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Abstract

Protein structure tokenization has attracted increasing attention in both protein
representation learning and generation. While recent work, like FoldToken2 and
ESM3, has achieved good reconstruction performance, the compressoin ratio is
still limited. In this work, we propose FoldToken3, a novel protein structure
tokenization method that can compress protein structures into 256 tokens or less
and ensure the reconstruction quality comparable to FoldToken2. To the best of
our knowledge, FoldToken3 is the most efficient, light-weight, and compression-
friendly protein structure tokenization method. And it will benifit a wide range of
protein structure-related tasks, such as protein structure alignment, generation, and
representation learning. The work is still in progress and the code will be available
upon acceptance.

1 Introduction

"SE-(3) structure should not be special and difficult. Let’s lower the barrier."

– Our Goal

The SE-(3) nature of protein structure has posed long-term challenges in representation learning
and generation, requiring researchers to carefully design the invariant encoder [5, 9] and equivariant
decoder [1, 14]. Theses models are usually computationally expensive and difficult to understand
for non-AI experts. Inspired by the success in computer vision [4] and multimodal learning [17],
tokenizing equivariant structures as invariant discrete tokens has emerged as a promising direction.
This approach simplifies model design by leveraging current NLP and CV models and enhances
multimodal capabilities through the use of a unified fold language.

Existing tokenization methods are limited in compression ratio. For example, FoldToken2 [8] and
ESM3 [10] have the codebook size of 65536 and 4096, respectively. The large codebook size pose
challenges in several aspects: (1) hard to analyze all the structure patterns; (2) leads to difficulty in
downstream generative tasks, as the predictive space is large and similar code vectors could confuse
each other. An open problem is: how to compress the code space into less tokens while maintaining
the reconstruction quality remains?

FoldToken2 suffers from the lack of diverse code vectors due to unstable gradient. Regarding the
quantifier, when the temperature parameter is extremly small, the unstable gradient causes codebook
collapse, making code vectors to be highly similar. These similar code vectors can easily confuse
each other, resulting in additional difficulty in generative tasks. Moreover, even small noise can
drastically change the coding sequence, leading to inconsistency between similar proteins. Regarding
the encoder, the unstable gradient will also disrupt the its representation capability, making the learned
embeddings to be less informative.

FoldToken3 re-designs the vector quantization module to address above issues. Firstly, we propose a
’partial gradient’ trick to allow the encoder and quantifier receive stable gradient no matter how the
temperature is small. Secondly, we replace the ’argmax’ operation as sampling from a categorical

†Equal Contribution, ∗Corresponding Author.

Preprint. Under review.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 8, 2024. ; https://doi.org/10.1101/2024.07.08.602548doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.08.602548
http://creativecommons.org/licenses/by-nc-nd/4.0/


distribution, making the code selection process to be stochastic. The first innovation makes the model
to be training stable and overcome the codebook collapse issue. The second innovation makes the
codebook to be more diverse and robust to noise.

With the highly-optimized vector quantization module, we find that even a small codebook size can
achieve comparable reconstruction quality to FoldToken2. Compared to ESM3, whose encoder and
decoder have 30.1M and 618.6M parameters with 4096 code space, FoldToken3 has 4.31M and
4.92M parameters with 256 code space. In addition, we have reduced the code space to 256 or less,
under 0.4% of the FoldToken2 code space. We believe that FoldToken3 will benefit a wide range of
protein structure-related tasks.

2 Method

2.1 Overall Framework

As shown in Fig.1, the overall framework keeps the same as FoldToken1 [6, 8] and FoldToken2 [7],
including encoder, quantifier and decoder. From FoldToken2 to FoldToken3, we make the following
improvements:

1. Stochastic Selection: We replace the "argmax" operation with sampling from a categorical
distribution to select the nearest code vector.

2. Reparameterization: We reparameterize the categorical random variable to allow the
quantifier to allow the network to optimise the distribution parameters.

