

AMERICAN HEART ASSOCIATION
JOURNALS

Disclaimer: The manuscript and its contents are confidential, intended for journal review purposes only, and not to be further disclosed.

Title:

Authors:

Kevin Southerland (Duke University)

Email: ahajournals@heart.org

Author Instructions and Submission Sites: <https://www.ahajournals.org/all-submission-sites>

Reviewer Resources: <https://www.ahajournals.org/for-reviewers>

Title

Vcam1+ Fibro-adipogenic Progenitors Mark Fatty Infiltration in Chronic Limb Threatening Ischemia

Authors:

Qunsheng Dai^{1,*}, Changxin Wan^{2,*}, Yueyuan Xu^{3,4,5}, Kaileen Fei⁶, Lindsey A. Olivere⁷, Brianna Garrett¹, Leo Akers¹, Derek Peters^{3,4,5}, James Otto¹, Christopher D. Kontos⁸, Zhiceng Ji², Yarui Diao^{3,4,5,9,10,#}, Kevin W. Southerland^{1,#}

Affiliation:

1. Division of Vascular and Endovascular Surgery, Department of Surgery, Duke University Medical Center, Durham, NC, USA
2. Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
3. Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
4. Duke Regeneration Center, Duke University Medical Center, Durham, NC, USA
5. Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
6. Duke University School of Medicine, Duke University, Durham, NC, USA
7. Division of Vascular Surgery, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
8. Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
9. Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, USA
10. Department of Pathology, Duke University Medical Center, Durham, NC, USA

*These authors contributed equally to this study.

#Co-corresponding authors

1 **Abstract**

2 Skeletal muscle health and function is a critical determinant of clinical outcomes in patients with
3 peripheral arterial disease (PAD). Herein, we identify fatty infiltration, the ectopic deposition of
4 adipocytes in skeletal muscle, as a histological hallmark of end-stage PAD, also known as
5 chronic limb threatening ischemia (CLTI). Leveraging single cell transcriptome mapping in
6 mouse models of PAD, we identify a pro-adipogenic mesenchymal stromal cell population
7 marked by expression of Vcam1 (termed Vcam1+ FAPs) that expands in the ischemic limb.
8 Mechanistically, we identify Sfrp1 and Nr3c1 as regulators of Vcam1+ FAP adipogenic
9 differentiation. Loss of Sfrp1 and Nr3c1 impair Vcam1+ FAP differentiation into adipocytes *in*
10 *vitro*. Finally, we show that Vcam1+ FAPs are enriched in human CLTI patients. Collectively, our
11 results identify a pro-adipogenic FAP subpopulation in CLTI patients and provide a potential
12 therapeutic target for muscle regeneration in PAD.

13

14 **Introduction**

15 Peripheral arterial disease (PAD), which affects more than 230 million individuals worldwide,
16 represents a significant global healthcare problem¹. The most severe clinical manifestation of
17 PAD is chronic limb threatening ischemia (CLTI), which presents as rest pain, non-healing
18 ulcers, or gangrene². The primary therapy for CLTI is revascularization³. However, despite
19 significant advancements in revascularization techniques, the outcomes for CLTI still remain
20 quite poor, with major amputation rates at 25% at 1 year⁴. These poor outcomes have
21 highlighted the need for a greater understanding of the pathobiology of CLTI and the
22 development of novel therapies.

23

24 Recent scientific reports have emphasized the importance of skeletal muscle regeneration as a
25 key determinant of limb outcomes in PAD⁵⁻⁷. In fact, CLTI patients can be biologically
26 distinguished from those with milder forms of PAD by muscle specific signatures⁸⁻¹⁰. In
27 particular, a radiographic hallmark of the CLTI limb is fatty infiltration, the ectopic deposition of
28 intramuscular adipose tissue at the expense of regenerating muscle fibers¹¹⁻¹³. This process
29 leads to progressive muscle dysfunction, impaired ambulation, and ultimately significant quality
30 of life impairments^{14,15}. To date there are no therapeutic strategies to ameliorate fatty infiltration
31 and improve skeletal muscle repair in the ischemic limb. This is in part due to an incomplete
32 characterization of the tissue and cellular processes that contribute to fatty infiltration in the
33 CLTI limb.

34

35 The radiographic identification of adipocytes in the CLTI limb implicates a muscle-resident
36 mesenchymal cell population, term fibroadipogenic progenitor (FAPs), as a critical regulator in
37 the pathobiology of CLTI^{16,17}. FAPs are a diverse cell population that display context-
38 dependent behavior. Under healthy conditions that permit regeneration, FAPs provide
39 regenerative cues that orchestrate muscle stem cell (MuSC) activation, proliferation and
40 differentiation¹⁸⁻²⁰. However, in pathologic conditions, FAPs differentiate into either fibroblasts
41 and/or adipocytes, resulting in replacement of muscle with non-contractile tissue and loss of
42 muscle function²¹⁻²³. Recent studies have identified FAP subpopulations that contribute to fatty
43 infiltration and have provided insights into cellular mechanisms responsible for this process^{24,25}.
44 However, these studies were performed in experimental models with limited clinical applicability.

1 Hence, the mechanisms that underlie the adipogenic differentiation of FAPs in the CLTI limb
2 remain unresolved. Identification of such molecular processes may provide critical insights that
3 would facilitate the development of muscle-specific therapies for CLTI patients.
4

5 Accordingly, in this study, we sought to better understand the molecular and cellular
6 mechanisms responsible for adipogenic differentiation of FAPs in the CLTI limb. First, using
7 skeletal muscle specimens from human PAD patients, we validate prior clinical findings, and
8 demonstrate transcriptionally and histologically that fatty infiltration is a signature of the CLTI
9 limb. Next, we used a mouse model that phenocopies CLTI, to identify Vcam1+ FAPs as an
10 injury-induced population with increased adipogenic potential. Furthermore, our studies
11 demonstrate that Sfrp1 and Nr3c1 are required for adipogenic differentiation of Vcam1+ FAPs,
12 and finally we show that FAPs in CLTI patients are enriched in Vcam1, Sfrp1, and Nr3c1. These
13 findings support a potential novel mechanism responsible for fatty infiltration and failed muscle
14 regeneration in CLTI.
15

16 **Methods**

17 **Human tissue collection**

18 Paired human skeletal muscle samples were obtained from patients undergoing limb
19 amputation for PAD³¹. Tissue was embedded in OCT and 8- μ m sections were prepared for
20 histologic analysis.
21

22 **Preclinical PAD model**

23 C57BL/6 and BALB/c mice age 10-12 weeks were anesthetized with isoflurane. Hindlimb
24 ischemia was induced by surgical ligation of the femoral artery as previously described^{31,48}.
25 Laser doppler perfusion imaging (LDPI) was performed with a Moor Instrument LDI2-High
26 Resolution (830nM) System (Moor, Axminster, UK) to quantify perfusion.
27

28 **Oil Red O staining on tissue sections (human and mice)**

29 The mouse tibialis anterior skeletal muscle from day 14 hindlimb ischemia was harvested and
30 the human skeletal muscle from both ischemic (distal) and non-ischemic (proximal) parts were
31 obtained from surgical amputation specimens, all the tissues were embedded in OCT
32 compound in liquid N2. Cryostat sections (8 μ m) were prepared on microscope slides (Fisher
33 Scientific, Superfrost Plus) for histological analysis.
34

35 Frozen sections were allowed to come to room temperature (RT) for 10 minutes then fixed by
36 10% neutral buffered formalin for 10 minutes at RT followed by incubation in propylene glycol
37 for 5 minutes at RT and in heated (60°C) Oil Red O solution for 20 minutes using Oil Red O
38 Stain Kit (Abcam, ab150678) according to the manufacturer's protocol. Slides were observed
39 and images were acquired using a Zeiss Axio Imager Z2 Upright Microscope at x 100
40 magnification at the Duke Light Microscope Core Facility. Lipid with Oil Red O positive area was
visualized and measured using the ImageJ (NIH) software.
41

Isolation and digestion of hindlimb

42 Hindlimb ischemia (HLI) was performed as previously described by our group on C57BL/6 mice
43 aged 8-12 weeks. At 3 days post-ischemia, hindlimb muscles were surgically dissected,
44 harvested, dissociated, and digested with Collagenase II (ThermoFisher Scientific, 17101015).
45 Briefly, the isolated hindlimb muscles were minced finely and then subjected to enzymatic

1 digestion for 1.5 hours at 37°C. The muscle dissociation buffer contained collagenase II (700-
2 800 U/mL) and dispase (11 U/mL) in Ham's F-10 nutrient mixture with 1 mM l-glutamate
3 (ThermoFisher Scientific, 11550043) supplemented with 10% horse inactivated serum (HS)
4 (Gibco) plus penicillin-streptomycin (P/S) (Gibco). Upon dissociation, the cell suspension was
5 subject to filtration through a 40 mm cell strainer (Corning, 352340) and centrifugation for 5 min
6 at 500 g at 4°C.

7
8 **FACS isolation of fibro-adipogenic progenitor cells (FAPs)**
9 The single-cell suspension was diluted to 1 x 105 cells/mL with a washing medium (WM: Ham's
10 F-10 nutrient mixture with 1 mM l-glutamate supplemented with 10% HS plus P/S). Cells were
11 stained with 7-AAD to assess viability and were incubated with the primary antibodies in a
12 rotating shaker at 4°C for 45 minutes protected from light. The following antibodies were used to
13 isolate two subgroups of FAPs: (1) CD31-APC (-), CD45-APC (-), Sca1-FITC (+), VCAM-1 biotin
14 PE-Cy7 (-), and a7-Integrin-PE (-), (2) CD31-APC (-), CD45-APC (-), Sca1-FITC (+), VCAM-1
15 biotin PE-Cy7 (+), and a7-Integrin-PE (-). Sorting was performed on a BD DIVA sorter at the
16 Duke Flow Cytometry core facility. Data were collected and analysis was performed using
17 FlowJo software. Strict gating schemes were applied to prevent nonspecific cellular
18 contamination and fractionated cells were collected in PBS + 2% FBS + P/S or WM.
19

20 **Mouse FAP cell culture and adipogenesis assay**
21 FACS-sorted FAPs were cultured and grown on ECM (Sigma, E1270) coated plates in growth
22 media (GM) consisting of DMEM (ThermoFisher Scientific, 11995065) supplemented with 10%
23 HS, 20% FBS, P/S, and 5 ng/mL bFGF (ThermoFisher Scientific, PHG0367) at 37°C and 5%
24 CO2. GM was changed every three days until about 80% cell confluence. For adipogenic
25 induction, when FAPs growth reached 60-80% confluence, the GM was replaced with
26 StemPro® adipogenesis Differentiation Medium (Gibco, StemPro® adipogenesis Differentiation
27 Kit, A10070-01) and were maintained for 3 and 6 days, respectively. At the endpoint of
28 differentiation, cells were fixed and stained with Oil Red O and antibodies for
29 immunofluorescence staining for evaluating adipogenesis.
30

31 **Oil Red O staining in cultured cells**
32 For visualization and quantification of Oil Red O staining, FACS-sorted subgroup FAPs
33 (Vcam1+ and Vcam1- FAPs) were grown in a 12-well ECM-coated plate. The Oil red O solution
34 (Sigma-Aldrich) was used for the detection of neutral lipid droplets in adipocytes differentiated
35 from FAPs. The stock solution (0.3% solution of Oil red O in 100% isopropanol) was dissolved
36 in ddH2O in 3:2 ratios. The cells were fixed in 10% neutral formalin for 60 minutes at room
37 temperature (RT) followed by two washings with ddH2O then stained with Oil Red O solution for
38 20 minutes at RT, hematoxylin was used for counterstaining. Lipid droplets appeared red and
39 nuclei appeared blue. Images were acquired using an Olympus IX70 microscope at x 200
40 magnification. After finishing Oil Red O staining and image acquisition, staining was extracted in
41 300 uL/well 100% isopropanol, and 200 uL was used to measure Oil Red O stain in a 96-well
42 plate reader at 492 nm.
43
44
45
46
47
48
49
50
51

