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o Abstract

n  The gravitational settling of organic particles in the ocean drives long term
12 sequestration of carbon from surface waters to the deep ocean. Quantifying
13 the magnitude of carbon sequestration flux at high spatiotemporal resolution
1 is critical for monitoring the ocean’s ability to sequester carbon as ecological
15 conditions change. Here, we propose a computer vision-based method for
16 classifying images of sinking marine particles and using allometric relation-
17 ships to estimate the amount of carbon that the particles transport to the
18 deep ocean. We show that our method reduces the amount of time required
19 by a human image annotator by at least 90% while producing ecologically-
20 informed estimates of carbon flux that are comparable to estimates based on
21 purely human review and chemical bulk carbon measurements. This method
2 utilizes a human-in-the-loop domain adaptation approach to leverage images
23 collected from previous sampling campaigns in classifying images from novel
2 campaigns in the future. If used in conjunction with autonomous imag-
s ing platforms deployed throughout the world’s oceans, this method has the
% potential to provide estimates of carbon sequestration fluxes at high spa-
a7 tiotemporal resolution while facilitating an understanding of the ecological

s pathways that are most important in driving these fluxes.
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» Introduction

3 The ocean is responsible for regulating the amount of carbon dioxide (COs)
a1 that persists in the atmosphere. The difference in partial pressure of CO,
52 across the air-sea interface drives dissolution and fixation of CO, into or-
13 ganic biomass by phytosynthetic algae in surface waters. A fraction of this
s biomass is packaged into particles and sinks down the water column as partic-
5 ulate organic carbon (POC), where the carbon is stored over long timescales
5 (Ducklow et al., 2001; Boyd et al., 2019). Thus, accurately constraining POC
;7 export is import for quantifying the ocean’s role in removing carbon dioxide
;s from the atmosphere.

30 Technological advances in recent years have facilitated widespread collec-
» tion of imaging data from the ocean, which presents an opportunity for es-
s timating carbon fluxes with high spatiotemporal resolution (Lombard et al.,
2 2019; Giering et al., 2020). For example, the Underwater Vision Profiler
s (UVP; Picheral et al., 2010) has been used to image particles in situ and
w estimate the fluxes that they contribute based on the sizes of observed par-
s ticles (Clements et al., 2022, 2023). However, uncertainties in UVP-based
s flux estimates can exceed 50% (Bisson et al., 2022), likely because particles
s are typically considered monolithically, with a uniform relationship to car-
s bon content and sinking speed. In actuality, the particles responsible for
s carbon export are highly diverse, being formed by a variety of ecological and

so physical processes that in turn alter their carbon content and sinking speeds.
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s Durkin et al. (2021) showed that ecological classification of particles enables
52 relatively accurate estimates of carbon export. However, this approach re-
53 lied on manual annotation of images for all particles considered in the flux
s« calculations, which is extremely costly and does not scale to large datasets.
55 Trudnowska et al. (2021) used an unsupervised (i.e., not requiring manual
ss annotation) approach based on principal component analysis to categorize
57 particles imaged in the water column by the UVP. This approach has the
ss advantage of removing human bias from categorization, but introduces am-
so biguity into translating statistical categories into distinct classes of known
s ecological source and theoretical carbon content.

61 Convolutional neural networks (CNNs) are commonly used for the task
&2 of image classification, and have been applied in the aquatic environment to
s3 identify species of phytoplankton (Orenstein and Beijbom, 2017; Cheng et al.,
sa  2019; Guo et al., 2021) and zooplankton (Dai et al., 2016; Hong et al., 2020;
s Li et al., 2021). These CNNs are usually trained with a supervised learning
s approach, in which an expert manually labels a subset of images from a
o7 given sampling campaign that are used for training. The resulting CNN
es is then used to predict labels from other regions or time periods (i.e., other
oo “domains”). However, there is an implicit assumption that the target domain
w0 distribution (i.e., the data that the CNN is used to predict on) should match
7 the distribution of the training domain (Daume III and Marcu, 2006). This is
22 rarely applicable in the dynamic marine environment, where phytoplankton

73 and zooplankton community structure varies greatly with space and time,
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7+ resulting in distribution shift (Orenstein et al., 2020). Domain adaptation,
s which refers to the inclusion of data from the target domain in the training
7 set, may aid in mitigating CNN performance degradation due to distribution
7 shift (Kay et al., 2022).

78 CNNs have also been applied in semi-supervised approaches, which re-
70 quire the human annotator to review only a fraction of imaged particles while
o clustering similar images together (Schroder et al., 2020; Schroder and Kiko,
s 2022). This approach has the potential to reduce the subjectivity of a human
&2 annotator, but its success depends on how well the clustering algorithm can
g3 assign images to ecologically important categories. Particles left unclassified
s may take a significant amount of time to review.

& In this paper, we propose a novel CNN-based methodology for classifying
s imaged particles that allows us to model particle carbon content with more
&7 granularity than with size alone, and may lead to more accurate predictions
s of carbon fluxes while diagnosing which ecological pathways contribute most
o to these fluxes. Our method utilizes a human-in-the-loop domain adaptation
o approach to address the dataset shift problem and to facilitate data assim-
o ilation from future sampling campaigns. We use allometric relationships to
e quantify the carbon content in labeled particles, and compare the resulting
o3 flux estimates to those from other more traditional methods of estimating
a carbon fluxes. Here we apply this approach to microscopy images of particles
ss collected in sediment traps, but the general methodology could be applied to

o the classification of any particle imaging instrument. If combined with au-
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o7 tonomous particle imaging platforms, this method would allow for estimation
s of carbon fluxes at high spatiotemporal resolution and facilitate an under-
o standing of how the magnitude of carbon export is changing throughout the

100 world’s oceans.

