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Abstract. The determinants of growth rate and the associated metabolism has been at center stage in
microbial physiology for over seventy years. In this paper we show that a cell sensing its own growth rate
is in principle capable of maximising it using a gene regulatory circuit responsible for adapting metabolic
enzyme concentrations in dynamic conditions. This is remarkable, since any state of (close-to) optimal growth
depends on nutrient conditions, and is thus not a fixed target. We derive the properties of such gene regulatory
networks, and prove that such circuits allow the growth rate to be a Lyapunov function. We derive this from a
general stoichiometric and kinetic description of cellular metabolism. Interestingly, our finding is in agreement
with our current understanding of how E. coli controls its growth rate. It uses ppGpp to tune the growth
rate by balancing metabolic and ribosomal protein expression. Since ppGpp covaries 1-to-1 with the protein
translation rate, an excellent proxy for growth rate, on a timescale of seconds, this suggests that direct sensing
of the growth rate underlies growth rate optimisation in E. coli.

Introduction

Microorganisms exhibit an extraordinary spectrum of biodiversity, evident in the myriad environmental
conditions they inhabit [19]. Despite this diversity, the underlying metabolism – its kinetic, regulatory and
bioenergetic principles – can likely be understood in terms of a common set of principles [39, 7, 55, 5].

One fundamental concept contributing to this understanding is the “unity of biochemistry.” This encompasses
the evolutionary conservation of enzyme kinetics, the allosteric regulation of enzyme catalysis, cellular bioenergetics,
and the basic organization of cellular metabolism into energy- and precursor-producing catabolic pathways driving
the biosynthesis of macromolecules [39].

Additionally, the principle of natural selection plays a pivotal role [16, 9]. Fit genotypes, those that produce
more offspring, prevail over those that over time reproduced less. Achieving a competitive time-averaged growth
rate requires microbial cells to allocate resources judiciously, balancing protein-demanding tasks crucial for
adaptation, stress tolerance, and growth to enhance their fitness [6, 55].

These principles hold true across microbial species and environmental niches, underscoring their universal
significance in microbial physiology. Advancements in systems biology over the past three decades have propelled
this understanding forward, particularly through the development of genome-scale models of metabolic networks
[47] and the development of the concepts of finite biosynthetic resources [36, 55]. However, these contributions
have primarily focused on balanced growth conditions [50]; theoretical principles, modeling methodologies, and
the integration of ”omics” data have mostly been developed for exponentially growing cultures displaying steady
state metabolism [17, 42].

We still lack an understanding in fundamental terms of the dynamic process of adaptation to new conditions
[35, 18]. Do general principles of gene-expression regulation by environmental sensing exist? In particular, upon
an environmental change, the growth rate generally drops; sensing and gene expression controls are activated,
cells adjust their metabolic activity by adjusting protein concentrations, and improve their growth rate [7]. The
theoretical principles for balanced growth conditions allow us to deduce from first principles (genomic information,
enzyme kinetics, flux balance, finite biosynthetic resource allocation, evolutionary theory) which metabolic strategy
achieves optimal balanced growth in which conditions—it provides predictions of the end points of the adaptation
process [36, 61, 38, 56, 60, 12, 11]. Our aim here is to build a similar framework for dynamical gene expression
regulation for growth-rate adaptation, again from first principles. Pioneering studies do exist, and inspired this
work [3, 18, 33, 45, 62, 8, 15].

We address how a microbial cell that needs to adapt to a new condition should control its gene expression
in order to attain a competitive growth rate. This competitive growth rate is bounded by the growth rate
that is maximally achievable given the organism’s genetic potential and the prevailing environmental conditions.
We consider realistic biochemical models of cellular adaptation that incorporate metabolism, growth and gene
expression, involving a gene regulatory network that uses a read-out of the physiological state as input, and induces
protein synthesis rates as output, which are eventually balanced by ‘dilution by growth’ when a steady-state of
balanced growth has settled [45]. Coupling the metabolic network and gene expression network establishes a
single dynamic system in which environmental changes modify the physiological state through metabolism; a
readout of this state induces changes in gene expression, leading to new protein concentrations, which are fed
back into metabolism, resulting in a self-organising dynamics.

In this paper, we show that for the problem of optimal adaptation of growth rate to changing conditions, the
action of the gene network can be derived from first principles. It turns out that the biochemical description
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of the metabolic network uniquely determines it. Importantly, when the instantaneous growth rate is chosen
as physiological input variable to this gene network, we prove that the growth rate itself becomes a Lyapunov
function and therefore always increases in time, consistent with much experimental data on bacterial growth in
nutrient up- and downshifts [18, 37, 33, 65, 40, 44].

Lyapunov functions play an important role in dynamical systems theory and control theory to show that steady
states of systems are (asymptotically, or even globally) stable or reachable by control mechanisms [25, 20, 26].
Here we exploit this same idea: by showing that the growth rate is a Lyapunov function, we show that the coupled
metabolic-enzyme system always reaches a steady state of maximal growth, regardless of the environmental state.
This implies that sensing any system variable that is in one-to-one correspondence with the instantaneous growth
rate would enable the cell to adjust its gene expression and navigate in the direction of an increasing growth rate,
thus enhancing its competitive potential.

