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Abstract. The ongoing pursuit to map detailed brain structures at high
resolution using electron microscopy (EM) has led to advancements in
imaging that enable the generation of connectomic volumes that have
reached the petabyte scale and are soon expected to reach the exascale
for whole mouse brain collections. To tackle the high costs of manag-
ing these large-scale datasets, we have developed a data compression
approach employing Variational Autoencoders (VAEs) to significantly
reduce data storage requirements. Due to their ability to capture the
complex patterns of EM images, our VAE models notably decrease data
size while carefully preserving important image features pertinent to
connectomics-based image analysis. Through a comprehensive study us-
ing human EM volumes (H01 dataset), we demonstrate how our approach
can reduce data to as little as 1/128th of the original size without sig-
nificantly compromising the ability to subsequently segment the data,
outperforming standard data size reduction methods. This performance
suggests that this method can greatly alleviate requirements for data
management for connectomics applications, and enable more efficient
data access and sharing. Additionally, we developed a cloud-based ap-
plication named EM-Compressor on top of this work to enable on-the-
fly interactive visualization: https://em-compressor-demonstration.

s3.amazonaws.com/EM-Compressor+App.mp4.
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1 Introduction

The field of connectomics aims to create detailed, synapse-level maps of neu-
ral circuits, promising to deepen our understanding of the brain’s structural
complexities. These maps are indispensable for elucidating the neural circuit
functions underlying behavior, but obtaining them is highly resource-intensive.
Connectomics datasets require the generation of high-resolution image volumes
and segmentations that reach petabyte scale for a cubic millimeter [25] and ex-
abyte scale for a whole mouse brain [1]. Consequently, the field faces imminent
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data storage bottlenecks within processing and analysis pipelines, necessitating
innovative data storage and processing solutions.

Recent advancements in imaging and image processing have started to con-
front these data scale challenges, from rapid and intelligent ML-based acquisition
of large serial section scanning EM (ssSEM) datasets [19,24] to cost-effective im-
age analysis algorithms [18,14,15]. Ideally, these methods would enable a seam-
less integration of image analysis processes such as segmentation within the
image acquisition step, reducing the need for temporary data storage or exten-
sive data transfer. However, current practices separate these modules by loca-
tion (across different facilities for imaging and computation) and time (months
to years from acquisition to segmentation). As a result, laboratories require
petabyte-scale data storage and sharing solutions, which are not commonly af-
fordable for most research teams.

We thus identify a clear need and opportunity to simplify data management
for connectomics: improved compression of EM data to reduce data storage and
transfer costs. While current image compression methods in the computer vi-
sion field may be suitable for EM image data, an idealized solution must not
only reduce data volume size but also preserve the quality and fidelity of image
features crucial for accurate automated neural segmentation. Traditional image
compression algorithms like JPEG [29], JPEG2000 [5], and AVIF3 are efficient to
compute, but suffer from blocking artifacts and color bleeding when generating
compressed images, especially when the target compression rate is high. With the
rapid development of Deep Learning, image processing and computer vision re-
searchers have proposed various learning-based algorithms [27,28,26,2,4,8,20,21]
to address challenges for image compression. However, most of these methods are
evaluated on natural image datasets, and their performance, especially the abil-
ity to maintain segmentation quality on reconstructed images after compression,
remains unknown when applied to EM image data, which differ in appearance
and content. The closest prior work focused on related challenges addressed here
is [22], which presents a solution tailored for EM data by first denoising and
then applying standard codecs such as AVIF, achieving a compression rate of 17
times. Inspired by this work, we intend to push the boundary of the compression
rate significantly using end-to-end learning-based methods, towards addressing
data bottlenecks in the current connectomics pipeline, a major challenge for the
field. Additionally, since connectomic data analysis relies on neuroscientists’ abil-
ity to navigate large datasets in real-time, we investigate the feasibility of rapid,
on-the-fly encoding and decoding in cloud services for current data exploration
tools [16,3,11,30] to enable real-time visualization and proofreading.

