait measures could be related to the student sample of the
Stanford dataset, or the German tranglation of the FFMQ, or cultural differences. FFMQ scores may vary
across different samples (e.g., (Goldberg et a., 2016; Isbel et al., 2020). Correlations between the
subscal es were significant but were al lessthan r = .5, indicating some independence (see
Supplementary Table 1). Subscales correlated with the total FFMQ score, rs> .6, and showed
differences across sites smilar to total FFM Q score differences (Supplementary Figure 2 and
Supplementary Figure 3).
L earning the neural featuresfrom the training dataset

We trained seven CPMsin the Wisconsin dataset, one for each subscale, the total score, and the
total without observing. 18 participants were removed due to above-threshold head mation. Full training
set performanceis reported in Supplementary Table 2. The models predicting Acting with Awareness
(AA), and Non-judging (NJ) showed positive correlations (Figur e 1) between overall network strength
(positive network - negative network) and the respective subscale (AA: r(186) = .22, NJ: r(186) = .21).
The two models had non-parametric p values of .017 and .025, respectively, so we selected them for
model testing in held out data. When using 10-fold cross-validation instead of leave-one-out cross-
validation (LOOCV), the results were similar (AA: r(186) = .16, p = .046; NJ: r(186) = .22, p = .021).
The single-fold AA maodel, which we call the AA-CPM, consisted of 328 positive edges and 758 negative
edges. Positive edges were present in 95.0% of LOOCYV folds, and negative edges were present in 93.0%
of LOOCYV folds. Partia correlations with framewise-displacement as a covariate showed similar effect
sizes (r(186) = .22), indicating no influence of head motion on model prediction. Partial correlations with

asthma status likewise resulted in similar effect sizes (r(186) = .21). The single-fold NJ model, which we
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call the NJ-CPM, consisted of 664 positive edges and 628 negative edges. Positive edges were present in
94.3% of LOOCYV folds, and negative edges were present in 93.6% of LOOCYV folds. Partial correlations

with framewise-displacement and asthma status as covariates were similar (rs of .21 and 0.19,

respectively).
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Figure 1. Prediction performanceinthetraining set. A: Predicted vs observed val ues from leave-one-out
cross validation, for Acting with Awareness subscale. B: Correlation coefficient (in red) compared to the
distribution of null correlation coefficients, for Acting with Awareness subscale. C: Predicted vs observed
values from leave-one-out cross validation, for Non-judging subscale. D: Correlation coefficient (in red)
compared to the distribution of null correlation coefficients, for Non-judging subscale. In plots A and C,
grey shading reflects 95% confidence intervals. In plots B and C, the mean and standard deviations are
shown above the distributions.

Featuresin the AA-CPM
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We next analyzed the masked edges from the AA model, as derived from asingle fold (Figure
2). In the positive network, FPN between-network connections were most featured, primarily between
FPN and sensory networks as well as FPN-DMN. There were some connections incorporating DMN,
SAL and SMN. High-degree brain areas included the cerebellum, parietal areas, and dorsomedial
prefrontal cortex. Circle plots from the FPN, in particular, show mostly cross-hemispheric connections
between prefrontal, motor areas, parietal areas, and limbic areas, with more diverse brain areas in the right
hemisphere (Supplementary Figure 4). The negative network (edges that negatively correlated with AA
scores) contained connections within the SMN, and between the SMN and the VIS network, with some
involvement of auditory and DMN networks (Supplementary Figure 5). High degree nodes included
somatomotor cortices, primary occipital cortices, and ventrolateral prefrontal cortex. Circle plots
demonstrated dense connections across hemispheres between motor, parietal, temporal, visual, and insula

areas (Figure 3).
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Figure 2: Edgesincluded in single-fold model of Acting with Awareness subscale of FFMQ using Shen
atlas. In red are edges that positively predict Acting with Awareness. In blue are edges that negatively
predict Acting with Awareness. Node degree: number of connections including that node (brain area).
SMN: somatomotor network, CO: cingular-opercular network, AUD: auditory network, DMN: default-
mode network, VIS: visual network, FPN: frontoparietal network, SAL: salience network, SUB:

subcortical network, VAN: ventral attention network, DAN: dorsal attention network.