Recent experimental work [62] suggests that Escherichia coli appears to control its growth rate according
to this principle. The concentration of the regulatory molecule ppGpp appears to be a linear function of the
reciprocal of the ribosomal translation rate in both steady state and dynamic conditions [62, 64], and to covary
with steady state cellular growth rate [62, 49]. Thus, the growth rate is sensed by ppGpp. Since ppGpp is
responsible for regulating the balance between adaptation, stress and growth-associated protein expression via its
effects on the expressioon of ribosomal, catabolic and sigma-factor genes [46], E. coli appears to sense its growth
rate to adjust itself to new conditions. Here we rationalise this by showing that exactly for the task of judicious
allocation of biosynthetic resources in changing conditions the growth rate is a Lyapunov function, making it the
perfect guide for navigating dynamic environments.

Results

Introducing the framework of a self-replicating microbial cell. In Figure 1 we introduce a simplified
model of metabolism and gene expression that contains all the ingredients to understand our main result. This
type of coarse-grained model is widely used in the literature [36, 60, 13, 18, 56, 4, 8]. The mathematical description
of more detailed models is given in the Methods.

We consider a nutrient with concentration x0 in the environment and assumed constant. It is taken up by
the cell and converted into precursor molecules by a first enzyme at a rate v1. We assume that this rate is given
by v1 = e1f1(x1;x0), where x1 is the concentration of precursors, e1 the concentration of enzyme 1, and f1 a
nonlinear, kinetic rate law [10], detailing the dependence of the reaction rate on concentration of substrates,
products and kinetic parameters (including the reaction’s equilibrium constant and catalytic rate constant kcat,1).

The precursors are subsequently converted into amino acids (concentration x2) by a second enzyme with
concentration e2 and at a rate v2 = e2f2(x1, x2). The amino acids are finally translated into protein by ribosomes
at a rate vr = erfr(x2). Since the ribosome synthesizes all the different kinds of proteins, it needs to be allocated
accordingly. Let χ1 be the fraction of actively translating ribosomes allocated to synthesis of enzyme 1, then
enzyme 1 is produced at a rate χ1vr, and similarly for enzyme 2 and the ribosome itself; then χ1 + χ2 + χr = 1.

As a matter of notation, we use x to denote the internal metabolite concentrations (x1, x2), viewing x0 as a
parameter. We sometimes abbreviate the kinetic rate laws by fi(x;x0). The context should make clear on which
variables and parameters fi actually depends. Figure 1B provides an explicit choice of the kinetic rate laws used
in the coarse grained model.

Enzyme dynamics, quasi steady state metabolism and cellular growth rate. Enzyme and ribosome concentrations
change because of the imbalance between their rates of biosynthesis and dilution by growth,

(1) e′i = vrχi − λei, i = 1, 2, r,

where λ is the cellular growth rate. Assuming that the total protein concentration is constant,

(2) e1(t) + e2(t) + er(t) = eT ,

equation (1) indicates a definition of the (steady-state or balanced) growth rate as the protein translation rate per
unit cellular protein [13, 11, 14, 54],

(3) λ =
vr
eT

,

which makes the growth rate a specific flux (flux per unit enzyme concentration). Substituting eq. (3) into eq. (1)
gives

(4) e′i = λ(eTχi − ei)

showing that at steady state the ribosomal fraction synthesizing enzyme i is equal to the corresponding protein
fraction

(5) χi =
ei
eT

.

We will thus interchange freely between “ribosome allocation” and “enzyme allocation” as they are essentially one
and the same.
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Figure 1. The essence of the coupling of the metabolism to the synthesis of proteins and
the regulation of protein expression in a self-replicating microbial cell. A. A schematic
overview of metabolism. The synthesis of amino acids from nutrients by enzymes is shown, whose
concentrations are determined by the fraction of ribosomes allocated to their synthesis (in proportion
to the transcript (mRNA) fraction of the enzymes). The genetic control network (not shown) regulates
the ribosomal fraction such that the enzymes attain their (close-to-)optimal values. We assume that
the metabolic network operates at quasi-steady state relative to the genetic network, which is dynamic.
B. The essential aspects of the modeling formalism.

We further assume that changes in protein concentrations occur at time scales that are significantly longer
than metabolic changes. In other words, we assume that metabolism is in so-called quasi steady state with respect
to changes in protein concentrations. For specific values of x0, e1, e2 and er, the internal quasi steady state
metabolite concentrations are fixed.

In this state, metabolic mass flows are balanced, so v1 = v2 = vr. Since vr and λ are so tightly coupled by
eq. (3), we choose vr to be the (quasi steady state) flux through the metabolic pathway, and denote it by J , so
that eq. (3) now reads

(6) λ =
J

eT
.

Any quasi steady state flux vector (v1, v2, vr)
T is thus of the form J(1, 1, 1)T . This makes our simplified model an

elementary metabolic network [52, 53]. These are “one flux degree of freedom” networks [58] (choosing one flux
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value determines all flux values) that arise naturally as the subnetworks within larger networks that maximise
growth rate in constant conditions [61, 38, 11, see Methods].

Since vi = eifi(x) = J in quasi steady state, ei/J = 1/fi(x), and [41, 45, 14]

(7)

1

λ
=

eT
J

=
e1 + e2 + er

J

=
1

f1(x1;x0)
+

1

f2(x1, x2)
+

1

fr(x2)
.