Herein we provide a comparative analysis assessing the performance of a mod-
ified version of the original VAE [13] to compress human brain [25] EM images
against standard codecs such as JPEG2000 and AVIF. Our main contributions
are as follows:

– To our best knowledge, we are the first to apply learning-based methods to
EM-based and connectomics-focused image compression by designing and

3 https://aomediacodec.github.io/av1-avif/
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training multiple VAE models with different middle feature sizes covering
a wide range of compression rates. This work provides insights into the ar-
chitecture design choice of VAE as well as its strengths and limitations in
compressing connectomic image data, improving the compression rate from
17 times [22] to 128 times, outperforming standard image compression codecs
without significantly compromising the ability to segment the data.

– We conducted evaluations of the compression results, assessing the ability to
retain domain-specific image content needed for downstream tasks in connec-
tomics research by testing on neuron membrane and instance segmentation.

– We developed a cloud-based application named EM-Compressor to enable
on-the-fly compression of EM images. We integrate this application with a
commonly used visualization tool called Neuroglancer [16], enabling neuro-
scientists to interactively inspect the reconstructed images after compression.

2 Method

2.1 Workflow of EM-Compressor

Fig. 1 shows the overall workflow of the proposed EM-Compressor. The input to
the compressor is a set of stitched EM images of brain tissue. We use the encoder
part from the trained Variational Autoencoder (VAE) model to compress the
images to the feature space. The elements in the feature vector are originally
represented in 32-bit format and can be transformed into 16-bit, 8-bit, and 4-bit
formats for higher compression rates before being sent to storage. During the
decoding process, we apply the decoder of the trained VAE model to the stored
features to reconstruct “original” EM images for potential downstream analysis
tasks such as neuron instance segmentation. The whole process except for image
acquisition is wrapped into a cloud-based application.

Compressed Feature

Reconstructed
EM Images

Cloud Based Application:
EM-CompressorEM Image

Acquisition
VAE Encoder VAE Decoder

E D

Data Storage

32-bit 16-bit 8-bit 4-bit

Fig. 1. Workflow of EM-Compressor. Connectomic images are first acquired by EM.
Next, the encoder of VAE is applied to compress EM images to a feature vector,
whose elements are represented in 32-bit, 16-bit, 8-bit, and 4-bit formats for storage.
To reconstruct the image from the feature, the decoder of VAE is applied to perform
upsampling. This data compression process is wrapped into a cloud-based application.
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2.2 Variational Autoencoder

The 2D convolutional VAE consists of an encoder and a decoder; the former
downsamples the input image, and the latter upsamples the stored features.
Each layer in the encoder contains two consecutive ResNet [9] blocks, and spatial
downsampling by a factor of 2 in each dimension. Similarly, each layer in the
decoder spatially upsamples by a factor of 2 in each dimension. Specifically,
given an image x with size of H ×W , by passing it through the encoder E, we
get a feature f = E(x) with a size of H

2n × W
2n × C, where n is the number of

downsample layers and C is the number of channels in the VAE’s middle feature
space, depending on the target compression rate. Suppose x is represented in
i-bit format and we want to further reduce the data size by representing f in
j-bit format, the compression rate r we can get is:

r = (H ×W )÷
(
H

2n
× W

2n
× C

)
× i

j
=

4n

C
× i

j

During the decoding process, we pass f through the decoder D to get the recon-
structed image x̂ = D(E(x)) with the same size as input image x. The overall
loss Lt for training our VAE consists of three parts as follows:

Lt = min
E,D

max
θ

(Lrec(x,D(E(x))) + Lkl(x;E,D) + (logθ(x)− Ladv(D(E(x)))))

where the first term Lrec is a pixel-wise loss such as L1 or L2, the second
Kullback-Leibler-term Lkl is to prevent the model from creating a high variance
latent space by penalizing the latent to be zero-centered with small variance, sim-
ilar to the original VAE [13]. Training on a pixel-wise loss often leads to blurry
images, therefore we add the third term which is an adversarial loss following
[6,7,12] to enforce that the reconstructed image matches the visual quality of
the uncompressed input image. θ is a discriminator that tries to distinguish the
reconstructed image from the uncompressed image.

