
scTail: precise polyadenylation site detection and its alternative usage analysis from
reads 1 preserved 3’ scRNA-seq data

Ruiyan Hou1 and Yuanhua Huang1,2,3*

1 School of Biomedical Sciences, University of Hong Kong, Hong Kong SAR, China
2 Department of Statistics and Actuarial Science, University of Hong Kong, Hong Kong SAR, China
3 Center for Translational Stem Cell Biology, Hong Kong Science and Technology Park, Hong Kong SAR,
China

* To whom correspondence should be addressed.

Abstract

Three-prime single-cell RNA-seq (scRNA-seq) has been widely employed to dissect the variability of cellular transcriptomes,
while only the cDNAs on reads 2 are routinely used, including to analyze polyadenylation sites (PAS). However, despite of
high sequencing noise, we found the cDNAs on reads 1 are highly informative in precisely detecting PAS. Here, we further
develop a computational method, scTail, to identify PAS using reads 1 and quantify its expression leveraging reads 2,
which enables effective detection of alternative PAS usage (PAU). When compared with other methods, scTail detects
PAS more sensitively and precisely. With various experimental data sets, we demonstrated that the combination usage of
scTail and BRIE2 can discover differential alternative PAS usage in various biological processes including cell types in
human intestinal, disease status of esophageal squamous cell carcinoma, and time point of mouse forelimb histogenesis,
revealing critical insights in PAS regulations.

Introduction 1

With the assistance of RNA polymerase II, DNA is transcribed into pre-mRNA, which subsequently undergoes processing 2

to become mature mRNA. The processing stages involve adding a cap, splicing, as well as cleavage and polyadenylation 3

(CPA) [1]. CPA is essential for transcription termination and comprises the endonucleolytic cleavage of a nascent transcript 4

and polyA tail synthesis. The site of cleavage at which polyA tail is added is called polyadenylation site (PAS). One 5

gene can selectively utilize different PASs, termed alternative polyadenylation (APA), which generate RNA isoforms with 6

different 3’ untranslated regions (3’ UTRs) or protein coding sequences [2]. APA plays essential roles in regulating mRNA 7

stability, translation efficiency, and subcellular localization [3]. More studies evidenced the importance of PAS regulation 8

for different physiological and pathological conditions, such as development [4, 5], oncogenesis [6, 7] and inflammation 9

[8]. Furthermore, the 3’ UTR of therapeutic mRNAs may play a pivotal role in maintaining their intrinsic stability and 10

modulating the intracellular dynamics [9], therefore understanding the PAS selection and 3’ UTR function in natural 11

contexts may also provide translational insights. 12

The emergence of RNA sequencing (RNA-seq) techniques has facilitated the examination of the transcriptome. 13

Although it was not designed for detecting PAS, several studies still utilized RNA-seq data to profile APA by checking 14

reads coverage changes at PASs [10] or taking advantage of annotated PAS [11]. On the other hand, some experimental 15

protocols have enabled to capture 3’ ends of mRNAs for direct identifying PAS, such as PolyA-seq [12], PAS-seq [13], 16

3’READS [14] and QuantSeq REV [15]. In recent years, single-cell RNA sequencing (scRNA-seq) has become a commonly 17

used technology for analyzing gene expression at a cellular resolution. Protocols that utilize oligo(dT) priming for cDNA 18

generation and library construction were called 3’ tag-based scRNA-seq, such as 10x Genomics’s chromium single cell 19

3’ solution (now a popular commercial choice) [16], Drop-seq [17] and CEL-seq [18]. Multiple bioinformatic methods 20

were also developed to detect and analyze PAS based on the 3’ tag-based scRNA-seq, including scAPA [19], Sierra [20], 21

scDaPars [21], MAAPER [22], scAPAtrap [23], SCAPTURE [24], SCAPE [25] and Infernape [26]. Interestingly, Infernape 22

also demonstrated its capability in support of PAS analysis from spatial 3’ RNA-seq data. 23
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Figure 1. Evidences of extra cDNA from reads 1 is better than reads 2 to detect PAS. (A) A flow chart of the 3’
scRNA-seq gene expression library construction (10x Genomics). (B) Histogram displays the most frequent distance from
the end of reads 1 and reads 2 to annotated PAS for each transcript. (C) Screenshot from IGV shows the coverage of
reads 1, reads 2, and total reads for forward strand gene S100A9. (D) Histogram shows the distance between reads 1 or 2
and annotated PAS for forward strand gene S100A9. (E) Screenshot from IGV shows the coverage of reads 1, reads 2,
and total reads for reverse strand gene DUSP1. (F) Histogram shows the distance between reads 1 or 2 and annotated
PAS for reverse strand gene DUSP1.
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However, all of these methods only use reads2 in single cell 3’ RNA-seq (e.g., from 10x Genomics), which are fragmented 24

and cannot reach PAS precisely. According to our observation, the fragmentation does not affect the sequence close to 25

poly(dT)VN that can be captured by the cDNA in reads1 (if sequenced and preserved), making it possible to detect 26

polyadenylation site at a near single nucleotide resolution (Fig. 1A). As such information is conventionally overlooked, 27

majority of 3’ scRNA-seq data sets from 10x Genomics platform do not contain cDNA sequences in reads 1 by either 28

being trimmed or not sequenced. Nevertheless, there are still a good number of public 3’ 10x Genomics datasets on the 29

GEO repository retaining such information, therefore providing an opportunity to study alternative polyadenylation usage 30

coupled with gene expression at a single cell level without extra cost. These observations were well supported by a recent 31

report by Fu and colleagues that cDNAs on reads 1 can be informative in PAS detection despite the sub-optimal base 32

calling quality, presumably due to higher sequencing errors in homopolymer stretches [27]. However, with the relatively 33

low sequencing quality, it is unclear how to balance the reads mapping quality and PAS detection sensitivity. Potentially, 34

combining with the sequence modeling of the PAS, e.g., with deep neural networks, may help filter false PASs hence 35

improving the specificity while maintaining a high sensitivity. Moreover, a coherent method suite for PAS detection, 36

expression counting, and differential usage identification is still urgently demanded to popularize the PAS analysis with 37

existing scRNA-seq solutions; ideally, it should seamlessly support common single-cell analysis ecosystems (e.g., Scanpy). 38

In this work, to resolve the above challenges, we introduce an all-in-one stepwise method scTail to analyse alternative 39

PAS usage from reads 1 preserved 3’ scRNA-seq data. Specifically, it leverages the cDNA in reads 1 to precisely detect 40