« Materials and procedures

e Data
103 Sampling locations

w4 Particle samples were obtained from the central and subarctic North Pacific,
s the Santa Barbara Basin, and the North Atlantic (Figure 1). In the central
ws North Pacific, three stations were sampled between Hawai‘i and California
w7 aboard the R/V Falkor between January 24 and February 20, 2017. These
s stations included oligotrophic low flux regions in the subtropical North Pa-
o cific, as well as a coastal environment in the California Current (measured
o POC flux: 1.1-1.7mmol Cm~2d™!) (Durkin et al., 2021, see their Table 1).
w Samples from the subarctic North Pacific come from first the NASA EX-
n2 PORTS field campaign, which took place near Station P between August 14
us and September 9, 2018 aboard the R/V Roger Revelle (Siegel et al., 2021).
us  Station P is a high nutrient low chlorophyll region characterized by low export
s flux (0.4-2.8mmol Cm~2d™"). Another station was sampled in the Santa

us  Barbara Basin aboard the R/V Sally Ride between December 12-17, 2019,
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u7  where the settling flux of POC from surface waters was relatively high (5.0—
s 6.6mmol Cm~2d™!). Finally, samples from the eastern North Atlantic were
o collected aboard the R.R.S. James Cook between May 6-24, 2021 during the
120 second NASA EXPORTS field campaign near the Porcupine Abyssal Plain
21 (Johnson et al., 2024). Sampling was conducted in a mesoscale eddy during

122 the spring bloom, which was a high flux system (2.1-11.2mmol Cm~2d™1).

60°N
50°N
40°N
30°N

20°N |

140°wW 120°w 100°W 80°W  60°W 40°W  20°W

Figure 1: Map of sampling locations, including the subarctic North Pacific
(RR), central North Pacific (FO), California Current (FC), Santa Barbara
Basin (SR), and North Atlantic (JC).

123 For the purpose of this study, each sampling campaign will constitute
124 a “domain,” i.e., a region characterized by a unique distribution of sinking
s particles that was sampled during a given time interval. Each domain is
126 hereafter referred to by an abbreviation given by the vessel that was used for
12z sampling: FO and FC for the oligotrophic and coastal central North Pacific,
s respectively (sampled aboard the R/V Falkor), RR for the subarctic North
120 Pacific (sampled aboard the R/V Roger Revelle), SR for the Santa Barbara
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10 Basin (sampled aboard the R/V Sally Ride), and JC for the eastern North
s Atlantic (sampled aboard the R.R.S. James Cook).

12 Sample collection

113 Particle samples were collected as described in Durkin et al. (2021). Briefly,
3¢ sediment traps were fitted with collection tubes containing a jar with a poly-
135 acrylamide gel layer overlaid by filtered seawater (Durkin et al., 2015). Fol-
36 lowing trap recovery, the tubes were allowed to sit for roughly one hour before
137 water was carefully pipetted off. Micrographs of gel layers were imaged on a
138 stereomicroscope under oblique illumination. Regions of interest (ROIs) that
130 contained individual particles were extracted from each micrograph with an
10 imaging processing protocol described by Durkin et al. (2021). This imag-
w1 ing protocol also generated measurements of equivalent spherical diameter

w2 (ESD) of each particle.

13 Data labeling

s We classified ROIs based on the ecological provenance of the particles (Fig-
s ure 2). Our definitions were modified from Durkin et al. (2021), and are
us summarized here. Aggregates are detrital particles with irregular edges that
17 (i) may have formed from processes such as the physical coalescence of al-
s gal cells, or (ii) may be highly-degraded fecal material. Long pellets are
o fecal pellets that are produced by zooplankton such as euphasiids. Fecal pel-

10 lets that are relatively short or ovular in shape, such as those produced by
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151 larvaceans, were classified as short pellets. Mini pellets are smaller, approx-
12 imately spherical fecal pellets that are likely produced by smaller organisms
153 such as rhizaria and other microzooplankton. While all other particle types
15« consist of detrital material, individual organisms that sinking passively may
155 also contribute to downward carbon flux. In our samples, such “particles”
155 include rhizaria and phytoplankton. Phytoplankton were separated into di-
157 noflagellates, and “long” (e.g., pennate diatoms) and “round” (e.g., centric
158 diatoms) groups. There are also some classes of ROIs that contain particles
159 that do not contribute to POC export, but that were common enough in our
10 dataset to warrant identification so as to not be counted towards the par-
11 ticle flux. These include zooplankton that likely swam into the trap, fibers
162 (either synthetic or naturally occurring), bubbles (pockets of air trapped in
163 the gel), and noise (empty ROIs that were artifacts of the image processing
166 procedure).

165 Prior to this study, we manually classified all images from the RR and
16 JC domains. We noticed that many images were “ambiguous,” meaning that
17 they could not definitively be given a unique label out of the set of particle
s classes enumerated above, because (i) they could justifiably be described by
160 at least two labels, (ii) they were unidentifiable (e.g., too blurry) and/or (iii)
1o they could not be described by any of the particle classes (e.g., consider a
i fragment of plastic sinking through the water column, but note that these
12 were extremely rare and did not warrant the creation of a separate class).

