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Abstract 18 
 19 
The nematode Caenorhabditis elegans is an unconventional model in chronobiology, 20 
reported to exhibit physiological and behavioural circadian rhythms while lacking a 21 
defined transcriptional oscillator. The extent and importance of circadian rhythms in 22 
C. elegans remain uncertain, given a probable lack of functional conservation of key 23 
circadian proteins, relatively non-robust reported rhythms and an ambiguous diel 24 
ecology. Here, we investigated the temporal coordination of gene expression in C. 25 
elegans post-development using RNA sequencing. Over a circadian time series, in 26 
which we synchronised nematodes to combined light and temperature cycles, we 27 
found clear evidence of daily oscillations in 343 genes using JTK_Cycle. However, 28 
rhythms were not well-sustained in constant conditions, with only 13 genes 29 
remaining significantly rhythmic. Reanalysis of previous transcriptomic data echoed 30 
this finding in identifying far fewer rhythmic genes in constant conditions, while also 31 
identifying a greater number of rhythmic genes overall. Weighted gene co-32 
expression network analysis (WGCNA), a hierarchical clustering approach, further 33 
confirmed prevalent environmentally driven daily oscillations in the RNA-seq data. 34 
This analysis additionally revealed a novel co-expression trend in which over 1000 35 
genes exhibited hitherto unreported 16-hour oscillations, highlighting a new facet of 36 
temporal gene expression coordination in C. elegans. 37 

38 
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Introduction 39 
 40 
Biological oscillations enable temporal coordination of cellular and organismal 41 
biology. Circadian rhythms are an evolutionarily pervasive example of such 42 
oscillations, with approximately 24-hour physiological rhythms being widely 43 
observable in animals, fungi, plants and photosynthetic prokaryotes and having been 44 
reported in non-photosynthetic prokaryotes [1–5]. The physiological processes that 45 
exhibit 24-hour rhythms are diverse, but common to circadian model organisms, and 46 
potentially underpinning physiological rhythms, are rhythms in gene expression. In 47 
animal models, transcriptomic studies have reported gene expression rhythms to 48 
extend to hundreds to thousands of genes in Drosophila [6] and over 43% of protein-49 
coding genes in mice [7]. 50 
 51 
Within the metazoa, part-conserved transcriptional oscillators are proposed to drive 52 
rhythms in gene expression and wider rhythmicity. Transcription-translation feedback 53 
loop (TTFL) mechanisms centre around circadian oscillations in the RNA and protein 54 
abundance of homologues of the period (per) gene, first identified in Drosophila [8–55 
10]. The per gene is conserved in mammals (which express three Per genes) and 56 
other vertebrates [11,12]. In the respective TTFL models, per/Per transcription is 57 
driven by similarly homologous heterodimeric basic helix-loop-helix (bHLH) 58 
transcription factors which the resulting PER homologue protein products interact 59 
with and repress as part of autorepressor complexes. Regulated degradation of the 60 
repressor complexes allows transcription to resume, resulting in an endogenously 61 
generated, delayed feedback loop. The approximate 24-hour periodicity of the 62 
resulting autorepressor loops is proposed to result in cell autonomous circadian 63 
rhythms in both the repression of the respective transcription factors and 64 
downstream gene expression [1,13]. 65 
 66 
The nematode Caenorhabditis elegans is a curious case among laboratory model 67 
organisms in that it has been reported to exhibit numerous behavioural and 68 
physiological circadian rhythms but has no described TTFL. Reported circadian 69 
rhythms in C. elegans include gene expression [14–16], locomotor activity [17–22], 70 
protein abundance, oxidation-reduction cycles, olfactory responses [15,23], feeding, 71 
oxygen consumption [24], enzymatic activity [25] and hyperosmotic stress resistance 72 
[26]. Some of these reported rhythms do appear to be relatively non-robust however, 73 
being detectable at the level of select populations or varying in their activity peaks 74 
[16,18–20]. Phylogenetically, C. elegans is positioned in the Ecdysozoa within the 75 
protostomes [30,31] and as such, a common ancestral basis of rhythmicity shared 76 
between insects and mammals would plausibly be shared with C. elegans. However, 77 
the C. elegans sequence homologue of per, lin-42, and other identified sequence 78 
homologues of oscillatory TTFL genes [27,28], have been reported not to oscillate in 79 
adult nematodes [14,15,29]. Many genes, including lin-42, do oscillate throughout C. 80 
elegans’ development, however [32–40]. lin-42 in particular is well-described as a 81 
heterochronic gene necessary for progression through a temporally defined series of 82 
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larval stages [41–47], highlighting an alternate function of this key TTFL homologue 83 
and biological timing more broadly in nematodes. 84 
 85 
C. elegans also notably differs from the more established Drosophila and 86 
mammalian circadian models with respect to its evolutionary ecology. Light is the 87 
prevailing synchronising cue used in the study of circadian rhythms in both 88 
invertebrate and vertebrate chronobiology models [1,11], and C. elegans is 89 
photoreceptive and behaviourally phototactic [48,49]. However, only one directly 90 
light-sensitive photoreceptor protein has been identified in C. elegans, the UV-91 
sensitive LITE-1 [50–52]. Nematodes also lack the evolutionarily conserved 92 
cryptochrome (CRY) proteins [28,53], key in transducing photic inputs to the 93 
Drosophila circadian clock [54] and for circadian transcriptional repression in 94 
mammals [55,56]. C. elegans’ natural ecology (and thus its exposure to daily 95 
environmental cycles) is also not well-understood, with populations having been 96 
isolated from various surface level and subterranean environments [57–61]. It 97 
exhibits a boom-and-bust life cycle, including periods of fast population growth and 98 
inactivity; individuals are frequently isolated as dauers [58], a metabolically less 99 
active, stress-resistant and diapause state entered into when population density, 100 
food availability or temperature conditions become unfavourable [62,63]. The extent 101 
to which C. elegans has evolved to interact with a 24-hour diel environment is 102 
therefore unclear. 103 
 104 
C. elegans is therefore an atypical model of biological timing, reported to show 105 
numerous physiological circadian rhythms, but potentially lacking the functional 106 
conservation of the transcriptional oscillators seen in Drosophila and mammals, 107 
while also differing in its diel ecology. As such, questions remain as to the 108 
importance and nature of its circadian system. Here, we employed transcriptomics to 109 
comprehensively investigate gene expression oscillations in C. elegans within a 110 
circadian context, post-development. To date, very few circadian transcriptomic 111 
studies have been performed in C. elegans, but hundreds of endogenous cycling 112 
genes synchronised by light or temperature cycles have been reported [14,29]. We 113 
build upon prior work in conducting an RNA sequencing time series in C. elegans 114 
