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Abstract

Recent lineage tracing single-cell techniques (LT-scSeq), e.g., the Lineage And RNA RecoverY (LARRY) barcoding
system, have enabled clonally resolved interpretation of differentiation trajectories. However, the heterogeneity of clone-
specific kinetics remains understudied, both quantitatively and in terms of interpretability, thus limiting the power of bar-
coding systems to unravel how heterogeneous stem cell clones drive overall cell population dynamics. Here, we present
CLADES, a NeuralODE-based framework to faithfully estimate clone-specific kinetics of cell states from newly gener-
ated and publicly available human cord blood LARRY LT-scSeq data. By incorporating a stochastic simulation algorithm
(SSA) and differential expression gene (DEGs) analysis, CLADES yields cell division dynamics across differentiation
timecourses and fate bias predictions for the early progenitor cells. Moreover, clone-level quantitative behaviours can
be grouped into characteristic types by pooling individual clones into meta-clones. By benchmarking with CoSpar, we
found that CLADES improves fate bias prediction accuracy at the meta-clone level. In conclusion, we report a broadly
applicable approach to robustly quantify differentiation kinetics using meta-clones while providing valuable insights into
the fate bias of cellular populations for any organ system maintained by a pool of heterogeneous stem and progenitor
cells.

Introduction

One of the key challenges in developmental biology is
to understand the complex cellular dynamics as well as
the temporal ordering of cell states1,2. The interplay be-
tween cell proliferation (cellular expansion) and differen-
tiation (phenotypic transition) plays a crucial role in vari-
ous biological processes, including tissue development, re-
generation, and the activation of innate immune response
mechanisms3.

In recent years, the transcriptome-wide single-cell RNA
sequencing (scRNA-seq) technique has emerged as a
scalable approach for studying cellular trajectories, either
on a snapshot of a transitioning cell population or via
a time-series design. Computational strategies for dy-
namical analyses include both pseudotime-based trajec-
tory inference4–8 and unspliced RNA-based RNA velocity
methods for predicting gene expression profiles and their
temporal changes9–11. However, scRNA-seq alone can-
not provide fine-grained insights into clonal heterogeneity
within cell clusters. Emerging lineage tracing techniques
utilize unique and heritable DNA barcodes to track individ-
ual cells, offering a complementary approach to studying
cellular dynamics1,3,12.

Techniques of lineage-tracing coupled with single cell
sequencing (LT-scSeq) include retrospective analyses via
endogenous genetic barcodes (e.g., mitochondrial vari-

ants and copy number variations13–16) and prospective de-
signs with recently developed barcoding technologies via
exogenous barcodes. Prospective designs can be broadly
categorized into static barcoding with a one-off introduc-
tion to focus more on clone-specific differentiation17,18,
and dynamical barcoding with multiple-time introductions
to trace phylogenies19,20. In this study, we primarily fo-
cused on modeling static barcoding LT-scSeq data, where
numerous (often heterogeneous) progenitor cells are la-
beled at an early point with a unique barcode that is
then propagated to all other cell populations (progeny
from here on), hence facilitating the delineation of a high-
resolution differentiation topology. One prominent example
of this type of LT-scSeq technologies is the lentivirus-based
system21,22 (also known as LARRY18), which has been
recently employed, for example, for predicting clonal fate
differentiation bias in hematopoiesis18 and mouse brain
formation23,24, unveiling novel regulators/markers involved
in reprogramming25 and cell differentiation26, and identify-
ing pathways relevant to cancer progression27,28.

Several computational algorithms have been proposed
to facilitate the analysis of population dynamics and LT-
scSeq experiments recently. Depending on the space of
the cell states, one may group these methods in different
categories. First, for continuous model, Fischer et al.29 de-
veloped pseudo-dynamics, which could model population
distribution shifts to quantify developmental potentials for
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time-series data. Second, a common choice is to mimic
a near-continuous space by employing a finite state map-
ping where each cell is treated as a state. For instance,
LineageOT30 maps cells from the same clone and two
adjacent time points using optimal transport; it was de-
veloped to recover lineage couplings in CRISPR-based
lineage tracing datasets and outperforms the original OT
method that operates without barcodes31. Another exam-
ple is CoSpar32, which performs topology mapping under
the constraints of sparsity and coherence within clones.
This method brought new insights to multi-clonal time se-
ries data analysis with respect to the identification of early
cell fate bias at the cellular level. Third, discrete state
space over cell types is also commonly used to ensure bet-
ter interpretability, higher robustness, and computational
efficiency33. Finally, other approaches have also signifi-
cantly contributed to this field by modeling individual genes
or phenotypes as a different type of cell state space, for
example, upon learning smoothed transcription and regu-
latory dynamics34, or explicitly analyzing the potency bias
during HSCs’ reactivation following platelet depletion35.

Despite various efforts to unveil more information from
LT-scSeq data, several technical challenges persist, limit-
ing the practical applicability of analysis tools. In addition
to common issues such as the loss of barcodes or small
clone size, scRNA-seq is destructive and only captures a
fraction of the total cells in a dish, resulting in the possi-
bility of tracking only the proportional changes of cell state
abundance32 rather than the actual kinetic rates that affect
the overall population dynamics. This hampers the explo-
ration of clone-specific dynamical patterns. On the other
hand, having reliable kinetic rates enables the reconstruc-
tion of differentiation topologies and provides a quantitative
estimation of division dynamics35 as well as fate bias of
progenitor cells, which is useful under various scenarios,
e.g., investigation of stages of development or abnormal
patterns related to aging and diseases.

Inspired by recent research efforts and to address the
aforementioned problems, we developed a robust and gen-
eralizable computational algorithm to analyze LT-scSeq
datasets focusing on a static barcoding system (LARRY,
Fig. 1a). Our tool, CLADES (Clonal Lineage Analysis with
Differential Equations and Stochastic Simulations), com-
prises two key components: 1) a model estimator, namely
a NeuralODE36 based framework, to delineate meta-clone
specific trajectories and state-dependent transition rates;
2) a data generator via the Gillespie algorithm37, that al-
lows a cell, for a randomly extracted time interval, to
choose either a proliferation, differentiation, or apoptosis
process in a stochastic manner. We estimated the sum-
mary of the divisions between progenitors and progeny,
and showed that the fate bias between all progenitor-fate
pairs can be inferred probabilistically. In conclusion, our
work elucidates clone-specific dynamics and provides a
quantitative description of the differentiation trajectory be-
tween a progenitor and its progeny.

Results

ODE functions for clone-specific dynamics. We model
clone dynamics as a system of independent ordinary dif-
ferential equations (ODEs) to infer the time-specific transi-
tion rates between cell states. The dynamics of each clone

(or each meta clone, namely a group of clones with sim-
ilar dynamical profiles; see below) are described by the
same equation but clone-specific parameters; this aligns
with the assumption that only intra-clone transitions are al-
lowed (cells keep the same clone identity throughout the
whole experimental time). Therefore, the estimation and
inference processes are independent for each clone. With-
out loss of generality, we described the (multivariate) ODE
function f for a specific clone c with parameters θ as shown
in Eq.(1),

f = x′(t)

= x(t) ·K1(t) + x(t)⊙ (K2(t)−
ncols∑
i=0

KT
1 (t)),

x(t) = ODESolver(x(t0), t0, t, f, θ), t ∈ (t0, t1, ..., tn),

(1)

where · is the dot product of two matrices, ⊙ is element-
wise multiplication, x(t) is a vector of total counts for all cell
states (interchangeably as cell populations, e.g., 12 cell
types), and t refers to the real time of the biological sys-
tem. K1(t) mimics the differentiation among populations
and is based on the edges of the PAGA38 graph (denoted
as L, Methods) with expert curation; it is a non-negative
and strictly upper triangular matrix (Supplementary Fig.
S1). K2(t) (diagonal of the transition rate matrix L) is a
one-dimensional vector, representing the overall net pro-
liferation rate (proliferation minus apoptosis) for each cell
state. K1,2(t) can either be constant, which gives the clas-
sic population growth model with exponential change of
population sizes, or a function of the real time t (Fig. 1b),
which allows for more flexibility in our model39–41.