3. Stablize Gradient: We introduce the trick of ’partial gradient’ to stablize the gradient of
the quantifier and encoder.
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Figure 1: The overall framework of FoldTokenizer3, which contains contains encoder, quantifier, and decoder.
We use BlockGAT to encoder protein structures as invariant embeddings, SoftCVQ to quantize the embeddings
into discrete tokens, and SE-(3) layer to recover the protein structures iteratively.
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2.2 Background of Vector Quantization

Vector Quantization Problem The quantifier Q : h 7→ z converts continuous embedding h as a
discrete latent code z, named VQ-ID. The de-quantifier Q−1 : z 7→ ĥ recovers continuous embedding
ĥ from z. The problem can be formulated as{

z = Q(h)

ĥ = Q−1(z)
(1)

Readers should read FoldToken1 [8] to better understand the limitations of vanilla vector quantifier
(VVQ) and lookup-free quantifier (LFQ):

Limitations of VVQ The vanilla quantifier directly copies the gradient of ĥi to hi, i.e., ∂L
∂hi
← ∂L

∂ĥi
,

resulting in the gradient mismatching between embedding ∂L
∂hi

and hi. In addition, the higher
reconstruction quality does not necessarily lead to better generation performance on downstream
tasks. For example, [16] points out that reconstruction and generation may be contradicted: Enlarging
the vocabulary can improve reconstruction quality. However, such improvement only extends to
generation when the vocabulary size is small, and a very large vocabulary can actually hurt the
performance of the generative model. Why does the contradiction occur? We attribute the intrinsic
reason to the large class space. We summarize the limitations as follows:

1. Gradient Mismatching As the VQ-IDs {zi}mi=1 are non-differentiable, the vanilla quantifier
directly copies the gradient of ĥi to hi, i.e., ∂L

∂hi
= ∂L

∂ĥi
. However, ĥi generally does not

equal hi, resulting in the mismatching between embedding hi and its gradient ∂L
∂hi

.
2. Large Irrelevant Class Space Regarding the generative model, each VQ-ID zi represents

a class index. The discrete and continuous representations exhibit no association between
(hi − hj) and (zi − zj), indicating that the generative model should accurately predict the
exact zi, despite the high similarity between zi and zj . As the codebook size could be large,
predicting VQ-ID without considering their associations poses generation challenge.

Limitations of LFQ LFQ fails to address the issue of gradient mismatching and and introduces a
new challenge of information bottleneck. Typically, the codebook space is chosen from options such
as 28 (int8), 216 (int16), 232(int32), and 264(int64) due to accommodate the required bits for storing
a VQ-ID. However, for a fair comparison to VVQ and effective data compression, only 28 and 216

are considered, resulting in a hidden space size of 8 or 16 in LFQ. The low dimensionality poses the
problem of information bottleneck in the enc-decoder model, which hampers accurate reconstruction.

2.3 Binary Stochastic Quantifier (Novel Part)

Unlike FoldToken1 [6, 8] and FoldToken2 [7] that use SoftCVQ, we introduce a novel quantifier,
called Binary Stochastic Quantifier (BSQ), to quantize the embeddings.

Given the decimal integer zi and the codebook size m, we represent zi in binary form bi with length
log2(m). For example, if m = 4, we have b0 = [0, 0], b1 = [0, 1], b2 = [1, 0], b3 = [1, 1]. Instead of
using nn.Embedding layer to encode z0 and z1 independently, we use a MLP, called ConditionNet,
to project b0 and b1 to code vectors v0 and v1 to consider their inherent correlations in each bit
position. The binary code ensure the propsoed model share the advantage of LFQ in terms of robust
generation and relevant semantics; the ConditionNet enlarges the dimensionlity of the binary code
to overcome the LFQ’s shortcoming of information bottleneck.

Formally, we explain the binary code and ConditionNet as{
bi = Bitlog2(m)(zi)

vi = ConditionNet(bi)
(2)

where vj is the j-th code embedding. The ConditionNet : Rlog2(m) → Rd is a MLP. If the codebook
size is 210, the MLP projects 1024 16-dimension binary vectors into 1024 d-dimension code vectors.

The key problem is: how to replace latent embedding hi with the most similar token embedding vj in
a differential way.
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Find Neighbor. In vanilla vector quantization, they use the nearest neighbor algorithm to find the
most similar code vector, which is non-differential. In this paper, we take the selection process as
sampling from a multi-class distribution zi ∼ Mult(pi):{

pi = SoftMax([hT
i v0/T,h

T
i v1/T, · · · ,hT

i vm−1/T ])

zi ∼ Mult(pi)
(3)

and then, we optimize pi in a differential way. The temperature parameter T controls the softness
of the attention query operation. When T is large, the attention weights will be close to uniform;
otherwise, the attention weights will be close to one-hot.