1 **1 Immunofluorescence staining of cultured cells**

2 FACS-sorted subgroup FAPs (Vcam1+ and Vcam1- FAPs) were seeded and grown in MatTek
3 glass bottom Microwell dishes (MatTek, 35 mm Dish No. 0 Coverslip 10 mm Glass, P35GCOL-
4 0-10-C), adipogenesis was induced as described previously. At the endpoint of differentiation,
5 cells were fixed in 4% paraformaldehyde for 10 minutes and permeabilized with 0.2% Triton X-
6 100 in PBS for 5 minutes and then in PBS for three 5-minute washes. Blocking solution (10%
7 normal goat serum in PBS and/or AffiniPure Fab Fragment Goat Anti-Mouse IgG (H+L)
8 (Jackson ImmunoResearch laboratories, 115-007-003) was applied for 30 minutes at RT
9 followed by primary antibodies [perilipin (Cell signaling, 9349S), PPAR γ (Cell signaling, 2435S),
10 myosin heavy chain (Abcam, 37484) and myogenin (Abcam, 1835)] incubation overnight at 4°C.
11 The next day, the cells were washed in PBS for three 5-minute washes and then incubated with
12 goat anti-rabbit IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor™ 488 (Invitrogen,
13 11008) or Goat anti-Mouse IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor™ 488
14 (Invitrogen, 11001) for 1 hour at RT. After washing three times with PBS, the cells were
15 counterstained with DAPI for 1 minute at RT. The cells were mounted with Fluoromount-G™
16 Mounting Medium (Thermo Fischer Scientific, 00-4958-02). Negative control staining included
17 reactions substituting the primary antibody with normal rabbit IgG or normal mouse IgG. Cells
18 were observed and images were acquired using a Zeiss Axio Imager Z2 Upright Microscope at
19 x 200 magnification at the Duke Light Microscope Core Facility.
20

21 **siRNA knockdown assay**

22 FACS-sorted Vcam1+ FAP cells were grown to 60-80% confluence and transfected with 40 nM
23 Accell mouse Sfrp1 siRNA SMARTPool (Dharmacon, E-048941-00-0005), 50 nM ON-TARGET
24 plus mouse Nr3c1 siRNA SMARTPool (Dharmacon, L-045970-01-0005) and 50 nM ON-
25 TARGET plus Non-targeting Control siRNAs (Dharmacon, D-001810-04-05) diluted in Opti-
26 MEM™ I Reduced Serum Medium (ThermoFisher Scientific, 11058021) and transfected with
27 Lipofectamine™ RNAiMAX Transfection Reagent (Invitrogen, 13778030) per the manufacturer's
28 recommendation for 48 to 72 hours.
29

30 **Sfrp1 treatment and administration of Way-316606**

31 FACS-sorted Vcam1- FAPs were grown to 60-80% confluence followed by adipogenic
32 differentiation and were treated with 500 ng/mL recombinant mouse sFRP-1 protein (R&D
33 systems, 9019-SF) with or without sFRP-1 inhibitor, 2 μ M Way-316606 hydrochloride (Tocris,
34 4767) or vehicle control (DMSO). At the endpoint of differentiation and treatment, the cells were
35 fixed for Oil Red O staining and immunofluorescence staining to assess adipogenesis.
36

37 **RNA isolation and real-time quantitative RT-PCR**

38 Total RNA was extracted from cells using TRIzol reagent (Invitrogen), chloroform extraction,
39 and isopropanol precipitation followed by DNase I (Invitrogen, DNA-free™ DNA Removal Kit,
40 AM1906) treatment according to the manufacturer's protocol. RNA was stored at -80°C. DNase
41 I-treated total RNA (1 μ g) was used for first-strand cDNA synthesis (reverse transcription) using
42 SuperScript™ IV VILO™ Master Mix (Invitrogen, 11756050), quantitative real-time RT-PCR was
43 performed using SYBR™ Green Universal Master Mix (Applied Biosystems, 4309155) to assess
44 gene expression. (mouse Sfrp-1 forward primer: CAATACCACGGAAGCCTCTAAC, mouse
45 Sfrp1 revise primer: GCAAACACTCGCTTGCACAGAGATG, mouse Nr3c1 forward primer:
46 TGGAGAGGACAACCTGACTTCC, mouse reverse primer: ACGGAGGAGAACTCACATCTGG,
47 mouse GAPDH forward primer: CATCACTGCCACCCAGAAGACTG, mouse GAPDH reverse
48 primer: ATGCCAGTGAGCTTCCCCTTCAG). The reaction parameters included an initial 10
49 minutes of denaturing at 95°C followed by 40 cycles of denaturing for 15 seconds at 95°C,
50 annealing for 60 seconds, and extending for 60 seconds at 60°C. After a final extension, melt
51 curve analysis was performed.

1 **Western blot analysis**

2 Western blot analyses were used to compare protein levels in the cells with different treatments.
3 Total protein from the cultured cells was isolated by RIPA Lysis and Extraction Buffer
4 (ThermoFisher Scientific, 89900) with Halt™ Protease Inhibitor Cocktail (ThermoFisher
5 Scientific, 87786). Total protein concentration was determined by a detergent compatible DC™
6 Protein Assay Kit II (Bio-Rad Laboratories, #5000112). For Western blot analysis, 30-50 µg
7 protein was separated on a 10% polyacrylamide gel in Tris/glycine/sodium dodecyl sulfate
8 buffer and transferred to polyvinylidene difluoride (PVDF) membrane in Tris/glycine buffer. The
9 membrane was blocked with 5% non-fat milk for 1 hour at RT and incubated overnight at 4°C
10 with primary antibody [Sfrp1 (Invitrogen, MA5-38193), Nr3c1 (Cell signaling, 12041S), b-catenin
11 (Cell signaling, 8814S), GAPDH (Cell signaling, 2118S), and a-tubulin (Cell signaling, 2144S)].
12 After the primary antibody, membranes were hybridized with the appropriate anti-rabbit IgG
13 HRP-linked secondary antibody (Cell signaling, 7074S) for 1 hour at RT. The membrane was
14 developed with Pierce™ enhanced chemiluminescence (ECL) Western Blotting Substrate
15 (ThermoFisher Scientific, 32209) per the manufacturer's recommendation and exposed to
16 ChemiDOC™ MP Imaging system (Bio-Rad Laboratories).

17
18 **Transcriptomic analysis**

19 **Human scRNA-seq analysis**

20 Transcriptome profiles of CLTI patients were obtained from the Gene Expression Omnibus
21 (GEO;GSE227077) from Southerland et al³¹.

22
23 **Mouse scRNA-seq analysis**

24 The sequencing reads (10x Genomics) were processed using the Cell Ranger pipeline (v3.1.0,)
25 with GRCm38 as the reference genome. Downstream analysis was performed using R package
26 Seurat (v4.3.0) with the output read count matrix as input⁴⁹. We filtered out cells using feature
27 number > 4100 or < 1000, or mitochondrial RNA ratio > 25%. Doublets were identified and
28 removed using Python package Scrublet (v0.2.3)⁵⁰. Raw read count matrix was normalized and
29 log-transformed by the NormalizeData function. Top 2000 highly variable features were selected
30 using FindVariableFeatures function and then scaled by ScaleData function. Principle
31 component analysis was performed using RunPCA function with top 50 pcs saved. For multi-
32 sample integration, the harmony algorithm was performed using the RunHarmony function with
33 PCA result as input⁵¹. Using harmony embeddings, we then compute UMAP and cluster cells.
34 Cell type annotations of each cluster were made based on these marker genes. FAPs were
35 selected after annotation and processed from read count matrix using the steps mentioned
36 above. Marker genes of each cluster were computed using the function FindAllMarkers.

37
38 **Mouse bulk RNA-seq analysis**

39 Bulk RNA-seq reads were aligned to the GRCm38 reference genome by STAR⁵². Read count
40 matrix for each sample was computed using FeatureCounts (v2.0.1)⁵³. The DEGs were
41 identified using R package DESeq2 (v1.34.0) with a threshold of adjusted p-value less than 0.05
42 and fold change greater than 2⁵⁴. GO enrichment analysis was performed with these DEGs via
43 R package clusterProfiler (v4.8.3)⁵⁵.

44 General statistics

45

46

1 **Results**

2 **Human CLTI limb has an adipogenic phenotype**

3 Computed tomography (CT) analyses have established fatty infiltration as a feature of the CLTI
4 limb^{11,12,26}. We sought to biologically validate these clinical findings. First, we used a publicly
5 available human PAD skeletal muscle bulk RNA-seq dataset, which contains samples from non-
6 PAD (n=15), intermittent claudication (mild PAD) (n=20) and CLTI (n=16) patients to assess the
7 gene expression of adipocyte marker genes⁹. We found a clear upregulation of adipocyte
8 marker genes in CLTI patients compared to intermittent claudication and non-PAD patients
9 (Figure 1a-d). Next, we obtained paired proximal and distal muscle specimens from 8 CLTI
10 patients undergoing limb amputation (Table S1). In this experimental design, proximal
11 specimens are from non-ischemic muscle while the distal specimens are ischemic (Figure 1e).
12 Furthermore, this approach controls for heterogeneous clinical variables, such as age, diabetes,
13 and medication use that can influence adipogenesis. To assess adipogenesis, we used the
14 neutral lipid stain Oil Red O (ORO). Proximal (non-ischemic) muscle specimens displayed
15 minimal ORO staining. In contrast, extensive ORO staining was noted in distal (ischemic)
16 muscle specimens (Figure 1f, g). These transcriptomic and histologic data indicate that CLTI
17 patients have an adipogenic phenotype.

18
19 We then sought to identify a suitable mouse model to elucidate the mechanisms of
20 adipogenesis in the ischemic limb. To this end, we performed femoral artery ligation to induce
21 hindlimb ischemia (HLI), a model of PAD, on both BALB/c and C57BL/6 mice, two commonly
22 used models to study ischemic responses. Tibialis anterior (TA) muscle from the ischemic limb
23 was obtained at day 14 post HLI and stained for ORO. Compared to that from C57BL/6 mice,
24 which have robust regenerative capacity²⁷⁻²⁹, muscle collected from BALB/c mice demonstrated
25 significantly more adipogenic replacement, resembling that in the ischemic muscle from human
26 patients with CLTI (Figure 1h, i). These data, together with previous reports showing that
27 BALB/c mice recapitulate many key aspects of the human CLTI phenotype, such as impaired
28 muscle regeneration and ischemic tissue loss²⁸⁻³¹, support the use of this model model to
29 investigate mechanisms of the pathologic adipogenesis in the ischemic limb.

30
31 **Single-cell RNA sequencing reveals Vcam1+ FAPs as a candidate adipogenic population
32 in the ischemic limb**

33 To explore the cellular mechanisms of fatty infiltration in an unbiased, high-resolution manner,
34 we generated a dynamic single cell atlas of successful muscle regenerative (C57BL/6 mice) and
35 impaired muscle regeneration (BALB/c mice). We collected ischemic TA muscles of 10-12 week
36 old mice at days 0 (no injury), 1, 3, 7, 10, and 14 after HLI (n = 2-3 mice per time point) (Figure
37 2a). We enzymatically digested TA muscles into single-cell suspensions and performed
38 scRNA-seq on the 10x Chromium platform. We captured 159,189 cells and identified 15 unique
39 clusters (Figure S1a-d). Next, we re-clustered all the FAPs (n = 37,260) in this dataset on a
40 new UMAP space. We identified 12 distinct FAP clusters in both mouse strains and across all
41 time points (Figure 2b). To identify a cluster responsible for the adipogenic phenotype, we first
42 turned our attention to day 14, the time point at which BALB/c mice displayed significantly more
43 ORO staining (i.e. adipogenesis) than C57BL/6 mice (Figure 1d,e). On day 14 in BALB/c mice,
44 there were three predominant FAP sub-clusters, clusters 0 (24.5%), 1 (23.5%), and 2 (23.5%).

1 In contrast, clusters 1 (C1) and 2 (C2) represented a small fraction, 7.2 and 12.9% respectively,
2 of the day 14 FAP population in C57BL/6 mice (Figure 2c); hence, we reasoned that C1 and C2
3 were reasonable candidates driving adipogenesis. Pathway analysis of C1 and C2 gene profile
4 revealed the enrichment of genes involved in fat cell differentiation in C2 compared to C1
5 (Figure 2d). Thus, C2 appeared to be the most suitable adipogenic candidate cluster. Next, we
6 sought to identify a cell-surface marker for this cluster that would permit FACS isolation of these
7 cells for *in vitro* characterization of their functional properties. Notably, Vcam1 has been shown
8 to be a marker of injured FAPs³². Accordingly, in our data we found that Vcam1 expression was
9 upregulated in C2 compared to other FAP subclusters, supporting its use as a marker gene for
10 this population (Figure 2e).

11

12 **Vcam1+ FAPs display increased adipogenic potential and lipid metabolism**

13 To better characterize Vcam1+ FAPs and gain mechanistic insights into their role in
14 adipogenesis, we generated a bulk RNA-seq dataset of Vcam1+ and Vcam1- FAPs isolated
15 from the ischemic limb of C57BL/6 mice and cultured in adipogenic differentiation media
16 conditions for 3 days (Figure 3a; Figure S2a). We chose this time point to capture the
17 transcriptional changes preceding adipogenic differentiation since both Vcam1+ and Vcam1-
18 FAPs display minimal adipogenic differentiation at this time point (Figure S2b-g). Principal
19 component analysis demonstrated that Vcam1+ and Vcam1- FAPs clustered separately (Figure
20 3b). Compared to Vcam1- FAPs, Vcam1+ FAOs expressed 587 upregulated and 575 down-
21 regulated genes (Figure 3c), which are highly enriched for fatty acid and lipid metabolism
22 (Figure 3d).