There exist therefore various ways of viewing the steady-state growth rate in a given nutrient condition:

• as the total protein synthesis rate per unit protein, cf. eq. (3) and (6);
• as the outcome of ribosome allocation, λ = λ(χ;x0);
• as the outcome of protein expression, λ = λ(e;x0);
• as a function of internal quasi steady state metabolite concentrations, cf. eq. (7), so λ = λ(x;x0).

(We abuse notation somewhat here, and denote all growth rate functions by the same λ.) We will need all these
different viewpoints below.

The essentials of a robust growth-rate maximising gene network. We now proceed to discuss competitive
growth rates. We consider the extreme case of a genetic network, regulating the expression of catabolic and
anabolic enzymes, that is capable of maximising the growth rate. Since any real biological network always performs
below or equal to this performance, this truly optimal network shall be our benchmark case. Figures 2, 3 and 4
aid in the explanation below.

In each environment there is a unique set of optimal enzyme concentrations and an optimal ribosome allocation.
For any environmental condition x0, there exists a unique set of enzyme concentrations at which the steady
state growth rate through the simplified network in Figure 1 is maximal. The reason is that for any reasonable
choice of kinetic rate laws, such as the ones detailed in Figure 1B, relation (7) is convex in logarithmic metabolite
concentrations log x1 and log x2 [41, 45]. For any x0, the optimal steady state enzyme concentrations may be
found using eq. (7), by first solving

(8)
∂

∂xi

1

λ(x1, x2;x0)
= 0, i = 1, 2,

on the domain of metabolite concentrations where fi(x;x0) > 0, to obtain the optimal metabolite concentrations

xopt = (xopt
1 , xopt

2 ), and subsequently setting (using eifi(x) = J = eTλ)

(9) eopti = eT
λ(xopt;x0)

fi(xopt;x0)
, i = 1, 2, r.

In other words,

(10) eopt = eopt(x0),

and the maximal steady state growth rate is thus in the end determined by x0 alone,

(11) λmax = λmax(x0) = λ(xopt;x0) = λ(eopt(x0);x0).

From relation (5), we conclude that the optimal steady state ribosome allocation is similarly defined by

(12) χopt
i =

eopti (x0)

eT
=

λ(xopt;x0)

fi(xopt;x0)
, i = 1, 2, r.

Increasing the nutrient concentration increases the (maximal) growth rate. For the example in Figure 1A and at
fixed enzyme concentrations, the growth rate increases with increasing nutrient concentration,

(13) ξ0 > x0 =⇒ λ(e; ξ0) > λ(e;x0).

The maximal growth rate that can be attained in a certain nutrient environment therefore also increases with
nutrient concentration,

(14) ξ0 > x0 =⇒ λmax(ξ0) > λmax(x0).

We prove this in the Supplemental Information (SI).
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Estimating the optimal ribosome allocation using the growth rate. Equations (10), (11), and (14) may be combined
to conclude that all possible optimal enzyme concentration vectors may be parameterised by the corresponding
maximal growth rate,

(15) eopt = eopt(λmax).

The current, instantaneous (suboptimal) growth rate λ(t) may thus be used to estimate the optimal enzyme
concentrations by replacing λmax with λ in eq. (15). We denote this estimate by

(16) eest = eest(λ).

As ribosomal allocations and protein fractions are the same in steady state, cf. eq. (5), we may also introduce

(17) χest(λ) =
eest(λ)

eT
.

For the linear pathway in Figure 1, the dependence of this allocation on the growth rate is shown schematically in
the small grey box on top of the protein translation reaction in Figure 1A.

Importantly, at steady state the estimated optimal allocation only coincides with the actual optimal allocation
if and only if the growth rate is maximal (for the current nutrient condition), i.e.,

(18) λ = λmax(x0) ⇐⇒ χest(λ) = χopt(x0).

In suboptimal states, the growth rate may be improved by redistributing enzyme concentrations. So far we have
only explored the properties of the static problem of finding optimal enzyme concentrations for a given nutrient
condition. We concluded that these optimal concentrations are generally uniquely determined, and that the
maximal growth rate is as well. Higher nutrient concentrations leads to a higher maximal growth rate, so the
optimal allocation may be estimated from the growth rate alone, rather than from the nutrient concentration.

We now slowly turn to the problem of getting to this optimal state. First we consider the overall behaviour of
the growth rate, as a function of enzyme investment, in one nutrient condition (Figure 2). As a first observation,
we know that not investing protein in one of the three reactions of the model in Figure 1 implies that the growth
rate is zero. We also know just from continuous dependence that the growth rate will reach a maximum somewhere
in the interior of the domain in which e1 + e2 + er = eT , ei ≥ 0. But here we show that the growth rate actually
never has any local maxima: in fact, it is concave (as Figure 2 attests).

Three properties of our model—increasing enzyme concentrations improves the flux; increasing nutrient
concentration does as well; optimizing growth rate can be formulated as a convex optimisation problem—
essentially guarantee that the growth rate is a concave function of enzyme concentrations. This implies that a
given suboptimal set of enzyme concentrations may always be slightly altered, without using more enzyme in
total, in order to increase the growth rate. There is no risk of local maxima. This statement holds for very large
kinetically explicit elementary metabolic networks, see Theorem 1.

