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Abstract10

The gravitational settling of organic particles in the ocean drives long term11

sequestration of carbon from surface waters to the deep ocean. Quantifying12

the magnitude of carbon sequestration flux at high spatiotemporal resolution13

is critical for monitoring the ocean’s ability to sequester carbon as ecological14

conditions change. Here, we propose a computer vision-based method for15

classifying images of sinking marine particles and using allometric relation-16

ships to estimate the amount of carbon that the particles transport to the17

deep ocean. We show that our method reduces the amount of time required18

by a human image annotator by at least 90% while producing ecologically-19

informed estimates of carbon flux that are comparable to estimates based on20

purely human review and chemical bulk carbon measurements. This method21

utilizes a human-in-the-loop domain adaptation approach to leverage images22

collected from previous sampling campaigns in classifying images from novel23

campaigns in the future. If used in conjunction with autonomous imag-24

ing platforms deployed throughout the world’s oceans, this method has the25

potential to provide estimates of carbon sequestration fluxes at high spa-26

tiotemporal resolution while facilitating an understanding of the ecological27

pathways that are most important in driving these fluxes.28
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Introduction29

The ocean is responsible for regulating the amount of carbon dioxide (CO2)30

that persists in the atmosphere. The difference in partial pressure of CO231

across the air–sea interface drives dissolution and fixation of CO2 into or-32

ganic biomass by phytosynthetic algae in surface waters. A fraction of this33

biomass is packaged into particles and sinks down the water column as partic-34

ulate organic carbon (POC), where the carbon is stored over long timescales35

(Ducklow et al., 2001; Boyd et al., 2019). Thus, accurately constraining POC36

export is import for quantifying the ocean’s role in removing carbon dioxide37

from the atmosphere.38

Technological advances in recent years have facilitated widespread collec-39

tion of imaging data from the ocean, which presents an opportunity for es-40

timating carbon fluxes with high spatiotemporal resolution (Lombard et al.,41

2019; Giering et al., 2020). For example, the Underwater Vision Profiler42

(UVP; Picheral et al., 2010) has been used to image particles in situ and43

estimate the fluxes that they contribute based on the sizes of observed par-44

ticles (Clements et al., 2022, 2023). However, uncertainties in UVP-based45

flux estimates can exceed 50% (Bisson et al., 2022), likely because particles46

are typically considered monolithically, with a uniform relationship to car-47

bon content and sinking speed. In actuality, the particles responsible for48

carbon export are highly diverse, being formed by a variety of ecological and49

physical processes that in turn alter their carbon content and sinking speeds.50
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Durkin et al. (2021) showed that ecological classification of particles enables51

relatively accurate estimates of carbon export. However, this approach re-52

lied on manual annotation of images for all particles considered in the flux53

calculations, which is extremely costly and does not scale to large datasets.54

Trudnowska et al. (2021) used an unsupervised (i.e., not requiring manual55

annotation) approach based on principal component analysis to categorize56

particles imaged in the water column by the UVP. This approach has the57

advantage of removing human bias from categorization, but introduces am-58

biguity into translating statistical categories into distinct classes of known59

ecological source and theoretical carbon content.60

Convolutional neural networks (CNNs) are commonly used for the task61

of image classification, and have been applied in the aquatic environment to62

identify species of phytoplankton (Orenstein and Beijbom, 2017; Cheng et al.,63

2019; Guo et al., 2021) and zooplankton (Dai et al., 2016; Hong et al., 2020;64

Li et al., 2021). These CNNs are usually trained with a supervised learning65

approach, in which an expert manually labels a subset of images from a66

given sampling campaign that are used for training. The resulting CNN67

is then used to predict labels from other regions or time periods (i.e., other68

“domains”). However, there is an implicit assumption that the target domain69

distribution (i.e., the data that the CNN is used to predict on) should match70

the distribution of the training domain (Daume III and Marcu, 2006). This is71

rarely applicable in the dynamic marine environment, where phytoplankton72

and zooplankton community structure varies greatly with space and time,73
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resulting in distribution shift (Orenstein et al., 2020). Domain adaptation,74

which refers to the inclusion of data from the target domain in the training75

set, may aid in mitigating CNN performance degradation due to distribution76

shift (Kay et al., 2022).77

CNNs have also been applied in semi-supervised approaches, which re-78

quire the human annotator to review only a fraction of imaged particles while79

clustering similar images together (Schröder et al., 2020; Schröder and Kiko,80

2022). This approach has the potential to reduce the subjectivity of a human81

annotator, but its success depends on how well the clustering algorithm can82

assign images to ecologically important categories. Particles left unclassified83

may take a significant amount of time to review.84

In this paper, we propose a novel CNN-based methodology for classifying85

imaged particles that allows us to model particle carbon content with more86

granularity than with size alone, and may lead to more accurate predictions87

of carbon fluxes while diagnosing which ecological pathways contribute most88

to these fluxes. Our method utilizes a human-in-the-loop domain adaptation89

approach to address the dataset shift problem and to facilitate data assim-90

ilation from future sampling campaigns. We use allometric relationships to91

quantify the carbon content in labeled particles, and compare the resulting92

flux estimates to those from other more traditional methods of estimating93

carbon fluxes. Here we apply this approach to microscopy images of particles94

collected in sediment traps, but the general methodology could be applied to95

the classification of any particle imaging instrument. If combined with au-96
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tonomous particle imaging platforms, this method would allow for estimation97