23

24 We further investigated the adipogenic capacity of Vcam1+ FAPs. After culturing in adipogenic
25 conditions for 6 days, Vcam1+ FAPs displayed significantly greater adipogenesis compared to
26 Vcam1- FAPs, evident by increased ORO, perilipin, and PPAR γ staining (Figure 3e-j). Taken
27 together, these data demonstrate that Vcam1+ FAPs are pro-adipogenic subcluster.

28

29 **Sfrp1 regulates Vcam1+ FAP adipogenic differentiation**

30 To probe for the underlying mechanism driving Vcam1+ FAP-promoted adipogenesis, we
31 explored the RNA-seq profiles of Vcam1+ and Vcam1- FAPs for Wnt signaling, which has been
32 reported to be a critical inhibitor of adipogenesis^{33,34}. Indeed, Wnt signaling pathways were
33 significantly downregulated in Vcam1+ FAPs compared to Vcam1- FAPs (Figure 4a).
34 Consistently, Sfrp1, an extracellular ligand that inhibits canonical Wnt signaling, was enriched in
35 Vcam1+ FAPs compared to Vcam1- FAPs in adipogenic media (Figure 4b). The positive
36 association between Sfrp1 and Vcam1 is also supported by the co-expression patterns of these
37 two genes in scRNA-seq data, with a Pearson correlation of 0.52 (Figure 4c). Furthermore,
38 Sfrp1 was enriched in cluster 2, the Vcam1 high cluster (Figure S3a). While Sfrp1 expression
39 was higher in Vcam1+ FAPs, both at the mRNA and protein levels, the expression of B-catenin,
40 a marker of canonical Wnt signaling, was lower (Figure S3b, Figure 4d). Collectively, these
41 data support a strong causal relationship between Sfrp1, inhibition of Wnt signaling, and
42 adipogenesis in Vcam1+ FAPs.

43

1 Next, we determined whether Sfrp1 was sufficient and/or necessary for adipogenic
2 differentiation of FAPs. We FACS-isolated Vcam1+ FAPs and transfected them with a small
3 interfering (siRNA) to knockdown Sfrp1. As a result of effective Sfrp1 knockdown (over 80% at
4 the mRNA level (Figure S3c)), the Vcam1+ FAPs exhibited a significant decrease in adipogenic
5 capacity (Figure 4e-j). In a complementary gain-of-function experiment, we treated the FACS-
6 isolated Vcam1- FAPs (low adipogenic cell population) with recombinant Sfrp1. Compared to
7 vehicle control, exogenous Sfrp1 increased adipogenesis of Vcam1- FAPs, which was
8 abolished by Way-316606, a small molecular inhibitor of Sfrp1 (Figure S3d-i). These data
9 demonstrate that Sfrp1 helps regulate Vcam1+ FAP adipogenic differentiation.
10

11 **scRNA-seq and scATAC-seq identify Nr3c1 as a candidate cell-type specific transcription
12 factors that regulate the adipogenic transcriptional program in FAPs**

13 To better understand the mechanisms regulating Sfrp1-mediated adipogenesis, we sought to
14 identify putative transcription factors (TFs) responsible for the adipogenic transcriptional
15 program in FAPs. To accomplish this, we employed several computational methods. First, we
16 revisited our scRNA-seq data set and performed a differential gene expression analysis
17 between Vcam1+ and Vcam1- FAPs. Next, we imputed our gene list into Lisa, a computational
18 platform that uses public chromatin accessibility and ChIP-seq data to infer transcriptional
19 regulators³⁵. Through these analyses, we identified several candidate TFs, including Nr3c1,
20 Cebpb, and Med1 that regulate Vcam1+ FAPs (Figure 5a).

21
22 To further elucidate the regulatory mechanisms underpinning adipogenic differentiation in FAPs,
23 we generated a dynamic chromatin accessibility atlas of regenerative (C57BL/6) and non-
24 regenerative (BALB/c) responses in the ischemic limb at single cell resolution (Figure S4a,b).
25 For the purposes of this analysis, we re-organized all of the FAPs on a new UMAP space.
26 Unbiased clustering revealed 12 distinct FAP sub-populations (Figure S4c). Next, we identified
27 enriched peaks within 10 kilobases of the Sfrp1 locus (Figure 5b) and performed a TF binding
28 analysis, using Cistrome DB Toolkit, to identify TFs with significant binding on these peaks.
29 This analysis also revealed Nr3c1 as one of the candidate TFs for Sfrp1 (Figure 5b). Indeed,
30 Nr3c1 expression was higher in Vcam1+ FAPs compared to Vcam1- FAPs (Figure 5c).
31 Importantly, siRNA knockdown of Nr3c1 (Figure S4d) resulted in a significant decrease in
32 adipogenic differentiation of Vcam1+ FAPs (Figure 5d-i) and Sfrp1 expression (Figure 5j),
33 indicating a role of Nr3c1 in Sfrp1 mediated adipogenic differentiation of Vcam1+ FAPs.
34

35 **Human CLTI FAPs share a transcriptional signature with the adipogenic FAP cluster in
36 BALB/c mice**

37 To assess the clinical relevance of our findings, we asked whether FAPs from human CLTI
38 patients displayed a similar gene expression profile as in the adipogenic cluster 2 in BALB/c
39 mice. To do this we used a human CLTI scRNA-seq dataset that we generated previously³¹.
40 This dataset contains matched proximal/non-ischemic and distal/ischemic skeletal muscle
41 specimens from 3 CLTI patients following limb amputation. After isolating all of the FAPs onto a
42 new UMAP space, we identified 9 distinct FAP clusters, revealing immense transcriptional
43 heterogeneity of FAPs in the human ischemic limb (Figure 6a). Next, we segregated the FAPs
44 by anatomic location in the amputated limb; this revealed disparate transcriptional programs

1 between distal/ischemic and proximal/non-ischemic FAPs (Figure 6b). We then assessed the
2 expression of Vcam1, Sfrp1, and Nr3c1 in these human CLTI FAPs. Vcam1, Sfrp1, and Nr3c1
3 were all enriched in distal/ischemic FAPs compared to proximal/non-ischemic FAPs (Figure 6c-
4 e). Altogether, these data suggest similar transcriptional signatures characterized by an
5 induction of Nr3c1-Sfrp1 axis in Vcam1+ FAPs in response to muscle ischemia in BALB/c mice
6 and human CLTI patients.

7

8 Discussion

9 CLTI represents a grave threat to human life and limb; unfortunately there are a paucity of
10 regenerative therapies for this devastating pathology. Herein, we establish fatty infiltration as a
11 signature of the CLTI limb and identify a pro-adipogenic FAP subcluster. Specifically, (1) we use
12 transcriptional profiling in a murine CLTI model to identify Vcam1+ FAPs as an enriched
13 population in the ischemic limb, (2) we demonstrate that Vcam1+ FAPs display increased
14 adipogenic capacity in part via Sfrp1 mediated inhibition of canonical Wnt signaling; (3) we also
15 identify Nr3c1 as a transcriptional regulator of Vcam1+ FAP adipogenic differentiation; (4)
16 finally, we demonstrate that Vcam1+ FAPs are enriched in the ischemic muscle of CLTI patients
17 (Figure 6f).

18

19 Skeletal muscle responses are a key determinant of clinical outcomes in PAD patients^{30,36,37}. In
20 fact, CLTI, end-stage PAD, is distinguished from more benign forms of PAD by muscle specific
21 features^{8,9,38,39}. In particular, CLTI is hallmark by the replacement of functional muscle fibers
22 with adipocytes^{11,12}. Ferreira et al. performed an observational prospective study of 116 PAD
23 patients and demonstrated via computed tomography (CT) scans that CLTI patients have more
24 intramuscular fat than intermittent claudication patients and the muscle signature of fatty
25 infiltration was associated with worse clinical outcomes¹². Sugai et al. obtained CT scans on 327
26 consecutive patients undergoing revascularization procedures and found that intramuscular fat
27 was associated with major adverse limb events, such as amputation¹¹. Our work validates
28 these clinical findings, and our data solidify fatty infiltration as a pathological signature of the
29 CLTI limb, which points to FAPs as a critical element of CLTI pathobiology.

30

31 The mechanisms governing FAP-to-adipocyte conversion in the ischemic limb remain unknown.
32 Herein, we uncover a candidate molecular signaling axis that regulates this pathologic cell fate.
33 We identify Vcam1+ as an injury-specific FAP sub-cluster with increased adipogenic potential.
34 This finding is in agreement with prior studies demonstrating Vcam1 as a marker for injury
35 FAPs³². We also observed decreased Wnt signaling in Vcam1+ FAPs. Canonical Wnt signaling
36 is a well established inhibitor of adipogenesis³⁴. In a murine muscular dystrophy model, Reggio
37 et al demonstrated that the canonical Wnt/Gsk/B-catenin signaling axis inhibited FAP
38 adipogenic differentiation⁴⁰. Our findings support these conclusions and suggest that Wnt
39 signaling is a conserved mechanism that constrains adipogenesis in PAD as well as other
40 myopathies. Furthermore, we used *in silico* prediction methods along with in vitro inhibition
41 studies to identify Nr3c1 as a candidate upstream transcriptional regulator of the Sfrp1/B-
42 catenin axis. Nr3c1, a nuclear glucocorticoid receptor, is known to promote FAP differentiation
43 in adipocytes. Furthermore, glucocorticoid administration has been demonstrated to augment
44 Sfrp1 expression⁴¹. Altogether, these findings identify Nr3c1-Sfrp1-B-catenin as a putative

1 molecular axis governing FAP-to-adipocyte conversion, at least in vitro⁴². Further studies are
2 necessary to validate this mechanism in vivo. However, this pathway represents a potentially
3 targetable mechanism to ameliorate fatty infiltration in the ischemic limb.

4
5 The novel finding that Vcam1+ FAPs represent a pathologic FAP subpopulation that promotes
6 adipogenesis in not only a murine model of limb ischemia and human CLTI patients is
7 promising. To our knowledge, this is the first identification of a distinct FAP subpopulation in
8 human CLTI patients. Although several investigators have profiled the transcriptomes of human
9 FAPs at single cell resolution these data sets were derived primarily from healthy skeletal
10 muscle.^{7,25,43-45}. An important exception is the work of Farup et al, who identified Thy1+ FAPs
11 as a fibrotic FAP population enriched in type 2 diabetic patients. In addition, Fitzgerald et al
12 used skeletal muscle specimens from gluteus mimimus and rectus femoris muscle in patients
13 with symptomatic hip osteoarthritis undergoing total hip arthroplasty and identified Mme+ FAPs
14 as an adipogenic FAP subpopulation in this context²⁵. Interestingly, in our data set, Mme
15 expression was enriched in the proximal/non-ischemic tissue compared to the distal/ischemic
16 skeletal muscle. These data suggest that disease-specific niches differentially affect FAP
17 heterogeneity, and they highlight the critical importance of disease-specific datasets for
18 biomedical discovery.

19
20 In summary, we have identified a pro-adipogenic FAP population defined by Vcam1 expression
21 in the ischemic limb. We demonstrated that the adipogenic differentiation of Vcam1+ FAPs is,
22 in part, regulated by Nr3c1 and Sfrp1. Moreover, we found that this population is enriched in
23 human CLTI patients. Targeting Vcam1+ FAPs via inhibition of the Nr3c1-Sfrp1 axis may
24 represent a novel strategy to mitigate maladaptive adipogenesis in the ischemic limb of CLTI
25 patients.

26
27 **Limitations**
28 It is important to note some limitations of our study. First, we have demonstrated the increased
29 ex-vivo adipogenic capacity of Vcam1+ FAPs. These studies do not account for the influence of
30 the skeletal muscle niche on FAP cell fate, which is known to play a critical role in FAP
31 phenotypes^{46,47}. Second, it is quite promising that our preclinical data correlated with fatty
32 infiltration and Vcam1 expression in CLTI patients. However, to demonstrate the ultimate clinical
33 significance of this pathway will require additional in vivo mechanistic studies.