PAS that benefited from including a deep learning-based classifier for noise filtering, whose expression level can be further 41

estimated by probabilistically assigning reads 2. Its high accuracy is first evidenced by the consistency of known PAS 42

sequence motifs and existing annotations. With the high sensitivity empowered by reads 1, we further demonstrated 43

that PAS analyses, especially the alternative usage, can reveal remarkable biological insights, including in cell type 44

characterization, intestinal differentiation, mouse forelimb development, esophageal squamous cell carcinoma, and the 45

regulation of RNA binding proteins. Overall, these analyses well evidence the important roles that alternative PAS usage 46

plays in diverse tissues and processes. 47

Results 48

Design of scTail for PAS analysis with both reads 1 and 2 49

To illustrate that the cDNA in reads 1 (termed reads 1 below for simplicity) is informative in detecting PASs, we examined 50

an example dataset profiled by 10x Genomics (PBMC sample from the ESCC dataset, see below) by setting higher 51

mapping error tolerance and anchoring with read 2. First, we calculate the distance between the UMI end and the 52

annotated PAS in GENCODE. Overall, the histogram in Fig. 1B shows the distribution of the most frequent distance 53

between the UMI ends to PAS for all 252,835 annotated transcripts. It illustrates that read 1’s ends are tightly close to 54

the annotated PAS while read 2’s ends are around 12 times further (median: -11 vs -132) and the former has a sharper 55

distribution; interestingly, the distance between reads 1 and reads 2 is approximately to the length of fragmentation 56

(Supplementary Fig. 1A). Here, we selected two example genes (S100A9 and DUSP1) that only have one annotated 57

transcript. As screenshots from the integrative genomics viewer (IGV) shown in Fig. 1C and Fig. 1E, most of reads 1 are 58

more closely located to the annotated PAS with a narrower peak compared to that of reads 2, which is more evident if 59

only looking at the read ends instead of the base coverage (Fig. 1D, F, Supplementary Fig. 1B, C). Of note, reads 1 60

indeed present more mismatches as shown in the IGV plot (Fig. 1C), but are still highly informative in detecting PAS if 61

we set a higher error tolerance. 62

To support and popularize the PAS analysis from the existing 3’ scRNA-seq solutions (10x Genomics) with reads 63

1, we developed an all-in-one stepwise computational method called scTail. In brief, scTail takes an aligned bam file 64

from STARsolo (with higher tolerance of low-quality mapping; see Methods) as input and returns the detected PASs 65

and a PAS-by-cell expression matrix. It mainly comprises two major steps: 1) call peaks by leveraging paired reads 1 66

(peaks refer to PAS; Fig. 2A). 2) quantify expression for each peak called at the first step at single-cell resolution (Fig. 67

2B). As shown in Fig. 2A, aligned bam file contains four kinds of reads: paired reads 1, paired reads 2, unique reads 68

1 and unique reads 2. First, the terminate positions of paired reads 1 were selected to identify the putative PAS via 69

clustering with paraclu [28], which also has a module to remove clusters according to the technical thresholds (minimum 70

cluster UMI count: 50 by default; maximum cluster length: 100 bp by default; minimum density increase: 0 by default, 71

via paraclu-cut.sh). In addition, a deep learning neural network was embedded in scTail to further filter false positive 72
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Figure 2. Developing scTail to identify PAS from 3’ tag-based scRNA-seq. (A) Outline of the first step of scTail. The
purpose of this step is to get the position of PAS from aligned bam file. In the real situation, calling peak was going on
for each sample (one bam file). Then peaks of all samples were merged. The red circle is the terminate position of reads1.
(B) Schematic of the second step of scTail. An aligned bam file was inputted and a sparse matrix (h5ad file) was obtained
as output. (C) Flowchart of deep neural network embedded into scTail to filter low-quality putative PASs from sequence.
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artifacts (see next paragraph). Second, due to the limitation of the low mapping rate for reads 1, we took advantage of 73

total reads 2 (i.e., both paired and unique reads 2) to quantify the PAS expression by assigning reads 2 to the detected 74

PASs via modeling the distribution of the fragment size. Specifically, this fragment size distribution is generally assumed 75

the same within a dataset but varies among datasets, and it can be empirically estimated from the distances of 3’ ends 76

between paired reads 1 and 2 by fitting a log-normal distribution, ideally focusing on genes with one single PAS. This 77

fragment size distribution also represents the distance of reads 2 ends and their true PAS (nearly the reads 1 ends), hence 78

can be used to calculate the likelihood of a read 2 being assigned to a certain PAS (3’ end of the detected PAS cluster). 79

Then, within each gene, we can assign reads 2 to the PAS that has the highest likelihood (if there are multiple) and passes 80

a threshold (see Methods). Finally, a user-friendly and scalable output file format will present UMI counts for each PAS 81

in each cell (Fig. 2B). 82

In scTail, the classifier plays an essential role in the filtering step to rule out the false positive peaks, for example 83

produced by internal priming of oligo(dT) at A-rich sequences or aberrant read augment during library construction [24] 84

(Fig. 2C). Here, we employed a convolutional neural network (CNN; architecture detail in Methods) as the classifier 85

considering the strong sequence patterns around PAS [29]. To train the model, positive PASs were collected from 86

GENCODE and three other databases: PolyA DB3, PolyA-seq, and PolyASite, while negative PASs were randomly 87

picked from either the intergenic region that did not overlap with positive PASs or transcriptional start sites (TSSs). 88

The sequence between upstream 100 bp and downstream 100 bp of sample position was extracted and encoded with a 89

one-hot coding method as the input features to the CNN model. Finally, our trained model can predict the putative PAS 90

produced by paraclu in a new dataset as a positive or negative PAS, where only the positively predicted ones are kept for 91

downstream analysis. 92

scTail identifies PAS accurately and sensitively 93

As mentioned above, scTail embedded a pre-trained sequence model to remove the false positive clusters, which enabled us 94

to further evaluate the reliability of the detection by examining the supervised performance metrics and learned sequence 95

motifs. For the classification performance in cross-validation, the sequence model achieves high performance in both 96

sensitivity and specificity, with the area under the receiver operating characteristic curve (AUROC) of 0.985 and 0.979 97

in human and mouse, respectively (Fig. 3A). To ensure the model captures the interpretable features, the maximum 98

activation seqlet [30] in the human model was utilized to visualize individual convolutional filters at the second layer by 99

leveraging the K562 dataset as a test dataset. Some of the most frequently observed patterns were the AAUAAA motif 100

located 25-35 bp upstream of the cleavage site, as well as downstream GU-rich, U-rich, and G-rich motifs. All of these 101

motifs and their activated positions are highly consistent with previous reports [2], indicating that our sequence model 102

can identify reliable PASs (Fig. 3B, Supplementary Fig. 2). After filtering the potential false positives, Fig. 3C shows the 103

majority of PASs (73.6%) detected from the K562 cell line are annotated whereas the other PASs (26.2%) identified by 104

scTail are novel. As expected, most PASs (8,810 out of 13,937) were mapped to 3’ UTR, while a substantial portion of 105