The model is designed for time series LT-scSeq ex-
periments (Fig. 1a-b) and requires three types of input
data: 1) the estimated total cell counts x(t) per time point
ti, clone cj and population pk; 2) putative transition di-
rections between populations, usually derived from the
PAGA graph with expert curation, which incorporates prior
knowledge into the model; 3) a binary vector indicating ter-
minal/progenitor cell populations. Under the assumption
that cellular divisions and differentiations between distinc-
tive states are a stochastic process governed by a set of
transition rates, we then interpolate the total cell counts
on intermediate time points using NeuralODEs with bio-
logically informed constraints (Fig. 1b, Methods). This in-
volves solving an optimization problem between observed
data and model predictions with meaningful penalties.

CLADES takes the input data and the putative termi-
nal cell states as prior information, then feeds them into a
Multi-Layer Perceptron (MLP, Methods) with 2 layers, from
which the model outputs the rate transition matrices (Sup-
plementary Note 1) among populations and the predicted
cell counts using an ODE solver. The rates can be time-
invariant or time-variant depending on the user’s choice.
After calculating the rates, CLADES can reconstruct the
dynamic changes of cell counts at both the population
and the clone levels and derive the associated confidence
intervals (CI) of the kinetic transition rates (Fig. 1c) as
well, providing a measure of uncertainty. By means of
the Gillespie algorithm (Supplementary Note 2, Methods),
CLADES also provides a quantitative summary of cell divi-
sions, assesses the potential fate bias of progenitors, and
explores the link with the DEGs (Fig. 1d).

Robustness of CLADES on synthetic datasets. In order
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Figure 1: Overview of the experimental design of LT-scSeq, CLADES’s architecture and its robustness on syn-
thetic datasets. a, General workflow of LT-scSeq experiment using static barcoding techniques with viral integration.
DNA barcodes are induced at an early time point, whilst scRNA-seq data and clonal information are acquired at subse-
quent time points. b, CLADES takes total cell counts and transition directions as input, then uses MLP for estimating
the transition rates between populations, and NeuralODE for reconstructing cell counts at each time point. c, CLADES
is able to infer the dynamic changes of population size on various resolutions and output the associated CI of transition
rates. d, With the estimated kinetic rates of each clone, CLADES can further: 1) simulate detailed topologies of division
and differentiation, and 2) identify putative regulators/markers of cell fate bias of progenitor cells. e, f CLADES was
validated in both constant mode and dynamic mode, that is, given the cell counts generated by either time-invariant or
time-variant rates, the performance of both modes using only training time points as input was evaluated. e, Given cell
counts generated by time-invariant rates, the constant mode (i) consistently performs better than its counterpart (ii) both
on the correlation of cell counts (upper row) and on the average recovery rate (lower row) no matter how many time
points were used by the model; vice versa, the dynamic mode performs better for cell counts generated by time-variant
rates f, (i,ii). Upper row: correlation of cell counts on populations between generated and predicted values for each
trial, where Mean_corr_n is the mean correlation for all the trials tested on n training time points. Lower row: average
recovery rate in percentage view (see helping functions of Methods section) for each trial, where Mean_n is the mean
correlation for all the trials tested on n training time points.

to evaluate the performance of CLADES in both constant
and dynamic modes, we generated synthetic datasets with
time-invariant and time-variant transition rates.