3 Experiments

3.1 Dataset

For all experiments in this paper, we use the publicly-available H01 dataset
[25], containing a 1.4-petabyte image volume of human brain tissue acquired
by ssSEM, with its corresponding neuron membrane and instance segmentation
(license4). To train the VAE models with good generalization, we cropped 10
subvolumes from well-separated regions with distinct tissue appearances and
split them for training (7 subvolumes), validation (1 subvolume), and testing (2
subvolumes). Each subvolume has 2048 2D image sections with a size of 512×512.

4 https://creativecommons.org/licenses/by-nc-nd/4.0/
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3.2 Evaluation

We assess the compression performance of all methods using segmentation crite-
ria, i.e., Dice and Intersection over Union (IoU) for neuron membrane segmenta-
tion and Variation of Information (VI)5 [17] for neuron instance segmentation.
The motivation is that while metrics like MSE can evaluate the performance of a
compression algorithm, this metric is agnostic of downstream connectomics pro-
cessing: generating accurate dense segmentation of individual neurons. However,
it is critical for a compression model to retain the ability to delineate individual
cellular objects within each image, even at the cost of losing information that
may not be relevant for dense segmentation. To this end, we trained a model
for membrane and instance segmentation on uncompressed images and com-
pared the performance of uncompressed and compressed images across different
compression methods and rates.

Specifically, to assess the ability to label the individual neuronal objects
(instance segmentation), we use VI to provide a topological measure of the merge
and split errors occurring in the image data due to compression. The VI between
two image labels S1 and S2 can be calculated by comparing the partition entropy
of each image with the cross labeling S1 × S2. VI=VImerge+VI where

VImerge = H(S1 × S2)−H(S1),

VIsplit = H(S1 × S2)−H(S2).

3.3 Setup

Image compression. We compress EM images in JPEG2000 format with Gly-
mur6 covering the following compression rates: 2x, 4x, 8x, 16x, 32x, 64x, and
128x. For AVIF format, we use Pillow7’s AVIF plugin and cover the following
compression rates: 2x, 4x, 8x, 16x, 32x, and 64x. 128x is not reachable in AVIF
format. As for the image compression via VAE, we trained 12 models, 2 for
each starting compression rate (one with bigger spatial size and one with more
channels in terms of the middle feature size). For example, a model denoted
“vae 16x 1x64x64” indicates a starting rate of 16x compression with a middle
feature size of 1×64×64, and by further changing the original 32-bit representa-
tion to 16/8/4-bit we can achieve 32x, 64x, and 128x. Therefore, 12 models with
6 starting compression rates (2x, 4x, 8x, 16x, 32x, 64x) enable us to compress
from 2x to 512x. All VAE models are trained for 50 epochs on 4 NVIDIA A100
GPUs with a batch size of 2 for each. The best checkpoint is selected with the
validation set.

Segmentation model. To evaluate each compression method’s performance on
membrane and instance segmentation task, we trained a U-Net[23] with GELU

5 https://pypi.org/project/python-voi
6 https://glymur.readthedocs.io/en/latest/
7 https://pillow.readthedocs.io/en/stable/

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 8, 2024. ; https://doi.org/10.1101/2024.07.07.601368doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.07.601368
http://creativecommons.org/licenses/by-nc/4.0/


6 Li et al.

activation[10] with training data sampled at random locations and angles also
from the H01 dataset [25]. The network was trained for 50000 gradient steps
with the cross entropy loss and the Adam optimizer with lr = 0.01.

Cloud-based deployment for EM-Compressor. EM-Compressor visualiza-
tion application is hosted on an AWS g4dn.16xlarge instance, which features an
Nvidia T4 GPU, 64 vCPU, and 256GB of internal memory. The application is
powered by Streamlit, a Python-based web framework, and content is served
under an application load balancer.