PASs was also mapped to exon (1,525) and intron (3,540), presumably as a result of alternative usage of polyadenylation 106

site (Fig. 3D). Next, we plotted the nucleotides profile around PASs to assess the precision of detected PASs and observed 107

canonical nucleotide distributions in total, annotated and unannotated PASs identified by scTail, exhibiting consistency 108

with known PAS motifs (Fig. 3E, Supplementary Fig. 3), hence consolidating the accuracy of scTail in PAS detection 109

including novel PAS. 110

Although several methods can also detect PAS at single-cell resolution, all of them merely rely on reads2 in 10x 111

Genomics data, hence may suffer from lack of precision and over-broad stretch. Here, we selected one widely used tool 112

called Sierra [20] as an example to compare with scTail on the K562 dataset. Visually, the nucleotide distribution analysis 113

supported higher accuracy of scTail than Sierra, compared to the known PAS motifs (Fig. 3F). Quantitatively, we also 114

introduced QuantSeq REV 3’mRNA sequenceing data of K562 [31] as ground truth to evaluate scTail and Sierra. We 115

found that scTail achieves a higher overlap proportion (73.85%) with the ground truth compared to that of Sierra (36.95%; 116

Fig. 3G). Of the 28,165 QuantSeq REV-detected PASs (ground truth), 52.12% was also defined by scTail. In comparison, 117

Sierra recovered fewer QuantSeq REV PASs (48.29%, Fig. 3G), despite that it returns a substantially higher number of 118

putative PASs. One possible reason for the decreased recovery rate in the reads2-based method is the low coverage of 119

single-cell RNA-seq, especially for the minor PAS isoform. Therefore, we performed visual inspections on example genes 120

via the integrated genome viewer (IGV) on four tracks including reads 1, reads 2, and total reads from 10x Genomcis and 121

also the forward reads from QuantSeq REV. As we expected, compared to the forward reads in QuantSeq REV as a 122

technical reference, reads 1 in 10x Genomics shows a more similar distribution than its reads 2 counterparts. For PHLDA2, 123
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Figure 3. Performance of scTail detecting PAS in K562 dataset. (A) ROC curves for sequence model of human and
mouse embedded in scTail. (B) Schematic showing the arrangement of motifs surrounding polyA sites (top panel).
Activated motifs and their average activation score around PAs (+/- 100 bp; bottom panel). (C) Pie chart of the
percentage of annotated and novel PASs identified by scTail in the K562 dataset. (D) Genomic distribution of the
detected PAS. (E) Nucleotide distribution of sequences at PASs detected by scTail. Upstream (–) 100 bp to downstream
(+) 100 bp sequences of PASs were analyzed. (F) Profile of nucleotide frequencies in the (+/-) 100 bp vicinity of PASs
identified by Sierra. (G) Venn diagrams showing the overlap number of PAS from scTail, Sierra, and QuantSeq REV
sequence data. (H) IGV track plot displaying reads coverage from reads 1, reads 2 and total reads of 10x Genomics and
forward reads from QuantSeq REV for gene PHLDA2. Grey regions showing PAS detected by scTail and Sierra. The top
panel is the close-up view of the red frame.
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scTail detects two PASs, where the distal PAS is annotated and also supported by forward reads from QuantSeq REV 124

but missed by Sierra possibly due to the proximity of the two PASs with highly imbalanced expression, suggesting an 125

enhanced sensitivity of scTail. The proximal PAS is an unannotated PAS and identified by both scTail and Sierra, while 126

the peak detected by Sierra is largely broader than the ones returned by scTail and forward reads from QuantSeq REV; 127

the high consistency of the latter two also demonstrates the accuracy of scTail (Fig. 3H). We examined a considerable 128

number of examples such as SNX11 and MAGEH1 and found that Sierra tends to return broader peaks and imprecise 129

PAS due to the wide stretch of reads 2 and possibly nearby location of multiple PASs (Supplementary Fig. 4), which 130

aligns with the global distribution of peak width (Supplementary Fig. 5). 131

scTail facilitates cell identity and trajectory analysis 132

Given that scTail is able to detect PASs precisely and sensitively at a single-cell level, we wonder how much it can improve 133

cell identity analysis and to which extent it exhibits a cell-type specificity. Here, we downloaded the transcriptomes of 134

14,537 epithelial cells in the human colon, ileum, and rectum from a recent study with reads1-preserved 3’ scRNA-seq data 135

[32] to explore the variability of PAS usage across cell types and organs (Fig. 4A, B). Due to technique limitation, previous 136

studies can only conclude that PAS is tissue-specific [33]. By utilizing scTail, we can acquire matched gene expression and 137

PAS expression for each cell, allowing us to answer whether PAS profiles are more similar within cell types or organs. In 138

total, 14,025 PASs were identified and quantified for all cells from 3 tissues and then used to compute a Jensen–Shannon 139

divergence (JSD) between each cell type in each tissue (at pseudo-bulk level). When conducting hierarchical clustering on 140

the JSD, the dendrogram reveals that samples belonging to the same cell type (across organs) exhibit a greater degree of 141

similarity, with few exceptions (Fig. 4C). The clustering pattern characterized by the dominance of cell types implies that 142

the majority of cell types exhibit a preserved PAS expression marker. To provide additional evidence of how the PAS 143

profile can be used in identifying cell types, we conducted a comparison of the top 20 most prominent markers at both 144

PAS and gene levels for each cell type. As Venn diagrams show, a partial intersection between gene- and PAS-based 145

markers can be observed, suggesting that PAS can potentially function as supplementary features for identifying cell types 146

(Fig. 4D). For instance, chr16 28591942 28592028*SULT1A2 (ENSG00000197165.11), chr12 27697550 27697592*REP15 147

(ENSG00000174236.4) and chr19 50428917 50429010*SPIB (ENSG00000269404.7) serve as a signature for enterocyte, 148

goblet cell and paneth-like cell, respectively (Fig. 4E, Supplementary Fig. 6). 149

Subsequently, our focus shifted towards genes that possess at least two PASs to analyze the alternative usage. BRIE2 150

was applied to search for genes with differential alternative PAS usage for each cell type compared with the rest of all 151

other cell types. Note, for genes with more than two PASs, only proximal PAS (the closest PAS to the transcription start 152

site) and distal PAS (the furthest PAS to the transcription start site) were utilized. In total, 2,189 genes with significant 153

differential alternative PAS usage (FDR < 0.05) were found in all cell types (Supplementary Fig. 7A-G, Supplementary 154