73 In order to quantify this ambiguity, we relabeled subsets of roughly 3000
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Figure 2: Particles types that are considered for flux calculations including
(A) aggregates, (B) long pellets, (C) short pellets, (D) mini pellets, (E) salp
pellets, (F) rhizaria, and (G) phytoplankton, including (from left to right) an
example of a dinoflagellate, a “long,” and a “round” phytoplankter. Images
are not to scale.

10
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s and 6000 images from the RR and JC datasets, respectively. These domains
s were chosen because all images from these domains were annotated by a
e human, while some images from other domains were not. We observed that
177 roughly 81% and 78% of the new labels matched the original annotations
s for RR and JC, respectively. Thus, we chose a conservatively defined subset
7o of unambiguously labeled images from each domain to train the models,
150 yielding the following image counts for each domain: (RR) 30300 images,
s 9078 labeled; (FC) 5454 images, 1186 labeled; (FO) 1799 images, 353 labeled;
12 (SR) 16522 images, 4091 labeled; (JC) 115368 images, 35274 labeled (Figure
183 3).

mw FC @ FO = JC mm RR = SR

Number of observations

0.5 1

Fraction of observations

Figure 3: Distribution of labeled particles by class. Classes to the left of the
dotted lines are used for the domain adaptation experiments.

11
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184 Finally, note that in the original set of human-annotated labels that were
185 previously obtained, phytoplankton were not separated into the subclasses
186 described above, noise and bubbles were grouped as “unidentifiable,” and
1;7 whereas we separated fibers in visually distinct “sharp” and “blur” types,
s the original labeling scheme did not. We maintained our revised labels (with
180 finer categorization) for CNN training and predictions, but in comparisons
1o to original labels presented later on in this work, our labels were grouped as

11 consistent with the original labeling scheme.

> Hyperparameter tuning

103 For CNN (hereafter, “model”) training, we selected the ResNet-18 neural
e network architecture (He et al., 2016) due to its balance between training
105 speed and accuracy (Canziani et al., 2017). Following Orenstein and Bei-
s jbom (2017), we finetuned models that were pre-trained on roughly one mil-
17 lion images spanning one thousand object classes from the natural and built
s environments (ImageNet; Russakovsky et al., 2015). Roughly 95% of our im-
190 ages had a longest dimension (i.e., width or height) that was shorter than 224
200 Ppixels, so we set the input size to this value in order to minimize obfuscation
20 of particle morphologies via image shrinking. Training was done in epochs,
22 where one epoch describes one pass of the entire training and validation sets
203 through the model. Images were passed through the model in batches of
204 128, and were shuffled into new batches between epochs. Early stopping of

25 training was implemented with a patience of 10, such that training stopped

12
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26 after there were 10 consecutive epochs without improvement relative to the
27 lowest validation loss. The optimizer (i.e., algorithm used to fit model pa-
208 rameters to the training data by minimizing a loss function) that we used
200 was Adam with weight decay (AdamW; Loshchilov and Hutter, 2019). For
20 data augmentation, 90° rotations and horizontal and vertical flips were ap-
o plied randomly to the images during training. Given this training protocol,
22 we tuned (i) image resizing and normalization, (ii) initial learning rate, and
23 (iii) weight decay by using class-specific precision and recall as evaluation
s metrics. For each of these hyperparameter tuning experiments, five model
25 replicates were trained with random number generator (RNG) seeds of 0,
26 1, 2, 3, and 4 to quantify model variance due to RNG initialization. Here,
a7 labeled images from domains FC, FO, JC, and SR were used for training
2s and validation while images from RR were used for evaluation (i.e., testing).
219 The train and validation splits were stratified by class, such that for each
20 domain, 80% and 20% of the images were used for training and validation,
a1 respectively. All training was done on a NVIDIA RTX 8000 running CUDA
2 11.6.

223 First, we investigated the effects of two image resizing techniques and im-
24 age normalization. ResNet-18 requires square images as input. However, our
25 particle images were usually rectangular and it may be important to preserve
26 their aspect ratio such that one dimension is not scaled without a propor-
27 tional scaling of the other (e.g., a short pellet that is stretched only along its

»s shorter axis may resemble a mini pellet). To resolve this issue, we centered

13
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2o images between black borders (i.e., zero-padding). Images that had a longer
230 dimension greater than 224 pixels were shrunk while preserving aspect ratio,
2 and black borders were added on either side of the image along the shorter
22 dimension. Images with a longer dimension that was less than 224 pixels
23 were simply zero-padded (Hashemi, 2019). This preprocessing protocol, re-
2 ferred to herein as “CustomPad,” was compared to Resize from PyTorch’s
235 torchvision.transforms module, which simply resizes both image dimen-
236 sions to 224 with no aspect ratio preservation.

237 In addition to image resizing, we also evaluated how data normalization
28 affected our evaluation metrics. The mean and standard deviation calcu-
20 lated from the RGB channels of ImageNet images ([0.485, 0.456, 0.406] and
20 [0.229, 0.224, 0.225], respectively) are commonly used for data normalization.
2 The mean and standard deviation calculated from our training dataset af-
22 ter applying CustomPad were [0.053, 0.058, 0.055] and [0.123, 0.133, 0.127],
23 respectively. Using Resize on the other hand, yielded a mean and stan-
20 dard deviation of [0.279, 0.304, 0.294] and [0.096, 0.102, 0.095], respectively.
x5 'To quantify model sensitivity to image resizing and data normalization, we
26 trained models with 6 combinations of resizing and data normalization pro-
27 tocols: (i) Resize with no normalization, (ii) CustomPad with no normal-
2s ization, (iii) Resize with normalization via statistics calculated from our
20 Resize-transformed data, (iv) Resize with normalization via ImageNet statis-
20 tics, (v) CustomPad with normalization via statistics calculated from our

251 CustomPad-transformed data, and (iv) CustomPad with normalization via

14
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2 ImageNet statistics. For these experiments, initial learning rate and weight
253 decay were fixed to the AdamW defaults of 0.001 and 0.01, respectively.
s We found no sensitivity to image resizing and data normalization based on
255 our evaluation metrics (Supplemental Figure S1), thus we proceed with the
6 simplest protocol of resizing with Resize and no normalization.