Insula

Parietal

N E=n
Occipital

Limbic

Brainstem

Figure 3. AA-CPM Connectogram. Negative network, degree threshold = 15.
Featuresin the NJ-CPM

We analyzed the masked edges from the NJ model derived from asingle fold (Figure 4). In the
positive network, DMN connections to the rest of the brain were most featured, with some additional
connections involving FPN and SUB. DMN-SMN and DMN-CO edges were most prevalent. High degree
brain areas included the ventromedial prefrontal cortex, posterior cingulate cortex, and medial
somatomoator areas. Circle plots of DMN connections show dense connections between left limbic areas
and left motor areas, aswell astheinsulaand parietal areas (Supplementary Figure 6). The negative
network (edges that negatively correlated with NJ scores) was widely distributed, with many edgesin the

SMN network, and between VIS and DMN (Supplementary Figure 7). High degree brain areas included
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bilateral occipital areas, posterior temporal lobe including temporoparietal junction, and bilateral

somatomotor areas. Circle plots demonstrated similar connections to the AA-CPM negative network, with

the exception of right subcortical involvement (Figure5).

Non-judging CPM
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Figure 4. Edgesincluded in single-fold model of Non-judging subscale of FFMQ using Shen atlas. In red

are edges that positively predict Non-judging. In blue are edges that negatively predict Non-judging. Node

degree: number of connections including that node (brain area). Medial views are shown for positive

network as high-degree nodes are medial. SMN: somatomotor network, CO: cingular-opercular network,

AUD: auditory network, DMN: default-mode network, VIS: visual network, FPN: frontoparietal network,

SAL: salience network, SUB: subcortical network, VAN: ventral attention network, DAN: dorsal

attention network.
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Figure 5. NJ-CPM Connectogram. Negative network, degree threshold = 15.

Testing performance of AA-CPM

When we applied the AA-CPM to the Leipzig dataset, we found a significant positive association

between predicted and observed scores (r(75) = .34, p = .0025, two participants were removed due to

head motion) (Figure 6A). The association remained significant when partialling out head motion (pr(75)

= .27, p =.020). The positive associ ation was significant when examining only the negative network

(r(75) = .33, p=.0031), but not the positive network (r(75) = .032, p =.78). We found no significant

relationship between AA-CPM predictions (positive, negative, and network strength) and observed AA

scores in the Stanford dataset (ps > 0.5).
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Figure6. Test predictions vs. Actual scores. A) Leipzig held-out data prediction performance, for AA-
CPM predicting AA scores. Bluelineislinear best fit, with gray 95% confidence intervals. B) Stanford
held-out data prediction performance, for NJ-CPM predicting NJ scores. Bluelineislinear best fit, with
gray 95% confidence intervals.
Testing performance of NJ-CPM

When we applied the NJ-CPM to the Leipzig dataset, we found no association between predicted
and observed scores (ps > 0.2, two participants were removed due to head motion). We found a positive
relationship between NJ-CPM predictions and observed NJ scores in the Stanford dataset (r(80) = .28, p =
.012) (Figure 6B). The positive association was still present when just examining the negative network
(r(80) = .27, p = .016), but not the positive network (r(80) = .16, p = .16). Results were identical when
partialling out head motion.
Other model validation steps
Relationships between AA-CPM and NJ-CPM

NJand AA subscale scores were positively correlated in the Wisconsin training dataset (r(204) =
.36, p <.001). In addition, there was a strong positive correl ation between the AA-CPM and the NJ-CPM
strengths across all datasets, (r(345) = .66, p <.001). 20 positive edges were shared between the models
(2.02%, non-parametric p < 0.001), and 58 negative edges were shared between the models (4.18%, non-
parametric p < 0.001). To evaluate the specificity of the AA-CPM and NJ-CPM, we examined whether
they could cross-predict in the held-out datasets. The NJ-CPM could predict AA in the Leipzig dataset
(r(75) = .29, p = .0089). The AA-CPM trended towards predicting NJ in the Stanford dataset (r(80) = .20,
p = .065). Results were similar when just examining the negative networks. As a control, we examined
whether a non-significant model from the Wisconsin dataset (the Observing-CPM), could predict in the
hold out data. The Observing-CPM did not predict AA in the Leipzig dataset (r(75) = .098, p = .39), nor
NJin the Stanford dataset (r(80) = .14, p = .22).