Optimize Neighbor. In Eq. 3, the sampling operation is non-differentiable, and we use a reparame-
terization trick to optimize pi:

ci = zi ⊙ (1− p) + (1− zi)⊙ (−p)
ẑi = pi + sg(ci)
ĥi = ẑT

i V + hi − sg(hi)

(4)

where sg(·) is the stop gradient operation, ⊙ is the element-wise multiplication, and zi ∈ Rm is
the onehot version of zi. The first two equations reparameterize zi as ẑi to allow pi get gradient,
inspired by [11]; the third equation allows hi to get direct gradient for optimizing the encoder. ẑT

i V
operation selects the zi-th code vector using the onehot ẑi.

Teacher Guidance. To accelerate training convergence, we randomly copy encoder output hi as
decoder input ĥi in probability T :

ĥi =

{
ẑT
i V + hi − sg(hi) if p > T ;

hi else.
(5)

where p ∼ U(0, 1) is sampled from uniform distribution. When T = 1.0, the vector quantization
module is skipped, allowing the encoder-decoder to be easily optimized. When T = 0.0, the vector
quantization module is fully used. For values of 0.0 < T < 1.0, the shortcut feature guides the vector
quantization model to learn code vectors that align with the encoder inputs. The adaptive temperature
scheduler is:

β =


1.0, if 0.1 < L
0.05, if 0.05 < L ≤ 0.1

0.01, if 0.02 < L ≤ 0.05

0.001, if L ≤ 0.02

(6)

Stable Gradient. The scaled softmax operation in Eq. 4 bridges the continual model (T > 0)
to discrete vector quantization (T = 0); thus allowing precise gradient computation rather than
gradient mismatch in the VVQ. During training, we gradually anneal the temperature from 1.0 to
1e-8; however, the gradient of the scaled softmax tend to explode when T is small:{

[p1, p2, · · · , pk] = Softmax(a1/T, a2/T, · · · , ak/T )
∂pi

∂aj
= 1

T pi · (1(i = j)− pj)
(7)

The unstable gradient would lead to representation and codebook collapses, as the ConditionNet
and encoder parameters collapse after one step of updating a large gradient. To overcome the issue,
we introduce the trick of ’partial gradient’:

1

T
hT
i vj ← (

1

T
− 1)sg(hT

i vj) + hT
i vj (8)

where the first term is stoped gradient and only the second term contribute to gradient computation.
Obviously, Eq.8 has the same forward behavior like Eq.4 while the gradient is stable and do not
affected by the extreme small value of T .
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2.4 Invariant Graph Encoder (Same as FoldToken2)

Due to the rotation and translation equivariant nature, the same protein may have different coordinate
records, posing a challenge in learning compact invariant representations for the same protein.
Previous works [5, 13, 3, 9] have shown that the invariant featurizer can encode the invariant structure
patterns, and we follow the same road: representing the protein structures as a graph consisting of
invariant node and edge features. Then we use the BlockGAT [9] to learn high-level representations.

Frame-based Block Graph. Given a proteinM = {Bs}ns=1 containing n blocks, where each
block represents an amino acid, we build the block graph G({Bs}ns=1, E) using kNN algorithm. In the
block graph, the s-th node is represented as Bs = (Ts,fs), and the edge between (s, t) is represented
as Bst = (Tst,fst). Ts and Tst = T−1

s ◦Tt are the local frames of the s-th and the relative transform
between the s-th and t-th blocks, respectively. fs and fst are the node and edge features.

BlockGAT Encoder. We use the BlockGAT [9] layer fθ to learn block-level representations:

f (l+1)
s ,f

(l+1)
st ← BlockGATs(f (l)

s ,f
(l)
st |Ts, Tst, E) (9)

where f
(l)
s and f

(l)
st represent the input node and edge features of the l-th layer. Ts = (Rs, ts) is the

local frame of the s-th block, and Tst = T−1
s ◦ Tt = (Rst, tst) is the relative transform between the

s-th and t-th blocks. Ts, Tst,f
(0)
s and f

(0)
st are initialized from the ground truth structures using the

invariant featurizer proposed in UniIF [9].