First, we applied CLADES on a time-invariant syn-
thetic dataset (given by constant rate ODE functions),
where the time-invariant rates for each clone serve as
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Figure 2: CLADES accurately reconstructed the clone-specific dynamics on a LARRY LT-scSeq data of human
cord blood development system. a, Schematic of the data collection procedure for our newly generated LARRY hu-
man cord blood data. The model takes total cell counts as inputs. b, UMAP illustration of the dataset, which contains
12 populations and 3 sequenced time points. c, Combined UMAP for the distribution of each meta-clone on the same
landscape. NA represents non-barcoded cells. d, Histogram of the number of cells belonging to each barcode shows
the sparsity and heterogeneity of clones, making the estimation of clone-specific dynamics infeasible and leading to the
aggregation of individual clones into meta-clones. e, Left: CLADES accurately recovered the real cell counts at different
time points. Middle: Proliferation and differentiation rates estimated by CLADES are within a reasonable range. Right:
the mean transition rates of all meta-clones given by CLADES resemble rates of the overall biological system. f, Ex-
ample of observed and fitted cell counts and estimation error for meta-clone 0 and background cells using the dynamic
mode of CLADES. The red line is the originally fitted curve whilst the light blue region represents the 25%−75% quantile.
g, Transition rate matrix between populations of meta-clone 0 at Day 3, which is the graphical illustration of Kij in ODE
functions, illustrating that CLADES has the ability to infer rates at any given time point. h, 95% confidence interval of
estimated transition rates between cell populations are given by the bootstrapping approach. Blue dashed lines are CI
whilst the red dashed line is the original fitted value. h is an example extracted from g and i. i, Inferred rates given
by bootstrapping were compared with each other using p values from the student t-test or Mann-Whitney U rank test
and mean absolute change of parameters were used to find the most active (distinct) meta-clone for all transition pairs.
Blank region means no significance or the corresponding population has not been produced at all.
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Figure 3: Gillespie algorithm reveals division summary of progenitor populations and more accurate fate de-
cision bias. a, Examples of lineage trees resulting from the Gillespie algorithm; each simulation trail starts with one
HSC/MPP 1 cell only. Nodes represent cell ID, that is, its order of generation. The edge label is the order of occurred
reactions. b, Overall fold change of mean number of divisions needed to produce the first progeny starting from one
HSC/MPP 1 for each meta-clone compared with background. c, Examples of the number of division events needed
to produce the first Mast cell or the first Early Erythroid starting from one HSC/MPP 1 for meta-clone 0 (i) and back-
ground cells (ii) respectively. d, The average proliferation and differentiation rates for each meta-clone correspond to the
abundance of total population size and potency potential of progenitor cells. e, Bar plot shows the potency preference
and fate bias for each progeny of HSC/MPP 1 among all meta-clones. E.g., meta-clone 0, 2, and 7 are multi-potent
clones whilst meta-clone 9, 10, and 11 are more likely to be uni-potent clones. The y axis indicates number of simu-
lated trails a certain progeny has been generated out of all simulations (1,000 in our analysis). f, An example of fate
decision bias comparison between CoSpar, CLADES, and GroundTruth for each meta-clone. The transition pair used
for benchmarking is from MEMP to Late Erythroid. Note that for a fair comparison, the value is scaled using min-max
normalization. Therefore, zero does not represent no bias towards that fate, instead, it means relatively smaller bias
than other meta-clones. g, Combined benchmark results of all progenitor fate transition pairs for CLADES and CoSpar.
Left panel, progenitors. Right panel, fates. The plot is formed based on the correlation scores of each transition pair (as
shown in the dashed square of panel f as an example).
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Figure 4: CLADES captures the key dynamics of mouse hematopoietic system and provides better fate bias
predictions. a, UMAP illustration of the mouse hematopoietic dataset which contains 3 time points and 22 manually
defined populations (Left, Middle). We defined 13 meta-clones based on time and state-dependent number of barcoded
cells (Right). b, The putative transition directions were given by the PAGA graph with expert curation which acted as a
guide for the model. c, The overview of the estimated proliferation and differentiation rates. d, Average rates are tightly
associated with the population size of meta-clones, e.g., meta-clones 5 and 8 have a large gap between proliferation and
differentiation rates, and they hardly produce differentiated cells. e, Mean number of divisions needed to produce the
first progeny starting from one prog_1 cell were derived from the Gillespie algorithm. Higher bars indicate a slower pro-
cess, which is a reflection of bias to terminal fates. f, An example extracted from e. Both meta-clone 1 and 3 are biased
for neutrophils lineage whilst meta-clone 3 is more active compared with meta-clone 1. g, Example of the comparison
between fate biases as calculated by CoSpar and CLADES for the transition pair prog_Baso_Meg_Ery_Mast and Ery.
Meta-clone 4 has the highest bias towards the erythroid lineage compared to other meta-clones and CLADES has a
higher Pearson correlation compared with the ground truth. h, The overall benchmarking results for all progenitor-fate
pairs, indicating that CLADES improves the fate bias prediction with a large margin at the meta-clone level. Each dot
in the scatter plot comprises the correlation scores between two methods with ground truth. The same dot represents
progenitors in the left panel and fates in the right panel.
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Figure 5: The fate bias and kinetics of each meta-clone is determined by its early transcriptomic signatures. a,
Left, Only cells from the earliest progenitor populations were used for DEGs analysis, which is prog_1, as shown with
brown color in the UMAP landscape for all cells. Right, examples of meta-clone-specific UMAPs. b, Stacked distribution
of cell counts in percentage view where the x axis shows the meta-clones, whilst the y axis shows the proportion of cell
counts for each population, and the number at the top of each bar is the total counts for each meta-clone. c, Volcano plot
of DEGs between prog_1 cells within meta-clone 1 and all other prog_1 cells. Identified genes are either predominately
over-expressed in the neutrophil maturation process (Plac8, Prtn3, Cstg) or affect its functions through associated path-
ways (Hk3, Ap3s1, Ttf1). d, Examples of gene expression UMAP plots on all cells for Plac8, Prtn3 and Cstg, illustrating
its over-expression in neutrophil lineage. e, Volcano plot of DEGs between prog_1 cells within meta-clone 5 and all
other prog_1 cells. Identified genes are mostly associated with the stemness of a cell (e.g., B2m, Hmga2). f, Examples
of gene expression violin plots on prog_1 cells for Socs2, Ly6a and Dlk1. The selected genes are generally expressed
higher in meta-clone 5 than in other meta-clones. Interestingly, the existence of Socs2 would inhibit the differentiation
process, which explains why meta-clone 5 has such a low differentiation rate. g, Volcano plot of DEGs between prog_1
cells within meta-clone 4 and meta-clone 0. Both meta-clones are multi-potential whilst meta-clone 4 is more biased to
Erythroid, Mast cell, Megakaryocyte, and Basal lineages compared with meta-clone 0 which is more biased to Mono-
cytes. h, Staked violin plot for identified genes in g. i, Examples of UMAP expression profiles for Akr1c13 and Hbb-bt
on all cells.
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the ground truth and cell counts are governed by Eq.(1).
To test whether CLADES can recover the correct dynamics
and provide guidance for appropriate usage with LT-scSeq
experiments, we conducted 5 independent trials with dif-
ferent sampling intervals of synthetic data as training sets
and used 5 unobserved time points as testing sets to pre-
vent data leakage, for both constant and dynamic modes
of the model (Supplementary Table S1).

As expected, the performance of CLADES improved as
the available time points increased, eventually reaching a
plateau at around 3~4 time points in this time-invariant set-
ting (for both constant and dynamic modes; Fig. 1e). Since
the total cell counts are dependent on the transition rates,
we observed a similar trend in inferred time-invariant rates
on the testing set as well (Supplementary Fig. S2a). Also,
we found that generally, the constant mode performs bet-
ter than the dynamic mode because the synthetic data was
synthesized based on it, indicating the non-negligible risk
of over-fitting for the dynamic mode when the pattern of
data is extremely clean and follows an ideal time-invariant
rate scenario (Fig. 1e).

Second, with the time-variant scenario, we demon-
strated the limitations of the constant mode when facing
complex data structures which are prevalent in most real-
world scenarios, and highlighted the flexibility and robust-
ness of the dynamic mode. Specifically, similar synthetic
settings were adopted (Supplementary Table S2), whilst
this time the data was generated using time-variant rates.
For both the constant and dynamic modes of CLADES, the
accuracy increased when more training time points were
given and an obvious plateau had not been observed (Fig.
1f). However, the performance in inferring the correct rates
is not prominent for the constant mode when the size of
the training dataset increases (Supplementary Fig. S2b).
Furthermore, considering as empirically good a Pearson
correlation r > 0.95, we found that the constant mode is
heavily under-fitted even when more training data was pro-
vided and it could not recapitulate the correct dynamics.
Interestingly, we also noticed that, apart from outperform-
ing the constant mode when applied to its paired data (Fig.
1e (i), Fig. 1f (ii)), the dynamic mode generally yields better
results even when it is applied to data generated via the
other mode (Fig. 1e (ii), Fig. 1f (i)), which suggests that
the dynamic mode is more robust to the "wrong" model
and therefore could be a good default choice. As for the
experimental design, we recommend using at least 3 time
points to secure the desired results.

In conclusion, for datasets with simpler patterns, the
constant mode is sufficient with tolerable errors, whilst for
other biological systems that are more sophisticated, the
dynamic mode of CLADES is preferred.

Characterizing kinetic rate differences in human cord
blood hematopoiesis. We applied CLADES to a newly
generated in vitro LARRY-based LT-scSeq data with 3 time
points (68,856 high-quality cells with 24,885 being bar-
coded; see details in Supplementary Table S3 and Sup-
plementary Note 3). DNA barcodes were introduced at
Day 0 in cord blood CD34+ cells and sampled for se-
quencing at Day 3, 10, and 17 (Fig. 2a, Fig. 2b right).
Upon incubation, a group of initial hematopoietic stem and
progenitor cells (HSPCs) differentiated into 12 distinct cell
populations of progenitor or mature blood cells (i.e., cell
types; Fig. 2b left). Here we define clone as a group of

cells carrying the same barcode. Because a significant
portion of the barcodes collected (3,334 out of 3,940) were
low-quality clones (i.e., containing one or two cells along
the entire time course), they were filtered out during the
preprocessing step (Fig. 2d, Methods).

DNA barcodes with few cell counts make the analysis
of individual clones infeasible, therefore, to further reduce
stochasticity and model complexity, clones were clustered
into meta-clones (Supplementary Fig. S3) based on the
similarity among their time and state-dependent number
of barcoded cells (Fig. 2c, Supplementary Fig. S4). The
assumption is that hematopoiesis can be conceptualised
by a finite number of differentiation behaviours; therefore,
we defined meta-clones as groups of clones with simi-
lar kinetic rates and cell counts. Notably, meta-clones
demonstrate distinct preferences for terminal fates (e.g.,
Mast cell, Late Erythroid, Monocyte and DC) decisions,
indicating strong fate bias among HSC/MPP 1 population
(Fig. 2c, Supplementary Fig. S5, Table. S5). For in-
stance, meta-clone 7 predominantly biased towards the
Monocyte lineage, whilst meta-clone 0 had a preference
for the Erythroid lineage. The number of meta-clones is a
hyperparameter that can be adjusted to explore the data
at different levels of resolution.