Relationships with mind-wandering CPM
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Trait mindfulness has been found to be negatively correlated with mind-wandering (MW) on
tasks (Belardi et al., 2021; Mrazek et al., 2012). We examined the correlation between network strengths
for the AA-CPM and NJ-CPM and a previously published CPM for mind-wandering, the MW-CPM
(Kucyi et d., 2021), in datafrom all sites. There was a negative correl ation between AA-CPM and MW-
CPM, (r(345) =-.22, p <0.001) (Supplementary Figure 12), as well as between NJ-CPM and MW-
CPM (r(345) = -.25, p < 0.001) (Supplementary Figure 13). Overlaps between edges for AA-CPM vs
MW-CPM and NJ-CPM vs MW-CPM were not significantly higher than chance (non-parametric p >
0.1). The In the held out datasets, MW-CPM negatively predicted NJin the Stanford dataset (r(80) = -
0.31, p =0.0042), and no other predictions were statistically significant (ps > 0.5).

Test-retest stability

We also examined the test-retest stability of the modelsin the Leipzig dataset, by comparing
the network strengths for the first two runsto the last two runs using Pearson’s correlations. The AA-
CPM and NJ-CPM showed correlations (r(74) = .35, r(74) = .41) that were not more stable than random
edges (non-parametric ps> 0.5).

Exploratory analyses.

In the combined, shuffled data, we found a significant model predicting NJ, which generalized to
the held-out dataset. It should be noted that the positive network for the supplementary NJ model was
similar to the positive network found in the main NJ-CPM. Results from the tangent parameterization of
connectivity, Brain Basis Set regression, and Elastic Net Regression failed to generalize from Wisconsin

to other datasets.

Discussion
We used connectome predictive modeling (CPM) to investigate the rel ationships between trait
mindfulness as measured by FFMQ, and functional networks across the whole brain (including the DMN,
FPN, and SN) and assessed whether the relationships generalized to independent samples. With 367

participants over three sites, thisis the largest neurocimaging study of trait mindfulness to-date (Treves et
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al., in press). While we did not find a generalizable model of total FFMQ scores, we did find models of
the Acting with Awareness and Non-judging subscales that generalized to one of two independent
datasets. The models showed highly similar negative networks (i.e., increasing connectivity negatively
predicts mindfulness) involving DMN, VIS and SMN connectivity, and these negative networks were
responsible for generalization performance. Our findings highlight the importance of networks not
investigated previously (e.g. VIS, SMN) (Treveset al., in press), inform new frameworks for defining
trait mindfulness (Altgassen et al., 2023), and underscore the difficulty of using neuroimaging measures
for predicting individual differences (Marek et al., 2022).
Networ ks implicated in trait mindfulness

Previous studies on trait mindfulness have focused on seed-based analysis of the triple networks:
the DMN, FPN, and SN. A large cognitive neuroscience literature has implicated these networksin the
regulation of external and interna attention (Buckner & DiNicola, 2019; Menon, 2011). In keeping with
this, meta-anal ytic reviews have found that mindfulness interventions lead to increasesin DMN-SN
connectivity (Rahrig et al., 2022) and mindfulness practice (focused attention) |eads to decreased
activationsin DMN regions like the posterior cingulate cortex compared to control conditions (Ganesan et
al., 2022). Despite this, there is no consensus with regards to the networks' relationships to trait
mindfulness. There are some indications of triple network involvement in predicting trait mindfulnessin
the current study. The predictive models developed here consist of positive networks (connectivity that
predicts higher trait mindfulness) and negative networks (connectivity that predicts lower trait
mindfulness). It is important to note that the models consist of hundreds of edges across the entire brain
and here we summarize notable networks and regions. The positive network for the Acting with
Awareness modd included connections between FPN and other brain networks including sensory
networks and DMN, with high-degree nodes (regions involved in many connections) in the cerebellum,
dorsomedial prefrontal cortex, and parietal cortex. FPN connectivity could be related to top-down
regulation of attention (Marek & Dosenbach, 2018), and individuals who score high on Acting with