of carbon fluxes at high spatiotemporal resolution and facilitate an under-98

standing of how the magnitude of carbon export is changing throughout the99

world’s oceans.100

Materials and procedures101

Data102

Sampling locations103

Particle samples were obtained from the central and subarctic North Pacific,104

the Santa Barbara Basin, and the North Atlantic (Figure 1). In the central105

North Pacific, three stations were sampled between Hawai‘i and California106

aboard the R/V Falkor between January 24 and February 20, 2017. These107

stations included oligotrophic low flux regions in the subtropical North Pa-108

cific, as well as a coastal environment in the California Current (measured109

POC flux: 1.1–1.7mmolCm−2 d−1) (Durkin et al., 2021, see their Table 1).110

Samples from the subarctic North Pacific come from first the NASA EX-111

PORTS field campaign, which took place near Station P between August 14112

and September 9, 2018 aboard the R/V Roger Revelle (Siegel et al., 2021).113

Station P is a high nutrient low chlorophyll region characterized by low export114

flux (0.4–2.8mmolCm−2 d−1). Another station was sampled in the Santa115

Barbara Basin aboard the R/V Sally Ride between December 12–17, 2019,116
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where the settling flux of POC from surface waters was relatively high (5.0–117

6.6mmolCm−2 d−1). Finally, samples from the eastern North Atlantic were118

collected aboard the R.R.S. James Cook between May 6–24, 2021 during the119

second NASA EXPORTS field campaign near the Porcupine Abyssal Plain120

(Johnson et al., 2024). Sampling was conducted in a mesoscale eddy during121

the spring bloom, which was a high flux system (2.1–11.2mmolCm−2 d−1).122

FO

FC

RR JC

SR

140°W 120°W 100°W 80°W 60°W 40°W 20°W

20°N

30°N

40°N

50°N

60°N

Figure 1: Map of sampling locations, including the subarctic North Pacific
(RR), central North Pacific (FO), California Current (FC), Santa Barbara
Basin (SR), and North Atlantic (JC).

For the purpose of this study, each sampling campaign will constitute123

a “domain,” i.e., a region characterized by a unique distribution of sinking124

particles that was sampled during a given time interval. Each domain is125

hereafter referred to by an abbreviation given by the vessel that was used for126

sampling: FO and FC for the oligotrophic and coastal central North Pacific,127

respectively (sampled aboard the R/V Falkor), RR for the subarctic North128

Pacific (sampled aboard the R/V Roger Revelle), SR for the Santa Barbara129
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Basin (sampled aboard the R/V Sally Ride), and JC for the eastern North130

Atlantic (sampled aboard the R.R.S. James Cook).131

Sample collection132

Particle samples were collected as described in Durkin et al. (2021). Briefly,133

sediment traps were fitted with collection tubes containing a jar with a poly-134

acrylamide gel layer overlaid by filtered seawater (Durkin et al., 2015). Fol-135

lowing trap recovery, the tubes were allowed to sit for roughly one hour before136

water was carefully pipetted off. Micrographs of gel layers were imaged on a137

stereomicroscope under oblique illumination. Regions of interest (ROIs) that138

contained individual particles were extracted from each micrograph with an139

imaging processing protocol described by Durkin et al. (2021). This imag-140

ing protocol also generated measurements of equivalent spherical diameter141

(ESD) of each particle.142

Data labeling143

We classified ROIs based on the ecological provenance of the particles (Fig-144

ure 2). Our definitions were modified from Durkin et al. (2021), and are145

summarized here. Aggregates are detrital particles with irregular edges that146

(i) may have formed from processes such as the physical coalescence of al-147

gal cells, or (ii) may be highly-degraded fecal material. Long pellets are148

fecal pellets that are produced by zooplankton such as euphasiids. Fecal pel-149

lets that are relatively short or ovular in shape, such as those produced by150
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larvaceans, were classified as short pellets. Mini pellets are smaller, approx-151

imately spherical fecal pellets that are likely produced by smaller organisms152

such as rhizaria and other microzooplankton. While all other particle types153

consist of detrital material, individual organisms that sinking passively may154

also contribute to downward carbon flux. In our samples, such “particles”155

include rhizaria and phytoplankton. Phytoplankton were separated into di-156

noflagellates, and “long” (e.g., pennate diatoms) and “round” (e.g., centric157

diatoms) groups. There are also some classes of ROIs that contain particles158

that do not contribute to POC export, but that were common enough in our159

dataset to warrant identification so as to not be counted towards the par-160

ticle flux. These include zooplankton that likely swam into the trap, fibers161

(either synthetic or naturally occurring), bubbles (pockets of air trapped in162

the gel), and noise (empty ROIs that were artifacts of the image processing163

procedure).164

Prior to this study, we manually classified all images from the RR and165

JC domains. We noticed that many images were “ambiguous,” meaning that166

they could not definitively be given a unique label out of the set of particle167

classes enumerated above, because (i) they could justifiably be described by168

at least two labels, (ii) they were unidentifiable (e.g., too blurry) and/or (iii)169

they could not be described by any of the particle classes (e.g., consider a170

fragment of plastic sinking through the water column, but note that these171

were extremely rare and did not warrant the creation of a separate class).172

In order to quantify this ambiguity, we relabeled subsets of roughly 3000173

9

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 10, 2024. ; https://doi.org/10.1101/2024.07.06.602339doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.06.602339
http://creativecommons.org/licenses/by/4.0/