257 Next, we fixed weight decay at 0.01 and varied the initial learning rate
s across three orders of magnitude: 0.0001, 0.001, and 0.01. We found that
50 compared to the default value of 0.001, the higher initial learning rate de-
x%0 graded performance as measured by our evaluation metrics, while the lower
21 learning rate did not noticeably affect performance (Supplemental Figure
22 52). Thus, we maintained the default learning rate of 0.001.

263 Finally, we tuned weight decay by considering three orders of magnitude
24 for this parameter as well: 0.001, 0.01, and 0.1. In our experiments, the choice
265 of weight decay did not affect model performance (Supplemental Figure S3),
%6 50 we maintained the default value of 0.01. All model training subsequently
»7 described in this study was thus done with image resizing that does not
28 preserve aspect ratio (i.e., Resize), no image data normalization, an initial

xwo learning rate of 0.001, and weight decay set to 0.01.

- Domain adaptation experiments

on Upon obtaining images from a sampling campaign at a novel target domain,
o2 we would like to train a model to classify the images with high accuracy

273 while minimizing human involvement. Ideally, the distribution used to train

15
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oz a model should be the same as that which is being classified, i.e., the target
25 set (Daume I and Marcu, 2006). In reality, this approach is often impossible
a6 to apply if the underlying distribution of a novel unlabeled set of particles
o7 is unknown. Furthermore, the particle morphologies for a given class may
a3 vary from region to region, e.g., an aggregate from one domain may look
a9 different than an aggregate from another domain. One approach may be
20 to manually label a subset of images from each novel sampling campaign in
21 order to finetune a model, but this approach does not scale to large datasets
22 because (i) it is not clear how many images an expert must annotate in order
23 to capture the true distribution of the dataset and (ii) obtaining such labels
284 1is expensive. Although intra-class morphological variance between domains
25 Mmay exist, feature representations learned in one domain may transfer to a
26 separate target domain.

287 In order to take advantage of knowledge gained from labeled data from
88 previous sampling campaigns while minimizing human effort, we propose a
20 human-in-the-loop domain adaptation (Zhou et al., 2022) approach in which
20 first, an out-of-domain (OOD) model ensemble is finetuned with images la-
201 beled from previous sampling campaigns. This OOD ensemble is then used
202 to predict labels for the novel domain, and ensemble voting is used to pro-
203 pose images to show to a human expert for verification. Next, the in-domain
204 verified images are added to the previously OOD training set, and the en-
205 semble is finetuned once again and used to predict labels for all remaining

206 in-domain images not included in the training set. Finally, carbon fluxes

16
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207 are calculated from the combination of human-verified and model-predicted

208 labels. Our methodology is summarized in Figure 4 and elaborated below.

majority classes minority in-domain dataset
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Figure 4: Summary of the entire human-in-the loop classification method.
First, a model is trained on out-of-domain images. This model is used to
predict labels for in-domain images, a subset of which are verified by a human
expert. The verified images are combined with the original out-of-domain
images to train another model, which is used to classify all remaining in-
domain images not included in the training set. Finally, fluxes are calculated
for each particle class.
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200  Out-of-domain model training

20  Our methodology was tested with both RR (subarctic North Pacific) and JC
;0 (North Atlantic) as the target domain. This is because for both domains,
52 we previously labeled all particle images manually and thus have a human
303 baseline with which to compare our model-based labels and flux calculations.
s We also re-labeled a subset of the images from each of these two domains
s to quantify intra-annotator variance that may be caused by ambiguity in
w6 particle morphologies. For a given target domain, training and validation
307 sets were compiled from all other domains and an OOD model ensemble was

ws  finetuned as described for hyperparameter tuning.

0  Model ensemble voting

s After the OOD ensemble was trained, each ensemble replicate was used to
su predict confidence scores corresponding to each particle class for every image
a2 in the target domain. The Softmax function (torch.nn.Softmax) was used
sz to transform ResNet-18’s output vector of logits into a vector of confidence
a4 scores between 0 and 1 (we emphasize that these scores should not be inter-
a5 preted as probabilities, see Guo et al., 2017), and the particle class with the
a6 highest score was taken as the image label. For all images that had unani-
a1z mous label consensus across all five ensemble replicates, the mean score for
ais the consensus label across all replicates was calculated. The images with the
s19 1000 highest mean scores for each class were shown to a human expert for

»o verification. Note that some classes may have had fewer than 1000 images
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;1 with unanimous consensus between the ensemble replicates, indicating that

122 the expert had fewer than 1000 images to review for these classes.

3223 Human verification

24 The suggested images from the model ensemble voting step were organized
»s into a directory with subdirectories named by particle class. The expert
w6 verified the images by reviewing the images in each class directory. If the
w27 image was labeled incorrectly and there was no ambiguity as to what the
w8 correct label should have been, the image label was corrected by moving
w9 the image to the subdirectory corresponding to the correct label. If there
10 was ambiguity regarding the label of a suggested image, then the image was

s simply deleted. Otherwise, if the label was correct, no action was taken.