Estimating optimal enzyme concentrations on the basis of current growth rate. Let us now consider a situation in
which the enzyme concentrations are suboptimal, for instance because the nutrient concentration has suddenly
changed. These concentrations give rise to the current, instantaneous growth rate λ(e;x0).

From the above arguments, there exists a set of optimal steady state enzyme concentrations with corresponding
maximal steady state growth rate that is equal to the current growth rate: by decreasing the nutrient concentration
sufficiently, the attainable maximal growth rate decreases until it reaches the current (suboptimal) growth rate,
see Figure 3. This set of optimal enzyme concentrations is eest(λ). The nutrient concentration at this optimizer is
lower than the currently prevailing one if and only if the current enzyme concentrations are not optimal.

In short, there exists a unique ξ0 < x0 such that

(19) λmax(ξ0) = λ(eest(λ); ξ0) = λ(e;x0).

Second, by eq. (13) these estimated optimal concentrations induce a higher growth rate in the current nutrient
condition than the current (suboptimal) enzyme concentrations do,

(20) λ(eest(λ);x0) > λ(e;x0).

This is the property that will ensure that the growth rate acts as a Lyapunov function.

Characteristics of robust growth-rate optimizing gene networks. We now turn to dynamics. Recall eq. (1) and (4),

e′i = vrχi − λei

= λ(eTχi − ei).

The ribosomal allocation parameters χi are assumed to be induced by a gene regulatory network, and are still to
be defined: they are to be a function of the metabolic state of the cell.

Let us assume that the metabolic network is coupled to a gene network that is capable of sustaining a
maximal steady state growth rate. It induces enzyme synthesis rates vrχ such that at steady state the enzyme
concentrations are optimal. Then if the nutrient condition is x0, at steady state we must have

(21) λmax(x0)(eTχi − eopti ) = 0.
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so that

χi = χopt
i (x0) =

eopti (x0)

eT
,

as derived in eq. (12).
We now come to the very heart of the paper: if the gene network inducing the ribosomal allocation by gene

expression uses only the current growth rate as input to determine the enzyme synthesis rates, we have no choice
but to set

(22) χi = χest
i (λ)

and thus enzyme concentrations change according to

(23) e′ = λ(eTχ
est(λ)− e).

The reason why eq. (22) is the only option is that by eq. (18) it ensures that at steady state, the pathway is in its
optimal growth state.

To summarise, the complete equations for the model in Figure 1 are given by

(24)

e1f1(x1;x0) = e2f2(x1, x2) = erfr(x2) = J quasi steady state

eT = e1 + e2 + er ⇐⇒ λ =
J

eT
total enzyme fixed

e′i = λ(eTχi − ei) enzyme dynamics

χi =
λ

fi(ξ; ξ0)
, i = 1, 2, r set allocation

0 =
∂

∂ξj

1

λ(ξ1, ξ2; ξ0)
, j = 1, 2, estimating optimal state...

λ(x1, x2, x0) = λ(ξ1, ξ2; ξ0) ...using current growth rate

The first line sets x1, x2 and J as a function of e. The last three lines are six equations, in six unknowns, χ1, χ2,
χr, ξ0, ξ1 and ξ2, treating x0, x1, x2 as parameters. In the SI we give two other formulations of the last two lines
in system (24).

It is important to note that at this point it is not at all obvious that system (24) actually works. All that is
clear so far is that if the dynamics reaches a steady state, this state is necessarily one of maximal growth—this is
true by design.

So let us now turn to the actual dynamics of the metabolic-enzyme system with gene expression controlled
according to system (24).

Stability and robustness of the adaptive control. The main open question is: how can we be sure that the dynamics
of system (24) always result in e(t) converging towards eopt(x0)?

Using the relation χest = eest/eT , eq. (23) may be written as

(25) e′ = λ(eest(λ)− e),

indicating that e moves directly towards eest(λ) at any moment in time. Moreover, since the growth rate at eest(λ)
is higher than the current growth rate (see eq. (20), and Figures 2B, 3), the growth rate invariably increases: it is
therefore a Lyapunov function. As long as the balance between synthesis and dilution in eq. (25) has not been
reached, the enzyme concentrations keep changing, the growth rate increases, the corresponding enzyme synthesis
rates changes, and this cycle keeps repeating. The complete formal statement is presented in Theorem 2.

The only steady state this coupled metabolite-enzyme system can reach is one in which the growth rate is
actually the maximal one corresponding to the current environmental conditions, i.e., eq. (18) holds. The system
is still robust to changes in these conditions, since the gene network still uses the instantaneous growth rate as
input, see eq. (22).

Dynamics of the model in Figure 1: robust optimisation of growth rate across conditions

For the linear metabolic network in Figure 1A an example simulation is shown in Figure 4.
For each nutrient condition x0, the optimal ribosomal allocation and corresponding maximal growth rates

were computed and plotted against each other (Figure 4B). Note, for example, that to achieve a higher maximal
growth rate, enzyme 1 should be expressed more with respect to enzyme 2, whilst ribosomal protein remains
relatively constant (these relations depend on the kinetic constants in the rate laws).