A
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G

Figure 2: Particles types that are considered for flux calculations including
(A) aggregates, (B) long pellets, (C) short pellets, (D) mini pellets, (E) salp
pellets, (F) rhizaria, and (G) phytoplankton, including (from left to right) an
example of a dinoflagellate, a “long,” and a “round” phytoplankter. Images
are not to scale.
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and 6000 images from the RR and JC datasets, respectively. These domains174

were chosen because all images from these domains were annotated by a175

human, while some images from other domains were not. We observed that176

roughly 81% and 78% of the new labels matched the original annotations177

for RR and JC, respectively. Thus, we chose a conservatively defined subset178

of unambiguously labeled images from each domain to train the models,179

yielding the following image counts for each domain: (RR) 30300 images,180

9078 labeled; (FC) 5454 images, 1186 labeled; (FO) 1799 images, 353 labeled;181

(SR) 16522 images, 4091 labeled; (JC) 115368 images, 35274 labeled (Figure182

3).183
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Figure 3: Distribution of labeled particles by class. Classes to the left of the
dotted lines are used for the domain adaptation experiments.
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Finally, note that in the original set of human-annotated labels that were184

previously obtained, phytoplankton were not separated into the subclasses185

described above, noise and bubbles were grouped as “unidentifiable,” and186

whereas we separated fibers in visually distinct “sharp” and “blur” types,187

the original labeling scheme did not. We maintained our revised labels (with188

finer categorization) for CNN training and predictions, but in comparisons189

to original labels presented later on in this work, our labels were grouped as190

consistent with the original labeling scheme.191

Hyperparameter tuning192

For CNN (hereafter, “model”) training, we selected the ResNet-18 neural193

network architecture (He et al., 2016) due to its balance between training194

speed and accuracy (Canziani et al., 2017). Following Orenstein and Bei-195

jbom (2017), we finetuned models that were pre-trained on roughly one mil-196

lion images spanning one thousand object classes from the natural and built197

environments (ImageNet; Russakovsky et al., 2015). Roughly 95% of our im-198

ages had a longest dimension (i.e., width or height) that was shorter than 224199

pixels, so we set the input size to this value in order to minimize obfuscation200

of particle morphologies via image shrinking. Training was done in epochs,201

where one epoch describes one pass of the entire training and validation sets202

through the model. Images were passed through the model in batches of203

128, and were shuffled into new batches between epochs. Early stopping of204

training was implemented with a patience of 10, such that training stopped205
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after there were 10 consecutive epochs without improvement relative to the206

lowest validation loss. The optimizer (i.e., algorithm used to fit model pa-207

rameters to the training data by minimizing a loss function) that we used208

was Adam with weight decay (AdamW; Loshchilov and Hutter, 2019). For209

data augmentation, 90◦ rotations and horizontal and vertical flips were ap-210

plied randomly to the images during training. Given this training protocol,211

we tuned (i) image resizing and normalization, (ii) initial learning rate, and212

(iii) weight decay by using class-specific precision and recall as evaluation213

metrics. For each of these hyperparameter tuning experiments, five model214

replicates were trained with random number generator (RNG) seeds of 0,215

1, 2, 3, and 4 to quantify model variance due to RNG initialization. Here,216

labeled images from domains FC, FO, JC, and SR were used for training217

and validation while images from RR were used for evaluation (i.e., testing).218

The train and validation splits were stratified by class, such that for each219

domain, 80% and 20% of the images were used for training and validation,220

respectively. All training was done on a NVIDIA RTX 8000 running CUDA221

11.6.222

First, we investigated the effects of two image resizing techniques and im-223

age normalization. ResNet-18 requires square images as input. However, our224

particle images were usually rectangular and it may be important to preserve225

their aspect ratio such that one dimension is not scaled without a propor-226

tional scaling of the other (e.g., a short pellet that is stretched only along its227

shorter axis may resemble a mini pellet). To resolve this issue, we centered228
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images between black borders (i.e., zero-padding). Images that had a longer229

dimension greater than 224 pixels were shrunk while preserving aspect ratio,230

and black borders were added on either side of the image along the shorter231

dimension. Images with a longer dimension that was less than 224 pixels232

were simply zero-padded (Hashemi, 2019). This preprocessing protocol, re-233

ferred to herein as “CustomPad,” was compared to Resize from PyTorch’s234

torchvision.transforms module, which simply resizes both image dimen-235

sions to 224 with no aspect ratio preservation.236

In addition to image resizing, we also evaluated how data normalization237

affected our evaluation metrics. The mean and standard deviation calcu-238

lated from the RGB channels of ImageNet images ([0.485, 0.456, 0.406] and239

[0.229, 0.224, 0.225], respectively) are commonly used for data normalization.240

The mean and standard deviation calculated from our training dataset af-241

ter applying CustomPad were [0.053, 0.058, 0.055] and [0.123, 0.133, 0.127],242

respectively. Using Resize on the other hand, yielded a mean and stan-243

dard deviation of [0.279, 0.304, 0.294] and [0.096, 0.102, 0.095], respectively.244

