

1 Insights into gene conversion and crossing-over processes from long-read
2 sequencing of human, chimpanzee and gorilla testes and sperm

3
4
5 Peter Soerud Porsborg*^{#1}, Anders Poulsen Charmouh*¹, Vinod Kumar Singh^{1,2}, Sofia Boeg
6 Winge^{3,4}, Christina Hvilsom⁵, Marta Pelizzola¹, Sandra Laurentino⁶, Nina Neuhaus⁶, Asger
7 Hobolth¹, Thomas Bataillon¹, Kristian Almstrup^{§3,4,7}, Søren Besenbacher^{§1,2}, Mikkel Heide
8 Schierup^{§#1}

9
10 * shared first authorship
11 § shared last authorship
12 # corresponding authors

13
14
15 1 Bioinformatics Research Centre, Dept of Molecular Biology and Genetics, Aarhus University,
16 Aarhus, Denmark.

17 2 Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.
18 3 Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet,
19 Copenhagen, Denmark

20 4 International Center for Research and Research Training in Endocrine Disruption of Male
21 Reproduction and Child Health, Copenhagen, 2100, Denmark

22 5 Copenhagen Zoo, Frederiksberg, Denmark

23 6 Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative
24 Biology, University of Münster, Münster, Germany

25 7 Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences,
26 University of Copenhagen, Copenhagen, 2200, Denmark.

27 **Abstract**

28

29 Homologous recombination rearranges genetic information during meiosis to generate new
30 combinations of variants. Recombination also causes new mutations, affects the GC content of
31 the genome and reduces selective interference. Here, we use HiFi long-read sequencing to
32 directly detect crossover and gene conversion events from switches between the two haplotypes
33 along single HiFi-reads from testis tissue of humans, chimpanzees and gorillas as well as
34 human sperm samples. Furthermore, based on DNA methylation calls, we classify the cellular
35 origin of reads to either somatic or germline cells in the testis tissue. We identify 1692
36 crossovers and 1032 gene conversions in nine samples and investigate their chromosomal
37 distribution. Crossovers are more telomeric and correlate better with recombination maps than
38 gene conversions. We show a strong concordance between a human double-strand break map
39 and the human samples, but not for the other species, supporting different PRDM9-programmed
40 double-strand break loci. We estimate the average gene conversion tract lengths to be similar
41 and very short in all three species (means 40-100 bp, fitted well by a geometric distribution) and
42 that 95-98% of non-crossover events do not involve tracts intersecting with polymorphism and
43 are therefore not detectable. Finally, we detect a GC bias in the gene conversion of both single
44 and multiple SNVs and show that the GC-biased gene conversion affects SNVs flanking
45 crossover events. This implies that gene conversion events associated with crossover events
46 are much longer (estimated above 500 bp) than those associated with non-crossover events.
47 Highly accurate long-read sequencing combined with the classification of reads to specific cell
48 types provides a new, powerful way to make individual, detailed maps of gene conversion and
49 crossovers for any species.

50 **Introduction**

51

52 Meiotic recombination is a ubiquitous cellular process, and the pathways involved are ultra-
53 conserved. Yet recombination rates can readily be subjected to selection, and recombination
54 hotspots evolve rapidly both within genomes and across species. To gain a better understanding
55 of how and why recombination evolves, we require a deeper mechanistic understanding of the
56 pathways underpinning it and the ability to quantify differences in recombination rates and
57 patterns at the individual level.

58 In most species, proper meiotic chromosome segregation relies on double-strand breaks
59 (DSBs), where a minority of breaks are initially resolved as crossovers (COs) and the majority
60 are subsequently repaired by the homologous strand leading to non-crossovers (NCOs). In
61 humans, a few hundred DSBs are formed in each meiosis at specific hotspots associated with
62 the presence of PRDM9 motifs¹⁻³. In males, DSBs are enriched at the telomeres with further
63 telomeric enrichment in those resolved as COs⁴. DSBs are repaired by strand invasion from the
64 homologous chromosome, and this process increases the occurrence of *de novo* mutations⁵. In
65 case of a heterozygous position, a mismatch will be induced, which is subsequently repaired by
66 mismatch repair (MMR). If repaired by the incoming strand, this will cause a visible NCO, also
67 known as a gene conversion (GCV). When the heterozygous position contains a weak (A,T) and
68 a strong (C,G) allele, the GCV process is biased towards the strong allele^{6,7}. Such GC-biased
69 gene conversion (gBGC) is powerful in shaping genome evolution. It causes the equilibrium GC
70 frequency to be higher in regions with high recombination rates and leads to a higher GC
71 content genome-wide than the equilibrium expected from mutational processes alone^{8,9}.

72 Human CO patterns have been extensively studied from linkage disequilibrium (LD)
73 patterns¹⁰ and pedigrees, with large differences in rate and positions observed between sexes
74¹¹, and also among individuals of the same species¹². Comparatively, less is known about GCVs
75 from the resolution of NCOs since these are very hard to detect from LD patterns and require
76 very accurate genotyping to detect from pedigrees¹³. Furthermore, the number of events in each
77 trio is limited, thus making it hard to quantify interindividual variation in both COs and GCVs
78 associated with NCOs.

79 Highly accurate long-read sequencing offers a new avenue for the detection of both COs
80 and GCVs. Since reads are sufficiently long (typically 10-20 kb), transfer between the paternal
81 and maternal haplotypes will be displayed directly in the read (Figure 1A). In that context, both
82 sperm samples and testicular tissue contain a substantial number of cells that have undergone
83 meiosis and thus are directly informative about COs and GCVs if sequenced. Here, we use

84 high-coverage HiFi sequencing to directly detect meiotic recombinations (COs and GCVs) in
85 sperm and testis samples from humans, chimpanzees, and western gorillas. We report similar
86 short GCV tracts across samples and species but distinct genomic locations of COs and GCVs.

87

88 **Results**

89

90 *Identification of recombination events from sperm and testis samples*

91

92 We sequenced three human sperm samples purified by swim-up as well as testis specimens
93 obtained from two individuals of humans, chimpanzees and western gorillas to 26-90X genomic
94 coverage using Pacbio HiFi sequencing (Methods, Table 1). For each sample, we first
95 constructed a high-quality *de novo* genome assembly (see Methods) covering more than 95% of
96 the genome with N50 contig sizes of 50-93 Mb across samples (see Supplementary Table 1).
97 We then mapped all long reads back to this assembly, identified all high-confidence single
98 nucleotide variants (SNVs) and assigned variants to haplotypes, i.e. inferring the full phasing of
99 all variants. Since reads typically have 10 SNVs, haplotype switch errors are exceedingly rare
100 (see Methods). On this backbone, we interrogated all mapped reads for the occurrence of
101 “variant shifts” between the haplotypes as a result of recombination events. After extensive
102 filtering, we classified detected events into four types: COs, simple GCVs, complex GCVs and
103 boundary cases (Supplementary Figure 1, Figure 1A). The short arms of the acrocentric
104 chromosomes and segmental duplications have previously been shown to often engage in
105 complex interallelic genetic exchanges¹⁴. We identified for the human sperm samples 17
106 (HS25), 29 (HS35) and 19 (HS50) events in acrocentric chromosomes and 83 (HS25), 105
107 (HS35) and 65 (HS55) in segmental duplications. However, for the present study, we have
108 masked these regions for further analysis (Supplementary Table 5).

109

110 The testis tissue comprises a mixture of somatic cells (e.g. blood, peritubular, Leydig and
111 Sertoli cells) and germline cells (diploid spermatogonia, tetraploid primary spermatocytes and
112 diploid secondary spermatocytes, and haploid spermatids and spermatozoa). Here, we are only
113 interested in postmeiotic events, and therefore, we need to identify the cellular origin of each
114 sequencing read. It is possible to determine the methylation status on the majority of the 100-
115 200 CpG sites on an average PacBio HiFi read. We developed a classification method that, from
116 the observed methylation pattern on a single PacBio HiFi read, estimates the probability of a
117 read being of somatic or germline origin (see Methods). The method is trained on published

118 methylation data from different cell types of human spermatogenesis¹⁵ and somatic proxies
119 (blood and neurons). We can reliably classify more than 80% of the HiFi reads to somatic versus
120 germline and even specific spermatogenic cell types (Supplementary Table 2). Based on this
121 classification, we then restricted the analysis of putative recombination events to the germline.
122 This is particularly important for GCV events where only a single SNV change between
123 haplotypes occurs, as these can also be mimicked by recurrent mutations in somatic cells with
124 higher mutation rates than germline cells^{16,17}. Furthermore, it removes potential GCVs in cells
125 that are not part of the germline.

126

127 We manually curated, via visual inspection, the remaining recombination events of all
128 types using IGV with a high (>95%) interobserver concordance in the identification of false
129 positives (see Methods). The number of likely false positives removed by this process varied
130 between 7% and 77% (Supplementary Table 6). The curated set of events for each sample is
131 shown in Table 1. We next estimated whether the number of COs identified agreed with prior
132 expectations. We can estimate how many COs we expect to identify in each sample from the
133 mapped sequencing coverage, the detectability of a CO given that it occurred on the read, and
134 the estimated proportion of postmeiotic cells for the testis samples, as explained above. For
135 COs, we have prior expectations of approximately 14 COs per haploid cell since the male
136 genomic map length is around 28 Morgans¹⁸. For detectability, we estimated by simulation on
137 each sample the probability that a random CO on a read will cause an SNV pattern as the one
138 we use to identify COs (Figure 1A). The power of detection for CO events varies with the SNV
139 density and read length and thus by sample. We estimate that across samples, between 30%
140 and 52% of the COs should be detectable (Supplementary Figure 2). Multiplying these
141 estimates and the estimated fraction of postmeiotic cells for the testes samples, we infer a
142 number of expected COs for both sperm and testes samples (Table 1) that, given the many
143 uncertainties, are close to the number of COs detected (10-30% differences except for the testis
144 specimen from the elderly man, HT55). Part of this deviation could also be due to individual
145 differences in the genetic map length. In HT55, we speculate that spermatogenesis is less
146 efficient than estimated, i.e. a smaller proportion of the germ cells than expected are
147 postmeiotic.

148 Likewise, the boundary cases, where an SNV at the end of a read changes haplotype,
149 are expected to be a mixture of COs and GCVs (Supplementary Table 5) in proportion to their
150 estimated frequency. We can estimate the expected number of these that are COs and GCV,
151 respectively, and the sum of these matches well with the observed boundary cases

152 (Supplementary Table 3). Together, these tests suggest that the detected sets of curated COs
153 and GCVs are reliable.

154

155 *Genomic distributions of crossovers and gene conversions*

156

157 Next, we investigated the spatial distribution of CO and GCV events across the genome (Figure
158 1B, sample HS35. The remaining samples are shown in Supplementary Figure 6). COs, in
159 particular, are clustered at the telomeres, whereas GCVs are more uniformly distributed. We
160 tested for a difference in clustering against a random distribution and found this to be highly
161 significant ($P < 1e-05$) in all samples except in the GT43 gorilla sample ($P = 0.05$) and in the GT22
162 gorilla sample and HT20 human testis sample (not significant), which had few events
163 (Supplementary Figure 6). We also investigated the density of COs and GCVs across each
164 chromosome after all samples were pooled. Chromosome 2 was omitted from this analysis
165 because of karyotype differences in humans versus great apes. Whereas the density of COs
166 increases with decreasing chromosome size (Supplementary Figure 3A, $P < 0.001$, linear
167 regression of density of COs with chromosome size), the density of GCVs is not correlated with
168 chromosome size (Supplementary Figure 3B, $P = 0.10$). This results in an increasing CO/GCV
169 with decreasing chromosome size (Supplementary Figure 3C, $P = 0.033$). Thus, the larger
170 recombination rate per base pairs on small chromosomes is due to a higher proportion of the
171 DSBs resolved as COs.

172 Figure 1C shows that the observed number of CO events per Mb decreases rapidly
173 away from the telomere for each of the four types of samples (human sperm, human testis,
174 chimp testis and gorilla testis pooled). This effect is much weaker for inferred GCV events.

175 Since a male pedigree recombination map also reveals higher recombination rates near
176 telomeres, we related the positions of COs to the deCode recombination map (smoothed at a
177 100 kb scale). Figure 2A,B shows that the positions of the COs we identify are indeed highly
178 enriched in regions with higher estimated recombination both for human sperm and human
179 testes samples. GCVs are also enriched but to a much smaller extent, as expected, since COs
180 are the basis for the recombination map.

181 Since COs and GCVs occur after programmed DNA DSBs, our results suggest that a
182 non-random set of telomere proximal DSBs is resolved as COs. To test this more directly, we
183 lifted a map of DSB hotspots from spermatocytes¹ to the T2T-CHM13v2.0 genome and studied
184 the overlaps with the positions of our detected COs and GCVs. We separately recorded how
185 many DSBs overlapped with the region between the jump SNVs (the polymorphisms flanking a

186 CO event or a tract of a GCV event) and also a larger region, including flanking SNVs of the CO
187 since we, from the biased GCV results discussed below, suspected that some COs could be
188 initiated outside of the jump SNVs (see Figure 2C). We find that for human samples, 40-60% of
189 COs and GCVs overlap with a DSB hotspot, leading to an enrichment of around 30-fold
190 compared to a random overlap. This enrichment is higher when including the flanking SNVs,
191 supporting that some COs are initiated outside of the region marked by the jump SNVs but one
192 SNV is then gene converted in the process (Figure 2D). Again, the positions of GCV events
193 called in the testis sample of the elderly man, HT55, deviate from this pattern.