Table. 1). The volcano plot reveals a pronounced asymmetrical trend of significant genes, which hints that several cell 155

type prefers to apply proximal PAS, such as TA and enterocyte whereas stem cell, progenitor, goblet cell and paneth-like 156

cell would like to make use of distal PAS (Supplementary Fig. 7H). Among those genes with significant differential PAS 157

usage in a certain cell type, we discovered several genes with significant shifts in PAS abundances in one cell type while 158

the gene-level expression remains consistent across all cell types. Fig. 4F shows an example of such a gene ZFAS1, which 159

is known as a protein regulator involved in colorectal cancer tumorigenesis and development [34]. Although there is no 160

alteration in the gene expression of ZFAS1 across these cell types, we observed that the proximal PAS of the gene is 161

more highly expressed in enterocytes compared to other cell types. The ZFAS1 gene undergoes an isoform shift in the 162

enterocyte, where the proportion expression of the proximal PAS (e.g. PSI) is significantly higher, indicating distinct 163

cellular PAS localization (Fig. 4F), with high concordance in the track plots (Fig. 4G). Another example gene is NEDD4L, 164

which mediates Wnt3 ubiquitination and modulates gut microbiota to control colorectal cancer progression [35]. The 165

distal PAS of NEDD4L marks the goblet cell despite constant gene abundance (Supplementary Fig. 8). Taken together, 166

these findings demonstrate that PAS-level abundance can assist in refining cell types beyond what is possible blind at 167

gene-level expression. 168

During the interstinal differentiation, the stem cells sequentially differentiate into transit-amplifying (TA) cells and 169

progenitor cells. Then, the secretory progenitor cells migrate upwards to become goblet cells, enteroendocrine cells, and 170

paneth cells, while the absorptive progenitor cells divide to enterocyte [36] (Fig. 4H). To determine the role of PAS in 171

deciding cell fate, the PAS-level and gene-level expression profiles (for genes with significant alternative PAS usage) were 172

exploited to infer the pseudotime of cells through geodesic distance along the graph (Supplementary Fig. 9). As shown in 173

Fig. 4I and 4J, the pseudotime inferred from both PAS and gene profiles gradually increases from stem cell to TA and to 174
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Figure 4. scTail assists in cell type identification and cell trajectory inference in the human intestine (A, B) tSNE plot
of 14,537 single cells, annotated with three parts of human intestine (A) and cell type (B). (C) Hierarchically clustered
heatmap of Jensen-Shannon divergence (JSD) of abundance of PAS among all cell types from ileum, colon, and rectum.
(D) Venn diagrams of the top 20 significant PAS markers and gene expression markers in various cell clusters of the
human intestine. (E) The expression of two PAS markers of enterocyte and goblet cell. (F) tSNE plots show total RNA
expression, PSI, proximal and distal PAS expression of ZFAS1 in all human intestine cells. PSI value is estimated with
cell type-specific prior. (G) Track plot shows read coverage of proximal and distal PAS of ZFAS1 in different cell types.
(H) Schematic of intestine stem cell (ISC) differentiation under homeostatic conditions. (I, J) Violin plots of pseudotime
of distinct cell types inferred by PAS expression profile (I) and gene expression profile (J).
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progenitor. Also, the pseudotime inferred from the PAS expression profile of goblet, enterocyte, and paneth-like cells 175

is higher than progenitor cell, which is consistent with the process of differentiation in the human intestine (Fig. 4I). 176

However, the pseudotime inferred from gene-level expression is almost the same for progenitor, goblet and the paneth-like 177

cells (Fig. 4J). We suspect that the PAS expression profile provides extra information than the gene expression profile 178

possibly due to alternative PAS usage. This finding is consistent with a previous report that instead of alterations in gene 179

expression, pre-mRNA processing including splicing and polyadenylation is responsible for reshaping the transcriptome 180

and proteome during the loss of stemness and lineage commitment [37]. 181

Altered PAS usages in esophageal squamous cell carcinoma micro-environment 182

Although comprehensive analyses of alternative polyadenylation (APA) usage have been conducted in various cancer 183

types at bulk level [6, 10], the study exploring APA usage at single-cell resolution was limited to reads 2, lacking accuracy 184

of detecting PAS [38]. Here, scTail was utilized to an esophageal squamous cell carcinoma (ESCC) dataset (3’ scRNA-seq, 185

10x Genomics) of both adjacent nonmalignant and matched tumor samples from 11 ESCC patients, covering 89,313 186

cells in total [39] (Fig. 5A, B, Supplementary Fig. 10) to delve into what is the profile of APA usage across various 187

cell types in ESCC and regulatory mechanism behind it. With scTail, we identified 9,888 PASs, where 1,831 genes 188

contained at least two PASs (Supplementary Fig. 11). By utilizing BRIE2 [40] on these multi-PAS genes, a grand total 189

of 1,005 genes exhibited significant divergence in the usage of alternative PAS between normal and tumor in any cell 190

type (FDR < 0.01; Supplementary table 2). It should be noted that we only used the proximal and distal PASs if there 191

are multiple (definition mentioned above) as input for BRIE2, and as we expected, where distal PASs have a higher 192

proportion overlapped with 3’ UTR compared with that of proximal PAS (Supplementary Fig. 12). Take epithelial cell as 193

an example, among genes exhibiting alternative PAS activation in tumor, several are widely recognized as cancer-related 194

biomarkers such as S100A14 serving as modulator of terminal differentiation in esophageal cancer [41], PITX1 relating 195

with RAS Activity and Tumorigenicity [42] (Fig. 5C). In addition, notably differential genes with APA usage between 196

normal and tumor conditions can be identified by BRIE2 for each cell type (Supplementary Fig. 13). To further assess the 197

usability of these genes, the proportion of proximal PASs (i.e., PSI) of genes, the gene expression and combination of PSI 198

and gene expression were feed to logistic regression to predict binary disease status with tenfold cross-validation separately. 199

All three feature groups achieved good predictions on cell types that are closely relevant to cancer, e.g., epithelial cells 200

(Fig. 5D; Supplementary Fig. 14; only tested on cell types with >500 cells). Impressively, combining the extra PSI matrix 201

to the gene-level expression consistently improves the prediction performance in terms of AUROC, not only for those 202

moderately predicted cell types, e.g., B cells but also those more accurately cell types, e.g., fibroblast cells (Fig. 5D). In 203

general, among these significant differential genes, the number of genes preferring to utilize proximal genes is obviously 204

more than the number of genes favoring expressing the distal PAS in tumor samples (Fig. 5E), indicating global shorting 205

in tumor condition and aligning with the previous reports [6, 10]. 206

Additionally, we also observed cell-type specific PAS usage in the ESCC dataset, such as IL1RN, which is known to 207

be downregulated in ESCC patients [43]. As shown in Fig. 5F, scTail identified two cell-type specific PASs, including 208

proximal PAS (novel PAS) and distal PAS (annotated PAS). Interestingly, if we focused on the proportion of two detected 209