To quantify model sensitivity to image resizing and data normalization, we245

trained models with 6 combinations of resizing and data normalization pro-246

tocols: (i) Resize with no normalization, (ii) CustomPad with no normal-247

ization, (iii) Resize with normalization via statistics calculated from our248

Resize-transformed data, (iv) Resize with normalization via ImageNet statis-249

tics, (v) CustomPad with normalization via statistics calculated from our250

CustomPad-transformed data, and (iv) CustomPad with normalization via251
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ImageNet statistics. For these experiments, initial learning rate and weight252

decay were fixed to the AdamW defaults of 0.001 and 0.01, respectively.253

We found no sensitivity to image resizing and data normalization based on254

our evaluation metrics (Supplemental Figure S1), thus we proceed with the255

simplest protocol of resizing with Resize and no normalization.256

Next, we fixed weight decay at 0.01 and varied the initial learning rate257

across three orders of magnitude: 0.0001, 0.001, and 0.01. We found that258

compared to the default value of 0.001, the higher initial learning rate de-259

graded performance as measured by our evaluation metrics, while the lower260

learning rate did not noticeably affect performance (Supplemental Figure261

S2). Thus, we maintained the default learning rate of 0.001.262

Finally, we tuned weight decay by considering three orders of magnitude263

for this parameter as well: 0.001, 0.01, and 0.1. In our experiments, the choice264

of weight decay did not affect model performance (Supplemental Figure S3),265

so we maintained the default value of 0.01. All model training subsequently266

described in this study was thus done with image resizing that does not267

preserve aspect ratio (i.e., Resize), no image data normalization, an initial268

learning rate of 0.001, and weight decay set to 0.01.269

Domain adaptation experiments270

Upon obtaining images from a sampling campaign at a novel target domain,271

we would like to train a model to classify the images with high accuracy272

while minimizing human involvement. Ideally, the distribution used to train273
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a model should be the same as that which is being classified, i.e., the target274

set (Daume III and Marcu, 2006). In reality, this approach is often impossible275

to apply if the underlying distribution of a novel unlabeled set of particles276

is unknown. Furthermore, the particle morphologies for a given class may277

vary from region to region, e.g., an aggregate from one domain may look278

different than an aggregate from another domain. One approach may be279

to manually label a subset of images from each novel sampling campaign in280

order to finetune a model, but this approach does not scale to large datasets281

because (i) it is not clear how many images an expert must annotate in order282

to capture the true distribution of the dataset and (ii) obtaining such labels283

is expensive. Although intra-class morphological variance between domains284

may exist, feature representations learned in one domain may transfer to a285

separate target domain.286

In order to take advantage of knowledge gained from labeled data from287

previous sampling campaigns while minimizing human effort, we propose a288

human-in-the-loop domain adaptation (Zhou et al., 2022) approach in which289

first, an out-of-domain (OOD) model ensemble is finetuned with images la-290

beled from previous sampling campaigns. This OOD ensemble is then used291

to predict labels for the novel domain, and ensemble voting is used to pro-292

pose images to show to a human expert for verification. Next, the in-domain293

verified images are added to the previously OOD training set, and the en-294

semble is finetuned once again and used to predict labels for all remaining295

in-domain images not included in the training set. Finally, carbon fluxes296
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are calculated from the combination of human-verified and model-predicted297

labels. Our methodology is summarized in Figure 4 and elaborated below.298

Figure 4: Summary of the entire human-in-the loop classification method.
First, a model is trained on out-of-domain images. This model is used to
predict labels for in-domain images, a subset of which are verified by a human
expert. The verified images are combined with the original out-of-domain
images to train another model, which is used to classify all remaining in-
domain images not included in the training set. Finally, fluxes are calculated
for each particle class.
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Out-of-domain model training299

Our methodology was tested with both RR (subarctic North Pacific) and JC300

(North Atlantic) as the target domain. This is because for both domains,301

we previously labeled all particle images manually and thus have a human302

baseline with which to compare our model-based labels and flux calculations.303

We also re-labeled a subset of the images from each of these two domains304

to quantify intra-annotator variance that may be caused by ambiguity in305

particle morphologies. For a given target domain, training and validation306

sets were compiled from all other domains and an OOD model ensemble was307

finetuned as described for hyperparameter tuning.308

Model ensemble voting309

After the OOD ensemble was trained, each ensemble replicate was used to310

predict confidence scores corresponding to each particle class for every image311

in the target domain. The Softmax function (torch.nn.Softmax) was used312

to transform ResNet-18’s output vector of logits into a vector of confidence313

scores between 0 and 1 (we emphasize that these scores should not be inter-314

preted as probabilities, see Guo et al., 2017), and the particle class with the315

highest score was taken as the image label. For all images that had unani-316

mous label consensus across all five ensemble replicates, the mean score for317

the consensus label across all replicates was calculated. The images with the318

1000 highest mean scores for each class were shown to a human expert for319

verification. Note that some classes may have had fewer than 1000 images320
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with unanimous consensus between the ensemble replicates, indicating that321