Given expert-curated putative transition directions de-
rived from PAGA (Supplementary Fig. S1), CLADES suc-
cessfully reconstructed the total cell counts at the ex-
perimental time points (Fig. 2e left, Supplementary Fig.
S6a, b) and interpolated counts on unknown time points
along the entire trajectory using both constant and dy-
namic modes while also providing associated estimation
errors (Fig. 2f, Supplementary Fig. S7). Notably, the dy-
namic mode proved to have better performance provided
that proper constraints are enforced to prevent model over-
fitting (Supplementary Table S4).

As stated above (Eq. 1), the population balance be-
tween cell states is governed by transition rates which are
the per capita change within a unit of time. As a result, the
majority of clone-associated rates should lie within a fea-
sible range (e.g., fit biological prior knowledge, Methods,
Fig. 2e, middle). Moreover, the average behavior of all
meta-clones should resemble the overall dynamics of the
system, including both the barcoded and non-barcoded
cells (background from here on, or BG in short), Fig. 2e,
right. The output of CLADES includes a transition rate ma-
trix among cell states for any meta-clone and time stamp
(Fig. 2g). It provides insights into the heterogeneity of tran-
sition rates among meta-clones and offers partial evidence
of the distinct behaviors of meta-clones.

The parameters returned by CLADES are point esti-
mates that lack uncertainty. We then used bootstrapping
(Methods) to estimate the 95% confidence intervals (CI)
of the transition rates (Fig. 2h). We used statistical tests
(the student t-test or Mann-Whitney U rank test) to assess
the statistical significance of dynamical differences among
meta-clones. It is worth noting that, when performing the
tests, we took precautions to avoid abnormal significance
in the bootstrapping results, especially for populations with
zero cell counts. Therefore, we introduced the mean abso-
lute change of parameters as an additional criterion (Meth-
ods, Fig. 2i shows comparison with background, extracted
from Supplementary Fig. S8). From the perspective of
developmental trajectory dynamics, distinct clones can
exhibit differences in rates at specific stages of progeni-
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tors/precursors. At Day 3, for example, meta-clone 9 were
found to have strong statistically different rates compared
with the background in the Monocyte lineage (Fig. 2i).

Resolving cell division history and fate decision bias
of progenitor cells. After estimating the transition rates
between cell states using CLADES, we then employed the
Gillespie algorithm (1, a stochastic simulation algorithm
originally used to depict chemical reaction processes) to
delineate the behavior of the clones making up our sys-
tem. A typical workflow of a Gillespie simulation starts
with a single progenitor (HSC/MPP 1 for this dataset). For
each step, the time interval until the next reaction (prolif-
eration, differentiation, or apoptosis) is extracted from an
exponential distribution (where the parameter λ is a state-
rate-dependent value); then, a reaction is picked to occur
based on the currently available cell states and the pre-
viously estimated transition rate matrices. The simulation
continues and updates cell states until certain stopping
criteria are met (Fig. 3a).

We ran Gillespie on all meta-clones and for each of
them we inferred several properties, of which the most
relevant are: 1) the number of cell division events that
occurred between the original HSC/MPP 1 and the first
cell produced for each progeny (Supplementary Fig. S9);
2) the number of trials where a certain population was
produced out of all possible simulations trials (1,000 in
this case); 3) the fate decision bias of each meta-clone
towards the different terminal states. In other words, our
simulations yielded a quantitative summary of differenti-
ation topologies and terminal state preferences for each
meta-clone. For instance, for meta-clone 0, it takes around
5 division events on average to produce the first Mast cell,
significantly higher than that of background with 3 divi-
sions, whilst HSC/MPP 1 differentiates into Early Erythroid
faster than that of the background (5 vs 7 divisions; Fig.
3c). This indicates that meta-clone 0 has a faster route for
generating erythroid lineage compared with the average
behavior of all cells and vice versa for Mast cells. Supple-
mentary Fig. S9 illustrates the comprehensive comparison
of all other cell populations. Taken all the simulation results
together (Supplementary Fig. S10a), we could compare
the differences in fold change among all meta-clones or
with respect to the background cells (Fig. 3b, Supplemen-
tary Fig. S10b).

Meta-clones have distinct differentiation preferences
(Fig. 2c, Supplementary Fig. S5, Table. S5). Some are
multi-potent, for instance, meta-clones 0, 2, 7 have 4 ter-
minal states and meta-clones 1, 3 have 3, whilst others are
either bi-potent or uni-potent, being committed to a specific
lineage such as Mast cells, Late Erythroids, or Monocytes.
We also noticed that a higher proliferation rate normally
corresponds to meta-clones with larger population sizes;
therefore meta-clones with a similar fate realisation, but
different sizes, can also bear differential kinetic rates (Fig.
3d, Supplementary Table S5). Average rates are calcu-
lated using all available proliferation/differentiation rates
spanning from Day 0 to Day 17. Overall, we saw that
potency preferences are highly meta-clone specific, and
that the bias towards each progeny (including both inter-
mediate and terminal states) given a HSC/MPP 1 can be
inferred probabilistically using Gillespie simulation (Fig.
3e).

Next, we were interested to see whether the fate bias

of the progenitor cells can be predicted at the earliest ex-
perimentally collected stage (Supplementary Fig. S11a).
CLADES was compared with CoSpar32, the state-of-the-
art method to predict the fate bias of ancestor cells based
on LT-scSeq data. However, since CLADES operates at
the meta-clone scale instead of the scale of individual
cells, for fair comparison, we pooled the fate bias values of
each cell generated by CoSpar (Supplementary Fig. S11b,
Methods) to the same meta-clone level for each progeni-
tor. By using the number of unique barcodes in a terminal
population and all cell states along the transition path as
ground truth (Methods), CLADES generally outperformed
CoSpar in predicting fate bias on the meta-clone level
and had a higher Pearson correlation for all meta-clones
(e.g., MEMP −→ Late Erythroid, Fig. 3f). We benchmarked
CoSpar and CLADES on all possible progenitor-fate pairs
by means of the Pearson correlation between the candi-
date algorithms and the ground truth (Fig. 3g). CLADES
consistently showed improved performance on 9 out of 11
transition pairs. Of note, although CLADES shows higher
accuracy in predicting cell fate at a meta-clone resolution,
it is still not applicable at the individual cell level and inter-
polation approaches, e.g., via neighborhood graph, require
further evaluation (see Discussions).

CLADES recapitulates the cellular dynamics of murine
hematopoiesis. We applied CLADES to a publicly avail-
able mouse hematopoietic dataset that was introduced by
Weinreb, et al.18 and also used to benchmark CoSpar32.
This dataset contains a larger number of cells compared
with the cord blood dataset, allowing us to explore the gene
signatures corresponding to differential rates. Compared
with the cord blood data (4 terminal fates out of 12 cell
states), there are now more possible potential fates (10
out of 22, Supplementary Table S8), while the number of
time points is the same (3, Fig. 4a left and middle panel).