Figure 4B specifies the action of the gene network, using current growth rate as input, and inducing enzyme
synthesis rates according to the ribosomal allocation functions shown there. As shown in Theorem 2, for this gene
network control, the growth rate is itself a Lyapunov function. After any change in the nutrient condition, the
growth rate first drops to a new quasi steady state, but then always increases until a new maximum is reached
(Figure 4C). Since the input-output relation (Figure 4B) does not depend on the nutrient concentration, the
metabolic network is able to adapt after a change in nutrients and hones in on a new optimal steady state (Figure
4C, D), thus showing that this control is robust to nutrient availability.
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In Theorem 2 we show that this robust adaptation towards maximal growth rate is not confined to the toy
model illustrated here, but is in fact a pervasive property of elementary whole-cell metabolic networks.

Cellular perception of the growth rate using the alarmone ppGpp. The growth rate of the cell is a
systemic property, the result of the combined processes of metabolism, gene expression and protein synthesis. It is
thus not a quantity cells can have direct access to. It is, however, possible that the cell tracks the growth rate via
a metabolite concentration that is in a faithful one-to-one correspondence with it, even in dynamically changing
conditions. Such a metabolite could then be used to control a gene regulatory network, as a proxy for the growth
rate itself. As we now show, the way ppGpp is used by E. coli to control gene expression is to a large extent in
agreement with the mechanism discussed in this paper.

ppGpp is a key signaling metabolite involved in the regulation of ribosome biosynthesis, and in coordinating
responses to changes in environmental conditions [46]. It has been shown experimentally that the ppGpp
concentration is directly coupled to the rate of translational elongation (and thus, to the protein synthesis rate
vr), both in dynamic and constant conditions [62]. The relation between the ppGpp concentration g(t), measured
relative to its concentration before a nutrient perturbation, and the inverse of elongation rate ER(t) is linear
(Figure 5A, [62]). This linear relationship is given by

(26) g(t) = c

(
ERmax

ER(t)
− 1

)
,

where c ≈ 4.0 and ERmax ≈ 19.4 aa/s are condition-independent constants. In balanced growth, this extends to
a fixed relationship between growth rate and ppGpp (Figure 5B, [62]).

In the parlance of this paper, ppGpp is thus used to control gene expression using a steady state estimator: the
ribosomal allocation is directly determined by the current ppGpp concentration, which corresponds to a unique
steady state growth rate. The dynamical change in enzyme concentrations only stops when then current growth
rate is in fact equal to the growth rate corresponding to the current ppGpp concentration.

This idea is central to the dynamic model by Erickson et al. [18], and also to ours. The main difference between
the two approaches is that in [18], the balanced growth relation between ppGpp, translation elongation rate and
growth rate, was based on measurements of cultures in balanced growth, and did not involve any optimisation. In
our case, the ribosomal allocation, as a function of the instantaneous growth rate (or a proxy thereof) is uniquely
derived from the kinetics of the metabolic rate laws. Thus, we provide a mechanistic explanation while Erickson
et al. [18] provided a phenomenological description.

As predicted by the theory presented here, after a nutrient shift the growth rate changes quickly to a new quasi
steady state, after which a gradual increase in the growth rate is observed. See Figure 5C, D for an example of
both a nutrient upshift and downshift. Other experimental examples may be found in [33, 37, 40, 44] for nutrient
upshifts, and [65, 40] for downshifts. These data are thus consistent with the idea that the growth rate acts as a
Lyapunov function, invariably increasing in time.

Growth rate is concave in enzyme concentrations. We finish by stating the results more precisely, using
the notation for general metabolic networks given in the Methods. Proofs may be found in the SI. The first
theorem shows that for many elementary metabolic networks the specific flux is concave in enzyme concentrations.

Theorem 1. Consider an elementary pathway with n enzymatic reactions and one ribosomal reaction, with steady
state reaction rates vi = JVi = eifi(x, x0), i = 1, . . . , n, r and with x0 a fixed nutrient concentration. Let J be the
protein synthesis flux through the pathway for some enzyme concentration vector, and let λ = J/eT be the cellular
growth rate. Assume that
(1) For each enzyme allocation e and nutrient concentration x0, there exists a unique quasi steady state of
metabolite concentrations x;
(2) an increase in x0 results in an increase in J , at fixed enzyme concentrations e;
(3) an increase in any enzyme concentration ek results in an increase of J , at fixed nutrient concentration x0(and
keeping all other ej fixed);
(4) the function

(27)

N∑
i=1

Vi

fi(ey; e
y0)

is (strictly) convex in y on the domain in which all fi functions are positive.
Then λ = J/eT is (strictly) concave in e.

Assumptions 2 and 3 are general, intuitive properties of metabolic networks: more nutrient yields a higher flux,
and so does investing more enzyme in any one reaction. The function in Assumption 4 is the reciprocal of the
growth rate (cf. eq. (7)) at quasi steady state in logarithmic variables. It has been shown to be strictly convex in
elementary networks for a very large class of rate laws [41, 45].
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Adaptively controlled elementary networks always converge to the optimal steady state. The
following theorem builds on the previous one, and contains the main result of this paper.

Theorem 2. Consider an elementary metabolic pathway with n enzymatic and one ribosomal reactions and steady
state reaction rates vi = JVi = eifi(x, x0), i = 1 . . . , n, r with x0 a nutrient concentration. Assume that enzymes
and ribosome change according to system (24). Assume furthermore that
(1) λ = J/eT is concave in e,
(2) An increase in x0 induces a higher flux at fixed enzyme concentrations e.