;2 Finding more minority class instances

513 Minority classes in the OOD training set may be poorly learned, resulting in
s few or no consensus instances suggested by the unanimous voting scheme. In
135 the directory of images verified by the expert, any classes containing fewer
136 than 100 instances were considered to be minority classes. For each of these
s classes, the images whose scores appeared in the top 1000 scores across all
18 replicates were suggested for verification in a new directory whose subdirec-
139 tories were named by minority class. The expert simply deleted images that
s were incorrectly labeled. The suggested images in this step did not include

s images that were manually verified in the previous step as a result of unan-
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sz imous consensus among the OOD model ensemble. Note that a class may
u3  have been relatively abundant in the OOD set but may still have had fewer
as than 100 instances in the in-domain suggested set, thus being considered a

us  minority class in this step.

us Model retraining

sz 'The manually verified in-domain images were incorporated into new training
us and validation sets. These images were split 80%/20% and stratified by
10 class. The 80% subset was combined with all OOD images (used in both the
30 training and validation sets for the OOD ensemble) to form the new training
551 set. The validation set was composed only of the 20% split of verified in-
2 domain images in order to fit the model only to target domain data. A model
13 ensemble was then finetuned as before, using ImageNet weights as a starting
s point. This ensemble was used to predict labels for all remaining in-domain
5 images, i.e., those that were not integrated into the training and validation

356 sets.

2 Carbon flux estimates

38 Once all particles from the target domain were labeled, POC fluxes were
30 calculated for each gel trap, similar to Durkin et al. (2021) with slight mod-
w0 ification to some parameters. We updated the parameters used to model
31 POC fluxes because we combined classes that were previously split into sep-

w2 arate categories and because more measured POC flux data was available
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3 to fit model parameters. Here, we parameterize a single “aggregate” cate-
s gory (previously split into aggregates and dense detritus) and a single long
s fecal pellet category (previously split into long fecal pellets and large-loose
w6 fecal pellets), in addition to the five other particles contributing to POC flux
37 (see Table 1). Combining the previous nine categories into seven reduced
w8 the inconsistency in both the human and machine classification of the most
w0 visually diverse and sometimes ambiguous particle classes.

370 The mass of carbon C' (mg) of a single particle is given by

i C=A-V" (1)

s where A is a scaling coefficient (mgpum™2, essentially the carbon mass of
w3 1pum?), V is the volume of the particle (nm?), and B is an exponent param-
wna eter (unitless) that describes carbon density. The volume V' is modeled to
a5 best approximate the shape of each particle type and is a function of the
w6 equivalent spherical diameter (ESD, pm) of the particle. For particles whose
w7 volumes were approximated as spherical (aggregates, mini pellets, rhizaria,
ws phytoplankton), the ESD was used to estimate the radius of the sphere to
sre calculate V. The volumes of other particle types were estimated as cylinders
s (long fecal pellets), ellipsoids (short fecal pellets), or cuboids (salp fecal pel-
s lets), requiring length and width measurements not accurately estimated by
32 automated image processing functions. Durkin et al. (2021) measured the

3 width of 186 salp fecal pellets, 596 short fecal pellets, 563 large-loose fecal

21
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s« pellets, and 1415 long fecal pellets to identify an empirical relationship with
35 ESD calculated from measured particle area. Here, we use these previously
6 published parameters relating ESD to width for salp fecal pellets and short
;7 pellets, best approximated by a linear relationship. Because we combined
;s the long fecal pellet and the large-loose pellet categories, we identified a new
;9 combined relationship relating ESD to pellet width for this category, which
20 18 best described by a hyperbolic relationship (Durkin et al., 2021, see their
;1 Table 1). Lengths of cylinders, ellipsoids, and cuboids were then described
1 as a function of width and ESD, as described by Durkin et al. (2021).

303 To convert volumes into carbon units, the A and B parameters for each
304 particle type were modeled using a minimization function (scipy.optimize.minimize)
ss that gave the best fit to log transformed chemically measured bulk POC
36 fluxes. The same modeled value of A was used for aggregates, long, short,
57 and mini pellets. The value of A used to describe salp fecal pellets, phyto-
s plankton, and rhizaria were based on literature values (Table 1). The value of
30 B was modeled only for aggregates, and fixed at 1 for particles whose carbon
wo content is not known to vary as a function of volume. The B value of other
w1 particles (phytoplankton and rhizaria) was taken from literature values. We
w2 used the same datasets as Durkin et al. (2021) to fit these imaging-based
w03 parameters of carbon flux to measured carbon fluxes, and also included 11
a4 additional samples collected during the two sediment trap deployments in the
ws North Atlantic (JC). The updated estimates of A and B model parameters

ws were similar to those in the previous study and did not noticeably change

23
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w7 previously reported results.

408 After calculating the mass, C, of carbon in each particle using Equation
w0 1 and the updated parameters, POC flux was calculated by dividing the
a0 mass by the total area imaged for the relevant magnification and the total
a1 deployment time for the trap from which the sample originated. Fluxes
a2 of each particle category were summed to calculate the total flux in each
a3 gel trap, as predicted by each of the model replicates. Thus, variability in
as flux estimates for a given sample arose from differences in predictions for
a5 unverified particles between model replicates. Fluxes were calculated when
as  considering each of RR and JC as the target domain, with 30 and 20 gel trap

a7 samples from these domains, respectively.