PASs in fibroblast, we found that the proportion of the proximal PAS shows a significant up-regulation in tumor condition 210

compared to the normal condition due to the decreased abundance of distal PAS in tumor (Fig. 5G, Fig. 5F). However, 211

mast cell exhibits a reverse trend, where the proportion of proximal PAS decreases in tumors because of decrease expression 212

of proximal PAS in tumor (Fig. 5H, Fig. 5F). Surprisingly, the proportion of proximal PAS did not change a lot between 213

normal and tumor in myeloid cells (Fig. 5F, Supplementary Fig. 15), highlighting the intricate nature of PAS regulation 214

and its concurrent influence on cellular phenotypes and pathological states. To further characterize the functions associated 215

with APA in ESCC, we conducted a pathway enrichment analysis using genes with normal- or tumor-specific PASs at 216

distinct cell type levels. Specifically, in endothelial, those mRNA transcripts applying proximal PAS exhibit enrichment in 217

GO terms relevant to VEGFA VEGFR2 signaling which is known to be correlated with the prognosis of patients with 218

ESCC [44], response to hormone and endomembrane system organization, collectively indicating that APA plays an 219

essential role in the molecular features of ESCC (Fig. 5I). Besides endothelial cells, transcripts preferring to proximal or 220

distal PAS in other cell types also contribute to the progress of ESCC (Supplementary Fig. 16). 221

To elucidate the potential regulatory mechanism underlying the global preference of proximal PAS, we searched for 222

motifs appearing in the gap sequence (i.e. sequence from proximal PAS to distal PAS) of significant differential genes 223

with APA usage by using FIMO (v4.11.2) and further detected the RBPs binding with these motifs (Supplementary 224

Fig. 17). Here, we took Polyadenylate-binding protein cytoplasmic 1 (PABPC1) as an example and surveyed the 225
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Figure 5. scTail detected polyadenylation site switch from esophageal squamous cell carcinoma. (A, B) UMAP
visualization of all cells (n=89,313) in esophageal squamous cell carcinoma. Each dot represents an individual cell, where
colors indicate cell type (A) and disease status (B). (C) Volcano plot illustrating the correlation between ELBO gain
and effect size on logit(PSI) for detecting differential PAS between normal and tumor cells. The effect size on logit(PSI)
is represented by cell coeff. A positive value means higher PSI in normal cells. ELBO gain reflects the evidence lower
bound difference for the two hypotheses (Methods). (D) Scatter plot showing AUROC predicted by expression only and
expression plus PSI of significant genes with APA usage by exploiting logistic regression model. Tenfold cross-validation
was utilized to evaluate the model. (E) Bar plot exhibits number of genes preferring to use proximal or distal PAS in
tumor condition for distinct cell types. (F) Genome track plot of IL1RN in fibroblast, myeloid cell and mast cell of
normal and tumor. A single horizontal genome track denotes the coverage across all cells within a specific cell type. The
red line indicates the location of PAS detected by scTail. (G, H) Violin plot on example gene IL1RN for fibroblast
(G; n = 9071 cells for normal; n = 8450 cells for tumor) and mast cell (H; n = 757 cells for normal; n = 603 cells for
tumor). The y-axis PSI represents the proportion of proximal PAS among the abundance of total PAS in each cell type.
(I) Bar plot displaying the enriched GO terms of genes preferring to use distal PAS in tumor condition in endothelial cells.
(J) Heatmap shows the hierarchical clustering of patients by the abundance of RBPS that binds with gap sequence of
significant differential genes with APA between normal and tumor. *** : FDR < 0.0001, ** : FDR < 0.01, * : FDR
< 0.05. (K) Histogram of Pearson’s correlation between predicted and measured expression of significant differential
genes with APA in epithelial cells. Prediction was conducted by random forest. Tenfold cross-validation evaluates the
performance of the model. (L) A scatter plot between the predicted with all RBP abundance and measured expression of
ECM1 in epithelial.
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CISBP-RNA database [45], and found three binding motifs: M146 0.6, M275 0.6 and M349 0.6. M146 0.6 closely 226

resembles the sequence logo detected by FIMO in the gap sequence, which implies potential regulatory elements of these 227

shortened sequences in the ESCC tumor (Supplementary Fig. 18). Unbiased hierarchical clustering analysis of these 228

RBPs expression effectively segregated tumor and normal samples, indicating that they may play a critical role in the 229

regulation of alternative polyadenylation usage in ESCC (Fig. 5J). For example, PABPC1 was downregulated in the 230

tumor (FDR=0.002; Supplementary Fig. 19), which is consistent with previous studies [46, 47]. Due to the characteristics 231

of PABPC1 (i.e., polyadenylate-binding), the downregulation of its expression and the shorter 3’UTR in the tumor are 232

harmonious. 233

We also tried to discover essential RBPs from other angles. Expression profiles of 2,960 annotated human RBP were 234

provided to a random forest regressor to predict PSI of 362 genes that were detected with alternative polyadenylation 235

usage in epithelial cells. As Fig. 5K shows, the PSI values of several genes can be predicted well from RBP expression, such 236

as ECM1 (Pearson’s R = 0.686), RAN (Pearson’s R = 0.639), S100A2 (Pearson’s R = 0.630) and TIMM13 (Pearson’s R = 237

0.620) (Fig. 5L, Supplementary Fig. 20). We further studied how expression of each RBP contributes to the prediction of 238

these four genes. Interestingly, most of the expressions of RBPs have a positive correlation with the PSI of ECM1, RAN, 239

and S100A2, and a negative correlation with the PSI of TIMM13 (Supplementary Fig. 21). We suspect that the main 240

contributing factor is the preference for TIMM13 to utilize distal PAS (average PSI = 0.32), while the other three genes 241

tend to favor the usage of proximal PAS (RAN: average PSI = 0.74; S100A2: average PSI = 0.76; ECM1: average PSI = 242

0.70). To examine the function of these top features, Gene ontology (GO) analysis using 33 RBPs revealed significant 243

enrichment under several major GO categories, including ribosome, cytoplasmic, stomach neoplasms, and neutrophil 244

degranulation (Supplementary Fig. 22), relevant with alternative polyadenylation usage and characteristic of the dataset. 245

The mRNA 3’-end formation is a co-transcriptional process that is mediated by the cleavage and polyadenylation (CPA) 246

machinery, which consists of a multiprotein core complex and associated factors (i.e. CPA specificity factor CPSF) [1]. 247

Based on this, we asked which CPSF contributes to the PAS shift of ESCC. Expressions of CPSF between normal and 248

tumor were compared and we found that CPSF3 and SCAF8 exhibit significant differences (Supplementary Fig. 23). 249

SCAF8 has been reported as an anti-terminator protein, which is consistent with its lower expression and global proximal 250

PAS usage at tumor condition [48]. 251

Polyadenylation site shifting during mouse forelimb histogenesis 252

Lastly, we aimed to examine the contributions of alternative PAS usage in mouse development. Here, as a showcase, 253

we focused on forelimb development during the embryonic stages by analyzing the data generated from the ENCODE 254

Consortium mouse embryo project [49]. In this dataset, the forelimb includes 70,376 cells annotated into 25 cell types 255

involved in 7 samples from embryonic day 10.5 (E10.5) to E15.0 (Fig. 6A, B). In total, 24,109 PASs in 12,974 genes were 256

detected by scTail (Supplementary Fig. 24). To analyze the PAS switch, we focused on genes (n = 5,849) with multiple 257