Then λ is a Lyapunov function, and increases along all orbits. Moreover, the dynamical system is globally
stable on

ei > 0, i = 1, . . . , n, r,
∑
k

ek = eT ,

(x(t), e(t)) → (xopt, eopt), with the optimum defined by x0, and λ(t) ↗ λmax(x0).

Theorems 1 and 2 together show that an elementary metabolic network whose enzyme concentrations are
determined by the proposed adaptive control, using growth rate as input, attains the maximal steady state growth
rate robustly across conditions.

Discussion

Cells display dynamical responses of protein expression to remain competitive across changing environmental
conditions. In this paper we have shown that a gene regulatory feedback that is based on a readout of the cellular
growth rate provides a stable and robust way to implement such a response. The stability of the response is
ensured because the growth rate acts as a Lyapunov function and always increases after a nutrient perturbation. E.
coli seems to closely approximate this mechanism using ppGpp as a proxy for the instantaneous protein translation
rate.

Optimality of protein expression. There is an ongoing debate to what extent cells optimise protein expression.
Cells experimentally often seem to tune protein concentration to maximal growth rate [28, 32, 30, 57, 48], and
these regulation strategies are hard wired [1]. At low nutrient concentrations (and thus low growth rates), however,
the fraction of ribosomes that are actively translating new protein is kept low by active sequestration [37, 62] (this
does not preclude optimisation, as the active ribosomes may still be optimally allocated [6]); moreover, protein
expression is diverted to preparing for adverse conditions and nutrient changes [6].

Modelling approaches. Adaptation to changing conditions by microorganisms through dynamic reallocation of
biosynthetic resources has grown into a rich field the last few years, with different approaches and viewpoints.

Using experimentally measured protein allocation from balanced growth cultures, excellent quantitative
agreement in dynamic transitions were shown to result when applying those relations in a theoretical feedback
control based on ppGpp regulation [18]. This approach does not use optimisation as the underlying assumption,
but the logic behind the control is identical to the one presented here, with steady state relations being used as the
control law for dynamic conditions. Instead of deriving the input-output relations from optimality principles, as
done here, they were measured. The ppGpp-based feedback has recently been further characterised experimentally
[62], which resulted in an improved dynamic theoretical framework [15].

Optimality has been incorporated in different ways. Several studies, including the present one, focus on
dynamics towards maximal balanced growth rate (or more generally, flux per unit enzyme) [3, 33, 45, 8]. This is
a form of adaptive control. Some have focused on dynamic regulation for a fixed condition (so towards a fixed
optimal state set by the environmental condition) [33, 8], while others have also considered robustness to changes
in those conditions [3, 45]. There is also a growing literature focusing on optimal control [43, 59, 22, 27, 63]. Here,
the objective is to maximise biomass accumulation within a fixed time period using dynamic regulation, rather
than achieving a maximal balanced growth rate.

The idea of flux sensing was studied experimentally in E. coli [34, 31]. This work does not involve optimality,
but provided impetus to modelling of dynamical regulation using metabolite-binding transcription factors, first in
galactose uptake in S. cerevisiae [3] and then in more general metabolic networks [45].

Elementary Flux Modes. We have explained the theory using a coarse grained model (Figure 1), and
discussed its relevance for control of the balance between metabolism and protein synthesis with the alarmone
ppGpp in E. coli. Coarse grained models based on growth laws [51, 54, 2] are currently the norm in the field
[4, 56, 8, 15, 18, 33]. These models have been very insightful, but greatly simplify the details of larger metabolic
networks. They all have the property that each and every reaction is required to sustain a flux. One flux value
then determines all flux values: they are one-degree-of-freedom pathways. Such minimal networks are called
Elementary Flux Modes [52, 53, 21], and they appear naturally in the context of large (genome-scale) metabolic
networks as growth rate maximisers [61, 38, 11]. The theory presented in this paper applies to all such elementary
networks, with quite arbitrary reaction kinetics [41, 45]. It thus also provides insight into, for instance, catabolic
uptake pathways, as the detailed kinetic model of galactose uptake in yeast exemplifies [3].

In this paper we have assumed that metabolism settles down to a quasi steady state at a rate that is much
higher than the rate of change of protein synthesis. This idealisation is currently necessary to prove stability of the
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controlled pathway, but not for the construction of the control. Indeed, in [45] we have presented a more general
theory in which the metabolic QSS assumption is dropped, and in which the gene network uses metabolite-binding
transcription factors as input to control protein synthesis. Simulations suggest that this type of control is equally
robust, but a mathematical proof is currently beyond our reach. The growth rate is then definitely not a Lyapunov
function, however, and stable oscillations may appear, as also reported by Droghetti et al. [15].

ppGpp regulation. This paper provides a new view on why ppGpp directly measures the ribosomal translation
rate of cells. We suggest that since the translation rate is proportional to growth rate [62], its measurement by
ppGpp makes the growth rate of a cell a Lyapunov function for the combined system of catabolism, anabolism
and the regulation of their genes. We already knew that ppGpp coordinates the balance between catabolic and
anabolic protein expression by allocating RNAP-sigma 70 over the associated operons, and even co-regulating
the balance between growth-associated and growth-unassociated functions of the cells (e.g. stress tolerance and
environmental sensing) [46]. From the perspective of this paper, ppGpp can be viewed as a form of feedback
regulation using the current performance (the growth rate) to control the dynamic system responsible for this
performance (metabolism) by setting the balance between metabolic and ribosomal protein synthesis. Moreover,
we show that this construction ensures stability of the dynamic response: microbes remain competitive even
when faced with changing nutrient conditions that require adaptive responses. That something as complex and
multifaceted as growth rate is compressible into a single variable is an example of dimension reduction that
perhaps make systems as complex as cells controllable [62]. Here we provide further evidence of its benefits.