2.5 Equivariant Graph Decoder (Same as FoldToken2)

Generating the protein structures conditioned on invariant representations poses significant challenges
in computing efficiency. For example, training well-known AlphaFold2 from scratch takes 128
TPUv3 cores for 11 days [15]; OpenFold takes 50000 GPU hours for training [2]. In this work, we
propose an efficiency plug-and-play SE(3)-layer that could be added to any GNN layer for structure
prediction. Thanks to the simplified module of the SE(3)-layerand BlockGAT with sparse graph
attention, we can train the model on the entire PDB dataset in 1 day using 8 NVIDIA-A100s.

SE-(3) Frame Passing Layer. We introduce frame-level message passing, which updates the local
frame of the s-th block by aggregating the relative rotation Rs and translation ts from its neighbors:

vec(Rs) =
∑

j∈Ns
arsjvec(Rsj)

Rs ← Quat2Rot ◦ Norm ◦MLP9→4(vec(Rs)) Normalize quanternion
ts =

∑
j∈Ns

atsjtsj

(10)

where arsj and atsj are the rotation and translation weights, and Ns is the neighbors of the s-th block.
vec(·) flattens 3 × 3 matrix to 9-dimensional vector. MLP9→4(·) maps the 9-dim rotation matrix
to 4-dim quaternion, and Norm(·) normalize the quaternion to ensure it represents a valid rotation.
Quat2Rot(·) is the quaternion to rotation function. We further introduce the details as follows:


wr

st, w
t
st = σ(MLP(fst))

vec(Rst)← wr
stvec(Rst) + (1− wr

st)MLPd→9(fst)

tst ← wt
sttst + (1− wt

st)MLPd→3(fst)

arst, a
t
st = Softmax(MLPd→1(fst))

(11)

where wr
st and wt

st are the updating weights for rotation and translation, arst and atst are the attention
weights. The propose SE-(3) layer could be add to any graph neural network for local frame updating.

Iterative Refinement We propose a new module named SE-(3) BlockGAT by adding a SE-(3)
layer to BlockGAT. We stack multi-layer SE-(3) BlockGAT to iteratively refine the structures:

f
(l+1)
s ,f

(l+1)
st = BlockGAT(l)(f

(l)
s ,f

(l)
st )

T
(l)
st = T−1

s ◦ Tt

T
(l+1)
s = SE3Layer(sg(T (l)

st ),f
(l+1)
st )

(12)
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where sg(·) is the stop-gradient operation, and SE3Layer(·) is the SE-(3) layer described in Eq.11.
Given the predicted local frame T

(l)
s , we can obtain the 3D coordinates by:{

hs = MLP(f (l)
s )

xs = T
(l)
s ◦ hs

(13)

2.6 Reconstruction Loss (Same as FoldToken2)

Inspired by Chroma [12], we use multiple loss functions to train the model. The overall loss is:

L = Lglobal + Lfragment + Lpair + Lneighbor + Ldistance (14)

To illustrate the loss terms, we define the aligned RMSD loss as Lalign(X
(l),X) = ∥Align(X̂,X)−

X∥, given the the ground truth 3D coordinates X ∈ Rn,3 and the predicted 3D coordinates X̂ =
{x1,x2,x3, · · · ,xn} ∈ Rn,3. The global, fragment and pair loss are defined by the aligned MSE
loss, but with different input data shape:

• Global Loss: X with shape [n, 4, 3]. RMSD of the global structure.

• Fragment Loss: X with shape [n, c, 4, 3]. RMSD of c neighbors for each residue.

• Pair Loss: X with shape [n,K, c · 2, 4, 3]. RMSD of c neighbors for each kNN pair.

• Neighbor Loss: X with shape [n,K, 4, 3]. RMSD of K neighbors for each residue.

where n is the number of residues, c = 7 is the number of fragments, K = 30 is the number of kNN,
4 means we consider four backbone atoms {N,CA,C,O}, and 3 means the 3D coordinates. The
distance loss is defined as the MSE loss between the predicted and ground truth pairwise distances:

Ldistance = ∥Dist(X̂)− Dist(X)∥ (15)

where Dist(X) ∈ Rn,n is the pairwise distance matrix of the 3D coordinates X. We apply the loss on
each decoder layer, and the final loss is the average, whcih is crucial for good performance.

3 Experiments

We conduct systematic experiments to inspire further improvement in FoldToken2.