194 We do not see a similar strong enrichment between the human DSB hotspots and CO
195 and GCV events for chimpanzees and western gorillas, suggesting that the DSB hotspots are
196 not conserved between great ape species. This is expected since DSB placements are directed
197 by PRDM9 motifs, which differ between the three species^{19,20}. Interestingly, the events called in
198 the more closely human-related chimpanzee samples show some enrichment (CT15 and CT32,
199 Figure 2D), suggesting a greater overlap in DSBs between humans and chimpanzees.

200

201 *Gene conversion tract lengths and rates*

202

203 Since NCO tracts are expected to be short and the density of SNVs is low, most NCO events do
204 not move SNVs, and most of the inferred GCVs only move one polymorphic site (83-92% across
205 samples, see Supplementary Table 3). Thus, instead of averaging the length of events detected,
206 we used all data in each sample to infer the lengths of GCVs from a probabilistic model. We
207 derived a likelihood model that infers an average tract length for GCVs from the number of
208 GCVs moving successive (1, 2, 3...) polymorphic sites and the observed distances between
209 heterozygous sites in the genome of the individual investigated. The model assumes that the
210 NCO tract length is geometrically distributed (see ^{13,21,22} and Charmouh et al.,
211 BIORXIV/2024/601865, for model details). In all samples, the estimated mean tract lengths are
212 40-100 bp (Figure 3A). A likelihood ratio test could not reject the hypothesis of equal mean tract
213 lengths across the samples (Supplementary Figure 5). The short estimated tract lengths imply
214 that across the genome, only 2-5% of NCOs move at least one SNV and hence are detectable
215 as GCV events (Figure 3B, Supplementary Table 3). We combined our estimates of mean tract
216 length and rates of detection to estimate the overall probability that a bp is part of an NCO event
217 in meiosis (Figure 3C, Supplementary Table 4). Our estimates of 2-5 bp converted per 1 million
218 bps align with previous estimates^{13,23,24} and suggest variation among individuals.

219 These results are based on simple GCV events alone. We also observe 10-34 complex
220 events per sample that switch haplotypes several times (Table 1). These potentially represent
221 more complex GCVs and/or COs with GCVs that are associated with longer NCO tracts than the
222 simple GCVs discussed above.

223

224 *Biased gene conversion*

225

226 Strand invasion associated with DSB repair will cause heteroduplex formation when the
227 homologous chromosomes differ in the form of SNVs or indels. If such heteroduplexes contain
228 both a strong (G,C) and a weak (A,T) allele, the repair is typically biased towards the strong
229 base pairs. Such gBGC is a pervasive evolutionary force that shapes GC content in the genome
230 and is the cause of a universal positive correlation between recombination rates and GC content
231 in genomes ^{7,9}. We examined the degree of GC bias in the different types of recombination
232 events separately. First, for simple GCVs, we investigated the GC bias for events occurring in
233 germline cells separately for single SNV and multiple SNV events since they have previously
234 been shown to differ in GC bias in mice²¹. Overall, the human sperm data shows significant
235 gBGC ($P=0.00058$, binomial test). For single SNV GCVs, we find an average gBGC of 54.6% \pm 2.1%
236 ($P=0.027$, binomial test) (Figure 4A) and a stronger gBGC of 66.6% \pm 4.2% ($P=0.00034$,
237 binomial test) for multiple SNV GCVs (Figure 4B). This is in contrast to the results for mice,
238 where multiple SNVs were found to be unbiased. For the testis samples, the results are more
239 mixed with an overall gBGC observed only for multiple SNV events.

240 Next, we tested whether SNVs immediately flanking crossover events also showed signs
241 of gBGC. We find a bias for all samples, with a significant bias for human sperm samples
242 combined 52.5% \pm 1.0% ($P=0.014$, binomial test) and for testis samples combined 54.1% \pm 1.5%
243 ($P=0.016$, binomial test) (Figure 4C). This suggests that NCOs associated with COs are
244 either strongly biased or that this type of NCO is much longer than the simple NCOs since the
245 distance between SNVs is much longer than the estimated NCO tract length above (1.5 kb
246 versus 40-100 bps). This agrees with previous estimates of NCOs associated with COs of about
247 500 bps ²¹. As a control, we also tested SNVs two positions away from the estimated CO point
248 and found these not to be GC-biased (Supplementary Figure 5). These results suggest that
249 some CO events indeed initiate outside of the interval marked by the SNVs that move from one
250 haplotype to another. This also explains why we found a further enrichment of DSBs when
251 including the region with the flanking SNVs of the jump SNVs (Figure 2C). Finally, we also
252 investigated all SNVs participating in the complex GCV events for gBGC by just recording the

253 percentage of weak to strong base pairs for all SNVs. Again, we find a consistent bias
254 suggesting that these events, though relatively rare, will also contribute to GC content evolution
255 (Figure 4D)

256

257 **Discussion**

258

259 Our results confirm that in humans, DSBs induced by PRDM9 are responsible for most
260 recombination events. A smaller fraction of these (5-10%) are resolved as COs, and this
261 process is biased towards the telomeres and smaller chromosomes. This implies that GCV
262 events are less correlated to pedigree-based recombination maps. In chimpanzees and Western
263 gorillas, the overall telomeric enrichment of COs is also observed. However, at a finer scale,
264 corresponding to locations of DSBs in humans (average size 2 kb), the overlap is very limited in
265 agreement with both Western gorilla and chimpanzee genomes harbouring divergent PRDM9
266 motifs from those reported in humans ^{25,26}.

267 Our estimates of NCO tract lengths from simple events are remarkably similar among
268 species and tissue types, with no cases of significant differences. The estimated tract lengths
269 associated with NCO events are short (averages between 40-100 bp), and they conform closely
270 to a geometric distribution. In contrast, from gBGC patterns, we estimate that tracts of exchange
271 associated with COs are much longer, at least on the order of 500-1000 bps. This may also
272 explain the few cases of long complex GCV also associated with gBGC. We cannot determine
273 the maximum length of these due to the finite read lengths, but they could be the rare fraction of
274 long NCO events recently estimated by ²². Thus, the main effect of gBGC on GC content may
275 not be from the resolution of simple NCO events but rather these longer tracts associated with
276 COs or complex events. This would explain why GC content correlates very well with pedigree-
277 based recombination rates, even though NCO events do not correlate very well with
278 recombination rates.

279 We have shown that Pacbio HiFi reads allow precise mapping of COs and GCVs in post-
280 meiotic cells of testis biopsies and in sperm samples. The ability to predict CpG methylation
281 using HiFi kinetics could be leveraged to classify the reads coming from postmeiotic germline
282 cells reliably. This is important since events mimicking both COs and GCV, in particular, are
283 likely to occur in somatic cell types. We can exploit the striking patterns of methylation during
284 spermatogenesis to identify with high confidence Pacbio HiFi reads that specifically originate
285 from postmeiotic germline cells. This means recombination can now be studied from testis

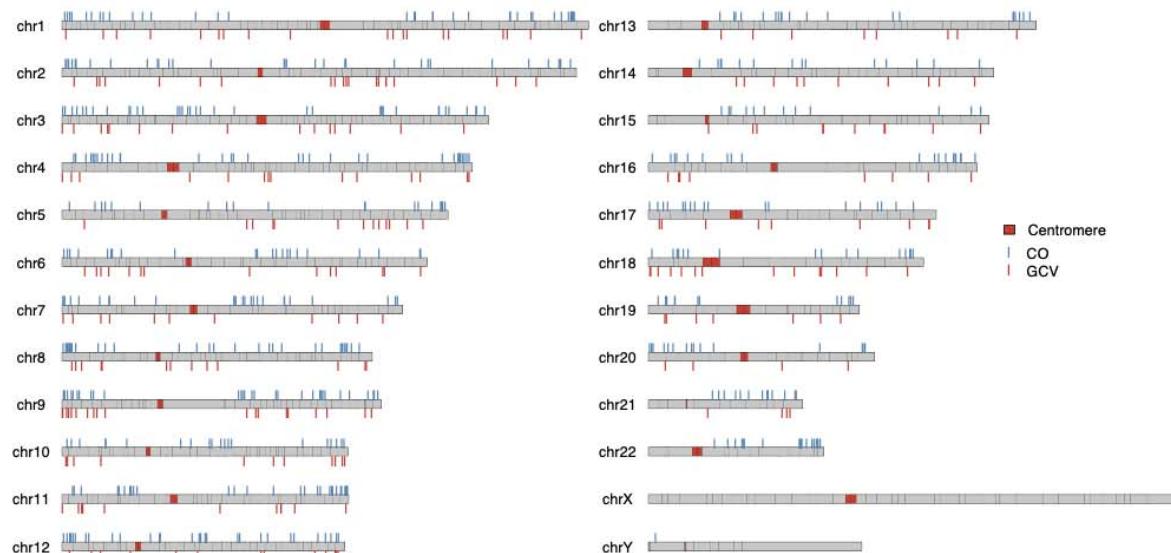
286 biopsies. This opens the possibility of studying recombination in a much broader range of
287 individuals and or species where extensive trios or sperm samples are not currently available.

288 **Table 1: Identification of recombination events in sperm and testes samples.** For human
289 samples, age is anonymised to the nearest 5-year interval. The coverage is the mapped
290 coverage of the haploid *de novo* assemblies of each sample before the classification of cell
291 types. %post-meiotic cells are calculated from the classification of reads by CpG methylation
292 patterns (see methods). From these, the expected number of COs are derived as
293 coverage*(%post meiotic reads)*detectability*14. The last four columns are the number of the
294 different recombination events identified in post-meiotic cells.

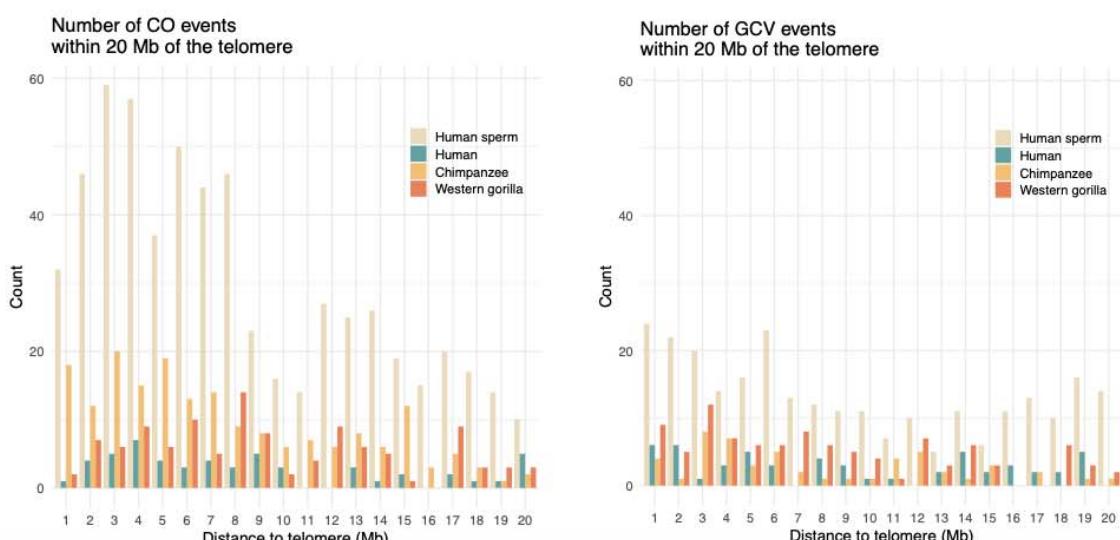
295

Tissue	Individual	Age (years)	E(read length)	Cover age	Number of SNVs	%postmeiotic reads	#COs expected	COs observed	#GCVs	#Boundary	#Complex
Human sperm	HS25	20-30	16362	26	1975563	>95%	187.2	298	182	141	34
Human sperm	HS35	30-40	12840	55	2004809	>95%	356.4	510	247	383	10
Human sperm	HS50	45-55	17148	39	1851268	>95%	259.7	321	168	170	24
Human testis	HT20	15-25	14302	43	1932854	27.7%	79.4	67	63	62	10
Human testis	HT55	50-60	10616	90	1972726	18.4%	95.4	36	74	54	19
Chimpanzee testis	CT15	15	15427	36	1920758	34.6%	87.6	100	33	51	11
Chimpanzee testis	CT32	32	15118	44	1873245	35.3%	111.9	149	57	82	14
Western gorilla testis	GT22	22	10067	38	4380904	27.8%	95.2	132	102	77	18
Western gorilla testis	GT43	43	11015	31	4312722	25.4%	72.4	79	106	54	13