PASs and utilized BRIE2 to inspect their PAS usage between each time point and the rest other times at cell type level. 258

We identified 2,804 and 10,619 significant differential genes with PAS shift in muscle and mesenchymal for all time points 259

(FDR < 0.01; Supplementary Table 3). As shown in Fig. 6C and Supplementary Fig. 25, several genes with notable 260

alternative polyadenylation site usage contribute greatly to organogenesis in muscle or mesenchymal, such as Tpm2 261

associated with embryonic skeletal muscles [50], Ddx18 associated with mESCs differentiation [51], Hes1 contributing to 262

differentiation responses of embryonic stem cells in mouse [52]. As an example, muscle cells dominantly expressed the 263

distal PAS of Tpm2 at E10.5 and E11.0 but switched to its proximal PAS from E12.0. Also, mesenchymal cells preferred 264

to express proximal PAS of Pim1 at E10.5, while shifting to distal PAS from E11.0 (Fig. 6D). We observed that the 265

change of PSI in individual cells is consistent with time-dependent APA shift of Tpm2 and Pim1 (Fig. 6E). However, 266

the gene-level expression of these two genes is broadly consistent without any significant difference along the time axis 267

(Fig. 6F). This further highlights the complementary function of APA to bolster the ability to distinguish cell states in 268

scRNA-seq data. Furthermore, with functional enrichment analysis, we found the genes with significant PAS shift between 269

E10.5 and rest time points in muscle cells mainly affected the cell division and molecular catabolic process including the 270

metabolism of RNA, protein catabolic, and protein-DNA complex organization (Fig. 6G). In addition, we also compared 271

the expression of CPSF among different embryo stages and discovered that only Cpsf7 gradually increased over time and 272

significantly escalated from E12.0 (Supplementary Fig. 26; Supplementary Fig. 27). This is consistent with the finding 273

that changed abundance of CPSF7 (one component of CFIm) is responsible for the switching of UTR lengths in the 274

development of mammalian early embryos [53]. 275
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Figure 6. scTail identifies differential alternative PAS usage from mouse forelimb development. (A, B) tSNE visualization
of all cells (70,376) in forelimb histogenesis. Each dot is the individual cell, with colors coded according to the cell types
(A) and development stages (B). (C) Volcano plot showing the correlation between ELBO gain and effect size on logit(PSI)
for identifying differential PAS between E10.5 and other time points (left), E11.0 and other time points (middle), E12.0
and other time points (Bottom). Cell coeff represents the effect size on logit(PSI). Positive value indicates higher PSI in
E10.5 (left), E11.0 (middel) and E12.0 (right), respectively. ELBO gain marks the evidence lower bound difference for the
two hypotheses (Methods). (D) Genome track plots display read coverage of Tpm2 and Pim1 in various development
stages of muscle cell (top) and mesenchymal cell (bottoem). (E) tsne plots visualize the mapping of PSI value of Tpm2
(left) and Pim1 (right) on individual cells of muscle and mesenchymal. PSI value is estimated with stage-specific prior.
(F) tsne plots display the mapping of the abundance of Tpm2 (left) and Pim1 (right) on individual cells of muscle and
mesenchymal. (G) Bar plot showing the enriched terms based on genes with significant differential PAS usage between
E10.5 and other stages in muscle cell.
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Discussion 276

In this study, we present a computational method called scTail that can identify PASs by exploiting paired reads 1 277

(length > 100bp) and quantify PAS by using total reads 2 from 3’ scRNA-seq data (10X Genomics). Our method, scTail, 278

is designed in a data-driven manner and incorporates a sequence model that identifies PASs accurately. This enables 279

us to efficiently detect alternative TSS usage between different single-cell populations by utilizing the BRIE2 model 280

seamlessly. Following that, we focused on the analysis of alternative PAS usage in various biology scenarios including 281

human intestinal differentiation, esophageal squamous cell carcinoma conditions, and mouse forelimb histogenesis, where 282

using the right PAS is an important element of the regulation, presumably relating to RBP and CPSF. Therefore, PAS 283

expression usually offers supplementary information to the gene-level expression. Overall, the easy-to-access PAS analyses 284

bring new opportunities to reveal biological insights while along with multiple challenges to be further addressed. 285

From the technology perspective, multiple techniques with bulk sequencing have been introduced for a while, such as 286

PolyA-seq [12] and QuantSeq REV [15], allowing us to annotate the PAS in common conditions. These technologies utilized 287

novel protocols to directly target the 3’ end of polyadenylated transcripts, where the start nucleotide of the read-out 288

corresponds to the authentic transcription end site. However, similar technologies at single-cell resolution are relatively 289

scarce, and the single-cell polyadenylation sequencing (scPolyA-seq) [54] is the only example highlighting the capability 290

in analyzing PAS usage. On the other hand, multiple common scRNA-seq protocols are 3’ biased and poly-A selected, 291

therefore in principle can capture the PAS. Recently, Fansler and colleagues showed that the Microwell-seq platform has a 292

relatively precise capture of the PAS, hence can measure the 3’ UTR length in single cells [55]. Nevertheless, we are still 293

far from making PAS analysis a routine with easy access. With our scTail, we demonstrated that the mainstream platform 294

10x Genomics is nearly perfect for PAS analysis, as long as the cDNAs in reads 1 are sequenced and preserved. Still, more 295

efforts are needed to emphasize this message, ideally having this functionality included in the default processing pipeline. 296

In terms of biology, the 3’ UTR has profound impacts on a wide range of biological functions, and the three case 297

studies we presented are only the tip of the iceberg. As we evidenced, there are prevalent associations between alternative 298

PAS usage and development and diseases. Still, the regulatory mechanism remains largely unknown, for example, how 299

multiple RNA binding proteins work collectively to modulate the mRNA functions. This closely links to the community’s 300

attention to the genetic regulation of the switch of 3’ UTR [56], some of which show strong colocalization with disease 301

variants, e.g., ZC3HAV1 in multiple sclerosis [57]. 302

Regarding therapeutics, mRNA is increasingly popular as a vaccine and drug, while how to design and optimize 3’ 303

UTR sequences is only an emerging challenge and opportunity [58]. Broadly speaking, precise detection of PAS in a 304

diverse context may allow us to compile a large amount of training set for learning the broad language of the 3’ UTR 305

sequence, which can facilitate resolving specific tasks in 3’ UTR designs for different properties. 306

Methods 307

scRNA-seq initial data analysis 308

Raw fastq files contains reads1 (> 100 bp) and reads2 were downloaded, and then reads were aligned to the homo 309

sapiens reference genome (hg38) or Mus musculus reference genome (GRCm39) to produce pair-end alignment bam file by 310

utilizing STAR [59] (v2.7.11) (parameter: --soloType CB UMI Simple --soloStrand Reverse --clip5pNbases 60 0 311