Lyapunov functions in control theory. To stabilise complex nonlinear systems such as an aeroplane, engineers
often design controllers in such a way that a suitable function can be shown to be a Lyapunov function for the
controlled system [23, e.g.]. Lyapunov functions only decrease or increase in value over time, along any orbit of
the controlled dynamical system. The existence of such a Lyapunov function thus ensures the stability of the
controlled system, making it a powerful technique. However, there is no general recipe for finding them. In the
biological case considered here, we are in the unusual situation that the input to the controller (the cellular growth
rate) always increases over time, and is thus itself a Lyapunov function.

With this paper, we have given compelling evidence that even living cells might be able to exploit the
stabilising control mechanism of Lyapunov functions by evolutionary moulding and improved adaptation to
changing conditions.

Methods

We focus on whole-cell models that lead to cellular growth. The synthesis of enzymes and ribosomes from
precursors (amino acids, etc.) is thus included. We neglect proteins involved in maintenance tasks (the so-called
Q-sector [56, 35, 63, e.g.], which is not regulated by ppGpp).

We model the change in metabolite concentrations x in the metabolic network by

(28) ẋ = Nv(x, e)

where N is the metabolic stoichiometric matrix, v the vector of reaction rates, and e the vector of enzyme
concentrations. As the last reaction in metabolism we invariably choose the protein translation reaction by the
ribosome, and indicate it with subscript r: vr. Metabolism generally quickly settles into a quasi steady state; this
we assume throughout: Nv(x; e) = 0.

We model the rate vi through reaction i by [10]

(29) vi = eifi(x;x0),

where ei is the concentration of enzyme i and fi(x;x0) incorporates the nonlinear dependence on metabolite
concentrations x and an external nutrient concentration x0 assumed to be fixed. (Of course, each fi generally
depends on only a few xj and maybe one or two on x0.)

Elementary Flux Modes (EFMs) are subnetworks that are made by deleting nonparticipating metabolites
and reactions from eq. (28) and reducing the stoichiometric matrix accordingly. This is to be done such that all
remaining reactions are essential to sustain a steady state flux J [52, 53, 21]; deleting any further reaction by not
producing the corresponding enzyme stops the flux through the pathway. EFMs have “one flux-degree-of-freedom”
[58, 29]: prescribing one flux value immediately determines all flux values. In other words, Nv = 0 is then
replaced by v = JV , where V = (V1, . . . , Vn, Vr) is a fixed vector determined by the stoichiometry of the EFM.
(Concrete examples may be found in [5].) It is uniquely defined by choosing Vr = 1, without loss of generality. The
steady state flux J is determined by solving, for a given set of enzyme concentrations (e1, . . . , en), an additional
ribosome concentration er and external nutrient concentration x0,

(30) vi = JVi = eifi(x;x0), i = 1, . . . , n, r.

The set of possible flux vectors v = JV thus forms a fixed straight line through the origin, with a direction
determined by V . The line is parameterized by J . Since in this paper we focus on one particular EFM, we may
choose V to be a strictly positive vector. For a positive flux, all kinetics functions f1, . . . , fn, fr must therefore
also be positive.
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Figure 2. Concavity and control of specific flux. A: Growth rate λ for a short linear pathway
with three reactions (see Fig. 1A) is a concave function of enzyme investment. Since each reaction
is essential to sustain a flux through the pathway, the growth rate is zero if one of the enzyme
concentrations is zero. Red level sets indicate enzyme allocations with the same growth rate. When
projected onto the enzyme plane (darker orange) {e1, e2 ≥ 1, e1 + e2 ≤ 1}, the level sets are all convex
and nested around the maximum eopt (shown as a red dot in B). B: see next to figure.

By eq. (29) all reaction rates scale linearly with enzyme concentration. As a result, J is 1-homogeneous in e
[24]: J(re) = rJ(e) for any r > 0. With eT denoting the total cellular protein concentration, the specific flux
J(e)/eT is thus 0-homogeneous in e: J(re)/(reT ) = J(e)/eT .

Cells grow in volume as new cellular material is being produced. This causes dilution of cellular concentrations.
For metabolite concentrations, dilution by growth is generally not taken into account because metabolic fluxes
are orders of magnitude larger [13]. We take the same approach here. For enzyme concentrations, however,
enzyme synthesis rates and dilution rates are comparable. We therefore assume that enzyme concentrations
change according to

(31)

JVi = eifi(x;x0),

d

dt
ej = erfr(x;x0)χj − λej , j = 1, . . . , n, r.