34
35 **Sources of Funding**
36 This work was supported by CTSA KL2TR002554 (KWS), Duke University Medical Center
37 Physician-Scientists Strong Start Award (KWS), Vascular Cures Wylie Award (KWS), NIH 4D
38 Nucleome Consortium U01HL156064 (YD)

39
40 **Disclosures**
41 None
42
43
44

1
2

References:

- 3 1. Fowkes FGR, Rudan D, Rudan I, Aboyans V, Denenberg JO, McDermott MM, Norman PE,
4 Sampson UK, Williams LJ, Mensah GA, Criqui MH. Comparison of global estimates of
5 prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review
6 and analysis. *Lancet*. 2013;382:1329–1340.
- 7 2. Conte MS, Bradbury AW, Kohl P, White JV, Dick F, Fitridge R, Mills JL, Ricco J-B, Suresh
8 KR, Murad MH, Group GW, Aboyans V, Aksoy M, Alexandrescu V-A, Armstrong D, Azuma N,
9 Belch J, Bergoeing M, Bjorck M, Chakfé N, Cheng S, Dawson J, Debus ES, Dueck A, Duval S,
10 Eckstein HH, Ferraresi R, Gambhir R, Garguilo M, Geraghty P, Goode S, Gray B, Guo W,
11 Gupta PC, Hinchliffe R, Jetty P, Komori K, Lavery L, Liang W, Lookstein R, Menard M, Misra S,
12 Miyata T, Moneta G, Prado JAM, Munoz A, Paolini JE, Patel M, Pomposelli F, Powell R,
13 Robless P, Rogers L, Schanzer A, Schneider P, Taylor S, Ceniga MVD, Veller M, Vermassen F,
14 Wang J, Wang S, Surgery J guidelines of the S for V, Surgery ES for V, Societies WF of V.
15 Global vascular guidelines on the management of chronic limb-threatening ischemia. *J Vasc
Surg*. 2019;69:3S-125S.e40.
- 16 3. Farber A, Menard MT, Conte MS, Kaufman JA, Powell RJ, Choudhry NK, Hamza TH,
17 Assmann SF, Creager MA, Cziraky MJ, Dake MD, Jaff MR, Reid D, Siami FS, Sopko G, White
18 CJ, Over M van, Strong MB, Villarreal MF, McKean M, Azene E, Azarbal A, Barleben A, Chew
20 DK, Clavijo LC, Douville Y, Findeiss L, Garg N, Gasper W, Giles KA, Goodney PP, Hawkins
21 BM, Herman CR, Kalish JA, Koopmann MC, Laskowski IA, Mena-Hurtado C, Motaganahalli R,
22 Rowe VL, Schanzer A, Schneider PA, Siracuse JJ, Venermo M, Rosenfield K, Investigators B-
23 C. Surgery or Endovascular Therapy for Chronic Limb-Threatening Ischemia. *New Engl J Med*.
24 2022;
- 25 4. Duff S, Mafilius MS, Bhounsule P, Hasegawa JT. The burden of critical limb ischemia: a
26 review of recent literature. *Vasc Heal Risk Management*. 2019;15:187–208.
- 27 5. Mohiuddin M, Lee NH, Moon JY, Han WM, Anderson SE, Choi JJ, Shin E, Nakai SA, Tran
28 T, Aliya B, Kim DY, Gerold A, Hansen LM, Taylor WR, Jang YC. Critical Limb Ischemia Induces
29 Remodeling of Skeletal Muscle Motor Unit, Myonuclear-, and Mitochondrial-Domains. *Scientific
Reports*. 2019;9:9551.
- 31 6. Tran L, Xie B, Assaf E, Ferrari R, Pipinos II, Casale GP, Alvidrez RIM, Watkins S, Sachdev
32 U. Transcriptomic Profiling Identifies Ferroptosis-Related Gene Signatures in Ischemic Muscle
33 Satellite Cells Affected by Peripheral Artery Disease—Brief Report. *Arter, Thromb, Vasc Biol*.
34 2023;43:2023–2029.
- 35 7. Pass CG, Palzkill V, Tan J, Kim K, Thome T, Yang Q, Fazzone B, Robinson ST, O’Malley
36 KA, Yue F, Scali ST, Berceli SA, Ryan TE. Single-Nuclei RNA-Sequencing of the
37 Gastrocnemius Muscle in Peripheral Artery Disease. *Circ Res*. 2023;133:791–809.
- 38 8. Cong G, Cui X, Ferrari R, Pipinos II, Casale GP, Chattopadhyay A, Sachdev U. Fibrosis
39 Distinguishes Critical Limb Ischemia Patients from Claudicants in a Transcriptomic and
40 Histologic Analysis. *J Clin Medicine*. 2020;9:3974.
- 41 9. Ryan TE, Yamaguchi DJ, Schmidt CA, Zeczycki TN, Shaikh SR, Brophy P, Green TD,
42 Tarpey MD, Karnekar R, Goldberg EJ, Sparagna GC, Torres MJ, Annex BH, Neufer PD,
43 Spangenburg EE, McClung JM. Extensive skeletal muscle cell mitochondriopathy distinguishes

1 critical limb ischemia patients from claudicants. *JCI Insight*. 2018;3:e123235.

2 10. Cluff K, Miserlis D, Naganathan GK, Pipinos II, Koutakis P, Samal A, McComb RD, Subbiah
3 J, Casale GP. Morphometric analysis of gastrocnemius muscle biopsies from patients with
4 peripheral arterial disease: objective grading of muscle degeneration. *American Journal of
5 Physiology-Regulatory, Integrative and Comparative Physiology*. 2013;305:R291–R299.

6 11. Sugai T, Watanabe T, Otaki Y, Goto J, Watanabe K, Toshima T, Takahashi T, Yokoyama
7 M, Tamura H, Nishiyama S, Arimoto T, Takahashi H, Shishido T, Watanabe M. Decreased
8 Psoas Muscle Computed Tomography Value Predicts Poor Outcome in Peripheral Artery
9 Disease. *Circ J*. 2018;82:3069–3075.

10 12. Ferreira J, Carneiro A, Vila I, Silva C, Cunha C, Longatto-Filho A, Mesquita A, Cotter J,
11 Mansilha A, Correia-Neves M, Cunha P. Inflammation and Loss of Skeletal Muscle Mass in
12 Chronic Limb Threatening Ischemia. *Ann Vasc Surg*. 2023;88:164–173.

13 13. Abbas H, Olivere LA, Padgett ME, Schmidt CA, Gilmore BF, McCord TJ, Southerland KW,
14 McClung JM, Kontos CD. Muscle progenitor cells are required for skeletal muscle regeneration
15 and prevention of adipogenesis after limb ischemia. *Frontiers Cardiovasc Medicine*.
16 2023;10:1118738.

17 14. Jain A, Liu K, Ferrucci L, Criqui MH, Tian L, Guralnik JM, Tao H, McDermott MM. Declining
18 Walking Impairment Questionnaire Scores Are Associated With Subsequent Increased Mortality
19 in Peripheral Artery Disease. *J Am Coll Cardiol*. 2013;61:1820–1829.

20 15. Tuttle LJ, Sinacore DR, Mueller MJ. Intermuscular Adipose Tissue Is Muscle Specific and
21 Associated with Poor Functional Performance. *J Aging Res*. 2012;2012:172957.

22 16. Uezumi A, Fukada S, Yamamoto N, Takeda S, Tsuchida K. Mesenchymal progenitors
23 distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. *Nature Cell
24 Biology*. 2010;12:143–152.

25 17. Joe AW, Yi L, Natarajan A, Grand F, So L, Wang J, Rudnicki MA, Rossi FM. Muscle injury
26 activates resident fibro/adipogenic progenitors that facilitate myogenesis. *Nature Cell Biology*.
27 2010;12:153–163.

28 18. Woszczyna MN, Konishi CT, Carbajal EEP, Wang TT, Walsh RA, Gan Q, Wagner MW,
29 Rando TA. Mesenchymal Stromal Cells Are Required for Regeneration and Homeostatic
30 Maintenance of Skeletal Muscle. *Cell Reports*. 2019;27:2029-2035.e5.

31 19. Kotsaris G, Qazi TH, Bucher CH, Zahid H, Pöhle-Kronawitter S, Ugorets V, Jarassier W,
32 Börno S, Timmermann B, Giesecke-Thiel C, Economides AN, Grand FL, Vallecillo-García P,
33 Knaus P, Geissler S, Stricker S. Odd skipped-related 1 controls the pro-regenerative response
34 of fibro-adipogenic progenitors. *Npj Regen Medicine*. 2023;8:19.

35 20. Lukjanenko L, Karaz S, Stuelsatz P, Gurriaran-Rodriguez U, Michaud J, Dammone G,
36 Sizzano F, Mashinchian O, Ancel S, Migliavacca E, Liot S, Jacot G, Metairon S, Raymond F,
37 Descombes P, Palini A, Chazaud B, Rudnicki MA, Bentzinger CF, Feige JN. Aging Disrupts
38 Muscle Stem Cell Function by Impairing Matricellular WISP1 Secretion from Fibro-Adipogenic
39 Progenitors. *Cell Stem Cell*. 2019;24:433-446.e7.

40 21. Lemos DR, Babaeijandaghi F, Low M, Chang C-K, Lee ST, Fiore D, Zhang R-H, Natarajan
41 A, Nedospasov SA, Rossi FMV. Nilotinib reduces muscle fibrosis in chronic muscle injury by
42 promoting TNF-mediated apoptosis of fibro/adipogenic progenitors. *Nature Medicine*.
43 2015;21:786–794.

44 22. Woszczyna MN, Carbajal EEP, Wagner MW, Paredes S, Konishi CT, Liu L, Wang TT, Walsh

1 RA, Gan Q, Morrissey CS, Rando TA. Targeting microRNA-mediated gene repression limits
2 adipogenic conversion of skeletal muscle mesenchymal stromal cells. *Cell Stem Cell*. 2021;
3 23. Hogarth MW, Defour A, Lazarski C, Gallardo E, Manera J, Partridge TA, Nagaraju K,
4 Jaiswal JK. Fibroadipogenic progenitors are responsible for muscle loss in limb girdle muscular
5 dystrophy 2B. *Nature Communications*. 2019;10:2430.
6 24. Camps J, Breuls N, Sifrim A, Giarratana N, Corvelyn M, Danti L, Grosemans H, Vanuytven
7 S, Thiry I, Belicchi M, Meregalli M, Platko K, MacDonald ME, Austin RC, Gijsbers R, Cossu G,
8 Torrente Y, Voet T, Sampaolesi M. Interstitial Cell Remodeling Promotes Aberrant Adipogenesis
9 in Dystrophic Muscles. *Cell Reports*. 2020;31:107597.
10 25. Fitzgerald G, Turiel G, Gorski T, Soro-Arnaiz I, Zhang J, Casartelli NC, Masschelein E,
11 Maffiuletti NA, Sutter R, Leunig M, Farup J, Bock KD. MME+ fibro-adipogenic progenitors are
12 the dominant adipogenic population during fatty infiltration in human skeletal muscle. *Commun
13 Biology*. 2023;6:111.
14 26. Vedder IR, Levolger S, Dierckx RAJO, Zeebregts CJ, Vries J-PPM de, Viddeleer AR,
15 Bokkers RPH. Effect of muscle depletion on survival in peripheral arterial occlusive disease:
16 Quality over quantity. *J Vasc Surg*. 2020;72:2006-2016.e1.
17 27. Dokun AO, Keum S, Hazarika S, Li Y, Lamonte GM, Wheeler F, Marchuk DA, Annex BH. A
18 Quantitative Trait Locus (LSq-1) on Mouse Chromosome 7 Is Linked to the Absence of Tissue
19 Loss After Surgical Hindlimb Ischemia. *Circulation*. 2008;117:1207–1215.
20 28. McClung JM, McCord TJ, Keum S, Johnson S, Annex BH, Marchuk DA, Kontos CD.
21 Skeletal Muscle-Specific Genetic Determinants Contribute to the Differential Strain-Dependent
22 Effects of Hindlimb Ischemia in Mice. *The American Journal of Pathology*. 2012;180:2156–2169.
23 29. McClung JM, McCord TJ, Southerland K, Schmidt CA, Padgett ME, Ryan TE, Kontos CD.
24 Subacute limb ischemia induces skeletal muscle injury in genetically susceptible mice
25 independent of vascular density. *Journal of Vascular Surgery*. 2016;64:1101-1111.e2.
26 30. Dong G, Moparthy C, Thome T, Kim K, Yue F, Ryan TE. IGF-1 Therapy Improves Muscle
27 Size and Function in Experimental Peripheral Arterial Disease. *JACC: Basic Transl Sci*.
28 2023;8:702–719.
29 31. Southerland KW, Xu Y, Peters DT, Lin X, Wei X, Xiang Y, Fei K, Olivere LA, Morowitz JM,
30 Otto J, Dai Q, Kontos CD, Diao Y. Skeletal muscle regeneration failure in ischemic-damaged
31 limbs is associated with pro-inflammatory macrophages and premature differentiation of satellite
32 cells. *Genome Med*. 2023;15:95.
33 32. Malecova B, Gatto S, Etxaniz U, Passafaro M, Cortez A, Nicoletti C, Giordani L, Torcinaro
34 A, Bardi MD, Bicciato S, Santa FD, Madaro L, Puri PL. Dynamics of cellular states of fibro-
35 adipogenic progenitors during myogenesis and muscular dystrophy. *Nature Communications*.
36 2018;9:3670.
37 33. Reggio A, Rosina M, Palma A, Perpetuini AC, Petrilli LL, Gargioli C, Fuoco C, Micarelli E,
38 Giuliani G, Cerretani M, Bresciani A, Sacco F, Castagnoli L, Cesareni G. Adipogenesis of
39 skeletal muscle fibro/adipogenic progenitors is affected by the WNT5a/GSK3/β-catenin axis.
40 *Cell death and differentiation*. 2020;
41 34. Fu C, Chin-Young B, Park G, Guzmán-Seda M, Laudier D, Han WM. WNT7A suppresses
42 adipogenesis of skeletal muscle mesenchymal stem cells and fatty infiltration through the
43 alternative Wnt-Rho-YAP/TAZ signaling axis. *Stem Cell Rep*. 2023;
44 35. Qin Q, Fan J, Zheng R, Wan C, Mei S, Wu Q, Sun H, Brown M, Zhang J, Meyer CA, Liu

1 XS. Lisa: inferring transcriptional regulators through integrative modeling of public chromatin
2 accessibility and ChIP-seq data. *Genome Biol.* 2020;21:32.