This dataset has 5,859 unique barcodes in total, with
some of them being multi-potent whilst others being uni-
potent. Of note, only 1,989 clones appeared in the termi-
nal states (Supplementary Fig. S11c). This indicates the
low capture rate of barcodes and justifies the necessity
to merge individual clones into meta-clones. We followed
the same preprocessing pipeline as the cord blood dataset
and constructed 13 meta-clones using again the time and
state-dependent number of cells in each clone (Fig. 4a
right panel, Supplementary Fig S12). Since this dataset
does not contain FASC-based counting, we used an esti-
mated fold expansion of haeamtopoietic stem and progen-
itors cells in culture as an alternative to the total cell counts
and scaling factors (Supplementary Table S6, Methods).
We applied both constant and dynamic modes of CLADES
using the PAGA graph with expert curation as guided tran-
sition directions (Fig. 4b). Interestingly, we found that both
modes performed similarly, suggesting that, in this dataset,
the kinetics of the in vitro system are nearly constant (Sup-
plementary Table S7).

The distribution of estimated proliferation as well as dif-
ferentiation rates provided by CLADES overall falls within a
reasonable range (Fig. 4c), with the average among pop-
ulations and time points reflecting the characteristics of
each meta-clone (Fig. 4d, Supplementary Table S8). For
instance, meta-clones 1, 5, and 8 do not produce many
terminal cells, and their differentiation rates are smaller
than most of the other meta-clones. Meta-clones 5 and
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8 have a smaller population size with the majority of cells
remaining as progenitor cells during the 6-day culturing
period, consistent with their smaller estimated proliferation
rates than that of meta-clone 1. With the same Gillespie
analysis, we could quantify the fate bias for each terminal
state given a progenitor cell, and we obtained the division
summary for each meta-clone (Fig. 4e, Supplementary
Fig. S14). For instance, meta-clone 2 clearly has a fast
route towards basophil cells (pink bar) and has the lowest
value compared with other meta-clones. Both meta-clones
1 and 3 have a strong bias towards the neutrophil lineage
(Supplementary Table S8), whilst the major difference is
that, given the same period of incubation, meta-clone 3
seems to be more active than meta-clone 1. This is also
reflected by the Gillespie analysis: the mean number of di-
vision events needed to produce the first prog_Neu given
a prog_1 in meta-clone 1 is around 8, whilst for meta-clone
3 is 3 (Fig. 4f).

For the benchmarking of fate bias prediction results
with CoSpar, we followed similar settings as used in cord
blood analysis. CoSpar produces a set of scores for each
cell given a terminal fate population (as shown in Supple-
mentary Fig. S11d for Monocytes and Erythroids lineage)
and we pooled the scores for cells within the same meta-
clone to get the average fate bias for that meta-clone.
Taking the transition pair of prog_Baso_Meg_Ery_Mast
and Ery (Erythroid) as an example (Fig. 4g), CLADES
accurately recovered the relative fate bias for the meta-
clones with a much higher correlation score. Specifically,
the meta-clone with the strongest bias towards the Ery lin-
eage given by CLADES is meta-clone 4, which aligns with
the ground truth (Supplementary Table S8), whilst CoSpar
assigned the highest value to meta-clone 9, which does
not produce erythroid-related cells at all during the cultur-
ing period. The results for all possible progenitor-fate pairs
are shown in Fig. 4h, which consistently shows the im-
proved performance of CLADES (30 out of 37) in inferring
fate bias of meta-clones.

Clonal kinetics and characteristics of population sizes
can be inferred by early coordinated signatures. We
showed earlier that the different output in terms of time-
scales and fate realization of early progenitors unveils
differences in transition rates. We thus seek to connect
such differences to possible heterogeneity in the transcrip-
tome signature, arguing that the latter may coordinate the
transition rates towards each lineage and terminal fate.
We first considered cells belonging to the prog_1 popula-
tion from the mouse hematopoietic dataset, as prog_1 is
the earliest progenitor population (Fig. 5a, left panel) and
calculated its DEGs across all meta-clones (Fig. 5a, right
panel, Supplementary Fig. S15, S16). We found meta-
clone-specific characteristic genes that have differential
expression levels and that are expressed in different areas
of the dimensionally reduced landscape (e.g., some pro-
genitors are scattered around whilst others are clustered
together).

Our hypothesis is that, even for the earliest progenitor
cells, their preference for specific fate lineages is deter-
mined by subtle difference in transcriptomic profiles and
could be accurately predicted. For instance, within prog_1,
the DEGs of meta-clone 1 compared to all other meta-
clones are associated with neutrophil maturation (Fig. 5c),
which is consistent with meta-clone 1 having a large pop-

ulation size in the neutrophil lineage (Fig. 5b). The up-
regulated genes either regulate the neutrophil maturation
process or affect its functions through associated path-
ways. One example is Plac8, whose connections with
neutrophils’ ability to kill phagocytosed bacteria have been
reported42,43. Another identified DEG for this meta-clone
is Prtn3, which confirms that this meta-clone is biased to-
wards the Neutrophils lineage, because Prtn3 belongs to
NPSs (neutrophil serine proteases), a set of genes gen-
erally over-expressed in Neutrophils44,45 (Fig. 5d). Other
identified genes like Hk3, might drive this meta-clone to-
wards the neutrophil lineage because it is a key enzyme
involved in the glucose phosphorylation process, a domi-
nant metabolic pathway in neutrophils46–48. This suggests
the predictable nature of terminal cell states within meta-
clones.

We also noticed that both meta-clones 5 and 8 are
almost childless during the 6-day incubation period with
extremely low differentiation rate to terminal states, with
most of the cells staying in prog_1 and prog_2 stage and
a few in prog_4 (Fig. 5b). To further analyze this unique
behavior, we computed the DEGs (Supplementary Fig.
S16) between meta-clone 5 and all other meta-clones
within prog_1 cells (Fig. 5e). Interestingly, the most sig-
nificant gene is Socs2, which is a well-known signature for
promoting proliferation and dampening the differentiation
process49–51. This partially explains the huge gap between
proliferation and differentiation rates for meta-clone 5 and
the resulting population sizes. Other stemness-related
marker genes including Ly6a and Dlk1 are identified as
well52,53 (Fig. 5f).

Cell types are often defined based on their potential to
differentiate into other cell types, for example via in vitro
assays, as it was historically the case for intermediate
haematopoietic progenitors54,55. Nevertheless, we saw
with our analysis that meta-clones with similar fate reali-
sations can produce progeny in different proportions. For
example, meta-clones 2 & 7 of the human cord blood data
are both multi-potent, but have different offspring sizes
(Supplementary Table S5). Similarly, meta-clones 0 ~4
of the mouse hematopoietic dataset can generate similar
terminal states, but each produces mainly a certain pop-
ulation, as shown in Fig. 5b and Supplementary Table
S8. This analysis suggests that we can further idetify sub-
populations of HSPCs based on the magnitude of their
produced progeny.

Similarly, the DEGs of meta-clones 1~4 compared to
meta-clone 0 (Supplementary Fig. S17 and S18) illustrate
that, for multi-potent clones, the transcriptomic differences
in early stages can predict the population size of the off-
spring. Specifically, the volcano plot and stacked violin plot
for the comparison of meta-clones 4 and 0 reveals a few
genes of interest (Fig. 5g, 5h). Compared with meta-clone
0 (which is multi-potent but more biased towards the Mono-
cyte lineage), meta-clone 4 is also a multi-potent clone
but rather biased towards erythrocytes, mast cells and
megakaryocytes. Significant genes include Itga2b, which
is specifically up-regulated during megakaryopoiesis56,57,
and Gzmb, which is highly expressed in mast cells and
used to degrade hemidesmosomal proteins58,59. Interest-
ingly, Akr1c13 and Hbb-bt were also found to be signifi-
cantly expressed (Fig. 5i). Akr1c13 is highly expressed
in the Basophil population although this is not a dominant
population in meta-clone 4 (meta-clone 2 is dominant in
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the Basophil population). However, this in consistent with
the differential cell counts: indeed, meta-clone 4 produces
a larger Basophil population compared with meta-clone 0
(Fig. 5i, left, Supplementary Table S8). Moreover, gene
Hbb-bt is a mutated variant of the β-globin genes, and can
cause an ineffective erythropoiesis process and lead to the
apoptosis process of erythroid precursors60–62. This might
explain why there are 11,885 prog_Meg_Ery cells in total
in meta-clone 4, whilst the number of produced Megakary-
ocytes and Erythroids is roughly 3:1. We thus advocate
for a redefined definition of cell types or sub-types that
includes, besides the fate-bias, the size of the generated
progenies.