• Single-Chain Benchmark (Q1): How well FoldToken3 perform on single-chain data?

• Multi-Chain Benchmark (Q2): How well FoldToken3 perform on multi-chain data?

• VQ Insights (Q3): What can we learn from FoldToken3’s improvement?

Multi-chain PDB Data for Training We train the model using all proteins collected from the PDB
dataset as of 1 March 2024. After filtering residues with missing coordinates and proteins less than
30 residues, we obtain 162K proteins for training. We random crop long proteins to ensure that the
maximum length is 500. Protein complexes are supported by adding chain encoding features cij
to the edge eij : cij = 0, if i and j are in different chains; else cij = 1. We train FoldToken2 and
FoldToken3 on the protein structure reconstruction task using the PDB dataset. The model is trained
for up to 25 epochs with a batch size of 8, a learning rate of 0.001, and a padding length of 500.

3.1 Single-Chain Benchmark (Q1)

Metrics Regarding reconstruction, we evaluate the model using the average TMscore and aligned
RMSD. In FoldToken2, we uses Kabsch algorithm to align the predicted structure to the ground
truth structure; however, the aligned RMSD seems to be different to that of PyMol. We do not know
what is the reason for this discrepancy. Finally, we use PyMol’s API for computing RMSD. We also
introduce a similarity metric to evaluate the codebook diversity:

Sim =
1

N

∑
i

vT
i vî (16)
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where vi and vî are the i-th and nearest neighbor code vectors, respectively. The similarity metric
ranges from -1 to 1, with 1 indicating that there is always a very similar code vector for each one. To
make discrete tokens distinguishable, the smaller the similarity, the better the diversity, and the easier
it is to predict. Considering the extreme case where the similarity is 1, one code id can be replaced
by that of its nearest neighbor without affecting the reconstruction quality, leading to inconsistent
language representation. Also, high similarity indicates that the model do not robust to noise, as
similar code vectors may be easily confused by each other.

Single-Chain Data for Evaluation Following FoldToken2, we evaluate models on T493 and T116
datasets for head-to-head comparison, which contains 493 and 116 proteins, respectively. We also
evaluate methods on 128 novel proteins released after the publication of AlphaFold3, called N128.

Model Data Config TMScore ↑ RMSD ↓
#Code #Enc #Dec #Hid #KNN Avg Max Min Avg Max Min

FT1 T116 65536 12 12 480 full 0.77 0.96 0.39 3.31 24.53 0.52
FT2 T116 65536 8 8 128 30 0.97 0.99 0.90 0.52 0.76 0.30
ESM3 T116 4096 2 30 1024 full 0.97 0.99 0.76 1.97 13.27 0.01
FT3 T116 4096 8 8 128 30 0.95 0.98 0.88 0.64 0.98 0.30
FT3 T116 1024 8 8 128 30 0.93 0.97 0.83 0.73 1.20 0.26
FT3 T116 256 8 8 128 30 0.93 0.98 0.86 0.76 1.10 0.44
FT3 T116 128 8 8 128 30 0.91 0.96 0.82 0.87 1.36 0.46
FT3 T116 64 8 8 128 30 0.89 0.96 0.74 1.02 1.80 0.32
FT1 T493 65536 12 12 480 full 0.74 0.96 0.44 3.09 18.09 0.48
FT2 T493 65536 8 8 128 30 0.95 0.99 0.78 0.64 1.99 0.36
ESM3 T493 4096 2 8 30 1024 full 0.95 0.99 0.32 2.40 15.97 0.01
FT3 T493 4096 8 8 128 30 0.92 0.99 0.57 0.86 6.48 0.35
FT3 T493 1024 8 8 128 30 0.90 0.98 0.61 0.98 7.52 0.38
FT3 T493 256 8 8 128 30 0.90 0.98 0.52 1.03 6.14 0.38
FT3 T493 128 8 8 128 30 0.88 0.97 0.49 1.15 7.70 0.39
FT3 T493 64 8 8 128 30 0.85 0.96 0.45 1.33 7.47 0.47
FT1 N128 65536 12 12 480 full 0.62 0.93 0.26 11.20 53.25 0.47
FT2 N128 65536 8 8 128 30 0.94 0.99 0.17 0.78 5.88 0.27
ESM3 N128 4096 2 30 1024 full 0.92 1.00 0.30 4.50 22.51 0.04
FT3 N128 4096 8 8 128 30 0.92 0.99 0.26 1.16 4.42 0.41
FT3 N128 1024 8 8 128 30 0.91 0.98 0.29 1.25 4.31 0.39
FT3 N128 256 8 8 128 30 0.89 0.98 0.22 1.49 7.76 0.37
FT3 N128 128 8 8 128 30 0.89 0.96 0.27 1.60 6.78 0.39
FT3 N128 64 8 8 128 30 0.84 0.95 0.23 2.34 15.64 0.49