the expert had fewer than 1000 images to review for these classes.322

Human verification323

The suggested images from the model ensemble voting step were organized324

into a directory with subdirectories named by particle class. The expert325

verified the images by reviewing the images in each class directory. If the326

image was labeled incorrectly and there was no ambiguity as to what the327

correct label should have been, the image label was corrected by moving328

the image to the subdirectory corresponding to the correct label. If there329

was ambiguity regarding the label of a suggested image, then the image was330

simply deleted. Otherwise, if the label was correct, no action was taken.331

Finding more minority class instances332

Minority classes in the OOD training set may be poorly learned, resulting in333

few or no consensus instances suggested by the unanimous voting scheme. In334

the directory of images verified by the expert, any classes containing fewer335

than 100 instances were considered to be minority classes. For each of these336

classes, the images whose scores appeared in the top 1000 scores across all337

replicates were suggested for verification in a new directory whose subdirec-338

tories were named by minority class. The expert simply deleted images that339

were incorrectly labeled. The suggested images in this step did not include340

images that were manually verified in the previous step as a result of unan-341
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imous consensus among the OOD model ensemble. Note that a class may342

have been relatively abundant in the OOD set but may still have had fewer343

than 100 instances in the in-domain suggested set, thus being considered a344

minority class in this step.345

Model retraining346

The manually verified in-domain images were incorporated into new training347

and validation sets. These images were split 80%/20% and stratified by348

class. The 80% subset was combined with all OOD images (used in both the349

training and validation sets for the OOD ensemble) to form the new training350

set. The validation set was composed only of the 20% split of verified in-351

domain images in order to fit the model only to target domain data. A model352

ensemble was then finetuned as before, using ImageNet weights as a starting353

point. This ensemble was used to predict labels for all remaining in-domain354

images, i.e., those that were not integrated into the training and validation355

sets.356

Carbon flux estimates357

Once all particles from the target domain were labeled, POC fluxes were358

calculated for each gel trap, similar to Durkin et al. (2021) with slight mod-359

ification to some parameters. We updated the parameters used to model360

POC fluxes because we combined classes that were previously split into sep-361

arate categories and because more measured POC flux data was available362
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to fit model parameters. Here, we parameterize a single “aggregate” cate-363

gory (previously split into aggregates and dense detritus) and a single long364

fecal pellet category (previously split into long fecal pellets and large-loose365

fecal pellets), in addition to the five other particles contributing to POC flux366

(see Table 1). Combining the previous nine categories into seven reduced367

the inconsistency in both the human and machine classification of the most368

visually diverse and sometimes ambiguous particle classes.369

The mass of carbon C (mg) of a single particle is given by370

C = A · V B (1)371

where A is a scaling coefficient (mg µm−3, essentially the carbon mass of372

1 µm3), V is the volume of the particle (µm3), and B is an exponent param-373

eter (unitless) that describes carbon density. The volume V is modeled to374

best approximate the shape of each particle type and is a function of the375

equivalent spherical diameter (ESD, µm) of the particle. For particles whose376

volumes were approximated as spherical (aggregates, mini pellets, rhizaria,377

phytoplankton), the ESD was used to estimate the radius of the sphere to378

calculate V . The volumes of other particle types were estimated as cylinders379

(long fecal pellets), ellipsoids (short fecal pellets), or cuboids (salp fecal pel-380

lets), requiring length and width measurements not accurately estimated by381

automated image processing functions. Durkin et al. (2021) measured the382

width of 186 salp fecal pellets, 596 short fecal pellets, 563 large-loose fecal383
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pellets, and 1415 long fecal pellets to identify an empirical relationship with384

ESD calculated from measured particle area. Here, we use these previously385

published parameters relating ESD to width for salp fecal pellets and short386

pellets, best approximated by a linear relationship. Because we combined387

the long fecal pellet and the large-loose pellet categories, we identified a new388

combined relationship relating ESD to pellet width for this category, which389

is best described by a hyperbolic relationship (Durkin et al., 2021, see their390

Table 1). Lengths of cylinders, ellipsoids, and cuboids were then described391

as a function of width and ESD, as described by Durkin et al. (2021).392

To convert volumes into carbon units, the A and B parameters for each393

particle type were modeled using a minimization function (scipy.optimize.minimize)394

that gave the best fit to log transformed chemically measured bulk POC395

fluxes. The same modeled value of A was used for aggregates, long, short,396

and mini pellets. The value of A used to describe salp fecal pellets, phyto-397

plankton, and rhizaria were based on literature values (Table 1). The value of398

B was modeled only for aggregates, and fixed at 1 for particles whose carbon399

content is not known to vary as a function of volume. The B value of other400

particles (phytoplankton and rhizaria) was taken from literature values. We401

used the same datasets as Durkin et al. (2021) to fit these imaging-based402

parameters of carbon flux to measured carbon fluxes, and also included 11403

additional samples collected during the two sediment trap deployments in the404

North Atlantic (JC). The updated estimates of A and B model parameters405

were similar to those in the previous study and did not noticeably change406
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previously reported results.407