In conclusion, based on the transcriptomic signature
clone, we could predict the lineage preferences as well as
the population size of terminal states of meta-clone 4. This
further strengthens the hypothesis that cell fate is initiated
at very early stages.

Discussion

In this paper, we presented CLADES, a NeuralODE-based
method to reconstruct and interpolate total cell counts
along a differentiation time course. With the help of the
Gillespie algorithm, CLADES delineates detailed division
topology and summaries the fate bias of progenitor cells.

A bootstrapping approach was implemented so that
CLADES can robustly compare the differences between
meta-clones. We also demonstrated that CLADES has
better prediction results in terms of fate bias on meta-clone
level compared with the existing method CoSpar, with as-
sociated quantitative measurement of meta-clones’ prefer-
ence of lineages and kinetic rates. This may bring us new
insights into defining a cluster not only based on ’what’ it is
producing but also on ’how much’ it is producing.

Many works in the field of mathematical modeling
for hematopoiesis have assumed that adult physiological
hematopoiesis is in perfectly homeostatic conditions (re-
ferred to as "steady state"), where transition rates are con-
stant and so are the populations’ sizes. On the other hand,
more recent models33,63 have started incorporating the
idea that, given that the number of HCSs increases over
time and the relative abundance of the different popula-
tions varies upon aging, there is no steady state. CLADES
can partially address this issue thanks to the constant vs
dynamic mode option. Indeed, if the constant mode out-
performs the dynamic one in a given system, we can con-
clude that the kinetic rates are nearly constant, which may
lead to a stationary growth or a steady state, while if the
dynamical mode performs better, the rates are time de-
pendent and it is more likely that the system is not, and will
not reach, a steady state.

Though CLADES has offered new perspectives to ex-
plore the LT-scSeq data, there are still a few challenges
and limitations which need to be resolved in future works.
Firstly, CLADES aims to quantitatively summarise the dif-
ferentiation kinetics and fate bias of each clone as the pri-
mary goal, while examining the regulation and determina-
tion from the cellular transcriptomes in a separate step. Fu-
ture work includes combining both barcodes and transcrip-
tion data to infer transition rates and fate decision bias of
clones, and mapping cells without barcoding information to
meta-clones, since limited barcoding efficiency can affect

the performance of algorithm and DEG analysis as well.
Secondly, CLADES is formulated based on static bar-

coding with viral integration and multiple time points de-
sign. Therefore it cannot be used to analyse data
from cumulative barcoding techniques, like CRISPR-Cas9
DNA editing20,64, which allows multiple-time barcoding and
hence provides a fine-grained structure of sub-clones.
However, for retrospective barcoding (often with endoge-
nous genetic variants, for instance, MAESTER65), we ex-
pect that CLADES can be applied with minimal extension.
Therefore it could serve as a promising tool for analyzing
LT-scSeq data and continuing to make contributions to the
general lineage tracing field.

Finally, although we focused on the hematopoietic sys-
tem in both human and mouse to evaluate our model and
revealed a few biological insights, CLADES is in principle
broadly applicable to analyze other development systems.
Moreover, it may be further applied to study cancer pro-
gression where different clones may have distinct pheno-
typic properties, e.g., cancer plasticity66.

Methods

Definitions and data structures. Denote the number of
time points available as T , the number of meta-clones as
C and the number of populations as P . We define the fol-
lowing terms for each individual meta-clone c,

• xt,p ∈ RT∗P : original real number of cells in the dish for
population p and time t;

• yt,p ∈ RT∗P : number of cells sequenced from the dish
for population p and time t;

• K1 ∈ RP∗P : transition matrix of cell differentiation rates
between populations. Its values are constrained to be
non-negative and strictly upper triangular (to avoid the
reversed differentiation process);

• K2 ∈ R1∗P : rates of the overall effects of proliferation and
apoptosis process combined within a population, diago-
nal of the topology graph L;

• L ∈ {0, 1}P∗P : topology graph of cell states, binary ver-
sion of K1+K2, derived from PAGA with expert curation;

• Papop ∈ {0, 1}1∗P : vector of fully differentiated popula-
tions (terminal fates) with limited proliferation ability;

• Pprol ∈ {0, 1}1∗P : vector of progenitor populations (e.g.,
HSCs) with strong proliferation ability;

• µt ∈ R+: scaling factor between xt,p, yt,p for time t;
• tcut: stabilization term used in the modified Gillespie al-

gorithm, a trade-off between simulation accuracy and
time complexity, default is 1e−4;

• li: penalty terms used to regularize parameters K1,2,
where i ∈ Z;

• λ ∈ (0, 1]: adjustable parameter controlling the magni-
tude of each penalty term in the loss function.

Annotation pipeline of the human cord blood dataset.
To annotate the cord blood dataset, we first transferred
the label from the fetal liver atlas published by Popescu
et al.67 by means of the Seurat label transfer algorithm
(functions FindTransferAnchors and TransferData). We
then clustered our landscape by means of the Leiden al-
gorithm in scanpy package, and assigned to each cluster
the cell type of the most common transferred label. Finally,
we renamed the two clusters with the most immature pro-
genitors as HSC/MPP 1 and HSC/MPP 2 in order to make
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sure that our differentiating hierarchy starts from the most
immature cells, without contamination from differentiated
progeny.

NeuralODE based architecture. Given a population bal-
ance model, the per capita growth/transition rates (Eq. 2)
can be treated as either time-invariant (constant value) or
time-variant (they assume a different values at each time
point). For a time-invariant scenario, the K1,2 themselves
are the trainable parameters, whilst for the time-variant
scenario, the ODE block is built upon a 2-layer multi-layer
perceptron (MLP, the number of hidden dimensions is de-
pendent on the number of populations, default is 32) with
xt,p as input and K1,2 as output, respectively. Softplus ac-
tivation function was used since it has a unique gradient,
which is theoretically better than other non-smooth non-
linear activation functions such as ReLU and LeakyReLU
given the inner characteristics of NeuralODE36. K1 is fur-
ther masked by the topology graph L to confine the empiri-
cally infeasible direction of transitions (e.g., backward tran-
sitions or transitions from Late Erythroids to Monocytes).
Squaring ensures the inferred rates to be non-negative in
K1 and the overall transition matrix π(t) can be inferred
when combining the estimation rates; the diag function is
used to transform a vector into a zero-like matrix where the
diagonal is that vector,

K1(t) =

{
w2

1 ∗ L constant mode

[MLP1(x(t, p))]
2 ∗ L dynamic mode

K2(t) =

{
w2 constant mode

MLP2(x(t, p)) dynamic mode

π(t) = K1(t) + diag(K2(t))

(2)

where parameter w1, w2 are weight matrix and weight vec-
tor, respectively. MLP with 2 dense layers and a relatively
small hidden dimension was used because the model is
run at the meta-clone rather than at the individual clone
scale, which significantly reduces the number of rates to
be inferred, and more layers (or dimension size) would in-
evitably lead to the risk of overfitting.