2 Assessment

a0 In order to establish a human baseline against which to compare our model-
w20 based flux calculations, first we calculated fluxes based on the expert an-
w21 notations and compared those flux estimates to measurements of bulk car-
22 bon from the RR and JC datasets presented in Durkin et al. (2021) and
w23 Estapa et al. (2021), and Siegel et al. (unpubl.), respectively. We found a
24 mean absolute error (MAE) between the flux estimates from human annota-
o5 tions and those from bulk carbon measurements of 0.71 mmol Cm~2d~! and
2 1.55mmol Cm~2d ™! for the RR and JC datasets, respectively (Figure 5).

a27 Next, we calculated fluxes that incorporated model-based predictions of

24
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Figure 5: Comparison of fluxes calculated from the original human-annotated
labels versus bulk carbon measurements from the traps from the North Pacific
(RR) and North Atlantic (JC) sampling campaigns. Each marker represents
one sediment trap sample. Dashed lines denote perfect agreement between
the different estimates of carbon fluxes. MAE is the mean absolute error.
Error bars represent the standard deviation of replicate sample splits (see
Durkin et al., 2021).

ws  particle classes. In order to examine the effect of each step in our proposed
2o domain adaptation methodology, we considered four sets of predictions for
a0 each target domain in order to calculate fluxes. The first set of predictions

a1 arose from the OOD model, whose training set only included out-of-domain

a2 images. In the second set of predictions (4toplk), flux calculations were
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133 based on a model ensemble that was retrained on up to 1000 images from
s each class that were labeled by the OOD model. Human verification of
i35 these images was used in the third set of predictions (+verify). A final
a6 ensemble voting technique was applied to improve predictions of minority
s classes (+minboost).

438 We compared the MAE from fluxes calculated from model predictions to
10 those calculated from human annotations (total and by class), as well as the
wo  MAE between total flux estimates from model predictions and bulk carbon
s measurements (Figure 6). The variance was generally largest for the flux es-
w2 timates from OOD predictions relative to those from the domain adaptation
w3 refinements. The incremental steps in the domain adaptation experiment ap-
ss  peared to improve (though not monotonically) the MAE between total fluxes
ws  estimated from model predictions and both those from human annotations
ws  (“total”) and bulk carbon measurements (“measured”). Notably, estimates
w7 from the domain adaptation treatments that involved human verification
ws  (+verify and +minboost) had MAEs that were comparable to those between
s estimates from human annotations and bulk carbon measurements (Figure
0 6, gray lines).

451 In order to test for differences in significance between model treatments,
ss2 we conducted analysis of variance (ANOVA) for each panel in Figure 6, fol-
ss3 lowed by a post-hoc Tukey test if ANOVA yielded a significant (p < 0.05)
ssa result. With RR as the target domain, there were significant improvements

s in MAE provided by the +verify predictions compared to the OOD predic-
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Figure 6: Mean absolute error between fluxes calculated from model labels
and (first column) bulk carbon measurements from the traps and (all other
columns) the original human-annotated labels, from the North Pacific (RR)
and North Atlantic (JC) sampling campaigns. The gray lines in the first
column correspond to the MAEs shown in Figure 5. Error bars indicate one
standard deviation of flux estimates across five model replicates.
sss  tions for measured and total fluxes, as well as for aggregates, long pellets, and
w7 salp pellets. However, +minboost yielded no significant improvement com-
s pared to +verify for any total or class-specific fluxes. With JC as the target
o domain, there was only a significant improvement for long pellets provided
w0 by +minboost relative to the OOD predictions. However, +minboost signif-
w1 icantly increased MAE compared to +verify for salp pellets (note however,
s2 the high variance of +minboost compared to that of +verify).
463 Examining the flux-specific MAEs is important in measuring performance
e relative to fluxes, which is an ecologically relevant metric. However, since

ws MAE has the same units as carbon flux, larger, more abundant particles are

ws more likely to have higher MAEs than smaller, less abundant particles. In
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w7 order to evaluate model performance on each particle class that is indepen-
w8 dent of carbon content, we show the class-specific precision and recall for
w0 the two target domains (Figure 7). In this comparison, the ground truth
a0 labels were considered to be those from the original expert annotations of
an  the entire RR and JC datasets obtained prior to this study, which included
a2 ambiguous images. Note that in Figure 7, the noise and bubble classes were
a3 grouped as “unidentifiable,” as done in the original expert annotations. In
s order to quantify ambiguity in the original image labels, we randomly se-
a5 lected and relabeled roughly 3000 and 6000 images from the RR and JC
a6 datasets, respectively, and plotted the precision and recall relative to the
a7 original annotations as gray lines in Figure 7.

a78 For both target domains, the class-specific precision and recall from the
a0 models were often comparable to those from the re-annotation experiment for
w0 several classes including aggregates, long pellets, mini pellets, and short pel-
w1 lets. Model performance was noticeably worse relative to the re-annotation
«2  metrics for rarer classes such as phytoplankton, rhizaria, and salp pellets. We
3 conducted ANOVA for each domain-metric-class grouping followed by a post-
s¢  hoc Tukey test if ANOVA yielded a significant (p < 0.05) result. Compared
w5 to the OOD model, +verify significantly improved precision for aggregates
s (RR), phytoplankton (RR), and salp pellets (JC), as well as recall for mini
w7 pellets (RR), phytoplankton (RR), rhizaria (RR), salp pellets (RR), swim-
s mers (RR and JC), fibers (JC), and short pellets (JC). Relative to +verify,

0 +minboost further improved recall for rhizaria (RR) and salp pellets (RR

28
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Figure 7: Precision and recall by class and sampling campaign from the
domain adaptation experiments. The gray lines show intra-annotator metrics
calculated from the relabeling experiments, considering the original manual
labels as the ground truth. An absence of gray lines indicates an absence
of samples for a given class in the subset of randomly relabeled images.
Error bars indicate one standard deviation of flux estimates across five model
replicates.
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w0 and JC), but worsened precision for JC salp pellets, which may explain the
s corresponding degradation in MAE observed in Figure 6.