using a sextuplicate sampling approach. In so doing, we identify approximately 24-115 
hour rhythms in gene expression, but not to the same extent as a prior dataset [14], 116 
including upon reanalysis here. Rather than endogenous circadian rhythms, we 117 
identify a greater prevalence of genes that show variation in line with environmental 118 
cycles. Finally, we also identify a large subset of phase-coherent genes with 119 
approximately 16-hour ultradian periodicity that are, to our knowledge, previously 120 
unreported in nematodes not undergoing development. 121 
  122 
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Results 123 
 124 
Sampling C. elegans messenger RNA over a circadian time series 125 
 126 
To investigate circadian gene expression rhythms in C. elegans, we used combined 127 
12:12-hour cycles of light and temperature to synchronise (entrain) nematodes (light 128 
at 20°C: dark at 15°C). Our rationale for using these dual environmental inputs was 129 
that C. elegans is sensitive to both light [49,50] and temperature [64,65] and both 130 
sensory inputs have previously been reported to function as entrainment cues 131 
(zeitgebers; ‘time givers’) for gene expression rhythms in C. elegans [14–16,29,66]. 132 
While temperature has been used to entrain rhythms in other more established 133 
poikilothermic models, light is the better studied and reportedly more effective 134 
zeitgeber [1,11,67–71]. We therefore reasoned that using both light and temperature 135 
would be a sensible approach to detect rhythmic genes. We entrained nematodes to 136 
combined light and temperature cycles from embryogenesis and for three days as 137 
adults before releasing the animals into constant darkness at 15°C.  138 
 139 
For our sampling approach, we considered that C. elegans rhythms could be 140 
relatively non-robust compared to conventional chronobiology models (with certain 141 
rhythms being reportedly detectable at population level in some populations, for 142 
example [16,18,19]). To maximise rhythmic gene detection while incorporating 143 
endogenous timing, sampling of mRNA was performed across the final entrainment 144 
day and first day of constant conditions at 4-hour intervals. We also considered that 145 
conventional triplicate sampling could miss modest expression changes in a 146 
relatively non-robust system [72]. As such, to minimise false negative results and 147 
capture the extent of differential gene expression as accurately as possible, we 148 
sampled in sextuplicate; we harvested mRNA from 6 replicate populations of 149 
nematodes per timepoint (with one replicate being excluded from analysis at the final 150 
timepoint due to very few reads being detected). Each population comprised 151 
approximately 150 age-synchronised adult hermaphrodites housed on a petri plate 152 
(Figure 1).  153 
 154 
JTK_Cycle reveals genes expressed with approximately 24-hour periodicity 155 
 156 
To identify genes with circadian expression patterns, we first analysed time-series 157 
data using JTK_Cycle [73,74], a widely used method for identifying transcriptome-158 
wide circadian rhythms in diverse model organisms [6,7,76–79]. Genes were first 159 
filtered to include only those for which 50% of all samples showed an expression 160 
value > 0 (in transcripts per million, TPM; Figure 1B). From this initial list of 16,716 161 
genes, we applied an ANOVA pre-screen (p < 0.05) to identify genes that showed 162 
significant differences in TPM between timepoints. On the resulting set of 2526 163 
differentially expressed genes by ANOVA, JTK_Cycle identified 343 significantly 164 
rhythmic genes over the full two-day time series (Benjamini-Hochberg-adjusted p-165 
value, BHQ < 0.05; full list in Table S1). Genes with the lowest BHQ values included 166 
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examples of repeating 24-hour oscillations, as well as genes with 28-hour periods 167 
that part-replicated the environmental cycle in the absence of external stimuli (Figure 168 
2A). The genes identified by this approach notably varied by phase with peaks or 169 
troughs occurring across the circadian cycle (Figure 2B).  170 
 171 
To investigate the biological processes potentially served by these rhythmic genes, 172 
we performed functional annotation analysis on the 343 JTK_Cycle-significant genes 173 
using DAVID (Database for Annotation, Visualization and Integrated Discovery) 174 
[80,81]. DAVID compiles annotation terms from multiple sources and generates 175 
enrichment clusters of similar terms. Four enrichment clusters contained at least one 176 
significant term in our analysis (FDR threshold < 0.05), highlighting ribosome 177 
biogenesis, peroxisome function, fatty acid synthesis and prenylation as biological 178 
functions associated with our rhythmic gene list (Figure 2C; full annotation cluster 179 
results in Table S2). 180 
 181 
Notably absent from our list of significantly rhythmic genes were homologues of 182 
TTFL-associated genes, consistent with prior literature [14,15,29]. We considered 183 
lin-42 and 10 other genes reported to be sequence homologues of genes associated 184 
with TTFLs or circadian clock regulation in Drosophila and mammals [27,28,82] 185 
(including genes expressed rhythmically and non-rhythmically in these species). 186 
While all of these genes met the criterion of detectable expression (TPM > 0 in > 187 
50% of RNA-seq samples), all but two, atf-2 and pdfr-1 (related to the vrille and PDF 188 
receptor genes in Drosophila respectively), did not pass our ANOVA pre-screen (p > 189 
0.05). We applied JTK_Cycle independently to these 11 genes over our two-day time 190 
series and identified no significant circadian rhythmic expression (minimum p-value 191 
0.44, in pdfr-1; Table S3; Figure S1). 192 
 193 
Our experimental design included both an environmental cycle and constant 194 
conditions, following the rationale that an entrained endogenous rhythmic waveform 195 
should follow an entrained cycle. To test this and assess the relative role of each 196 
condition, we also analysed each condition independently, dividing our 12-point time 197 
series into two 6-point datasets prior to ANOVA pre-screening. While limited to a 198 
maximum period of 24 hours, we could then perform JTK_Cycle on these single-day 199 
data. Far more genes showed significant changes in expression over an 200 
environmental cycle than constant conditions (2377 and 406 differentially expressed 201 
genes respectively; ANOVA p < 0.05). Of these, an increased number and 202 
proportion were significantly rhythmic over single environmental cycle day (1344 203 
genes with JTK_Cycle BHQ < 0.05, 57% of differentially expressed genes; Table S4) 204 
relative to the full two-day time series (343 genes, 15%). Conversely, a much smaller 205 
proportion, and very few genes overall, met this statistical threshold in constant 206 
conditions (13 genes, 3%; Table S5). While fewer significant rhythms would be 207 
expected in constant conditions, consistent with the notion that an entrainment cue 208 
serves to synchronise independent, uncoupled cellular oscillators that dampen over 209 
time without external inputs [83,84], these results likely suggest a principal role of the 210 
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light and temperature cycle in generating rhythmic significance over the full two-day 211 
analysis.  212 
 213 
Of note, only four genes co-occurred between JTK_Cycle analyses; sws-1, C27B7.9, 214 