3 36. McDermott MM, Ferrucci L, Gonzalez-Freire M, Kosmac K, Leeuwenburgh C, Peterson CA,
4 Saini S, Sufit R. Skeletal Muscle Pathology in Peripheral Artery Disease: A Brief Review.
5 *Arteriosclerosis Thrombosis Vasc Biology.* 2020;40:2577–2585.

6 37. Kosmac K, Gonzalez-Freire M, McDermott MM, White SH, Walton RG, Sufit RL, Tian L, Li
7 L, Kibbe MR, Criqui MH, Guralnik JM, Polonsky TS, Leeuwenburgh C, Ferrucci L, Peterson CA.
8 Correlations of Calf Muscle Macrophage Content With Muscle Properties and Walking
9 Performance in Peripheral Artery Disease. *J Am Heart Assoc.* 2020;9:e015929.

10 38. Khattri RB, Kim K, Thome T, Salyers ZR, O’Malley KA, Berceli SA, Scali ST, Ryan TE.
11 Unique Metabolomic Profile of Skeletal Muscle in Chronic Limb Threatening Ischemia. *J Clin
12 Medicine.* 2021;10:548.

13 39. Ryan TE, Kim K, Scali ST, Berceli SA, Thome T, Salyers ZR, O’Malley KA, Green TD,
14 Karnekar R, Fisher-Wellman KH, Yamaguchi DJ, McClung JM. Interventional- and amputation-
15 stage muscle proteomes in the chronically threatened ischemic limb. *Clin Transl Medicine.*
16 2022;12:e658.

17 40. Reggio A, Spada F, Rosina M, Massacci G, Zuccotti A, Fuoco C, Gargioli C, Castagnoli L,
18 Cesareni G. The immunosuppressant drug azathioprine restrains adipogenesis of muscle
19 Fibro/Adipogenic Progenitors from dystrophic mice by affecting AKT signaling. *Scientific
20 Reports.* 2019;9:4360.

21 41. Wang F-S, Lin C-L, Chen Y-J, Wang C-J, Yang KD, Huang Y-T, Sun Y-C, Huang H-C.
22 Secreted Frizzled-Related Protein 1 Modulates Glucocorticoid Attenuation of Osteogenic
23 Activities and Bone Mass. *Endocrinology.* 2005;146:2415–2423.

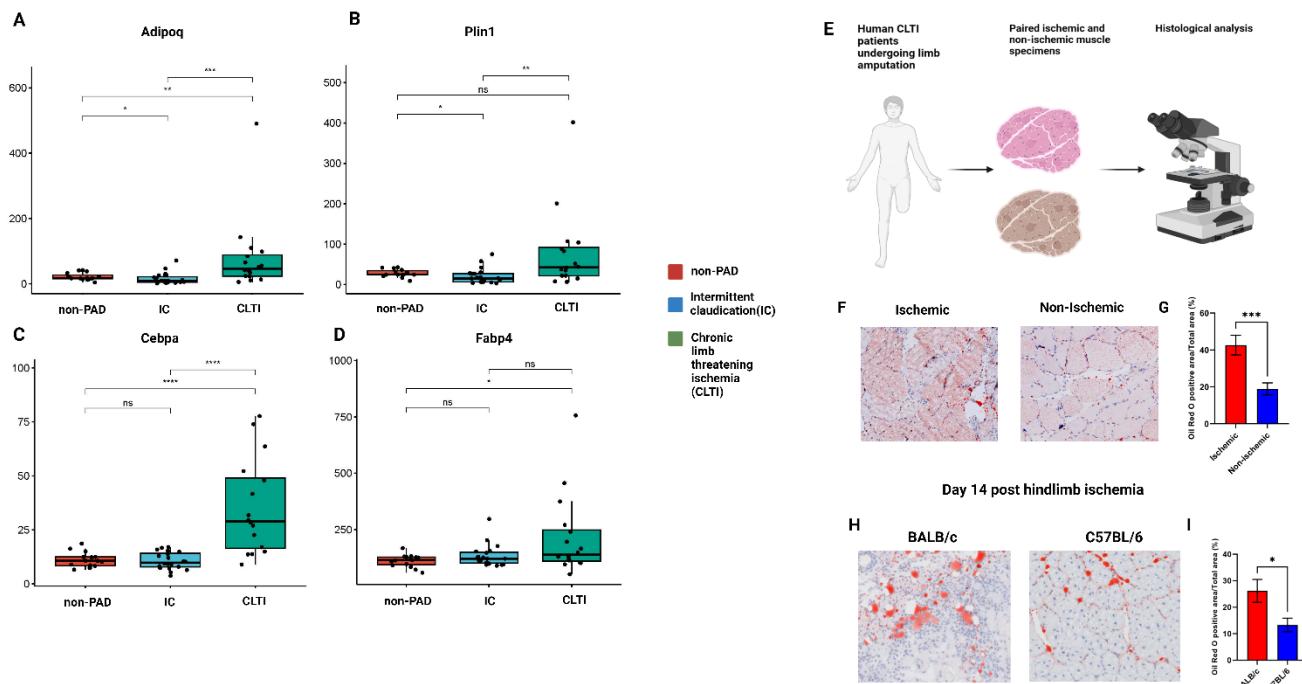
24 42. Dong Y, Silva KAS, Dong Y, Zhang L. Glucocorticoids increase adipocytes in muscle by
25 affecting IL-4 regulated FAP activity. *The FASEB J.* 2014;28:4123–4132.

26 43. Micheli AJD, Spector JA, Elemento O, Cosgrove BD. A reference single-cell transcriptomic
27 atlas of human skeletal muscle tissue reveals bifurcated muscle stem cell populations. *Skelet
28 Muscle.* 2020;10:19.

29 44. Farup J, Just J, Paoli F de, Lin L, Jensen JB, Billeskov T, Roman IS, Cömert C, Møller AB,
30 Madaro L, Groppa E, Fred RG, Kampmann U, Gormsen LC, Pedersen SB, Bross P, Stevnsner
31 T, Eldrup N, Pers TH, Rossi FMV, Puri PL, Jessen N. Human skeletal muscle CD90+ fibro-
32 adipogenic progenitors are associated with muscle degeneration in type 2 diabetic patients. *Cell
33 Metab.* 2021;33:2201-2214.e10.

34 45. Rubenstein AB, Smith GR, Raue U, Begue G, Minchev K, Ruf-Zamojski F, Nair VD, Wang
35 X, Zhou L, Zaslavsky E, Trappe TA, Trappe S, Sealfon SC. Single-cell transcriptional profiles in
36 human skeletal muscle. *Sci Rep.* 2020;10:229.

37 46. Nawaz A, Bilal M, Fujisaka S, Kado T, Aslam MR, Ahmed S, Okabe K, Igarashi Y,
38 Watanabe Y, Kuwano T, Tsuneyama K, Nishimura A, Nishida Y, Yamamoto S, Sasahara M,
39 Imura J, Mori H, Matzuk MM, Kudo F, Manabe I, Uezumi A, Nakagawa T, Oishi Y, Tobe K.
40 Depletion of CD206+ M2-like macrophages induces fibro-adipogenic progenitors activation and
41 muscle regeneration. *Nat Commun.* 2022;13:7058.

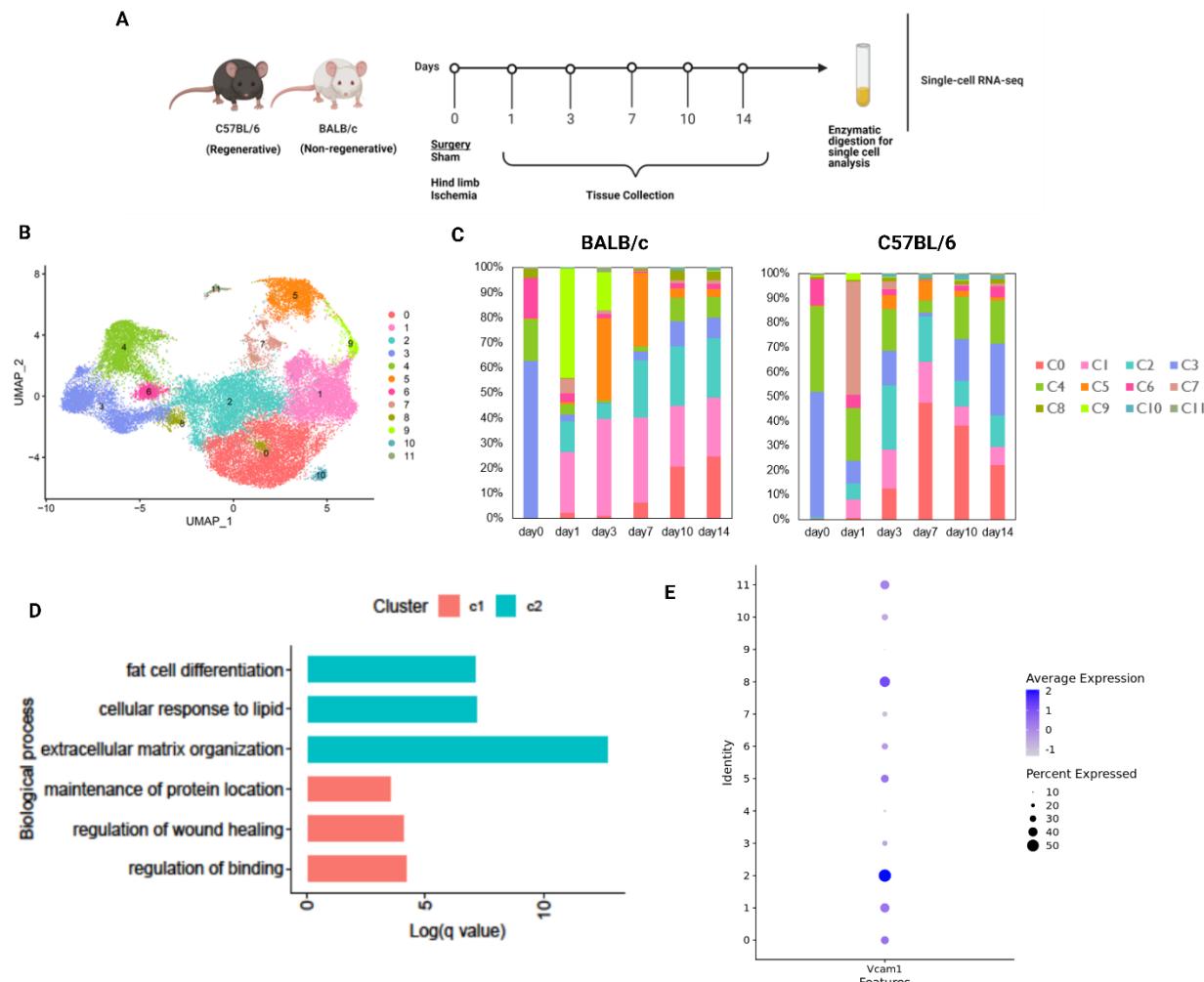

42 47. Biferali B, Proietti D, Mozzetta C, Madaro L. Fibro-Adipogenic Progenitors Cross-Talk in
43 Skeletal Muscle: The Social Network. *Frontiers in Physiology.* 2019;10:1074.