--outFilterScoreMinOverLread 0.1 --outFilterMatchNminOverLread 0.1). Of note, for --readFilesIn, we set the 312

order of input reads as reads1 (with cell barcode and UMI) and reads2 and this order corresponds with --soloStrand 313

Reverse. Then we filtered reads whose ’GX’, ’CB’, and ’UB’ tags are ’-’ in the aligned bam file. Sometimes, the bam file 314

of each sample is too large to run scTail fast, and Sinto (v 0.10.0) was utilized to split one bam file into two or more 315

smaller bam files randomly. 316

Implementation of scTail 317

scTail is a computational method to detect PAS and it consists of two major stages: identify PAS by using long reads 1, 318

optionally merge PASs from individual samples, and assign reads 2 to the region of PAS. 319

13/20

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 9, 2024. ; https://doi.org/10.1101/2024.07.05.602174doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.05.602174
http://creativecommons.org/licenses/by-nc-nd/4.0/


Step 1: identification of PAS 320

Pysam [60] was used to parse the preprocessed bam file to obtain UMI counts of each reads end (Fig. 2A). Next we 321

exploited paraclu [28] to perform clustering and filter clusters according to the thresholds set by users. The thresholds 322

required to set include maximum cluster length, minimum density increase, and minimum cluster count. Except for these 323

filter parameters, an embedded convolutional neural network also helps with filtering. 324

The deep neural network only supports two species: human and mouse. Positive samples of human PAS (n = 251,072) 325

came from stringent PASs dataset which includes PolyA DB3, PolyA-seq, and PolyASite or GENCODE annotation 326

in previous study [24]. Positive samples of mouse PAS (n = 106,894) are the sum of GENCODE annotation of the 327

protein-coding gene (n = 21,786) and PAS dataset (n = 85,108) with high confident PAS from previous study [24]. 328

Negative samples of human (n = 13,809) and mouse (n=92,164) were randomly selected from intergenic regions without 329

overlapping with any positive samples. To keep positive and negative samples balanced, some transcription start sites 330

were randomly selected as additional negative samples. Finally, 251,072 human negative samples and 106,894 mouse 331

negative samples were obtained. 332

Sequences of upstream 100 bp and downstream 100 bp of positive or negative PAS were extracted by the python 333

package pyfaidx [61] from the fasta file. Then we utilized kipoiseq [62] package to convert DNA sequence to one-hot 334

encoding (A = [1,0,0,0], C = [0,1,0,0], T = [0,0,1,0], G = [0,0,0,1], N = [0,0,0,0]). PyTorch (v2.1.0) was used to construct 335

the convolutional neural network, which is composed of three convolution layers followed by a Rectified Linear Unit 336

(ReLU) for activation, connected by batch normalization, max pooling, and dropout layer with dropout rate 0.4. The 337

flattened output from the dropout layer was passed through fully connected layers (32 neurons) with a ReLU activation 338

function. Next, the flattened output was connected to a second fully connected layer consisting of 2 neurons that utilized 339

the sigmoid function to determine the classification probability. The initial convolutional layer consists of 128 filters, each 340

with a width of 8-mer and 4 channels. The subsequent convolutional layer consists of 32 filters, with each filter having a 341

size of 4x4. The third convolutional layer has 64 filters, where the filter size is 2x2. This model can be represented in the 342

following formula: 343

Oi = fSigmoidfLinearfLinear ReLUfFlattenfDropoutfMaxpoolingfBatchNormfConv ReLUf conv ReLUf conv ReLU (Xi) (1)

where Xi represents the one-hot encoded matrix of size 4 by 200. The total samples were split into three sets: train, test, 344

and validation using a ratio of 6:2:2. The model was trained using a batch size of 128 and 100 epochs, employing the 345

Stochastic Gradient Descent (SGD) optimizer with a learning rate of 0.003 and momentum of 0.8. The model embedded 346

in scTail is the one with the lowest loss evaluated by the validation set. 347

When there are multiple samples, scTail aims to compile a union set of PAS across samples. Specifically, in the last 348

step above, we can detect PAS for individual samples. Then, the bedtools was applied to merge PAS from all samples 349

(parameter: -d 40 -c 4 -o collapse). 350

Step 2: quantification of PAS 351

Here, we introduced a quantification model to assign reads 2 to the merged PAS. The distance between the termination of 352

reads 1 and reads 2 was defined as fragment size. In this model, it is assumed that fragment size follows a univariate 353

log-normal distribution: 354

Lognormal
(
µ, σ2

)
(2)

Assuming xi is the fragment size for assigning the ith read 2 to a certain PAS (namely xi denotes the distance between 355

the read2 end and the PAS), the likelihood can be estimated by: 356

Li =
1

xiσ
√
2π

exp

(
− (ln(xi)− µ )

2

2σ2

)
, (3)

where µ and σ are the parameters of the lognormal distribution and the likelihood was calculated by using the scipy 357

python package (v1. 12.0; log-normal distribution). Here, we estimate these two parameters by using the empirical 358

distribution of fragment size of the paired reads 1 and 2 only from genes with a single PAS. Specifically, the fragment of 359

each read pair is calculated by the distance between the end positions of read 2 were obtained by parsing the aligned bam 360
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file via pysam and that of its paired read 1. Then, we used a heuristic way to estimate the parameters by transforming 361

the mean µX and the standard deviation σX of the fragment sizes, as follows, 362

µ = ln

(
µ2
X√

µ2
X + σ2

X

)
, σ2 = ln

(
1 +

σ2
X

µ2
X

)
. (4)

Next, we decided to keep or filter this query read by comparing this likelihood in Eq. 3 and the threshold defined by 363

the half of likelihood of emperical distribution of fragment size. If there are multiple PASs that exist in a gene, we assign 364

the read to the PAS with the highest likelihood that passes the threshold. Finally, we summed the total reads of each 365

PAS. 366

Of note, in both PAS identification and quantification, we all first eliminate PCR duplicates and save only one read 367

per UMI in the same cell. The reads with the furthest distance to the transcription start site were selected when reads 368

from the same UMI and the same cell aligned to different positions. 369

Analysis of genomic feature of PAS 370

The genomic interval of 5’ UTR, 3’ UTR, intron, and exon were obtained by inputting the hg38 GTF file to gencode regions 371

package (https://github.com/saketkc/gencode regions). Then PAS detected by scTail in K562 were assigned to genomic 372

features such as 5’ UTR, 3’ UTR, and so on. 373

Explanation of convolutional neural network 374

The hidden features within the convolution neuron encode local sequence combinations that can be leveraged to accurately 375

predict the PAS. The method called Maximum Activation Seqlet [30] was utilized in this study. By utilizing this method, 376

it becomes possible to identify the brief sequence segments that the convolutional filters are detecting. These segments can 377

then be employed to create Position Weight Matrices (PWMs). In this approach, we initially divided the input sequence 378