gstk-1 and fat-6 were the only genes identified as significantly rhythmic in an 215 
entrainment cycle, constant conditions and the full two-day time series (Figure 2D). 216 
We therefore sought to validate our JTK_Cycle results via an alternative analysis 217 
approach. Because an endogenously regulated circadian gene should exhibit 218 
repeating, correlated expression over multiple cycles, we calculated 24-hour rank 219 
autocorrelation coefficients for our 2526 differentially expressed genes. Most (233 220 
genes, 67.9%) of the JTK_Cycle-significant genes over the full two-day time series 221 
were positively correlated (Spearman’s rank, rs > 0;, 53 met an arbitrary correlation 222 
threshold of rs > 0.7 (Table S1, Figure 2A). Notably, however, many genes with high 223 
rank correlation coefficients were not previously identified as rhythmic by JTK_Cycle; 224 
applying a correlation threshold of rs > 0.7 identified a further 200 highly correlated 225 
but previously undetected genes (Figure 2E; Table S1), including one TTFL-226 
associated homologue, pdfr-1 (Figure S1). Our RNA-seq analyses therefore provide 227 
both a small validated subset and an expanded candidate list of genes that exhibit 228 
daily cycles for further consideration.  229 
 230 
The rhythmic genes identified in our time series differ in identity from prior 231 
time series data 232 
 233 
To compare our work to prior findings, we next reanalysed an earlier C. elegans 234 
transcriptomics dataset (henceforth referred to as ‘the 2010 dataset’; GEO: 235 
GSE23528 [14]). The previous study, using microarrays, reported approximately 24-236 
hour expression rhythms under light or temperature cycles and in subsequent 237 
constant conditions. As well as applying light and temperature independently, this 238 
work used a wider temperature range to entrain C. elegans (25:15°C to our 239 
20:15°C). Using a different analysis approach, the previous work reported 692 240 
unique genes to oscillate in cycling and constant conditions, only 15 were reidentified 241 
in our RNA-seq JTK_Cycle analysis (BHQ < 0.05, data not shown). We therefore 242 
sought to reanalyse this dataset, using an analysis approach comparable to that 243 
used for the RNA-seq data. The 2010 dataset consisted of 22,625 transcripts and 244 
was similarly generated from 44-hour replicate time series comprising an 245 
entrainment day (12:12 hours of light:dark or warm:cold cycles respectively) and a 246 
day of constant conditions. This enabled us to perform our analyses (ANOVA pre-247 
screen followed by JTK_Cycle) over combined two-day time series and independent 248 
days, as with the RNA-seq data. 249 
 250 
This reanalysis echoed our RNA-seq results with respect to finding far more cycling 251 
genes when incorporating environmental cycle data compared to constant conditions 252 
alone (Figure 3A, C; Table S6). It was also consistent with the published analysis in 253 
finding temperature rather than light to be a more powerful driver of oscillations. 254 
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Surprisingly however, this analysis suggested the extent of rhythmic gene 255 
expression to be far greater than the RNA-seq data; far more significant genes were 256 
identified under light and particularly temperature entrainment protocols, equating to 257 
approximately 25% of transcripts (871 and 4585 genes respectively, BHQ < 0.05). 258 
Most genes in these datasets were best identified under a two-day time series, as 259 
opposed to the environmental cycle day seen in the RNA-seq data, possibly 260 
suggesting more coherence in gene expression between cycling and constant 261 
conditions (Figure 3A, C). This reanalysis notably identified many previously 262 
undetected genes, including highly significant examples, with clear repeating 263 
oscillations and high relative amplitude that the prior work (Figure 3B, D). The genes 264 
in the respective light and temperature-entrained 2-day datasets were largely unique 265 
(consistent with the prior work), with only 96 being identified in both, fewer than 266 
would be expected by chance (Fisher’s Exact p-value =1, data not shown). 267 
 268 
Convergence in period and phase between transcriptomic datasets 269 
 270 
As evident from the analyses above and work in more established chronobiology 271 
models, circadian analysis methods for time-series data can result in inconsistencies 272 
in the number and identities of rhythmic genes, which can vary by dataset, analysis 273 
method and significance thresholds [29,78,85–87]. Published datasets do often 274 
converge however, on TTFL-associated or select other clock-controlled genes, 275 
including with respect to the phase of oscillation [7,88]. As such, we compared 276 
datasets with a view that overlapping genes, or those that differ could be informative 277 
in moving towards a mechanistic understanding of circadian biology in C. elegans. 278 
 279 
The two-day analyses of the 2010 time series (ANOVA p < 0.05 and JTK_Cycle, 280 
BHQ < 0.05) showed limited coherence in gene identities with the RNA-seq time 281 
series: 28 light-entrained and 75 temperature-entrained genes were shared with the 282 
RNA-seq dataset (Figure 4A, D; Table S7). However, we found this coherence to be 283 
statistically significant for both light and temperature comparisons (Fisher’s exact test 284 
p-value < 0.05 ), reflecting a modest increase over expected convergence by 285 
random chance (17 and 51 genes respectively). A total of 8 of these genes were 286 
identified in all three datasets: T06A1.5, C06H5.6, C37C3.2, H06I04.6, smd-1, vha-5, 287 
xbp-1 and Y54G11A.7. To further compare these datasets, we noted that of the 95 288 
overlapping light or temperature-entrained genes, approximately 40% were assigned 289 
the same period by JTK_Cycle (Figure 4B, E; JTK_Cycle was allowed to assign 290 
periods of 20, 24 or 28 hours). Of these genes, most were similar in JTK_Cycle-291 
assigned phase, and showed comparable expression patterns (examples given in 292 
Figures 4B, E) [7,88]. As such, these numerically modest subsets of genes 293 
(highlighted in Table S7) likely represent the strongest candidates from our work for 294 
either mechanistic involvement in circadian timing in C. elegans or for use as 295 
reporters of the circadian system. 296 
 297 
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Further to the above, considering specific genes of interest we generally saw a lack 298 
of rhythmicity in TTFL related homologues in the 2010 dataset (consistent with the 299 
published analysis and our RNA-seq data) and other specific genes of interest 300 
(Figure S1, full 2010 JTK_Cycle results in Table S6). The per homologue, lin-42 did 301 
not show a clear response to environmental cycles across all three time series, nor 302 
did nhr-23, homologous to mammalian Rora/Rorb genes and reportedly required for 303 
circadian rhythms in C. elegans [29]. One exception is atf-2 which was rhythmic in a 304 
light:dark cycle only. The pdfr-1 gene, which was highly autocorrelated in our data, 305 
showed no consistent expression between datasets. We also did not see concordant 306 
rhythmicity two previously described C. elegans circadian reporter genes: sur-5 307 
[66,89], which showed no rhythm in any dataset, nor nlp-36 which was rhythmic in 308 
the 2010 study [14], and remained so in the reanalysed temperature-entrained data 309 