44 48. Padgett ME, McCord TJ, McClung JM, Kontos CD. Methods for Acute and Subacute

1 Murine Hindlimb Ischemia. *J Vis Exp.* 2016;
2 49. Hao Y, Stuart T, Kowalski MH, Choudhary S, Hoffman P, Hartman A, Srivastava A, Molla
3 G, Madad S, Fernandez-Granda C, Satija R. Dictionary learning for integrative, multimodal and
4 scalable single-cell analysis. *Nat Biotechnol.* 2024;42:293–304.
5 50. Wolock SL, Lopez R, Klein AM. Scrublet: Computational Identification of Cell Doublets in
6 Single-Cell Transcriptomic Data. *Cell Syst.* 2019;8:281–291.e9.
7 51. Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, Baglaenko Y, Brenner M,
8 Loh P, Raychaudhuri S. Fast, sensitive and accurate integration of single-cell data with
9 Harmony. *Nat Methods.* 2019;16:1289–1296.
10 52. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M,
11 Gingeras TR. STAR: ultrafast universal RNA-seq aligner. *Bioinformatics.* 2013;29:15–21.
12 53. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for
13 assigning sequence reads to genomic features. *Bioinformatics.* 2014;30:923–930.
14 54. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-
15 seq data with DESeq2. *Genome Biol.* 2014;15:550.
16 55. Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, Feng T, Zhou L, Tang W, Zhan L, Fu X, Liu S,
17 Bo X, Yu G. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. *Innov.*
18 2021;2:100141.

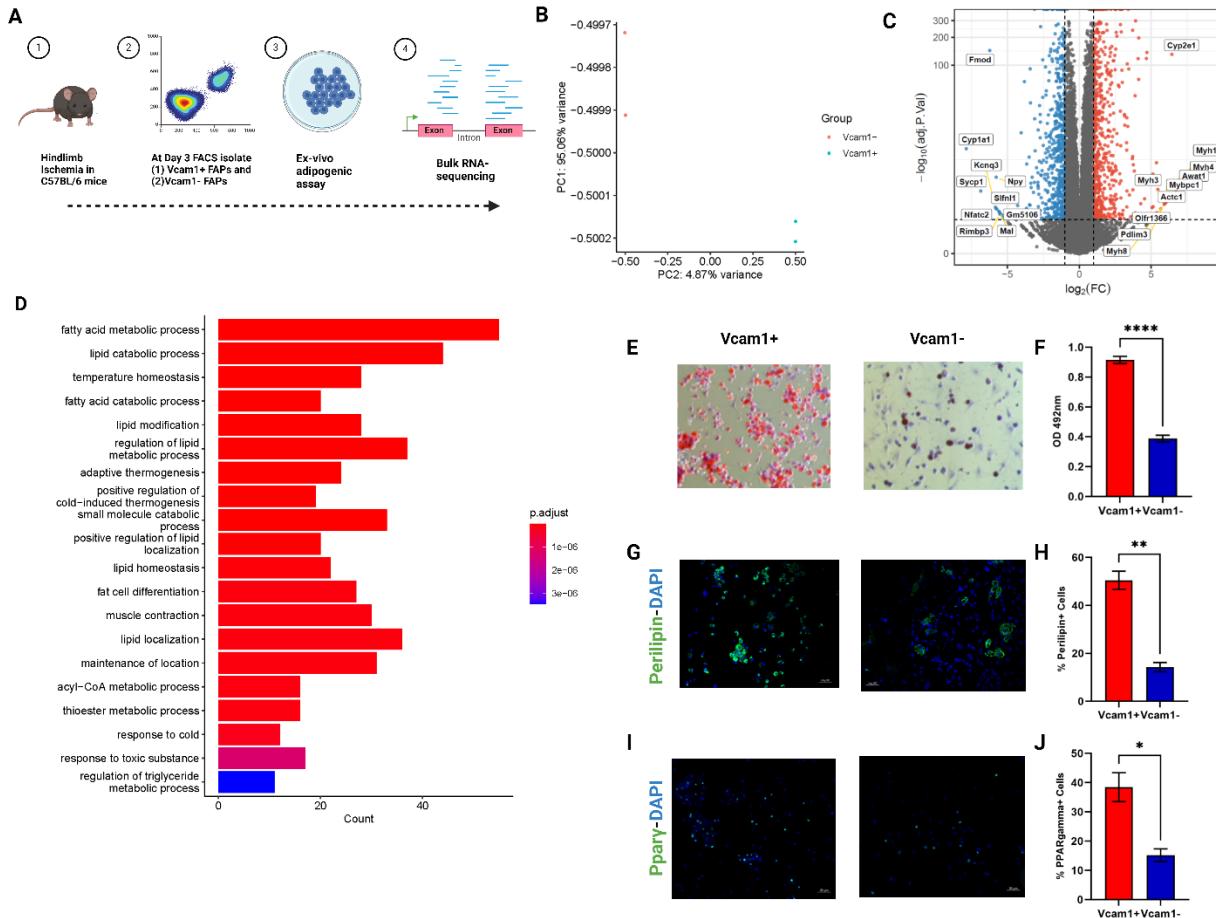
19

20 Figures Legends (Figures 1-6)

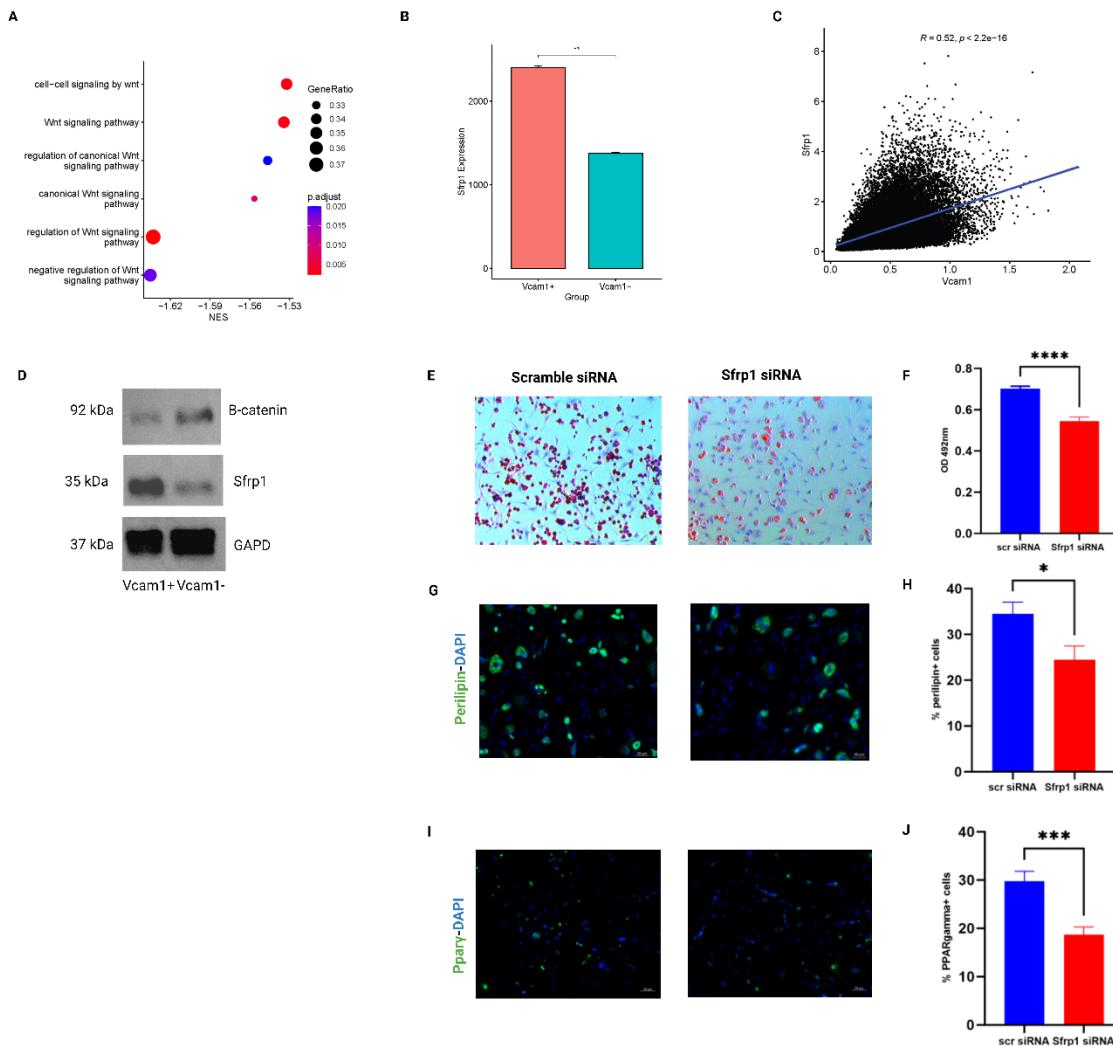


21

22 Figure 1: Human CLTI limb has an adipogenic phenotype


23 A-D: mRNA expression of Adipoq, Plin1, Cebpa, Fabp4 determined by human PAD bulk RNA-
24 seq data set (n= 51). A one-way ANOVA with Holm-Sidak's multiple comparison test (*p<0.05,
25 **p<0.01, ***p<0.001) was used.

1 E: Experimental design for human histologic analysis. Paired proximal and distal muscle
2 specimens form human CLTI patients (n=8)
3 F: Representative images of immunostaining of ORO in ischemia and non-ischemic muscle
4 specimens in human CLTI patients (n=7)
5 G: Quantification of ORO staining. Data shown as mean \pm SEM, ***p<0.001
6 H: Representative images of immunostaining of ORO in ischemic muscle on day 14 status-post
7 HLI in BALB/c (n=7) and C57BL/6 (n=9) mice
8 I: Quantification of ORO staining. Data shown as mean \pm SEM, *p<0.05
9



10
11 **Figure 2: scRNA-seq in a mouse PAD model reveals Vcam1+ FAPs as a candidate**
12 **adipogenic population**
13 A: Experimental design for generation of scRNA-seq atlas (n = 2 biological replicates per strain
14 at each time point).
15 B: Uniform Manifold Approximation Projection (UMAP) visualization of FAP clusters colored by
16 identify (n = 37,260)
17 C: Percentage of FAP populations by mouse strain and time point
18 D: Bar plots showing enriched pathways from GO terms of FAP cluster 1 vs cluster 2

1 E: Dot plot demonstrating increased Vcam1 expression in FAP cluster 2 compared to all other
 2 FAP clusters (adjusted p-value is $4.133265e^{-236}$ and log2 fold change is 0.5454154).
 3

4
 5 **Figure 3: Vcam1+ FAPs display increased adipogenic potential and lipid metabolism**
 6 A: Experimental design for bulk RNA-seq dataset. 2 biologic replicates
 7 B: Principal component analysis (PCA) showing sample distances from mouse bulk RNA-seq
 8 data comparing day 3 Vcam1+ and Vcam1- FAPs, color-coded by FAP subpopulation
 9 C: Volcano plot demonstrating significantly upregulated (red) and downregulated (blue) genes in
 10 Vcam1+ versus Vcam1- FAPs in adipogenic media for 3 days ($\log_2 FC \geq 1$ and $p < 0.05$)
 11 D: Dot plot showing upregulated pathways in Vcam1+ versus Vcam1- FAPs
 12 E: Representative images of immunostaining for ORO in adipogenic media for 6 days
 13 F: Quantification of ORO staining. Data shown as mean \pm SEM, ***p<0.001
 14 G: Representative images of perilipin (green) and DAPI (blue) staining
 15 H: Quantification of perilipin staining. Data shown as mean \pm SEM, **p<0.01
 16 I: Representative images of Ppary (green) and DAPI (blue) staining
 17 J: Quantification of Ppary staining. Data shown as mean \pm SEM, *p<0.05