After calculating the mass, C, of carbon in each particle using Equation408

1 and the updated parameters, POC flux was calculated by dividing the409

mass by the total area imaged for the relevant magnification and the total410

deployment time for the trap from which the sample originated. Fluxes411

of each particle category were summed to calculate the total flux in each412

gel trap, as predicted by each of the model replicates. Thus, variability in413

flux estimates for a given sample arose from differences in predictions for414

unverified particles between model replicates. Fluxes were calculated when415

considering each of RR and JC as the target domain, with 30 and 20 gel trap416

samples from these domains, respectively.417

Assessment418

In order to establish a human baseline against which to compare our model-419

based flux calculations, first we calculated fluxes based on the expert an-420

notations and compared those flux estimates to measurements of bulk car-421

bon from the RR and JC datasets presented in Durkin et al. (2021) and422

Estapa et al. (2021), and Siegel et al. (unpubl.), respectively. We found a423

mean absolute error (MAE) between the flux estimates from human annota-424

tions and those from bulk carbon measurements of 0.71mmolCm−2 d−1 and425

1.55mmolCm−2 d−1 for the RR and JC datasets, respectively (Figure 5).426

Next, we calculated fluxes that incorporated model-based predictions of427
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Figure 5: Comparison of fluxes calculated from the original human-annotated
labels versus bulk carbon measurements from the traps from the North Pacific
(RR) and North Atlantic (JC) sampling campaigns. Each marker represents
one sediment trap sample. Dashed lines denote perfect agreement between
the different estimates of carbon fluxes. MAE is the mean absolute error.
Error bars represent the standard deviation of replicate sample splits (see
Durkin et al., 2021).

particle classes. In order to examine the effect of each step in our proposed428

domain adaptation methodology, we considered four sets of predictions for429

each target domain in order to calculate fluxes. The first set of predictions430

arose from the OOD model, whose training set only included out-of-domain431

images. In the second set of predictions (+top1k), flux calculations were432
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based on a model ensemble that was retrained on up to 1000 images from433

each class that were labeled by the OOD model. Human verification of434

these images was used in the third set of predictions (+verify). A final435

ensemble voting technique was applied to improve predictions of minority436

classes (+minboost).437

We compared the MAE from fluxes calculated from model predictions to438

those calculated from human annotations (total and by class), as well as the439

MAE between total flux estimates from model predictions and bulk carbon440

measurements (Figure 6). The variance was generally largest for the flux es-441

timates from OOD predictions relative to those from the domain adaptation442

refinements. The incremental steps in the domain adaptation experiment ap-443

peared to improve (though not monotonically) the MAE between total fluxes444

estimated from model predictions and both those from human annotations445

(“total”) and bulk carbon measurements (“measured”). Notably, estimates446

from the domain adaptation treatments that involved human verification447

(+verify and +minboost) had MAEs that were comparable to those between448

estimates from human annotations and bulk carbon measurements (Figure449

6, gray lines).450

In order to test for differences in significance between model treatments,451

we conducted analysis of variance (ANOVA) for each panel in Figure 6, fol-452

lowed by a post-hoc Tukey test if ANOVA yielded a significant (p < 0.05)453

result. With RR as the target domain, there were significant improvements454

in MAE provided by the +verify predictions compared to the OOD predic-455
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Figure 6: Mean absolute error between fluxes calculated from model labels
and (first column) bulk carbon measurements from the traps and (all other
columns) the original human-annotated labels, from the North Pacific (RR)
and North Atlantic (JC) sampling campaigns. The gray lines in the first
column correspond to the MAEs shown in Figure 5. Error bars indicate one
standard deviation of flux estimates across five model replicates.

tions for measured and total fluxes, as well as for aggregates, long pellets, and456

salp pellets. However, +minboost yielded no significant improvement com-457

pared to +verify for any total or class-specific fluxes. With JC as the target458

domain, there was only a significant improvement for long pellets provided459

by +minboost relative to the OOD predictions. However, +minboost signif-460

icantly increased MAE compared to +verify for salp pellets (note however,461

the high variance of +minboost compared to that of +verify).462

Examining the flux-specific MAEs is important in measuring performance463

relative to fluxes, which is an ecologically relevant metric. However, since464

MAE has the same units as carbon flux, larger, more abundant particles are465

more likely to have higher MAEs than smaller, less abundant particles. In466
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order to evaluate model performance on each particle class that is indepen-467

dent of carbon content, we show the class-specific precision and recall for468

the two target domains (Figure 7). In this comparison, the ground truth469

labels were considered to be those from the original expert annotations of470

the entire RR and JC datasets obtained prior to this study, which included471

ambiguous images. Note that in Figure 7, the noise and bubble classes were472

grouped as “unidentifiable,” as done in the original expert annotations. In473

order to quantify ambiguity in the original image labels, we randomly se-474

lected and relabeled roughly 3000 and 6000 images from the RR and JC475

datasets, respectively, and plotted the precision and recall relative to the476

original annotations as gray lines in Figure 7.477

For both target domains, the class-specific precision and recall from the478

models were often comparable to those from the re-annotation experiment for479

several classes including aggregates, long pellets, mini pellets, and short pel-480

lets. Model performance was noticeably worse relative to the re-annotation481

metrics for rarer classes such as phytoplankton, rhizaria, and salp pellets. We482