only. A final gene of interest, xbp-1, whose mammalian homologue has been 310 
associated with 12-hour ultradian expression rhythms [90–93], was rhythmic across 311 
all three datasets. This gene did show consistent expression in temperature-312 
entrained and RNA-seq dataset, particularly during the entrainment phases (Figure 313 
S1). 314 
 315 
WGCNA reveals genes co-expressed coherently with environmental cycles 316 
 317 
To further analyse our RNA-seq data, we sought to investigate prevailing gene 318 
expression trends without prior assumptions as to the expression patterns (such as 319 
the sinusoidal expression detected by JTK_Cycle or the assumed 24-hour periodicity 320 
in autocorrelation). To do this we employed weighted gene co-expression network 321 
analysis (WGCNA) [75], a pairwise correlation and hierarchical clustering-based 322 
approach that has previously been used to identify varied circadian expression 323 
patterns in mouse and human data [94,95]. Taking our full dataset of 16,176 324 
expressed genes (> 0 TPM in > 50% of samples; Figure 1), performing WGCNA 325 
generated 13 modules (clusters) of similarly or co-expressed genes (shown in 326 
Figures 5A, 6A and S2; full list of assignments in Table S8). Each module is 327 
represented by an eigengene expression pattern, which represents the values of the 328 
first principal component in each sample, here averaged at each timepoint. These 329 
modules should thus indicate the most prevalent underlying expression trend of the 330 
genes within. 331 
 332 
Of particular interest to our study, one WGCNA module, designated ‘Black’, revealed 333 
gene expression changes coherent with our environmental light and temperature 334 
cycle. This module contained 511 genes, represented by an eigengene that declines 335 
through light and warm conditions, and increases at the onset of the dark and cold 336 
phase (Figure 5A) while showing much reduced variation in constant conditions. This 337 
module also identified many genes following the opposite trend increasing from a 338 
lower baseline in response to light and increased temperature), indicating two 339 
antiphasic expression trends corresponding to (and likely driven by) the 340 
environmental cycle (Figure 5A). Given that both of these trends represented real 341 
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gene expression patterns, we divided the module and investigated these trends 342 
separately. To do this, the standardised expression of each of these 511 genes was 343 
ranked by summed deviations from the eigengene over the time series. We then 344 
generated arbitrary subsets of the 300 least-deviating genes and the remaining 211 345 
(plotted in grey and gold respectively in Figure 5A). In doing so we highlight genes 346 
identified by WGCNA that cycle daily and with circadian periodicity, in response to 347 
cycles of light, temperature or both. 348 
 349 
To investigate the prevailing functions of these light and temperature-cycling genes, 350 
we performed functional annotation analysis on the two Black module subsets 351 
independently. This highlighted ribosome biogenesis as a metabolic process 352 
associated with genes downregulated in our light and warm conditions (grey genes 353 
in Figure 5A; Figure 5B; Table S9), and functions including fatty acid and amino acid 354 
metabolism as potentially upregulated in light and warm conditions (gold genes in 355 
Figure 5A; Figure 5B; Table S10), in both cases reidentifying similar annotations to 356 
those found for the JTK_Cycle analysis (Figure 2C). One TTFL-associated gene was 357 
assigned to this module, the previously discussed pdfr-1 (Table S3, Figure S1). 358 
 359 
WGCNA reveals high numbers of co-expressed genes with 16-hour periodicity 360 
 361 
Distinct from our circadian analyses, the most striking, and novel, expression pattern 362 
identified by WGCNA were genes co-expressed with 16-hour ultradian periodicity. 363 
These patterns occur over multiple cycles and are exemplified by the Brown and 364 
Yellow modules (Figures 6A and S2). The Brown module contained 1244 genes, 365 
including many with expression patterns closely represented by that of the 366 
eigengene (300 of which are highlighted in Figure 6A, exemplifying that the module 367 
eigengene reflects the expression patterns of the genes therein). As well as 368 
standardised expression, TPM values similarly conformed to the 16-hour eigengene 369 
trend (with the 12 genes least-deviating from the eigengene plotted in Figure 6B). 370 
This included highly abundant genes with > 2-fold changes in expression. Given the 371 
difference in period with our environmental cycles, the relationship of these 372 
expression patterns with our entrainment protocol is unclear, but the initial peak of 373 
these genes and the module eigengene notably occurs at time 0 (the beginning of 374 
the light/warm phase).  375 
 376 
DAVID analysis of the Brown module suggested an array of functions associated 377 
with the genes within, with far more significantly enriched terms being identified than 378 
in our JTK_Cycle and Black module analyses (Figure 6C, Table S12). This is 379 
reflected in much greater enrichment scores of the clusters shown in Figure 6C 380 
(which scale inversely to the average p-values of the terms within). The most 381 
enriched cluster included genes of the major sperm protein (MSP) gene class. 382 
Genes encoding an MSP domain were also among the genes most closely 383 
represented by the module eigengene trend; six of the 12 traces shown in Figure 6B 384 
represent transcripts mapped to msp genes (plotted in green). Conversely, many 385 
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other highly enriched functions not associated with MSP were identified; terms 386 
contained within the six remaining enrichment clusters shown in Figure 6C (with FDR 387 
< 0.05 in > 50% of terms) including a number of kinase and phosphatase-related 388 
terms (Figure 6C). These two enrichment clusters in particular notably contained 389 
very few (< 3) msp genes. This analysis therefore suggests hitherto unreported 16-390 
hour oscillatory co-expression of a large subset of C. elegans genes, associated with 391 
broad and essential cellular and organismal functions. 392 
 393 
 394 
 395 
  396 
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Discussion 397 
 398 
In this work, we investigated oscillatory gene expression in C. elegans 399 
hermaphrodites post-development, performing RNA-seq on samples collected over a 400 
circadian time series. Using a widely applied method in JTK_Cycle [6,7,76–79] 401 
coupled with autocorrelation analysis, we identified evidence for daily oscillations in 402 
gene expression in many previously unreported genes [14,29]. However, we also 403 
noted that our ability to detect rhythms was considerably poorer in the absence of 404 
environmental stimuli. A comparable reanalysis of previously published time series 405 
data (‘the 2010 dataset’; [14]) was consistent with this observation, while suggesting 406 
the persistence of considerably more rhythmically expressed genes, particularly 407 
following cycles of temperature. Further analysis of our RNA-seq dataset using 408 
WGCNA revealed prevalent co-expression patterns coherent in phase with our 409 
environmental cycles and strikingly, thousands of genes with high amplitude 16-hour 410 
co-expression patterns. 411 
 412 
Daily rhythms in C. elegans identified by RNA-seq 413 