1
2 **Figure 4: Sfrp1 regulates Vcam1+ FAP adipogenic differentiation**

3 A: Dot plot demonstrating Wnt signaling pathways in Vcam1+ versus Vcam1- FAPs

4 B: Bar graph demonstrating Sfrp1 expression in Vcam1+ versus Vcam1- FAPs

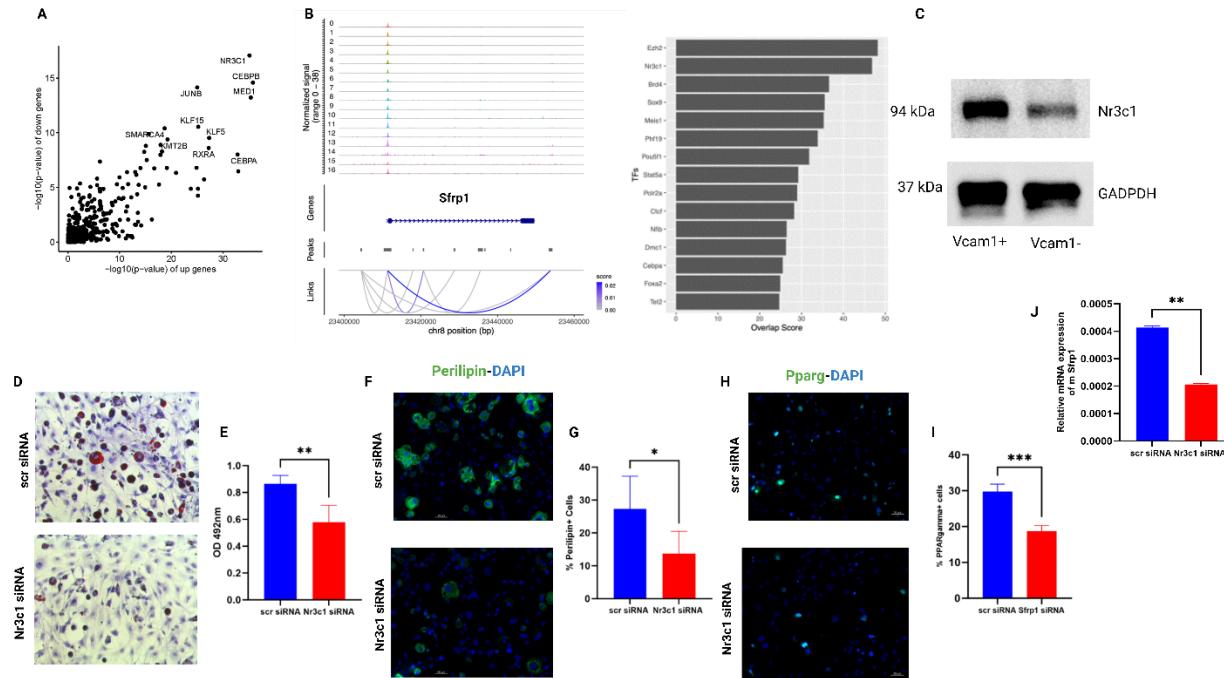
5 C: Heatmap representing Pearson's correlation values of Sfrp1 and Vcam1 expression in FAPs

6 D: β -catenin and Sfrp1 protein expression in cell lysates from Vcam1+ and Vcam1- FAPs.

7 GAPDH was used for a loading control and signal normalization (n = 3 different experiments)

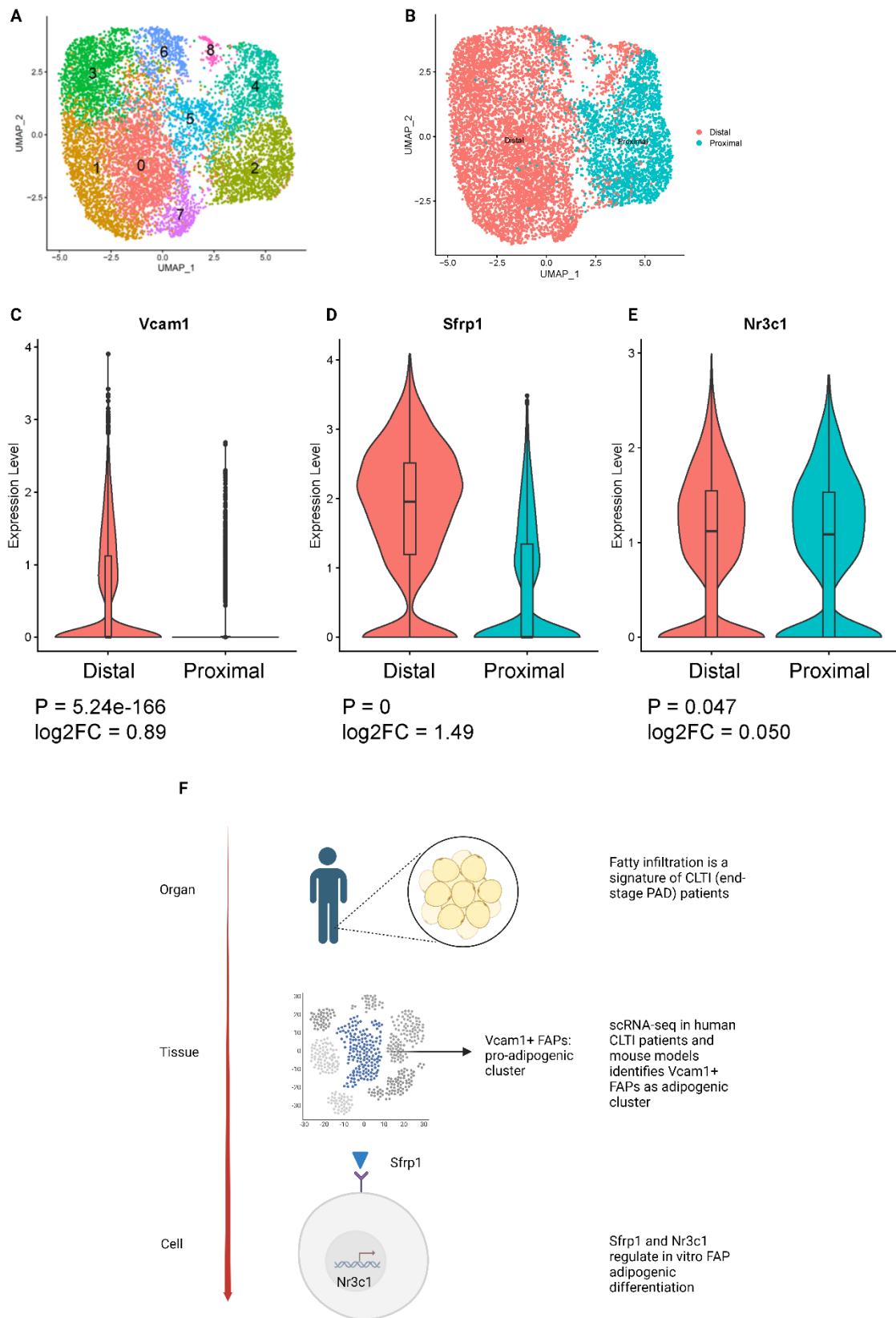
8 E: Representative images of ORO staining of Vcam1+ FAPs treated with siRNA against Sfrp1 and a control siRNA

9 F: Quantification of ORO staining. Data shown as mean \pm SEM, ***p<0.001

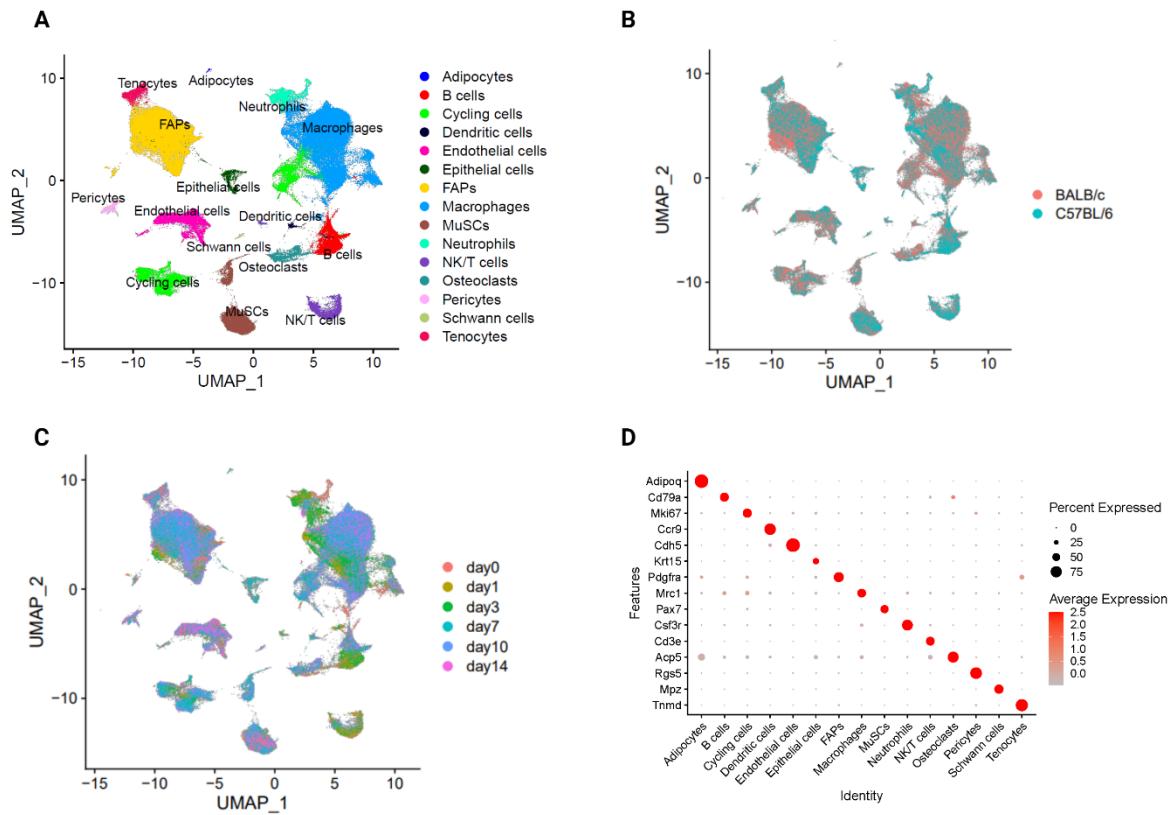

10 G: Representative images of perilipin (green) and DAPI (blue) staining of Vcam1+ FAPs treated with siRNA against Sfrp1 and a control siRNA

11 H: Quantification of perilipin staining. Data shown as mean \pm SEM, *p<0.05

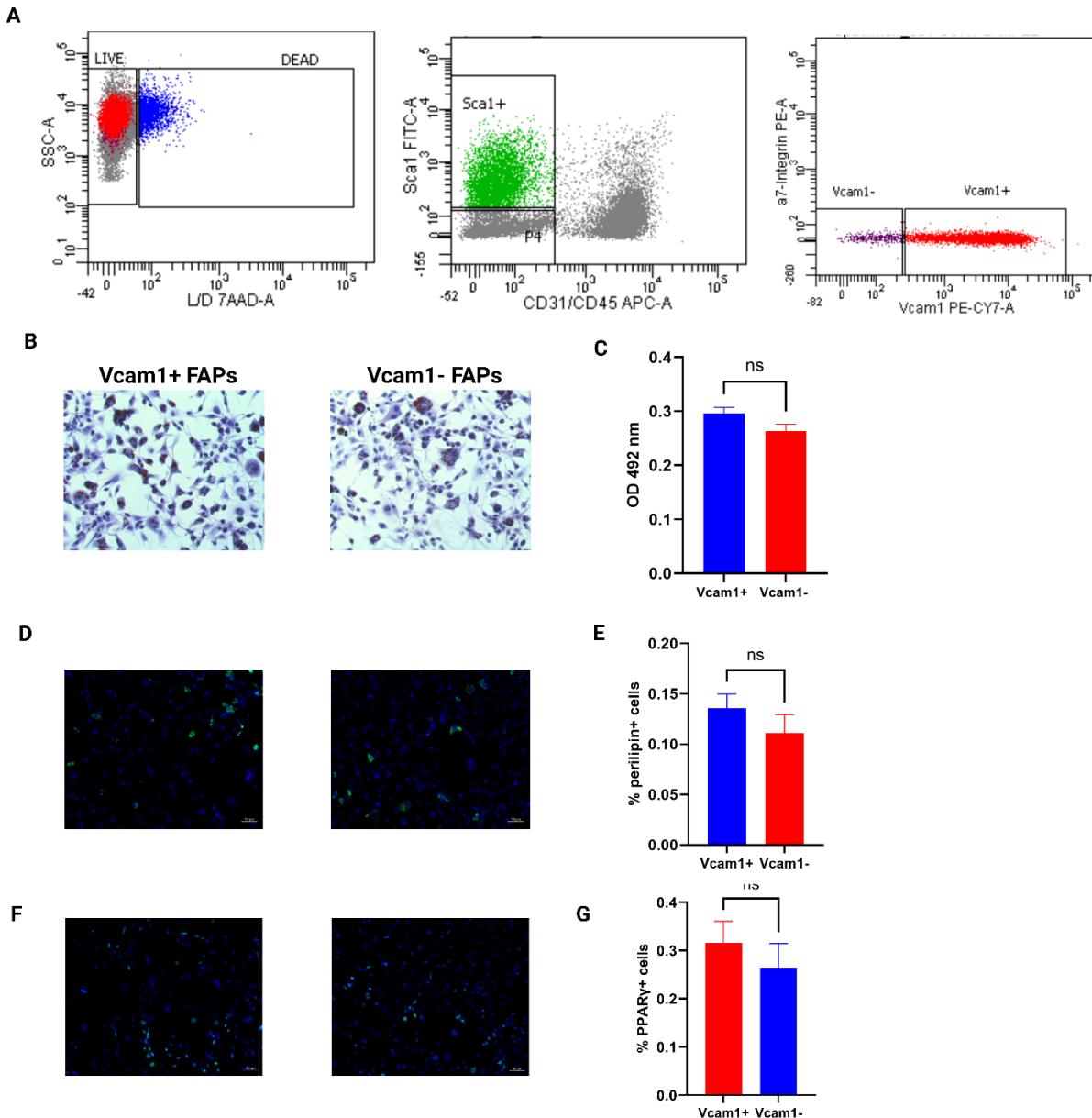
12 I: Representative images of Ppary (green) and DAPI (blue) staining of Vcam1+ FAPs treated with siRNA against Sfrp1 and a control siRNA