X into multiple subsequences (Seqlet) xPAS
i that have the same length as the receptive field of the target neuron c. We 379

searched for Seqlet from X that have the highest activation values for convolutional filter c and bagged them into Pc. 380

Pc = argmax
{xt

i,j∈X t}
at,li (5)

By stacking the short sequences in Pc together, we can determine the frequency of each nucleotide at every position, 381

resulting in the creation of Position Weight Matrices (PWMs). Afterward, the convolutional filters were transformed into 382

PWMs and were then visualized as sequence logos using a Python package logomaker (v 0.8). 383

QuantSeq 3’mRNA-seq preprocessing 384

Raw fastq file of the K562 dataset (QuantSeq 3’mRNA-seq) was downloaded from the NCBI SRA database. Next, we 385

applied cutadapt (v4.6) to remove 19 bases (i.e. PolydT) from reads 1 (parameter: -u 19). Then STAR was employed to 386

align the clean forward reads to the human reference genome (hg38) with the default parameter. 387

Preprocessing of all dataset 388

For one dataset, we can get two cell-by-feature UMI matrices, both in h5ad format (i.e. PAS expression h5ad file and 389

gene expression h5ad file). PAS and gene expression matrices were obtained respectively from the output of scTail 390

and the combination of the output of STAR aligner. Cell type annotation and the 2D coordinates of t-SNE or UMAP 391

were obtained from the dataset source and mapped to these two matrices. Scanpy (v.1.9.5) [63] was utilized to perform 392

normalization by total counts (target sum=1e4) and extracted highly variable genes. 393
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Identification of alternative polyadenylation site usage on cell type, disease and development 394

stage 395

BRIE2 (v 2.2.2) [40] was employed to detect polyadenylation site shift across different cell types, disease status, and 396

development stages. In the case of ESCC and mouse forelimb, we constructed an h5ad file with two layers containing 397

the abundance of two PAS (raw UMI count) for each cell type. Of note, for genes with multiple PASs, the closest and 398

farthest PAS to the transcription start site were selected, as proximal and distal PASs. The design matrix comprises 399

cell detection rate and cell state information (for example: tumor: 1 and normal: 0; E10.5: 1 and other development 400

stages: 0) for each cell type. In the dataset of human intestinal, the h5ad file includes all cell types and the design 401

matrix consists of cell detection rate and cell type information. The brie-quant module was utilized to identify APA for 402

all pairwise comparisons (parameter: --batchSize 1000000 --minCell 10 --interceptMode gene --testBase full 403

--LRTindex 0 and FDR < 0.01 was defined to select genes with significant differential PAS usage. 404

In addition, when we show the PSI value of individual cells, the prior was changed. In the human intestinal dataset, 405

brie-quant was run using all cell types as prior; namely the model will learn a separate prior for each cell type (Fig. 4F). 406

In the case of mouse forelimb, all stages were utilized as prior; namely the model will learn a separate prior for each stage 407

(Fig. 6E). 408

Hierarchical clustering analysis 409

To investigate the similarity of PAS profiles across three tissues (i.e. colon, ileum, and rectum) and cell types, we 410

exploited normalized PAS to get expression of each cell type of each tissue by using the pseudobulk method. Next, 411

scipy.spatial.distance.jensenshannon was utilized to compute the Jensen-Shannon distance (JSD) between two cell 412

types. Finally, the distance matrix was used to conduct a hierarchical clustering analysis. 413

Diffusion pseudotime analysis 414

We first chose genes with significant differential alternative polyadenylation sites in all cell types in the human intestinal 415

dataset and then did preprocessing in these PAS and gene expression matrices. One of the stem cells was defined as root 416

cell and then scanpy was applied to calculate diffusion pseudotime with the function scanpy.tl.diffmap. Next, we used 417

scatter and violin plots to visual the estimated pseudotime. 418

Disease states prediction 419

To perform the disease prediction in the ESCC data, we focused on cell types that have more than 500 cells. Within each 420

of these cell types, genes with significant differential APA between normal and tumor (FDR < 0.01) were selected for the 421

analyses. PSI values of these genes were fed to logistic regression to predict disease conditions. Tenfold cross-validation 422

was utilized to evaluate the performance of the prediction. 423

Track plot visualization 424

IGV-Web was applied to plot reads 1, reads 2, total reads, and the forward reads from QuantSeq REV in the K562 425

dataset. For track plots in human intestinal, ESCC and mouse forelimb datasets, sinto was utilized to subset the bam file 426

for each track according to their cell barcode list, such as for a certain cell type. Next, these bam files were input to 427

pyGenomeTracks (v.3.8) [64] to visualize. 428

Motif binding frequency analysis 429

In the ESCC dataset, we focused on genes with significant differential alternative PAS between normal and tumor conditions. 430

For genes with multiple PASs, only the closest and furthest PASs were selected for analysis, denoted as proximal and 431

distal PASs, respectively. Gap sequences between them were extracted by seqtk (https://github.com/lh3/seqtk). Next, 432

FIMO (v 4.11.2 MEME-suite) [65] was used to search RBP motif occurrences within the gap sequences according to 433

meme file of homo sapiens RNA-binding motifs PWM [45]. 434
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proportion of proximal PAS prediction in ESCC dataset 435

A total of 2,961 RNA-binding proteins (RBPs) from homo sapiens were obtained from the EuRBPDB database [66]. 436

Normalized abundance of these RBPs was fed to a random forest regressor (implemented with scikit-learn v1.3.2) 437

to predict the proportion of proximal PAS (i.e. PSI) of genes with significant differential PAS usage in the disease 438

condition. Pearson’s correlation was calculated between measured PSI and predicted PSI. The random forest’s function 439

feature importances was utilized to calculate feature importance. 440

Functional enrichment 441

The Metascape online web server (v3.5.20230101) [67] [options: Expression Analysis] was exploited to perform GO 442

enrichment analysis and the top 20 enriched terms were selected to do enrichment network visualization. 443

Data availability 444

For K562 data, its 10x Genomics 3’ scRNA-seq [68] and QuantSeq 3’ mRNA-seq [31] were downloaded respectively from 445

GEO under the accessions ”GSE231382” and National Center for Biotechnology Information (NCBI) BioProject database 446

under the accessions ”PRJNA794041”. The previously published 3’ scRNA-seq data that were reanalyzed in this study 447

are available in the NCBI BioProject database under accession number ”PRJNA777911” (ESCC dataset [39]), GEO under 448

accession number ”GSE125970” (human intestinal dataset [32]) and ENCODE under accession number ”ENCSR713GIS” 449

(mouse forelimb dataset [49]). 450

Codes availability 451

scTail is an open-source Python package publicly available at https://github.com/StatBiomed/scTail. Detailed 452

documentation and analysis procedures to reproduce results in this paper are also uploaded to this repository. 453
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