 414 
With respect to circadian gene expression rhythms in C. elegans and their potential 415 
functions, we identified hundreds of novel oscillating genes over a two-day time 416 
series (543 with JTK_Cycle BHQ < 0.05 or autocorrelation r > 0.7; Figure 2, Table 417 
S1). Functional annotation of the JTK_Cycle results suggested fatty acid metabolism 418 
and ribosome biogenesis as prevailing physiological outputs encoded by these 419 
genes, both of which could represent rhythmic processes conserved with mammals 420 
[96,97]. Ribosome biogenesis could represent a particularly essential conserved 421 
function, having been reported to be circadian clock-regulated in-part at the mRNA 422 
level in mammals [98]. The turnover (synthesis and degradation) of ribosomes, 423 
representing 3-6% of total cellular protein [99–101], has also been shown to exhibit a 424 
circadian rhythm in mammalian cells [102]. Several of our rhythmic ribosome 425 
biogenesis-associated genes in C. elegans are involved in the processing of 426 
ribosomal RNAs [103], orthologues of which exhibit robust mRNA circadian 427 
oscillations in other species, including orthologues of nol-58, Y66H1A.4 (garr-1) and 428 
xrn-2 in mammalian livers [104,105] and nol-58 in the circadian model fungus, 429 
Neurospora crassa [78,106]. Rhythms in rRNA itself would by design, not be 430 
detected in our mRNA sequencing, but  431 
if shared with other models would reflect conservation of daily timing in a critical, 432 
energetically expensive aspect of cellular homeostasis. 433 
 434 
While potentially physiologically relevant, the enriched functions we detect may 435 
reflect environmentally driven oscillations more so than endogenous timekeeping; we 436 
notably detected considerably more significant cycling genes using JTK_Cycle over 437 
an environmental cycle alone, but very few in constant conditions (Figure 2D; 438 
Supplementary Tables 1, 4, 5). Our WGCNA analysis also identified hundreds of co-439 
expressed genes with clear 24-hour expression patterns under a light and 440 
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temperature cycle, while varying much less in constant conditions (the Black module; 441 
Figure 5). Interestingly, this module also showed significant enrichment for fatty acid 442 
metabolism and ribosome biogenesis-related ontology terms. These respective sets 443 
of genes were also in antiphase, so likely did not simply reflect the varying rates of 444 
metabolism in our poikilothermic model. That we identified these terms using 445 
differing complementary approaches strongly suggests the validity of daily cycling of 446 
genes involved in these processes. However, it does highlight the distinction 447 
between rhythms under environmental cycles, as reported in some circadian 448 
transcriptomics literature [87,107], and endogenous timekeeping, leaving open the 449 
question of whether C. elegans is capable of sustaining endogenous rhythms. 450 
 451 
Comparative analyses and the C. elegans circadian system 452 
 453 
Our reanalysis of the 2010 dataset [14] revealed a similar reduction in cycling genes 454 
in constant conditions relative to environmental cycle data, but identified far a greater 455 
proportion of genes to oscillate overall (~25%; Figure 3, Table S6). It is unclear why 456 
we saw such stark differences between datasets, with the respective experiments 457 
being similar with respect to sampling method, temporal resolution and C. elegans 458 
strain (N2). One potentially pertinent difference could be entrainment differences, 459 
with the 2010 work applying light and temperature cycles independently and over a 460 
wider temperature range. A previous RT-qPCR reanalysis also could not recapitulate 461 
rhythms in select 2010 dataset genes following cycles of colder temperatures [15]. 462 
The 2010 study itself reported rhythms to co-occur in only two genes in the 463 
respective light and temperature datasets [14] (rising to 96 in our reanalysis, ~1.7% 464 
of detected rhythmic genes and fewer than expected by chance. C. elegans has also 465 
been reported to optimally entrain its gene expression and locomotor activity to light 466 
and temperature cycles with light coinciding with lower temperatures [16,22,66], 467 
contrasting with our approach. Importantly however, while C. elegans entrainment 468 
remains an important question, variability in the number and identities of rhythmic 469 
genes is also a common observation (and fundamental concern) in circadian 470 
transcriptomics literature. This includes variation by analysis approach, or when 471 
applying the same analysis to different datasets [7,29,78,85–88]. Ultimately our work 472 
emphasises the need for cautious experimental methodology and analysis choices 473 
when studying relatively non-robust processes like C. elegans circadian timing. 474 
 475 
Consistent between RNA-seq and 2010 datasets, we detected limited evidence of 476 
rhythmicity in lin-42 or other TTFL-related C. elegans sequence homologues [27,28] 477 
(Tables S3, S6), as in prior literature [14,15,29]. We also saw no clear or comparable 478 
response to environmental cycles on lin-42 expression across datasets (Figure S1), 479 
nor was it assigned to a 16-hour WGCNA module (Table S3). This result, repeatedly 480 
observed in C. elegans, contrasts with conserved TTFL models of transcriptional 481 
circadian rhythms, which are defined by oscillating mRNA and protein abundance of 482 
evolutionarily conserved per homologues [1,12]. While lin-42 deficiency has been 483 
shown to affect circadian period [66], it is most well studied as a heterochronic gene, 484 
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important for normally timed moulting within C. elegans’ temporally defined 485 
developmental program [41–47], along with several other TTFL homologues 486 
[29,42,47]. lin-42 expression is much greater during development than in adults [40], 487 
where it does oscillate along with 2000-4000 other genes in C. elegans and other 488 
nematodes coincident with moulting [33–36,38–40]. As such, lin-42’s prevailing role 489 
appears to be one that parallels, but is distinct from, circadian timing. 490 
 491 
The mechanisms underpinning transcriptional rhythms are beyond the scope of our 492 
work, but convergence between datasets analysed here could yield insights into 493 
robust or important oscillating genes. Of the 95 genes identified by JTK_Cycle 494 
across both RNA-seq and 2010 datasets, a high proportion were similar in phase 495 
(Figure 4, Table S7). Given that circadian transcriptomics studies typically converge 496 
on TTFL genes of similar phases in other models [7,88], this subset could contain 497 
candidates of mechanistic importance.  498 
Conversely, posttranscriptional circadian rhythms can be observed in the absence of 499 
any transcription in some systems [108,109]. In C. elegans itself, abundance 500 
rhythms in the protein GRK-2 have been reported to persist without a corresponding 501 
mRNA oscillation [15]. Further, gene and protein abundance rhythms have been 502 
found to be present, if sometimes less robust, when the TTFLs are perturbed 503 
(including in Drosophila lacking per [6]) and mammalian systems lacking Bmal1 504 
[110,111] or Cry1/Cry2 [112,113]). In this context, and given that we did not detect 505 
rhythms in previously described reporter genes (nlp-36 and sur-5), our reproducibly 506 