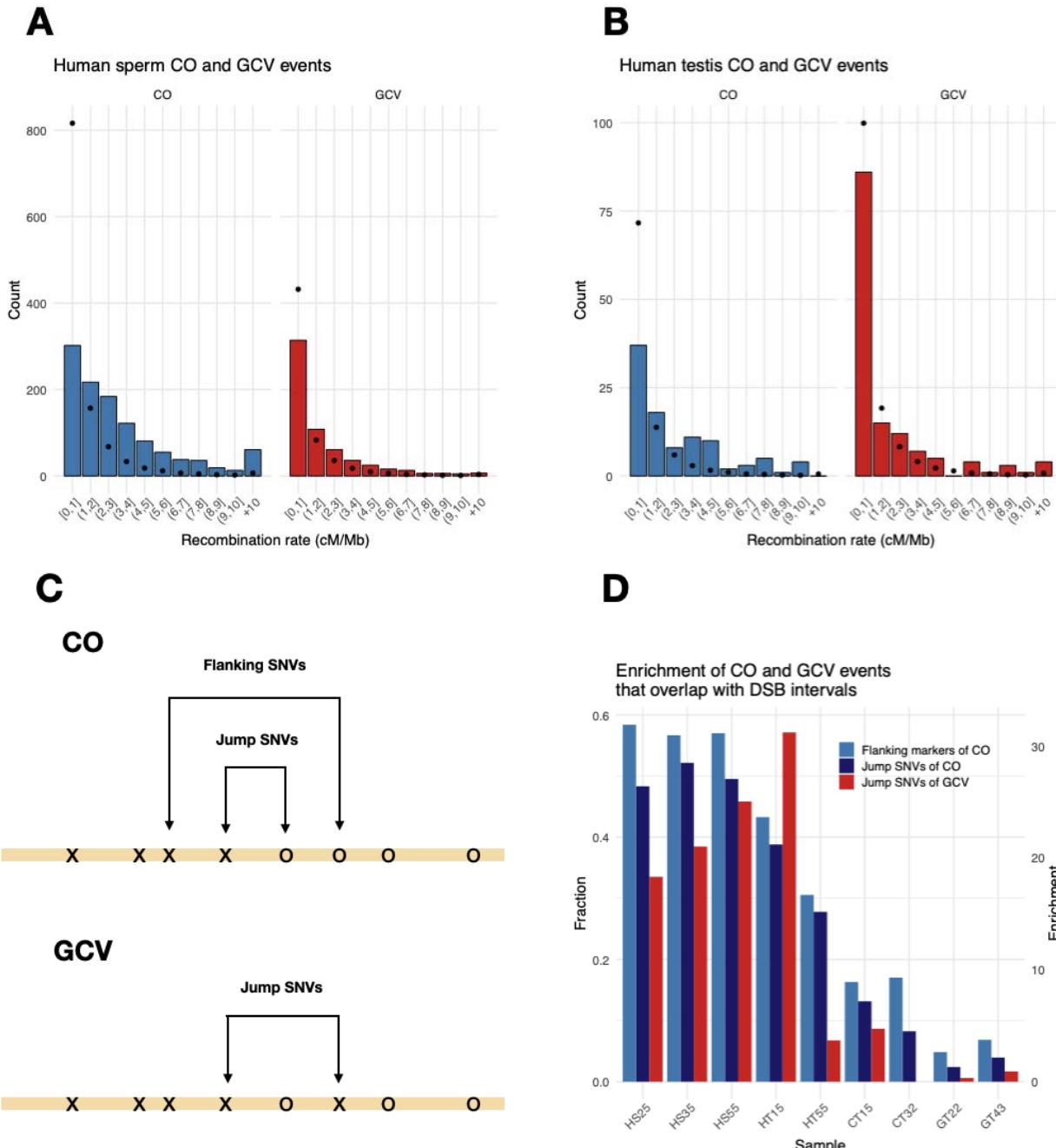
296


A

The four types of recombination events
 X = variant on one haplotype
 O = variant on the other haplotype

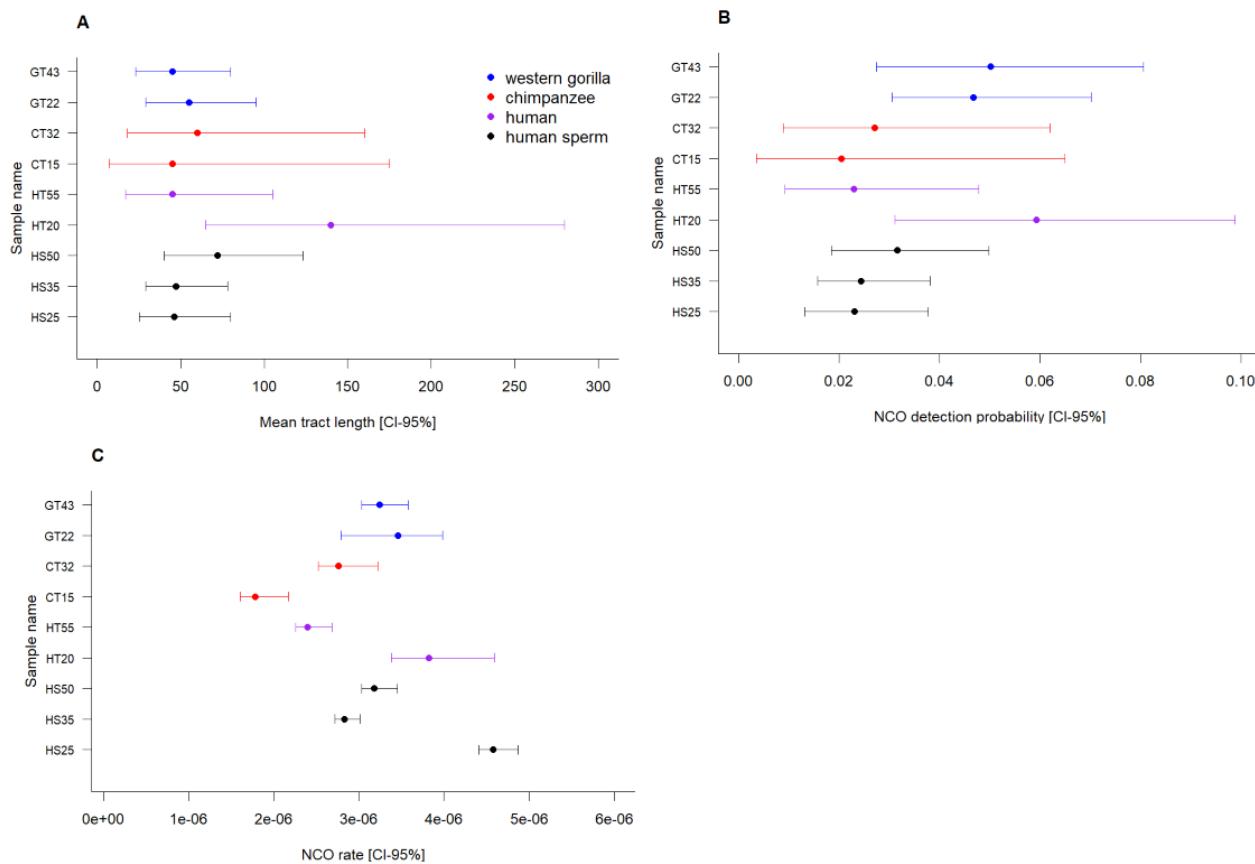

		Human sperm	Human	Chimpanzee	Western gorilla			
Crossover (CO)	X X X X X X O O O O O		1129	103	249	211		
Gene conversion (GCV)	X X X O X X X X X X X		597	137	90	208		
Boundary	X X X X X X X X X X O		694	116	134	131		
Complex	X O X X X O X O O X		68	29	25	31		

B


Spatial distribution of COs and GCVs in sperm sample HS35

C

298 **Figure 1: Physical placement of recombination events. A.** Polymorphism patterns indicating
299 the different types of recombinations identified. O and X marks variants at the two different
300 haplotypes. The total number of each type of event pooled by species and tissue type is shown
301 to the right. **B.** The genomic placement (on the T2T-CHM13v2.0 assembly) of each of the
302 identified CO (above the chromosome) and GCV (below) events for the human sperm sample
303 HS35 (see Table 1). Other samples are shown in the supplement. **C.** The number of
304 crossovers and gene conversions in the 20 Mbp regions closest to the telomere for each tissue
305 type and species separately.

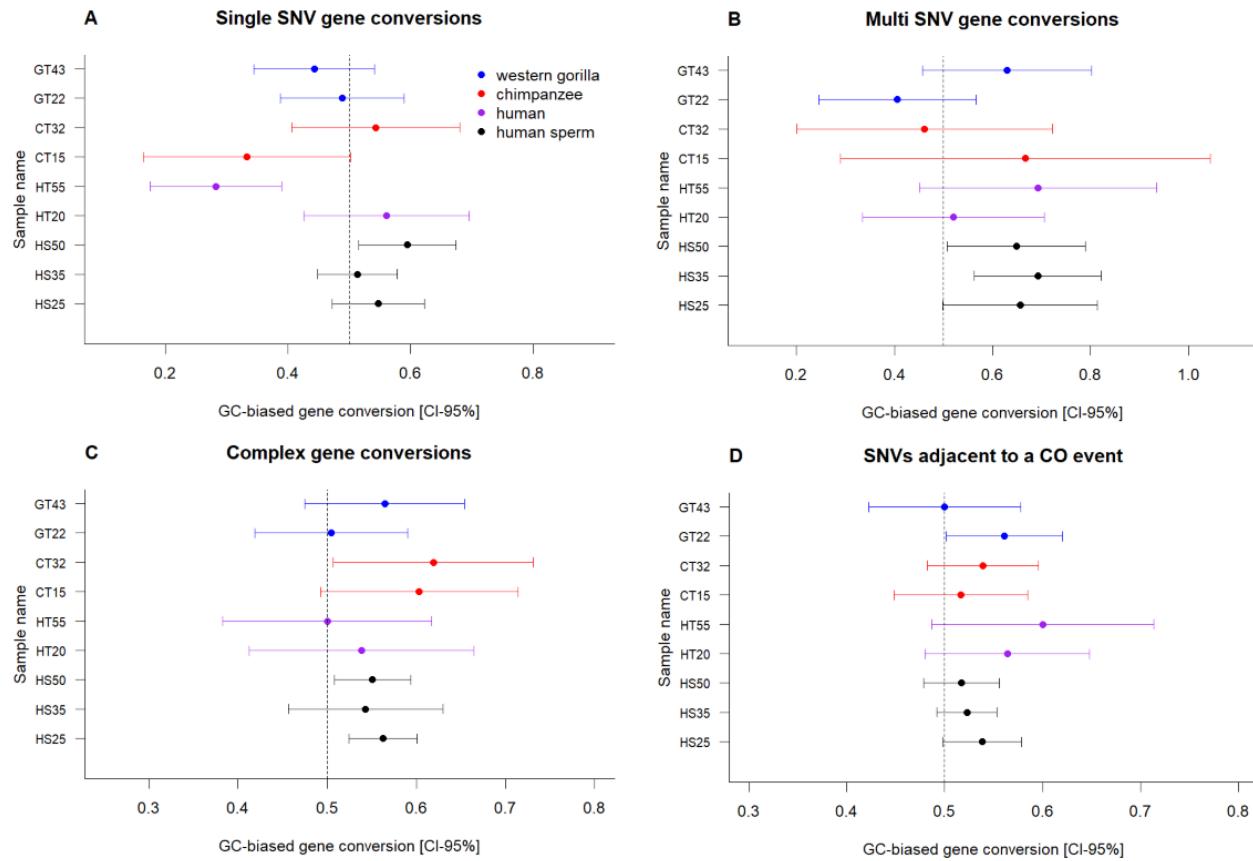


308 **Figure 2: Double strand breaks and inferred recombination events. A.** The recombination
309 rate (deCode map at 100 kb scale) for observed CO and GCV events pooled by human sperm
310 cells samples and human testes, respectively. Histograms indicate observed counts, while dots
311 denote expectations under a uniform distribution along the genome. **B.** Schematic illustration of
312 flanking SNVs and jump SNVs for COs and GCVs. **C.** The fraction of crossovers and gene

313 conversions in hotspots of DSB and the enrichment of crossovers and gene conversions in
314 hotspots of DSB¹.

315

316


317

318

319 **Figure 3. Gene conversion properties.** **A.** Estimated mean tract lengths (error bars denote 320 95% confidence intervals) from the empirical SNV density and the numbers of SNVs moved in 321 gene conversion events. **B.** The estimated fraction of NCO events that result in a gene 322 conversion event, i.e. move one or more adjacent SNVs from one haplotype to the other. **C.** The 323 estimated rate of gene conversion, i.e. the fraction of nucleotides involved in an NCO event in 324 one generation

325

326

327

328

329 **Figure 4: Estimates of the amount of gBGC with binomial 95% confidence intervals. A.**
330 Gene conversions where a single SNV is moved from one haplotype to the other. **B.** Gene
331 conversions are where more than one subsequent SNV is moved. **C.** SNVs in a complex gene
332 conversion event. **D.** SNVs adjacent to an inferred crossover point, the jump SNVs (see Figure
333 2B).

334 **Supplementary Figures and Tables**

335

336 **Supplementary Table 1.** The table contains the average read length, the amount of the
337 genome that is covered by contigs larger than 1 Mb, and the N50 for all nine samples. Individual
338 identifiers end with each individual's approximate age (eg 25, 35).