conducted ANOVA for each domain-metric-class grouping followed by a post-483

hoc Tukey test if ANOVA yielded a significant (p < 0.05) result. Compared484

to the OOD model, +verify significantly improved precision for aggregates485

(RR), phytoplankton (RR), and salp pellets (JC), as well as recall for mini486

pellets (RR), phytoplankton (RR), rhizaria (RR), salp pellets (RR), swim-487

mers (RR and JC), fibers (JC), and short pellets (JC). Relative to +verify,488

+minboost further improved recall for rhizaria (RR) and salp pellets (RR489
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Figure 7: Precision and recall by class and sampling campaign from the
domain adaptation experiments. The gray lines show intra-annotator metrics
calculated from the relabeling experiments, considering the original manual
labels as the ground truth. An absence of gray lines indicates an absence
of samples for a given class in the subset of randomly relabeled images.
Error bars indicate one standard deviation of flux estimates across five model
replicates.
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and JC), but worsened precision for JC salp pellets, which may explain the490

corresponding degradation in MAE observed in Figure 6.491

In general, precision and recall for JC were worse than for RR. For all492

four models, precision for RR aggregates was roughly 0.8, and recall was493

about 0.6. For JC, precision for aggregates was approximately 0.9 while494

recall was roughly 0.2, indicating that many aggregates were being classified495

as other classes. Because aggregates were the most abundant class in JC,496

misclassifying them as other particle classes may have been responsible for the497

low precision shown for other classes, such as mini pellets, salp pellets, and498

short pellets. It is likely that many aggregates were labeled as unidentifiable,499

as recall of unidentifiables was relatively high (∼0.8), while precision was not500

(∼0.8).501

Finally, we plotted profiles of fluxes estimated from the +minboost repli-502

cates compared to those from human annotation based-estimates and bulk503

carbon measurements (Figure 8). For most sampling deployments, both the504

model- and human-based flux estimates approximated the fluxes from bulk505

carbon measurements. Notably for JC, the model estimates overestimated506

mini pellet and short pellet fluxes and underestimated aggregate and long507

pellet fluxes compared to the human estimates. This can be attributed to508

many particles labeled as aggregates and long pellets by the human to be509

predicted as mini pellets and short pellets, respectively, by the model.510
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Figure 8: Fluxes estimated from model predictions and human labels from
the North Pacific (RR) and North Atlantic (JC) deployments (Dep.) by
particle class, as well as from bulk carbon measurements (black). Model
estimates are averaged across model replicates. Error bars are propagated
from the standard deviation of replicate sample splits at a given depth (see
Durkin et al., 2021).

Discussion511

The primary goal of this study was to leverage computer vision to facilitate512

annotation of particles imaged in the ocean. Manual classification of images513

from the RR and JC sampling campaigns was done during many months514

spread out over multiple years. Due to the large number of images that had515
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to be tediously reviewed by (in our case) a single expert, we did not find it516

feasible to dedicate full workdays over several weeks for this task – shorter517

intervals over a longer time horizon were critical to maintaining morale and518

avoiding fatigue. In contrast, verifying labels for up to 1000 images from519

each class as suggested by the OOD model (+verify) took between roughly520

70 (JC) to 90 (RR) minutes, and reviewing additional suggestions from mi-521

nority classes required about 20 minutes of additional labor (+minboost).522

Because we did not keep track of the number of hours required for the man-523

ual classification done prior to this study, we cannot precisely quantify the524

savings in human labor. However, we conservatively estimate this figure to525

be at least 90%.526

One clear explanation for the decrease in review time is the reduction in527

number of images that are reviewed. While all images from a novel sampling528

campaign must be reviewed in the manual workflow, only up to 1000 images529

for each class are reviewed in our proposed methodology. A less obvious530

cause for review time reduction was that in the purely manual approach,531

not all images were reviewed equally in time. Images that unambiguously532

belonged to a given class may have been classified in fractions of a second,533

but image labels that were less clear-cut due to a variety of factors such as534

visual blurring or morphological ambiguity required more time. The expert535

annotator may have mulled over ambiguous images for several seconds, and536

even deferred classification until a future point in the workflow, resulting in a537

single image being reviewed two or more times. With our method, any image538
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that was reviewed in the first verification step (+verify) had unanimous con-539

sensus from the OOD model ensemble. In our experiments, misclassifications540

were quickly and easily rectified before being integrated into the training set.541

The second verification step designed to identify more instances of minority542

classes (+minboost) may have resulted in some images being re-reviewed.543

This could have occurred, for example, if an image suggested by the OOD544

model as an aggregate was discarded during the first verification step and545

was subsequently suggested as a salp pellet in the second step. In our exper-546

iments, these instances were rare. Furthermore, while theoretically possible547

for an image to be suggested as multiple classes in the second step, this was548

not evident in our experiments. In summary, the entire verification workflow549

requires an expert to verify only a subset of images from the target domain,550

most of which are easily and quickly reviewed once.551

Not only did our methodology greatly diminish the amount of human552

effort required to label images, it yielded estimates of total flux that were553

similar to those calculated from the manual annotations and from imaging-554

independent estimates based on bulk carbon measurements (Figure 6). One555

potential net benefit of our approach compared to bulk carbon measurements556

was that we calculated fluxes contributed by different particle classes, which557

allowed for diagnosis of which ecological pathways were most relevant for car-558

bon flux (Figure 8). Using class-specific precision and recall as metrics, model559

classifications performed comparably to human re-annotation for most classes560

(Figure 7). We propose that the metrics from the human re-annotation ex-561
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periment are a benchmark for how well we can expect the model to perform.562