rhythmic genes could have utility as reliable transcriptional outputs, for 507 
understanding circadian rhythms when a conserved transcriptional oscillator is 508 
potentially absent. 509 
 510 
Novel 16-hour periodic co-expression in C. elegans 511 
 512 
The most abundant expression patterns emerging from our RNA-seq analyses were 513 
not circadian rhythms, but high-amplitude, 16-hour co-expression of genes identified 514 
by WGCNA [75] and represented by the Brown and Yellow modules (Figures 6, S2). 515 
Over 1000 genes (~7.5% of detected genes) were assigned to the Brown module, 516 
with many being well-represented by the eigengene expression profile. Ultradian (< 517 
24-hour) rhythms have been widely reported in nature, including 12-hour harmonics 518 
of the circadian rhythm in mouse and human transcriptomic data [92,104] and also in 519 
C. elegans (again from the 2010 dataset) [93]. Circatidal rhythms, rhythms of a 520 
similar periodicity synchronised by tides, can also be seen in marine organisms 521 
across phyla, in some cases being contingent on expression of TTFL-essential 522 
genes and proteins [114–119]. However, the 16-hour co-expression we observe is 523 
distinct in period from these harmonics along with other shorter periodic events in C. 524 
elegans including defecation [120,121], egg laying [122] and pulsatile developmental 525 
gene expression [123]. We also saw limited assignment of TTFL homologues to 526 
these modules (although the TTFL-associated ces-2 and atf-2 were notably assigned 527 
to the Yellow module (Table S2)).  528 
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 529 
One function of this 16-hour co-expression trend likely pertains to reproduction. 530 
Overwhelmingly, the most enriched terms identified by functional annotation related 531 
to genes of the major sperm protein (MSP) class (Figure 6C; Table S11). MSP 532 
genes were also among those most closely aligned with the module eigengene 533 
expression profile (Figure 6A, B). MSPs are nematode-specific proteins expressed 534 
highly and exclusively in sperm [124]. They perform dual roles, as key cytoskeletal 535 
components of spermatozoa, providing the basis for motility [125], and as secreted 536 
proteins necessary for the meiotic maturation of oocytes [126]. Given our experiment 537 
used FUDR, a DNA synthesis inhibitor, to prevent reproduction, meiosis itself could 538 
not have been taking place in our experiment. These 16-hour co-expression profiles 539 
may therefore reflect an underlying transcriptional mechanism by which oocyte 540 
maturation, ovulation or fertilisation are temporally coordinated [127]. 541 
 542 
Importantly however, many of our Brown module genes did not have MSP or direct 543 
reproduction-related annotations; DAVID enrichment analysis of the Brown module 544 
resulted in higher enrichment scores and far more significant enrichment terms than 545 
JTK_Cycle or Black module gene lists (Figure 6C, Table S11). Multiple enrichment 546 
clusters relating to protein phosphorylation were particular cellular functions 547 
associated with Brown module 16-hour oscillatory genes. These terms could 548 
therefore reflect much wider temporal regulation of C. elegans biology post-549 
development. 550 
 551 
Collectively, our transcriptomics analyses provide insights into temporal coordination 552 
in C. elegans, highlighting both the peculiarities of its circadian system, but also 553 
offering a lens through which we can appreciate the broader landscape of rhythmic 554 
phenomena across diverse organisms. C. elegans’ primary utility as a chronobiology 555 
model may be, for example, in understanding how rhythms are generated in the 556 
absence of a conserved transcriptional oscillator. The unique 16-hour co-expression 557 
we observe, predominantly associated with msp genes, hints at a potential link 558 
between well-studied reproductive timing and temporal coordination in post-559 
developmental nematodes. Finally, this work emphasises the value of considered 560 
data collection and analysis when considering non-robust or noisy biological 561 
processes like transcriptional oscillations; we highlight the disparities that can 562 
emerge using established algorithms like JTK_Cycle as well as firmly establishing 563 
WGCNA as an effective tool for identifying large scale co-expression in time series -564 
omics data. 565 
  566 
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Methods  567 
 568 
Nematode maintenance 569 
All work was performed using N2 strain nematodes, reared on plates seeded with 570 
OP50 strain Escherichia coli, both of which were provided by the Caenorhabditis 571 
Genetics Center (CGC; https://cgc.umn.edu), which is funded by NIH Office of 572 
Research Infrastructure Programs (P40 OD010440). Where applicable, plates 573 
containing 25 μM 5-Fluorodeoxyuridine (FUDR), were twice seeded by adding 10X 574 
culture and UV-killing E. coli. 575 
 576 
RNA-seq entrainment protocol and RNA harvesting 577 
Entrainment conditions consisted of 12:12-hour cycles of light (10 μmol m−2 s−1) at 578 
20°C and darkness at 15°C. Parental generation larvae were reared under 579 
entrainment conditions throughout development. Age-synchronised progeny were 580 
obtained by bleaching parental hermaphrodites [128] and maintaining eggs/L1 larvae 581 
on unseeded plates for 2 days. Nematodes were transferred to seeded plates to 582 
develop for 2 days and then transferred again to plates containing 25 μM 5-583 
Fluorodeoxyuridine (FUDR) to prevent reproduction and interference from 584 
developing larval gene expression [129]. To transfer of nematodes to new plates in 585 
experiments, plates were washed by adding 2-3 mL of sterile S buffer or H2O. All 586 
manipulations were performed around the start of the light/20°C warm phase (dawn). 587 
Nematodes were entrained for a further 3 days and then constant darkness at 15°C 588 
for 1 day. Entrainment and subsequent constant conditions were accomplished in a 589 
single growth chamber, in which warming took approximately 85 mins ± 10 mins and 590 
cooling took 55 minutes ± 5 mins. 591 
 592 
RNA Collections took place starting at dawn (time 0) and then followed every 593 
subsequent 4 hours for 2 days (12 timepoints in total). Each biological sample 594 
comprised approximately 150 hermaphrodites housed on an individual NGM plate. 595 
Nematodes were harvested by washing in 2 mL S buffer, centrifugation for 1 min, 596 
aspiration to approximately 100 μL, resuspension in 250 μL TRIzol Reagent 597 
(Ambion), mixed by pipetting, and immediately frozen at -70°C. Three samples were 598 
collected simultaneously at each timepoint and 2 independent time series utilising 599 
the same conditions were performed, resulting in 6 replicates in total.  600 
 601 
RNA processing and sequencing 602 
Samples for RNA-seq were processed by batch in randomised order in sets of 12. 603 
To extract RNA, samples in TRIzol were defrosted then subjected to 3 liquid nitrogen 604 
freeze/thaw cycles. Subsequently, samples were left to sit for 5 minutes at room 605 
temperature, 50 μL chloroform was added and samples were centrifuged for 15 606 
minutes at 13200 RPM at 4°C. Most of the aqueous phase was transferred to a new 607 
tube and then processed following the protocol of the QIAGEN RNeasy Micro kit, 608 
including on-column RNase-Free DNase treatment.  609 
 610 