Individual	Species (tissue)	Avg. read length (bp)	Contigs > 1 Mb (%)	N50 (Mb)
HS25	Human (sperm)	16 362	97.9	70.7
HS35	Human (sperm)	12 840	99.6	93.0
HS50	Human (sperm)	17 148	99.4	89.4
HT20	Human (testis)	14 302	98.0	92.4
HT55	Human (testis)	10 616	97.6	74.7
CT15	Chimpanzee (testis)	15 427	98.4	59.0
CT32	Chimpanzee (tests)	15 118	93.3	72.7
GT22	Western Gorilla (testis)	10 067	85.4	56.5
GT43	Western Gorilla (testis)	11 015	92.9	50.8

339 **Supplementary Table 2:** Summary of methylation-based classification of reads for each of the
340 testis samples: Fraction of reads that can be classified with no cutoff (LLR>0) or by requesting a
341 log-likelihood ratio of 2 or above (LLR>=2), and the fraction of reads classified with LLR>= 2 that
342 are classified as germline for all reads and for each of the four recombination event types.
343 Supplementary Table 3 shows the raw numbers that the fractions are based on
344
345

Tissue	Individual identifier	Number of reads mapping to hg38	Number of reads with likelihood	Number of reads LLR>=2	Number of germline LLR>0	%germline LLR>0	Number of germline LLR>=2	%germline LLR>=2
Human testis	HT20	10940561	10720882	8742413	6108876	56.98%	5016057	57.38%
Human testis	HT55	28712691	27390131	19616628	11532302	42.83%	7595231	38.72%
Chimpanzee testis	CT15	9311225	8995758	6837360	6106547	67.88%	4829552	70.63%
Chimpanzee testis	CT32	11285838	11012009	8171996	7586837	68.90%	5890356	72.08%
Western gorilla testis	GT22	16015382	15087626	9804528	8704759	57.69%	5622627	57.35%
Western gorilla testis	GT43	13240437	12378835	8155654	6697151	54.10%	4282827	52.51%

346

347

348 **Supplementary Table 3:** Detectability measures for crossovers (COs) and gene conversions
349 (GCVs) estimated from simulations of events conditional on the read length distribution, the
350 empirical SNV positions, and assuming that events are randomly distributed across the genome.
351 #GC=1 and #GC>1 are the number of detected germline GCVs moving one SNV or more than
352 one consecutive SNV, respectively. P(boundary CO) and P(boundary GCV) are the simulated
353 probability that a CO and a GCV cause a shift in haplotype at the first or last SNV detected in a
354 read. These are used to calculate how many of the boundary events are likely to be caused by
355 COs and GCVs, respectively. The last column (from Table 1) is the observed number of
356 boundary cases, which is close to the sum of the expected cases

357

Tissue	Individual	P(CO detected)	P(NCO detected)	#GC= 1 SNV	#GC> 1 SNV	P(Boundary CO)	P(Boundary NCO)	E(boundary CO)	E(boundary GCV)	Observed boundary cases
Human sperm	HS25	0.40	0.023	167	15	0.13	0.0054	42.55	99.33	141
Human sperm	HS35	0.36	0.024	227	20	0.13	0.0048	48.59	184.65	383
Human sperm	HS50	0.37	0.032	148	20	0.14	0.0071	37.75	61.83	170
Human testis	HT20	0.37	0.059	52	11	0.13	0.0158	16.79	24.13	62
Human testis	HT55	0.32	0.023	68	7	0.14	0.0057	18.59	15.56	54
Chimpanzee testis	CT15	0.39	0.027	30	3	0.17	0.0055	8.85	45.58	51
Chimpanzee testis	CT32	0.40	0.021	51	7	0.18	0.0076	16.27	66.42	82
Western gorilla testis	GT22	0.50	0.047	94	12	0.13	0.0066	14.98	34.97	77
Western gorilla testis	GT43	0.51	0.050	98	12	0.12	0.0066	14.46	19.06	54

358

359 **Supplementary Table 4:** Estimates of NCO rates, NCO detection probability, NCO boundary
360 case probability, and mean NCO tract length with CI95% intervals in brackets along with mean
361 value estimates of CO detection probability and CO boundary case probability for all samples.

362

Individual	NCO rate [CI95%]	NCO detection probability [CI95%]	NCO boundary probability [CI95%]	CO boundary probability [CI95%]	CO detection probability	Mean NCO tract length (bp) [CI95%]
HS25	4.58e-06 [4.41e-06, 4.87e-06]	0.0231 [0.0131, 0.0378]	0.0054 [0.003, 0.0091]	0.1336	0.4008	46 [25, 80]
HS35	2.83e-06 [2.72e-06, 3.01e-06]	0.0244 [0.0157, 0.0381]	0.0048 [0.003, 0.0079]	0.1311	0.3621	47 [29, 78]
HS50	3.18e-06 [3.03e-06, 3.45e-06]	0.0316 [0.0184, 0.0498]	0.0071 [0.0044, 0.0117]	0.1392	0.376	72 [40, 123]
HT20	3.82e-06 [3.38e-06, 4.59e-06]	0.0593 [0.0311, 0.062]	0.0158 [0.0078, 0.0191]	0.1316	0.3654	140 [65, 280]
HT55	2.40e-06 [2.26e-06, 2.68e-06]	0.023 [0.0092, 0.065]	0.0057 [0.0022, 0.0197]	0.1399	0.3237	45 [17, 105]
CT15	1.78e-06 [1.61e-06, 2.17e-06]	0.0205 [0.0035, 0.0806]	0.0055 [0.0009, 0.0114]	0.1747	0.3948	45 [7, 175]
CT32	2.76e-06 [2.52e-06, 3.22e-06]	0.0271 [0.0089, 0.0988]	0.0076 [0.0024, 0.0294]	0.1773	0.4004	60 [18, 160]
GT22	3.46e-06 [2.79e-06, 3.98e-06]	0.0467 [0.0305, 0.0478]	0.0066 [0.0043, 0.0129]	0.1302	0.5027	55 [29, 95]
GT43	3.24e-06 [3.03e-06, 3.58e-06]	0.0502 [0.0274, 0.0702]	0.0066 [0.0035, 0.0106]	0.1211	0.5084	45 [23, 80]

363

364

365 **Supplementary Table 5:** The chromosome length in T2T coordinates, the length of segmental
366 duplications (SD) and of the acrocentric regions that are masked for analysis. The last column is
367 the callable fraction of each chromosome.

368 Note: only chromosomes 13,14,15,21 and 22 have an acrocentric p-arm.

369

370

Chromosome	Chromosome length (bases)	SD length (bases)	Acrocentric p-arm (bases)	Callable fraction (bases)
Chr 1	248387328	15908974	n.a	232478354
Chr 2	242696752	11658079	n.a	231038673
Chr 3	201105948	4675018	n.a	196430930
Chr 4	193574945	5304229	n.a	188270716
Chr 5	182045439	5738023	n.a	176307416
Chr 6	172126628	5738023	n.a	166388605
Chr 7	160567428	13766937	n.a	146800491
Chr 8	146259331	4312872	n.a	141946459
Chr 9	150617247	13717227	n.a	136900020
Chr 10	134758134	7765030	n.a	126993104
Chr 11	135127769	5769583	n.a	129358186
Chr 12	133324548	2464548	n.a	130860000
Chr 13	113566686	3200481	15547593	94818612
Chr 14	101161492	3191177	10092112	87878203
Chr 15	99753195	8892475	16678794	74181926
Chr 16	96330374	10851040	n.a	85479334
Chr 17	84276897	8262691	n.a	76014206
Chr 18	80542538	2305844	n.a	78236694
Chr 19	61707364	4367829	n.a	57339535
Chr 20	66210255	3282089	n.a	62928166
Chr 21	45090682	1573782	10962853	32554047
Chr 22	51324926	7497258	12788180	31039488

371
372 **Supplementary Table 6:** The number of called events and the number of events that passes
373 the manual curation in all four categories.

374

Individual	Called CO events	Approved CO events	Called GCV events	Approved GCV events	Called Boundary events	Approved Boundary events	Called Complex events	Approved Complex events
HS25	320	298	200	182	241	141	41	34
HS35	566	510	279	247	538	383	27	10
HS50	352	321	190	168	254	170	40	24
HT20	84	67	82	63	117	62	15	10
HT55	72	36	90	74	239	54	27	19
CT15	125	100	59	33	106	51	34	11
CT32	183	149	87	57	154	82	26	14
GT22	162	132	160	102	149	77	40	18
GT43	105	79	146	106	113	54	46	13