4 Results

4.1 Quantitative comparison

Fig. 2 demonstrates a quantitative comparison of VAE-based methods against
the JPEG2000 and AVIF codecs on the neuron membrane and instance segmen-
tation tasks at different compression rates. According to the five metrics (IoU,
Dice, VI-Total, VI-Split, VI-Merge), we find out that VAE-based methods are

Fig. 2. Quantitative comparison of different compression methods on the neuron mem-
brane and instance segmentation task at different compression rates with segmentation
metrics including IoU, Dice, and VI. For relatively low compression rates (up to 8x),
AVIF and JPEG2000 perform comparably to or slightly better than VAE-based meth-
ods. As the compression rate gets larger, VAE-based methods perform significantly
better than standard codecs. The results are obtained on the test set described in Sec-
tion 3.1.
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comparable with JPEG2000 and AVIF at relatively low compression rates (up to
8x). As the target compression rate increases, VAE-based methods significantly
outperform the two standard codecs. Additionally, since our 12 VAE models
have results at overlapping compression rates, we observe that in most cases,
training a model that has a large feature size followed by minimizing the bit
representation to reach a certain compression rate has better performance than
directly training a model that has a small feature size at that same compression
rate. From an architecture design perspective, comparing the two VAE models
with the same starting rate, in most cases, we notice that the model with a mid-
dle feature that has a larger spatial size is better than the model with a middle
feature that has a larger number of channels, e.g, “vae 32x 2x32x32” is better
than “vae 32x 8x16x16”. We also observe the unsatisfactory results achieved by
both vae 64x models, due to the limitation of our method in the sense that more
downsampling layers make it harder to maintain the reconstruction quality.

4.2 Qualitative comparison

We further conducted a qualitative comparison of different compression meth-
ods on EM images. Fig. 3 combines both the neuron membrane and instance
segmentation results. We evaluated our method alongside AVIF and JPEG2000
at compression rates ranging from 16x to 64x. We observe that our method ex-
hibits superior performance compared to AVIF and JPEG2000 in several key
aspects. First, as the compression ratio increases, a noticeable degradation in
image quality is observed in AVIF and JPEG2000, characterized by increased
noise, heightened blurring, and pronounced blocking artifacts. In contrast, our
approach effectively preserves the original image quality to a satisfactory degree.
Second, our approach effectively preserves the intricate patterns and structures
inherent in EM images that are important for connectomics research. At each
compression rate, our method demonstrates fewer merge and split errors, thereby
yielding more accurate instance segmentation outcomes. These findings under-
score the efficacy of our approach in maintaining the visual quality of EMs, which
is essential for accurate connectomics image analysis.

4.3 Cloud-based application: EM-Compressor

To facilitate broader access and interactive exploration, we developed a publicly
available cloud-based application called EM-Compressor based on the trained
VAE models. EM-Compressor provides two core features: single image com-
pression comparison and batch precomputed compression. The former is best
suited for real-time 2D comparison across VAE-based and traditional compres-
sion methods and ratios with a self-provided image. The latter feature enables
compression and visual comparison with uncompressed 3D image data through
Neuroglancer [16]. The application is hosted on a cloud instance, ensuring highly
available, on-demand testing and execution of EM-Compressor without requir-
ing users to possess high-end computational resources. A video demonstration
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Fig. 3. Qualitative comparison of different compression methods on the neuron mem-
brane and instance segmentation task at 16x, 32x, and 64x compression rates. In com-
parison to the original uncompressed image, results from our VAE-based method main-
tain good segmentation quality, whereas AVIF and JPEG2000 increasingly suffer from
merge and split errors as the compression rate increases. The results are obtained on
the test set described in Section 3.1.

is available at https://em-compressor-demonstration.s3.amazonaws.com/

EM-Compressor+App.mp4.

5 Discussion and Conclusion

Connectomic data generation and processing is experiencing rapid advance-
ments, accelerated by improvements in machine learning and the facilitation
of cloud-based resources. Owing to these advances, data storage and transfer
are emerging as a growing bottleneck necessitating new approaches for data
compression. By leveraging machine learning, specifically through learned di-
mensionality reduction with VAEs, our EM-Compressor data compression ap-
proach has achieved a reduction in EM image data size of over two orders of
magnitude without significantly affecting image quality or features necessary
for connectomics-related data processing. We also developed a cloud-based in-
teractive visualization tool based on our method. In addition, we discovered in
VAE feature space, larger spatial resolution are generally more favorable than
larger number of channels in terms of high-fidelity neural segmentation. Future
improvements could include leveraging 3D data or optimizing VAE models for
segmentation tasks to allow higher compression rates without quality loss. How-
ever, we note that volumetric VAEs may not suit all connectomics applications
due to the need for near-perfect 3D alignment.
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