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Sample quality was checked using the Agilent 2100 Bioanalyzer on RNA Nano 611 
Chips, with a majority having a RIN value of 10. 100 ng total RNA for each sample 612 
for library preparation using the NEBNext RNA Ultra II RNA directional library prep 613 
kit. Unique 8 bp dual indices were added to each sample. Sample quality was again 614 
checked using 2100 Bioanalyzer. Sequencing was then performed across 2 lanes on 615 
an Illumina HiSeq 3000 machine.  616 
 617 
RNA sequence processing  618 
Sequence quality was checked by MultiQC software [130]. Sample depth ranged 619 
from 12.4 to 32.8 million reads per sample, except for one sample at the 44-hour 620 
timepoint, which contained very few reads and was excluded from further analysis, 621 
resulting in 5 replicates at this timepoint (71 samples in total). Adapter sequences 622 
were trimmed using Cutadapt [131], and samples reanalysed using MultiQC. Salmon 623 
[132] was used for quasi-mapping of sequencing reads to the C. elegans genome 624 
(assembly WBcel235, obtained from GenBank [133], and for quantification of gene 625 
expression. TPM values were obtained using Sleuth [134], within R Studio [135,136], 626 
following preparation of files using wasabi (COMBINE-lab, 2018). 627 
 628 
RNA-seq analysis: JTK_Cycle, autocorrelation, WGCNA and DAVID functional 629 
annotation 630 
Data was initially filtered to include only genes with > 0 TPM in ≥ 36 of all 71 631 
samples. These full tie series data are given in Table S12 One-way ANOVA was 632 
performed on each detected gene in R to pre-screen the data for significant changes 633 
in expression (p < 0.05). This was performed independently for both the whole 634 
filtered dataset and dividing the dataset into 2 sets of 6 timepoints representing the 635 
entrainment day and subsequent day.  636 
 637 
Rhythmic genes were detected using the JTK_Cycle function in the MetaCycle R 638 
package [74], setting period limits to 20 and 28 hours for the full time series and 20 639 
to 24 hours for individual days. Genes with a Benjamini-Hochberg q-value < 0.05 640 
were considered significantly rhythmic. For period and phase comparisons, 641 
differences were calculated using JTK_Cycle-assigned values. We also applied 642 
ANOVA to log2(TPM+1) values and a non-parametric Kruskal Wallace as alternate 643 
pre-screening approaches prior to JTK_Cycle analysis on to the two-day time series 644 
data, and found that this made only minor differences in resulting rhythmic gene lists 645 
(in the case of the former, reidentifying all but 3 of 343 genes with BHQ < 0.05, and 646 
expanding the list by 43, none of which were highly significant).  647 
 648 
Autocorrelation analysis was performed in Microsoft Excel, ranking expression over 649 
the entrainment and constant conditions days and calculating Spearman’s rank 650 
coefficient (rs) between timepoints spaced 24 hours apart.  651 
 652 
WGCNA analysis was performed using the WGCNA R package [75] to analyse the 653 
filtered dataset (> 0 TPM in > 50% of samples). Samples were first corrected for 654 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 7, 2024. ; https://doi.org/10.1101/2024.07.06.602329doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.06.602329
http://creativecommons.org/licenses/by/4.0/


batch effects using ComBat within the sva R package [137,138]. WGCNA was 655 
applied generally following settings and methods used in the online tutorial (section 656 
I); first clustering by sample (resulting in 11 of 71 being excluded as outliers). An 657 
adjacency matrix of all genes across the remaining samples was then generated 658 
based on their pairwise co-expression (absolute Pearson correlation coefficient). The 659 
soft-threshold power was set manually at 6 such to minimise the numbers of genes 660 
assigned to no module (Grey) and the largest module (Turquoise). To investigate 661 
gene expression over time, eigengene values were averaged by timepoint and 662 
compared to standardised expression of the genes within the module (subtracting a 663 
mean and dividing by standard deviation). 664 
 665 
Functional annotation Clustering was performed using the Functional Annotation 666 
Clustering from Database for Annotation, Visualization and Integrated Discovery 667 
(DAVID, version: DAVID 2021) [80,81], including all annotation categories. For all 668 
analyses we compared our gene list of interest to a background list of our initial 669 
16,716 genes with detectable expression (TPM > 0 in > 50% of samples). Some 670 
terms were edited for ease of presentation in figures. Where presented, the 671 
enrichment score represents the geometric mean (-log scale) of the p-values within a 672 
cluster calculated by DAVID. 673 
 674 
Reanalysis of 2010 dataset microarray data 675 
Processed, normalised and standardised data (as described [14]) were obtained 676 
from Gene Expression Omnibus (GEO; www.ncbi.nlm.nih.gov/geo/; accession: 677 
GSE23528). To compare this data with ours, Affymetrix IDs were converted to 678 
Official Gene Symbol using the DAVID Gene ID conversion tool [80,81]. Official 679 
Gene Symbols were retrieved for 21318 of 22625 initial transcripts.  680 
 681 
Light and temperature time series data were separated and analysed as 682 
independent time series, including three replicates for all conditions except the 683 
warm:cold cycle which included five. All transcripts were analysed by ANOVA and 684 
JTK_Cycle as a two-day time series and individual six-point series as above, with 685 
duplicate and unnamed transcripts being removed from counts of rhythmic genes. 686 
Venn diagram comparisons were analysed using one-tailed Fisher’s exact tests, 687 
comparing genes with ANOVA p < 0.05 and JTK_Cycle BHQ < 0.05 against all 688 
unique detected genes common to both datasets (TPM > 0 in 50% of samples RNA-689 
seq data, all retrieved genes in microarray data; 13,656 common genes). Expected 690 
values were calculated from contingency tables. Phase angles were calculated from 691 
differences in JTK_Cycle-assigned phases, which represents the timepoint at which 692 
the acrophase of the fitted curve occurs. We adjusted for circular phase using the 693 
intrinsic JTK_Cycle-assigned period in each case (20, 24 or 28hrs).  694 
 695 
Data analysis and figures 696 
Data were analysed using Microsoft Excel Microsoft Excel (Microsoft Corporation), 697 
Prism GraphPad 9/10 (Boston Massachusetts USA) and R Studio [135,136]. All 698 
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figures were plotted using Graphpad Prism, Adobe Illustrator (Adobe Inc.) or ggplot2 699 
in R Studio [139]. 700 
 701 
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Figure 1: RNA-seq (A) Entrainment and Sampling Protocol and (B) Analysis.  1185 
A: Nematodes were exposed to 12:12-hour cycles of light at 20°C (white and red 1186 
boxes) and dark at 15°C (black and dark blue boxes). Parental individuals were 1187 
entrained until gravid and eggs were isolated by bleaching (see Methods). Offspring 1188 
were maintained in starvation conditions to generate age-synchronised individuals 1189 
before being moved to plates seeded with Escherichia coli. At the L4 larval stage, 1190 
nematodes were transferred to plates also containing 25 μM 5-fluorodeoxyuridine 1191 
(FUDR) to prevent reproduction. Nematodes were entrained for 3 days as adults and 1192 
then released into constant dark at 15°C. RNA harvesting was performed every 4 1193 