Awareness may regulate their attention using the FPN. However, this connectivity did not generalize to
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predict scoresin the test datasets. Instead, connections involving the DMN, SMN, and VIS networks
negatively predicted mindfulness scores (both Acting with Awareness and Non-judging) in the training
and test datasets (and under different training-test splits of the data). Decreasesin DMN connectivity with
the rest of the brain could reflect differences in habitual self-referential processing, e.g. rumination
(Butterfield et al., 2023; Frewen et al., 2020; Raichle et al., 2001; Zhou et a., 2020). The somatomotor
(SMN) network has been implicated in mind-wandering (Kucyi et a., 2024; Mckeown et al., 2020;
Vatansever et a., 2019). Speculatively, altered SMN connectivity may reflect different habitual
processing of afferent thermo-ceptive, proprioceptive or even pain signals, or it may reflect simulated
motor action (Sormaz et al., 2018). Associations with visua network connectivity may reflect differences
in sensory awareness, and visual network connectivity has been observed to change after mindfulness
training (Kilpatrick et al., 2011).

Evidence that the models capture meaningful neural function is that they were significantly
negatively correlated with a well-established mind-wandering CPM (Kucyi et al., 2021). Thisis despite
not involving the same brain connections. Mind-wandering and mindfulness may be thought of as
intuitive opposites, e.g. participants rating high on mindfulness questionnaires mind-wander less (Mrazek
et al., 2012). Notably, the mind-wandering model was trained on state mind-wandering ratings during an
attention task, not trait questionnaires. Perhaps the mindfulness models devel oped here could predict
mindful states aswell astraits.

Distinctions between mindfulness scales

The models that met our selection threshold in the training dataset were trained on Acting with
Awareness and Non-judging. These two facets of mindfulness make up attitudinal and attentional
components of mindfulness (Rau & Williams, 2016) and are common in survey instruments measuring
mindfulness (Altgassen et al., 2023). The Acting with Awareness subscale of the FFMQ istypically
thought to reflect an attentional component of mindfulness (Baer et al., 2006). It involves questions from
the Mindful Attention and Awareness Scale (MAAS) (Brown & Ryan, 2003), including “It seems | am

running on automatic without much awareness of what I’'m doing” (reverse-coded). A network analysis
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found that Acting with Awareness clusters with the MAAS, mind-wandering questionnaires, and cognitive
failures questionnaires (Beloborodova & Brown, 2023). Finally, scores on Acting with Awareness, and the
MAAS, respectively, correlate with objective behavioral measures of attention (Ching & Lim, 2023;
Mrazek et a., 2012). Our study provides more external validation of self-report mindful attention by
identifying resting-state connections across the whole brain that predicted Acting with Awareness scores.

The Non-judging subscale of the FFMQ is typically thought to reflect affective components of
mindfulness, specifically one’s tendency to become aware of thoughts and feelings without judgement
(Baer et ., 2006). An exampleitem is“| criticize myself for having irrational or inappropriate emotions’
(reverse coded). Correlations between positive mental health outcomes and Non-judging are often found
(Blanke et al., 2018; Cortazar & Calvete, 2019; Treves et a., 2023). One theorized link is through
decreased rumination (Greco et al., 2011), or perseverating on negative self-referential thoughts,
memories, and one's own negative mood (Mennin & Fresco, 2013; Nolen-Hoeksema, 1991).

One area of uncertainty highlighted by the current study is whether Acting with Awareness and Non-
judging are distinct or whether they correspond to a single ontological concept of mindfulness. Standard
definitions of mindfulness often unite attentional and attitudinal features of mindfulness, e.g. mindfulness
is a present-focused attention, with an orientation of acceptance and non-judgement (Bishop et a., 2004).
Empirically however, this unity may not be supported. More recent research on self-report mindfulness
has indicated that single-factor definitions of mindfulness may be neither accurate nor predictive of real-
world outcomes (Altgassen et al., 2023; Bednar et a., 2020; Beloborodova & Brown, 2023; Tran et al.,
2020). Our study contributes to this debate but does not resolveit. In the large training sample, there were
discriminable brain connections (e.g., FPN vs DMN) that positively predicted Acting with Awareness and
Non-judging. However, the brain connections that predicted these subscalesin the relatively smaller held-
out datasets were largely overlapping. It may be that large datasets are necessary to identify their
distinctions neurally. It is also unclear why other subscales and the total FFM Q scores were not
predictable. One possibility is that the shared variance between Acting with Awareness and Non-judging