Table 1: Single-chain Reconstruction Benchmark. FT1, FT2, and FT3 indicates FoldToken1 [6, 8], FoldToken2
[7], and FoldToken3, respectively. We also report the reconstruction results of ESM3 [10] for comprehensive
understanding. When KNN is ’full’, the approach uses full attention to consider all pairwise interactions.

In Table. 1, we show the reconstruction results of FoldToken2 and conclude that:

FoldToken3 works well using 256 or smaller codebook size. FoldToken2 and FoldToken1 utilize
a large codebook size of 65,536 to achieve good reconstruction performance. However, we observe
that most code vectors are not utilized in the reconstruction process (unbalanced usage), and many
code vectors are similar to each other (self-confusion). We attribute the unbalanced usage to the
deterministic selection strategy and propose a stochastic sampling selection to give each vector the
chance to participate in the learning process. This change increased the codebook usage rate and
improved codebook diversity, and also reduced the risk of self-confusion. As a result, FoldToken3
achieves comparable reconstruction performance to FoldToken2 while using a much smaller codebook
size of 256, less than 0.4% of FoldToken2. This phenomenon is consistent across single-chain (T116,
T493) and multi-chain (M1031) protein reconstruction tasks, even for novel protein structures (N128).

When FoldToken3 will Fail on Single-chain Data? In Fig. 2, we show cases in N128 where the
TMScore is less than 0.5. We observe that the model has difficulty reconstructing structures when
the protein is too short. This is because proteins with fewer than 30 amino acids were filtered out in
the training set. Nevertheless, we can see that the global shape of the protein is still well preserved,
although the accuracy of the secondary structure is not satisfactory.
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8rxbB, L=8 8s32Z, L=12 8visE,L=20

8xzgL, L=12 8xzhL, L=13 8xzjL, L=12
Figure 2: The cases when TMScore<0.5 in N128. Grey structures are the ground truth, and colored structures
are the reconstructed ones.

FT3 is comparable to ESM3 using less parameters and data. When comparing FoldToken3 with
ESM3, we find that FoldToken3 achieves comparable reconstruction performance to ESM3 while
using fewer parameters and less data. In terms of trainable parameters, the encoder and decoder of
FoldToken3 have 4.31M and 4.92M parameters, respectively. In comparison, ESM3’s encoder and
decoder have 30.1M and 618.6M parameters, respectively. Regarding the training data, FoldToken3 is
trained on the PDB dataset, which is a small subset of ESM3’s training set. Additionally, FoldToken3
is specifically trained for multi-chain protein reconstruction, a more challenging task than the single-
chain protein reconstruction that ESM3 is trained for. Nevertheless, the checkpoints learned from the
multi-chain task generalize well to single-chain tasks.

3.2 Multi-Chain Benchmark (Q2)

Multi-Chain Data for Evaluation We evaluate the model on the antibody-antigen dataset
(SAbDab), which contains 6741 protein complexes. We use foldseek to cluster protein chains
into 1323 clusters:

1 foldseek easy -cluster ab_pdb/ res tmp -c 0.7

We use complexes of representative chains from each cluster for evaluation. After filtering represen-
tative proteins with less than 30 residues or more than 1000 residues, we get the evaluation dataset
containing 1031 protein complexes, named M1031.

Model Data Config TMScore ↑ RMSD ↓
#Code #Enc #Dec #Hid #KNN Avg Max Min Avg Max Min

FT2 M1031 65536 8 8 128 30 0.96 0.99 0.08 0.85 27.77 0.49
FT3 M1031 4096 8 8 128 30 0.94 0.99 0.07 1.10 27.57 0.41
FT3 M1031 1024 8 8 128 30 0.93 0.98 0.07 1.16 27.43 0.40
FT3 M1031 256 8 8 128 30 0.93 0.98 0.07 1.32 27.37 0.47
FT3 M1031 128 8 8 128 30 0.91 0.97 0.07 1.51 28.10 0.56
FT3 M1031 64 8 8 128 30 0.88 0.97 0.07 2.15 28.31 0.67

Table 2: Single-chain Reconstruction Benchmark. FT1 and ESM3 are ignored here, because they cannot handle
multi-chain proteins.