Here, er is the ribosome concentration, fr(x;x0) the saturation level of ribosomes (including the catalytic rate
constant), and χj is the fraction of active ribosomes transcribing enzyme j, or the ribosome if j = r. The
dependence of fr on x0 is for notational consistency, and to highlight that the performance of the metabolic
network still depends on the nutrient concentration x0. The growth rate is denoted by λ. We assume that the χj

sum to one, and that the total protein content is constant,

(32) eT =

r∑
j=1

ej .

Then we see that [13, 11, 14]

(33) eT is constant ⇐⇒ λ =
J

eT
=

erfr(x;x0)

eT
.

So the cellular growth rate is the total protein synthesis rate (which is the flux J , since Vr = 1) divided by the
total protein concentration, a specific flux.

In this paper, we use the word allocation to specify a vector up to a scaling. The vectors e and 2e thus indicate
the same allocation of enzymes to a metabolic network. Since specific flux is 0-homogeneous in e, it is determined
by the enzyme allocation.
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Figure 3. The construction of the adaptive control We consider a pathway with just two
enzymes, with e1 + e2 = 1. Consider the current set of enzyme concentrations e(t) on the e1-axis. The
growth rate at nutrient conditions x0 is indicated right above it. The adaptive control gives the optimal

enzyme concentrations eest corresponding to e, by choosing the unique ξ0 < x0 such that the optimal
growth is equal to the current growth rate (red curve). Since λ(e;x0) is a concave function of e, the

position of eest is invariably such that when this estimated optimal allocation is used in the pathway
with the original nutrient condition x0, a higher growth rate is achieved: λ(eest;x0) > λ(e;x0). The
enzyme concentrations evolve towards the estimator (indicated by the arrow), so that the growth rate
always increases. Importantly, the prediction step does not involve the nutrient concentration, but
only the current growth rate. In this way, the controlled pathway robustly achieves maximal growth
rate in any nutrient condition.

Figure 4. Example simulations for the adaptively controlled pathway shown in Figure 1.
A: optimal growth rate, as a function of nutrient concentration. The three vertical lines correspond to
the three nutrient conditions x0 = 1, 3, 7. B: the adaptive control: optimal allocation of the ribosome
over the three protein synthesis reactions, as a function of growth rate. C: growth rate over time, in
the three conditions shown in C. Note that the growth rate optimizes each time (compare with C). D:
enzyme and ribosome concentrations over time, showing convergence to new steady state levels in each
nutrient condition. The full model equations are specified in Box 1. Parameters are given in the SI.
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Figure 5. Experimental evidence supporting adaptive controlA: In steady state and dynamic
conditions, inverse elongation rate ER(t) and relative ppGpp concentration are linearly related,
approximately according to eq. (26) The relation holds during dynamic growth transitions, in carbon-
limited growth and when translation is inhibited using sublethal doses of chloramphenicol (Cm). B: In
balanced growth, the growth rate and elongation rate are positively related. C, D: Immediate increase
of growth rate in E. coli after nutrient upshift (C) or downshift (D). At t = 0, a nutrient is added (left)
or deleted (right) from the medium. Note that the growth rate increases directly after the change in
shift, consistent with the idea proposed in this paper that the growth rate acts as a Lyapunov function,
as illustrated in Fig. 4C. See [33, 37, 40, 44] for other experimental nutrient upshift examples, and
[65, 40] for downshift examples, all showing the same behaviour. A and B adapted from [62] Fig 2B
and D; C and D adapted from [18], Fig 1b and 1g. See those papers for experimental details.
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63. A. G. Yabo, J.-B. Caillau, J.-L. Gouzé, H. de Jong, and F. Mairet. Dynamical Analysis and Optimization
of a Generalized Resource Allocation Model of Microbial Growth. SIAM Journal on Applied Dynamical
Systems, 21(1):137–165, Mar. 2022. Publisher: Society for Industrial and Applied Mathematics.

64. R. Young and H. Bremer. Polypeptide-chain-elongation rate in escherichia coli b/r as a function of growth
rate. Biochemical Journal, 160(2):185–194, 1976.

65. M. Zhu and X. Dai. Stringent response ensures the timely adaptation of bacterial growth to nutrient
downshift. Nature Communications, 14(1):467, 2023.

1 Amsterdam Center for Dynamics and Computation, Department of Mathematics, VU University, 1081 HV Amsterdam, The
Netherlands

14

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 13, 2024. ; https://doi.org/10.1101/2024.07.09.602663doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.09.602663
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 Systems Biology Lab, A-LIFE, AIMMS, VU University, 1081 HZ Amsterdam, The Netherlands

∗ To whom correspondence should be addressed: r.planque@vu.nl

15

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 13, 2024. ; https://doi.org/10.1101/2024.07.09.602663doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.09.602663
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Results
	Introducing the framework of a self-replicating microbial cell
	The essentials of a robust growth-rate maximising gene network

	Dynamics of the model in Figure 1: robust optimisation of growth rate across conditions
	Cellular perception of the growth rate using the alarmone ppGpp
	Growth rate is concave in enzyme concentrations
	Adaptively controlled elementary networks always converge to the optimal steady state

	Discussion
	Optimality of protein expression
	Modelling approaches
	Elementary Flux Modes
	ppGpp regulation
	Lyapunov functions in control theory

	Methods
	Acknowledgments
	References