Scaling factor for experimental cell counts. As scRNA-
seq is destructive by nature, cells sequenced at later time
points cannot quantitatively reflect the accurate dynamics
of cell counts during this period. Since our model is based
on the real number of cells at each time point, sequenced
cell counts were scaled back to total cell counts in the cul-
turing environment based on additional information (e.g.,
either manual counts or data from fluorescence-activated
cell sorting, FACS68) before being fed to the model.

In order to calculate the scaling factor between se-
quenced counts and real total counts of the Cord Blood
data used in this manuscript, the number of cells in the
dish were reported at each sequencing time which pro-
vided us with the reference cell counts (Supplementary
Table S3, Supplementary Table S5). Then the estimated
total number of cells at each time point is acquired in a

cascading way,

x1 = y1 ·
FAC1

c1

x2 = y2 ·
FAC2

c2
· FAC1

FAC1 − y1

x3 = y3 ·
FAC3

c3
· FAC2

FAC2 − y2
· FAC1

FAC1 − y1

(3)

where FAC1,2,3, y1,2, c1,2,3 are the numbers of cells sorted
in the dish, sequenced in the experiment and with clonal
information at different time points respectively, and x1,2,3

is a cell count tensor with a shape of (time, meta-clone,
population).

Initial condition of the NeuralODE system. Solving an
ODE system is essentially an initial value problem, where
the first time point is usually chosen as the initial value.
However, to facilitate the analysis with CLADES, we man-
ually added an extra time point, Day 0, to the dataset, as-
suming that the number of initially labelled HSPCs equals
the number of unique barcodes; this reduces model flexi-
bility and estimation error.

Parameter inference. Given a LARRY-based LT-scSeq
dataset with noise due to detection or loss of barcodes,
we formulate the cell counts at each time point as sampled
from a Poisson distribution with means given by the neural
network (we found it to be more robust than the commonly
used GaussianNLL loss). We minimize the negative log-
likelihood loss for each meta-clone separately as follows,

yt,p =
xt,p

µt
ŷt,p =

x̂t,p

µt

recon = PoissonNLL(ŷt,p, yt,p)

= ŷt,p − yt,p ∗ log(ŷt,p) + log(yt,p!)

(4)

Whilst the inputs and outputs of the NeuralODE algorithm
are based on real cell counts xt,p to interpolate and mimic
the natural development process, our reconstruction loss
is based on the original sequenced cell counts yt,p to avoid
a stiff ODE that is difficult to solve and to speedup the
back-propagation process69, as the number of cell counts
can easily scale to millions. Besides reconstruction loss,
the model also incorporates the following penalty terms as
shown in Eq.(5), where the default values are λ0, λ5 = 1.0,
λ1, λ2, λ3 = 0.5, and λ4 = 0.1,

l0 = λ0 ∗ (∥K1(t) > 6∥1 + ∥K2(t) > 6∥1)
l1 = λ1 ∗ ∥K2(t) ∗ Papop > 0∥1

l2 = λ2 ∗

{∥∥K1,2(t) ∗ (
∑

t∈T xt,p == 0)
∥∥
2

∥K1,2(t) ∗ (xt,p == 0)∥2

l3 = λ3 ∗

∥∥∥∥∥
C∑
i=1

K1,2(t)i −K1,2(t)bg ∗ C

∥∥∥∥∥
1

l4 = λ4 ∗

∥∥∥∥∥
C∑
i=1

K1,2(t)i < 0

∥∥∥∥∥
2

l5 = λ5 ∗ ∥K2(t) ∗ Pprol < 0∥1

(5)

Specifically, the rational behind these penalties is:

• the transition rates in topology L should not be too large
to violate the biological prior knowledge. Here we used
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6 per day as upper bound for each rate, leaving it as an
adjustable parameter at users’ discretion.

• fully differentiated populations should have limited prolif-
eration ability (e.g., Late Erythroids).

• populations with 0 cell counts at a certain time point
should not have a large proliferation or differentiation
ability at that time point (cell counts are summed up in
constant rate mode).

• the mean of the estimated rates for each meta-clone
combined should mimic the dynamics of background
cells. Here, "background" stands for all available cells,
independent of the barcode presence/quality.

• we hypothesize that the apoptosis process is not too
quick in a homeostatic environment.

• early progenitor populations should have an overall pos-
itive net growth rate (e.g., HSCs).

We used L1 norm for most penalties due to its ability of
selecting non-zero parameters, except for l2 and l4, where
L2 norm was applied to make the penalty less stringent.
For l2, considering an ideal scenario where cell counts se-
quenced at each population and time point are 100% accu-
rate, then population with 0 counts should not have either
proliferation or differentiation rates. However, in reality, loss
of barcodes or sequencing error at each time point could
introduce extra dropouts to cell counts, especially for small-
sized clones, making the data harder to analyze (e.g., in
the cord blood dataset, meta-clone 1 does not have any
HSC/MPP 1 or HSC/MPP 2 whilst most of the progenies
exist). By using the aforementioned technique, CLADES
has the ability to counteract this negative effect and au-
tomatically interpolate cell counts to recover a smoothed
trajectory. For l4, our intention was to introduce moderate
constraints to the model in terms of suppressing the nega-
tive transition rates, which would increase the model’s flex-
ibility when facing complicated systems.

The overall cost is the sum of both penalty terms and
reconstruction loss at each time point t, clone c, population
p respectively,

loss =
T∑
t

C∑
c

P∑
p

(recon+
5∑

i=0

li) (6)

From DNA barcodes to meta-clones. According to the
experimental protocol, the inheritable DNA barcodes are
induced in undifferentiated populations and their immedi-
ate progenies at Day 0. Due to the typical challenges in
clonal analysis, e.g., cell dropout, barcode homoplasy or
loss of barcodes32, although hundreds of unique clones
are captured, a large proportion only contains few cells or
appeared in limited time points and populations. Therefore,
analyzing the behavior of individual clones is infeasible.

It is straightforward to use the pooled information, un-
der the assumption that clones with similar kinetics should
in turn produce similar cell counts at a specific time point
t for a specific population p. Using cell counts at (ti, pi)
as features, clones with alike characteristics were then
clustered together to form meta-clones using the Leiden
clustering method from scanpy package70. The number
of meta-clones produced for each dataset is left as an ad-
justable parameter; in our analysis, the default way is to set
the parameter resolution in Leiden clustering equals to 1.

Model initialization and training details. For the con-
stant mode, the default Kaiming Uniform71 was used to

initialize the rates (K1,2) of the ODE function,

W ∼ U
(
−
√
6 / fin,

√
6 / fin

)
(7)

where fin is the dimension of input layer (number of de-
fined cell populations). For dynamic mode, since the esti-
mated rates for each meta-clone are given by linear layers
with a small input, the weights are relatively large if the
parameters are initialized by the aforementioned approach
because of the inversely proportional property. Therefore,
to avoid problems like gradient exploding or numerical
overflow which makes the adaptive solver unable to solve,
we used standard normal distribution N ∼ (0, 0.01) to ini-
tialize weights in MLP alternatively.

To train the model, the default epochs are 1,500 whilst
for the ODE block of dynamic mode, softplus activation
and hidden dimension size of 32 were used. AdamW op-
timizer with default settings were adopted and we varied
the learning rate using multi-step learning rate decay ev-
ery 200 epochs with decay rate γ = 0.5. The learning rate
for constant mode and dynamic mode are 5e−2 and 1e−3,
respectively.