may be more predictable neurally than the FFMQ total scores which combine across 39 distinct items.
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Subscales like Observing are sometimes left out from measurement because they are understood
differently by different populations (Baer et a., 2022; Gu et al., 2016; Pang & Ruch, 2019). An important
consideration is that introspective ability confounds self-reported mindfulness measurement (Grossman,
2011), and more recent research has attempted to control for the reliability of responders before
conducting correlations with functional neuroimaging measures (Y. Kim et a., 2023). To summarize, our
results speak to the possibility of different operationalizations of mindfulness measurement —
operationalizations for insight into self-reported experiences may differ from operationalizations that
align with objective measurement.
Limitations and the difficulty of individual differencesin neuroimaging research

Wedid not find complete model generalization. The negative network models (involving DMN,
SMN, and V1S) predicted Acting with Awareness in the Leipzig dataset, and Non-judging in the Stanford
dataset. One possibility is that the cross-site differences were a high barrier to generalization. The data
acquisition parameters varied from site to site. Scanner parameters have an impact on activations and
connectivity estimates (Friedman et al., 2008; Glover et al., 2012; Greve et d., 2013). In addition, the trait
mindfulness scores varied significantly from site to site, and the connections that predict mindfulnessin
one range of scores may not generalize to another range. It is unclear whether overall score differences
between sites reflect real individual differences (assumption 1) or noise (assumption 2) (in which case
they should be z-scored within site). In exploratory analyses, we tested the robustness of our models to
this assumption, and the negative network models still showed significant prediction performancein
training and test splits. To our knowledge, variability in baseline trait mindfulness scores has not been
explored, and the ramifications for neuroimaging studies are unclear. Indeed, variability in mindfulness
scores may also have been akey factor for the training performance of the models.

A second limitation concerns the reliability/stability of the CPM measures. A previous study
found that when examining split-halves of a 30-minute resting-state scan, CPM networks were more
reliable than individual edges (although edges showed a wide range of reliabilities with many exceeding

that of CPM) (Taxali et a., 2021). We did not find this to be the case in our study. Reliability puts an
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upper limit on correlations between outcomes (Dubois & Adolphs, 2016; Nunnally, 1970), and could
have limited our ability to find meaningful relationships herein. In arecent study on dynamic functional
connectivity, we found that only the most reliable brain measures showed significant rel ationships with
trait mindfulness (Treves et a., 2024).

The predictive modeling results present some concerns aswell. In addition to CPM, we
conducted elastic net regression, Brain Basis Set regression, and a different connectivity parameterization
(tangent-space covariance). Although in the Wisconsin model -training dataset the Acting with Awareness
and Non-judging models showed significant correlations, these aternative predictive models did not
generalize to the test datasets (nor did models for the other subscales). Our finding that only the CPM
approach generalized to independent data highlights the sensitivity of the method while also suggesting
some fragility of the brain-behavior relationships. An important caveat of the methods used in our study is
that they do not involve any priors over the features used for prediction (a different approach isthe
network-based statistics prediction toolbox [NBS-Predict], which is biased towards finding connected sets
of features; Serin et al., 2021).

A final limitation reflects the real-world implications of these findings. Even though we
combined connections across the whol e brain for prediction, the amount of variance explained was low
(~4%). This means that using the models for clinical prediction may not be feasible. This has been
proposed to be alimitation of neuroimaging, not the models nor specific measures (Marek et al., 2022).
Indeed, in the context of classifying individuals with depression, Winter et a. (2024) used multiple
modalities of neuroimaging and tested millions of predictive models (with varying hyperparameters),
showing a maximum accuracy of 62%. One source of this difficulty may be between-individual variation
in neural substrates. It may be the case that fMRI measures of functional connectivity are more powerful
for predicting within-individual variation, e.g. fluctuations related to cognition, sleep or arousal (Flournoy
et al., 2024; Kucyi et al., 2024) or states of mindfulness vsinattentiveness (Weng et a., 2020).

Summary
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We conducted the largest neuroimaging study of trait mindfulness to-date, with three independent fMRI
datasets constituting 367 participants. We have demonstrated that subscales of trait mindfulness are to
some degree represented within common whole-brain patterns at rest. Future work could examine the

discriminability of the brain representations and their malleability to mindfulness training.
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