492 In general, precision and recall for JC were worse than for RR. For all
w03 four models, precision for RR aggregates was roughly 0.8, and recall was
ws about 0.6. For JC, precision for aggregates was approximately 0.9 while
s recall was roughly 0.2, indicating that many aggregates were being classified
w6 as other classes. Because aggregates were the most abundant class in JC,
a7 misclassifying them as other particle classes may have been responsible for the
w8 low precision shown for other classes, such as mini pellets, salp pellets, and
w0 short pellets. It is likely that many aggregates were labeled as unidentifiable,
s0 as recall of unidentifiables was relatively high (~0.8), while precision was not
so0 (~0.8).

502 Finally, we plotted profiles of fluxes estimated from the +minboost repli-
s03 cates compared to those from human annotation based-estimates and bulk
s carbon measurements (Figure 8). For most sampling deployments, both the
ss model- and human-based flux estimates approximated the fluxes from bulk
so6 carbon measurements. Notably for JC, the model estimates overestimated
sor mini pellet and short pellet fluxes and underestimated aggregate and long
sos  pellet fluxes compared to the human estimates. This can be attributed to
so0 many particles labeled as aggregates and long pellets by the human to be

si0 predicted as mini pellets and short pellets, respectively, by the model.

30


https://doi.org/10.1101/2024.07.06.602339
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.06.602339; this version posted July 10, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

E aggregate  m mini pellet rhizaria short pellet
long pellet = phytoplankton salp pellet = measured
100 . r Y
200 . b :
2
o . i i
2 300
400 -x b :
g 500 r T -! T r T ] T 7 T
s
8 100 . ’
[
() JV 7
200 A . . .
C
£
5 300 A : . .
T
400 A . . b
500 ] T 7 T 7 T ] T r T
0 5 0 5 0 5 0 10 0 10

RR, dep. 1 RR, dep. 2 RR, dep. 3 JC, dep. 1 JC, dep. 2
Flux (mmol m=2 d~1)

Figure 8: Fluxes estimated from model predictions and human labels from
the North Pacific (RR) and North Atlantic (JC) deployments (Dep.) by
particle class, as well as from bulk carbon measurements (black). Model
estimates are averaged across model replicates. Error bars are propagated

from the standard deviation of replicate sample splits at a given depth (see
Durkin et al., 2021).

. Discussion

5

-

s The primary goal of this study was to leverage computer vision to facilitate

5

pudy

s annotation of particles imaged in the ocean. Manual classification of images

5

—

+ from the RR and JC sampling campaigns was done during many months

si5 spread out over multiple years. Due to the large number of images that had
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si6 to be tediously reviewed by (in our case) a single expert, we did not find it
si7  feasible to dedicate full workdays over several weeks for this task — shorter
sis  intervals over a longer time horizon were critical to maintaining morale and
si9 avoiding fatigue. In contrast, verifying labels for up to 1000 images from
s0 each class as suggested by the OOD model (+verify) took between roughly
s 70 (JC) to 90 (RR) minutes, and reviewing additional suggestions from mi-
s» nority classes required about 20 minutes of additional labor (+minboost).
523 Because we did not keep track of the number of hours required for the man-
s2a  ual classification done prior to this study, we cannot precisely quantify the
s savings in human labor. However, we conservatively estimate this figure to
6 be at least 90%.

527 One clear explanation for the decrease in review time is the reduction in
22 number of images that are reviewed. While all images from a novel sampling
s20 campaign must be reviewed in the manual workflow, only up to 1000 images
s30 for each class are reviewed in our proposed methodology. A less obvious
s cause for review time reduction was that in the purely manual approach,
s not all images were reviewed equally in time. Images that unambiguously
533 belonged to a given class may have been classified in fractions of a second,
s but image labels that were less clear-cut due to a variety of factors such as
s35  visual blurring or morphological ambiguity required more time. The expert
s3 annotator may have mulled over ambiguous images for several seconds, and
s37  even deferred classification until a future point in the workflow, resulting in a

s3s  single image being reviewed two or more times. With our method, any image
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s that was reviewed in the first verification step (+verify) had unanimous con-
sa0  sensus from the OOD model ensemble. In our experiments, misclassifications
s were quickly and easily rectified before being integrated into the training set.
s.2 ' The second verification step designed to identify more instances of minority
sa3 classes (+minboost) may have resulted in some images being re-reviewed.
saa ' This could have occurred, for example, if an image suggested by the OOD
sss model as an aggregate was discarded during the first verification step and
ss6  was subsequently suggested as a salp pellet in the second step. In our exper-
se7  iments, these instances were rare. Furthermore, while theoretically possible
ss  for an image to be suggested as multiple classes in the second step, this was
ss9  not evident in our experiments. In summary, the entire verification workflow
ss0 requires an expert to verify only a subset of images from the target domain,
ss1. most of which are easily and quickly reviewed once.