375

376

377

378

379

380

381

382

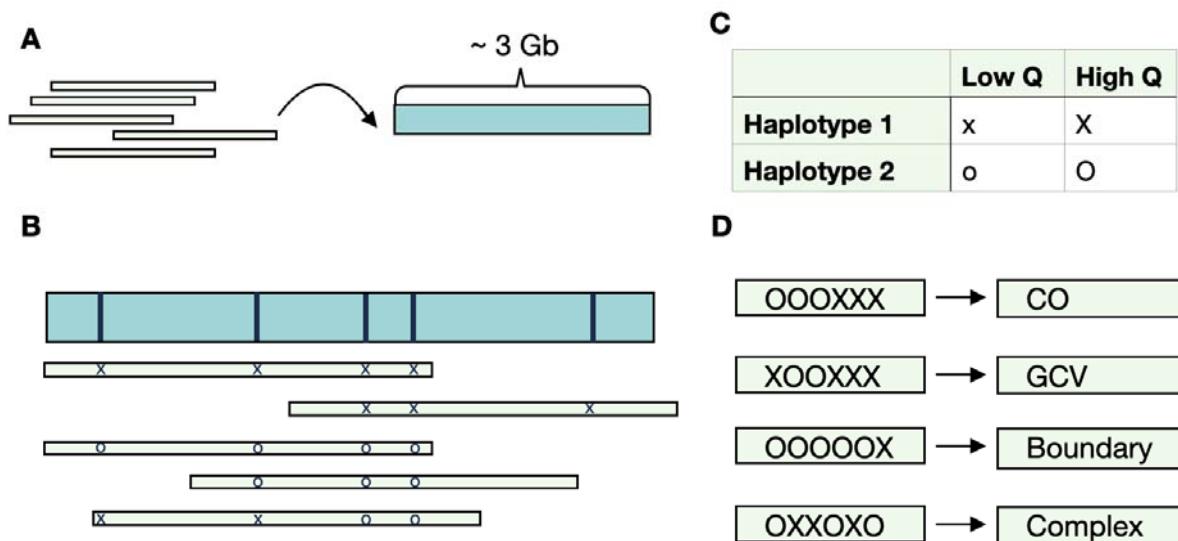
383

384

385

386

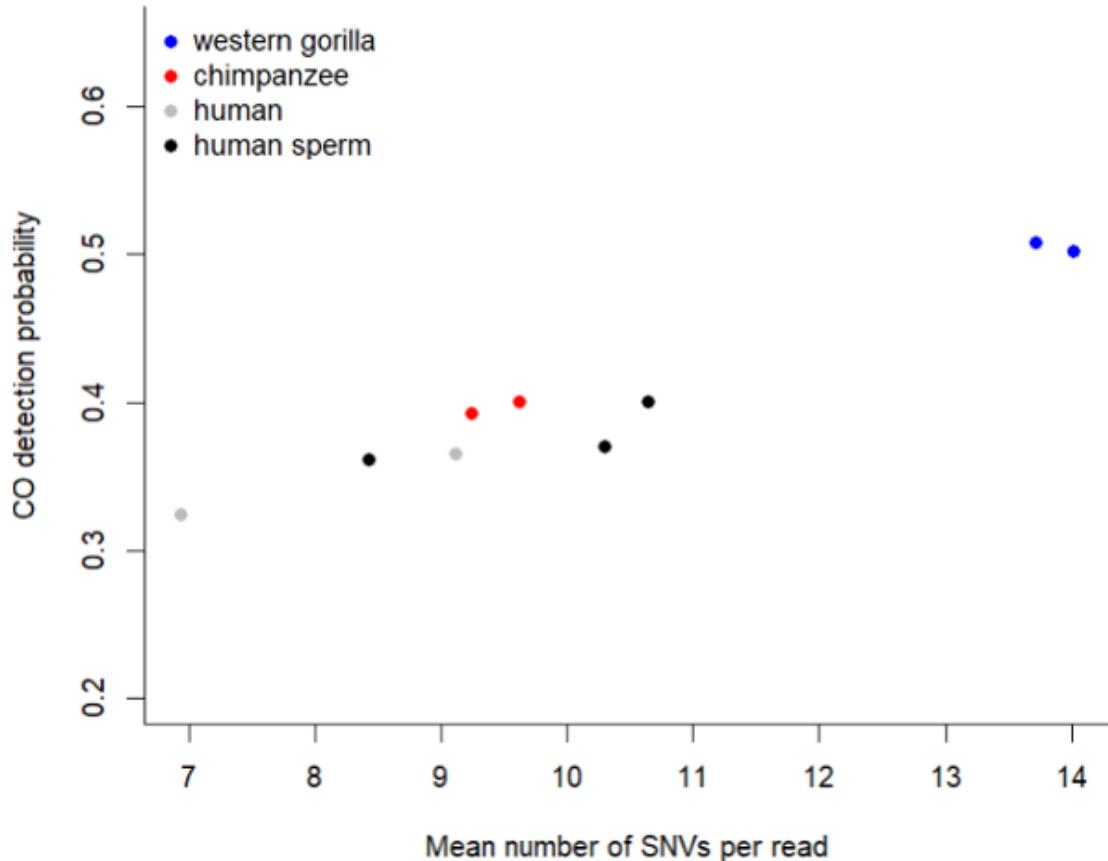
387

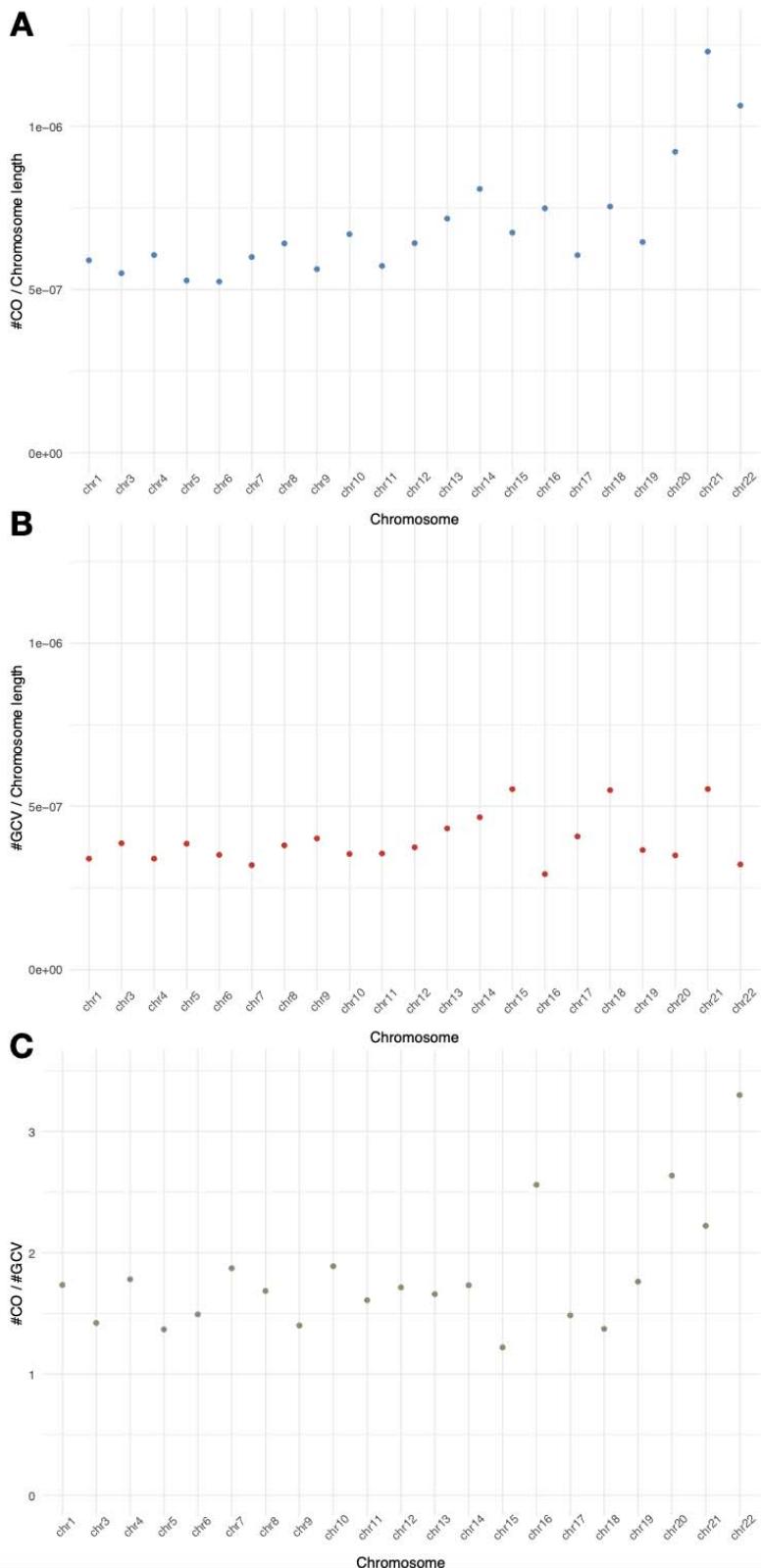

388

389

390

391

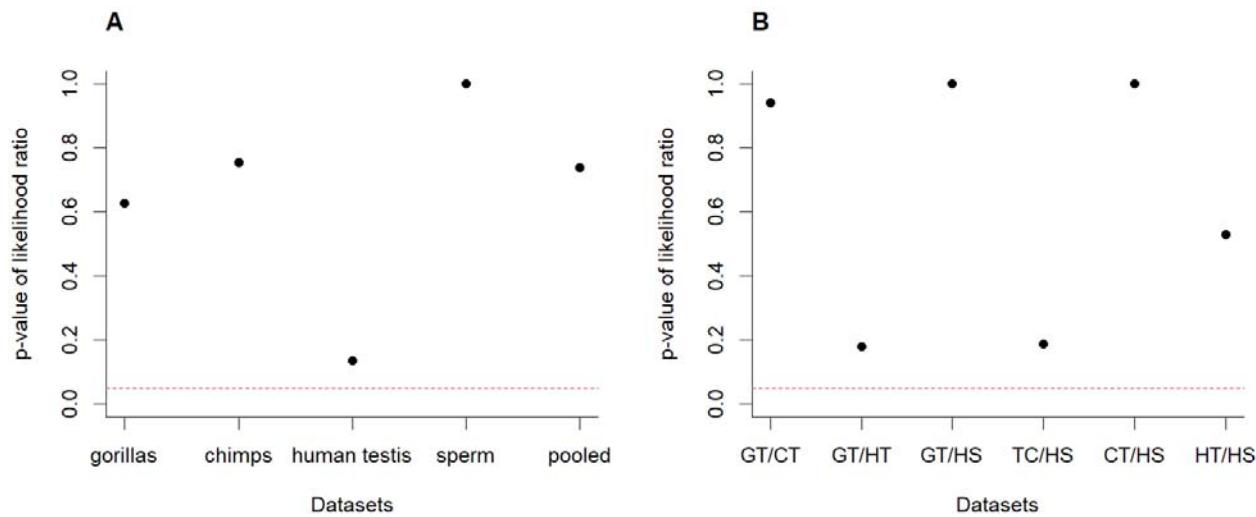

392


393
394 **Supplementary Figure 1:** Schematic pipeline for the identification of recombination events.

395 A. From the raw HiFi PacBio reads, a high-quality *de novo* assembly with N50 contig size >50
396 Mb was constructed for each sample. B. Mapping each individual read back to the *de novo*
397 assembly, high-confidence heterozygous positions (vertical bars) were identified along the
398 assembly and fully phased as Haplotype 1 and Haplotype 2 (not shown here). The sequence of
399 single nucleotide variants at each heterozygous positions (marked as X/x's and O/o's) were
400 used to assign unambiguously each individual read to a parental haplotype, conversely, to
401 identify candidate reads harbouring shifts between the two haplotypes that indicate a potential
402 recombination event (such as the bottom read with the sequence XXOO). C. Each mapped read
403 was interrogated for the occurrence of shifts between the two parental haplotypes using a set of
404 stringent quality thresholds on base quality, mapping quality, presence of indels, and soft-
405 clipping. D. The candidate reads were then classified into four different types of recombination
406 events based on the type of shifts between haplotypes.

407

408
409 **Supplementary Figure 2:** Crossover (CO) detectability as a function of the mean number of
410 SNVs per read. Since calling a CO event requires 2 flanking SNVs on either side of the event,
411 the product of mean read length and SNVs density (i.e. mean number of SNVs per read)
412 explains most of the variance in CO detectability among samples.
413

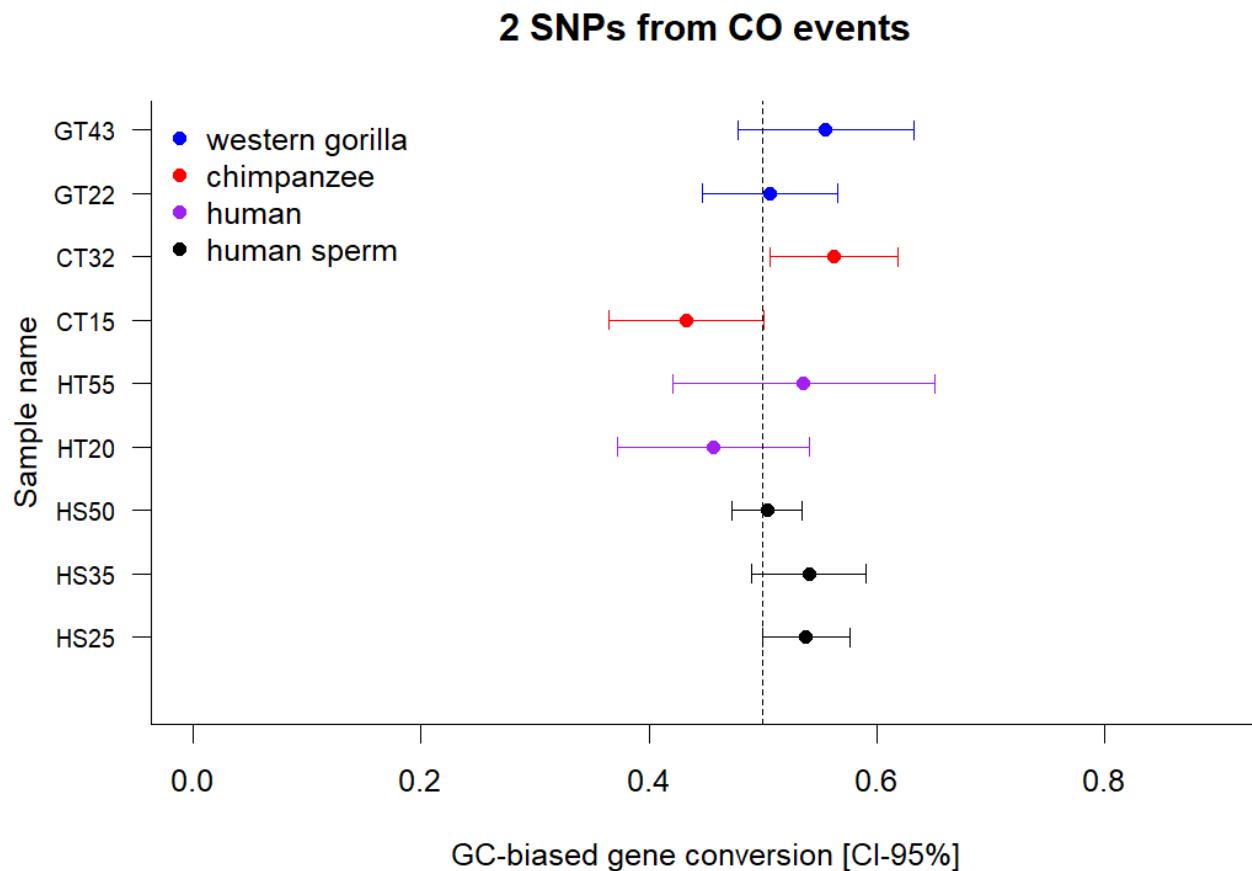

414

415 **Supplementary Figure 3:** Chromosomal distribution of recombinations. A. The probability of a
416 crossover per bp per chromosome (chr) when combining all events across samples (chr 2

417 omitted). B. The probability of a gene conversion per base pair per chromosome pooling all
418 events across samples (chr 2 omitted). C. The ratio of crossover to gene conversion per
419 chromosome shows an increase with decreasing chromosome size ($P=0.03$, linear regression of
420 ratio with chromosome size).

421

422

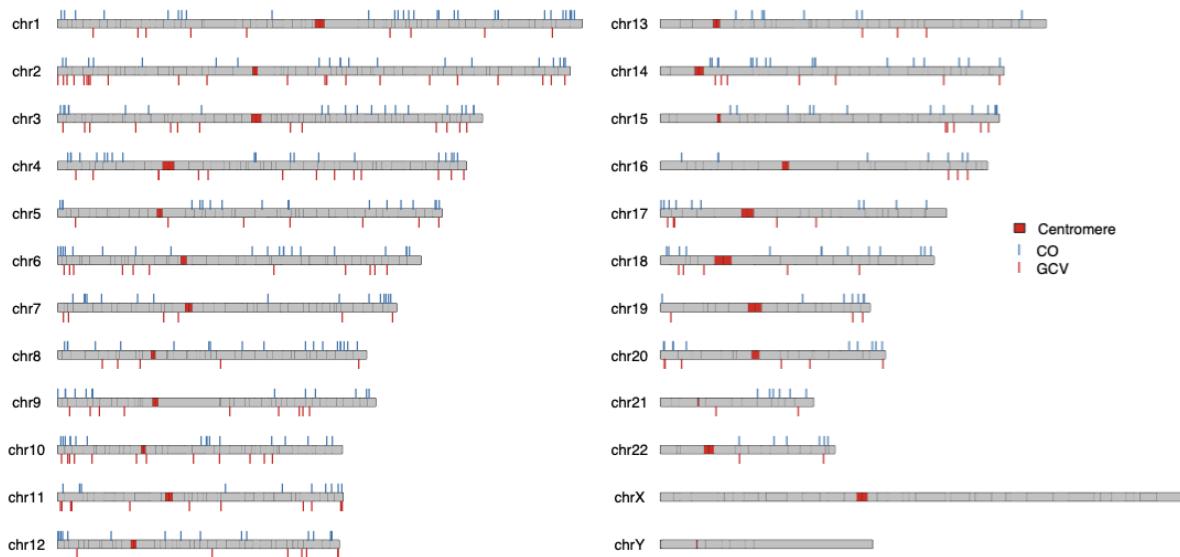


423

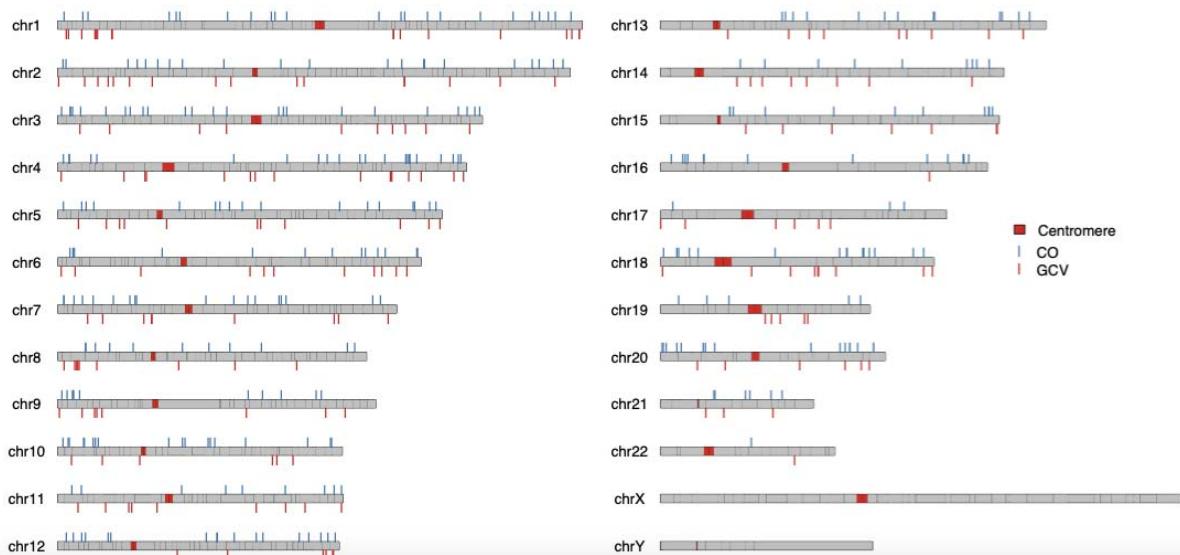
Datasets

424 **Supplementary Figure 4:** P-values for the likelihood ratio test of whether a single mean tract
425 length fits multiple datasets significantly better than different mean tract lengths for each dataset
426 (see methods for details). The dashed red line shows a significance level of 0.05. Despite the p-
427 value not being adjusted for multiple testing, there are no significant differences in the likelihood
428 of models explaining (A) a specific tissue type with a single mean tract length or all tissues with
429 a single mean tract length (pooled) versus a specific mean tract length for each sample.
430 Similarly, there are no significant differences in likelihood between models describing two tissue
431 types with a single mean tract length versus models assigning a mean tract length to each
432 tissue type (B).
433 This suggests that the mean tract length across the 3 different species we examined is
434 evolutionarily conserved.