Due to the difficulty of identifying ambiguous images, when using one set of563

human labels as a ground truth, we should not expect the model to repro-564

duce these labels any better than a human would. Based on this criterium565

and the similarity between model-, human-, and measurement-based flux566

estimates described above, we suggest that our method is greatly advanta-567

geous in minimizing the amount of human labor required in labeling images,568

and producing flux estimates comparable to those obtained from human la-569

bels and chemical measurements while allowing for diagnosis of prominent570

ecological pathways in governing carbon flux.571

Comments and Recommendations572

Our method is not without its limitations. Consider the low recall for aggre-573

gates when JC was the target domain (Figure 7). This is concerning given574

that aggregates are a majority class in this dataset (Figure 3), and suggests575

that many aggregates may have been misclassified as other particle types,576

leading to underestimation of flux for the aggregate class. One hypothesis577

for inferior performance in JC compared to RR is that the verification steps578

(+verify and +minboost) resulted in a much smaller proportion of JC im-579

ages getting integrated into the training and validation sets (4%) compared580

to RR (21%) for model retraining. This occurred because despite JC having581

roughly four times as many images as RR, up to 1000 images are reviewed for582

34

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 10, 2024. ; https://doi.org/10.1101/2024.07.06.602339doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.06.602339
http://creativecommons.org/licenses/by/4.0/


each class for both target domains. A smaller fraction of the total population583

integrated into the training set allowed for less data diversity to be learned584

during training for JC, potentially leading to worse performance.585

This issue could be rectified by increasing the number of images to be586

reviewed by the human expert. Due to the model ensemble voting approach,587

we expect that the total amount of time required to review additional images588

would scale linearly with the number of images, given that most of these589

images were quickly and unambiguously verified in our experiments. We590

decided to leave the OOD images in the training sets into which in-domain591

images were incorporated for model retraining. This decision operated under592

the assumption that particles of a given class look similar enough regardless593

of what domain they were collected from. In practice, we see that although594

particles of a given class from two domains shared morphological similarities,595

they may have been visually distinct (e.g., aggregates from JC were generally596

less densely packed than those from RR). By increasing the number of images597

suggested by the OOD model that are then verified by the human expert,598

we may relinquish the need to maintain OOD images in the model retraining599

step. Using a purely in-domain training set may lead to better performance600

for a chosen target domain given that the number of images in this training601

set is large enough to represent the variance in each particle class.602

Finally, we demonstrated that our human-in-the-loop domain adaptation603

approach (+verify) generally improves classification relative to flux MAE604

or precision and recall compared to purely OOD predictions. However, the605
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subsequent attempt to boost performance for minority classes (+minboost)606

has the potential to degrade performance for some particle classes, especially607

if such classes still suffer from a scarcity of samples after +minboost is ap-608

plied. We expect that as our method is used to label more and more particles609

throughout the world’s oceans, feature representations learned by the model610

for rare classes will improve as these rare samples are added to the training611

sets, yielding better performance for these classes.612

Despite these limitations, we believe that our method is a valuable step in613

progressing towards an ecologically-informed understanding of carbon flux in614

the ocean driven by gravitational settling of particles. Compared to statistics-615

based classification methods (Trudnowska et al., 2021), this approach is based616

on a categorization scheme derived from pre-defined carbon flux pathways617

with known ecological significance. Furthermore, like methods developed618

for similar applications (Schröder et al., 2020; Schröder and Kiko, 2022), our619

method drastically reduces the amount of human effort required for obtaining620

classification with the added net benefit that all particles are assigned a621

label. The human-in-the-loop domain adaptation approach demonstrated622

here is one that could be applied not only to our marine particle dataset,623

but any dataset that is subject to distribution shift and a scarcity of labels624

for minority classes, two challenges which are ubiquitous in ecological image625

datasets.626
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Figure S1: Precision and recall by class for preprocessing protocol tun-
ing. The macro average is the arithmetic mean across all classes, while the
weighted average is weighted by the abundance of each class in the total train-
ing distribution. Error bars indicate one standard deviation of flux estimates
across five model replicates. (base) Resize with no normalization. (pad) Cus-
tomPad with no normalization. (normdata) Resize with normalization via
statistics calculated from our Resize-transformed data. (normIN) Resize with
normalization via ImageNet statistics. (padnormdata) CustomPad with nor-
malization via statistics calculated from our CustomPad-transformed data.
(padnormIN) CustomPad with normalization via ImageNet statistics.
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Figure S2: Precision and recall by class for learning rate tuning. The macro
average is the arithmetic mean across all classes, while the weighted average
is weighted by the abundance of each class in the total training distribution.
Error bars indicate one standard deviation of flux estimates across five model
replicates. (base) learning rate set to 0.001. (lowLR) 0.0001. (highLR) 0.01.
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Figure S3: Precision and recall by class for weight decay tuning. The macro
average is the arithmetic mean across all classes, while the weighted average
is weighted by the abundance of each class in the total training distribution.
Error bars indicate one standard deviation of flux estimates across five model
replicates. (base) weight decay set to 0.01. (lowWD) 0.001. (highWD) 0.1.
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