In Table. 2, we show the reconstruction results of FoldToken2 and conclude that:

The compact code space can represent complex interactions. When using 256 code vectors,
FoldToken3 can reconstruct protein complex structures effectively, achieving an average TM-score of
0.93 and an average RMSD of 1.32. Previously, we believed that tokenizing single-chain proteins
was difficult, especially with very small codebooks. However, FoldToken3 demonstrates that even
protein complexes can be represented well using a small codebook. This discovery will promote
complex modeling, such as similar interface searching, complex alignment, and complex generation.

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 8, 2024. ; https://doi.org/10.1101/2024.07.08.602548doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.08.602548
http://creativecommons.org/licenses/by-nc-nd/4.0/


When FoldToken3 performs worse on multi-chain data? In Fig. 3, we show the top-9 cases with
largest RMSD. The large RMSD is mainly due to the long protein length. The visual examples show
that the global&local structures are well preserved in the worst cases. We are suprevised that the
model can still reconstruct the protein complex structures effectively, even when the protein is too
long and the codebook is too small.

4nbx, L=266 5d71, L=523 5fhx, L=796

6i8g, L=744 6x07, L=730 7ul2, L=347

7k84, L=915 7kdu, L=605 7now, L=562

Figure 3: The top-9 cases with largest RMSD in multi-chain setting. Grey structures are the ground truth, and
colored structures are the reconstructed ones.

4 VQ Insights (Q3)

Training loss-temperature

Similarity

Crashed

steps

steps

Figure 4: Training curve.

Training Stability. In Figure 4, we
show the training curves for Fold-
Token2 and FoldToken3. We ob-
serve that when the temperature is
very small, the training loss of Fold-
Token2 crashes due to unstable gra-
dients. However, FoldToken3 intro-
duces the "partial gradient" operation,
which helps stabilize the training pro-
cess. The training crash is also re-
flected in the similarity metric. For
FoldToken2, the similarity approaches
1.0 after the crash, indicating that most
code vectors have collapsed to a sin-
gle vector. In contrast, the similarity
of FoldToken3 decreases during train-
ing, suggesting that the code vectors
remain diverse.

Code Diversity. We compute the co-
sine similarity for each code and its
nearest neighbor and show the code
similarity in Table. 3 and Fig. 5. We observe that the similarity of FoldToken2 is close to 1.0,
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FoldToken1 has slightly better diversity than FoldToken2, and FoldToken3 has the best diversity.
This diversity is crucial for downstream tasks, as it ensures that the model can distinguish different
code vectors. The higher the diversity, the lower the risk of confusing two semantic similar tokens.

Model Avg↓ Max↓ Min↓

FT1 0.9959 1.0 0.7447
FT2 0.9999 1.0 0.9625
FT3 0.9070 0.9711 0.7371

Table 3: The code vector similarity.

Similarity distribution

(a) FoldToken1 (b) FoldToken2 (c) FoldToken3

Figure 5: The distribution of code similarity.

Compression & Utilization Rate. FoldToken2 uses 65,536 code vectors, with a utilization rate
of 67.6% over the entire PDB dataset. In comparison, FoldToken3 uses only 256 code vectors,
with a 100% utilization rate. This indicates that FoldToken3 can create a more compact discrete
representation of protein structures, where the number of used code vectors is only 0.39% of that in
FoldToken2. The reduced codebook size will lead to a more consistent and robust fold-language.

5 Conclusion

This paper introduces FoldToken3, a novel protein structure tokenization method that can efficiently
compress protein structures into 256 or fewer tokens, for both single-chain and multi-chain data,
while maintaining reconstruction quality comparable to FoldToken2. To date, FoldToken3 is the
most efficient, lightweight, and compression-friendly protein structure tokenization approach. This
advancement will benefit a wide range of protein structure-related tasks, including protein structure
alignment, generation, and representation learning.
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