435



436


GC-biased gene conversion [CI-95%]

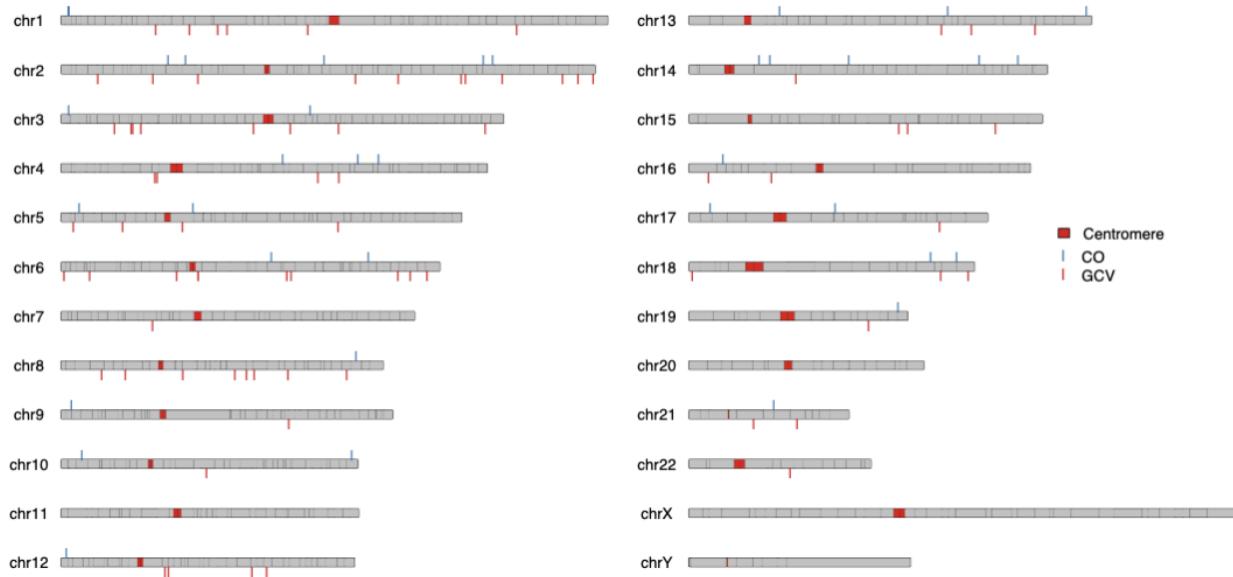
437 **Supplementary Figure 5:** No indication of GC-biased gene conversion for the flanking SNVs of
438 a recombination, i.e. positioned next to the jump SNVs (Figure 2B).

Spatial distribution of COs and GCVs in sperm sample HS50

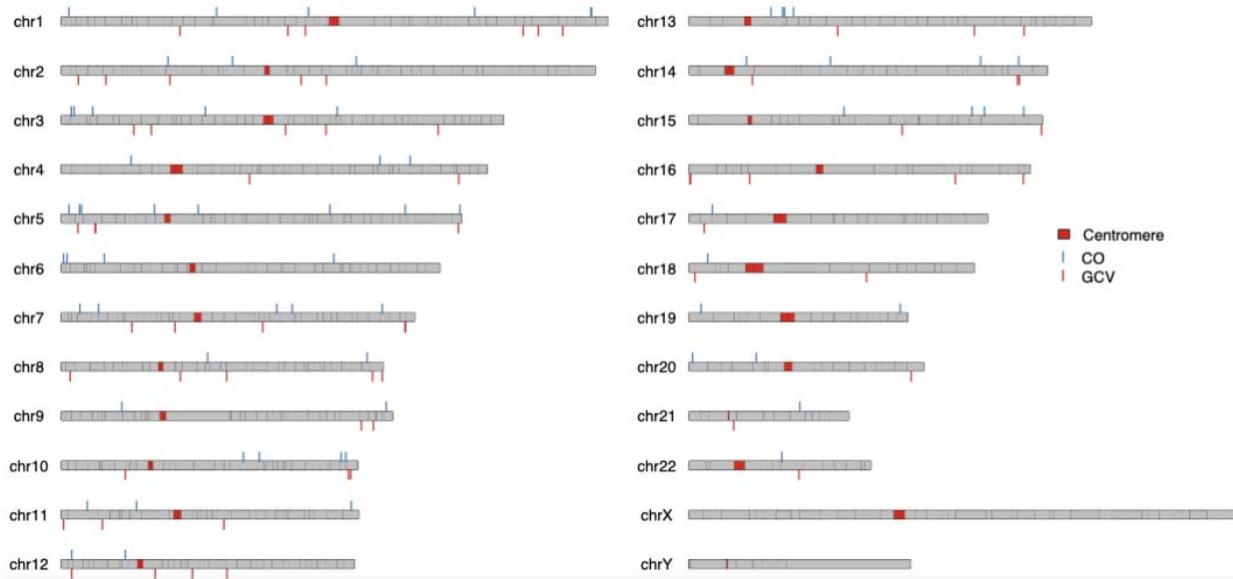
Spatial distribution of COs and GCVs in sperm sample HS25

439

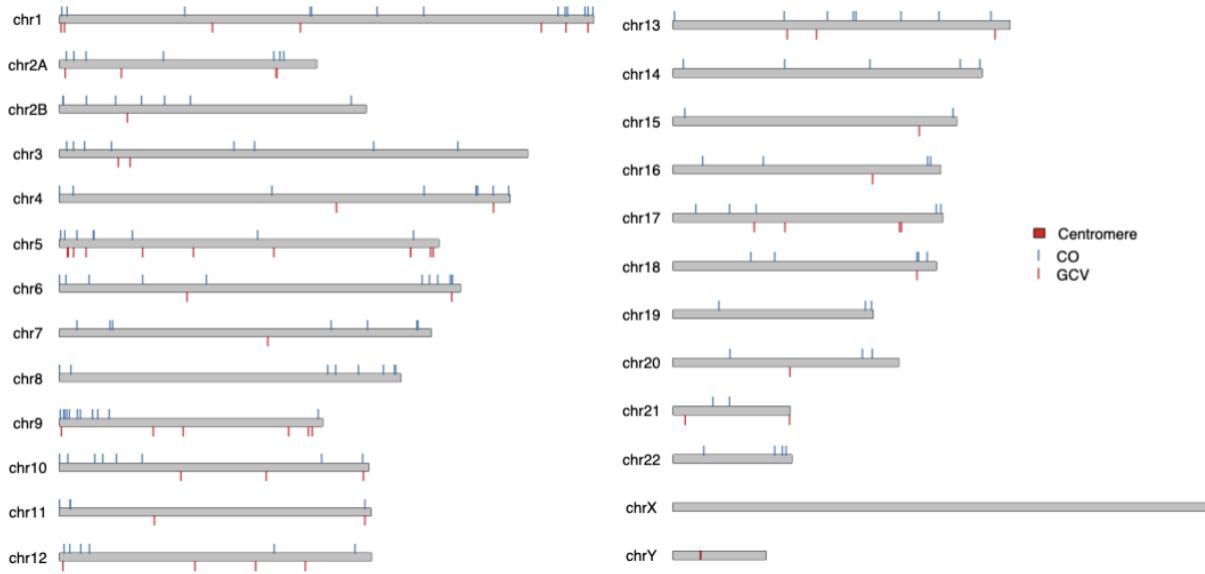
440

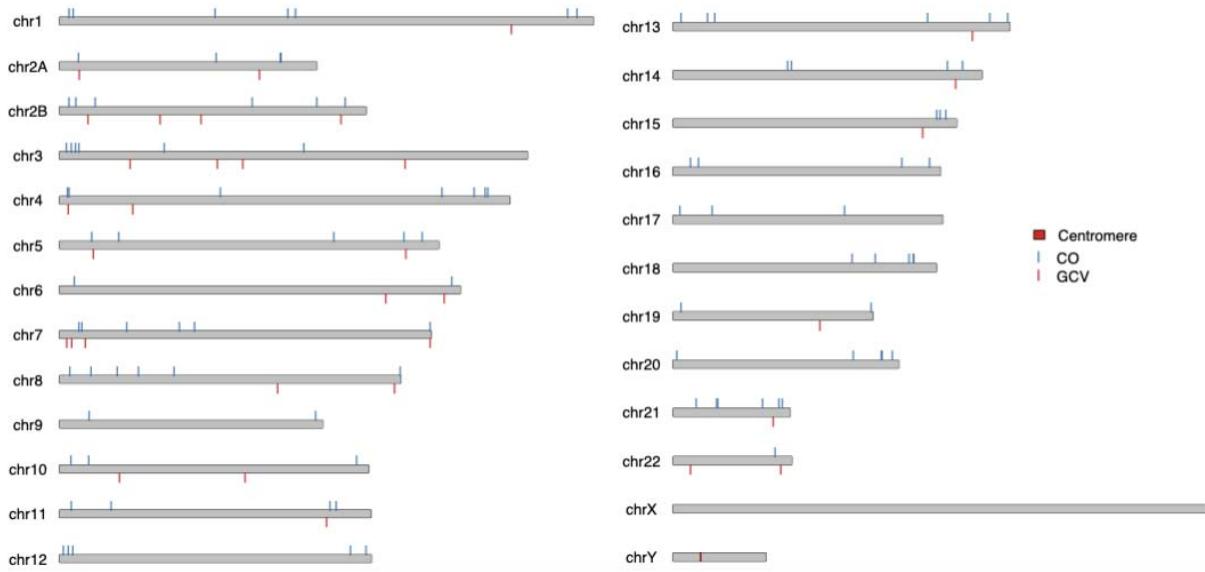

441

442


443

444


Spatial distribution of COs and GCVs in testis sample HT55

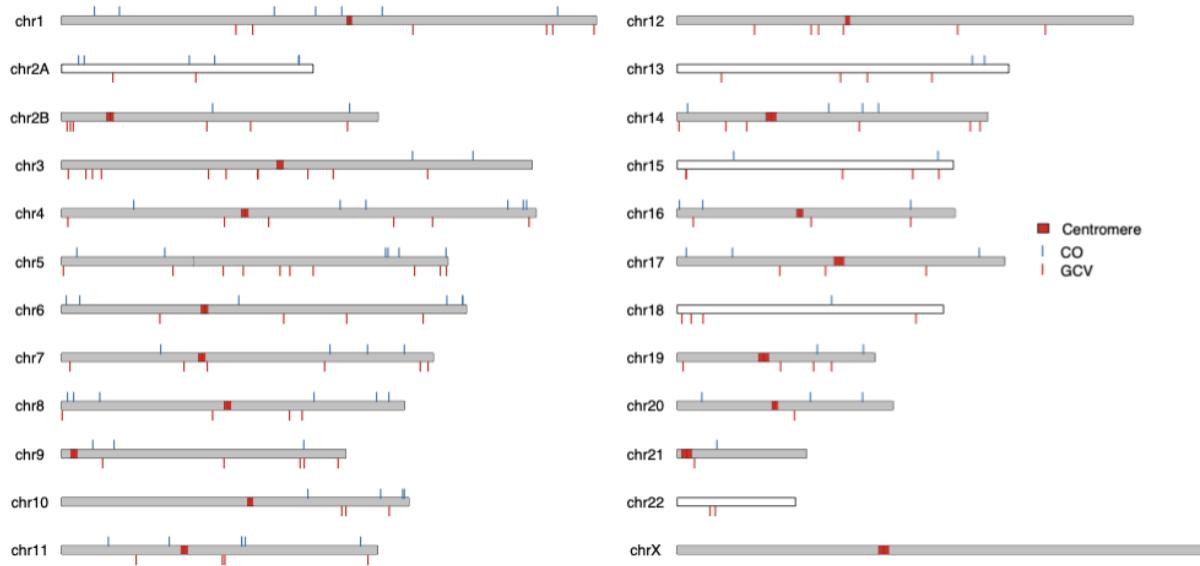

Spatial distribution of COs and GCVs in testis sample HT20

Spatial distribution of COs and GCVs in testis sample CT32

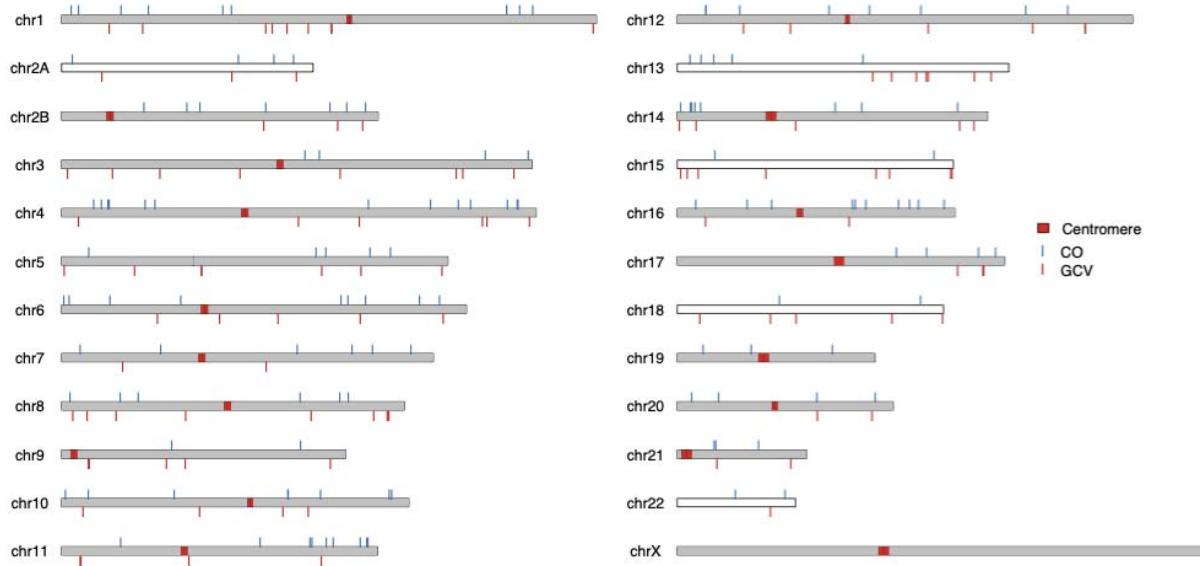
Spatial distribution of COs and GCVs in testis sample CT15