Bootstrapping for model confidence intervals. As de-
scribed in the parameter inference section, PoissonNLL
was used instead of GaussianNLL because it is more ro-
bust to sparse data with lineage relationships. However,
we could not directly acquire the estimation error or 95%
CI based on this loss function.

To generate such data and get a comprehensive anal-
ysis of the rates, we adopted the bootstrapping strategy,
which randomly samples the observation data with re-
placement M times (the initial time point t0 is not sam-
pled). Based on the central limit theorem, we could get
the percentile CI for each transition rate and the quantile
estimation error for the total cell counts after ranking the
fitted parameters θ̂0, θ̂1, ..., θ̂M−1, θ̂M of all bootstrapping
trails.

Si ∼ Sample(∀xt,p ∈ Obs \ x0,p, replace = True)

θ̂i,t = f(Si)

CI ∼ Quantile(θ̂0, θ̂1, . . . , θ̂M )

s.t. i = 1, 2, . . . ,M

(8)

For statistical analysis and the comparison of rates within
different meta-clones, we mainly used student t-test and
Mann Whitney U rank test based on whether the distri-
bution of bootstrapped values follows a standard normal
distribution or not. The p-values of multiple tests were
corrected using Benjamini-Hochberg procedure (false dis-
covery rate, FDR-BH) with 0.05 as threshold.

The bootstrapping approach might over-estimate the
CI given limited available experimental time points; alter-
native approaches include increasing sequencing times or
profiling the likelihoods72,73 after fitting the model (Supple-
mentary Note 3), at the cost of a complicated experimental
design or a linearly increased computational complexity.

Helping functions. CLADES’s performance mainly de-
pends on the loss function and the penalties during the
optimization process; additionally, we use the average re-
covery rate of cell counts and mean absolute difference
among the rates from bootstrapping to help assessing the
usage of the model.
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Average recovery rate. This model evaluation metric is
used to assess how well the model could reconstruct the
original cell counts with the following mathematical for-
mula,

rate = (1− mean(
∑
|xt,c,p − x̂t,c,p|)

mean(
∑

xt,c,p)
) ∗ 100 (9)

where xt,c,p and x̂t,c,p are the observed and predicted cell
counts at any given time point, meta-clone id and popula-
tions.

Mean absolute difference of parameters. This part is
mainly used to post-process the bootstrapping results to-
gether with the p-values given by the statistical tests. In
some cases, even if the variance of distribution given by
bootstrapping is small, the statistical difference among
rates is still significant, which leads to the wrong interpre-
tation especially when the total cell counts is equal to 0.
Suppose we need to compare two rates and from boot-
strapping we get Kθi,c1,p1,p2

and Kθi,c2,p1,p2
. Then the

mean absolute difference of rates is defined as,

fc =

∑M
i=1 |Kθi,c1,p1,p2 −Kθi,c2,p1,p2 |

M
(10)

and the default threshold for this metric is 0.1: any differ-
ence lower than this threshold would be considered as not
significant.

Using Gillespie to simulate differentiation landscapes.
We adopted and modified the original Gillespie algorithm
to make it achieve a balance between accuracy and time
complexity (Supplementary Note 2, algorithm 1). As tcut
was introduced in the algorithm design to guarantee con-
vergence (e.g., the time increment between two simulation
steps ∆t = max(∆t, tcut)), the cell counts generated by
the stochastic simulation algorithm does not perfectly re-
semble the observed counts, whilst this does not affect the
division statistics of a progenitor cell to produce a certain
progeny and fate bias towards a terminal states.

The division summary is recapitulated starting from
an early progenitor cell at the initial time point (e.g.,
HSC/MPP 1 or prog_1); the number of proliferation events
was counted until the first progeny was produced. This
progeny could either be a later progenitor or a specific
cell fate (e.g., prog_2 or Erythroids). In some realisations,
there were only differentiation events, thus the number of
division was 0.

Predicting the fate bias given a progenitor cell is a non-
trivial task. Since our algorithm always starts with 1 initial
progenitor cell, we run the simulation for 1,000 times to
reproduce the stochasticity. Given a celltype, the fate bias
prediction part of CLADES works like chained conditional
probability,

prog
CLADES−−−−−→ fate ∼ P (fate | prog)

=
n−1∏
i=1

m∑
j=1

P (Cj
i+1 | Ci)

P (Cj
i+1 | Ci) =

number of Cj
i+1

number of Ci

(11)

where Ci can be either a progenitor, terminal fate or any
other intermediate cell types along the progression path

and j denotes the different differentiation path towards the
same fate (e.g., Monocytes can be produced from both
prog_DC_Mono and prog_Mono).

We construct the groundtruth fate bias using clone-level
information instead of cell counts. Specifically, for each
meta-clone, the groundtruth from a progenitor to a certain
fate is given by

prog
GroundTruth−−−−−−−→ fate ∼

∑
{barcodem}∑
{barcodeCij

}
s.t. i ∈ [1, . . . ,m] j ∈ [1, . . . , n]

(12)

where i is the index of all cell types produced in a particular
transition path j and m represents the fate type. Using all
barcodes along the transition path within a meta-clone is
an alternative strategy due to the low capturing efficiency
of current LT-scSeq data, where most of clone barcodes
can only be observed at limited time points or populations.

The original Gillespie algorithm sometimes falls into
an infinite loop of choosing the same reaction, due to the
extremely small time increments. Though the introduction
of tcut does not affect our mentioned analysis above, we
lose other information the Gillespie algorithm could pro-
vide, e.g., analysis of cell count dynamics and statistics of
reactions.

Benchmarking with CoSpar on hematopoiesis dataset.
We then applied CLADES to the same hematopoiesis
dataset used by CoSpar and compared the fate transition
map for all progenitor-fate pairs. We followed the standard
CoSpar preprocessing pipeline described in its documen-
tation, which provided us with bias score towards each
possible cell fate named as ’fate_map_transition_map’.
Since CoSpar generates bias score for each cell and our
method is based on meta-clones, to make a fair compari-
son, for each [meta_clone, progenitor-fate pair], we pooled
the cell-specific scores of CoSpar to get a smoothed value
for that meta-clone,

prog
CoSpar−−−−→ fate ∼

∑
Scorecij
Nci

s.t. c ∈ C i, j ∈ P

(13)

where Scorecij is the bias score provided by CoSpar for
meta-clone c, from progenitor i to fate j and Nci is the cor-
responding number of cells.

Although CoSpar provided choice of using clonal infor-
mation alone to infer fate transition map, we compared with
its standard form of using both lineage and gene expres-
sion information, which consistently showed better and ro-
bust performance. Fate bias scores generated by both al-
gorithms cannot be directly compared, therefore, the rela-
tive magnitude of bias was compared after normalization,
and Pearson correlation was used as a quantitative mea-
surement,

ρ (minmax({Sci}), minmax({Scj}))
s.t. i, j ∈ {CoSpar,CLADES,GroundTruth}

(14)

where {Sci} is the set of scores for all meta-clones given a
progenitor-fate pair.

Data availability

Two datasets were used in this paper to demonstrate the
ability of CLADES: 1) the human cord blood hematopoiesis
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dataset is a newly generated LARRY LT-scSeq data from
our collaborators which can be acquired via requests; 2)
the mouse hematopoietic system is publicly available18,32.

Code availability

CLADES is written in Python and is publicly available at
https://github.com/StatBiomed/clonaltrans with both
constant and dynamic modes implemented. It also con-
tains documentations, pipelines and Jupyter Notebooks to
reproduce figures and results mentioned in this paper.
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