hours on the final day of entrainment and first day in constant conditions (day 10 and 1194 
day 11) with each replicate being a C. elegans population from one petri plate. 1195 
Following sequencing and mapping (described in Methods), we filtered transcripts to 1196 
include those with > 0 transcripts per million (TPM) and employed two analysis 1197 
approaches: first, an ANOVA pre-screen followed by JTK_Cycle [73,74] and 1198 
autocorrelation analysis to identify circadian rhythms; second, weighted gene co-1199 
expression network analysis (WGCNA) [75] to identify expression trends without 1200 
prior assumptions as regards to periodicity or waveform. 1201 
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Figure 2: Rhythmicity analysis of a two-day RNA-seq time series.  1229 
A: Examples of genes with 24 and 28-hour periodicities as identified by JTK_Cycle 1230 
over the full two-day time series, including JTK_Cycle period estimate, Spearman’s 1231 
rank coefficient, and JTK_Cycle BHQ values (both are within the lowest 7 JTK_Cycle 1232 
BHQ values). Shown are average TPM values of 6 replicates ± SEM. Time 0 1233 
represents the time of simultaneous light onset and temperature increases with 1234 
environmental conditions indicated by boxes along the 𝑥-axis (white = light/20°C, 1235 
black = dark/15°C, light grey = subjective day (dark/15°C)). B: Heat map illustrating 1236 
acrophases and bathyphases of all 343 JTK_Cycle, BHQ < 0.05 genes with brown 1237 
representing peaks and blue representing troughs. C: DAVID enrichment analysis of 1238 
genes in B. Fold enrichment is shown for select DAVID annotation terms with FDR < 1239 
0.05 (from four enrichment clusters containing significant terms; only the most 1240 
significant term in each cluster is shown here). D: Venn diagram showing the 1241 
number of genes collectively identified by JTK_Cycle (BHQ < 0.05) under a 12:12-1242 
hour environmental cycle, constant conditions and over the full two-day time series. 1243 
E: Examples of genes with high 24-hour rs autocorrelation, both identified and not 1244 
identified as rhythmic by JTK_Cycle (BHQ < 0.05) over the full two-day time series.  1245 
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Figure 3: JTK_Cycle reanalysis of the 2010 Dataset.  1273 
A and C: Venn diagrams showing the number of genes collectively and individually 1274 
identified by JTK_Cycle (BHQ < 0.05) under a 12:12-hour environmental cycle, 1275 
constant conditions and over full two-day time series following light (A) and 1276 
temperature (C) entrainment protocols. B and D: Examples of significantly rhythmic 1277 
genes identified by JTK_Cycle (both within the lowest 20 BHQ values) over the full 1278 
two-day light (B) and temperature-entrainment (D) time series. Figures include 1279 
period estimates and BHQ values as generated by JTK_Cycle. Shown are average 1280 
expression values of 3 (C) or 3-5 (D) replicates ± SEM. Relative expression values 1281 
were calculated previously as described [14]. Time 0 represents the time of light 1282 
onset or temperature increases respectively with environmental conditions indicated 1283 
by boxes along the 𝑥-axis (B: white = light, black = dark, grey = subjective day 1284 
(dark), all at 18°C. D: red = 25°C, blue = 15°C, light blue = subjective day (15°C)).  1285 
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Figure 4: Comparisons of gene identities, periods and phases between the 1316 
RNA-seq and 2010 datasets. 1317 
A and D: Venn diagrams showing the numbers of genes collectively identified by 1318 
JTK_Cycle (BHQ < 0.05) under over our full two-day RNA-seq time series and the 1319 
2010 microarray dataset under light (A) and temperature (D) entrainment protocols. 1320 
p-values calculated from respective Fisher’s exact tests comparing significantly 1321 
rhythmic against all remaining genes detected in both datasets. B and E: Numbers 1322 
of genes from A and D respectively with equal and unequal JTK_Cycle-assigned 1323 
periods. JTK_Cycle-assigned phases are shown for the proportion of genes with 1324 
equal periods. C and F: Examples of expression patterns from overlapping genes in 1325 
A and D respectively, giving two phase-coherent and one phase incoherent example 1326 
in each case. Shown are average expression values of replicates ± SEM. For the 1327 
2010 dataset, relative expression was calculated previously as described [14]. Time 1328 
0 represents the time of light onset and/or temperature increases respectively in both 1329 
datasets with environmental conditions (here specific to the 2010 datasets) indicated 1330 
by boxes along the 𝑥-axis (C: white = light, black = dark, grey = subjective day 1331 
(dark), all at 18°C. F: red = 25°C, blue = 15°C, light blue = subjective day (15°C)). 1332 
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Figure 5: WGCNA analysis reveals genes co-expressed in-phase with a light 1359 
and temperature cycle. 1360 
A: Standardised expression of all 511 genes in the Black module over time. Black 1361 
line represents the module eigengene values, averaged by timepoint. Grey lines 1362 
indicate average standardised expression of the 300 genes with the least overall 1363 
deviation from the eigengene and gold lines represent the remaining 211. Darker 1364 
lines indicate closeness to the eigengene in groups of 50. Bars along 𝑥-axis indicate 1365 
environmental conditions: white = light/20°C, dark grey = dark/15°C, light grey = 1366 
subjective day (dark/15°C)). B: DAVID enrichment analysis of genes in Black module 1367 
subsets. Here we are showing fold enrichment and FDR values for significantly 1368 
enriched terms, which DAVID has groups into enrichment clusters. Each cluster has 1369 
an associated enrichment score calculated from the geometric mean of the p-values 1370 
of the terms within (in -log scale such that higher enrichment scores represent 1371 
greater average p-value significance). For simplicity, we are here showing clusters 1372 
for which > 50% of terms within had FDR < 0.05). Full list in Tables S9 and S10. 1373 
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Figure 6: WGCNA clustering reveals genes with 16-hour periodicities 1402 
associated with multiple functions.  1403 
A: Standardised expression of all 1244 genes in the Brown module over time. Brown 1404 
line represents the module eigengene values, averaged by timepoint. Grey lines 1405 
indicate average standardised expression of all 1244 genes, with darker lines 1406 
indicating the 300 genes with the least overall deviation from the eigengene in 1407 
groups of 50. B: The 12 genes with the smallest total deviation from the Brown 1408 
module eigengene in terms of standardised expression, here expressed in Batch-1409 
adjusted TPM (see Methods), with each replicate averaged by timepoint. msp genes 1410 
are shown in green, with other genes in blue. Bars along 𝑥-axis indicate 1411 
environmental conditions: white = light/20°C, dark grey = dark/15°C, light grey = 1412 
subjective day (dark/15°C)). C: DAVID functional annotation of genes in Brown 1413 
module. Shown are DAVID enrichment clusters and Fold enrichment and FDR 1414 
values for the three most significant terms within, and the associated enrichment 1415 
score for each cluster (based on the inverse of the geometric p-value mean). 1416 
Enrichment clusters are shown here if FDR < 0.05 in > 50% of terms within the 1417 
cluster. 1418 
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