13 J: Quantification of Ppary staining. Data shown as mean \pm SEM, ***p<0.001

17

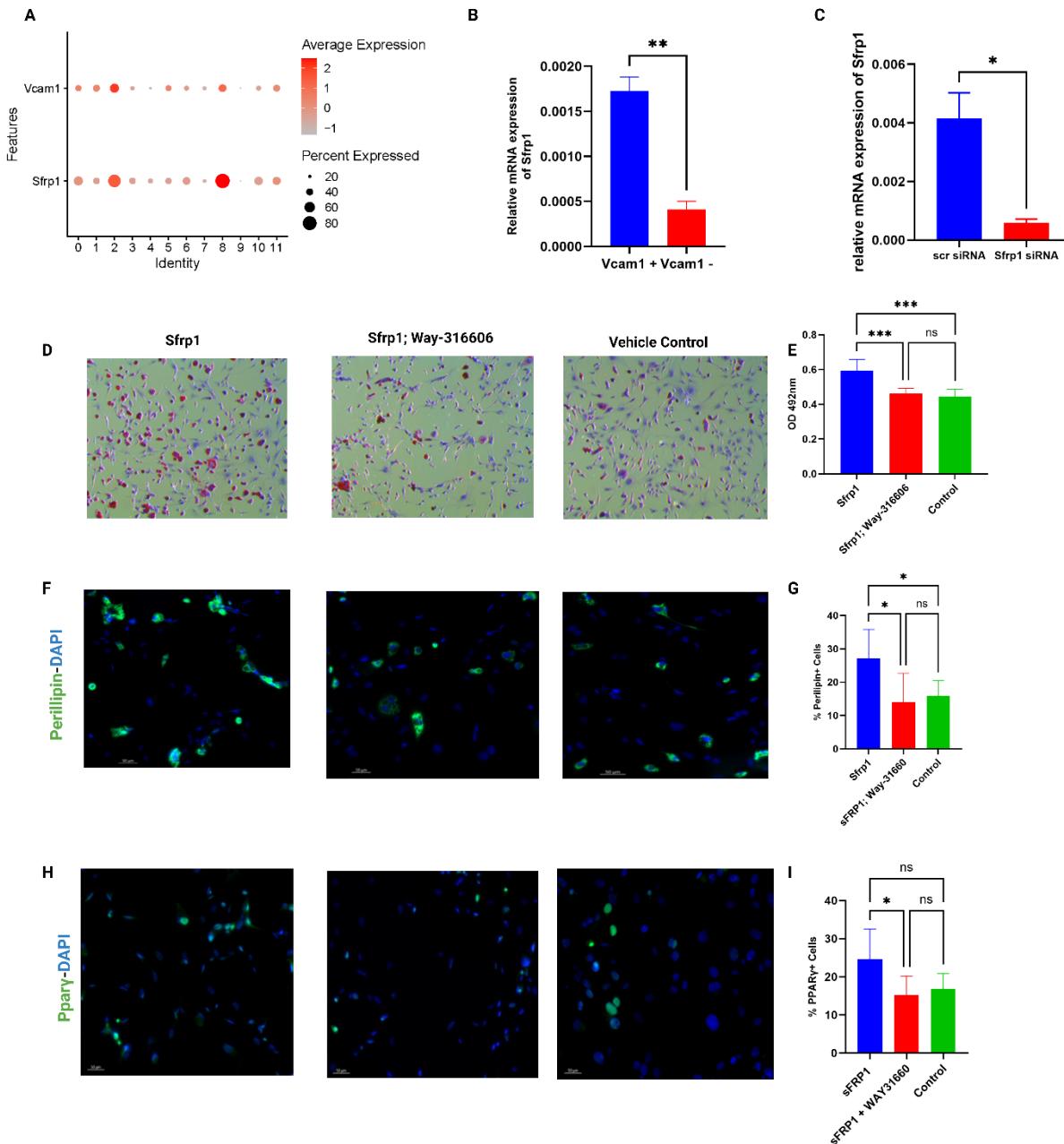

1
2 **Figure 5: scRNA-seq and scATAC-seq identifies Nr3c1 as a transcription factor that**
3 **regulates FAP adipogenesis**

4 A: Inferred transcription factors that regulate differential genes of Vcam1+ versus Vcam1- FAPs
5 B: Enhancers with regulation potential to Sfrp1 (left) and transcription factor binding analysis to
6 the enhancers
7 C: Nr3c1 protein expression in Vcam1+ and Vcam1- FAPs in adipogenic media for 3 days
8 D: Representative images of ORO staining in Nr3c1-silenced Vcam1+ FAPs
9 E: Quantification of ORO staining. Data shown as mean \pm SEM, **p<0.01
10 F: Representative images of perilipin (green) and DAPI (blue) staining in Nr3c1-silenced
11 Vcam1+ FAPs
12 G: Quantification of perilipin staining. Data shown as mean \pm SEM, *p<0.05
13 H: Representative images of Pparg (green) and DAPI (blue) staining in Nr3c1-silenced Vcam1+
14 FAPs
15 I: Quantification of Pparg staining. Data shown as mean \pm SEM, ***p<0.001
16 J: Gene expression of Sfrp1 in FAPs treated with siRNA against Nr3c1 and a control siRNA.
17 Student's t-test (two-tailed, unpaired, **p<0.01)

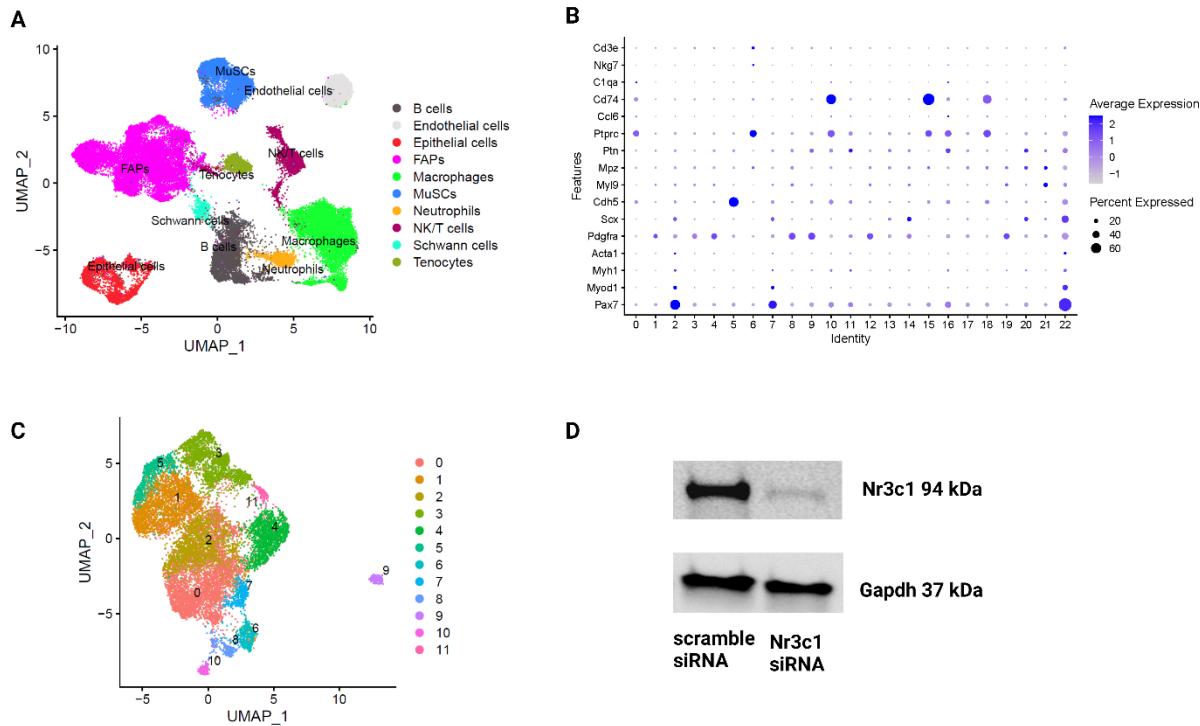


1 **Figure 6: Human CLTI FAPs share a transcriptional signature with BALB/c FAPs**
2 A: UMAP of FAPs in human PAD dataset, color represents subcluster
3 B: UMAP of FAPs in human PAD dataset, color represents location in limb
4 C: Violin plot of Vcam1 expression in distal/ischemic versus proximal/non-ischemic FAPs
5 D: Violin plot of Sfrp1 expression in distal/ischemic versus proximal/non-ischemic FAPs
6 E: Violin plot of Nr3c1 expression in distal/ischemic versus proximal/non-ischemic FAPs
7 F: Schematic summarizing study findings
8
9

10 **Supplemental Figures and Tables**


11
12 **Supplementary Figure 1: Mouse hindlimb ischemia scRNA-seq atlas (Related to Figure 2)**
13 A: UMAP visualization of all cells, colored by cell type
14 B: UMAP visualization of all cells, colored by mouse strain
15 C: UMAP visualization of all cells, colored by time point
16 D: Dot plot demonstrating cell-type marker gene expression

1
2 **Supplementary Figure 2: In vitro adipogenic differentiation of Vcam1+ versus Vcam1-**
3 **FAPs at early time point (Related to Figure 3)**
4 A: Representative FACS plot of Vcam1+ and Vcam1- FAPs
5 B: Representative images of immunostaining for ORO in adipogenic media for 3 days
6 C: Quantification of ORO staining. Data shown as mean \pm SEM, ns > 0.05
7 D: Representative images of perilipin (green) and DAPI (blue) staining
8 E: Quantification of perilipin staining. Data shown as mean \pm SEM, ns > 0.05
9 F: Representative images of Ppary (green) and DAPI (blue) staining
10 G: Quantification of Ppary staining. Data shown as mean \pm SEM, ns > 0.05


11

12

1
2 **Supplementary Figure 3: Sfrp1 regulates adipogenic differentiation in Vcam1+ FAPs**
3 **(Related to Figure 4)**
4 A: Dot plot demonstrating Vcam1 and Sfrp1 expression in FAP subclusters
5 B: Gene expression of Sfrp1 in Vcam1+ versus Vcam1- FAPs
6 C: Gene expression of Sfrp1 in Sfrp1-silenced and control FAPs
7 D: Representative images of ORO staining of Vcam1- FAPs treated with Sfrp1, way-316606,
8 and a vehicle control
9 E: Quantification of ORO staining of Vcam1- FAPs treated with Sfrp1, way-316606, and vehicle
10 control. Data shown as mean \pm SEM, ***p \leq 0.001, ns $>$ 0.05

1 F: Representative images of perilipin (green) and DAPI (blue) staining of Vcam1- FAPs treated
2 with Sfrp1, way-316606, and a vehicle control
3 G: Quantification of perilipin staining of Vcam1- FAPs treated with Sfrp1, way-316606, and
4 vehicle control. Data shown as mean \pm SEM, *p \leq 0.05, ns>0.05
5 H: Representative images of Ppary (green) and DAPI (blue) staining of Vcam1- FAPs treated
6 with Sfrp1, way-316606, and a vehicle control
7 I: Quantification of Ppary staining of Vcam1- FAPs treated with Sfrp1, way-316606, and vehicle
8 control. Data shown as mean \pm SEM, *p \leq 0.05, ns>0.05
9

10

11 **Supplementary Figure 4: scATAC-seq reveals Nr3c1 as a candidate TF for adipogenic**
12 **differentiation in Vcam1+ FAPs (Related to Figure 5)**

13 A: UMAP visualization of all cells, colored by cell type
14 B: Dot plot demonstrating cell-type marker gene expression
15 C: UMAP visualization of FAPs, colored by cluster
16 D: Protein expression of Nr3c1 in Nr3c1-silenced and control FAPs

17

18

19

20

21

22

23

24

25

26

1 **Table S1: Human PAD patient characteristics**

Characteristics	All patients (N=8)
Demographics	
Mean patient age, years	76 +/- 9.47
Male sex (%)	87.5
Mean BMI	30.44 +/- 5.67
Medical History (%)	
Diabetes	87.5
Hypertension	100
Hyperlipidemia	100
Tobacco Use (%)	
Former smoker	62.5
Current smoker	0
Medications (%)	
Statin	100
Aspirin	62.5

2

3

4

5