447

448


449

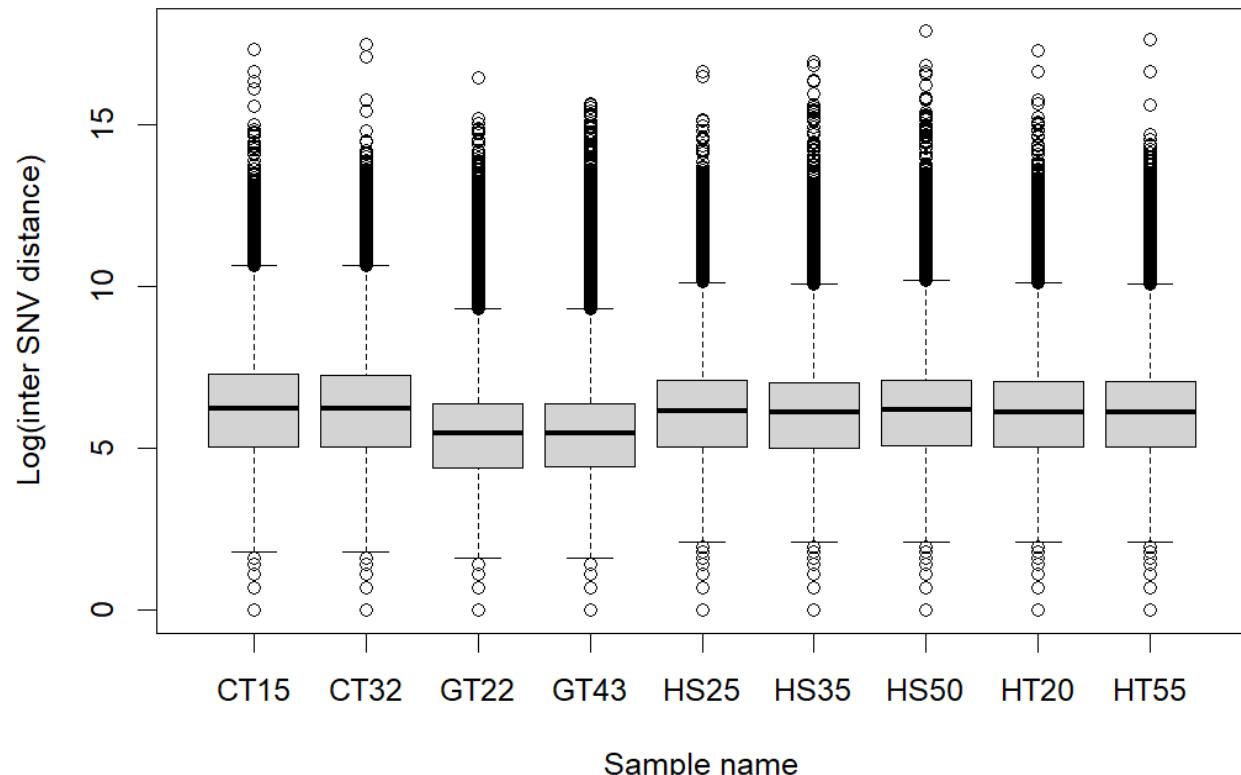
450


451

452

Spatial distribution of COs and GCVs in testis sample GT43

Spatial distribution of COs and GCVs in testis sample GT22



453

454 **Supplementary Figure 6:** Chromosomal distribution of CO and GCV events for each of the
455 samples

456 Note: The X and Y chromosomes were assembled and represented here, no CO or GCV events
457 were called on the X and Y chromosomes.

458

459

Sample name

460 **Supplementary Figure 7:** Boxplot showing the distribution of log inter-SNV distances
461 throughout the genome of each sample. The results show that distances between SNVs vary by
462 approximately 8 orders of magnitude throughout the genome, ranging from SNV clusters where
463 SNVs are located next to each other to long runs of homozygosity where SNVs can be located
464 up to ~57 Mb from each other.

465

466

467 **Methods:**

468

469 *Samples*

470 DNA was isolated from human testis tissue obtained from two anonymous men (autopsies) who
471 consented to donate tissue for research purposes post-mortem. Ongoing spermatogenesis with
472 post-meiotic round spermatids in most tubules was verified by histological staining. The study
473 also included human sperm samples that were obtained from three anonymous sperm donors
474 with good semen quality. The sperm samples were obtained in 2018 after consent and an
475 ethical permit granted by the regional committee (H-17012149). As human tissue and sperm
476 donors were anonymous the exact age was unknown, but an approximate estimate given.
477 Finally, the study included testis tissue from four great apes, two chimpanzees of the West
478 African subspecies (*Pan troglodytes verus*; CT15 is European Association of Zoos and Aquaria
479 (EAZA) studbook number 13342 and CT32 is EAZA studbook number 12295 and two Western
480 gorillas of the Western lowland subspecies (*Gorilla gorilla gorilla*); GT22 is EAZA studbook
481 number 1435 and GT43 is EAZA studbook number 492. The samples from great apes housed in
482 zoos within the EU were collected post-mortem after death by natural causes. Samples are
483 named according to species (H for human, G for gorillas, C for chimpanzees), tissue (T for testis
484 and S for sperm) as well as the age (estimated for human samples).

485

486 *DNA extraction*

487 DNA was isolated from testis tissue samples using the MagAttract® HMW DNA kit (Qiagen,
488 Hilden, Germany) following the manufacturer's instructions. The three sperm samples were
489 subjected to gradient purification using PureSperm 50 (Nidacon, Gothenburg, Sweden) to avoid
490 somatic cell contamination and enrich for mature sperm. The fraction containing mature sperm
491 was then incubated with RLT buffer (Qiagen) and stainless steel beads on a shaker for 10
492 minutes to allow better access to the tightly packed DNA. The DNA was subsequently isolated
493 using the automated Maxwell 16 system (SEV AS1010, Promega, Madison, WI, USA).

494 The quantity and quality of the isolated DNA were evaluated by Nanodrop (ThermoFisher
495 Scientific, Waltham, MA, USA), Qubit dsDNA HS or BR Assay Kits (ThermoFisher), and gel
496 electrophoresis before library construction. All samples revealed DNA of high-molecular weight.

497

498 *PacBio HiFi sequencing*

499 The DNA was subjected to PacBio HiFi sequencing at the Norwegian Sequencing Centre
500 (www.sequencing.uio.no), a national technology platform hosted by the University of Oslo and
501 supported by the "Functional Genomics" and "Infrastructure" programs of the Research Council
502 of Norway and the Southeastern Regional Health Authorities.

503 In short, the sequencing libraries were prepared using Pacific Biosciences protocol for HiFi
504 library prep using SMRTbell® ExpressTemplate Prep Kit version 2.0 (Pacific Biosciences, Menlo
505 Park, CA, USA). DNA was fragmented into 15-20 kb fragments using Megaruptor 3 (Diagenode,
506 Denville, NJ, USA), and the final library was size-selected using BluePippin (Sage Science) with
507 a 10 kb cut-off.

508 The final libraries were sequenced on the Sequel II instrument using 8M SMRT cells with a 30h
509 movie time and the Sequel II Binding kit 2.2 and Sequencing chemistry v2.0 (Pacific
510 Biosciences).

511 Four samples (HT55, GT43, GT22, HS35) were, in addition to sequencing on the Sequel II
512 instrument, also sequenced on the newer Revio instrument using SMRTbell® ExpressTemplate
513 Prep Kit version 3.0, 25M SMRT cells, the Revio Polymerase kit and a 24h movie time. A single
514 sample (HS25) was only sequenced on the Revio instrument using the same kits and
515 parameters.

516 CCS sequences were generated using CCS pipeline (SMRT Link v10.2.0.133434 for Sequell II
517 and v. 12.0.0.183503 for Revio reads) and reads with at least 99% accuracy retained as HiFi
518 reads.

519

520 *De novo assemblies*

521 The *de novo* assemblies were built with *hifiasm* with its default parameters. The summary
522 statistics of the assemblies are shown in Supplementary Table 1.

523

524 *Mapping*

525 Following the construction of the *de novo* assemblies, we map the reads from each individual
526 against its *de novo* assembly using *pbmm2* with parameters -c 99 and -l 2740.

527

528 *SNV calling*

529 The SNVs were called using an in-house Python script based on *pysam*. The program iterates
530 through a BAM file and stops at a position where exactly two different nucleotides are present.
531 Furthermore, the coverage in this position has to be greater than the 5th percentile and less
532 than the 99.7th percentile of the coverage distribution. The program also requires that no more

533 than 10 % of the reads can contain an indel at the given position and that the variant occurs in at
534 least three reads.

535 Since PacBio HiFi reads accuracy is lower in repetitive regions, we filtered candidate SNVs that
536 fall within local repetitive regions. Specifically, if the number of unique 4-mers in a 32-bp region
537 is less than 19, we skip the position. We also skip the position if the candidate SNV occurs at
538 the boundary of two homopolymers. For instance, if the sequence context is AAAA(T/A)TTTT,
539 then it is difficult to assess whether the SNV is real or due to a sequencing artefact.

540 The last criterion for a position being an SNV is that it cannot occur within 15 bp of an indel
541 column. We define an indel column as a position where more than 10 % of the reads contain an
542 indel.

543 For all reads at an SNV position, we assign a haplotype to each read. If the read contains the
544 same base as the de novo assembly, the read is assigned haplotype 'X', whereas the read is
545 assigned haplotype 'O', if it contains the alternative nucleotide. In rare cases, some reads
546 contain an indel at the SNV position, and these reads are assigned haplotype 'n'. If a read is
547 assigned 'O', but the base quality is less than QV35, or a small indel is within 10 bp in each
548 direction, or a mismatch is within 10 bp in each direction, or a big indel (>10 bp) is within 250 bp
549 in each direction, then the read is assigned haplotype 'o'. The distinction between 'O' and 'o'
550 makes it possible to assess the quality of the haplotype assignment for all reads at all SNV
551 positions. An identical assessment is performed for haplotype 'X'. Following the assignment of
552 haplotypes, the program continues until the last position in each contig.

553

554 *Recombination calling*

555 Candidate recombination events are called when a read contains high-confidence variants from
556 both haplotypes (X and O). Subsequently, those events are divided into four basic types (see
557 also Supplementary Figure 1):

- 558 1. CO events are defined as reads that display a single jump of haplotype and where at
559 least two SNVs from each haplotype are present (e.g., 'XXxOO').
- 560 2. NCO events are defined as an SNV string that contains exactly two haplotype jumps
561 (e.g. 'OoXOO').
- 562 3. The boundary events are defined as an SNV string with a single jump of haplotype (like
563 the COs), but the jump occurs between the first or last two SNVs (e.g., OOooX).
- 564 4. The complex events are defined as an SNV string with more than two haplotype jumps.

565 To minimise the number of false positives, we exclude events that occur closer than 5000 bp to
566 another event.

567 The overall pipeline is sketched in Supplementary Figure 1, however the final step in filtering the
568 reads containing recombination events is specific to the human samples, where we exclude any
569 recombination calls that land on the acrocentric short arms, and any calls that overlap with
570 segmental duplications.

571 To separate the events found in segmental duplications, we intersect the map of segmental
572 duplications with the CHM13 coordinates of the called events ²⁷.

573

574 SD and acrocentric annotations:

575 <https://zenodo.org/records/7671779>

576 Furthermore, for testis samples, we only record the recombination events observed in reads that
577 are assigned as germline reads in Figure 1A. For the classification of reads, see the section
578 “Methylation-based classification of cell types” below.

579 *Manual curation*

580 Following the classification of germline read recombination events, all reads were manually
581 curated using a script rendering relevant IGV sections. Manual curation was done by PSP for all
582 events and by APC, SB, and MHS for a subset of the events. From this, we calculated the
583 interobserver concordance to be >0.95, with 5-20% of events deemed as false positives and
584 removed from further consideration. The events scored as false positives were mainly due to
585 repetitive regions of the genome, long distances between SNVs, or collapsed regions, where
586 more than haplotypes are present.