552 Not only did our methodology greatly diminish the amount of human
3 effort required to label images, it yielded estimates of total flux that were
s« similar to those calculated from the manual annotations and from imaging-
sss independent estimates based on bulk carbon measurements (Figure 6). One
56 potential net benefit of our approach compared to bulk carbon measurements
ss7 - was that we calculated fluxes contributed by different particle classes, which
sss - allowed for diagnosis of which ecological pathways were most relevant for car-
ss0  bon flux (Figure 8). Using class-specific precision and recall as metrics, model
ss0 classifications performed comparably to human re-annotation for most classes

s (Figure 7). We propose that the metrics from the human re-annotation ex-
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se2  periment are a benchmark for how well we can expect the model to perform.
53 Due to the difficulty of identifying ambiguous images, when using one set of
s«  human labels as a ground truth, we should not expect the model to repro-
ses duce these labels any better than a human would. Based on this criterium
ssc and the similarity between model-, human-, and measurement-based flux
ss7 estimates described above, we suggest that our method is greatly advanta-
s68  geous in minimizing the amount of human labor required in labeling images,
ss0 and producing flux estimates comparable to those obtained from human la-
st bels and chemical measurements while allowing for diagnosis of prominent

s ecological pathways in governing carbon flux.

- Comments and Recommendations

s73 - Our method is not without its limitations. Consider the low recall for aggre-
s gates when JC was the target domain (Figure 7). This is concerning given
s that aggregates are a majority class in this dataset (Figure 3), and suggests
st that many aggregates may have been misclassified as other particle types,
sz leading to underestimation of flux for the aggregate class. One hypothesis
szs  for inferior performance in JC compared to RR is that the verification steps
s (+verify and +minboost) resulted in a much smaller proportion of JC im-
o0 ages getting integrated into the training and validation sets (4%) compared
s to RR (21%) for model retraining. This occurred because despite JC having

ss2 roughly four times as many images as RR, up to 1000 images are reviewed for
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ss3 each class for both target domains. A smaller fraction of the total population
ssa integrated into the training set allowed for less data diversity to be learned
sss  during training for JC, potentially leading to worse performance.

586 This issue could be rectified by increasing the number of images to be
ss7  reviewed by the human expert. Due to the model ensemble voting approach,
sss  we expect that the total amount of time required to review additional images
ss0  would scale linearly with the number of images, given that most of these
so0 images were quickly and unambiguously verified in our experiments. We
s decided to leave the OOD images in the training sets into which in-domain
52 images were incorporated for model retraining. This decision operated under
s03 the assumption that particles of a given class look similar enough regardless
sa  of what domain they were collected from. In practice, we see that although
sos particles of a given class from two domains shared morphological similarities,
s06 they may have been visually distinct (e.g., aggregates from JC were generally
sor less densely packed than those from RR). By increasing the number of images
s0s  suggested by the OOD model that are then verified by the human expert,
s00  we may relinquish the need to maintain OOD images in the model retraining
s00 step. Using a purely in-domain training set may lead to better performance
o1 for a chosen target domain given that the number of images in this training
02 set is large enough to represent the variance in each particle class.

603 Finally, we demonstrated that our human-in-the-loop domain adaptation
e approach (+verify) generally improves classification relative to flux MAE

s0s or precision and recall compared to purely OOD predictions. However, the
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s0s subsequent attempt to boost performance for minority classes (+minboost)
sz has the potential to degrade performance for some particle classes, especially
s0s if such classes still suffer from a scarcity of samples after +minboost is ap-
0o plied. We expect that as our method is used to label more and more particles
s10 throughout the world’s oceans, feature representations learned by the model
s for rare classes will improve as these rare samples are added to the training
sz sets, yielding better performance for these classes.

613 Despite these limitations, we believe that our method is a valuable step in
s1a  progressing towards an ecologically-informed understanding of carbon flux in
s the ocean driven by gravitational settling of particles. Compared to statistics-
s1s  based classification methods (Trudnowska et al., 2021), this approach is based
s17 on a categorization scheme derived from pre-defined carbon flux pathways
sis  with known ecological significance. Furthermore, like methods developed
s10 for similar applications (Schroder et al., 2020; Schroder and Kiko, 2022), our
s20 method drastically reduces the amount of human effort required for obtaining
21 classification with the added net benefit that all particles are assigned a
s22 label. The human-in-the-loop domain adaptation approach demonstrated
23 here is one that could be applied not only to our marine particle dataset,
s« but any dataset that is subject to distribution shift and a scarcity of labels
s for minority classes, two challenges which are ubiquitous in ecological image

o6 datasets.
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Figure S1: Precision and recall by class for preprocessing protocol tun-
ing. The macro average is the arithmetic mean across all classes, while the
weighted average is weighted by the abundance of each class in the total train-
ing distribution. Error bars indicate one standard deviation of flux estimates
across five model replicates. (base) Resize with no normalization. (pad) Cus-
tomPad with no normalization. (normdata) Resize with normalization via
statistics calculated from our Resize-transformed data. (normIN) Resize with
normalization via ImageNet statistics. (padnormdata) CustomPad with nor-
malization via statistics calculated from our CustomPad-transformed data.
(padnormIN) CustomPad with normalization via ImageNet statistics.
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Figure S2: Precision and recall by class for learning rate tuning. The macro
average is the arithmetic mean across all classes, while the weighted average
is weighted by the abundance of each class in the total training distribution.
Error bars indicate one standard deviation of flux estimates across five model
replicates. (base) learning rate set to 0.001. (lowLR) 0.0001. (highLR) 0.01.
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Figure S3: Precision and recall by class for weight decay tuning. The macro
average is the arithmetic mean across all classes, while the weighted average
is weighted by the abundance of each class in the total training distribution.
Error bars indicate one standard deviation of flux estimates across five model
replicates. (base) weight decay set to 0.01. (lowWD) 0.001. (highWD) 0.1.
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