587 *Inference of distribution of NCO tract length from candidate read counts*

588 We estimated NCO tract lengths using the framework of (Charmouh et al 2024
589 BIORXIV/2024/601865). Briefly, we infer, using maximum likelihood, the mean of the best fitting
590 geometric distribution of NCO tract length from the observed counts of reads that exhibit a
591 footprint of NCO and by tallying how many reads convert/move 1, 2, 3 etc. SNVs in the read
592 from an O to an X haplotype. This approach assumes that all NCO events are independent and
593 that each NCO event induces a tract of physical length L, where L is modelled as a stochastic
594 (random) variable geometrically distributed with expected mean 1/s. The data for each sample
595 is summarised as the counts of reads n_i containing apparent GCV events that have moved in
596 SNVs.

597 Using simulation, the method allows us to obtain the expected proportions of reads harbouring

598 1,2,3, etc. converted SNVs given the genome-wide SNV distribution of each sample as a
599 function of some mean NCO tract length. By doing so, we account for differences in detectability
600 induced by the fact that the SNV density underlying the two haplotypes varies hugely from
601 region to region (Median distance: 347 bp, mean inter SNV distance: 1173.07 bp, IQR: 812,
602 see Supplementary Figure 7).

603

604 *Testing for differences in NCO tract length between samples*

605 To test for differences in tract length between samples A and B, say, we employ a likelihood
606 ratio test comparing the relative fit of two models to the data. Under Model0 (M_0), we assume
607 that reads from both samples are independent observations of NCO where the induced
608 conversion tract length is drawn from a single geometric distribution with mean length $L_0 = 1/S_0$.
609 Under Model1 (M_1), we allow the induced conversion tract lengths to follow different geometric
610 distributions with mean $1/S_A$ and $1/S_B$, respectively. The likelihood of the data \mathbf{D} (counts in
611 sample A and sample B) are maximised under both M_0 and M_1 , and we use $G_{\text{obs}} = 2 \log$
612 $(L_1(\mathbf{D})/(L_0(\mathbf{D}))$ to assess statistical significance. Under the null hypothesis that both samples
613 follow an identical tract length, we have that G_{obs} is approximately χ^2 distributed with 1 degree of
614 freedom.

615 Using this framework, we can test for pairwise differences (e.g., between sample A and B) or
616 extend the test to globally test for differences between all K samples. In that case, M_1 allows K
617 geometric distributions with different means for each sample, and the test statistics G_{obs} is
618 approximately χ^2 distributed with K-1 degrees of freedom if M_0 is correct.

619 Given that the likelihood functions rely on the multinomial distribution of counts, and provided
620 that the total number of counts is larger than 5, the χ^2 approximation to the distribution of G_{obs} is
621 expected to be very accurate (e.g.²⁸, Chapter 8).

622

623 *Methylation-based classification of cell types*

624 To develop a binomial-based method for reads classification into germline or non-germline, we
625 required binomial distribution parameters for all CpG sites of the reference genome in germline
626 and non-germline cell types separately.

627 Hence, we obtained the methylated and non-methylated counts at individual CpG sites of the

628 reference genome (hg38) in germline cells using genome-wide methylation data originating from
629 NEBNext Enzymatic Methyl-seq (EM-seq; New England Biolabs, Ipswich, MA, USA) of flow-
630 sorted spermatogenic cell types representing 4 different stages of spermatogenesis. The
631 dataset contained 4 sorted spermatogenic cell types obtained from 3 different men with ongoing
632 spermatogenesis and represent undifferentiated spermatogonia (2C, UTF1+/DMRT1-),
633 differentiating spermatogonia (2C; UTF1-/DMRT1+), primary spermatocytes (4C) and
634 spermatids/spermatozoa (1C)¹⁵. Finally, WGBS data from ejaculated and isolated sperm from 5
635 men were also included²⁹

636

637 Similarly, to obtain methylation counts for non-germline or somatic cells, we used whole-genome
638 bisulfite sequencing (WGBS) samples from cell-sorted blood samples and brain biopsies from
639 multiple individuals²⁹. For blood and brain tissue, the different cell types and samples were
640 grouped to form one high-coverage estimate of the methylation levels for each CpG site in the
641 blood (based on 10 B-cells, 36 T-cells, 6 Monocytes, 4 Natural Killers, and 4 Granulocytes files)
642 and brain (based on 20 neuron files).

643

644 We thus consider 7 different types of cells: 5 different types of germline cells corresponding to
645 mature sperm plus the four spermatogenic cell stages of spermatogenesis and two types of
646 somatic cells (blood and brain).

647

648 All sequencing reads of the training data were aligned to hg38, and reference genome CpG
649 sites with a coverage smaller than six (12.3% of all CpG sites of the genome) were discarded.
650 For each CpG site, i , we counted the number of methylated ($n_{m,i,c}$) and unmethylated ($n_{u,i,c}$)
651 reads in each of the seven cell types, c

652

653 The HiFi reads we wanted to classify were also aligned to hg38. For each CpG site, i , in a read,
654 r , a methylation status, $p_{r,i}$, ranging from 0 (unmethylated) to 1 (methylated) had been
655 calculated using jasmine and we use this as our raw input to build our classifier for each read.

656 <https://github.com/PacificBiosciences/jasmine>.

657

658 Our analysis excluded CpG sites on a HiFi read with a high degree of uncertainty about
659 methylation status ($p_{r,i}$ between 0.3 and 0.7) and CpG sites that were not present in the training
660 data CpG sites.

661

662 We can then calculate the log-likelihood of observing this $p_{r,i}$ at site, i , given that read, r , comes
663 from cell type, c , assuming that the methylation level in the different cell types follows a Beta
664 distribution. For each type of cell, we use a beta distribution empirically motivated by our training
665 data, e.g. the observed counts of methylated ($n_{m,i,c}$) and unmethylated ($n_{u,i,c}$) reads in each type
666 of tissue c :

667

$$668 \quad \mathcal{L}_{i,r,c} = \log \mathcal{L}(r \in c | p_{r,i}) = \log \left(p_{r,i} \times \frac{(n_{m,i,c} + 1)}{(n_{m,i,c} + n_{u,i,c} + 2)} + (1 - p_{r,i}) \times \frac{(n_{u,i,c} + 1)}{(n_{m,i,c} + n_{u,i,c} + 2)} \right)$$

669

670 To estimate the log-likelihood that read, r , comes from cell type, c , using the methylation status
671 of all informative CpG sites on the read. We assume independence between the methylation
672 levels of each CpG site and, accordingly, sum the site-specific log-likelihoods. If the read
673 contains L CpG sites starting with number x this becomes:

$$674 \quad \mathcal{L}_{r,c} = \log \mathcal{L}(r \in c | p_r) = \sum_{i=x}^{x+L} \mathcal{L}_{i,r,c}$$

675 We then classify a read as germline if the cell type with the highest log-likelihood is one
676 of the five germline cell types.

677

678 Acknowledgements

679 The authors are grateful to Bonnie Colville-Ebeling for helping with the collection of anonymous
680 human testis tissue and Brian Vendelbo Hansen for helping with the DNA purification. We are
681 also grateful to Veterinarian Imke Lüders, Münster Zoo, Germany for helping collect great ape
682 samples and Senior Engineer Ave Tooming-Klunderud from the Norwegian Sequencing Centre
683 for the excellent help with the PacBio HiFi sequencing. The computational work has taken
684 advantage of the genomeDK supercomputing infrastructure. The work was funded by the Novo
685 Nordisk Foundation (grant# NNF21OC0069105). The authors have benefited from networking
686 grants of COST Action CA20119 (ANDRONET) supported by the European Cooperation in
687 Science and Technology (www.cost.eu).

688

689

690 **Author contributions**

691 MHS, TB, SB and KA conceived the study. CH, KA and SBW collected the samples. SBW and
692 KA generated the data. PSP built the de novo assembly, called recombination events, analysed
693 the spatial distribution of recombination events and headed the manual curation of reads with
694 input from MHS, TB, APC and SB. APC developed and applied inference methods for
695 estimating gene conversion and gBGC with input from PSP, MHS, TB, SB and AH. VKS and SB
696 developed and applied the read classifier. MHS and PSP wrote the first draft of the manuscript
697 with substantial input from APC, TB, AH, KA, SB, VKS, SBW, MP and SL.

698

699 **Data availability**

700 All scripts used for analysis are available at
701 [https://github.com/PeterSoerud/recombination_calling]. According to Danish legislation, we are
702 not allowed to deposit human sequencing data from anonymous human donors. For
703 chimpanzees and gorillas, HiFi reads in fastq format have been deposited in the ENA archive,
704 accession number PRJEB77177

705 **References**

- 706 1. Pratto, F. et al. DNA recombination. Recombination initiation maps of individual human
707 genomes. *Science (New York, N.Y.)* **346**, 1256442 (2014).
- 708 2. Brick, K., Pratto, F. & Camerini-Otero, R. D. After the break: DSB end processing in mouse
709 meiosis. *Gene Dev* **34**, 731–732 (2020).
- 710 3. Altemose, N. et al. A map of human PRDM9 binding provides evidence for novel behaviors of
711 PRDM9 and other zinc-finger proteins in meiosis. *eLife* **6**, (2017).
- 712 4. Pratto, F. et al. Meiotic recombination mirrors patterns of germline replication in mice and
713 humans. *Cell* **184**, 4251-4267.e20 (2021).
- 714 5. Halldorsson, B. V. et al. Characterizing mutagenic effects of recombination through a
715 sequence-level genetic map. *Science* **363**, eaau1043 (2019).
- 716 6. Duret, L. & Galtier, N. Biased Gene Conversion and the Evolution of Mammalian Genomic
717 Landscapes. *Annual review of genomics and human genetics* **10**, 285–311 (2009).
- 718 7. Galtier, N., Piganeau, G., Mouchiroud, D. & Duret, L. GC-Content Evolution in Mammalian
719 Genomes: The Biased Gene Conversion Hypothesis. *Genetics* **159**, 907–911 (2001).
- 720 8. Pratto, F. et al. Germline DNA replication shapes the recombination landscape in mammals.
721 doi:10.1101/2020.09.23.308874.
- 722 9. Marais, G. Biased gene conversion: implications for genome and sex evolution. *Trends
723 Genet.* **19**, 330–338 (2003).
- 724 10. McVean, G. A. et al. The fine-scale structure of recombination rate variation in the human
725 genome. *Science (New York, N.Y.)* **304**, 581–4 (2004).
- 726 11. Kong, A. et al. Fine-scale recombination rate differences between sexes, populations and
727 individuals. *Nature* **467**, 1099–1103 (2010).
- 728 12. Kong, A. et al. Common and low-frequency variants associated with genome-wide
729 recombination rate. *Nature genetics* **46**, 11–6 (2014).
- 730 13. Halldorsson, B. V. et al. The rate of meiotic gene conversion varies by sex and age. *Nature
731 genetics* **48**, 1377–1384 (2016).
- 732 14. Vollger, M. R. et al. Increased mutation and gene conversion within human segmental
733 duplications. *Nature* **617**, 325–334 (2023).
- 734 15. Siebert-Kuss, L. M. et al. Genome-wide DNA methylation changes in human
735 spermatogenesis. *Am. J. Hum. Genet.* **111**, 1125–1139 (2024).
- 736 16. Cagan, A. et al. Somatic mutation rates scale with lifespan across mammals. *Nature* **604**,
737 517–524 (2022).

738 17. Moore, L. et al. The mutational landscape of human somatic and germline cells. *Nature* 1–6
739 (2021) doi:10.1038/s41586-021-03822-7.

740 18. Broman, K. W., Murray, J. C., Sheffield, V. C., White, R. L. & Weber, J. L. Comprehensive
741 Human Genetic Maps: Individual and Sex-Specific Variation in Recombination. *Am J Hum
742 Genetics* **63**, 861–869 (1998).

743 19. Auton, A. et al. A fine-scale chimpanzee genetic map from population sequencing. *Science*
744 (New York, N.Y.) **336**, 193–8 (2012).

745 20. Stevison, L. S. et al. The Time Scale of Recombination Rate Evolution in Great Apes.
746 *Molecular biology and evolution* **33**, 928–45 (2016).

747 21. Li, R. et al. A high-resolution map of non-crossover events reveals impacts of genetic
748 diversity on mammalian meiotic recombination. *Nature communications* **10**, 3900 (2019).

749 22. Hardarson, M. T., Palsson, G. & Halldorsson, B. V. NCOurd: modelling length distributions of
750 NCO events and gene conversion tracts. *Bioinformatics* **39**, btad485 (2023).

751 23. Williams, A. L. et al. Non-crossover gene conversions show strong GC bias and unexpected
752 clustering in humans. *eLife* **4**, e04637 (2015).

753 24. Narasimhan, V. M. et al. Estimating the human mutation rate from autozygous segments
754 reveals population differences in human mutational processes. *Nature communications* **8**, 303
755 (2017).

756 25. Schwartz, J. J., Roach, D. J., Thomas, J. H. & Shendure, J. Primate evolution of the
757 recombination regulator PRDM9. *Nature communications* **5**, 4370 (2014).

758 26. Myers, S. et al. Drive against hotspot motifs in primates implicates the PRDM9 gene in
759 meiotic recombination. *Science* (New York, N.Y.) **327**, 876–9 (2010).

760 27. Nurk, S. et al. The complete sequence of a human genome. *Science* **376**, 44–53 (2022).

761 28. Grant, G. R. & Ewens, W. *Statistical Methods in Bioinformatics: An Introduction*. (Springer,
762 1989).

763 29. Loyfer, N. et al. A DNA methylation atlas of normal human cell types. *Nature* **613**, 355–364
764 (2023).